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CHAPTFR 0.

i n t r o d u c t i o n  .

This Thesis is devoted to a study of three operator equations 

in g complex HiJbprt sp^ce. The three operator enuations are as 

follows:

1. AH = KA,

o ̂ t\ n j. DA*

3. TST * = s

We give below an account of the work done by several authors as 

far as these operator equations are concerned and also a brief 

chapterwise summary of the work done by us.

In the case of the operator equation AH = KA, a number of

J I , „  t _ 1. _• _  , . _  t. ~  n  m  1 . , «-* ■! —  O'*- r' <->•-. H  -5 4- i  n p o
k_l U k- I * l~> i «J t . U V O u k* w> w- h. v l lw i*  V«w*lv * ‘ ‘ j  ~* * • ° ‘ * — — ....................

under which H and K either belong to the same class of 

operators or happen to be equal. Some of the authors who have 

carried out this study are : M.R. Embry [j * , B.P. Duggal [_u3 • 

R. Nakamoto [20] and J.M. Patel \21j . We note that

M.R. Embry pi 2] proved equality of H and K by requiring 

that H and K are commuting normal operators and zero docs 

not belong to the interior of the numerical range of A.

B.P. Duggal [fTj generalised this result by only claiming normalit 

of K and setting H to be of the form H p = A * K n A, for all 

non-negative integer n. R. Nakamoto {puQ generalised this result 

forthpr bv showing that it is enough to prove tor n " 0 #! only.

T «- •- , -_u__I t » U tlWlfHwOt
4- u ^  pn  4-Kr  ̂ r* 11 m h n  r* n -P f h p  n ^ n o r '

listed iri the reference.
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Introducing an extra condition that if ^lso AK = HA, J.i'i. ratei 

p2T] was able to prove equality of H and K under some 

conditions on A which we are going to improve in this Thesis.

The operator equation AR + BA* = A*B + BA = I» has been also 

studied by a number of authors. Firstly, the case in which 

the Hilbert space is finite-dimensional, the possibility of 

interest in those A and Hermitian B satistying the equation

was mentioned by iaussky in p3uj . Barkei [«0 showed d,u-i 

(i) If the number cf eigen values of the matrix A with zero 

real part is zero, then A is normal if and only if there is 

a Hermitian matrix B such that the equation is satisfied ana 

AB = BA, (ii) The solution A to the equation is normal if 

either (A ♦ A*) and -(A ♦ A*) have no common eigen-values, or

n — - 4- cj e? ■ * 4- U f t
D  o U l l i i i i O  S . C U  j .  u m  v < •

v ->—  - r - r1 n  ai. * u L w u • J n v f n r ̂ n H

Barker’s result to the case in which the Hilbert space is 

infinite dimensional, and a number of other conditions 

guaranteeing the normality of solution A, have been given oy 

Duggal and Khalagai in £l0] and [1 i] . We carry on with 

this study in this Thesis.

The authors who have studied the operator equation TST*=S

for unitary solutions in T, include S.K. Khasbardor and

N.K. Thakare pi 0) who showed that i f T and S satisfy the
-1

equation with T invertible and both T arid T are 

spectraloid then T is unitary provided zero does not belong -c 

the rjnsurp of the numerical range of S. Singh and Mangla 12 9 1 

proved that if T and S satisfy the equation with T iovertib1 

and S a cramped unitary operator, then T is unitary.

Duggal p6 J showed that tor I anu S sdli sfyirig uie aqua v. icu , 

if T is an invertible normal operator and zero does not belong
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to the interior of the numerical ra^"° °-F ?. fbnr T ic unitary.

Patel and Sheth |,23j proved that f(pr T and S satisfying 

the equation, if T is left invertible and S is such that 

zero does not belong to the closure of its numerical range, then 

T is unitary provided it is either dominant or K-paranormal 

contraction. We improve this result and a few others in this 

Thesis.

CHAPTFRWISF SUMMARY. v

In the first chapter, we first improve one result due to J.M. Patel

[213 and then exhibit a number of corollaries. Among the corollaries

proved here, is one which apart from giving an alternative proof

to the already known conditions, it also gives a few more

conditions under which an operator B commutes with another
2

operator A given that B commutes with A . We then prove 

an independent tneorem w m c h  also gives sufficient conditions 

under which H c K. The chapter ends with a result which 

attempts to relax the commutativity condition on the operators 

H and K of M.R. Embry's result in [J2]

In the second chapter, we first show that for A and B

satisfying the operator equation AB ♦ B A ’ * A*8 ♦ BA * I,

RcA and ReB are invertible. We then show that both A and A*

have no approximate proper values on the imaginary axis and zero

cannot be a normal approximate prcpervalue for B. Vie deduce a

number of corollaries from this result. Vie also prove a result

to the effect that if \ is an approximate propervalue for A
1or A*, then -.jrrqr belongs to the closure uF the numerical rangetKE A

B, from which we also deduce a number of corollaries.
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For sufficient conditions for existence of A or B satisfying 

the equation, we prove results similar* to those of J.P. Williams 

r~2 2| . For example, we show that if zero does not belong to

the direct sum of the spectra of A and A* or if the spectrum

, - *.r a or p'' ■■' va1 ~r.t 1 v that for serse ir.vcQ i  ( \ w * U -wM W ^ J w * w w

- 1
closure of the numerical range of T AT, lies in the positive 

half complex plane, then there always exists a positive definite 

nppra^-nr R Pijnh t.h^t AR ♦ PA* = A*R + RA = XT nr-nv/irlod R

commutes with A* - A. We also look at the uniqueness of

solutions in which we are able to show that if either ReA and 

-ReA have no common spectra or zero does not belong to the interior 

of the numerical range of ReA, then the solution B to the 

equation is always unique.

The third chapter starts with application of our first result 

proved in oh,-»nfpr nop, Here we give alternative proof for most 

of the already existing sufficient conditions for A satisfying 

the equation AB ♦ BA* * A*B ♦ BA c I, to be normal. We prove 

our second theorem which gives further conditions under which A 

is normal and deduce a number of corollaries. We also show that 

if 6 n is normal for some even positive integer n, and C is . 

invertible, then A is normal if ond only if B nA is normal. 

Giving an example, we are able to show that a similar result in 

which B n is normal for some odd positive interger n is not 

possible. We are also able to answer the question raised by 

B.P. Duggal [O'] by proving that a K-quasi-hypcnormal operator A 

satisfying the equation is always normal. The chapter ends with a 

result giving sufficient conditions under which the solution B of

c:i u e t i c r. z. z ~ r ̂ f adjoint.
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n • ' _ ,j
t \  t5 f\ CJ I H_iuere/ we show among other conoi.tiuris tiiat if either 

-ReA have no common spectra ur zero does not belong to the 

interior of the numerical range of ReA, then 3 is 

self adjoint.

in the fourth cnapter, we first snow ohcsu » <-»

operator T satisfying the equation TST* = S, T 

be invertible under very humble conditions on S,

I • • * - . t i -  I i- U rl n rl I I r> o r*x l lV c l  t.lUi.C C/i. ± i  £, * • >- J.1IVW*. W J. LJ ~ U. • »«- ^.1*1 >_ t- — -

turns out to 

like S being

n n i r \ K n r >  n-f r) +• h» p  r*

results which give uniticity of T. We also improve on the

result of Patel and Sheth [23] , by proving that if T is a

left invertible operator satisfying the equation and T is either

dominant or K-paranorma1, then T is unitary provided zero

does not belong to the closure of the numerical range of either

-*r ReS or ImS. The chapter ends with improvement of

? ° -nf J.M. Patel [22] , S.M. Patel [24J and b in Zh
- - .

. * '291 respectively.
o
O
V

2 IN IT IONS.

Thesis, G will denote a complex Hilbert space 

ner.product function denoted by (• » BCG)

,ote the Banach algebra of all bounded linear 

;ors on G. The elements of G will bn denoted bv 

ital letters such as A, B, H, K etc.

