A thesis submitrea to the raculiy of Sciellie, univeioiky of Nairobi in fulfillment for the award of the degree of Doctor of Philosophy in Mathematics.

By

Jairus Mutekhele Khalagai.

JUL.Y 1983.

This Thesis is my original work and has not been presented for a degree in any other University.

J.M. KHALAGAI.

This Thesis has been submitted for examination with my approval as University Supervisor.
I. H Sheth
I.H. SHETH:

My sincere thanks are to my supervisor, Dr. B.P. Duggal who started supervising me at M.Sc. levei. He is the man who introduced me to real research work in Operator Theory. My tianks are also due to Dr. I.H. Sheth who not only took over and accomplished what was left by Dr. B.P. Duggal, but also widenat my sonpe of research in Duerator Theory by giving me relevant research advice which helped me in avoiding fallacious statements in this Thesis.

I am also indebted to my wife, Meave Miriam Nasimiyu, who gave me moral support during the protracted period of research work for this Thesis.

Finally, I thank the University of Wairobi for offering me the Tutorial Fellowship which enabled me to carry out the research, and Mrs. Mary Maina for her good job in typing this Thesis.
J.M. KHALAGAI

> CONTENTS.

CHAPTER 0.

CHAPTER ONE.
On the operator equation. $A H=K A$ - - 1

CHAPTER TWO.
The operator equation $A B+B A^{*}=A * B \cdot B A=I$.
Necessary sufficient conditions
for existence of A or B -

CHAPTER THREE.
The operator equation $A B+B A^{*}=A * B+B A=I$.
Normal solutions.

CHAPTER FOUR.
The operator equation TST* = S. Unitary
solutions

REFERENCES

This Thesis is devoted to e study of three operator equations in a complex Hilhont space. The three operator enuations are as follows:

1. $A H=K A$,
2. $A B+E A^{*}-A * B+E A=I+$
3. $T S T=S$.

We give below an account of the work done by several authors as far as these operator equations are concerned and also a brief chapterwise sumnary of the work done by us.

In the case of the operator equation $A H=K A$, a number of
 under which H and K either belong to the same class of operators or happen to be equal. Some of the authors who have carried out this study are: M.R. Embry [12]* B.P. Duggal [$\left[6^{\circ}\right]$, R. Nakamoto $[20]$ and J.M. Patel [21] . We note thai M.R. Embry [12] proved equality of H and K by requiring that H and K ire commuting normal operators and zero does not helung to the interjor of the numerical range of A. B.f. Fuggal [fi] \&eneralised this result by only claiming normality of K and setting H to be of the form $H_{n}=A^{*} K^{n} A$, for all non-negative integer n. R. Nakamoto [20] generalised this result further hy showing that it is enouzh to prove for $n=0,1$ only.

[^0] listed ir the reference.

Introducing an extra condition that if also $A K=H A$, J. F. Patel. [21] was able to prove equality of H and K under some conditions on A which we are going to improve in this Thesis.

The operator equation $A B+B A^{*}=A * B+B A=I$, has been also studied by a number of authors. Firstly, the case in which the Hilbert space is finite-dimensional, the possibility of interest in those A and Hermitian B satisfying the equation was mentioned by Taussiny in [.0 J . Barker [2] showed that: (i) If the number of eigen values of the matrix A with zero real part is zero, then A is normal if and only if there is a Hermitian matrix B such that the equation is satisfied and $A B=B A$, (ii) The solution A to the equation is normal if either $\left(A+A^{*}\right)$ and $-\left(A+A^{*}\right)$ have no common eigen-values, of
 Barker's result to the case in which the Hilbert space is infinite dimensional, and a number of other conditions guaranteeing the normality of solution A, have been given by Duggal and Khelagai in [10] and [ii]. We carry on with this study in this Thesis.

The authors who have studied the operator equation TST* $=$ S for unitary solutions in T, include S.K. Khasbarder and N.K. Thakare [it] who showed that if T and S satisfy the equation with T invertible and both T and T^{-1} are spectraloid then T is unitary provided zero does not belong to the rincure of the numerical range of S. Sinçin and Manga 1237 proved that if T and S satisfy the equation with T invertible and S a cramped unitary operator, then T is unitary. Duggai [Er] showed that for \bar{T} any 5 saijsfying the equation. if T is an invertible normal operator and zero does not being
to the interior of the numerical rangonf \subseteq thorn T ia units er. Patel and sheth $\lceil 23\rceil$ proved that for T and S satisfying the equation, if T is left invertible and S is such that zero does not belong to the closure of its numerical range, then T is unitary provided it $1 s$ either dominant or K-paranormal contraction. We improve this result and a few others in this Thesis.

CHAPTFRWISE SUMMARY.

In the first chapter, we first improve one result due to J.M. Patel [21] and then exhibit a number of corollaries. Among the corollaries proved here, is one which apart from giving an alternative proof to the already known conditions, it also gives a few more conditions under which an operator B commutes with another operator A given that B commutes with A^{2}. We then rove on Invepencent theorem which also gives sufficient conditions under which $H=K$. The chapter ends with a result which attempts to relax the commutativity condition on the operators H and K of M.R. Embry's result in $[12]$,

In the second chapter, we first show that for A and B satiofyilig the operator equation $A B+B A^{\circ}=A^{*} B+B A=I$. RcA and Rem are invertible. We then show that both A and A * have no approximate proper values on the imaginary axis and zero cannot be a normal approximate prepervalue for B. We deduce a number of corollaries from this result. We also prove a result to the effect that if λ is an apnroximato nrnporvalue for A
 of B, from which we also deduce a number of corollaries.

For sufficient conditions for existence of A or B satisfying the equation，we prove results similar to those of J．P．Williams． ［32］．For example，we show that if zero does not belong to the direct sum of the spectra of A and A^{*} or if the spectrum
 closure of the numerical range of $T^{-1} A T$ ，lies in the positive half complex plane，then there always exists a positive definite nperatan A ayrh that $A R+B A *=A * B+B A=T$ nmmitor A commutes with $A^{*}-A$ ．We also look at the uniqueness of solutions in which we are able to show that if either ReA and －ReA have no common spectra or zero does not belong to the interior of the numerical range of ReA，then the solution B to the equation is always unique．

The third chapter starts with application of our first result prover in chaptor non．Here we give alternative proof for most of the already existing sufficient conditions for A satisfying the equation $A B+B A^{*}=A^{*} B+B A=I$ ，to be normal．We prove our second theorem which gives further conditions under which A is normal and deduce a number of corollaries．We also show that if B^{n} is normal for sorne even positive integer n ，and E is invertible，then A is normal if and only if $B^{n} A$ is normal． Giving an example，we are able to show that a similar result an which B^{n} is normal for some odd positive interger n is not possible．We are also able to answer the question raised by 3．P．Duggal［j］by proving that a K－quasi－hyponormal operator A satisfying the equation is always normal．The chapter ends with a result giving sufficient conditions under which the eclution g of the cミッこさミこに ！＝ここlf sdjoint．

Here，we show among otner conoilluns｜lnal it elliei त̄́n añ －ReA have no common specila ur celu does not belong to the interior of the numerical range of ReA，then S is self adjoint．
 operator T satisfying the equation $T S T=S, T$ turns out to be invertible under very humble conditions on S ，like S being
 results which give uniticity of T ．We also improve on the result of Patel and Sheth［23］by proving that if T is a left invertible operator satisfying the equation and T is either dominant or K－paranormal，then T is unitary provided zero does not belong to the closure of the numerical range of either ReS or ImS．The chapter ends with improvement of of J．M．Patel โ22†，S．M．Patel 【24〕 and singn「29］respectively．

\therefore INITIORS．

Thesis，G will denote a complex Hilbert space ner．product function denoted by（．，．）．$B(G)$ ．ote the Banach algebra of all bounded linear －OIS on G．The elements of＇s wil？ho donoted hu Ital letters such as A，B，H，K Etc．

For $A \in B(G), \quad \int(A)$ will denote the resnlvent set of A i．e．the set of all λ for which $A-\lambda 1$ is invertible．U\｛A\}
will denote the spectrum of A ．i．e．ihe cumpliment of the rejulvent set of A．$\pi_{\pi}(A)$ will Henote the epproximaia spectrim of A ． $1 . e$ kne set ij $\dot{1}=1$
$\varepsilon>C$ ，there exists an $x \in r_{\text {e }}$ eun that $||x||=1$ anü $\|(\lambda-A) x!\mid<\varepsilon$ ．Such a λ is called an approximate firopet vaiva
$\sigma_{f}(A)$ will denote the approximate vo decl spcotaum of A. i.e. the set of all λ such that $A-\lambda$ is not onto.

The numerical range of A will be demoted by $W(A)$. ie. $W(A)=\{(A x, x):||x||=1\}$. The closure of the numerical dike of A will be denoted by W(A), and the null space of A will be denoted by $N(A)$, while $R(A)$ will denote the range of A. Let $[A, B]=A B-B A$ and $\{A\}^{\prime}=\{B \in B(G):[A, B]=0\}$. Lei G, iencie the =sight tiff complex plane and $\pi^{+}=\{z:$ Rez>0, Imz>0\} where z is a complex number.

An operator A is said to be:
normal if $A A^{*}=A * A$,
unitary if $A^{*} A=A A^{*}=I$,
isometaicif $A * A=T$,
hyponormal if $A^{*} A \geq A A^{*}$,
M-hyponormal if $(A-z)(A-z)^{*} \leq M(A-z)^{(A-z)}$ for all complex numbers z, and M some positive number,
k-paranormal if $\|A x\|^{k} \leq\left|\left|A^{k} x\right|\right| \cdot| | x| |^{k-1}$ for all $x \in G$ and

$$
k \geq 2
$$

k-quasi-hyponormal if $A^{*}\left(A^{*} A-A A^{*}\right) A^{k} \geq 0$,
dominant if $R(A-\lambda) \subset R\left(A^{*}-\lambda^{*}\right)$ for each $\lambda \in \sigma(A)$, contraction if $||A||<1$.
satisfying growth condition G_{1} if $\|(A-\lambda I)^{-1}| | \leq$

$$
\overline{J\left(\lambda, \sigma(\lambda) Y^{\prime}\right.} \quad \lambda \neq \sigma(A) \text {. }
$$

left invertible if $A_{1} A=I$ for some $A_{1} \in B(G)$.

