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CHAPTFR O.

introduction .

This Thesis 1is devoted to a study of three operator equations
in g complex HiJdbprt sp”ce. The three operator enuations are as

follows:

1. AH = KA,

on t\n j DA*
3. TST* ='s

We give below an account of the work done by several authors as
far as these operator equations are concerned and also a brief

chapterwise summary of the work done by us.

In the case of the operator equation AH = KA, a number of

KMUki#si @ 1.UVO URwwh viiwis Vawsdy %" " 1jr e o ow DET 00 TEmE ST AR

under which H and K either belong to the same class of

operators or happen to be equal. Some of the authors who have
carried out this study are : M.R. Embry [Jj *, B.P. Duggal [u3 e~
R. Nakamoto [20] and J.M. Patel \21] . We note that

M.R. Embry pi2] proved equality of H and K by requiring

that H and K are commuting normal operators and zero docs

not belong to the interior of the numerical range of A.

B.P. Duggal [f] generalised this result by only claiming normalit
of K and setting H to be of the form Hp=A*Kn A, for all
non-negative 1integer n. R. Nakamoto {puQ generalised this result

forthpr bv showing that it is enough to prove tor n " O0#! only.

'H(.)G oy 4 un pn 4K rrUmhnr* nP fhp n~nor’
>

listed in the reference.
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Introducing an extra condition that if ~lso AK = HA, J.i"l. ratei
p2T] was able to prove equality of H and K under some

conditions on A which we are going to improve in this Thesis.

The operator equation AR + BA* = A*B + BA = I» has been also
studied by a number of authors. Firstly, the case in which
the Hilbert space is finite-dimensional, the possibility of
interest in those A and Hermitian B satistying the equation
was mentioned by 1iaussky in p3uj . Barkei [«0 showed d,u-i
) If the number cf eigen values of the matrix A with zero
real part is zero, then A is normal if and only if there is
a Hermitian matrix B such that the equation is satisfied ana
AB = BA, (i1) The solution A to the equation is normal if

either (A ¢ A*) and -(A ¢ A*) have no common eigen-values, or
DL dag wAU v - r-f oy §ed nvinrnd
Barker’s result to the case in which the Hilbert space is
infinite dimensional, and a number of other conditions
guaranteeing the normality of solution A, have been given oy
Duggal and Khalagai in £10] and [1i] . We carry on with
this study in this Thesis.

The authors who have studied the operator equation TST*=S
for unitary solutions in T, include S.K. Khasbardor and
N.K. Thakare pi0) who showed that if T and S satisfy the
equation with T invertible and both T arid T_1 are
spectraloid then T is unitary provided zero does not belong -c
the rjnsurp of the numerical range of S. Singh and Mangla 1291
proved that if T and S satisfy the equation with T 1iovertibl
and S a cramped unitary operator, then T is unitary.
Duggal p6J showed that tor I anu S sdli sfyirig uie aqua vicu ,

if T is an invertible normal operator and zero does not belong



to the interior of the numerical ran"° °+ 2. fbnr T ic unitary.
Patel and Sheth |.23) proved that f(pr T and S satisfying
the equation, if T is left invertible and S 1is such that

zero does not belong to the closure of its numerical range, then

T 1s unitary provided it is either dominant or K-paranormal

contraction. We improve this result and a few others in this
Thesis.
CHAPTFRWISF SUMMARY. \Y

In the first chapter, we Tfirst improve one result due to J.M. Patel
[213 and then exhibit a number of corollaries. Among the corollaries
proved here, 1is one which apart from giving an alternative proof
to the already known conditions, it also gives a few more
conditions under which an operator B commutes with another
operator A given that B commutes with A2. We then prove
an independent tneorem wmch also gives sufficient conditions
under which H c K. The chapter ends with a result which
attempts to relax the commutativity condition on the operators

H and K of M.R. Embry®s result in [J2]

In the second chapter, we first show that for A and B
satisfying the operator equation AB ¢ BA” * A*8 ¢ BA * |,
RcA and ReB are invertible. We then show that both A and A*
have no approximate proper values on the imaginary axis and zero
cannot be a normal approximate prcpervalue for B. Vie deduce a
number of corollaries from this result. Vie also prove a result
to the effect that if \ 1is an approximate propervalue for A

1 .
or A*, then %wg%' belongs to the closure uF the numerical range

B, from which we also deduce a number of corollaries.



For sufficient conditions for existence of A or B satisfying
the equation, we prove results similar* to those of J.P. Williams
r22]| . For example, we show that if zero does not belong to
the direct sum of the spectra of A and A* or if the spectrum
oif @ @F p" wWvalanbdy &hat for serseir.vc , %
closure of the numerical range of T_lAT, lies in the positive
half complex plane, then there always exists a positive definite
nppra™-nr R Pijnh t.ht AR ¢ PA* = A*R + RA =XIhr-n/irlod R
commutes with A* - A. We also look atthe uniqueness of
solutions in which we are able to show that if either ReA and
-ReA have no common spectra or zero does not belong to the interior
of the numerical range of ReA, then the solution B to the

equation 1is always unique.

The third chapter starts with application of our first result
proved 1in oh,-»nfpr nop, Here we give alternative proof for most
of the already existing sufficient conditions for A satisfying
the equation AB ¢ BA* * A*B ¢ BA c I, to be normal. We prove
our second theorem which gives Tfurther conditions under which A
is normal and deduce a number of corollaries. We also show that
if 6n 1i1s normal for some even positive integer n, and C 1is
invertible, then A is normal if ond only if BnA is normal.
Giving an example, we are able to show that a similar result in
which Bn is normal for some odd positive interger n 1is not
possible. We are also able to answer the question raised by
B.P. Duggal [0] by proving that a K-quasi-hypcnormal operator A
satisfying the equation is always normal. The chapter ends with a

result giving sufficient conditions under which the solution B of

Cliueticr. zz ~r~f adjoint.
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uere/ we show among other conoi.tiuris tiiat if either Dfn amd
-ReA have no common spectra ur zero does not belong to the
interior of the numerical range of ReA, then 3 1is

self adjoint.

in the fourth cnapter, we first snow ohcsu » N
operator T satisfying the equation TST* =S, T turns out to
be invertible under very humble conditions on S, like S being
xiivel Lidicc o =i £%% 21w wa-uUe e R MgHHEo e mnieknrs Dby
results which give uniticity of T. We also improve on the
result of Patel and Sheth [23] , by proving that if T 1is a
left invertible operator satisfying the equation and T is either
dominant or K-paranormal, then T is unitary provided zero
does not belong to the closure of the numerical range of either
“*r ReS or ImS. The chapter ends with improvement of
° -nf  J.M. Patel [22] , S.M. Patel [24J and binZh

_* "291 respectively.

21INIT IONS.

Thesis, G will denote a complex Hilbert space
ner.product function denoted by (= » BCG)
,ote the Banach algebra of all bounded linear
;ors on G. The elements of G will bn denoted bv

ital letters such as A, B, H, K etc.

For A g BCG), ~CA) will denote the resolvent set of A
i.e. the set of all A  for which A - Al is invertible. olnJ

will denote the spectrum of A. i.e. the compliment cf tnu

resolvent set cf A. an(A) will denote the approximate
spectrum of A. i_e. tne set ot aix & -uwi.. = 7 - "

0
e >C, there exists an Xx r G such that TixIl “ N~ anu

I]C X-A)Xx] |<e. Such a A is called an approximate proper value



OffAi will denote the approximate da. act spectrum cf A.

the set of all A such that A - A is not onto.