For A g BCG), ^CA) will denote the resolvent set of A

i.e. the set of all A for which A - Al is invertible. olnJ

will denote the spectrum of A. i.e. the compliment cf tnu

resolvent set cf A. a (A) will denote the approximate
it

^ _  i t. _ t r» ̂  .

spectrum of A. i.e. tne set ot aix /v -uw.. .. j
%

e > C, there exists an x r G such that ! !x !I “  ̂ anu 

I|C X-A)x| |<e. Such a A is called an approximate proper value
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fAi will denote the approximate da. act spectrum c-f A.
Of
the set of all A such that A - A is not onto.

The numerical range of A will be demoted by W(A). i.e.

W (A) » {(Ax.x)s ||x1| * D .  The closure of the numerical range 

of A will be denoted by w U V , a n d  the null space of A will 

be denoted by N (A), while R(A) will denote the range of A. 

Let [A,B] - AB - BA and {A / = {B e BCG): V[A,B] ■ 0} .

U L G4 denote the right half complex plane and

7I+ _ { z ; Rez>0, lmz>0) where z is a complex number.

An operator A is said to be: 

normal if AA* = A* Ay

unitary if A*A ■ AA* = I#

I n Sf*. r* n f A * A c T ,U  Him w4 i w •

hyponormal if A* A >_ AA*,

M-hyponormal if (A - z) (A - z)' I  MCA - z)‘ (A - z) for

all complex numbers z, and M some positive number,

k-paranormal if ||Ax||k «|IAkx||.|!x||k' 1 for all x e G  and

K > 2,

k-quasi-hyponorma1 if A* (A A ■ AA ) A —

dominant if RCA -X ) ( Z  RCA* - X*) for each X c aCA),

contraction if ||A|| <

satisfying growth condition if |I(A

i-p A A =i

1 , X J o(A),
d ( X ,a (a TT

A* s BCG).loft ? pupT'f ihlo I for some



CHAPTER ONE

ON THE OPERATOR EQUATION AH = KA.

In this Chapter, we consider sufficient conditions under 

which H = K and its consequences. We start by improving one 

result of J.M. Patel [2fJ . He proved the following result;

t h f DREM 1 .A. If AH = KA and AK = HA with A unitary, then

(i) o(j’A) = 0,

(ii) 0 4 WCA).

The following result shows that the condition on A can be relaxed. 

THEOREM 1.1. [16] . Let A , H , K e B ( G ) .

If AH = KA and AK * HA, then H = K under any one of the 

following conditions;

U )  a(Aj f ) o l-A) * 0 ,

(ii) A is normal and either c(ReA) O  o(-ReA) = 0 or

o(ImA) D  c(-ImA) * 0>

(iii) {A ■ {A^m }̂  , for some positive integer m and A is 

one-one or has dense range,

(iv) H and K are normal and 0 | W(A).

Fcr the proof of the above theorem, we first prove one 

following lemmas:

LEMMA 1.2. [16] . If AH * KA and AK = HA, then [ K,A^« 0 - [H'A ]•

Proof. From AH = KA, we have 

AHA * KA^, while frem 

AK = HA we have

a — •/ _ .11» »i __ i i/n n » nriA . nence r\,r\ j 

Similarly,

u .
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t . J u Ci o n C. n ' n '
U  <J J •

1 il f M  Y | v ♦ * > ^  r-* r-» fT* —  ^  »n O

jnd has dense range.

Proof. since 0 * WtA)' tAx'x) * 0 for x * 0> i,E'

Ax t 0 for x * 0.
A being linear, this implies that A is one-one. If JUA) / G, 

then [ m T ] 1  * N t A * ) t G ^ ■ {0} / i.e. there exists a unit

vector x e N(A*) such that:

(A*X »x) = 0 * (x,Ax) which implies that 0 e W(A), a contradiction.

v r -t
Hence

We note that the following results will also be required for

the proof of our theorem i.1 . Firstly, M.R.Embry L1 2j

the following corollaries:

COROLLARY 1.B. Let A , H, K e BCG).

Let D ■ {A: 0 ): W(A) or o( A) p\ o(“A) = 0).

If A H »* j' a and A * H ** K A. *, i.ihnrn fl <- n ̂ fhpn H - K

A is unitary or H and K are norma 1 .

COROLLARY 1 .C. Let A e B (G ). If A is normal, then (A2 /

provided 0 { W(A).

M. Rosemblum [26] proved the following result:

THEOREM 1.0, Let A,X e BCG). If we have that AX + XA = 0 und

3(A) C\ o(-A) * 0 then X = 0 is the only solution.

C.C. Cowan I'll . oroved the following result:
L J . f 4 /

COROLLARY 1 .E. Let A c BCG). It o(A) (Z » • then = {A }

ie also state the following result due to Putman and Fuglede.

3UTNAN-FUGLEDE THEOREM. Let A y  A ? , B e B ( G ) . It BA^A^B, A 1

and n2 norrna 1, then 0A ̂ A * Cl/ \ ^ •2



(i) ah * KA and AK * ,HA together imply that:

A (H - K) = (K - H) A,

or ' 1
;,rji < CSS - K) A '2 .

Since o(A) H  a C-A ) = 0, H - K = 0 is the only solution

of the equation (by theorem 1.D. above) and hence H = K.

f . . ̂ y £ A ic nnwfll +• h o r» -A ic alen normal . C-J n o o

A(H - K) 3 (H - K) (-A), by Putnam Fuglede theorem,

A*(H - K) 3 (H - K) ( - A * ) .

i.e. (A ♦ A * ) (H - K) ♦ (H - K) (A ♦ A*) = 0,

or

(ReA) (H - K) ♦ (H - K) (ReA) 3 0.

Since o(ReA) D  o(-ReA) 3 0, H - K 3 0 is the only 

solution of the equation and hence H 3 K .

The case in which o (ImA) O o ( -ImA) 3 0 is proved similarly

)E3y lemma 1,2 above, [ k . a 7] = 0 , and so [k .a 2m J = 0.

Since by hypothesis [K.A] * 0 if and only if

[k .a 2"] = 0, [K,A] 3 0. Now, AK 3 KA = AH and A being

one-one, K - r* # Also AK 3 KA = HA arid range of A b e 1 n g

dense, K 3 H.

(iv) If H and K are normal, then by Putnam fuglede theorem, 

we have also

AK* 3 H* A.

Taking adjoints gives:

A*H 3 KA* .

Since 0 i W (A ), H and 1/  _ _  ^ 71 *1 A j\ Oifc IIU1 MIUA , <>

a *h = KA* / hy corollary i.B nerve. h 3 K
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Ippni I.ARY 1.4.' [1BJ. It An - Km . ana AK - HA, then H ‘ K 

■ 0dfjr any one of the following conditions.

A is normal and 0 W(A).
11 * / 2 /
pr00f, A is normal and 0 t W(A) together imply that {A} = (A }

^ corollary 1 C - Hence by part (iii) of theorem 1.1. above, 

the result follows.

(ii) A is normal and 0 f W(ReA), with a similar statement 

holding when ReA is replaced by ImA. 

pr00f. We only need to show that 0 * W(ReA) implies 0 { WCA) 

and the result will follow from part (i) of this corollary.

We do this by contradiction. Suppose 0 i W(ReA) and 0 eW(A) 

P' Now let A • 3 * iH. By hypothesis 0 { W(J). If 0 e W(A), 

then there exists a unit vector x e G such that (Ax,x) * 0.

i.e.(Jx,x) + i(Hx,x) c 0.

i.e. (Hx,x) » G * ux, x >  a uin.radiwt.un ^  ,w Jr

Hence 0 i WtA). The case in which 0 $ W(ImA) is proved 

similarly.

(iii).. (A x ,x )> 0 for x / 0.

Proof. If (A x ,x)> 0 for x / 0, then 0 { WCA). Also, since

A is positive, it is normal. Hence result follows tram

part ( i.) of this corollary.
+

(i v ) o (A ) (Z- v •

Proof. If aCA) C  A  then A is invertible and by corollary 1.1 

above, {A)/. • {A4 /  . Hence we can now apply part ( i n )

of theorem 1.1.