CHAPTER ONE

ON THE OPERATOR EQUATION $A H=K A$.

In this Chapter, we consider sufficient conditiors under which $H=K$ and its consequences. We start by improving one result of J.M. Patel [21]. He proved the following result: THEOREM 1. A. If $A H=K A$ and $A K=H A$ with A unitary, then $H=K$ under any one of the following conditions,
(i) $\sigma(A) \cap \sigma(-A)=\varnothing$,
(ii) $0 \neq W(A)$.

The following result shows that the condition on A can be relaxed.
THEOREM 1.1. [16]. Let $A, H, K \in B(G)$.
If $A H=K A$ and $A K=H A$, then $H=K$ under any one of the following conditions:
(i) \quad ($A) \cap O(-A)=8$.
(ii) A is normal and either o(ReA) \cap or $(-R e A)=\square$ or
$\sigma(\operatorname{Im} A) \cap \sigma(-\operatorname{Im} A)=\varnothing$,
(iii) $\{A\}^{\prime}=\left\{A^{2 m}\right\}^{\prime}$, for some positive integer m and A is ane-one or has dense range,
(iv) $t i$ and k are normal and $0 \notin W(A)$.

For the proof of the above theorem, we first prove the following lemmas:

LEMMA 1.2. [1E]. If $A H=K A$ and $A K=H A$, then $\left[K, A^{2}\right]=0=\left[H, A^{2}\right]$. Proof. From $A H=K A$, we have

AHA $=K A^{2}$, while from
$A K=H A$ we have
$A^{2} K=$ ArIA. stance $\left\lfloor K, A^{2 T}\right\rfloor=U$.
Similarly,
and has dense range.
Proof. Since $0 \neq W(A),(A x, x) \neq 0$ for $x \neq 0$. i.e.
Ax $\neq 0$ for $x \neq 0$.
A being linear, this implies that A is one-one. If $\overline{R(A)} \notin \mathbb{G}$, then $[\overline{R(A)}]^{\perp}=N\left(A^{*}\right) \neq G^{\perp}=\{0\}$, i.e. there exists a unit vector $x \in N\left(A^{*}\right)$ such that: $(A * x)=0=(x, A x)$ which implies that $0 \varepsilon W(A)$, a contradiction. rielice $\overline{\pi(A)}=G$.

We note that the following results will also be required for the proof of our theorem 1.1. Firstly, M.R.Embry [12] proved the following corollaries:

COROLLARY 1.B. Let $A, H, K \varepsilon B(G)$.
Let $0=\{A: 0 \notin W(A)$ or $\sigma(A) \cap \sigma(-A)=\varnothing\}$.
If $A!K$. KA ard $A \cdot H=K A$. when $\Delta=\pi$, then $H=K$ if either A is unitary or H and K are normal.
COROLLARY 1.C. Let $A \in B(G)$. If A is normal, then $\{A\}^{\prime}=\left\{A^{2}\right\}^{\prime}$ provided $0 \nmid h^{\prime}(A)$.
M. Rosemblum [26] proved the following result:

THECREM 1.D. Let $A, X \in B(G)$. If we have that. $A X+X A=0$ and $\sigma(A) \cap o(-A)=x$ then $x=0$ is the only solution.
C.C. Cowan [A], proved the following result:

COROLLARY 1.E. Let $A \in B(G)$. If $\sigma(A) \subset \pi^{+}$, then $\{A\}^{\prime}=\left\{A^{4}\right\}^{\prime}$. We also state the following result due to Putman and Fuglede.
PUTNAM-FUGLEDE THEOREM. Let $A_{1}, A_{2}, B \in B(G)$. If $B A_{1}=A_{2} B, A_{1}$ and \dot{A}_{2} rumal, then $E A_{i}=\hat{n}_{2}$.
(i) $A H=K A$ and $A K=, H A$ together imply that:
$A(H-K)=(K-H) A$,
or
$\therefore 1: \quad \cdots!+3!-\therefore 2 n-2$.
Since $\sigma(A) \cap \sigma(-A)=B, H-K=0$ is the only solution
of the equation (by theorem 1.0. above) and hence $H=K$.
(if) if A ic mammal, than $-A$ ie salon mammal Gino
$A(H-K)=(H-K)(-A)$, by Putnam Fuglede theorem,
$A^{*}(H-K)=(H-K)\left(-A^{*}\right)$.
ie. $\left(A+A^{*}\right)(H-K)+(H-K)\left(A+A^{*}\right)=0$,
or
$(\operatorname{Re} A)(H-K)+(H-K)(R e A)=0$.
Since $\sigma(\operatorname{Re} A) \cap \sigma(-R e A)=\boxtimes . H-K=0$ is the only
solution of the equation and hence $H=K$.
The case in which $O(\operatorname{ImA}) \cap o(-\operatorname{ImA})=\varnothing$ is proved similarly.
(iii) By lemma 1.2 above. $\left[K, A^{2}\right]=0$, and so $\left[K, A^{2 m}\right]=0$.

Since by hypothesis $[K, A]=0$ if and only if
$\left[K, A^{2 m}\right]=0,[K, A]=0$. Now, $A K=K A=A H$ and A being one-one, $K=\hat{H}$. Alsu $A K=K A=H A$ and range of \hat{A} being dense, $K=H$.
(iv) Jiff H and K are normal, then by Putnam fuglede theorem, we have also

$$
A K^{*}=H^{*} A \text {. }
$$

Taking adjoint gives:

$$
A^{*}+1=K A^{*} .
$$

Since $0 \frac{1}{4} W(A), \quad i$ and K case normal. $A H=K A$ and $A \cdot H=K A *$ ny onroliary $1 . B$ above, $H=N$,

COROLIARY 1.4. [10.j. it $A M=K A$, and $A M=$ hA, then $i f=K$
yonder any one of the following conditions:
(i) A is normal and $0 \$ W(A)$.

Proof. A is normal and $O \& W(A)$ together imply that $\{A\}^{\prime}=\left\{A^{2}\right\}^{\prime}$ by corollary 1.e Homo ny fart. (iii) of theorem 1.1. above, the result follows.
(ii) A is normal and $0 \$ W($ Re $)$. with a similar statement holding. when Ref is replaced by ImA.
Proof. We only need to show that $u \$ W($ Real $)$ implies 0 i W(A) and the result will follow from part (i) of this corollary. We do this by contradiction. Suppose $0 \nmid W(R e A)$ and $0 \varepsilon W(A)$ Now let $A=3+i H$. By hypothesis 0 \& W(J). If $0 \in W(A)$, then there exists a unit vector $x \in G$ such that $(A x, x)=0$. ie. $(J x, x)+i(H x, x)=0$.
i.e. $(H x, x)=0=\{J x, x)$ a cunviadiction to the hypothesis. Hence $0 \$ W(A)$. The case in which $0 \$ W(\operatorname{ImA})$ is proved similarly.
(iii). $(A x, x)>0$ for $x \neq 0$.

Proof. If $(A x, x)>0$ for $x \neq 0$, then $0 \nmid W(A)$. Also, since A is positive, it is normal. Hence result follows from part (i) of this corollary.
(iv) $\sigma(R) \subset \pi^{+}$.

Proof. If $\sigma(A) \subset \pi^{*}$, then A is invertible and by corollary 1.5 above, $\{A\}^{\prime}=\left\{A^{4}\right\}^{\prime}$. Hence we can now apply part (iii) of theorem 1.1.
(v) 0 \& WITT:
proof. We drily reed to show that if $0 \phi \overline{W(A)}$ then $\sigma(A) \cap \sigma(-A)=\emptyset$ and the result will follow from part (i) of theorem 1.1. We do this by contradiction. If $\sigma(A) \cap a(-A) \neq n$ and $\lambda \sim(A) \cap \cap(-A)$ than $1,-1$ $\varepsilon \sigma(A) \subset$ ग(A). W(A) being a convex set, $0 \varepsilon W(A)$, 3 contradiction. Hence $\sigma(A) \cap \sigma(-A)=\varnothing$.

corollary 1.4. above, are an improvement of J.M. Patel's theorem 1.A. above.

COROLLAPY 1.5. $\left[28^{\circ}\right]$. If A and T are operators such that: AT $=T *-1 A$ and $A T *-1=T A$, then T is unitary under any one of the conditions in theorem 1.1 with condition (iv) as T is normal and 0 \& $W(A)$ or under any one of those in corollary 1.4 . Proof. Set $H=T-1$ and $K=T$. COROLLARY 1.5. [28]. If A and T are operators such that $A T=T * A$ and $A T *=T A$, then T is self adjoint under any one of the conditions in theorem 1.1. with condition (iv) as T is normal and $0 \notin W(A)$ or under any of those in corollary 1.4. Proof. Set $H=T$ and $K=T$.
COROLIARY 1.7. [28] . Let A and B be any operators such that $\left[B, A^{2}\right]=1$. Then $[B, A]=0$ under any one of the following conditions:
(i) $\sigma(A) \cap \sigma(-A)=\varnothing$.
(ii) A is normal and either o(ReA) \cap of (LeA) $=$ Bor
ollmal r ol-1mAj $=B$,
(iii) $\{A\}^{\prime}=\left\{A^{2 \pi\}^{\prime}}\right\}^{\prime}$, fur some positive integer in. (iv) $A B$ and $B A$ are normal and $0 \& W(A)$.
(v) A is normal and $0 \& W(A)$.
(vi) A is normal and either 0 \& $W(R e A)$ or 0 \& W(TmA),
ivii) $\{A x, x\}>0$ for $x \neq u$,
(viii) o($A) \subset \pi^{+}$.
$(i x) 0 \nmid \overline{W(A)}$.
Prot. Since $\left[B, A^{2}\right]=$ U. we have:

$$
A(A B)=(B A) A
$$

and

$$
A(B A)=(A B) A .
$$

 implies that $H=K$ by theorem 1.1. and corollary 1.4. above. Hence $[B, A]=0$. COROLLARY 1.8. $\left[28^{\circ}\right]$. If $A H=K A$ and $\left[K, A^{2}\right]=0$, then $H=K$ under any one of the following conditions:
(i) $\sigma(A) \cap \sigma(-A)=\varnothing$.