The numerical range of A will be demoted by W(A). i.e.

WA » {(Ax.x)s |Ix1] * D. The closure of the numerical range

of A will be denoted by wUV,and the null space of A will
be denoted by N(A), while R(A) will denote the range of A.

Let [A,B] - AB - BA and {A/ = {B e BCG): V[A,B] = 0}

UL G4 denote the right half complex plane and

™ _ {z; Rez>0, Imz>0) where 2z is a complex number.

An operator A is said to be:

normal if AA* = A*Ay
unitary iIf A*A = AA* = I#
In SR wWA il f A*A C T,

hyponormal if A*A > AA*,
M-hyponormal if (A -2 (A -2)" 1 MCA - 2)* (A - z) for

all complex numbers z, and M some positive number,

k-paranormal if [ 1AX]| Ik «]TAkx]]-]1™x]]k*"1 for all xeG and

K > 2,
k-quasi-hyponormal if A* (A A m AA ) A -
dominant if RCA -X ) (Z RCA* - X*) for each X ¢ aCA),

contraction it |]A]] <

satisfying growth condition if JI(A
1 , X J o(A),
d(X,a(TT

loft 2pupT*fihlo ip AA = 1 for some A* s BCG).



CHAPTER ONE

ON THE OPERATOR EQUATION AH = KA.

In this Chapter, we consider sufficient conditions under
which H = K and 1its consequences. We start by improving one

result of J.M. Patel [2f) . He proved the following result;

thfDREM 1 _A. IfT AH = KA and AK = HA with A unitary, then

Q) o(G’A) = 0,

(i) 0 4 WCA).

The following result shows that the condition on A can be relaxed.
THEOREM 1.1. [16] . Let A,H,K eB(G).

If AH = KA and AK * HA, then H = K under any one of the

following conditions;

u) a(Aj » ol-A) * 0,

(n A is normal and either c(ReA) O o(-ReA) = 0 or
o(ImA) D c(-ImA) * 0>

(i) {A n{Am}*, TFor some positive integer m and A is
one-one or has dense range,

(iv) H and K are normal and O | W(A).
Fcr the proof of the above theorem, we first prove one

following lemmas:

LEMMA 1.2.[16] . If AH * KA and AK = HA, then [K,A”« O - [H"A ]~
Proof. From AH = KA, we have

AHA * KA™, while frenm

AK = HA we have

A=Y » mik . “hence | if\,r\j u .

Similarly,



n 'n - ilf n - 2 »n0
t.J uUdo nC v < ¥
jnd has dense range.

Proof. since 0 * WtA)" tAx*x) * 0 for x * 0> 1,E"

Ax t 0 for x * 0.
A being linear, this implies that A is one-one. If JUA) 7/ G,

then [ m T ]l * NtA*) t G~ m {0} / i.e. there exists a unit

vector x e N(A*) such that:

(A*X»x) = 0 * (X,Ax) which implies that 0 e W(A), a contradiction.

VIt
Hence

We note that the following results will also be required for
the proof of our theorem i.l. Firstly, M.R.Embry L12j
the following corollaries:
COROLLARY 1.B. Let A,H,Ke BCG).
Let D m {A: 0 X WCA) or o(A) p\ o(“A) = 0).
If AH % Ja and A*H * KA*, i.inm f# < n” fhpn H - K
A is unitary or H and K are normal.
COROLLARY 1.C. Let A e B(G)- If A is normal, then (A2/
provided 0 { W(A).
M. Rosemblum [26] proved the following result:
THEOREM 1.0, Let A,X e BCG). If we have that AX + XA = 0 und
3(A) A\ o(-A) * 0 then X = 0 is the only solution.
C.C. Cowan II_I\I] . oroved the following result:

) i 4 /
COROLLARY 1 .E. Let A ¢ BCG). It o(A) (Z » = then = {A }

ie also state the following result due to Putman and Fuglede.

3UTNAN-FUGLEDE THEOREM. Let Ay A?, B e B(G). It BAMA"B, A1l

and n2 norrnal, then O0A~ 7\*2““



(i) ah * KA and AK * ,HA together imply that:

AH - K = (K - H) A,

gl < &S -K)A "2.

Since o0o(A) H aC-A) =0, H- K =0 isthe onlysolution

of the equation (by theorem 1.D. above) and hence H = K.
f..~yE A ic nnwfll +#hor -A ic alen normal . GJnoo

A(H - KN 3 (H - Ky (-A), by Putnam Fuglede theorem,

A*(H - K) 3 (H - K (-A*).

iie. (A ¢A*) (H - K) ¢ (H-K) (A+s A®=0,

or

(ReA) (H - K) ¢ (H - K) (ReA) 3 0.

Since o(ReA) D o(-ReA) 3 0, H - K 3 0 1is the only

solution of the equation and hence H 3 K.

The case in which o(ImA) 0 o(-ImA) 3 0 s proved similarly

2m J _
)y lemma 1,2 above, [k.al = 0, and so [k-.a = 0.
Since by hypothesis [K.A] * O if and only if
[k .a2"] = 0, [K,A] 3 0. Now, AK 3 KA = AH and A being

one-one, K - r# Also AK 3 KA = HA arid range of A Dbelng
dense, K 3 H.
(iv) If H and K are normal, then by Putnam fuglede theorem,
we have also
AK* 3 H* A.
Taking adjoints gives:
A*H 3 KA*
Since O iW(A), H and N e#c NuimtA, £

a*h = KA*, hy corollary 1.B nerve. h 3K



—4-

Ippni 1.ARY 1.47° [1BJ. It An - Km .ana AK - HA, then H *“ K
mOdfjr any one of the following conditions.
A is normal and O W(A) .
11~ / 2 /
proof, A 1is normal and O t W(A) together imply that {A} = (A }
~ corollary 1 C- Hence by part (iii) of theorem 1.1. above,
the result follows.
(ii) A is normal and O f W(ReA), with a similar statement
holding when ReA is replaced by [ImA.
prOOf. We only need to show that 0 * W(ReA) implies 0 { WCA)
and the result will follow from part (i) of this corollary.
We do this by contradiction. Suppose O i W(ReA) and 0 eW(A)
P" Now let A - 3* iH. By hypothesis 0 { W@J).

then there exists a unit vector x e G such that (Ax,x) * 0.

i.e.(JUx,x) + i(Hx,x) c O.

i.e. (Hx,x) » G * ux,x> a uin.radiwt.un ~ W Jr
Hence O i WtA). The case in which 0 $ W(ImA) is proved
similarly.

(iii).. (Ax,x)> 0 for x / O.

Proof. If (Ax,x)> 0 for x / 0, then 0 { WCA). Also, since

A is positive, it is normal. Hence result follows tram

part (i) of this corollary.

+
(iv) o(A) Z v -
Proof. IT aCA) C A then A is invertible and by corollary 1.1
above, {A)/. = {A4/ . Hence we can now apply part (in)

of theorem 1.1.