I'/) n l W f A ) :

proof. We ot.ly rieed to show that if 0 j W l A i then

o C A ) n  at -A) = 0 arid the result will follow from part (i) 

of theorem 1.1. We do this by contradiction. If 

ct( A )  f \  ct( - A )  *  H > p f f ( A l  O  rrf - A l  f h p n  \  , - >

e a (A) CZ- WO\T. W (A ) being a convex set, 0 e W (A J, a 

contradiction. Hence oCA) r\ o(-A) = 0*

I.( ̂  ̂̂  L ̂ r o that X- Lc cend itic r.c ir. L k--- * 4 - . }

corollary 1.4. above, are an improvement of J.M. Patel’s

theorem 1 .A . above.

COROLLARY 1.5. [28] . If A and T are operators such that

AT = T*~1A and AT*“ 1 s TA, then T is unitary under any one of

the conditions in theorem 1 .1 with condition (iv) as T is

normal and 0 | W (A ) or under any one of those in corollary 1.4.

Proof. Set H = T * ' 1 and K « T .

COROLLARY 1.6. [28] • If A and T are operators such that

AT ■ T*A and AT* B TA , then T is self adjoint under any one

of the conditions in theorem 1.1. with condition (iv) as T

is normal and 0 { W(A) or under any of those in corollary 1.4.

Proof, Set H e T* and K * T.

COROLLARY 1.7. [26*] . Let A and B be any operators such that

[B>A2~] - 0. Then j~B,Aj c 0 under any one of the following

cond i t ions :

(i) 0(A) f\ o(-A) = 0,

C1 i) A is normal and either o(ReA) (~\ o(-ReA) = 0 or 

ol1mAJ f\ ol-imA) = 0,

C i i i) {A'/ « {A2ni>; , fur some positive integer m,

(iv) AB and BA are normal and 0 W(A),

(v) a is normal and 0  ̂ W(A).
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Hvi) A is normal and either 0 l. W(ReA) or f] | WflmA),

(viiJ (Ax,x) >0 for x / U,

(vi ii) 0  ̂A) tt ,

(ix) 0 { W( aT.
I  c . r. .?]prooT. bince [_b, m j  = u, we have:

A (AB) = (BA)A

and

ACBA) = (AB)A .

Now set H = AB and K - CA, then each uf the above condition a 

implies that H = K by theorem 1.1. and corollary 1.4. above.

Hence J B , AJ = 0. «

COROLLARY 1.6. [2e] . If AH » KA and [k ,A?] = 0, then H =

under any one of the following conditions:
*

(i) 0 fA) O  o(-A)"H,

(i i) {A} *{A, ) , fcr some positive integer m, end A is one-ono,

(iii) A is normal and 0 { W(A),

(iv) A is normal and either 0 | W(ReA) or 0 { WCImA.i,

(v) A is normal and either 0 (ReA) 0 ("ReA) = 0 or

a (ImA) D  o(~ImA) s 0*

(vi) (Ax,x) >0 for x / 0,

Cvii) o(A) <Z /

(viii) 0 { wT aT.

f roof. Since [K,A‘] = 0, each of the above conditions implies

[K,A] = Q. Now, AH = KA = AK gives us H = K, since A is

one-one by each of the above conditions. for the sake of completeness

We give here proof of part (v). We give the proof here to show that 

olReA'l C\ c(-ReA) = 0 implies A is one-one. We do this by 

Contradiction. If A is not one-one then Ax = 0 for some x / 0 in G.
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being normal, A*x = 0. Hence -(A + A*)x = Q # which implies that 

0 e o(ReA) H  o (-ReA), a contradiction. Hence A is one-one. 

COROLLARY 1.9. £28] . If A and T are operators such that 

AT * 1 * A and £t *, A^] = 0, then T is self adjoint under

any one cf the ccnditicnc in core H e r ., p - • ,..,,
J  1 . U QUU VC

proof. Set H = T and K * T* and apply corollary 1.8.

COROLLARY 1.10. [28] . If A and T are operators such that

AT*"1 - TA and £l, A ] = u, then I is unitary under any one

of the conditions in corollary 1 . 8 above.

Proof. Set H = T*“1 and K = T then apply corollary 1 . 8  .

COROLLARY 1.11. Let AH = KA and AK = HA, then H = K if

0  ̂ W (A ) and d im G < ® .

Proof. If dim G < », then W (A ) is closed. Hence W( A) = WCA),

and the result follows from part (v) of corollary 1.4.

COROLLARY 1.12 . £281 , If H and K. are self adjoint operators

such that HA * AK with A e UP invertible and [H, U] = 0, then 

H - K.

Proof. HA = HUP = UHP = UPK.

i.e. HP = PK.

Taking adjoints, we have:

PH = KP

i.e. PH * KP and HP *- PK.

Since 0  ̂ W ( P ), the result follows from part (v) of corollary 1.4 

above.

We will require the following result of M.R. Embry [1 2] for 

the proof of our next result.

£pRQLLARY 1.F . Let A and E be operators such that AE = -EA,

Whprp piPber A np p ■? e~ n q t'T' a 1 and cither 0  ̂ W (A ) or 

°(A) pi <j t - A ) = 0,



B

then E 0.

jn the following result, we assume normality of H - K to get

equality of H and K.

j h e o r e [201 Let A,H and K

Ljj » |'A and AK * HA with n “ Ur •

H . K under any one of the following

be operators such that 

If H - K is normal, then 

conditions:

(i) 0 t W(A),
(li) 0 4 W(U) and A is invertible,

(iii) ocu) n  «t-u) ■ 0 and A is invertibl0'

pr0O f, (ii) and (iiik A being invertible. U 

and P is an invertible positive operator. Now.AH

UPH = KUP

is unitary 

= KA gives us

PH c U* KUP.

A] so,

A*AK = A*HA gives us 

P 2K * PU'HUP,

or

PK » U* HUP

Hence, from PH = U*KUP Cjnĉ ^  

P(H - K) ■ U*(K-H) UP*

H - K being normal, U*(K ' ^

Putnam Fuglede theorem, we have: 

PCH - K)* = U*CK *H) * UP.

U*HUP, we have:

is also normal, and so by

Taking adjoints, we have: 

(H-K) P = PU*(K-H) t .

The equations:

(H-K)P = PU* (K-H)U

and

P(H-K)= U*(K-H)UP *
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witn 0 i wiP j , give us 
H - K = U * (K-H) U,

t,y part C v ) of corollary 1.4.

i.e. U(H - K) = -(H - K) U.

£ach of conditions (ii) and iiii) above now implies that

H - K = 0 by corollary 1.F above. Hence H = K.

Part (i) is seen thus:

Since AH = KA and AK = HA, we have:"
\

A (H - Kj = -{H - K) A.

Letting E = H - K; we get that AE = - EA.

Hence, by corollary 1.F again, E = 0, or H - K = 0. i.e. H = K.

In the sequel, we make an attempt to improve the following 

result of Embry [12]

THEOREM 1.G . If H and K are commuting normal operators such that

AH - KA,

with 0 { W C A ), then H = K.

We first prove the following result:

THEOREM 1.14. [2e] . Let A, H and K be operators such that:

HA = AK and H* A = AK*

with 0 { W (A ) , then H = K if [ReH, ReK ] = 0 and [ImH, ImKj = 0.

Proof. From HA c AK and H*A = AK*, we have:

A(K ♦ K *) = (H +H * )A

and

A(K - K*) * (H - H * ) A. 

i.e. A (ReK) = (ReH)A

and

A(ImK) = (ImH)A .

The proof of theorem 1.G can now be traced to give ReK = ReH and 

ImK = ImH. i.e H = K,



jlgf^PK • We note that in genera3 , 'the conditions Fh ,K*1 - 0 

rpeH, ReK] = 0 and [imH, ImK] = 0 are independent. However, if 

n and K are normal, it can easily be shown that [K,K] = 0 implie 

rReH, ReK]= 0 and flmH, ImK] = 0. Hence the following corollary 

attempts to relax commutativity ot n ana K in theorem 'i .G . abuvc.

rnROLLARY 1.15. [20] . Let H and K be normal operators such that

AH = KA,

then H * K if D | WlAJ, LReH. ReKJ » 0 and [imH, ImK] = 0. 