(iii) A is normal and $0 \& W(A)$.
(iv) A is normal and either $0 \$ W(R e A)$ or $0 \$ W($ lImA $)$.
(v) A is normal and either $o(\operatorname{ReA}) \cap o\left(-\operatorname{ReA}^{\prime}\right)=\varnothing$ or

$$
\sigma(\operatorname{ImA}) \cap \sigma(-\operatorname{ImA})=\varnothing .
$$

(vi) $(A x, x)>0$ for $x \neq 0$,
(vii) $o(A) \subset \pi$
(viii) 0 \& $\overline{\text { I }}(\mathrm{A})$.

Proof. Since $\left[K, A^{2}\right]=0$, each of the above conditions implies $[K, A]=0$. Now, $A H=K A=A K$ gives us $H=K$, since A is one-one by each of the above conditions. For the sake of completeness we give here proof of part (v). We give the proof here to show that o(Rea) \cap o(-ReA) $=\varnothing$ implies A is one-one. We do this by contradiction. If A is not one-one then $A x=0$ for some $x \neq 0$ in G.

A being normal. $A^{*} x=0$. Hence $\left(A+A^{*}\right) x=0$, which implies that $O \varepsilon \sigma(\operatorname{Re} A) \cap o(-R e A)$, a contradiction. Hence A is one-one. COROLLARY 1.9. [28] . If A and T are operators such that $A T=T * A$ and $\left[T *, A^{2}\right]=0$, then T is self adjoint under

Proof. Set $H=T$ and $K=T *$ and apply corollary 1.8. COROLLARY 1.10. [2B] . If A and T are operators such that $A T=-1$ - in and $\left[T, \dot{A}^{2}\right]=\bar{U}$, then 1 is unitary under any one of the conditions in corollary 1.8 above.

Proof. Set $H=T *-1$ and $K=T$ then apply corollary 1.8. COROLLARY 1.11. Let $A H=K A$ and $A K=H A$, then $H=K$ if $0 \nmid W(A)$ and $\operatorname{dim} G<\infty$.

Proof. If dim $G<\infty$, then $W(A)$ is closed. Hence $W(A)=\bar{W}(A)$, and the result follows from part (v) of corollary 1.4 .

COROLLARY 1.12. [2R]. If H and K are self adjoint operators such that $H A=A K$ with $A=U P$ invertible and $[H, U]=0$, then $H=K$ 。

Proof. $H A=H U P=U H P=$ USK.
i.e. $H P=P K$.

Taking adjoints, we have:

$$
P H=K P
$$

i.e. FPH $=K P$ and $H P=F K$.

Since 0 \& $\bar{W}(P)$, the result follows from part (v) of corollary 1.4 above.

We will require the following result of M.R. Embry [12] for the proof of our next result.

COROLLARY 1.F. Let A and E be operators such that $A E=-E A$, Where either A or F ie normal and either 0 fl!! Al m$\sigma(A) \cap \sigma(-A)=\mathbb{E}$.
then $E=0$.
In the fuiluwing result, we assume normality of $H-K$ to get equality of H and K.
THEOREM 1.13. [2B] Let A, H and K be operators such that $A H=K A$ and $A K=Y i A$ with $\dot{A}=U F$. If $H-K$ is normal, then $H=K$ under any one of the following conditions:
(i) $0 \ddagger W(A)$,
(ii) $0 \notin W(U)$ and A is invertible,
(iii) $\sigma(U) \cap \sigma(-U)=\varnothing$ and A is invertible.
proof. (ii) and (iii): A being invertible, U is unitary and P is an invertible positive operator. Now, $A H=$ KA gives us $U P H=K U P$
or
$P H=U * K U P$.
A] so,

$$
\begin{aligned}
& A * A K=A * H A \text { gives us } \\
& P^{2} K=P U * H U P,
\end{aligned}
$$

or

$$
P K=U * H U P
$$

Hence, from $P H=U * K U P$ and $P K=U * H U P$, we have:

$$
P(H-K)=U *(K-H) U P .
$$

H - K being normal. $U^{*}(K-H) U$ is also normal, and so by
Putnam Fuglede theorem, we have:

$$
P(H-K) *=U *(K-H) * U P .
$$

Taking adjoints, we have:

$$
(H-K) D=P U *(K-H) U .
$$

The equations:

$$
(H-K) P=P U^{*}(K-H) U
$$

and

$$
P(H-K)=U^{*}(K-H) U P,
$$

with $u \frac{1}{4}$ war), give us
$H-K=U^{*}(K-H) U$,
by part (v) of corollary 1.4.
i.e. $J(H-K)=-(H-K) U$.

Each of conditions (ii) and (iii) above now implies that
$H-K=0$ by corollary 1.F above. Hence $H=K$.
part (i) is seen thus:
Since $A H=K A$ and $A K=H A$, we have: ${ }^{\wedge}$
$A(H-K j=-i H-\dot{X}) \dot{A}$.
Letting $E=H-K$; we get that $A E=-E A$.
Hence, by corollary 1.F again, $E=0$, or $H-K=0$. ie. $H=K$.
In the sequel. we make an attempt to improve the following result of Embry [12].
THEOREM 1.G. If H and K are commuting normal operators such that $\hat{A H}=k \dot{R}$,
with $0 \& W(A)$, then $H=K$.
We first prove the following result:
THEOREM 1.14. [28]. Let A, H and K be operators such that:
$H A=A K$ and $H^{*} A=A K *$
with 0 \& $W(A)$, then $H=K$ if $[$ ReF, Rex $]=0$ and $[$ ImF, ImK $]=0$. Proof. From $H A=A K$ and $H^{*} A=A K *$, we have:

$$
A\left(K+K^{*}\right)=\left(H+H^{*}\right) A
$$

and

```
        A(K-K*) = (H-H*) A.
```

ie. $A($ ReX $)=($ ReF $) A$
and

$$
A(I m K)=(I m H) A .
$$

The proof of theorem 1.6 can now be traced to give ReG $=$ ReF and $I_{m K}=I m H$. i.e $H=K$.

REMAPK. We note that in general, the conditions $[H, K]=0$ [ReF, ReV] $=0$ and $[$ ImF, ImK] $=0$ are independent. However, if H and K are normal, it can easily be shown that $[H, K]=0$ implie $[$ Ret, ReG $]=0$ and $[\mathrm{ImH}$, Ink $]=0$. Hence the following corollary attempts to relax commutativity of H ana A in theorem int. dive.

COROLLARY 1.15. [28]. Let H and K be normal operators such that
$A H=K A$,
then $H=K$ if $0 \notin W(A)$, $[R e H, R e k]=0$ and [ImF, Ink] $=0$. Proof. Since H and K are normal, by Putnam-Fuglede theorem, we have:
$\mathrm{AH}^{*}=K^{\bullet} A$.
Hence result follows from theorem 1.14. above.

In this chapter, we consider some necessary and sufficient conditions for the existence of A or B such that:

$$
\begin{equation*}
A B+B A^{*}=A^{*} B+B A=I \tag{1}
\end{equation*}
$$

NECESSARY CONDITIONS.
We need the following result of L'. Uavis and P. Rosentnai [5], to prove our first result.

THEOREM 2.A. If $A \in B(G)$, then we have:
(i) $\quad \sigma_{\pi}(A)=\left(\sigma_{\delta}\left(A^{*}\right)\right)^{*}$,
(ii). $\quad \sigma_{\delta}(A)=\left(\sigma_{\pi}\left(A^{*}\right)\right):$
where - denotes complex conjugation.
We now prove the following result:
THEOREM 2.1. [11] . Let $A, B \varepsilon B(G)$, then we have that:
(i) If $A B+B A^{*}=I$ has a solution B, then $0 \& \sigma_{\delta}(A)$ and

0 e $P($ Re $) . ~ F u r t h e r m o r e, ~| |(R e B)^{-1}| | \leq 2| | A| |$.
(ii) If equation (1) has a solution B, then $0 \in P(R e A)$. Proof:- (i) Suppose that $0 \varepsilon \sigma_{\delta}(A)$. Then by theorem 2.A above, $0 \varepsilon \sigma_{\pi}\left(A^{*}\right)$ and so there exists a sequence of unit vectors $\left\{x_{n}\right\} \in G$, such that $A^{*} x_{n} \rightarrow 0$ as $n+\infty$. Now $A B+B A^{*}=I$ gives us:

$$
1=\left(x_{n}, x_{n}\right)=\left(A B x_{n}, x_{n}\right)+\left(B A * x_{n}, x_{n}\right)=\left(B x_{n}, A * x_{n}\right)+\left(A * x_{n}, B^{*} x_{n}\right) \rightarrow 0 .
$$ This is a contradiction, hence $0 \notin \sigma_{\delta}(A)$. Since $A B+B A^{*}=I$, $A B^{*}+B^{*} A^{*}=I$ and so $A(R e B)+(R e B) A^{*}=I$. An argument similar t= that above now shows that 0 ! σ_{δ} faces. But PaH being golf adinin

 Now, to complete the proof, we note that for any $x \in G$,

$$
\|x\|^{2}=\left((\operatorname{Re} B) x, A^{*} x\right)+\left(A^{*} x,(\operatorname{Re} B) x\right) \leq 2\|(\operatorname{Re} B) x\|\left\|A^{*} x\right\|
$$

Hence,

$$
!\left|(\operatorname{Re} B)^{-1}\right|!\leq 2!\mid A!!
$$

(ii) Proceeding as in (i), we have in this case that if $0 \varepsilon \sigma_{\delta}(R e A)$, then

$$
\begin{aligned}
= & -\left\{\left(A B+B A^{*}+\hat{C}+\operatorname{BA} x_{n}, x_{n}\right\}\right. \\
& =2\left\{\left((\operatorname{Re} A) B x_{n} \cdot x_{n}\right\}+\left(B(\operatorname{Re} A) x_{n}, x_{n}\right)\right\} \rightarrow 0 .
\end{aligned}
$$

The contradiction implies that $0 \neq \sigma_{j}(\operatorname{Re} A)$, and so, since Ref is self adjoint, $0 \varepsilon \rho($ Re $)$.