) n 1 WEA):

proof. We ot.ly rieed to show that if O j WIAi then
o CA) n at-A) =0 arid the result will follow from part (i)
of theorem 1.1. We do this by contradiction. If
ct(A) f\ ce(-A) * H > p ff(Al O  rrf-Al fhpn \, ->
e a (A) CZ WO\T. W(A) being a convex set, 0 e W(AJ, a

contradiction. Hence o0oCA) r\ o(-A) = 0*

I® M Lo that Xtc cenditicrc ir. tK—— T4 .}
corollary 1.4. above, are an improvement of J.M. Patel’s
theorem 1 .A. above.

COROLLARY 1.5. [28] . If A and T are operators such that
AT = T*~1A and AT*“1 S TA, then T is unitary under any one of
the conditions in theorem 1.1 with condition (iv) as T s
normal and O | W(A) or under any one of those in corollary 1.4.
Proof. Set H = T*'l and K « T.
COROLLARY 1.6. [281 - If A and T are operators such that
AT m T*A and AT* B TA, then T is self adjoint under any one
of the conditions in theorem 1.1. with condition (iv) as T
is normal and 0 { W(A) or under any of those in corollary 1.4.
Proof, Set HeT* and K * T.
COROLLARY 1.7. [26%] . Let A and B be any operators such that
[B>A24 - 0. Then jB,AJ ¢ O under any one of the following
conditions :
@G 0@ f\ o(-A) =0,
Cli) A is normal and either o(ReA) (-\ o(-ReA) = 0 or

ollmAJ f\ ol-imA) = 0,
Ciii) {A/ « {A2ni>; , FTur some positive integer m,

(iv) AB and BA are normal and O W(A),

(V) a 1is normal and 0 ™ W(A).
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Hvi) A is normal and either O L W(ReA) or f | WFImA),
vitd  (Ax,x) >0 for x / U,

(viii) 07A) t

(X)) 0 { W(aT.

proc%T- Bi'nce |:_'b, qu = u,we have:
A(AB) = (BA)A
and
ACBA) = (AB)A.
Now set H = AB and K - CA, then each uf the above conditiona

implies that H = K by theorem 1.1. and corollary 1.4. above.
Hence JB,A] = O. «
COROLLARY 1.6. [2¢] . If AH » KA and [k,A7] = 0, then H =
under any one of the following conditions:
(i) OfA) 0 o(-A)"H,
(i) {Ay A, ) , fcrsome positive integer m, end A is one-ono,
(ii1) A is normal and 0 {W(A),
(iv) A isnormal and either O | W(ReA) or O {WCImA.1,
N~ A isnormal and either 0 (ReA) O('ReA) = 0 or

a(lmA) D o(~ImA) s 0O*
(vi) (Ax,x) >0 for x / O,
Cvii) o(A) <z /

(viii) 0 { wTaT.

froof. Since [K,A] = 0, each of the above conditions implies
[K,A] = Q. Now, AH = KA =AK gives us H = K,since A is
one-one byeach of the above conditions. for the sake ofcompleteness

We give here proof of part (v). We give the proof here to show that
olReA"l C\ c(-ReA) = 0 implies A is one-one. We do this by

Contradiction. If A is not one-one then Ax = 0 for some x / 0 in G.
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being normal, A*x = 0. Hence -(A+A*)x = Q# which implies that

Oe o(ReA) H o (-ReA), a contradiction. Hence A is one-one.
COROLLARY 1.9. £28] . If A and T are operators such that
AT * 1*A and £t*, AN = 0, then T is self adjoint under

any one cf the ccnditicnc in coreHer 1.8 aduwe

proof. Set H =T and K * T* and apply corollary 1.8.
COROLLARY 1.10. [28] . If A and T are operators such that
AT*"1 - TA and £1,A ] = u, then I is unitary under any one

of the conditions in corollary 1.8 above.

Proof. Set H = T**1 and K = T then apply corollary 1.8 .
COROLLARY 1.11. Let AH = KA and AK = HA, then H = K if
0O”M"W@A) and dim G < ® .

Proof. If dim G < », then W() 1is closed. Hence W(A) = WCA),

and the result follows from part (v) of corollary 1.4.

COROLLARY 1.12 _.£281 , If H and K are self adjoint operators
such that HA * AK with A e UP invertible and [H, U = 0, then
H - K

Proof. HA = HUP = UHP = UPK.

Taking adjoints, we have:
PH = KP

i.e. PH * KP and HP * PK.
Since 0 ™~ W(P), the result follows from part (v) of corollary 1.4
above.

We will require the following result of M.R. Embry [12] for
the proof of our next result.
EpRQLLARY 1.F. Let A and E be operators such that AE = -EA,

Whprp piPber A np p ®e ngtTal and cither 0 W) or

°(A) pi §t-A) = 0,



then E 0.

normality of H - K to get
jn the following result, we assume

equality of H and K.

be operators such that
j h e o r e [201 Let AH and K
If

H - K 1is normal, then
Ljj » |'A and AK * HA with n “ Ur e
conditions:
H . K wunder any one of the following '

(i) 0 t W),
(i) 0 4 w(u) and A is invertible,

(iii) ocu) n «t-u) m 0 and A is invertibl0O" i i
« is unitary

prOOf, (ii) and (iiik A being invertible. U

N B _ o = KA gives us
and P is an invertible positive operator. Now.AH

UPH = KUP

PH ¢ U*KUP.
Also,

A*AK = A*HA gives us

P2K * PU"HUP,

or
PK » U*HUP
} U*HUP, we have:
Hence, from PH = U*KUP (™~
P(H - K) m U*(K-H) UP*
is also normal, and so by
H - K being normal, u*K - n

Putnam Fuglede theorem, we have:
PCH - K)* = U*CK *H)* UP.
Taking adjoints, we have:
(H-K) P = PU*(K-H) t.
The equations:
(H-K)P = PU* (K-H)U
and

P(H-K)= U*(K-H)UP*



witn O i wiPj, give us
H - K = U*(K-H) U,

ty part Cv) of corollary 1.4.
i.e. UH - KN = -(H - K U.
fach of conditions (i1) and 1i1ii) above now implies that
H- K =0 by corollary 1.F above. Hence H = K.
Part (i) is seen thus:

Since AH = KA and AK = HA, we have:"

AH - Kj = -{H - K A.
Letting E = H - K; we get that AE = - EA.
Hence, by corollary 1.F again, E = 0, or H - K =0. i.e. H = K.
In the sequel, we make an attempt to improve the following
result of Embry [12]
THEOREM 1.G. If H and K are commuting normal operators such that
AH - KA,
with 0 { WCA), then H = K.
We Tirst prove the following result:
THEOREM 1.14. [2e] .Let A, H and Kbe operators such that:
HA = AK and H*A= AK*
with 0 { W) , thenH = K if [ReH, ReK 1 =0 and [ImH, ImKj = O.

Proof. From HA c¢ AK andH*A = AK*, we have:

AC(K ¢ K*) = (H+H*)A
and

A(K = K¥) * (H - H*) A.
i.e. A(ReK) = (ReH)A
and

ACINK) = (ImH)A .

The proof of theorem 1.G can now be traced to give ReK = ReH and

ImK = ImH. i.e H = K,



Jjlgf?"PK « We note that in genera3, "the conditions Fh K1 - 0

rpeH, ReK] 0 and [imH, ImK] = 0 are independent. However, if
n and K are normal, it can easily be shown that [K,K] = 0 implie
rReH, ReK]= 0 and fImH, ImK] = 0. Hence the following corollary

attempts to relax commutativity ot n ana K in theorem %.G. abuvc.

rnROLLARY 1.15. [200 . Let H and K be normal operators such that

AH = KA,
then H * K if D | WIAJ, LReH. ReKJ » 0 and [imH, ImK] = 0.
Proof. Since H and K are normal, by Putnam-Fuglede theorenm,
we have:

AH* « K*A.