Proof. Since H and K are normal, by Putnam-Fuglede theorem, 

yy e have:

AH* « K* A .

Hence result follows from theorem 1.14. above.
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CHAPTER TWO

THC OPERATOR EQUATION j\B j  BA* = A*B + BA = I .

K p g SARY AND SUFFICIENT CONDITIONS FOR EXISTENCE OF A DR B.

In this chapter, we consider some necessary and sufficient 

!? pditions for the existence of A or B such that:

AB + BA* = A*B ♦ BA = I (1 ) .

fdPTESSARY CONDITIONS.

We need the following result of L. LJavis and R. Kosentnai 

p] , to prove our first result.

THEOREM 2.A. If A e BCG), then we have:

(i) o (A) = ( o A  A*))*,TT 5

(ii) . o (A ) = ( o (A*))?6 tt

where * denotes complex conjugation.

Wg now plrove the following result:

THEOREM 2.1. [11] . Let A , B e B (G ) , then we have that:

(i) If AB ♦ BA* ■ I has a solution B, then^O \ o (A) and

0 e ^ R e B )  . Furthermore, | | (ReB)  ̂ Ilf. 2| |A| | .

(ii) If equation (1) has a solution B, then 0 e ^(ReA).

Proof. (i) Suppose that 0 e o r(A). Then by theorem 2.A 
\  —  6

abGve, 0 e a (A*) and so there exists a sequence of unit vectors
Tf

) e 0, such that A*x^ -► 0 as n «> . Now AB + BA* = I 

gives u s :

1 = (x , x ) = (ABx , x ) ♦ (BA*x , x )-(Bx , A*x )+(A*x ,B*xn n n n  n n  n n n n

This is a contrad ict ion , hence 0

<
<o

D—b*- Since AB + BA* = I ,

AB* h B * A* = I and so A(ReB) * [ReB)A* = I . An argument s imi1 ar

tc tha+- d K p wo p O' • r* h r'* that n *w.t J  L J t t o ~ a  1

a s
But P n p  ^ O i r. r  o n ]I f  » d i n i  n
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0 (ReB) = ?(ReB). Hence 0 s J^CRcE) . i.e. Re 3

Mow# to complete the proof/ we note that for any x e G,

||x|r = (CReB)x, A*x) ♦ (A * x , (ReB)x) < 2 | | (ReB)x | | | |A*x| |.

Hence,

| | fReB) " 1 || <_ 2 | | A | | .

(ii) Proceeding as in (i), we have in this case that if 0 e a^CReA), 

then

o _ r r a n 4 p m  . * * n n * > .•— v v i ilJ Li\ * r\ u UM j X , An n

■ 2{((ReA)Bx , x ) + (B(ReA)x n n n

The contradiction implies that 0  ̂

is self adjoint, 0 e J^lReA) .

x ) } ■* 0. n

o . (ReA), and o so, s i nee ReA

We now prove the following result:

THEOREM 2.2. [28̂ | . If there exist solutions A and B to (1),then

Ci} A and A* have no approximate proper value on the imaginary axis.

(ii) 0 cannot be a normal approximate proper value for B.

Proof. (i) Suppose X = ip,p real, is an approximate proper

value for A. Then for a sequence {x^} unit vectors, we have:

Ax - X x -f 0. n n

Now, (A - Al)* B ♦ B(A - Al) *{A* ♦ ip) B ♦ B (A - ip) = A*B + BA « I . 

Hence, we have:

1 -  ( x n , x n ) = C(A -  A l l *  B x n , x n ) ♦ ( B( A -  A l ) x n< x j

= (Bx , (A - A X ) x ) + C B (A - AI) x , x ) 0 as n ■+ ~ ,n n n n
a contradiction. The case for A* is proved similarly using

AB + BA* = I . *

(ii) If 0 is a normal approximate proper value for B, then

Bx -► 0 and 6*x -► 0, for a sequence (x } of unit vectors, n n n

Hence, we have that:

n, * n 5 ( A * 3 x  , x ) n n ♦ (BAx , * ) ” (A*Bx , n n n x ) + ( Ax , B * x- ) n n n1 = (x



r d*iL*-UJ k r~i «n » * f •' k» p* ”v -« » 1 i A- - -« •**Il,l U u<\ x o w, O k_ wJ wk A o x. U > I f 1 1 L i j ,cdR C L L A S L ^

I-(A) does net meet the imaginary axis. In particular 0 £ a(A).

proof* Since for any operator A,

o (A) C  o (A ) U  ( (A*))* (with * denoting the complex conjugate)

and by theorem 2 .2 . above, o^lAJ and o^lA*) do not meet the 

imaginary axis, it follows that (a (A*))* does not meet the 

imaginary axis either. Hence o(A) does not meet the imaginary axis

Nx
REMARK « Using the equation:

||x| | 2 = ((ReB)x , A* x ) + (A*x, ReBx) of theorem 2.1., we get 

I | XI I 2 < 2|IReBx| I . I I A*XI | .

As A' is invertible, this gives us ||A * 1 | | = | [A 1 | I £  2 1|ReB|| .

COROLLARY 2.4. [26] . If there exists a normal solution B to (1),

then 0 { o (B ).

Proof. For a normal operator B, every X e a(B) is a normal 

approximate proper value. Hence by part (ii) of theorem 2.2 above, 

0 ) o (B ) .

THEOREM 2.5. [26]. If there exists a solution A to (1) with

X r a+ iB* a/ 0 as an approximate proper value of A or A* then

1 e WlBT .
7 T

Proof. Suppose X e o^CA). Here (A- Xl)xn -> 0 for some sequence

{x } of unit vectors, n

Since (A - XI)* B* B (A - XI) = (A* -X)3<BA - XB . - A*B+ BA-(X*T)B.

« I - (X +X)B

= I - 2aB- .

We have



Suppose 3 | o(A) ♦ o(A*). Then we have:

/̂ ) For every operator Y, there exists a unique operator X with 

AX + XA* = Y,

(ii) X is self adjoint if Y is self adjoint,

(iii) If Y is positive and invertible, then X is also invertible.

THEOREM 2,8. fl0l . If 0 | o(A) + o(A*), then there exists a

positive definite operator B such that AB + BA* = I. If also

[B, (A* - A)] - G, then A and B satisfy equation (11,

Proof. Since I is positive and invertible, by theorem 2.C, there 

exists a positive invertible operator B such that AB + BA* = I.

Now, if [ B, (A* - A)] = 0, then B (A* - A) = (A* -A) B. 

i.e AB ♦ BA* = A*B ♦ BA.

REMARK . We note here that in view of theorem 2.B above, the 

hypothesis U $ o(A) ♦ o(A'j can be replaced by the hypothesis th"’4̂ 

o(A ) or equivalently that for some invertible operator T, the

closure of the numerical range of T 

complex plane.

-1 AT lies in the positive half

We now note that Phadke and Thakare [25] , proved the following

result:

C0RCLLARY2. D. For an M-hyponormal operator A, (A* 1 = c( A*).

In view of corollary 2.C. above, the following result can be derived.

COROLLARY 2.9. [11*J . If A is a M-hyponormal operator with 

o (A*) C  G . then there exists a positive definite solution B such
7T *

that AB ♦ BA* = I.



proof. Since A is M-hyponormai, o_(A*j = o(A*) uy corollary 
'
2 .D above. Since a(A") CZ G + implies a C A ) C  G+ , it follows 

from theorem 2 .8 . and the remark above that there exists a 

positive definite solution E such that AC J* BA* - I.

In view of corollary 2.6 and theorem 2.8 above, the following 

corollary is immediate.

pnoni i a p v o in Thpro pvi cf q ^ sn lilt, ion B > 0 to (1 ) if * (i)

and only if o(A) C Z  & + and [  B, (A* - A) J * 0 .

UNIQUENESS OF SOLUTION.

Assuming that solutions B to (1) exist, we consider now the 

problem of the uniqueness of these solutions. An important role here 

is played by the homogneous form:

AY ♦ YA* c 0, A* Y + YA 3 0 (2)

of equation 11J .