We now prove the following result:
THEOREM 2.2. [28]. If there exist solutions A and B to (1), then
(i) A and A^{a} lave no approximate proper value on the imaginary axis,
(ii) 0 cannot be a normal approximate proper value for B.

Proof. (i) Suppose $\lambda=i \mu, \mu$ real, is an approximate proper value for A. Then for a sequence $\left\{x_{n}\right\}$ of unit vectors, we have:

$$
A x_{n}-\lambda x_{n}+0 .
$$

Now, $(A-\lambda I) * B+B(A-\lambda I)=\left(A^{0}+i \mu\right) B+B(A-i \mu)=A^{*} B+B A=I$. Hence, we have:

$$
\begin{aligned}
1 & =\left(x_{n}, x_{n}\right)=\left((A-\lambda I) \cdot B x_{n}, x_{n}\right)+\left(B(A-\lambda I) x_{n}, x_{n}\right) \\
& =\left(B x_{n},(A-\lambda I) x_{n}\right)+\left(B(A-\lambda I) x_{n}, x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

a contradiction. The case for A^{*} is proved similarly using $A B+B A^{*}=1$.
(ii) If 0 is a normal approximate proper value for B, then $B x_{n}+0$ and $B^{*} x_{n}+0$, for a sequence $\left\{x_{n}\right\}$ of unit vectors. Hence, we have that:

$$
1=\left(x_{n}, x_{n}\right)=\left(A * B x_{n}, x_{n}\right)+\left(B A x_{n}, x_{n}\right)=\left(A * B x_{n}, x_{n}\right)+\left(A x_{n}, B \cdot x_{n}\right)
$$

 o((A) does not meet the imaginary axis. In particular $0 \notin \sigma(\Lambda)$. proof. Since for any operator A,
$\sigma(A) C \sigma_{\pi}(A) \bigcup\left(\sigma_{n}\left(A^{*}\right)\right)$ * (with * denoting the complex conjugate) and by theorem 2.2. above, $\sigma_{\pi}(A)$ and $\sigma_{\pi}\left(A^{*}\right)$ do not meet the imaginary axis, it follows that $\left(\sigma_{\pi}\left(A^{*}\right)\right)^{*}$ does not meet the imaginary axis either. Hence $\sigma(A)$ does not meet the imaginary axis.

REMARK. Using the equation:

$$
\begin{aligned}
& \|x\|^{2}=\left((\operatorname{Re} B) x, A^{*} x\right)+\left(A^{*} x, \operatorname{Re} x\right) \text { of theorem } 2.1 \text {., we get } \\
& \|x\|^{2} \leq 2\|\operatorname{Re} B| | \cdot\| A^{*} x| | .
\end{aligned}
$$

As A^{*} is invertible, this gives us $\left\|A^{*-1}\right\|=\left\|A^{-1}\right\| \leq 2 \|$ Res $\|$. COROLLARY 2.4. [28]. If there exists a normal solution B to (1), then ? $\sigma(B)$.

Proof. For a normal operator B, every $\lambda \varepsilon \sigma(B)$ is a normal approximate proper value. Hence by part (ii) of theorem 2.2 above, $0 \nmid \sigma(B)$.

THEOREM 2.5. [28]. If there exists a solution A to (1) with
$\lambda=\alpha+i \beta$, af 0 as an approximate proper value of A or A then $\frac{1}{2 \pi} \varepsilon$ W(B) \cdot

Proof. Suppose $\lambda \varepsilon \sigma_{\pi}(A)$. Here $(A-\lambda I) x_{n} \rightarrow 0$ for some sequence $\left\{x_{n}\right\}$ of unit vectors.
Since $(A-\lambda I) * B+B(A-\lambda I)=\left(A^{*}-\bar{\lambda}\right) B+E A-\lambda B .=A^{*} B+B A-(\lambda+\bar{\lambda}) B$.

$$
=I-(\lambda+\bar{\lambda}) B
$$

$$
=I-2 \alpha B .
$$

THEOREM 2.C. Suppose $J \not O(A)+\sigma\left(A^{*}\right)$. Then we have:
(i) For every operator Y, there exists a unique operator X with $A X+X A^{*}=Y$.
(ii) X is self adjoint if Y 'is self adjoint,
(iii) If Y is positive and invertible, then X is also invertible. THEOREM 2.8. [10]. If $0 \$ \sigma(A)+\sigma\left(A^{*}\right)$, then there exists a positive definite operator B such that $A B+B A=I$. If also

Proof. Since I is positive and invertible, by theorem 2.C, there exists a positive invertible operator B such that $A B+B A^{*}=I$. Now, if $\left[B,\left(A^{*}-A\right)\right]=0$, then $B\left(A^{*}-A\right)=\left(A^{*}-A\right) B$. i.e $A B+B A^{*}=A^{*} B+B A$.

REMARK. We note here that in view of theorem 2.B above, the
 $\sigma(A)$ or equivalently that for some invertible operator T, the closure of the numerical range of $T^{-1} A T$ lies in the positive half complex plane.

We now note that Phadke and Thakare [25] , proved the following result:

CORCLLARYZ.D. For an M-hyponormal operator $A, \sigma_{\pi}\left(A^{*}\right)=\sigma\left(A^{*}\right)$.
In view of corollary 2.D. above, the fallowing result can be derived. COROLLARY 2.3. [11]. If A is a M-hyponormal operator with $\sigma_{\pi}\left(A^{*}\right) \subset C_{*}$ then there exists a positive definite solution B such that $A B+B A^{*}=I$.

Proof. Since A is M-hyponormat, $\sigma_{\pi}\left(A^{*}\right)=v i A^{*}$ by corollary 2.D above. Since $\sigma\left(A^{*}\right) \subset G_{+}$implies $\sigma(A) \subset G_{+}$it follows from theorem 2.8. and the remark above that there exists a positive definite solution E such that fid: $3 A^{*}=I$.

In view of corollary 2.6 and theorem 2.8 above, the following corollary is immediate.

CnDOIIARV? 10. [28], Thor oxiata a solution $B \geq 0$ to (1) if and only if $\sigma(A) \subset G_{+}$and $\left[B,\left(A^{*}-A\right)\right]=0$. UNIQUENESS OF SOLUTION.

Assuming that solutions B to (1) exist, we consider now the problem of the uniqueness of these solutions. An important role here is played by the homogneous form:

$$
\begin{equation*}
A Y+Y A^{*}=0, A^{\circ} Y+Y A=0 \tag{2}
\end{equation*}
$$

of equation (1).
We first prove the following lemmas:
LEMMA 2.11. [11]. $Y=0$ is the only solution of equations (2) if any one of the following conditions is satisfied.
(i) $0 \not \ddagger W(\operatorname{Re} A)$,
(ii) $c(\operatorname{Re} A) \cap o(-\operatorname{Re} A)=D$.

Proof. Cherry, $Y=\bar{U}$ is a sulution of (2). Let U be another solution of (2). Then we have:

$$
A U+U A^{*}=0=A U+U A
$$

and hence,

$$
(\operatorname{Re} A) U=-U(\operatorname{Re} A) .
$$

Now, since Ref is normal, each of the conditions (i) and (iij implies that $U=0$ by corollary 1.r.

LEMMA 2.12. [11] . I: $Y=0$ is the only solution of (2), then the solution B of (1) is unique.

Proof. Suppose that B_{1} and B_{2} are two distinct solutions of (1). Then we have:

$$
A\left(B_{1}-B_{2}\right)+\left(B_{1}-B_{2}\right) A^{*}=0=A^{*}\left(B_{1}-B_{2}\right)+\left(B_{1}-B_{2}\right) A .
$$

But this implies that (2) has a non-zero solution $\mathrm{B}_{1}-\mathrm{B}_{2}$,
contrary to mum hymethosis. Hence $B_{1}=B_{i}$.
We note that combining lemmas 2.11 and 2.12 , we have the following theorem for the unique solution B of (1).

THEOREM 2.13. [11] . The solution B of (1) is unique if any one of the following conditions is satisfied:
(i) $0 \nmid W($ Re $)$.
(ii) $\sigma($ Ref $) \cap$ o(-ReA) $=$ B.

We now show that if solutions Y to (2) are of a certain type, then the solutions B to (1) are unique in as much as they are self adjoint.

THEOREM 2.14. [11]. If for each solution Y of (2) the unique positive square root of $Y^{*} Y$ is also a solution of $-(2)$, then the solutions B of (i) are self adjoint.