Hence result follows from theorem 1.14. above.



CHAPTER TWO
THC OPERATOR EQUATION j\Bj BA* = A*B + BA = 1.

Kp g SARY AND SUFFICIENT CONDITIONS FOR EXISTENCE OF A DR B.

In this chapter, we consider some necessary and sufficient
P pditions for the existence of A or B such that:

AB + BA* = A*B & BA = I Q).
PTESSARY CONDITIONS.

We need the following result of L. LJavis and R. Kosentnai

p] , to prove our Tfirst result.
THEOREM 2.A. IT A e BCG), then we have:
@ oA = (oA AF))™,
ii = *3))?
(i) . ¢ (A) = (g (A"
where * denotes complex conjugation.
Wg now plrove the following result:

THEOREM 2.1. [11] . Let A,B e B(G), then we have that:

(i If AB o BA* m 1 has a solution B, then™0 \ o (A) and

0 e "ReB) . Furthermore, || (ReB) ~ I11f. 2] |Al |-

(in IT equation (1) has a solution B, then 0 e ~(ReA).

\ Proof_. () Suppose that 0 e o6r(A). Then by theorem 2_.A

abGve, 0 e aT(A*) and so there exists a sequence of unit vectors
) e 0, such that A*x* » 0 as n @ . Now AB + BA* =1

gives us:

— - * _ * * *
1= (Xn’ xn) = (ABXn’nX ) ¢ (BA X s X ) (an, A xn)+(A Xn’BnX

This is a contradiction, hence 0 g 0, A Since AB + BA* = i,
AB* n B*A* - I and so A(ReB) » [ReB)A* = . An argument similar
tc that- 4Kpwo pO - rhr= that n & to-a 1 But Pnp 7~Oirr onJf »dinin

as
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O (ReB) = ?(ReB). Hence 0 s JMRcE) . 1i.e. Re3

Mow# to complete the proof/ we note that for any x e G,

|Ix]Jr = (CReB)x, A*x) ¢ (A*x, (ReB)x) < 2||(ReB)x |IIIA*x] |-
Hence,
[1fReB)"1 |l < 2]|IA]]-
(i) Proceeding as in (i), we have in this case that if 0 e a”CReA),
then
Qo GUEd AR <A OFgx L A
[ 2{((ReA)an, xn) + (B(ReA)xn xn)} w 0.
The contradiction implies that 0 # od(ReA), and so, sinee ReA

is self adjoint, O e J~IReA) .

We now prove the following result:

THEOREM 2.2. [2Y - If there exist solutions A and B to (1),then
Ci} A and A* have no approximate proper value on the imaginary axis.
(ii) 0 cannot be a normal approximate proper value for B.
Proof. (1) Suppose X= 1ip,p real, 1is an approximate proper
value for A. Then for a sequence {x"} unit vectors, we have:
Axn - Xxn F 0.
Now, (A - AID* B ¢ B(A - Al) *{A* ¢ ip) B ¢ B(A - ip) = A*B + BA « 1I.
Hence, we have:
1 - (xn, xn) = C(A - All* Bxn, xn) ¢(B(A - Al)xn< xj
= (an, (A - AX)xn) + CB(A - Al)xn, Xn) 0O as nm ~ |
a contradiction. The case for A* is proved similarly using

AB + BA* = 1. *
(ii) If 0 is a normal approximate proper value for B, then

an + 0 and 6*xn + 0, for a sequence (xn} of unit vectors,

Hence, we have that:

1= (¢, =ps  (A%3x . X)) ¢ GBAX . * )" (A*Bx . X )+(AX ,B*x )
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I-(A) does net meet the imaginary axis. In particular 0 £ a(A).

proof* Since for any operator A,

o(A C o AU ( (A*))* (with * denoting the complex conjugate)
and by theorem 2.2. above, o0o”1AJ and o”lIA*) do not meet the
imaginary axis, it follows that (a (A*))* does not meet the

imaginary axis either. Hence o0(A) does not meet the imaginary axis

N
REMARK « Using the equation:

1IX] |2 = ((ReB)x, A*x) + (A*x, ReBx) of theorem 2.1., we get

L|X1 12 < 2]IReBx| I.11A*XI |.
As A" is invertible, this gives us ||A* 1]]= |[A 1|1 £ 21|ReB]]| -
COROLLARY 2.4. [26] . |If there exists a normal solution B to (1),

then 0 { o(B).

Proof. For a normal operator B, every X e a(B) is a normal

approximate proper value. Hence by part (ii) of theorem 2.2 above,
0) o(B).
THEOREM 2.5. [26]. If there exists a solution A to (1) with

X r a+ iB* a/ 0 as an approximate proper value of A or A* then

1 e WIBT
7T
Proof. Suppose X e 07CA). Here (A- XI)xn = 0 for some sequence

{Xn} of unit vectors,

Since (A - XID)* B*B(A - XI) = (A* -X)3<BA - XB . - A*B+ BA-(X*T)B.
« I - (X+X)B

I - 2aB- .

We have



Suppose 3 ] o(A) ¢ o(A*). Then we have:

/N For every operator Y, there exists a unique operator X with
AX + XA* =Y,
(i) X is self adjoint if Y is self adjoint,

ain) If Y 1is positive and invertible, then X 1is also invertible.

THEOREM 2,8. fIol . I1f O | o(A) + o(A*), then there exists a
positive definite operator B such that AB + BA* = I. If also

[B, (A* - A)] -6, then A and B satisfy equation (11,

Proof. Since | is positive and invertible, by theorem 2.C, there

exists a positive invertible operator B such that AB + BA* = 1.

Now, if [ B, (A* - A)] = 0, then B(A* - A =(A* -A) B.
i.e AB ¢ BA* = A*B ¢ BA.
REMARK . We note here that in view of theorem 2.B above, the
hypothesis U $ o(A) ¢ o(A"j can be replaced by the hypothesis th"#4
0(A) or equivalently that for some invertible operator T, the
closure of the numerical range of T ~AT lies in the positive half

complex plane.

We now note that Phadke and Thakare [25] , proved the following

result:

CORCLLARY2.D. For an M-hyponormal operator A, (A*1 = c(A®).

In view of corollary 2.C. above, the following result can be derived.
COROLLARY 2.9. [1d . If A is a M-hyponormal operator with

oﬂ(A*) C G*. then there exists a positive definite solution B such

that AB ¢ BA* = 1.



proof. Since A is M-hyponormai, o_(A*j = o(A*) uy corollary
2.D above. Since a(A") CzZ G+ implies aCA) C G+, it follows
from theorem 2.8. and the remark above that there exists a

positive definite solution E such that AC ¥ BA* - |I.

In view of corollary 2.6 and theorem 2.8 above, the following

corollary 1is immediate.

pnoni iapv o0 in Thpro pvi cfqg ~ snlilion B > 0 to (1) ify
and only if o(A) cz &+ and [ B, (A* - A J - 0.

UNIQUENESS OF SOLUTION.

Assuming that solutions B to (1) exist, we consider now the
problem of the uniqueness of these solutions. An important role here

is played by the homogneous form:

AY & YA* c 0, A*Y + YA 3 0 @
of equation 11J.