We first prove the following lemmas:

LEMMA 2.11. [1 !] . Y - 0 is the only solution of equations (2 ) if

any one of the following conditions is satisfied.

(i) 0 { W(ReA),

(ii) c (R e A ) o(-ReA) “ 0.

Proof. Clearly, Y = 0  is a solution of (2). Let U be another 

solution of (2 ). Then we have:

AU + U A * S 0 * A*U ♦ UA 

and hence,

(ReA)U = -U(ReA).

New, since ReA is normal, each of the conditions 

implies that U « 0 by corollary l.r.

(i) and (ii)
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igTjMA._2 • 1 2

solution

H  ■

B of

If Y - 0 is-the only solution of 

(1 ) is unique.

( 2 ) , then

proof. Suppos.e that and are twG distinct solutions of

(1 ) . Then we ha\/e:

A( B1 '  B 2 ] *  CB1 ‘  B 2 ) A * = °  *  A* t B 1 "  B 2 ) *  ( B 1 "  b 2 ) A -
«

But this implies that (2) has a non-zero solution - B^,

nnnf fn niir* h\/ n n t h p p *? p Hpnrp R = R - .CUHU* —  j ..... ^ rJ'~ ~ I ^

We note that combining lemmas 2.11 and 2.12, we have the 

following theorem for the unique solution B of (1).

THEOREM 2.13. [11] . The solution B of (1) is unique if any 

one of the following conditions is satisfied:

(i) 0 ( W(ReA),

(iij a (ReA) f t  a l-ReA)« Id.

We now show that if solutions Y to (2) are of a certain type, 

then the solutions B to (1) are unique in as much as they are 

self adjoint.

THEOREM 2.14, [11] . If for each solution Y of (2) the unique

positive square root of Y ’Y is also a solution of ■ (2) , then the 

solutions B of (1) are self adjoint.

Proof. Let B be a solution of (1). Then we set Y B B* - B. 

Since A(B* - B )  ♦ (B* - B ) A* * 0 = (B* - B)A + A* (B* - B), it 

is clear that A and Y satisfy equations (2). Hence we have: 

AY2 - -YA*Y = Y2A.

Since Y* Y • -Y2 1 0 / there exists a unique R >_ 0 such that

R2 - -Y2 . Now since [A, - Y2] - 0 , [ A, R ] = 0. By hypothesi

R is also a solution of C2). We now have :
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aR + RA* = (a + A * )R B 0# and • hence that range of R 

Hgt ReA being invertible, Ker(ReA) = {0} . Hence R 

lince R^ c Y*Y, Y = 0. This completes the proof.

Ker(ReA). 

0, and so/
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CHAPTER THREE

L e r a t h r  e q u a t i o n  a b ♦ b a * = a *b + b a = i. n o r m a l  s o l u t i o n s .

0
f. in this chapter, we assume that there exist operators A and B 

0Uch that the equation AB ♦ BA * = A*B + BA = I of which we shall 

L±^II refer to as equation (11 is satisfied. We concern ourselves 

with the problem of finding sufficient conditions such that A or

y is normal. ^

Firstly, let A and B satisfy equation (1), then we have:

BA*A = (I - A B )A = A (I - BA) = AA*B. (3)

Similarly,

BAA* = A*AB.

We also have that if equation (1)

B A = blbA) = ti(l _ M ’bi =

and

B 2A* ■ B (BA*) = B (I - AB) = 

Hence, we have:

[ B? A ] = 0, [B2 , A*] - 0.

Also from AB ♦ BA* = I and A*D •* 

AB* «■ B * A* = I and A* B * ♦ 

i.e. We have that:

A(ReB) ♦ (ReB)A* = I and I 

In this case, letting T * ReB, we 

hence as in (3 ) and (4) we have

T A * A = AA* T

and

TAA* = A* AT

(4)

is satisfied then:

, ̂  2
b - Bm *B = b ~ (I - AB j B - A u ,

B - BAB ' B - (I - A*B)B = A*B7

(5)

BA = I , we get 

B * A = I.

(ReB) + (ReB) A - I . 

see that T satisfies equation (

(u )

(7)
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U r  Z L4i u
—  ̂ ^ rj ^ • i 4- «? 4- U n r-> —»«-% o -Cw ■ • w r*1 ~ - 4 theorem 2.13,

a simple manipulation gives us:

A (B* - B) ♦ (B* - B )A* = 0 s ( B * - B ) A + A *  (B*-B). 

Hence letting W = ImB, we have:

AW = W ( - A * ) , A*W - W C-A). •

Now, for the sake of convinience in this chapter, let

A = X + i3 and B = T + iW be the cartesian decomposition

of A and B respectively. Also let A = UP, B = VQ and I “ SR 

be polar decomposition of A,B and T respectively.

NORMALITY OF THE SOLUTION A TO (1).

E. Kamei and Y. Kato [14] proved the following result:

THEOREM 3.A. If A and B satisfy (1), then A is normal

under any one o+ the following conditions:

(i) [X,B] - 0,

( i i ) [B, A] = 0 ,

(iii) o (X ) n  o ( -X) * 0 .

We also note that B.P. Duggal [7*] , proved the following result

THEOREM 3.B. The so lution A to (1) is norma 1 if any one of

the following condit ions is satisfied.

(i) [B. BA] * 0 and 0 t W C B ) ,

(ii) (B, BC] * 0 and 0 4 W(B), where C = A* ♦ A,

(iii) [ B,A*A] - 0 and 0 i W(B).

We improve this result as follows:

THpnppM 3 -i P|7") , i pf A and- B (1), then A is normal
I —---— --- -- ' L •*

under any one of the following conditions:
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7

(i) u £ W (B j , *

til) tB}/ = {B
2m /

J # for some positive integer im,

(iii) o(b ) n o (-B) = 0 .

jr o c f_ . (i) From equations (3) and (4), net H = A* A and K=AA* to

give:

BH = KB

and

IT'
BK = . .HB. \

Since H and K are normal, by part (i v ) of theorem 1 .1, H = K.

i.e. A*A = AA* or A is normal.

(ii) We note that by equation (5), [B2 . A] = 0 , hence [B2rn, A]

Thus if (B / = {B2m }/ , then [B.A]- 0 and so by theorem 3

above, A is norma 1 .

(iii) We also note
n

that since [B“ ,A] = 0 , the condition

o(B) 0 o (-B) = 0 implies [D,a3 = 0 by corllary 1 .7. and

hence A is normal by theorem 3.A again .

REMARK. In view of part (i) of theorem 3.1. above, some conditions 

in theorem 3.B. are redundant. In fact, these conditions carry 

through under the weaker hypothesis that range of B is dense in G.

COROLLARY 3.2. f 11 1- The solution A to (1) is normal under any 

one of the following conditions:.

(i) 0 { W ( T 3 ,

C i i 3 (T) = {i m ) , m some positive integer,

C i i i 3 oCT) O  o(-T) * 0.

Proof. Wo note that T satisfies equation 11)• i.e.

AT + TA* 3 A*T + TA 3 I. Hence the result is immediate from theorem

3.1.
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W r now note that Berberian [3J' and Kato Bnd Moriya [15] 

proved the following results respectively.

THEOREM 3.C. For any operator B, Rea(B) = o(ReB) if B belongs

L 0 ony of the following cloeoco of cperotcro:

(i) B is hyponormal.,

(ii) B satisfies the growth condition and o(B) is connected.

THEOREM 3.D. For anv operator B. Rea(B) = o(ReB) if Tb ^B, ReB| = 0

We now have the following corollary.

COROLLARY 3.3. [11] . The solution A to (1) is normal under any

one of the following conditions:

(i) o(T) C  G+ ,

(ii) B is normal and o(B) lies strictly on one side of the origin,

(iii) B is hyponormal and Reo(B) d  G^

f' > fV* *  r> t “ 1 r» . .1 O  * n  \ n
u .  v  / |  U  u  |  -  w  u  I i  U  i \  L  U  ^ U  V C i *  ^  ^  I

(v) B satisfies the growth condition G^ , Rea(B) £. G + and 

o(B) is connected.