Proof. Let B be a solution of (1). Then we set $Y=B^{*}-B$. Since $A\left(B^{*}-B\right)+\left(B^{*}-B\right) A^{*}=0=\left(B^{*}-B\right) A+A^{*}\left(B^{*}-B\right)$, it is clear that A and Y satisfy equations (2). Hence we have: $A Y^{2}=-Y A^{*} Y=Y^{2} A$.
Since $Y * y=-y^{2} \geq 0$, there exists a unique $R \geq 0$ such that $R^{2}=-Y^{2}$. Now since $\left[A,-Y^{2}\right]=0,[A, R]=0$. By hypothesis R is also a solution of (2). Vie now have:
$A R+R A^{*}=\left(A+A^{*}\right) R=0$, and hence that range of $R \subseteq \operatorname{Ker}(\operatorname{Re} A)$. gut Ref being invertible, $\operatorname{Ker}(\operatorname{Re} A)=\{D\}$. Hence $R=0$, and so; since $R^{2}=Y * Y, Y=0$. This completes the proof.

OPERATOR EQUATION $A B+B A^{*}=A^{*} E+B A=I$. NORMAL SOLUTIONS.

In this chanter, we assume that there exist operators A and B such that the equation $A B+B A *=A * B+B A=I$ of which we shall still refer to as equation (1) is satisfied. We concern ourselves with the problem of finding sufficient conditions such that A or \forall is normal.

Firstly, let A and B satisfy equation (1), then we have:

$$
\begin{equation*}
B A * A=(I-A B) A=A(I-B A)=A A * B \tag{3}
\end{equation*}
$$

Similarly.

$$
B A A^{*}=A^{*} A B .
$$

We also have that if equation (1) is satisfied then:

$$
B^{?} A=B(B A)=B\left(1-A^{\circ} B\right)=B-B A^{5} \bar{B}=\bar{B}-(I-A B) B-A D ?
$$

and

$$
B^{2} A *=B\left(B A^{*}\right)=B(I-A B)=B-B A B=B-(I-A * B) B=A * B \text { ? }
$$

Hence, we have:

$$
\begin{equation*}
\left[B^{2}, A\right]=0,\left[B^{2}, A^{*}\right]=0 \tag{5}
\end{equation*}
$$

Ais from $A \bar{A}+\hat{B} A^{*}=I$ and $A * B+B A=I$, we get

$$
A B^{*}+B^{*} A^{*}=I \text { and } A^{*} B^{*}+B^{*} A=I
$$

i.e. We have that:

$$
\hat{A}(R \in B)+(\text { ReD }) A^{*}=I \text { and } A^{*}(R e B)+(R e B) A=I \text {. }
$$

In this case, letting $T=$ Re, we see that T satisfies equation 1 Hence $J=$ in (3) and (4) we have:

$$
T A F A=A A^{*} 1
$$

and
:UE =Ied notz that as already mentioned in the pref of therm 2.13, a simple menipulation gives us:

$$
A\left(B^{*}-B\right)+\left(B^{*}-B\right) A^{*}=0=\left(B^{*}-B\right) A+A^{*}\left(B^{*}-B\right)
$$

Hence letting $W=$ ImB, we have:

$$
\begin{equation*}
A W=W\left(-A^{*}\right), A^{*} W=W(-A) . \tag{B}
\end{equation*}
$$

Now, for the sake of convinience in this chapter, let
$A=X+i .3$ and $B=T+j W$ be the cartesian decomposition
of A and B respectively. Also let $A=U P, B=V Q$ and $T=S R$ be polar decomposition of A, B and T respectively.

NORMALITY OF THE SOLUTION A TO (1).
E. Kame and Y. Kato [14] proved the following result:

THEOREM 3.A. If A and B satisfy (1), then A is normal under any one of the following conditions:
(i) $[X, B]=0$,
(ii) $[B, A]=0$,
(iii) $\sigma(X) \cap \sigma(-X)=\varnothing$.

We also note that B.P. Duggal [7] , proved the following result: THEOREM 3.B. The solution A to (1) is normal if any one of the following conditions is satisfied.
(i) $[B, B A]=0$ and $0 \notin W(B)$,
(ii) $[B, B C]=0$ and 0 w B), where $C=A^{*}+A$,
(iii) $[B, A * A]=0$ and $0 \notin W(B)$.

We improve this result as follows:
THFOPEM 2 1. [17]. Int A anti. R satisfy (1), then A is normal under any one of the following conditions:
(1) \& $^{\prime}$ WiG),
(ii) $\{B\}^{\prime}=\left\{B^{2 m}\right\}^{\prime}$, for some positive integer m, (iii) $\sigma(B) \cap \sigma(-B)=\square$.

Proof. (i) From equations (3) and (4), set. $H=A^{*} A$ and $K=A A^{*}$ to give:
$B H=K B$
and
$B K=. H E$.
Since H and K are normal, by part (iv) of theorem 1.1. $H=K$.
i.e. $A^{*} A=A A^{*}$ or A is normal.
(ii) We note that by equation (5), $\left[B^{2}, A\right]=0$, hence $\left[B^{2 m}, A\right]=0$. Thus if $\{B\}^{\prime}=\left\{B^{2 m}\right\}^{\prime}$, then $[B, A]=0$ and so by theorem $3 \cdot A$. above, A is normal.
(iii) We also note that since $\left[B^{2}, A\right]=0$, the condition $\sigma(B) \cap \sigma(-B)=\emptyset$ implies $[B, A]=0$ by corllary 1.7. and hence A is normal by theorem 3.A again.

REMARK. In view of part (i) of theorem 3.1. above, some conditions in theorem 3.B. are redundant. In fact, these conditions carry through under the weaker hypothesis that range of B is dense in G. CORCLLARY 3.2. [11]. The solution A to (1) is normal under any one of the following conditions:
(i) $0 \nmid W(T)$,
(ii) $\{T\}^{\prime}=\left\{T^{2 m}\right\}^{\prime}$, m some positive integer,
(iii) $\sigma(T) \cap \sigma(-T)=\varnothing$.

Proof. Wo note that T satisfies equation !1!. ie.
$A T+T A *=A * T+T A=I$. Hence the result is immediate from theorem
3.1

We now note that Berberian [3] and Kate and Moriva [15] proved the following results respectively.

THEOREM 3.C. For any operator $B, \operatorname{Reo}(B)=\sigma(\operatorname{Re} B)$ if B belongs to any of the following elesecs of operators:
(i) B is hyponormal,
(ii) B satisfies the growth condition G_{1} and $\sigma(B)$ is connected. THEOREM 3.D. For atv operator $B \cdot \operatorname{Re\sigma }(B)=\sigma(\operatorname{ReB})$ if $\lceil B * B, \operatorname{ReB}]=0$ We now have the following corollary. COROLLARY 3.3. [11]. The solution A to (1) is normal under any one of the following conditions:
(i) $\sigma(T) \subset G_{+}$.
(ii) B is normal and $o(B)$ lies strictly on one side of the origin, (iii) B is hyponormal and $\operatorname{Reo}(B) \subset G_{i}$

(v) B satisfies the growth condition G_{1}, $\operatorname{Re\sigma }(\theta) \subset G_{+}$and $\sigma(B)$ is connected.

Proof (i) If $\sigma(T) \subset G_{+}$, then T is an invertible positive operator. As such $0 \nmid W(T)$ and result follows from part (i) of corollary 3.2 above.
(ii) We note that if B is normal, then it is convexiod. Herice $\sigma(B)$ lies strictly n one side of the origin implies $0 \notin \operatorname{Cono}(B)=\bar{W}(\mathbb{B})$, and result follows from part (i) of theorem 3.1.

If either of the conditions (iii), (v) holds, then by theorems 3.C. and $3 . n$, $\operatorname{Roa}(R)=\pi(R ค A)=\pi(T)$. Hence the proof follows from case (i).

We remark liens than the ziampl? $n=\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2}+i x \\ \frac{1}{2}+i t & -\frac{i}{2}\end{array}\right)$,
$x \neq t$, and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ shows that the condition $0 \not \& W(B)$ in theorem 3.1. cannot be replaced by the condition $0 \notin \sigma(B), i . e$. the cundition $0 \frac{1}{4}$ sin! $\therefore=$ not sufficient th guarantee normality of A if (1). In a few results that follow we give further hypotheses under which $0 \neq \sigma(B)$ would give normality of A.
 Then A is normal under any one of the following conditions:
(i) $0 \notin W(V)$,
(ii) $\sigma(V) \cap \sigma(-V)=\square$.
(iii) $[P, V]=0$.

Proof. (i) From equations (3) and (4) set $H=A^{*} A$ and $K=A A^{*}$. Then $H-K=A * A-A A^{\prime}$ is normal. Since $0 \downarrow \sigma(B)$. $0 \nmid W(V)$, and by part (ii) of theorem 1.13, $H=K$. i.e. A is normal. (ii) Similarly, $\sigma(V) \cap \sigma(-V)=\varnothing$, by part (iii) of theorem 1.13., implies $A^{*} A=A A^{\circ}$.
(iii) Since $[P, V]=0,\left[P^{2}, V\right]=0$. i.e. $[A, A, V]=0$. Now from equation (4) set $H=A * A$ and $K=A A^{*}$. Since H and K are self adjoint, by corollary 1.12, $H=K$ or $A * A=A A^{*}$ and gu A is normal.

COROLLARY 3.5. [28]. The solution A to (1) is normal under arty one of the following conditions:
(i) $0 \$ W(S)$,
(ii) $\sigma(S) \cap \sigma(-S)=\square$.
(iii) $[P, S]=0$.

Prone. Since T is invertible thy theorem 2.1.. and satisfies
the result follows immediately from theorem 3.4. above.