We fTirst prove the following lemmas:

LEMMA 2.11. [1'] . Y - 0 is the only solution of equations (2) if
any one of the Tfollowing conditions is satisfied.
(@) 0 { W(ReA),
(ii) c(ReA) o(-ReA) *“ 0.
Proof. Clearly, Y =0 is a solution of (2). Let U be another

solution of (2). Then we have:

AU + UA*S 0 * A*U ¢ UA
and hence,
(ReM)U = -U(ReA).
New, since ReA is normal, each of the conditions (i) and (i)

implies that U « 0O by corollary [I.r.
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solution B of (1) is
proof. Suppos.e that

Then we ha\/e:

(1)

A(Bl " 82] * CBl * B2)A*

0 is-the only solution of (2), then
unique.
and are twG distinct solutions of

= » AtBL » 82) = (B1 " b2)A-

But this implies that (2) has a non-zero solution - B,
ApAl= — fn niir h¥pothpp®p Hpnrp R = Ra.
We note that combining lemmas 2.11 and 2.12, we have the
following theorem for the unique solution B of .
THEOREM 2.13. [11] The solution B of (@) is unique if any

one of the following conditions

is satisfied:

() 0 ( W(ReA),
(iij a(ReA) ft al-ReA)« K
We now show that if solutions Y to (2) are of a certain type,
then the solutions B to (1) are unique in as much as they are
self adjoint.
THEOREM 2.14, [11] If for each solution Y of (2) the unique
positive square root of Y’Y is also a solution of m (2) , then the
solutions B of (1) are self adjoint.
Proof. Let B be a solution of (1). Then we set Y B B* - B.
Since A(B* -B) o (B* - B) A*x * 0 = (B~ - B)A + A* (B* - B), it
is clear that A and Y satisfy equations (2). Hence we have:
AY2 - -YA*Y = Y2A.
Since Y*Y = -Y2 10 / there exists a unique R > 0 such that
R2 - -Y2. Now since [A, -Y2] -0, [A R] = 0. By hypothesi
R is also a solution of C2). We now have:
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aR + RA* = (a + A*)R B O# and -hence that range of R Ker (ReA).

0, and so/

Hgt ReA being invertible, Ker(ReA) = {0} . Hence R

lince R™ ¢ Y*Y, Y = 0. This completes the proof.



19

CHAPTER THREE

L erathr equation ab & ba* = a*p + ba = i. normal solutions.

0
fin this chapter, we assume that there exist operators A and B
OUch that the equation AB ¢ BA* = A*B + BA = I of which we shall
L+~11 refer to as equation (11 is satisfied. We concern ourselves
with the problem of finding sufficient conditions such that A or
y is normal. n

Firstly, let A and B satisfy equation (1), then we have:

BA*A = (I - AB)A = A(l - BA) = AA*B. ©)
Similarly,
BAA* = A*AB. )

We also have that if equation (1) IS satisfied then:

. 2
B A =nblbA) = tid _ M’bi =b - Bn*B =Db ~ (I - ABjB - Au,

and
B2A* m B(BA*) = B(l - AB) =B - BAB "B - (I - A*B)B = A*BY
Hence, we have:

[B? A] =0, [B2, A*] - O. ®)

Also from AB & BA* = 1 and A*D # BA 1, we get

AB* @ B*A*= | and A*B* ¢ B*A =

i.e. We have that:
A(ReB) ¢ (ReB)A* =1 and | (ReB) + (ReB) A - 1I.
In this case, letting T * ReB, we S€€ that T satisfies equation (
hence as in (3) and () we have
TA*A = AA* T )

and

TAA* = A*AT ™
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iy ZL — "N NN i4& T Ere theorem 2.13,
a simple manipulation gives us:

A(B* - B) ¢« (B* - B)A* =0 s (B*-B)A+A* (B*-B).
Hence letting W = ImB, we have:

AW = W(-A*), A*W - W C-A). .
Now, For the sake of convinience in this chapter, let

A =X+ 13 and B =T + iW be the cartesian decomposition

of A and B respectively. Also let A =UP, B =VQ and I “ SR

be polar decomposition of A,B and T respectively.
NORMALITY OF THE SOLUTION A TO (D).
E. Kamei and Y. Kato [14] proved the following result:

THEOREM 3.A. If A and B satisfy (1), then A s normal

under any one o+ the following conditions:

(C) I -1 B

o

(i) [B, A] 0,
(Giii) o) n o(-X) * 0.
We also note that B.P. Duggal [#1 , proved the following result

THEOREM 3.B. The solution A to (1) is normal 1if any one of

the following conditions is satisfied.
O [B. BA] * 0 and O t WCB),

(ii) @B, BC] *0 and 0 4 W(B), where C = A" ¢ A,

(iii) [ B,A*A] -0 and O 1 W(B).
We improve this result as follows:

ITHpnppM 3 A, LPIT) , ipf A and- B (1), then A 1is normal

under any one of the following conditions:
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(i)UEW(Bj, *
2m/

til) t8y/ = {B ° # for some positive integer n,

Gii) o(b) n o(-B) = 0.

jrocf_ - (i) From equations ((3) and (4), net H=A*A and K=AA* to

give
BH = KB
and
BK =. HB. \
I

Since H and K are normal, by part (iv) of theorem 1.1, H = K.

i.e. A*A = AA* or A is normal.

(i) We note that by equation (5), [B2. A] = 0, hence [B2rm, A]
Thus if @B/ = {B2m}/ , then [B.A]- 0 and so by theorem 3

above, A is normal.
n - -
(iii) We also note that since [B“,A] = 0, the condition
o(B) 0 o(-B) = 0 implies [D,a3 = 0 by corllary 1.7. and

hence A is normal by theorem 3.A again.

REMARK . In view of part (i) of theorem 3.1. above, some conditions

in theorem 3.B. are redundant. In fact, these conditions carry

through under the weaker hypothesis that range of B 1is dense in G.

COROLLARY 3.2. f111- The solution A to (1) is normal under any
one of the following conditions:.
@@ o0 { w(s,
Ciid3 () = {i m) , m some positive integer,
Ciii3 oCT) 0 o(-T) * o.
Proof. Wo note that T satisfies equation 1ll)= i.e.
AT + TA* 3 A*T + TA 3 1. Hence the result is immediate from theorem

3.1.
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Wr now note that Berberian [3J and Kato Bnd Moriya [15]

proved the following results respectively.

THEOREM 3.C. For any operator B, Rea(B) = o(ReB) if B belongs

LO ony of the following cloeoco of cperotcro:

(1) B is hyponormal.,

(i1) B satisfies the growth condition and o(B) iIs connected.

THEOREM 3.D. For anv operator B. Rea(B) = o(ReB) if Tw"™B, ReB] =0

We now have the following corollary.

COROLLARY 3.3. [11] . The solution A to () is normal under any
one of the following conditions:

@ o(M) C G+,

(it) B i1s normal and o(B) lies strictly on one side of the origin,
(iii) B is hyponormal and Reo(B) d G*

fv* * r> t“1 »

> R 0 *n \ n
v/ U u | - w uliu iV\L UAUV Ci*x A

A

(v) B satisfies the growth condition G, Rea(B) £. G+ and

o(B) is connected.