Proof (i) If o (T ) C  G , then T • is an invertible positive 

operator. As such 0 { W(T) and result follows from part (i) of

c1- roil ary 3.2. above.

(ii) We note that if B is normal, then it is convexiod. .Hence 

a(B) lies strictly on one side of the origin implies 0|Cono(B)- wT bT, 

and result follows from part (i) of theorem 3.1.

If either of the conditions (iii), - (v) holds, then by theorems

3.C. and 3.D, Rea(B) = n(RpR) = o(T). Hence the proof follows from

case (i ). *
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W C5
A  f * iX\

, L  V  - r* c  h  -? 4* 4*■ — « v "»r n  1 o  A r f ^  ,» I

-h^  - p "  ■ i i . i t  - 4 y*
. V.-: 2 /

0 1 \ • .
j  t and B = / \ shows that the condition 0 { WCB) in

W 1 1 0 /

theorem 3.1. cannot be replaced by tha condition 0 t o(B), i.e. the

,jp;„n n I ,-'p^ - r. r't.-r-c-'r'i’nnf rr. (a re n t r p norma] i tv of An O r * U  v l U l l  y w \ w  * «. w k - • ~ ~ w i . . -  * * ^  "

(1). In a few results that follow we give further hypotheses

under which 0 o(B) would give normality of A.

r*„ _*n . . . . r» _j- j _ r.. f 4 \ h n ,1 «fn)1 hbOREn u . ^ . L/oj * l"^L' n aMU u  s o w x o . j ,  .. xw. .  -  t

Then A is normal under any one of the following conditions:

(i) 0 { W(V),

(ii) a (V ) f\ o(-V) = 0,

(iii) [P,V] = 0.

Proof. ti) From equations (3) and (4) set H=A*A and K-AA .

Then H - Y. * A * A - AA* is normal. Since 0 I o(B), 0  ̂ W(V),

and by part (ii) of theorem 1 .*13, H * K. i.e. A is normal,

(ii) Similarly, o(V) A  o(-V) = 0, by part (iii) of theorem 1.13, 

imp lies A* A = AA * .

(iii) Since [P,V] ■ 0, V] = 0. i.e. [A*A, V] = 0. Now

from equation (4) set H = A*A and K * AA*. Since H and K 

are self adjoint, by corollary 1.12, H = K or A*A - AA* emu su

A is normal.

COROLLARY 3.5. [28] . The solution A to (1) is normal under- any

one of the following conditions:

(i) 0 { W(S),

(ii) a(S) C\ a (**S) = 0,

(iii) [P, S] = 0.

S-ipc0 T is i n\/prti b 1 e hv theorem 2.1., and satisfies 

the result follows immediately from theorem 3.4. above.



THHCREM 3 . 6 . - n o l Let. Bn be norma] -Pc^ 2 err,- even p o s it iv e

integer n. if U { olB) , then the solution A tc (1 ) is normal

if and only if BnA Is normal.

Proof. We first note that if A and B satisfy (1 ), then by

equation (5), [ B f  A -] * 0, j V .  A'] = D . Siinnn“ir-'se that

BnA is normal. Then by the fact that tB2 , A 3  = o. £ b 2 , A*3 • 0

and the normality of B n , we have:

n . . t _ t, r>D MM b ■* 3 AA*BnB* r* «= A A * b * "B" * B *nAA*B«.

Also A* B * nABn = B* nA* ABn . Thus ;

B *n ( AA* - A* A ) B n = 0.

This implies that A is normal. If on the ether hand, A is 

normal, then

D nAA*B*n = B nA*AB*n * A*BnB ,f'A.=! A ,B*nBnA, i.e. BnA is normal.

CuiiuLLARY 3.7, m e  solution A to (1) is normal if and only if 

TnA is normal for some even positive integer n.

Proof. We first recall that T satisfies equation (1), and is 

invertible. Now, since T = ReB, T is self adjoint and hence 

T is normal. The result now follows easily from theorem 3.6 above.

REMARK . Notice that if B nA, n some even positive integer, is

normal, then sc also is AB . A result similar to theorem 3.6 for' 

the case in which B is normal for some odd positive integer n is 

not possible. Indeed suppose that the hypotheses that B is an 

invertible operator such that Bn and BnA , n some odd positive 

integer, are normal, are sufficient conditions to guarantee the 

normality of A. Let E, 0 4 a(0), be self-adjoint. Then, using

equations (3) and (5), we have:

BAA*B* - BAA*B = A* AB^ = A*B"A = A*B*BA,



50 that BA is-normal. Hence if our proposition above were true, we

oUld have that *If B is a seif adjoint invertible operator 

satisfying (1), then A is normal." This, however, is not true, as 

the following example shows.

/- b ♦ i x a + ix\
Let W  ■la - ly

l
b * iy

where

+ y and a / b are non-zero real numbers, and let

/ \
I C C \ ^  % 1

B = I where c satisfies 2c (a - b) = 1. Then B isVc - J
an invertible self adjoint operator which along with A satisfies

(1 ). A however, is not normal.

It is now clear that to obtain a result analogous to theorem 3.6 

for the case in which n is odd, some additional hypotheses are required. 

Here are some partial results.

„ nTHEOREM 3.6. G | . Let d oe no rnid x tor s onie p o s i. l v l cJ l! -■ r. w ̂  ̂ l 

n. Suppose that 0  ̂ o(B).

(i) If BnA and Bn ^1A are normal, then the solution A to (1) is

normal,

(ii) If B nA and ABn are normal, and if either o(BA) is real or 

BA >_ A*B, then the solution A to (1) is self adjoint. 

(Here, as usual, BA > A*B is to be taken as meaning that 

BA - A*B is a positive operator.)

Proof. (i) Let BnA be normal. Then by (1) and (5) we have:

A*B*nBnA = BnAA*B*n = BABn" 1 A*B*n = Sn“ 1 A* B* n - A*BnA*B*n

= Bn"1A*B*n - A*Br,B* n~ 1 

+ A* Br'B* r,A,

so that by the normality of B, B (A~B' - A*BJ 0* -

This implies that A*B* = A*B, or what is the same that:



WG note that from equation U !  we havi, by taking adjoints that:

BA - -B*A .
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( > 
V. ^  j

B* A* A = AA*B *

Now, (3), (9) and (10) together imply that:

AAVB* = AA*B = BA* A = B*A*A.
n +1

Since B A is normal, we have:

° A*AB*Bn B 4 r' b = Ba A* B ri 6*nB

B n + 1 B*n AA* B = Bn + 1 B *n AA* B *

and hence that A is normal.

(ii)As before, it is seen that if ABn is normal then AB=AB*. (11)

Now, (j /, (9), (10) and (11) imply that both AB and BA are 

normal. Set BA = 1  ̂ and AB = T2# then (1 ), (10) and (11)

imply that:

Clearly, if o(BA) is real, then BA is self adjoint. We show that 

BA is self adjoint in the case in which BA _> A*B. A simple 

calculation showb that:

( 1 2 )

so that

T 1 T 1 £  (ReT. , )2 •

But this is possible if and only if I is self adjoint, since 

(BA - A * B )* (BA -A * B ) = -(BA - A * B )2 > 0, and (BA-A'B) 2 > 0 .

Hence we have:
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BA = A*B = A*B*, ' (13)

2nd so by (1 0 ) that

BA = A*B = 2 I. (14)

Vje now show that (11) and' (13) together show that T2 is 

self adjoint, which in view of (1 1 ) and (1 2 ) would imply that

T = T * = * 1 I T2 ' 2 7  A * and hence by (14) (Since 0  ̂ a(B)) that

A = A*. Since by (13) , AA* B2 = T? ‘ = T*2 we have Z ^ # that:

1* T„ = AA*2 ^ BZ = 1 ( j *
Z u 2 ♦ T2 )Z = (ReT^)'1 and hence 

^ >
that T n is

self adjoint. This comp 1 etes the proof.