THECREM 3.E. - [10] . Let B^{n} be normal for came even fisitivu integer n. If $U \& \sigma(8)$, then the solution A to (1) is norms .l if and only if $B^{n} A$ is normal.

Proof. We first note that if A and B satisfy (1), then by equation (5), $\left[B^{2}, A\right]=0,\left[B^{2}, A^{*}\right]=0$. Suppose that $B^{n} A$ is normal. Then by the fact that $\left[B^{2}, A\right]=0,\left[B^{2}, A^{*}\right]=0$ and the normality of B^{n}, we have:

Also

$$
\begin{aligned}
& A^{*} B^{*} \cap A B^{n}=B^{*} \cap^{*} A B^{\cap} \text {. Thus : } \\
& B^{*} \cap\left(A A^{*}-A^{*} A\right) B^{n}=0 .
\end{aligned}
$$

This implies that A is normal. If on the other hand, A is normal, then

$$
B^{n} A A^{*} B^{*} n=B^{n} A^{*} A B^{*} \cdot n=A^{*} B^{n} B^{*} n_{A}=A^{*} B^{*} n_{B} n_{A} \text {, ie. } B^{n} A \text { is normal. }
$$

COTRULAŔy 3.i. The solution A to (1) is normal if and only if $T^{n_{A}}$ is normal for some even positive integer n.

Proof. We first recall that T satisfies equation (1), and is invertible. Now, since $T=R e B, T$ is self adjoint and hence T^{n} is normal. The result now follows easily from theorem 3.6 above.

REMARK. Notice that if $B^{n} A$, n some even positive integer, is normal, then so also is $A B^{n}$. A result simile to theorem 3.E for the case in which B^{n} is normal for some odd positive integer n is not possible. Indeed suppose that the hypotheses that B is an invertible operator such that B^{n} and $B^{n} A$, n some odd positive integer, are normal, are sufficient conditions to guarantee the normality of A. Let $E, 0 \frac{1}{\&} \sigma(B)$, be self-adjoint. Then, using equations (3) and (5), we have:
$B A A^{*} B^{*}=B A A^{*} E^{*}=A^{*} A E^{2}=A^{*} B^{2} A=A^{*} E^{*} E A$,
so that $B A$ is. normal would nave that "If B is a seit adjoint invertible operator satisfying (1), then A is normal." This, however, is not true, as the following example shows.

Let $A-\left(\begin{array}{cc}-b+i x & a+i x \\ a-i y & b+i y\end{array}\right)$, where
$x \neq y$ and $a \neq b$ are non-zero real numbers, and let
$B=\left(\begin{array}{cc}c & c \\ c & -c\end{array}\right)$, where c satisfies $\quad 2 c(e-b)=1$. Then A iss
an invertible self adjoint operator which along with A satisfies
(1). A however, is not normal.

It is now clear that to obtain a result analogous to theorem 3.6 for the case in which n is odd, some additional hypotheses are required Here are some partial results.

n. Suppose that $0 \$ O(B)$.
(i) If $B^{n} A$ and $B^{n+1} A$ are normal, then the solution A to (1) is normal,
(ii) If $B^{n} A$ and $A B^{n}$ are normal, and if either o(BA) is real or $B A \geq A * B$, then the solution A to (1) is self adjoint. (Here, as usual. $B A \geq A^{*} B$ is to be taken as meaning that $B A$ - A*B is a positive operator.)

Proof. (i) Let $B^{n} A$ be normal. Then by (1) and (5) we have:

$$
\begin{aligned}
A^{*} B * B_{B}^{n} A=B^{n} A A^{*} B * n=B A B^{n-1} A * B * n= & B^{n-1} A * B * n-A^{*} B^{n} A * B * n \\
= & B^{n-i} A * B * n-A^{*} B^{n} B * n-\eta \\
& +A^{*} B^{n} B * n_{A},
\end{aligned}
$$

so that by the normality of B^{n}. $B^{n-1}\left(A^{*} B^{*}-A^{-} B\right) B^{n-1}-0$. This implies that $A^{*} B^{*}=A^{*} B$, or what is the same that:

We note that from equaむín (1) we have, by taking adjoint that: $B^{*} A^{*} A=A A^{*} B^{*}$

Now. (3), (9) and (10) together imply that:

$$
A A^{+} B^{*}=A A^{*} B=B A^{*} A=B^{*} A^{*} A \text {. }
$$

Since $B^{n+1} A$ is normal, we have:

$$
\begin{aligned}
B^{n+1} A A^{*} B * n+1 & =A^{*} B^{* n+1} B^{n+1} A=A^{*} A B^{* n+1} B^{n+1} \\
& =A^{*} A B^{*} D^{n} B^{*} \Gamma_{1} B=B A A^{*} B^{n} B^{* n} \\
& =B^{n+1} B * n A A^{*} B=B^{n+1} B * n A A^{*} B^{*} \\
& =B^{n+1} A * A B^{n+1},
\end{aligned}
$$

and hence that A is normal.
(ii)As before, it is seen that if $A B^{n}$ is normal then $A B=A B^{*}$. Now, (3;, (jj, (10) and (11) imply that both $A B$ and $B A$ are normal. Set $B A=T_{1}$ and $A B=T_{2}$, then (1), (10) and (11) imply that:

$$
\begin{equation*}
\operatorname{Re} T_{1}=\frac{1}{2}\left(T_{1}+T_{1}^{*}\right)=\frac{1}{2} I, \quad \operatorname{Re} T_{2}=\frac{1}{2}\left(T_{2}+T_{2}^{*}\right)=\frac{1}{2} I \tag{12}
\end{equation*}
$$

Clearly, if $o(B A)$ is real, then $B A$ is self adjoint. We show that $B A$ is self adjoint in the case in which $B A \geq A^{*} B$. A simple calculation shows that:

$$
0 \leq\left(B A-A^{*} B\right)^{2}=B A+A * B-4 A^{*} A B^{2}=I-4 A^{*} A B^{2}=4\left(R E T_{1}\right)^{2}-4 T_{1}^{*} T_{1} \text {, }
$$

so that

$$
T_{1} T_{1} \leq\left(\operatorname{Re} T_{1}\right)^{2}
$$

But this is possible if and only if T_{1} is self adjoint, since

$$
(B A-A * B)^{*}(B A-A * B)=-(B A-A \cdot B)^{2} \geq 0 \text {, and }(B A-A \cdot B)^{2} \geq 0 \text {. }
$$

$B A=A^{*} B=A^{*} B^{*}$,
and so by !10! that
$B A=A * B=\frac{1}{2} I$.

We now show that (11) and (13) together show that T_{2} is self adjoint, which in view of (11) and (12) would imply that $T_{2}=T_{2}^{*}=\frac{1}{2} I$, and hence by (14) (Since $0 \nmid \sigma(B)$) that $A=A^{*}$. Since by (13), $A A^{*} B^{2}=T_{2}^{2}=T_{2}^{2}$, we have that:
$T_{2}^{*} T_{2}=A A^{*} B^{2}=\frac{1}{4}\left(T_{2}^{*}+T_{2}\right)^{2}=\left(\operatorname{Re} T_{2}\right)^{2}$, and hence that T_{2} is self adjoint. This completes the proof.

COROLLARY 3.9. The solution A to (1) is normal under any one of the following conditions:
(i) $T^{n} A$ and $T^{n+1} A$ are normal.
(ii) $T^{n} A$ and $A T^{n}$ are normal and either $\sigma(T A)$ is real or $T A \geq A * r$, where n is some positive odd integer.

Proof. As in the proof of corollary 3.7, the result easily follows from theorem 3.8.

The following result provides an answer to a remark made by B.P. Duggal [9] in which he claims that "We do not know whether the solution A to (1) is normal whenever A is K-quasihyponcrmal." But we first exhibit the following result he proved.

THEOREM 3.E. The solution A to (1) is normal if A is hyponorma? or co-hyponormal.

THEDREM 3.10. [28]. If for a given B, there exists a solution A to (1), then A is normal under only ore of the following conditions: (i) A is isometric,
(ii) A is quasi-hyponormal
(iii) A is K-quasi-hyponormal.
 condition implies A is unitary, We also note that an invertible K-quasi-hyponormal operator A is hyponormal, hence by theorem 3.E above A is normal.

We now moral that in thrin hndinatin? to tho mamet; cf the late Prof. T. Saito, A. Kobayashi and T.Okayasu [19] proved the following result:
 be its polar decomposition. Let also S and T be operators such that:
$T W=W S$ and $T \cdot W=W S$; then $\pi: A \rightarrow$ VAV* is a
homomorphism of the C-algebra, $C *(S)$ generated by S onto $C^{*}(T)$ carrying S to T.

The following result of T. Anjo [1] is also required for the proof of our next result.

THEDREM 3.G. If both A and A^{*} are paranormal and $N(A)=N\left(A^{*}\right)$, then A is normal.

We now prove the following result:
THEDREM 3.11. [28]. Let A and B satisfy (1). If $W=$ Imp has dense range, then A is normal whenever it is paranormal.
proof. Since A is invertible, $N(A)=N\left(A^{*}\right)$ and from equations (8), we have:

$$
A W=W\left(-A^{*}\right)
$$

and

$$
A^{*} W=W(-A) .
$$

Now, by theorem 3.F. if A is paranormal, then A^{*} is also paranormal?. Hence result follows from theorem 3.G.

NDRMALITY OF THE SOLUTION A to (1).

We now give sufficient conditions under which the solution B to (1) is normal.

THEOREM 3.12. [16] . The solution B to (1) is normal under any one of the following Eunditionb:
(i) $\sigma(x) \cap \sigma(-x)=\varnothing$.
(ii) $0 \& W(x)$,
(iiij $\sigma(x)$ is contained on one side of the origin, (iv) $\{x\}^{\prime}=\left\{x^{2 \pi}\right\}^{\prime}$, for some positive integer m.