Proof (i) IT o(T)C G , then T eis an invertible positive
operator. As such 0 { W(T) and result follows from part (i) of
clvoilary 3.2. above.

(i1) We note that if B 1is normal, then it is convexiod. .Hence
a(B) lies strictly on one side of the origin implies O]Cono(B)-wTbT,

and result follows from part (i) of theorem 3.1.

If either of the conditions (iii), - (v) holds, then by theorems
3.C. and 3.D, Rea(B) = n(RpR) = o(T). Hence the proof follows from

case (1). *
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A f * i\
W(5 L V -r*c h 2 flm— «v"»rn lo A rf A » |
-h~ - p" m oii.it -4 y*
. V.-: 2/
0 I\ - ;
j t and B =/ \ shows that the condition O { WCB) in
w 11 0/

theorem 3.1. cannot be replaced by tha condition 0 t o(B), i.e. the

vor=udRavh n yI AP DrE .. rtacerirnnt, m.@rentrp norma] itv of A
). In a few results that follow we give further hypotheses

under which 0 o(B) would give normality of A.

1hbOREn u.". D’o;ﬂ *  PIA" T - P H_r LA va n t,l «fn)

aMuU u sowfo.-j-,

Then A is normal under any one of the following conditions:

@ o0 { w(v),

(ii) a(v)fA\ o(-vV) =0,

(iii) [P,V] = O.
Proof. ti) From equations (3) and (4) set H=A*A and K-AA
Then H - Y * A*A- AA* is normal. Since 01 o(B), 0~ W(V),
and by part (ii)of theorem 1.*13, H * K. i.e. A is normal,

(ii) Similarly, o(V) A o(-V) =0, by part (ii1) of theorem 1.13,

mp lies A*A = AA*.

(iii) Since [P,V] m O, V] = 0. i.e. [A*A, V] = 0. Now
from equation (@) set H = A*A and K * AA*. Since H and K
are self adjoint, by corollary 1.12, H =K or A*A - AA* emu su

A 1s normal.

COROLLARY 3.5. [281 . The solution A to (1) is normal under- any

one of the following conditions:

@ 0 { W),
(i) a(s) O\ a(*s) = o,
(iii) [P, S] = 0.
S-ipcO T is inVprtible hv theorem 2.1., and satisfies

the result follows immediately from theorem 3.4. above.



THHCREM 3.6. - nol Let. Bn be norma] -Pc” 2err- even positive
integer n. if U { olB) , then the solution A tc (1) is normal

if and only if BnA Is normal.

Proof. We first note that if A and B satisfy (1), then by
equation (5), [Bf A * 0, JV. A1 =D. Siipinse that

BnA is normal. Then by the fact that B2, A3 = o. ¢ b2, A*3 0

and the normality of Bn, we have:

t

n..t, te
D MM b ®& 3 AA*BnB*r* @« AA*b*"B" * B*nAA*B«.

Also A*B*nABn = B*nA*ABn. Thus :

B*n (AA* - A*A) Bn = 0.
This implies that A is normal. If on the ether hand, A 1is

normal, then
DnAA*B*n = BnA*AB*n * A*BnB,FA=1A,B*nBnA, 1i.e. BnA is normal.

CuliuLLARY 3.7, me solution A to (1) is normal if and only if

TnA is normal for some even positive integer n.

Proof. We first recall that T satisfies equation (1), and is
invertible. Now, since T = ReB, T is self adjoint and hence

T is normal. The result now follows easily from theorem 3.6 above.

REMARK . Notice that if BnA, n some even positive integer, is
normal, then sc also is AB . A result similar to theorem 3.6 for
the case in which B is normal for some odd positive integer n is
not possible. Indeed suppose that the hypotheses that B 1is an
invertible operator such that Bn and BnA, n some odd positive
integer, are normal, are sufficient conditions to guarantee the
normality of A. Let E, 0 4 a(0), be self-adjoint. Then, using

equations (3) and (5), we have:

BAA*B* - BAA*B = A*ABN = A*B"A = A*B*BA,



50that BA is-normal. Hence 1if our proposition above were true, we
oUld have that *If B 1is a seif adjoint invertible operator
satisfying (1), then A is normal."™ This, however, 1is not true, as
the following example shows.

/-b & ix a + ix\

|
Let where
Wla-l'g/ b * i

+y and a / b are non-zero real numbers, and let

/
I C C\\ n % 1
B = VC J where ¢ satisfTies 2c (a - b) =1. Then B 1is

an invertible self adjoint operator which along with A satisfies

). A however, is not normal.

It is now clear that to obtain a result analogous to theorem 3.6
for the case in which n is odd, some additional hypotheses are required.

Here are some partial results.

THEOREM 3.6. G| - Let #"  oe nomidx tor sonie posi Ivi cJIl arwr "I

n. Suppose that 0 ™ o(B).

(O] IT BnA and Bn”1A are normal, then the solution A to (@) is

normal,

(in) If BnA and ABn are normal, and if either o0(BA) is real or
BA > A*B, then the solution A to (1) is self adjoint.
(Here, as usual, BA > A*B is to be taken as meaning that
BA - A*B is a positive operator.)

Proof. (i) Let BnA be normal. Then by () and (5) we have:

A*B*nBnA = BnAA*B*n = BABN"1 A*B*n

Sn“l A*B*n - A*BnA*B*n

Bn"1A*B*n - A*BrB*n-~1

+ A*Br'B*rA,

so that by the normality of B, B (A~B" - A*BJ 0O* -

This implies that A*B* = A*B, or what is the same that:
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>

BA - -B*A . ¢ >
WG note that from equation U! we havi, by taking adjoints that:
B*A*A = AA*B*

Now, ), (@ and (10) together imply that:

AAVB* = AA*B = BA*A = B*A*A.

_ n+l
Since B A is normal, we have:

° A*AB*Bn B4r' b BaA* Bn 6*nB

Bn+1B*n AA* B Bn+l B*n AA* B*

and hence that A is normal.

(i1)As before, it is seen that if ABn

Now, (7, 9, (10) and (11) imply that both AB and BA are

normal. Set BA = 1~ and AB = T2# then (1), (10) and (1D

imply that:

(12)

Clearly, if o(BA) is real, then BA is self adjoint. We show that

BA is self adjoint in the case in which BA > A*B. A simple

calculation showb that:

so that

TITL £ (ReT.)2 =

But this 1is possible if and only if | is self adjoint, since

(BA - A*B)* (BA -A*B) = -(BA - A*B)2 > 0, and (BA-A"B)2 > O.

Hence we have:

is normal then AB=AB*. (1D
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BA = A*B = A*B*, " (13)
2nd so by (10) that
BA = A*B = 2 L. (14)

\je now show that (11) and® (13) together show that T2 is
self adjoint, which in view of (11) and (12) would imply that

Fo = 75 =% A+ and hence by (14) (Since 0 ~ a(B)) that

A = A*. Since by (13), AA* B2 T’% ‘= Tj‘\% we have that:

N} T
5 (ReTA)i and hence that Tn is

self adjoint. This comp letes the proof.

15 Ty =AM BZ = 1 (55 ¢ T)y,

COROLLARY 3.9. The solution A to (O is normal under any one
of the following conditions:

. o il

(1) TnA and T A are normal,

(ii) TnA and ATn are normal and either cr(TA) is real or
TAMA*T, where n is some positive odd integer.

Proof. As in the proof of corollary 3.7, the result easily

follows from theorem 3.8.