COROLLARY 3.9. The solution A to (1) is normal under any one 

of the following conditions:
n -f 1

(i) TnA and T A are normal,

(ii) TnA and ATn are normal and either cr(TA) is real or

TA^A*T, where n is some positive odd integer.

Proof. As in the proof of corollary 3.7, the result easily 

follows from theorem 3.8.

The following’ result provides an answer to a remark made by 

B.P. Duggal [9] in which he claims that "We do not know whether 

the solution A to (1) is normal whenever A is K-quasihypor.crma 1. " 

But we first exhibit the following result he proved.

THEOREM 3.E. The solution A to .(1) is normal if A is hyponormal 

or co-hyponorma 1 .

THEOREM 3.10. [28] . If for a given B, there exists a solution A

to (1), then A is normal under' any one of the following conditions:

(i) A is isometric,

(ii) A is quasi-hyponormal

(iii) A is K-quasi-hyponormal.
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Proof, S? nc*? by corollary 2.3 A is invertible, isometric 

condition implies A is unitary, We also note that an invertible 

K-quasi-hyponorma1 operator A is hyponormal, hence by theorem 

3.E above A is normal.

\>)p nnv pprp] ] +• h •? n ĥr>i « h r> a ■? n0f i r'-< -ho the m cm cry c n the 1 *■ •**~ 

Prof. T. Saito, A. Kcbayashi and T.Okayasu [19] proved the 

following result:

THEOREM 3.E . ^ p la i U v» u 1 lUnot; . a 11u
• . i . . i
v i« i

be its polar decomposition. Let also S and T be operators such 

that:

TW = WS and T*W « WSJ then tt : A -► VAV* is a 

* -homomerphism cf the C * - algebra^ C*(S) generated by 5 onto C'(T) 

carrying S to T.

The following result of T. Ando [l] is also required for the 

proof of'cur next result.

THEOREM 3.G. If both A and A* are paranormal and N(A) = N(A*),

then A is normal.

We now prove the following result:

THEOREM 3.11. [26] . Let A and D satisfy (1). If W = ImB 

has dense range, then A is normal whenever it is paranormal.

Proof. Since A is invertible, N (A ) = N(A*) and from equations 

(6), we have:

AW = W(-AT)

and

A*W = W (-A ).

Now, by theorem 3.F. if A is paranormal, then A* is also

paranormal. Hence result follows from theorem 3.G.
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ISJORnALITY OF THE SOLUTION R to M  ) .

We now give sufficient conditions under] which the solution B to M  ) 

is normal.

THEOREM 3.12. [j 6l . The solution B to (1) is normal under any one 

c » the fuij.uwj.ng conditions;

(i) o (X ) O  o(-X) = 0,

(ii) 0 i W(X), •

(iii) o(Xj is contained on one side of the origin,
j 2ni /

(iv) {X} = {X }, for some positive integer m.

Proof. (i) and C i i 1 . We first note that as derived in equations 

(Q), if A and B satisfy (1) then we have:

(A* ♦ A) (B * -B) = -(B* -B) (A* + A)

or

X (B* - B) « -CB* - B) X.

Hence each of the conditions (i) and C i i) implies that B* - B = G 

by corollary 1.F, and so B = B*

(iii) If o (X ) is contained on one side of the origin, then 

0 | wTxT and hence result follows from part (ii).

(iv) Since X(B* - D) - -(B* - B) X, X2 (B* - B) = -X(B*-B)X =(G*-B)XZ 

and hence.

2in (B* -Bi . (B* - B)X2m fDr any Positive integerA

Under the given conditions, we have that:

m.

(B * -B )X = X(B*-B)=-(B*-B)X,

X being invertible, this gives

B* -B -(8* -B) or B = B* .



CHAPTER FOUR

THE OPERATOR EQUATION 1ST * * S, UNITARY SOLUTIONS.

In this chapter, we consider bounded linear operators T and 

on a Hilbert space G such that:

TST * (15)

We first note that many authors have considered eouation (15) 

under the conditions that T is invertible and 0 { WTsT. In our 

first result, we derive the invertibi1ity of T by merely assuming 

left invertibility of T and various conditions on S.

THEOREM 4.1. [21] . Let T and S be operators satisfying

equation (15), with T left invertible. Then T is invertible 

under any one of the following conditions:

io light invertible.

(ii) Either ReS or ImS is right invertible, •

( i i i ) S is invertible, •

(iv) Either ReS or ImS is invertible,

(v) ots) n 0(-S! = 0,

(vi) Either 0 ( ReS) 0 (-ReS) = 0 or o(ImS) D  o(-Im.S)

(vi i ) Either 0 i wTsT or 0  ̂ W(ReS) or 0 { WlTmST.



“l nv/p-pqp
' “ f s.v Since TST* - S, we have: 

ST* - T^S
and

TfpT'lc 
' r

T

i. e .
T(T1 S)Sr - I

or

T T 1 ■ X -
i * e • T is invertible.

(ii) Sin
ce TST = S, taking adjoints,

Hence,

T (S ♦ S ’ 0 T * * S ♦ S*

l • e . T (ReS)T* = ReS,

and

T (S - S*) T* « S - S*

i . e . T (ImS)T* = ImS.

S* .

(16)

(17)

Now, aPP^ying part (i), we get invertibility of T.

1r3Aially (iii) implies (i), and (iv) implies (ii).

We also r(Qte that (v ) implies (iii), (vi) implies (iv) and

(vi i ) irt\ , . f \ r • i'plies ( m )  or (iv).

The following corollary is immediate.
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COROLLARY 4.2. [27] .

an isometry, then T 

theorem 4.1. above.

Let T and S satisfy (15). If T i.

is unitary under any one of the conditions in*

Proof. T being an isometry, T is left invertible. Hence, 

each of the conditions in theorem 4.1. above, implies T is 

invertible and so is unitary.

The following corollary due to B.P. Duggal [6] will be required
\

for the proof of our next result.

COROLLARY 4.A « If E is an invertible normal operator and if there
“1

is an operator T such that 0 W ( T ) a n d  TE* = E T, then E is 

unitary.

THEOREM 4.3. [27] . Let T and S satisfy (15), with T a left

invertible normal operator, then T is unitary under any one of the 

following conditions:

(i) o(ReS) D o(-ReS) = 0,

(ii) o(ImS) H  o W m S )  • 0,

(iii) Either 0 { W(ReS) or 0 i{; W(ImS).

Proof. (i) Since T is left invertible, the condition

o(ReS) O  cr (-R e S ) = 0 implies that T is invertible by part (vi) 

of theorem 4.1 above. Hence we have:

(ReS)T* = T_/'(ReS) from equation (16). Now T being normal, by 

Putnam Fuglede theorem (ReS)T * T *~* 1 (ReS). By taking adjoints, 

we have :

(ReS)T ' 1 - T*(ReS) .

Now, (ReS)T * = T' ' (ReS)

and

(ReS)T ’ 1 = T*(ReS)
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_ _ 1
impiy CReS) (1* - 1 ) ♦ (i* - T J (ReS) « u.

Since c ( R e 3 ) f ^ o ( - R e S ) - 0 ,  T* - T = 0 .  i.e. T* * T or 

T is unitary.

Part (ii) is proved similarly, while (iii) follows easily 

from corollary 4.A aoove.

We note that Duggal [6] , proved the fclloweing result:

THEOREM 4.B. If 0 { W(A), and for a positive integer n,
\

we have

(i) [A * n A n , A*r,»' A04 = u, (ii) [A * A, A* " A ^  = G , then An i s

normal . Also if (iii) [AA*, A* n*1 A ,n + 1J = o, then A is

n o rma 1 •

We now use the above theorem to prove the following resu 1 1 :

THEOREM 4,4. [2 7] . Let T and S satisfy (15) with T

invertible. If 0 { W(T) and for some positive integer n we have

that p *  nTn , T *n + 1 -rn♦ „ n fT *TI I J  • Li  C r i l l U  j  1 i , T*nTn1 = 0, then T n 5 p

unitary under any one of the following conditions:

(i) 0 { W(S) ,

(ii) o(S) O  c ( -S) = 0,

(iii) Either o(ReS) r\ o(-ReS) - 0 or o(ImS) C\ o(-ImS) = 0,

(iv) Either 01 f W(ReS) or 0 { W(ImS).

Proof. The conditions 0 { WCT). [T *n T n , T *'1*1 Tn + ̂ J = 0 and

[J* T , T*nTn] = 0 together imply that Tn is normal by

theorem 4.B above. Since TST* * S implies T nsT*n = S, we

have"that:

ST*n = T~ nS

and

S* T * n = r"nS*.
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Th '1* F ai yog >'S *■* C-w

(ReS) T* n » T'r' (ReS) 

and

(ImS)T*n « T”n (ImS).

Hence uy corollary i .d , eacn of Uie cunuitiuns implies chat

T*n = T"n , or T n is unitary.

In order to prove our next result, we need the following result

of R, N'akamoto [?0^

THEOREM 4.C. Let ..Hn = A*8nA, where 0 is normal. If (i) 0 \ W(A)

and (ii) [B, H ) sr 0 for n = 0 , 1 , then [b . > 1_1 it O ♦

THEOREM 4.5. f27l • Let T and S satisfy (15) with T left

invertible and S has dense range such that [S, TT*] - 0 and

0 I W(T), then T is unitary.

r» .. . r n • „ „ T
• » w  w  • • W  ̂  1 i u U  •

r  t • C n _ jl u
w  ; U U  C 1 •o - TT* and Ul

•‘1 - TST*. M0 V/

by theorem 4.C above, 0  ̂ W(T)# [Ho' S] « 0 and [H1 , s] = 0

together imply that [S, T*] » 0. The relation TST* - s now

becomes TT*S = S. S having dense range, this gives us TT* = I.

Thus, T being both left and right invertible, T is invertible 
- 1

with T = T *. i.e. T is unitary.

We now consider the following results proved by Patel and Sheth

[23].

THEOREM 4.0, If T is an invertible K - paranormal operator and 

t an operator such that:

TST* =* S and 0 1 W (§) . then T is unitary.
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THEOREM 4.E. If T is a left invertible operator and S is such that 

TST* = S ,

with 0 \ W(S), then T is unitary provided it is either dominant 

or K-paranormal contraction.

sequel, we eh q n r e 2 S

K-paranormal, the condition that it is a contraction can be dropped.

I THEOREM 4.6. 

j together with 

then T is un

£273 . Let T be a left invertible operator which 

S satisfy (1 5 j . 11 1 xs duihxiiattL ui K* pdi oner.»*a

itary under any one of the following conditions;

(i) 0 4 wTsT,

(ii) 0 { W(ReS),

(iii) 0 i wTTmST.

Proof. (i) Since T is left invertible and TST* = S, with 

0 4 T/TTH , by theorem 4.1, 1 is invertible. imcw if i is

dominant or K-paranormal, then by theorem 4.D, T is.unitary.

We note that each of the conditions (ii) and (iii) implies 

(i).

COROLLARY 4.7, [27] . If S is an invertible operator such that 

either S*S~ 1 or SS*~1 is dominant or K-paranormal, then S is 

normal under any une of the following conditions:

(i) 0 £ wTsl,

(ii) 0 t W (ReS5,

(iii) 0 j W (Im3).

Proof. 

i. e .

Set T = S* S 1 , then 

TST* * S * T = S.

TS S* .

Now, each 

theorem 4

of

6 .

the above conditions imp lias thot T 

above. Hence we have:
vtrobi

u b r a k y

unitary by
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no* _ rf • t * T C r* * h _ T^T TO u " O i i w a< O O | b i. li U d I i “ X •

i.e. S is normal. Similarly, we can consider the other case.

In our few results that follow, we improve some results due 

to J.M. Patel [22] , S.M. Patel [24] and Singh and

Mangle [23"] . Firstxy, 3 • M . PuLcI proviso the following

results :

COROLLARY 4.F. If 1 is a paranormal operator and Tp = T*^ 

where p ana q are integers, then 1 is normal.

THEOREM 4.G. If T*p - U ^TPU, p any positive integer with T 

paranormal and U a cramped unitary operator, then T is normal.

We relax the condition on U in theorem 4.G above. But 

first we prove the following result:

THEOREM 4.0. [27j . Let T and S satisfy equation (15) with T

left invertible. If T is paranormal and there exists an integer 

n such that Tn is normal, then T is unitary under any one of 

the following cbnditions: .

(i) 0 \ W(S) and S is right invertible,

(ii) 0 (S ) H  o(-S) = 0.

Proof. TST* = S with S at least right invertible and T left 

invertible, imply T is invertible by theorem 4.1 above. Also,

TST * = S implies TnST*n = S for any positive integer n. Hence 

. we have:

ST *n = T~nS

and

S*T* n * T“nS*.

Setting H ■ T*n 2 nd K - T"? by corollary 1.B above, nnrh '-••r 

conditions (i) and (ii) implies H = K . i.e. T*n = T n or



-37-

Tn is unitary. This implies that a l f j  ana consequently 

a(T) lies on the unit circle. Since T is paranormal, this 

gives us uniticity of T.

THEOREM 4.q, [27] . If for any positive integer p, T* = U T U,

with T paranormal and U an invertible operator, then » is norma, 

under any one of the following conditions:

Ci) 0 { W(U) and U is unitary.

( i i ) o L U ) C\ 0 ( - U ) = 0 and Li is units ry,

( iii) Tp is normal and either a t WCU) or o(U) n  cr (- U ) = 0.

Proof
P -1 T* * U 1PU gives :

UT*P = TPU

and

• t* T • P - t P||* b I - i ^ .

Now, by corollary 1 .B again. each of the above conditions give

T*P = Tp .

Since T is paranormal, by corollary- 4.F above, T is normal ;

S. M. Patel £24] proved the following result:

THEOREM 4.H . If for a non-singular operator E, there exists an

operator A with either 0 i W(A) or a(A) H  o(-A) = Z such that

AE = e '^A, where either E is normal or A is a non-singular
2

normal operator, then E = 1 .

We improve the above theorem in the following way:

THEOREM 4.10. [27] . If for a non-sigular operator E, there

exists an operator A such h a t :

AE « E" 1 A,

then E2 ■ I under any one of the following conditions:
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(5 ) rr f A  ̂ ^  rr ( * ' • * -  A 1 -  rt

C ii) 0 { WCA) and A is normal,

(iii) 0 \ W (A ) and E - E  ̂ is norma 1 ,

Civ) Either 0 J. nfnf » l — ° 1 $ w i.. e. *. i u a u l.lfl x iiIn J and A i s  normal.

(v) Either a(ReA) o(-ReA) = 0 or o (Irn.A) n  a(-ImA) = 0

and A is norma 1 ,

(vi) (a /  * {A/n'} , m some positive inteper and A hat; H r ns 

range or is one-one,

(vi i) o (A ) C
+ 

n .

- 1 - 1
Proof. We first note that AE = E A gives us EA = AE

Thus we have:

AE = E~1A

and

AE = E A .
_ 1

Now setting H = E and K = E , each of the conditions above,

implies that H * K by theorem 1.1 and corollary 1.4. i.e. E = E
2

and hence E = 1 .

We note that Singh and Mangla [~29] proved the following 

resuIt:

- 1
THEOREM 4.1, If T is an invertible operator such that T* « V T  V 

with \J a cramped unitary operator, then T is unitary.

We improve this result as follows:

THEOREM 4.11. If T ana S satisfy equation (15) with T left 

invertible and S invertible, then T is unitary under any one of 

the following conditions:

C D n • < > r <-> > _ u ifi ̂ j  j auu O i s u fi x i a ry ,

(ii) a (S) fl o CS) - 0 and S is unitary.



Since S is invertible, T is invertible by theorem 4.1

above. f 1 p  n  - ■—  , t o t *  ̂ c1 * & 4 X v o o .. C; *tot - O . Hence we nave:

ST* = t "1s

and

Now, by corollary 1.B, each of the conditions (i) and (ii) implies 
_ *

that T * = T or T is unitary.
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