Proof. (i) and (ii). We first note that as derived in equations
(8). if A and B satisfy (1) then we have:

$$
\left(A^{*}+A\right)\left(B^{*}-B\right)=-\left(B^{*}-B\right)\left(A^{*}+A\right)
$$

or

$$
X\left(B^{*}-B\right)=-\left(B^{*}-B\right) X
$$

Hence each of the conditions (i) and (ii) implies that $B^{*}-B=0$ by corollary 1.F, and $50 \quad B=B *$
(iii) If $\sigma(X)$ is contained on one side of the origin, then 0 \& $\overline{W(X)}$ and hence result follows from part (ii).
(iv) Since $X\left(B^{*}-B\right)=-\left(B^{*}-B\right) X \cdot X^{2}\left(B^{*}-B\right)=-X\left(B^{*}-B\right) X=\left(B^{*}-B\right) X^{2}$ and hence, $x^{2 m}\left(B^{*}-B\right)=\left(B^{*}-B\right) x^{2 m}$ for any positive integer m. Under the given conditions, we have that:

$$
\left(B^{*}-B\right) X=X\left(B^{*}-B\right)=-\left(B^{*}-B\right) X
$$

x being invertible, this gives $B^{*}-B=-\left(B^{*}-B\right)$ or $B=B^{*}$.

THE OPERATOR EQUATION TET $=$ S. UNITARY SOLUTIONS.

In this chapter, we consider bounded linear operators T and S on a Hilbert space G such that:

$$
\begin{equation*}
T S T^{*}=S . \tag{15}
\end{equation*}
$$

We first note that many authors have considered equation (15) under the conditions trio T is invertible and $0 \notin$ WTST. In our first result, we derive the invertibility of T by merely assuming left invertibility of T and various conditions on S.

THEOREM 4.1. [27]. Let T and S be operators satisfying equation (15), with T left invertible. Then T is invertible under any one of the following conditions:
(:) S io right inveruivie.
(ii) Either ReS or ImS is right invertible,
(iii) S is invertible,
(iv) Either ReS or InS is invertible,
(v) $\sigma(S) \cap \sigma(-S)=\mathbb{L}$.
(vi) Either $\sigma(\operatorname{ReS}) \cap \sigma(-R e S)=\varnothing$ or $\sigma(\operatorname{ImS}) \cap \sigma(-\operatorname{ImS})=\varnothing$: (vii) Either $0 \neq W(S)$ or $0 \notin W(k e S)$ or $0 \notin \overline{W(1 m S)}$.

Proof. (i)-let T_{1} ba a left inverse of T and S_{r} bo a right inverse A_{f} S. Since ST $^{*}=S$, we have:

$$
S T^{*}=T_{1} S
$$

and

$$
T!S T *!C_{r}=I
$$

ie.

$$
T(T, S) S_{r}=I
$$

or
i.e.

$$
T T_{1}=I .
$$

T is invertible.
(ii) Since $_{\text {ce }}$ ST $^{*}=$ S, taking adjoint. $T S^{*} T^{*}=S^{*}$.

Hence,

$$
T\left(S+S^{*}\right) T^{*}=S+S^{*}
$$

ie.

$$
\begin{equation*}
T(\operatorname{ReS}) T^{\bullet}=\operatorname{ReS}, \tag{16}
\end{equation*}
$$

ごU
$\quad T\left(S-S^{*}\right) T^{*}=S-S^{*}$
i.e. $T(\operatorname{ImS}) T^{*}=\operatorname{ImS}$.

Now, applying part (i), we get invertibility of T.
Trivially (iii) implies (i), and (iv) implies (ii). We also 'tote that (v) implies (iii), (vi) implies (iv) and (vii) in plies (iii) or (iv).

The following corollary is immediate.

COROLLARY 4.2. [27]. Let T and S satisfy (15). If T is an isometry, then T is unitary under any one of the conditions in ${ }^{\circ}$ theorem 4.1. above.

Proof. T being an Isometry, T is left invertible. Hence, each of the conditions in theorem 4.1. above, implies T is invertible and so is unitary.

The following corollary due to B.P. Duggal [6] will be required for the proof of our next result.

COROLLARY 4.A. If E is an invertible normal operator and if there is an operator T such that $0 \neq W(T)$ and $T E^{*}=E^{-1} T$, then E is unitary.

THEOREM 4.3. [27]. Let T and S satisfy (15), with T a left invertible normal operator, then T is unitary under any one of the following conditions:
(i) $\sigma(\operatorname{ReS}) \cap \sigma(-\operatorname{ReS})=\theta$.
(ii) o(ImS) $\cap \sigma(\operatorname{ImS})=0$.
(iii) Either 0 \& $W(R e S)$ or 0 \& $W($ ImP $)$.

Proof. (i) Since T is left invertible, the condition
$\sigma(R e S) \cap \sigma($ ReS $)=$ implies that T is invertible by part (vi) of theorem 4.1 above. Hence we have:
(ReS) $T^{*}=T^{-1}($ ReS $)$ from equation (16). Now T being normal, by Putnam Fuglede theorem (ReS) $T=T^{-1}$ (ReS). By taking adjoints. we have:

$$
(\operatorname{ReS}) T^{-1}=T^{\prime}(\operatorname{ReS}) .
$$

Now, (ResiT $=T^{-i}$ (Res)
and

$$
(\text { ReS }) T^{-1}=T \cdot(\text { ReS })
$$

imply $\left(\hat{\text { Ñesj }} \mathfrak{i} T^{0}-T^{-1}\right)+T^{*}-T^{-1} j($ ReS $)=\bar{U}$. Since $\sigma\left(\right.$ ReS \cap oi-K̃ES $=D, T^{*}-T^{-1}=0$. i.e. $T^{*}=T^{-1}$ or. T is unitary.

Part (ii) is proved similarly, while (iii) follows easily from curoliary $4 . \dot{A}$ above.

We note that Jugal [6] , proved the following result:
THEOREM 4.B. If $0 \$ W(A)$, and for a positive integer n, we have
(i) $\left[A^{\circ} \cap A^{n}, A^{*}+1+i A^{n+}\right]=\bar{U}$, (ii) $\left[A^{*} A, A^{*} A^{n}\right]=0$, then A^{n} is normal. Also if (iii) $\left[A A^{*}, A^{*} n+1 A * n+1\right]=0$, then A is normal.

We now use the above theorem to prove the following result:
THEOREM 4.a. [27]. Let T and S satisfy (15) with T invertible. If $0 \nmid W(T)$ and for some positive integer n we have that $\left[T * n T^{n}, T^{* n+1} r^{n+1}\right]=C$ and $[T \cdot T, T * n T n]=0$, then T^{n} is unitary under any one of the following conditions:
(i) $0 \notin W(S)$.
(ii) $\sigma(S) \cap \sigma(-S)=\square$.
(iii) Either $\sigma($ ReS $) \cap \sigma(-R e S)=\varnothing$ or $\sigma(\operatorname{ImS}) \cap \sigma(-\operatorname{ImS})=\varnothing$. (iv) Either $0^{\prime} \nmid W(\operatorname{ReS})$ or $0 \$ W(\operatorname{ImS})$.

Proof. The conditions $0 \& W(T),\left[T \cdot n_{T} n, T=n^{n+1} T^{n+1}\right]=0$ and $[T * T, T * n T n]=0$ together imply that T^{n} is normal by theorem A.B above. Since $T S T *=S$ implies $T^{n} T^{*} T^{n}=S$, we have that:

$$
S T \cdot n=T^{-n} S
$$

and

$$
S * T * n=T^{-n} S *
$$

This gives us.

$$
(\operatorname{ReS}) T^{*} \cdot n=T^{-\Gamma 1}(\operatorname{ReS})
$$

and
$(\operatorname{ImS}) T^{*}=T^{-n}(I m S)$.

$T^{* n}=T^{-n}$. or T^{n} is unitary.
in order to prove our next result, we need the following result of R, Nakamoto [?n]

THEOREM 4.C. Let.. $H_{n}=A * B^{n} A$, where B is normal. If (i) $0 \& W(A)$, and (ii) $\left[B, H_{n}\right]=0$ for $n=0,1$, then $[B, A]=0$. THEOREM 4.5. [27] . Let T and S satisfy (15) with T left. invertible and S has dense range such that $[S, T T *=0$ and $0 \notin W(T)$, then T is unitary.
 by theorem 4.C above, $0 \notin W(T),\left[H_{0}, S\right]=0$ and $[H, S]=0$ together imply that $\left[S, T^{*}\right]=0$. The relation $T S T$. $=S$ now becomes $T T^{\circ} S=S$. S having dense range, this gives us $T T^{*}=I$. Thus, T being both left and right invertible, T is invertible with $T^{-1}=T *$ i.e. T is unitary.

We now consider the following results proved by Patel and Shetii [23].

THEOREM 4.D. If T is an invertible K - paranormal operator and : is an operator such that:

```
TST* = S and n |TE! then T is unitary.
```

THEOREM 4.E. If T is a left invertible operator and S is such that TS* $=$ S.
with 0 \& $\overline{W(S)}$, then T is unitary provided it is either dominant or K-paranormal contraction.

In the zçicel, we check that in theorem 1, E, ane T is K-paranormal, the condition that it is a contraction can be dropped. THEDREM 4.6. [27] . Let T be a left invertible operator which
 then T is unitary under any one of the following conditions:
(i) $0 \& \overline{W(S)}$,
(ii) $0 \nmid \bar{W}(\mathrm{ReS})$,
(iii) $0 \notin$ W(ImS).

Proof. (i) Since T is left invertible and $T S T$ * $=$, with 0 §WTJ), by theorem 4.1. 1 is invertioie. Now if it is dominant or K-paranormal, then by theorem 4.D, T is. unitary. We note that each of the conditions (ii) and (iii) implies (i).