The following’result provides an answer to a remark made by
B.P. Duggal el in which he claims that "We do not know whether
the solution A to () is normal whenever A 1is K-quasihypor.crmal."

But we first exhibit the following result he proved.

THEOREM 3.E. The solution A to .(1) is normal if A is hyponormal

or co-hyponormal .

THEOREM 3.10. [28] - |If for a given B, there exists a solution A
to (1), then A is normal under® any one of the following conditions:
©O) A is isometric,

(i1) A is quasi-hyponormal

(iii) A is K-quasi-hyponormal.
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Proof, S?nc*? by corollary 2.3 A is invertible, 1sometric
condition implies A is unitary, We also note that an invertible
K-quasi-hyponormal operator A is hyponormal, hence by theorem

3.E above A is normal.

\NJp nnv pprp]] +h @n ™Mrei « hea®nOfir< 4o the mcmcry cn the 1%

Prof. T. Saito, A. Kcbayashi and T.Okayasu [19] proved the

following result:

ei..i
THEOREM 3.E. ~Aplai Uwu 1 lUnot; . allu Vi«
be its polar decomposition. Let also S and T be operators such
that:

TW = WS and T*W « WSJ then w#:A » VAV* is a
*-homomerphism cf the C*-algebra® C*(S) generated by 5 onto C"(T)
carrying S to T.
The following result of T. Ando [ is also required for the

proof of“cur next result.

THEOREM 3.G. If both A and A* are paranormal and N(A) = N(A*),
then A is normal.
We now prove the following result:
THEOREM 3.11. [26] . Let A and D satisfy (). If W = ImB
has dense range, then A is normal whenever it is paranormal.

Proof. Since A is invertible, N(A) = N(A*) and from equations

(6), we have:

AW = W(-AT)
and
A*W = W (-A).
Now, by theorem 3.F. if A 1is paranormal, then A* is also

paranormal . Hence result follows from theorem 3.G.
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ISKMALITY OF THE SOLUTION R to M ).

We now give sufficient conditions under] which the solution B to M)

is normal.
THEOREM 3.12. [jol . The solution B to () is normal under any one

c» the fuij.uwj.ng conditions;

() o(X)0 o(-X) =0,

(i) 0 1 wW(x), .
(i) o(Xj is contained on one side of the origin,

j 2ni /
(iv) {X}J = {X '}, for some positive integer m.

Proof. (i) and Ciil.We first note that as derived in equations
(Q, if A and B satisfy (1) then we have:
(A* ¢ A) (B* -B) = -(B* -B) (A* +A)
or
X(B* - B) « -CB* - B) X.
Hence each of the conditions (i) and Cii) implies that B* - B = G
by corollary 1.F, and so B = B*
(iid) IT o(X) 1is contained on one side of the origin, then
O | wIxT and hence result follows from part (ii).
(iv) Since X(B* - D) - -(B* - B) X, X2(B* - B) = -X(B*-B)X =(G*-B)XZ

and hence.

A2in (B* -Bi . (B* - B)X2m fDr any Positive integer m-

Under the given conditions, we have that:

(B*-B)X = X(B*-B)=-(B*-B)X,

X being invertible, this gives

B* -B -(8* -B) or B = B*.



CHAPTER FOUR

THE OPERATOR EQUATION 1ST* * 'S, UNITARY SOLUTIONS.

In this chapter, we consider bounded linear operators T and

on a Hilbert space G such that:

TST * (15)

We first note that many authors have considered eouation (15)
under the conditions that T is invertible and 0 { WTsT. In our
first result, we derive the invertibility of T by merely assuming

left invertibility of T and various conditions on S.
THEOREM 4.1. [21] . Let T and S be operators satisfying
equation (15), with T left invertible. Then T is invertible
under any one of the following conditions:

io light invertible.
(i1) Either ReS or ImS is right invertible,
(ift1) S is invertible, -
(iv) Either ReS or ImS is invertible,
v ots) n 0(CS!' = 0,
(vi) Either O0O(ReS) O(-ReS) = 0 or o(ImS) D o(-Im.S)

(vii) Either O i wTsT or 0 ~ W(ReS) or O { WITmST.



1 Nv/p-pap
-

“f s.v Since TST* - S, we have:
ST* - TAS
and
TfpT"lc T
p - r
'-e- T(TLS)Sr - 1
or
TT1 =®m X-
i*ee . . .
T 1is invertible.
@) Slnce TST = S, taking adjoints, S* .
Hence,
T(S ¢ S’0T* * S & S*
1l e _
T(ReS)T* = ReS, (16)
and
T(S - S T « S - §*
i.e.

T(ImS)T* = ImS. an
Now, aPP”~ying part (i), we get invertibility of T.

1r3Aially (iiN) implies (), and (iv) implies (il).
We also nQte that (v) implies (iii), (vi) implies (iv) and
(vii) mplles (ny or r(|’v)i.

The following corollary is immediate.
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COROLLARY 4.2. 271 . Let T and S satisfy (15). If T 1

an isometry, then T s unitary under any one of the conditions in*

theorem 4.1. above.

Proof. T being an 1isometry, T 1s left invertible. Hence,
each of the conditions in theorem 4.1. above, implies T s

invertible and so is unitary.

The following corollary due to B.P. Duggal [6] will be required

N\

for the proof of our next result.

COROLLARY 4_A« If E is an invertible normal operator and if there

is an operator T such that O W(T)and TE* = E“ T, then E is

unitary.

THEOREM 4.3. [27] - Let T and S satisfy (15), with T a left

invertible normal operator, then T 1is unitary under any one of the

following conditions:
(i) o(ReS) D o(-ReS) = 0,
(ii) o(ImS) H oWmS) = O,
(i) Either 0 { W(ReS) or 0 E W({ImS).
Proof. (i) Since T 1is left invertible, the condition

o(ReS) 0 a(EReS) = 0 implies that T 1is invertible by part (vi)
of theorem 4.1 above. Hence we have:

(ReS)T* = T /"(ReS) from equation (16). Now T being normal, by
Putnam Fuglede theorem (ReS)T * T*~¥ (ReS). By taking adjoints,
we have :

(ReS)T'1 - T*(ReS) .

Now, (ReS)T* = T" " (ReS)
and

(ReS)T' 1 = T*(ReS)
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1
impiy CReS) (I* -1 ) & (i* - T J (ReS) « u.
Since c(Re3)f”o(-ReS)-0, T - T =0. ie. T *T or

T is unitary.

Part (i) is proved similarly, while (iii) follows easily

from corollary 4.A aoove.

We note that Duggal [6] , proved the fclloweing result:

THEOREM 4.B. If 0 { W(A), and for a positive Kpteger n, we have

©) [A*nAn, A*r»" A04 =u, (1) [A*A, A*"A~ =G, then An 1

normal . Also if (iil) [AA*, A*n*1 A,n+1

o, then A is

normal.

We now use the above theorem to prove the following resull:

THEOREM 4,4. [27] . Let T and S satisfy (15) with T
invertible. If 0 { W(T) and for some positive integer n we have
that p* nTn, T*n+l qme . n iy  FT*T, T*nTL = 0, then Tn 5p
unitary under any one of the following conditions:

@ o Lwe ,

(i) o(s) 0 c(-S) =0,

(iii) Either o(ReS) r\ o(-ReS) - 0 or o(ImS) C\ o(-ImS) = 0,

(iv) Either O0lf W(ReS) or 0 { W(ImS).
Proof. The conditions 0 { WCT). [MT*nTn, T*1*1 Tn+"J= 0 and

[J*T, T*nTn] = 0 together imply that Tn is normal by

theorem 4.B above. Since TST* * S implies TnsT*n =5, we
have"that:

ST*n = T-nS
and

S*T*n = r'ns*.
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Th &F gj yog >S~

(ReS)T*n » T"r (ReS)
and

(ImS)T*n « T”n(ImS).
Hence uy corollary i.., eacn of Uie cunuitiuns implies chat
T*n = T"n, or Tn is unitary.

In order to prove our next result, we need the following result

of R, N"akamoto [?O00

THEOREM 4.C. Let .H_ = A*8nA, where O is normal. If (i) 0 \ W(A)

n
and (ii) [B,H )% 0O for n=0,1, then pp.A_1™ o .
THEOREM 4.5. 271 . Let T and S satisfy (15) with T left
invertible and S has dense range such that [S, TT*] - 0 and
O I W(T), then T is unitary.
P te Ml Trte G 0D Yo - TT* and Y, - TsTx. Mov
by theorem 4.C above, 0 ™ W(T)# [Ho® S] « 0 and [Hl, s] = 0
together imply that [S, T*] » 0. The relation TST* - s now
becomes TT*S= S. S having dense range, this gives us TT* = 1.
Thus, T being both left and right invertible, T is invertible

-1
with T = T* i.e. T 1is unitary.

We now consider the following results proved by Patel and Sheth

[23].
THEOREM 4.0, IfT T 1is an invertible K - paranormal operator and
t an operator such that:

TST* =S and 0O 1 W(8) . then T is unitary.
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THEOREM 4_E. IT T is a left invertible operator and S 1is such that
TST* = S,

with 0 \ W(S), then T is unitary provided it is either dominant

or K-paranormal contraction.

sequel, we eh anre 23

K-paranormal, the condition that it is a contraction can be dropped.

| THEOREM 4.6. £273 . Let T be a left invertible operator which
j together with S satisfy (15j. 11 1 xs duihxifattL ui  K* pdi oner.»*a

then T is unitary under any one of the following conditions;
©O) 0 4 wTsT,

(n) 0 { W(ReS),

(iii) O i wTTmST.

Proof. (i) Since T is left invertible and TST* = S, with

0 4T/TTH, by theorem 4.1, 1 is invertible. imcw 1F i is

dominant or K-paranormal, then by theorem 4.D, T is.unitary.

We note that each of the conditions (ii) and (iii) 1implies
OR
COROLLARY 4.7, [27] - If S 1is an invertible operator such that

either S*S~1 or SS*-~1 is dominant or K-paranormal, then S 1is

normal under any une of the following conditions:
) 0 £ wTsl,

(i) 0 t W(ReS5,

(i) 0 j w(Im3).

Proof. Set T = S*S 1, then TS S* .

i.e. TST* * S*T = S.
Now, each of the above conditions implias thot T unitary by
theorem 4 6. above. Hence we have:

vtrobi
ubraky



Be” = H5Nh &« 870

S

In
to J.M.
Mangle

results :

COROLLARY

where p

THEOREM 4.G.

paranormal

We relax the condition on

first we prove the following

THEOREM 4.0.
left inverti

n

is normal.
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bilivd 17§ « e

Similarly,

Patel

231

4.

ana

such that

our few results that follow,

[22]

Firstxy,

F. If 1 is

q are

If T*p

and U

[27j Let

ble. It T 1is

Tn is normal,

the following cbnditions:

Q)
(ii) 0(S) H

Proof.
invertible
TST* = S
we have:
ST *n

and

S*T*n

Setting

conditions

0 \ W(S)

TST* = S

H m T*n

and S

0.

o(-S)

with S

imply T 1is

implies TnST*n

T~nS

*

T“nS*.

2nd K

and (i)

Q)

S.

integers,

- U ATPU,

T

is right

we

M. Patel [24] and

3 M. PuLcl

a paranormal

then 1

p

a cramped unitary operator,

U in theorenm

result:

and S

paranormal and

then T

invertible,

at least right

invertible by theorem

S

T"? by corollary

implies H K.

operator and

any positive

satisfy equation

there exists an

invertible and

4.1

for any positive

we can consider the other case.

improve some results due

Singh and

proviso the following

= T*A

Tp

is normal.

integer with T

then T is normal.

4_.G above. But

(15) with

integer

is unitary under any one of

T left

above. Also,

integer n.

1.B above, nnrh ‘e

i.e. T*n =T n or

Hence
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Tn 1s unitary. This implies that alf] ana consequently
a(T) lies on the unit circle. Since T is paranormal, this

gives us uniticity of T.

THEOREM 4.q, [27] . It for any positive integer p, T =U T U,

with T paranormal and U an invertible operator, then » 1S norma,

under any one of the following conditions:

Ci) o { WWU) and U 1is unitary.

(ii) olLU) C\ 0(-U) = 0 and L is unitsry,

(iii) Tp is normal and either g ¢ WCU) or o(U) n a(-U) = 0.

Proof =P« y11py gives :

UT*P = TPU

and
5P~ §PHT

Now, by corollary 1.B again. each of the above conditions give
T*P = Tp.

Since T is paranormal, by corollary- 4.F above, T 1is normal

S. M. Patel £24] proved the following result:

THEOREM 4_.H. If for a non-singular operator E, there exists an
operator A with either 0 i WA) or a(A) H o(-A) = Z such that
AE = e "MA, where either E is normal or A is a non-singular

2
normal operator, then E =1.
We improve the above theorem in the following way:

THEOREM 4.10. [27] . If for a non-sigular operator E, there
exists an operator A such hat:
AE « E"1A,

then E2 m | under any one of the following conditions:



G) mf AN Du m(-Al - it
cii) O { WCA) and A is normal,
(iii) 0O \W() and E - E ~ s normal,
civ) Either o0 ¢ WANEx wa U 1 "Mixiind and A is normal.
(v) Either a(ReA) o(-ReAd) =0 or o(Im.A) n ¢-ImA) =0
and A is normal,
i) @/ * {A/n} , m some positive inteper and A hat; Hrns
range or 1is one-one,
+
(vii) o(A) C n.
. -1 i -1
Proof. We fTirst note that AE = E A gives us EA = AE
Thus we have:
AE = E~1A
and
AE = EA.
1
Now setting H = E and K = E~, each of the conditions above,
implies that H * K by theorem 1.1 and corollary 1.4. i.e. E =E
2
and hence E =1.
We note that Singh and Mangla [-29] proved the fTollowing
result:
) i i -1
THEOREM 4.1, If T 1is an invertible operator such that T* « VT V
with N a cramped unitary operator, then T is unitary.
We 1improve this result as follows:
THEOREM 4.11. If T ana S satisfy equation (15 with T left
invertible and S invertible, then T 1is unitary under any one of
the following conditions:
CD 0 ° ¥"°F] auu O is ufixiary,
(ii) a() fl ocCS) -0 and S is unitary.



Since S is invertible, T is invertible by theorem 4.1

N * N
above. Tlo; ot &4 Xvoo tot =07, Hence we nave:

and

Now, by corollary 1.B, each of the conditions (i) and (ii) implies

that T* = T  or T 1is unitary.
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