COROLLARY 4.7. [27]. If S is an invertible operator such that either $S * S^{-1}$ or $S S^{-1}$ is dominant or K-paranormal, then S is normal undies any one of the following conditions:
(i) $0 \neq W[S]$.
(ii) $0 \nmid \overline{W(R E S)}$,
(iii) $0 \neq \overline{W(I m i s)}$.

Proof. Set $T=S^{*} S^{-1}$, then $T S=S^{*}$.
i.e. $T S T=S^{*} T^{*}=S$.

Now, each of tile above conditions implies that T is unitary by theorem 4.6. above. Hence we have:

SE* = S*TTS - S*S, since T*T - i.
i.e. S is normal. Similarly, we can consider the other case.

In our few results that follow, we improve some results due to J.M. Patel [22] , S.M. Patel [24] and Singh and Mangle [20] , Firstly, J.M. Foll [22] hove bit foijuwing results:

COROLLARY 4.F. If T is a paranormal operator and $T^{P}=T * 9$ where p ana q are integers, then i is normal.

THEOREM 4.G. If $T * P=U^{-1} T^{P} U, P$ any positive integer with T paranormal and U a cramped unitary operator, then T is normal. We relax the condition on U in theorem 4.G above. But first we prove the following result:
 left invertible. If T is paranormal and there exists an integer n such that T^{n} is normal, then T is unitary under any one of the following conditions:
(i) $0 \nmid W(S)$ and S is right invertible,
(ii) $\sigma(S) \cap o(-S)=\varnothing$.

Proof. TST $=S$ with S at least right invertible and T left invertible, imply T is invertible by theorem 4.1 above. Also,

ST* $=S$ implies $T^{n} S T *{ }^{n}=S$ for any positive integer n. Hence

- we have:

$$
S T=n=T^{-n_{S}}
$$

and

$$
S^{*} T * n=T^{-n_{S}} .
$$

 conditions (i) and (ii) implies $H=$ K. ie. $T^{* n}=T^{-n}$ or
$T^{\prime \prime}$ is unitary. This implies that $\sigma\left(T^{n}\right.$, and consequently $\sigma(T)$ lies on the unit circle. Since T is paranormal, this gives us uniticity of T.
THEOREM 4.9. [27] . If for ány positive integer $P, T^{*} P=U^{-1} T^{P} U$, with T paranormal and L an invertible operator, then I is ricrma under any one of the following conditions:
(i) $0 \notin W(U)$ and U is unitary,
(ii) oi) \cap oi-uj $=\pi$ and u is unites.
(iii) T^{P} is normal and either $0 \notin W(U)$ or $\sigma(U) \cap \sigma(-U)=\varnothing$. Proof. $T{ }^{\circ}=U^{-1} T^{P} U$ gives:

$$
U T * P=T^{P} U
$$

and

$$
U * T * D=T_{U}^{P}:
$$

Now, by corollary 1.B again, each of the above conditions gives:

$$
T^{P} P=T^{P} .
$$

Since T is paranormal, by corollary 4.F above, T is normal: S. M. Patel [24] proved the following result:

THEOREM 4.H. If for a non-singular operator E, there exists an operator A with either $O \& W(A)$ or $\sigma(A) \cap \sigma(-\hat{M})=\tilde{\mathbb{H}}$ such that $A E=E^{-1} A$, where either E is normal or A is a non-singular normal operator, then $E^{2}=I$.

We improve the above theorem in the following way:
THEOREM 4.10. [27]. If for a non-sigular operator E. there exists an operator A such that:

$$
A E=E^{-1} A
$$

then $E^{2}=I$ under any one of the following conditions:
(i) $\quad(\Delta)!-\infty(-n)=\pi$,
(iii $0 \notin W(A)$ and A is normal.
(iii) $0 \& W(A)$ and $E-E^{-1}$ is normal,

(v) Either $\sigma(\operatorname{Re} A) \cap \sigma(-$ Re $)=\square$ or $\sigma(\operatorname{ImA}) \cap \sigma(-\operatorname{ImA})=\square$ and A is normal,
(vi) $\{A\}^{\prime}=\left\{A^{2 m}\right\}^{\prime}$. m some positive integer and A has dense range or is one-one,
(vii) $\sigma(A) \subset \pi^{*}$

Proof. We first note that $A E=E^{-1} A$ gives us $E A=A E^{-1}$. Thus we have:

$$
A E=E^{-1} A
$$

and

$$
A E^{i}=E A .
$$

Now setting $H=E$ and $K=E^{-1}$, each of the conditions above, implies thai $H=K$ by theorem 1.1 and corollary 1.4. i.e. $E=E^{-1}$ and hence $E^{2}=I$.

We note that Singh and Mangla [29] proved the following result:

THEOREM 4.I. If T is an invertibic operator such that $T^{*}=V^{*} T^{-1}$! wi tu v a cramped unitary operator, then T is unitary. We improve this result as follows:

THEOREM 4.11. If T ana S satisfy equation (15) with T left invertible and S invertible, then T is unitary under any one of the following conditions:
(i) $3 \frac{1}{4}$ wis: ont 5 is unilesy,
(ii) $o(S) \cap o(S)=\mathscr{Z}$ and S is unitary.

Proof. Since S is invertible, T is invertible by theorem 4.1
 $S T^{*}=T^{-1} S$
and

$$
S^{*} T^{*}=T^{-1} S^{*} \text {. }
$$

Now, by corollary 1.8, each of the conditions (i) and (ii) implies that $T^{*}=T^{-1}$ or T is unitary.
[1] T. Ando,
[2] G.P. Barker.
[3] S.K. Berberian,
[4]
C.C. Cowan,
[5]
C. Davis and P

Resenthal,
[6] B.P. Duggal.
[. 8] \qquad
[9]
[10]
B.P. Dusgal and J.M. Khelacai.

Operators with a norm condition,
Acta. Sci. Math (Szeged), 33(1972), 169-178
Normial matrices and Lyapunov Equation, SIAM 7, ACRI, Math, TF(1974), 1-4.

The numerical range of normal operator, Duke Math. J. 31(1964), 479-483.

Commutants and the operator equation $A X=\lambda \times n$,

Pacif. J. Math. 80 No. 2., 337 - 339.-

Solving linear equations,
Canadian J. Math. 26 (1974), 1384-1389.
Some conditions on operatorsimplying nuitruliiy.

Math. Jeponica 22(1977), 357-360.
The operator equation $A B+B A^{*}=A^{*} B+B A=I$.
Math Japon. 25(1980), 33-35.
Operator equation's $A B+B A^{*}=I=A * B+B A$,
Narmal solutions,
Proc. Amer. Math Soc. To appear.
 Existence and normaiity of solutions. Pre-print.

On the operator equation $A B+B A *-A * B+B A=I$, Math, Japon. 26(1981), 577-503.

Cperator gquetinns $A B+B A^{*}=A \cdot H+H A=1$.

12] M.R.Embry,

13] P.R. Halmos.

14] E. Kamei and
Y. Kato.

15] Y.Kato and
iv. ïuriya.

17] J.M. Khalagai and ロ.p. Eusธ̃al.
[18] S.K. Khasbardar and N.K. Thakere.
J.M. Khalagai,

T. Gkayasu,
R. Nakamoto,

Similarities involving normal operators on Hilhert snecp,

Pacif. J. Math. 35(1970), 331-336.

Hilbert space problem Book,
Yar Most=ent !ace7). New York.
On operator equation $A B+B A *=A * B+B A=I$,
Math Japon. 23(1978), 129-130.

Un operators considered by Campbell,
Math Japon. 22(1977), 233-238.

Further ramarks on the operator equation $A B+B A^{*}=A * B+B A=I$,

Kenya J. Scie. Tech. Accepted for putlication
The uperator equation $A B+B A *=A * B+B A=I$,
 To appear.

Spectraloid operators, Similarity and related results,

Indian J. Pure.appl. Math. 9 No. 5 (1978), 494-500.

A remark on a thoorem of Coje and Se:ta, Dedicated to the memery of the lute prof. T. Saito,

Math. Japon. 27 No. 4 (1982), 549 - 550.

On a proviem of Uuggal,
Math. Janon. 2ग(1978): 811-442.

1] J.M. Pate1.
7.] T.M. Patel and I.H. Sheth,

24] S.M. Patel.
S.V. Phadke and N.K. Thakare.
[26] M. Rosemitlum
I.H. Sheth and J.M. Khalagai.
[24] U.N. Singh and K. Mangla,
[30]
[31] A.E. jaylor.
[32] J.P. Williams,

Numerical range and similaritv. Ph.J. Tíesis, újajou univerisily, AMmadadaa, Inaial.

Operators having finite spectrum, Indian. J. appl. Math. 11(7) (1980), 897-903.
 range, Pre-print.

On Similarities of oderators,

Nos. 1-2. (1975), 85-90.
M-hyponormal operators, invariant subspaces and spectral localizution.

Indian. J. Pure appl. Math. 8 (1977), 487-496.

On nneratinn ennation $B X-X A=$ ח.
Duke Math. J. 23 (1956), 253-269.
The oparator equation TST* = S. Unitary solutions,

Kenya J. Seie. Tech. Submitted.
On the operator equation $A H=K A$, Indian. J. pure appl. Math. Submitted. eqerators with inverses similar to their adjoints. Froc. A.M.S. 38 (1973), 258-260.

A generalisation of a theorem of lyapuriov, 3. Soc. Indust. Appl. Math, 3(1961), 640-643. Intruduction to Funcitunai Ánaiysis, WIley, New York, 195日.

Similariry and the numerjea! range, j, Math, Anal. Apfil. 2r!!9e63!, 307-3i1.

[^0]:

