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(HAPTER I

MEASUREMENTS OF MZRTALITY AND FERTILITY

1.1 RATIO, PROPORTION AND RATE

1.1.1 Ratio

A ratio results from dividing oneé gquantity by another.
It summarises the arithmeticilrelationship between two characterist
which can be counted in a population. When the number of

occurrences are 'a' and 'b', then the ratio r is define'as

a
r E ———
b

or (1.1)
_ b
oS

is simply a:b

Thus the calculation of a ratio is intended to provide
further meaningful information concerning the behaviour of two
characteristics. By calculating a ratio, the numerator is in
some ways adjusted with respect to the denominator which becomes
a reference value and leads to an expected value for the
numerator.

To eliminate decimal points,ratios are often multiplied
by a power of 10. Thus the ratio r becomes

r=-2 xi10 (1.2)

For



the expression is a simple ratio with unity as the basis of

comparison.
For
k =2

the expression is a percentage.
If k = 3 it is per thousand aand for k = 6 the basis is a

million.
The following are examples of a ratio:

Exarmple 1:

number of malecs
number of females

Sex ratio =
in a given population

Exgmgle 2
nuber of fetal deaths
nutber of 1live births

Fetal death ratio =

in a given year for a given a population. This expresses the
number of fetal deaths as compared to live births in the same
population.

Remark: The two examples given above, show how a ratic is used
in comparing the frequencies of two mutually exclusive

classes.

Example 3: There are 21000 operations and 30 doctors in a

hospital in a given year.

The crude numbers alone tell us something about the work load
of the hospital end abcut the staffing. '

But an administrator who wishes to consider the expansion of the
hospital and how many additional doctors he might need would
have to do further analysis. He could start by calculeiing

the ratio



= 700
i.e., 700 operations per doctor per year.
This would suggest that one doctor was required for 700

operations. In this case, k = O, and the ratio relates to the

work of one doctor.

Conversely, he might be interested in comparing different
hospitals with different numbers of operations, then in order to
adjust for these different numbers he would calculate the ratio

21000

0.00143

i.e., 0.00143 doctors per operation.

This figure seems meaningless, so we would put k = 4 so that wc ha

—b— xl()4
a

o]
]

]

14.3

i.e. 14.3 doctors per 10,000 operations .or 143 per 10,000.
This value of r is now a useful tool for comparing different
hospitals with each other, adjusting for the differences in
work load.

‘EX@le 4: A ratio is not limited to the relationship
between two counts but extends to all measurable variables.
For example, if the mean height of a sample of women is 165 cm
and the mean height of a sample of males is 175 cm, then the

male to female ratio of height is



r = —— = 1.06

which implies that on the average, men are 6 per cent taller
than women.

1.1.2  Proportion

Proportion is a special type of ratio in which the nomerato

is a part of the denominator, i.e.,

a
a+b

p = (1.3)

JIf the numerator and denominator are integers and represent
frequencies of certain events, then p is a relative frequency.
For example

number of males
number of males + number of females

gives the proportion (relative frequency) of males in a given
community.

In a large population, proportion may determine the
probability of a certain event; in a sample (experiment) proportic
can be used as an estimate of probability of an event.

For example, the quantity

number of fetal deaths
nunber of fetal deaths + number of live births

in a given population for a given year is clearly a proportion.
It estimates the probability that a fetus might die before it
is born.

Generally, the numerator and the denominator in a/(a+b)
do not need to be integers. They can be measurable quantities
such as weights, lengths, volume etc. In such cases proportions
are also often called fractions. For example, in a chemical
analysis, the mass of a given component can be expressed as

.a fraction of the total weight of the compound. Percentage is



a proportion or a fraction per hundred umits. This proportion p
corresponds to 100p percent.

1.1.3 Rates

Ratios and proportions are useful static sunmary measures
of phenomena that occurred under certain conditions. The concept
of rate is associated with the dynamics of phenomena such as
chemical reactions, growth, birth, death, spread of epidemics
etc. Generally, rate can be defined as a measure of change in
cne quantity (y) per unit of another quantity (x) on which y
depends. Usually the independent variable {x) is time, although
it might represent some other physical quantities such as
temperature or pressurc. For convenience we mostly confine
ourselves to processes cepending on time, and denote time by t
rather than by x.

For definitions of absolute rate, relative rate, central
rate and rates for repetitive events, the reader is referred to
Elandt Johnson and Johnson. We shall confine ourselves with the
rate of incidence which is defined as the number of events that
occur within a given time interval over the number of nembers of
the population who exposed to the risk of the event during thet
same time interval. ,

Specifying the number of persons exposed to risk in the
denominator is an important refinement. If we were studying
mortality over one-year period, we should note that a person
who died before the year ended was not exposed to risk for the
whole year and neither was a child who was born halfway through
the year. Pecple who moved to a country cnly cne month before
the year ended, were not exposed to the risk of dying for the
whole year either. -The concept of 'person-years lived' is often

used to specify the population exposed to the risk of an event.

Let N, denote the mumber of individuals ever observed
durirg a period of T years. Let Ti denote the length of the period

(in years) during which en individual (j) was under observation,



that is, exposed to risk of being observed to die. Then the
sum of lengths of such periods of exposure

Np

= 1.T. 1.4
AT j-E-l J (1.4

gives the total amount of person years (analogous to mass-time)

exposed to risk.

As an example let T = 3 years. Suppose that N’f = 10
individuals were observed durirg this period further followiiig
lengths of time Tj 3 Zeiy Fiby 258y 2.5, 3.0, 1By 23T, 2.5,
3.0, 3.0 years.

Thus the number of person-years is given by

2.5 + 1.5 * 2.8 +2.543,0+1.8+2,.7+42.5+3.0+5.0

i

24.3

1.2 Measures of Mortality
Crude Death Ratc (CDR)

Deaths during a specified period
Person-years lived during the period of
population at risk

= —-g— (1.5a)
Conventionally rates are expressed per 1000 people. ~So we have

R = -p- x 1000 (1.5b)

P is approximated by the mid-year population.

Speciiic Death Rates

A population may be divided into sub-populations according
to one or more factors of classification such as age, sex,
marital status, occupation, urban/rural inciderce, duraticn of
marriage etc. These are called specific death rates. In other

S

words, a specific death rate is simply one that refers.only to--



some sub-group in the population. If the sub-populations are
indivicuals in different age groups the resulting rates are
called age-specific death rates.

Age Specific Death Rate (_nMx)

D
n X

P
n x

(1.6)

Deaths of perscrns aged between (X, x+n)

Person-years lived by the population in
that group.

The relationship between Crude Death Rate and Age-Specific Death
Rate can be shown as follows:-

_ D
C[)R - "I)—'
% an
= X
(1.7
; P
x X
But
D _ M P
nNX = nNx. NnXx
from (1.6)-
Therefore
; > P
R = ~2 25X (1.8)
I nX '
X
For the continuous case
W 5
: § H(x¥) P(x)dx
CDR = — (1.9)
é‘* P(x). dx
where u(x) is the death rate at evently age x i.e.,
u(x) = 1lim n'x. (1.10) °

mo " -



The greatest age reached is denoted by w.

let
P
' = — 5 (1.11)
Y NX
X
Then
. y p
CDR = I nx ——“;
- 2 nhX

i
g
=)
=
=}
~

(1.12)

nwx is a measure of the relative size of the sub-group under
consideration such that

I nx =1 (1.13)

In other words the crude death rate is merely a weighted average
of the specific death rates. Thus a change in the crude death
rate may result from a change in the relative sizes of the
component sub-populations subject to the restriction §( nw‘c =1
without any change in the specific death rates measuring the
intensity of death per time wnit in the sub-populations.

So crude death rate depends on age composition. A young
population has low CDR while an old population has high CDR.

Infant Mortality Rate

For demographic statistical purposes, all children under
one year of age are considered infants and so the term "infant
mortality" refers to mortality among children of less than one
year of age.

The infant mortality rate may be defined as the number of
infant deaths that occur per thousand live births in any population
in one calendar year. Thus if Do is the number of deaths occuring
for those under one year and B is the number of live births in
the same year in the same ccmmmity, then the infant mortality

—~-rate is defined as:



D
IMR = ’sz‘ x 1000 (1.14)
Remark: IMR is not truly a rate nor a proportion.

It is a ratio for which the time over which it is
recorded need not be specified so long as births

and infants deaths are recorded simultaneously.

1.3 Measures of Fertility

Fertility is a measure of production of live births.
Fecundability is the capacity of bearing a live birth.

Crude Birth Rate (CBR)

CBR = Births to a population in a period

Person - Years lived

It measures the fertility of the populiation as a whole, rather
than of that segment of the population biologically capable of
bearing children.

Due to limitations or distortions of the CBR, we need to use

other reasures of fertility.

General Fertility Rate (GFR)

GFR = Number of births in a period
Total number of woren of child-bearing
age-span

Age Specific Fertility Rate  (ASFR)

Births in a period to women in a specific age
interve
ASFR nterval

Person-years lived in this age interval

= births per woman per year in the specific
age interval



- 1.10 -

Total Fertility Rate  (TFR)

TFR

Notations

Let

Hh
]

and

cr o=
at

Therefore

CBR

GFR

TFR

where ¢ and

_age span.. .

W= Z =
!

Average number of births per woman that would
occur to a hypothetical cohort of women subject
through its life to the given fertility schedule.

Sum of ASFR over all the age intervals.

Births per woman-year in the ith age inteival
Number of women in the ith age interval

%
Total population of both seges

Total number of women in the child bearing age.
Total number of births

i
N
W.
1
W
B
N
'Wi-f.l
§ N (1.15)
1 e s
B
W
W., £
i %
E o -§ ct £ (1.17)
B
T 5 (1.18)
1=X

are the lower and upper limits of the child-bearing



= 1.1l =

Suppose o = 15 and B = 50, then in a 5-year age interval, we
have

TFR = 5
&

y fi (1.19)

M~

In the continuous case

CBR = C{B C(x) £(x) dx (1.20)

GFR = é.s C* (x) £(x) dx (1.21)
and

TFR = éB £(x) dx. (1.22)

Gross Reproduction Rate (GRR)

The gross reproduction rate is identical to total fertility
except that it sums female births only, so that it indiccates
the total number of daughters that would be born. So GRR is
the number of female children per woman subject to given fertility
schedule from a to B.

Thus

3

L ASFR (females)

female births (1.23)
female births + male births

TER .

If for every 100 females there are 106 males,

then
GRR = TFR . ¢, ¢ SN
100 + 106
. _IFR
706 (1.24)

GRR = 1, implies that the females will be replacing themselves.



R 5

Relationship between total fertility rate and general
fertility rate.

Let 'a' be a wniform random variable within the interval o

and B. So the distribution of 'a' can be written as

1

his) = ===

a<a<spg

= o0, otherwise. (1.25)

If f(a) and c*(a)are functions of age, then they are also
random variables with expectations ;

E(f(a)] = &8 £(a)h(a)da
= L /®fa)aa (1.26)
B o
and
Efc*(a)] = IB c*(a)h(a)da
a
- 1 B4
e fe@a (1.27)
Further

Etf(a) c*(a)1 = {° £(a)c*(a)h(a)da

1 B " \
o é f(a)c*(a)da (1.28)

]

Therefore correlation coefficient between f(a) and c*(a) is given

by

Elf(a)c*(a)] -E[f(a)] Elc*(a)l

rf-C* K (jf gc*
i.e.,
1 B ~ * - 1 B B s 1
T o oy & f(a)c*{a)da (B—_a)z ,IO'L f(a)da& c*(a)da
9 9%



=1 L=08 =

B . 1
) c{ f(a)c*(a)da - S 58 f(a)da &B c*(a)da
(B - G) Uf UC*
(1.29)

This implies that

- - B . 1 B B .«
Te o (B a)ofac* é f(a)c*(a)da - E—Z é f(a)daé c*(4)da

- S 5
= GR - 2= TR (1.30)

using (1.21) and (1.22) and the fact that

P s =1 (1.31)
o
Therefore
_ TFR i
GFR = o + (8 -a) Te o+ Of Ocx (1.32)

Net Reproduction Rate

Let m(a) be the proportion of women at age 'a' who bear
a female child. Thus the gross reproductive rate can now be
defined by

GRR = éB m(a)da (1.33)
Let p(a) be the proportion surviving from birth to age 'a'.
Thus the proportion of women who survive to age 'a' and bear

a daughter is given by

¢(a) =p(a) m(a) (1.34)

Net Reproduction Rate (NRR) is defined as

NRR

és n(a) m(alda (1.353)

O{B $(a)da (1.35b)

We may call



| pa

p(a) , the schedule of survival
m(a) , the schedule of maternity

and ¢(a), the schedule of net matemity.

If p(a) is the probability of surviving from birth to
the mean age of child hearing, then

NRR = /% 5@ . m(a)da
o
= p(a) IB m(a)da
Q
1.€5%,
NRR = p(a) . GRR . i (1.36)

If m(a) = constant, say k, then

GRR

J'B m(a)da
a

£xada
(o}

k (8 -a). (1.37)

Other measures of fertility

Completed family size: This indicates for a woman at the end

of her reproductive period, the total number of live births she
reports to have had.

Parity: The number of children bom to a woman in the
different age-groups. Thus parity for a woman over 50 years
measures the completed family size.
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THE LIFE TABLE

5 | Introduction

A life table is a device for exhibiting the mortality
history of an artificial population, called a cohort, as it

gradually decreases in size until all its members have died.

e

A more general definition of a life table is that it is
a device exhibiting the history of a hypothetical cohort
subject to attrition. The attrition could be death, cause of
death, marriage dissolution, in-migrants and out-migrants,
contraceptive failure, duration of breast-feeding, replacement
of buses due to deterioration etc.

For the case of death, we refer to age specific while in
contraceptive and migration, we talk of duration specific.
A life table can thus be a function of duration for the case
of contraceptive failure and the like, while it is a function
of age for the case of death. Life tables that deal with age
intervals of one year are frequently referred to ascomplete life
tables, whereas those using longer intervals are called abridged
life tables.

2.2 Life table functions and their relationships

2.2.1 Survival function 2(x)

Let 2(;) or lx be the number of survivors at age x, out
of the initial population size 2(o). The initial group or
cohort is called a radix which is set equal to some arbitrary
constant, usually the power of 10 such as 1000, 16,000, 100,000
etc. If, however, the radix is set equal to wunity, then 2(x)
becomes the probability of an individual surviving up to age X.
Otherwise the proportion of survivors at exact age X is

=
|><

= SAEICINPII SEPR I ¢ « S0
(6]

e Lt @(X)-_?

o



The expected number of deaths in (x, x + 1) is given by

d. =2 -2 (2.2)

Thus the conditional probability that an individual dies at
age x + 1 given that he was alive at age x is

d
e ™= ,Q,—._ (2.3a)
X &
Ix T A o [
= Z % \ (2.3b)
X

The probability that an individual at exact age x will not die

in (x, x + 1), i.e., will survive beyond age x + 1 is

Py=1-9q, (2.4a)
A
= X2 1 (2.4b)
X

Thus we can express lx as
g < x P Mxe - A T |
K by Yest By %2 1 0

=

Py-1 Pxz Pyuz * + P2 Py Po iy (2.5)

Therefore the proportion surviving at age x is

p(x) 7

= PgPPy - = = Pyog Py Py

. ox-1
= I P (2.6)
w=o Y
Alternatively, from (2.4b)
Py *x 7 %g+1



7 Ton T Yg

etc

x  Pxa zx-l

Px-1 px—Z 2x—2

px-l px-Z px—3 2x-3

Py-1 px—Z i p2p1p020

p(x)

[
=
he

The probability that a person of exact age x will

survive n years, 1s

_ _xn
X
i.e
p. = 2x+1 Zx+2 2x+3 2x+n
s lx 2x+1 £x+2 2x+n—1
- .pxPx+1 Pys2 = ¢ ¢ Pyun-2 Pyun-1 (2.8)
The complement,
nx = 17 Pk
= X+n
2
X
L -2
w X XD (2.9)



Now consider

/% = Probability that a person aged x may die in
the nth year.

= Probability that a person aged x survives till
age (x+n-1) but dies in the age period
(x+n-1, x+n).

= P}ob(a persor. aged x survives for (n-1) years)
times the I/~ person aged x+n-1 dies within

one year.

Thus, by the compound probability theorem,

q. _ 2x+n—1 dx+n--1
e S worlV b e
b'e x+n-1
= dx+n—1
L
X
2 - %
. x+n—12 X+n (2.10)
x

The probability that a person aged x will die between ages x+n
and x+n+m is denoted by

2 -2 -
n|m U = X8 X (2.11)

From (2.2),

dx : 2x - £x+1
Therefore
W
iéx gy = dx e dx+2 e TR A
8 (lx ¢ 2x+l) + (Rx+l I 2x+2) g (£x+2 B p“><+3)

+ ... + (2@_1 = ,Q,w) + (,Q,w- lu)'*l” =

If w is the last age at which 2 vanishes



Then
2w+1=£w+2=' . . =0
Therefore
W w-1
T ds= c Ead
i=x 1 ' i1=1 1
, ) ULX . J?'X+1) g (2x+1 5 Zx+2) T ('Q'u;-l - g’m)
= %
b'd
Thus
w-1
iz=:x di = JLX (2.12)

2.2.2 Person - years lived

The number of person-years that ﬁx persons, aged x are

expected to live through (x, x+1) is

x+1
e 2 d
. 5"{ y 47
s R (2.13)
o xtt §

If deaths are assumed to be uniformly distributed over the
y whole year or equivalently, if we assume the linearity of 2x+
for t € (0, 1), then we get

T

Le = [0 g dt
and

op = - td (2.14)
Thus

L= Y@ - td)dt

X 0o X X



1
- E'(xx * 2x+1)

= £x+ %

by applying formula (2.14)
difference technique, let

(2.15a)

(2.15b)

and putting t = %—. Usingbthe finite

AL, = L7 (2.16)
Therefore
L +M)r = 2 +AL
T
= 2 (2.17)
L+8fe = @+0QA -+,
= (1+ A)!LXJP1
= 2x+2 (2.18)
In general,

L, = @+ A)tzx (2.19)
= zx +t 4 zx, to first difference
= A g = &)

B S S S
=2 -t dx
Therefore
Le = [0t &
= él (2, - t A2 )dt



5
= 2 2 (2 - £x+1)

(2x * £x+1)

o]

as in (2.15a).

The number of person-years that lx persons, aged x are

expected to live through (x, x#n) is

X+

4
(.
Py

d
v Ly

O

X
= (f)“z dt | (2.20)

An approximation to an based an numerical quadrature is given

by the formula

L d d =
n X = % (SZ.X + 'Q'x+n) + 2—2—— (n"x+n - n x-n) (2.21)

. Total number of years lived Tx

The expected total number of years lived beyond exact

age x by Rx persons alive at that age is

Tx G Lx * Lx+1 N Lx+2 = e Lw-l * Lw

where w is the highest age attained.

But )
Lm - Rw+ £w+1 R 2w+2 e
= Q0
since
zw = lm+1 = ,..=0
Therefore
= : 1 74
Tx LX L + ... + L,-1 (2.223)
iw=-xX~1
= 3 L (2.22h)

i=o X+1



or simply

T = iZy e (2.22¢)

In the continuous case,

T = g d
X §i v Y
€
= Xy at
0 X+t
= § e & (2.23).

For an n-year age interval,

Tx = an * an+n + an+2n * wna
uton b (2.24)
h=o :
for fixed nel, 2, 34, 5 vos

The expression in (2.22) can be re-written as follows:-

Tx = Lx * (Lnfl + Lx+2 L B
= Lx + TX+1 (2.25)
Also (2.24) can be written as
_ _k s L
Tx = nx+ hél n x+nh P
= i & T (2.26)
x+1 :
2.2.4 The Force of Mortality

This is the instanteneous death rate at exactly age X,

denoted by u{x).



Thus
W), = A 2(x) - 2(x+AX)
Ax>o 2 (x)Ax
- -1 1im  2(xtAX) - £(X)
2(x) Ax»o0 Ax

, L i) gy
= m) E)-(— (2.273)
el :
= '7‘3(- lwg Q‘X (2.27b}

To express 2(x) in terms of u(x), we integrate fomqla {2.27b)
and get ;

gydlog L(x) = zgy-u(x)dx
Ly 2
l0g [ - - £ ueax
(o)
which implies
. 4
W .. ' v(x)dx
(o)
i.e.,
- @ uax
ply) = e (2.28)
or
- £ u(dx
byy = L) © (2.29)
Since
M cE 2.27a
i b dx X
it follows that
-‘dlx =R uxdx (2.30)

which is the number of deaths occur:sing at the moment of

attaining age x (out of lx persons alive at that age)

u dx = - S (2.31)



= 210 =

represents the probability that a.person of exact age x will

die at that moment. Therefore 2 dt represents the

¥+t Px+t
number of deaths occurring at that mioment of age x+t.
Since dx is the number of deaths occurring between ages x and

x+1, it follows that

R |
A = [ fpp My dt (2.32)
and
Lk 1
A = L Far Mgap 9t (2.33a)
x - L ]
1 P L
= I gzl Ot (2.33b)

We should note that tpx is the probability of a person aged x
surviving up to age x+t. The probability that having reached
age x+t, a person will die at that moment is Hys dt. Thus the

) . %
probability that a person aged x will die at moment of age x+t

X+t
t =0and t = 1, the result is the probability that (x) will

die within one year.

is th u dt. Integrating this expression within the limits

That is
Lo B
@ = é t g;uxft
as before (cf 2.33b).

dt

If the function t?};uxft dt is integrated between the
limits O and «, the result is the total probability that (x)

will die, which is a certainty.

Thus

6, = L Py My 4t =1 2.34)

Beyond the 1limit age there are no survivors and the value

P .
of t x, where x+t >w, is zerc.

Therefore

= [ = dt
OE. T b

1]
®
>
vl

y =

N8 N By S -t X X+t d,t - SIS — St e Spi
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If the limits be taken as t =n to t = n + 1, the result is

%Yen T

If the integration is

n/ 1%

n+l. p
£ S b

d et

— dt
- dt

il fn+1
2 n
X
=40 E)
X+n x+n-1 -
L |
X i

|
\

xtn  * (2.35)

x

from t = n to t = n+m then, we have

e =. i n+m p
n/mtx mix+n ifl s - dt
e ~ Exenem
= 7 (2.36)
X
Next, from : a lx
u = -
X L
X
or
2 x”x = - d ‘Qx
we can deduce that
jl)(4;1: Mot = 7 $ e
which implies that
I _ n _
I" Rpsp Brap Ot (f, d 2t
= A
Therefore
2 -8
1 n - . _ X X+n B a._
"""‘2 f RX'*'t F‘X‘*t dt = 3 = N'Xs
be X



= - Z2.12

By the stochastic approach ¢hiang' (1968), used the notion
of force of mortality to determine the probability of survival

as follows:-

Let

u(x) A¥\+ o(4x)

Probability of dying between age x

and x+Ax (2.37)
o X € X = F(x)
= Prohubility of dying at or before
age x (2.38).
So
F (x+AXx) = Probability of dying at or before
age XxX+Ax
= Probability of dying at or before
age x or probability of living up to
. age x and dying between ages
(x, x+ Ax)
= F(x) +[1 - F(x)1 [u(x)Ax + 0(Ax)]
Therefore
1im  EC0x) - F() F'o) = (1-F) 1k
Ax>0 A x
i.e.,
i< 5 R
wr i [1-FX 1u(x) (2.40)
Using the dummy variable t,
dF _ ek
=5 = [1-F(t) 1 u(t) (2.41)
Therefore
d F/dt

1 - F(t)

u(t)

(2.39



=52 05

This implies
x F'(t) X
dt = t) dt
' TF© g )
i.e.,

~{In 11 -FW1 ¥ = Ay at
; o o

1.04
= In(1-Fx1+1n(1=F() = fu@)a
‘But
F©O) =o
and
Inl =0
Therefore
- In[l - F(X)] = fua)a
e,

- gx u(t) dt

1-FX) = e (2.42)

which is the probability of living up to age x from birth.

2.2.5 Estimation of force of mortality H

Various formulae can be obtained for the approximate
value of My - Assuming L, to be a function of the fourth degree,
the value of uy Can be expressed as follows:
let
.Zx =a+bx+ cxz + d x3 + e xﬂ {(2.43)
where a, b, ¢, d and e are constants.

Then

c 2 3
= b+ Jex + 3dxT + 4ex”



when x =0,
Advzo
=b
Also
' 24 = a-b+c-d+e
2+1 = a+b+c+d+e
4
Therefore
2-1.d—2+1 = -2b-2d
Next
2_, = a-2b +4c - 8 + 16e
and
2+2 = a+ 2b + 4c + 8d + 16e
Therefore
2_2 - 2+2 = - 4b - 16d
Therefore
8(2 1% 2+1) - (2_2 - 2+2) = - 12b
Whence
1 d 2
woo= - =
o 20 dx
e i
2
o)
i
122
_ 80 -2 - By - 8y
129
8(3&_1 - 20 + 20 - £+1) - (2




- 215 -

aB iy ) iy ety )

(¢
122o

T(dy +dg) + (dyrdy) - Aoty - &)

129, -
o]
gty * Waglp)l t 7)) = W t)

122,o

T(q*d) + (B2 - (d,4 - 2,,)

122O

(0]

T(d.y +.d) =8

=] 0 1 -2 +2

7 +d) - (dy+ 2 - 2,,)

7(d +d) - (d; *+d,y) (2.43)

(8]

Therefore also,

ot Ay) Tl Tohe) (2.44)
* 122
X
) '7(dx—1 + dx) - (dx-Z + dx+1) (2.45)
122
X
Using Taylor's expansion on Rx, then
2 s 3
_ 1 h R h 1ty
2X+h = 2,x F hlx +—2-!— QX + 3 ,Q,X + .. . (2.46)
and
2 3
. L 1 h vv- h Tt
lx_h R'X hlx +* '5—1—- 2)( —3—: 2)( F o el e
Therefore
3 +5
1 h Ty n Vv
o =7 ——n —— + g 2
2x+h 2x-h “hzx q x 2x_ * 60 gx e N “F _fj}



= R e

Assuming that 2;" and higher order differential coefficient
are negligible, on putting h = 1, then

N R (2.48)
This implies
Q’_Y
, X
u = -
x )
X
_ A1 T R
2 8%
S S R i o e o (2.49)
2 %
X
dx—l ¥ dx
ik B ws (2.50)
94

A better approximation to My i5 obtained on retaining terms
up to fourth order differential coefficient of ZX and
neglecting higher order differential coefficients.

Thus on putting h = 1 and h = 2 respectively in (2.47), we get

— 1 1 17_'
2 Qx + 3 lx (2.51)

=
]

)
|

and

!

S g
-8 =M+ 38 (2.52)

1 v
X

Eliminating R;" between these equations, multiply (2.51)
by 8 and subtract the result from (2.52) i.e.,

5 1 8 1y
8(2X+1 - Rx_l) = 16 ZX + g'lx
_ 8 1
xo2 TRy =AL 28 (2.53)
8(8ysy - fea1) = Oyap = 8 p) = 12 e



w o Rl -

Therefore
I 122
u - - _—5— = e
X 2 122
bl
- 8&)(-1 2x+1) U’x 2 zx-Z)
12 ‘Qx

as in (2.44).

Other approximate expressions can be obtained from thc
relation connecting the differential operator with the finite
difference operator A:

D=1log(l+a) =8-—S—+5-_ ... (2.54)
Thus
S B
X
P, dx
- APR 1983 -
= -1 UNIVERSITY OF NAIROD) / =/
= DYy
N :
1 1.2
= - — (A2, - =A
r. %73
X
=—Jll— (dx-%Ad+—A2dx—...) (2.56)
‘X
Alternatively
Lo
ux = —-a—ilog Q’x
5P, . R
’ =~ {A'log 2, - EA log£x+gl& log &y = = - . )

colog Py - % A colog T —13; Az colog D ™ ».% &

.(2.57)
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We have shown in (2.29), that

- Xy d
2{ = 2 e (o] uy y
X o)
Therefore
X+n
d
2 =42 e é Y .
) xn .
Then %
ot B
jz'x
X+n
L. e é y dy
< As
2 e W, ds
~ PR
= e % uy y (2.58)
Let y=x+t
This implies that
t=y-x

and

dt = dy

Therefore when y=x, t=o0

and when y e x+n, t = hn
Therefore
n
P e - é Hx+t dt (2.59)
Now, when n=1,
- fl uX‘*‘t dt
1PPx =Px “P(X) = e O (2.60)

Taking logarithms, we have

PN |
1og p.b.(?_ R B
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The definite integral represents the mean value of u between

the ages x and x + 1. If we approximate this mean value by

Uy 4 3 5 W€ hav¢

Py + 3 == logBs -

If we integrate between t = - 1 and t = 1, we find
1 = - e
;[1 Hytt dt = - log Py log Py (2.61)

and this is twice the mean value of uy between the ages x - 1 and
x+1. This leads to the following approximation:

1
u, = - 5 (logp,_; *+ logp)) (2.62)

= 2 Qog2_, - log 2 (2.63)

x+1)

2.2.6 Laws of Mortality

We now wish to express the relation (2.29) for various
types of force of mortality u(x). Ahraham De Moivre (1725)
proposed a very simple law of mortality, namely

u(x) .ol (2.64)
w-X
Therefore
- /¥ u(x)dx (2.29)
2(y) = (o) e ©
becomes
i S S
2(y) =2(0) e O WX
log w- !
=2(0) e xiO
w-vy
log -

]
b
~
O
s
o



= w20, =

1 o,
2(y) = £0) 4y (2.65a)
= k(w-y) : (2.65b)

where k is a constant and w is the highest attainable age.

The most famous mathenmatical expression of the force of
imortality is the Gompertz-Makeham formula. In a paper on the
"Law of Human Mortality Benjaizin Gompertz (1825) attributed
death to either of two causes:

1. due to chance

2. deterioration of the power to withstand destruction.

In deriving his law of mortality, however, he considered only
the second cause and stipulated that ''man's power to resist
death decreases at a rate proportional to the power itself'.
Since pu(x) is a measure of man's susceptibility to death,
Gompertz used

R(x) = .ﬁ'lfi) (2.66)

as a measure of man's resistance to death. He then translated

his postulation into the differential equation

"‘51132 R(x) = - hR(x) (2.67)

where h is a positive constant.
Solving (2.67) we get

1 d '
s <R dx = [ -hdx
j; ROY (x) dx
which implies

log R(x) =-hx+k

B = ohx * K



(>

B

i.e.,
i S
u(x) e-
Therefore
ux) = XK
g kehx |
3
= BC !

|

{

where B and C are parameters (constanté).

So
- /¥ BC® ax
2(y) = L(o)e ©
-B / * ax
= Bfa) e P
Let
Z=c" :
then &
log Z = x 1log C
Thus
g log Z =1og C
dx _
i.e.,
1 dz _
Therefore
dz
o2 z log C

Therefore,  from (2.69),

éy Cax = &z

(o
b
O
4]
G
@

(2.68)

(2.69)



= 2.22 P

Therefore (2.69) becomes

=B (_C_Sf:_l
2y) = 2(0) e  logC-
{E BC , B
= 2(0) elL log € 1logC
& B y
= 2(o) e > G - .
@ ep ) ew o~ (2.7
Let ﬁ
g exp - Tog C | (2.71)
and '
k = 2(0) exp . (2.72)
log C I
Then (2.69) becomes
2(y) = kg . (2.73)
Makeham (1860) suggested the modification
u(x) = A+ BCS (2.74)
to restore the missing component ''chance'" to the Gompertz
formula.
=0 - /7 (A+BCN)dx
Ly) = &) e ©
- aax - /7 BCYax
= 2(0)e © e ©
Ay - /7 BC &
= 2(0)e e ©
- Ay - /¥ B &
= e 2(0)e © : (2.75)

Using (2.69) and (2.73) and letting
S=g . A,
then (2.75) becomes

y
Ly) = ks g5 . (2.76)



/

= 223 - =

For
u(x) = A +Hx + BCX (2.77)
2@y) = 2(0) exp[-éy (A + Hx + BCYdx ]
= 2(0) e>cp[-(Ay+%Y2+gyBdeX1
= _['y (‘x H 2
= (o) exp - [T RCT dxlexp [ ~Ay - 5y
I _H 2
= kgC e Aye 4
y 2
= kgC AT
A
= ks gcv (2.78)
where
- H/2
u=e (2.79)

and the other parameters are as have been defined before.

In 1932, in the Journal of the Institute of Actuaries,
Perk proposed to modify the Gompertz - Makeham formula to

X
ux) = 1+ BC (2.80)

1+ 0DC
Remark: Gompertz - type laws are primarily fitting with

adult ages and not for infant and child mortality.

About 1870 Oppermann suggested a formula for graduation
of infant and childhood mortality. He defined

) = % +b + /X (2.81)

or in terms of the continuous survivorship function

3/2

log 2(x) = AV x + Bx + Cx (2.82)

where log could be either the natural leogarithmic function or log10
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Using the method of unweighted least Squares techniques, we

have the following normal equations

- 3/2 g o B s
A;xi + B§ X3 + § : % /xi log l(xi) (2.85-4)

3/2 3/2 5/2 _ | '
AEXi + B § x; T+ C ? X, - ? Xy log l(xi) (2.83ii)
BBzl icrd =3 x? 108 2(x.) (2.83ii1)
& 5 ! - Aen Rl | el y -

Thiele (1872) was of the @inion that such formulae should
take into account the differences in mortality behaviour during
the major epochs of life. Thus he wanted to partition the
survivorship curve into three components.

For childhood he used the formula

M () = a; exp (- byx) (2.84)
For adult ages,
1.2 2
uy(x) = a, exp(- E-bz(x—c) ) (2.85)
and for old ages, the formula is

u3() = ag exp(bgx) (2.86)

The formula meant for graduation of mortality throughout all

ages was written

RO = w0 +uy () +uz(x) (2.87)
For studies of life span of materials, Weibull (1939)
recommended
_ a-1
n(x) = upax (2.88)

where p and a are constants.
Therefore the survival function

- ¥ pa & lax
2(o0) e o

= 2(0) e - (2.89)

il

2(y)
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Weibull distribution is extensively used in reliability theory.

If
pu(x) = u, constant (2.90)
then
! hes fy Hu dX
2(y) = () e ©
= 2(0) e W (2.91)

which plays a central role in the problem of life testing.

According to the Landahl model,

1 (x) =1_i__ (2.92)
+KX

where p and k are parameters representing the combined effects
of all risks which may result in death. '

Therefore
- fY N
2y) = 2(0) e o I¥kx
- P/k 1og(1+k y)
= 2(0) e
= 2(0) , —2 (2.93)

(1+k y)P/K

Zulod Expectation of Life

We know that the total probability that a person aged x
will die is a certainty.
That is
e T "
Qx é i Xux-ft dt -
as shown in formula (2.34).
The function tpx Myt dt is theprobability that a person aged x

will die at noment of age x+t. This function is a probability

density. Therefore its expectation is given by



o _ ™ P
e, (J)' t o “x+tdt (2.94)
[
I X+t
é . « ogs dt
b

X+t x+t
x
‘ d 2
et S e L 1 d"*t] dt
2. o0 2x%t t
|
d s 2 .
- e B 5 (2.95)
L. o dt
x
Integrating by parts, let
v=t and du-= d£x+tA
Therefore
dv = dt. and- u = 2x+t
Therefore (2.95) becomes
R C L
e, = 5 t. £x+t é lx+t dt
b4 o
NS - >
0
X
1 ©
- R W
t
2, © Xt
Tx
= 2.96
. (2.96)
X

which is the required relation.

2.2.8 Age Specific Mortality Rate

This is the mortality rate for the specific age group.
It is the ratio of the deaths recorded during a year to the mid-

3 M . ..
year population. Thus the observed death rate n x is define @ by



/

nx = (2.97)
X

=?<|

where an is the number of deaths of people aged between

x and x+n and nKx is the mid-population for that age group.
The age specific mortality rate at exact age x is defined as
the force of mortality denoﬁed by u(x).

That is o]
: . M )

- u(x) = 1lim n'x r

mo |

i

(2.98)

Using finite approximations, we can express the survival

function 2(a) by

-2 p(x) dx
2(a) =2() e ©
T T e T e

2(0) e
(2.99)

assuming linearity in one year age interval.

The life table central death rate is denoted by small m.
That is

: - AP
Al . o : X+
n-x
d
=B X (2.100)
L
nx
In particular
d
B (2.101)
X L
X

which is the number of deaths per person-years lived in
Xy Xtl

2.2.9 The relationships between nlx and n"x

Case 1: Using the notion of fraction of last years of life.

Each of the ndx people who die during the interval

—(x, x#n) has lived x complete-years plus some-fraction -——-—



say 'a'. So

Person-years lived by those who die in (x, x+*n)

a
Number who die in (x, x+n)
£ an - 1N . lx+n
jLx - 'Q'x+n
This implies *
g
_L.o-n3 &
a@x 2’x+n) =n X x+n
i.e.,
an =a lx + (n - a) 2x+n (2.102)
From the definitions
m 2y = xen
nx =
nl'x
and -
q. _ zx Ly
nx = Z
X
we get
L
ndx = n"k. n}zx {2.703)
x
Therefore

at +.(n-q)zx+n

L
X

™ E_a +(n - a) nPx]

]

n"x [a+ (m-2a)Q - n1);

m
+ = - o+ .
nx (a+n-n. g, -ara nqx)

L}

nmx[n-(n—a)nqx]

=n. g @-3a) a



Sl % B

i.8s,
1 +(n -a) . M - pdx = Ne
Therefore
m
nly wedoe JLX (2.104)
1 + (n-a) L ,
|
When )
a= % | (2.105)
\
then *
" m
ndx = S (2.106)
1+ % SRRt e
and further when
n=1 (2.107)
then
q, - o = (2.108a)
1+ -E mx
v 2
= "x (2.108b)
2 + m,
Case 2: Relationship between n%x and n™x when the
survival function is linear
Let
lx = a+bx (2.109)

Therefore, by definition

M = Rx - 2_x+n
ik
n X
_ A% A
il dy



(a+bx) - (a+Db (x + n))

X (atby)dy
X .

-bn

(ay + -3— yz) xn

a(x+n) +

to |

a(x+n) + %-(xz + 2xn+n2) -ax- %-xz

= -bn

an + %-(2 xn + nz)

LeBsy
% = D - b (2.110)
n
- +
a+bx >
Next
= *yan
ndx =
2
X
_ _-bn (2.111)
a + bx

But from (2.110)

e a+bx = - b _bn

n"x E




dai 2031 .

which when substituted in (2.111), we get

q, _ -bn
e WS
MG
R
e B
n"x 4
2 i n'x (2.112)
2 +n m
n x
Case 3: Relationship between nx and n"x when the

survival function is exponential

Let
g = e S0% (2.113)
X
Then L e atbx _ o a+b (x+n)
I X x+n _a+by
g e
! dy
. Qathx. _ - atb(x+n)
- ﬁ+by lxm
b X
b ( ea+bx E ea+b (x+n) )
B e;+b (x+n) _ ea+bx
= -b (2.114)
Next o "x = Exm
n'x 2
x
N ea+bx g ea+b(x+n)
a+bx
e
bn

= 1-e (2.115]



T
= - ————— f 2
22 dx x Y gy
X Z
L
= -1__1_de ;/:°° qz ‘&y
2 dx x Y
X
2 ?
=]
i.e., ﬁ
R
4 & = -1+u X
dx zx
= -1+ ﬂx e
Therefore
d ei o
= + 1 sl (2.117)

Case 2: Relationship between the central death rate m, and
the force of mortality -

By definition,
the central death rate is

dx

m = e—

= L
X

and the force of mortality is

de

1 X d
u = i = - —— Jog 2
ORI x o x

Also

o
]
oOv
Lt
Py
C\a
ct



//\\

Therefore
dL
X ie o on i d
T e
i.e.,
d Lx ;
dx % 2X+1 2 gx %
i‘gf
i 1
(B = %0
i
= dx'

Lx dX Lx 5 4
Therefcre
dL
S
L dx X
or
LI -
Assuming linearity,
Ly = L 3 cf (2.15a)
Then
oy
o= —5; log £x+ 1

(2.118)

(2.119)

(2.120)

(2.121)



CHAPTER 3

THE STABLE POPULATION

3.1 Birth rate, Death rate and Age distribution in general:

Suppose n(a,t) is the number of persons at age a and
time t. If N(t) is the total number of persons at time
t, then the proportion of persons at age a and time t is

Sty = Eiﬁf%%‘ ' (3.1)

-

Next, consider a female population whose anmnual death rate

at age a and time t is denoted by u(a,t). So the number of
deaths at age a and time t is n(a,t)«wu(a,t). The total number of
deaths for all ages at time t is therefore

D(t) = _fz n(a,t) (a,t) da (3.2)

Similarly, if the annual rate of bearing a female child at
age a and time t is denoted by m(a,t), then the total
number of births at time t is

B(t) = fg n(a,t) m(a,t) da (3.3)

Formula (3.3) can be expressed in another way as follows:

Suppose p(a,t) is the probability of surviving from
birth up to age a at time t. Then the number of persons at
age a and time t must be the survivors of births (t-a) years
ago.

Therefore ) V :", > " e LR ( \BY
n(a,t) = B(t-a) p(a,t) (3.4)

So formula (3.3) can be expressed as

B(t) = gw B(t-a) p(a,t) m(a,t) da



B B(t-a) p(a,t) m(a,t) da (3.5)

where o and B are the lower and upper limits of child-

bearing.

We now wish to determine crude death and birth rates
using formulae (3.2) and (3.3). Crude death rate at time t
is defined as

D(t)
N(t)

- fz Eﬁ%%§l- u(a,t) da

fg c(a,t) u(a,t) da (3.6)

d(t)

Crude birth rate at time t is

b(t) = B(t)/N(1)
. .
= fz EL%EE% m(a,t) da
= [0 c(a,t) m(a,t) da (3.7)

3.2 The concept of a stable Population:

Lopez (1967) showed that two peopilations with the same
sequence of fertility and mortality schedules over a long
period of time, but with different age distributions a long
time ago, have the same current age distribution.

Altematively, the age distribution of a closed
population is determined by the history of its fertility
and mortality in the recent past and does not depend on age
distribution or fertility and mortality in the remote past.



Definition: A population that is established by a
prolonged regime of unchanging fertility and mortality is called
a stable population.

So, a stable population has a fixed age composition,
constant birth and death rates and hence a constant rate of
increase. In other words, age distribution, birth rate, death
rate and the rate of increase are inde{ﬁpendent of time. So.

f
!
|

g(a,t) = c(a)
b(t) =b
and
d(t) =d
Thus the birth rate is
b = f‘; c(a) m(a) da (3.8)
and the death rate is
d = /¥ c(a) vy (a) da (3.9)

With fixed age composition, birth and death rates are constant;
and the difference between them, which in a closed population

is the rate of increase, is also constant. That is

b-d=r (3.10)

The total number of persons is

N(t) = N(0)eTt | (3.11)

Because of constant birth and death rates, the annual -number
of births and deaths follow similar HAthS.
That is

lwe)
~
t
| -
1]
txi
[ o,
(]
Nage’
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w
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e Relations in Stable Population:

From (3.1) and (3.4)

C(a,t) = ._n'_(thl_

N(t)
_ B(t-a) p (a,t)
N(t)
- B(t-a) &(t—a)

Ny c T N P@d)

But by definition of birth rate,

B(t-a) _ b(t-a)
N(t-a)
Therefore
c(a,t) = b(t-a) EH%%—E%—-p(a,t) (3.14)

If a population is growing at the rate 'r', then the
population size at time t can be expressed in terms of the

population size 'a' years ago as

N(t) = N(t-a)e™® (3
which implies .

N(t-a) = N(t)e 2 (3

Substituting (3.15b) into (3.14) we get

c(a,t) = b(t-a)e 2 p(a,t) (3.

But in a stable population, mortality, fertility and age
distribution are independent of time t. So (3.16) becomes

ol = e ey | 5.

.152a)

.15b)

16)

17)



1 =b f‘;’ e ™ p(a) da

which implies

b= 1/f‘; e ™ p(a) da (3.18)

Using the expression (3.8) in section 3.2 for birth rate
and formula (3.17) then,

b =/ c(a) m(a) da

=/ pe T p(a) m(a) da

Ll =/ ¢ p(a) m(a) da | (3.19)

which is known as the characteristic equation of the stable
population. '

3.4 Stationary Population:

A special- case of a stable population is when the rate
of increase is zero. Then we have a zero growth population
which is also known as a stationary population. In a stationar)
population, the total number of persons is the same every
year. This is so because the number of births is the same
so the number of deaths. A life table is a stationary
population. So when

r-= 0,
c(a) = b p(a) (3.20)
b - 1

W
(a)d:
J, p(a)da



= 1
1 it % (a)da
)
= 1
1
£(0) TO
.
= o ! | (3:21)
o 3
where i
%2(a) = survivors at age a
2(o) = the initial cohort
To = total populétion
eg = eXxpectation of life at birth
Next, since from formula (3.10),
b-d=1,
then b=d (forr = o) (3.22)
S Five-year Age-intervals:

Let 5Ca be the age distribution between exact ages 5
and a+5. Then

e f:+5 c(x)dx

= f:+5 be X p(x)dx

_ at5 . -rx 2(X)
= be ok, Gt I
fz 2 (o)

=B fa+5 g R(x)dx
2(0) 2

% -TX

Now, let us replace x in e by the mid-value between a

and a+5 which is a+Z.5. Then



C b fa+5
L(0) @

R

I

2 (0)

2(0)

e
b e-r(a+2.5) fz+

b e-r(a+2.5)

-r(a+2.5) 2 (x)dx

> g (x)dx

SLa

(3.23)

where sby is the person-years lived ?ctween ages a and a+5.

Formula (3.23) implies that

g
1
|

i
1

] L
W N w _-r(a+2.5) 5™a
fo 5Ca da=b fo e = da
o)
But
w —
fo 5Ca da=1
Therefore
b ~ 1
w _-r(a+2.5) (L
fo Sza da
o
Therefore
o e-r(a+2.5) 5La
57a = ~
fz e r{a+2.5) sLa o
In the discrete form
: i1
B = N
5 e-r(a+2.5) 5La
a=o T
0

and

:C, = b e—r(a+2.5) sby 5

e—r(a+2.5) 5La

2 (o)

w - *
LI r(a+2.5)sua

a=o

(3.24)

" £3.d5) .

(3.26)

Next, given proportions of two five-year-age intervals,

say C, and 5Cy,

and birth rate?

how do we determine the rate of increase



Consider
w
- ~r(y+2.5)
G eT25) L oo ® sly
E w - T
57y T & T(x+2.5) SLX . r(y+2.5) SLy
X=0
= er(y-x) SLx :
5; i
which iwplies that ‘n‘
C |
QR T W S Si\’ (3.28)
i s sl

Birth rate b can be obtained by substituting this value of r
into the formula (3.24) or (3.26) where 'a' can be replaced
by x or y.

3.6 Determining the Intrinsic rate of increase

The intrinsic rate of natural increase, is the growth
rate attained by a population wnder a fixed regime of
survivership and fertility; that is, it is the growth rate
. of a stable population.

A number of ways are available for calculating this
rate, whose inter-relation throws light on the process by
which a population grows.

Fundamentally, the problem of determining the intrinsic
rate is trying to solve the characteristic equation of_ a
stable population by numerical methods. Such solutions
have been sought by Lotka (1925), Coale (1957), Pollard (1970),
McCann (1973) and Keyfitz (1975).

We shall show the techniques used by Lotka and Coale
in this text.



Lotka's Method

The characteristic equation is given by formula
(3.19) as

(J)’vf e ™ p(a) m(a)da = 1

which is equivalent to

_IB e 2 p(a) m(a)da = 1
o

Net Reproductive Rate is defined by
NRR = /% p(a) m(a)da
& _

which implies ‘ .
1= (B R@ m@E) 4, (3.29)
o NRR

So we can look at p(a) m(a)/NRR as a probability density
function.

Define
' _ B n

R = é a p(a) m(a)da (3.30)
Then

R = /B playm(a)da = NRR

o q

R, = /° d

bR a p(a) m(a)da
and

C{B a? p(a) m(a)da

Divide the characteristic equation by R - So we have

=Td

B e "p(am(a)da  _ 1 (3.31)
& R R
0 [o]
This implies
-ra
1n IS = Apga)m(a‘lda = - ]_n R
o R ©
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Expanding e 12 up to the term in rz, we have

2 2
m /P [} -~ L2 i] p(am(a) da . _ g, ¢
o

2 R 0
o
1:84,
r . 2 -
m |/ Rlam@da 8 aplm@da, T /8.2, 0aa
- o R o R 2 o
0 0
)
b = - InR
|
T8y : 2 .
T 2 2 '
1!1[1 - Iyt -5 u® +o )]2"-111 RO (3.32)
Applying the expansion.
2 3 4
Im@A+y)=y-Zes L T "vo
(@ 2Fhry =t 5.
equation (3.32) becomes
2 2 eyt
~ TR e w) 2“ = - In R,

which implies

02 2
= ¥ -ur+1rlRU=0

Therefore
T = U= /uz _ 202']n Ro
5 (3.33)
o
Altematively,
In R
= 02_ (3.34)
e
2

which can be solved iteratively by denoting the 'r' on the
left hand side of (3.34) by E
Thus we have

+1 and the other by T

r3.35)
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for n-=1, 2, 3, ses

Coale's Method

Coale used the notion of the mean length of female
generation T which is the number of years required to nultiply
the stable population by the average ratio of daughters
to mother (NRR). That is

1T

e NRR

1

Therefore
r= 1“TNRR (3.36)

The problem is now to determine T.

Let 8

m = _& am(a)da

.l'B m(a)da
a

(3.37)

which is the mean age of child-bearing in a cochort subject
to no mortality.

B

B é a p(a)m(a)da
1

és p(a)m(a)da

which is the mean age of child-bearing when mortality is
taken into account.
B

ae p(a)m(a)da

B o o (3.39)

8 -
I e p(a)m(a)da

is the mean age of child-bearing in a stable population.
Expanding e ™ in the numerator and denominator of formula
(3.39), we have P

Z
fB a[l - 13 + S I ...]p(a)m(a)da

—-iL-+.“3pmmmnm



r2 o~
Eet B Ll v i
Z 3
¥ ¥
RO"'R]_I‘+R2-—-———2 RS—ZT!-+
B s E .
R R R 74 R . 3%
i 0 ) 0 0
1__R_1_r+R2 r2 _RS 1'3+
R R 2 R 3!
o) o) o

By long division,

2 : 3

9 R (R /RY] \-RS 3R, Ry2RY| 2

s TR R R LR R R |
o o (o] (o] (e} [0}

2
p 3w T
Ul - (Uz'ul)r + (113‘3U2U1 + 2111) 3 o

(3.40b)

where

R
n

R

B - f(a)da

J
a

/B a0 p(a%{mgaz da
o

(o}

E(an) , the nth moment.

If we let

= E(a)

>
[
]
=
—
|

O N fais S P
Ul "'E(a ul)

>
(3]
]
G e
(]
|

>
|

. 3 . METAY
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then,
Z

a_ =2y =k, T+ I (3.40c)

Altematively, 55 can be expressed as

B -ra
é ae p(a)m(a)/}?\O da

T e T2 p(a)m(a)/R da |
S KT e |
- In é e p(a)m(a)/Ro da

= -4 5, BT f(a)da (3.41)
dr a

where

f(a) = p(a)m(a)/R
which is a probability density function.
So j‘B g e f(a)da is a moment generating function of r.
Tak%ng its log, we have a cumulant generating function.
Expanding e '° then

2 3
w i Bi _ 2 a~ 3 a ]
S _dr In i 1 ra+r ——2 T —:,)-r + ...\ f(a)da

1Y
|

__d In |1- + _12_.- ___r_3_+ —X
dr By & TR~y =g TRY T e

Using the fact that

2 3 4
S A e .
1n(1+>')‘>'2+3 —+ ...
then
2 3 2
a =—.—d'_. — 11 r.. r = f= -1 ._r._.—\_..;
35 & UM T My S m gy o) mi(uy TR < Hys




s 30 14 i

3
2 H M, H u
d 2. T 3 12 1
_ T - - e e +
ar M1t b)) 5 (G 2 3

3

2 3. 1l
= Wy T QuprHpT * (ug - Suqug + 2 03) 5= - ..

as in (3.40b)
r2
1-)\2T+A3—2-'... ‘ &

as in (3.40c) |

A

n

where . (n =1, 2, 3, ...) is the coefficient of i‘-—{)—

n
usually known as the nth cumilant of the net fertility
schedule.

We also notice that

2 =--9 1, /B . 1a p(a)m(a)da
b3 dr o RO
= __d._ In _1_
dr R
0

because of the characteristic equation

P e oiafads = 1

o
Therefore
- d
. = R
as ar In
LBy
InR = [a_dr
i.e., :
R = o/a.dr
(¢
TosCoy _
NRR= ef a.s dI‘

But NRR is also given by

'_') T T eee

2



R L

Therefore
rT =/ 55 dr (3.42)
i.e., ?
= - Sk W
2 3
b o R o
= Alr >‘2 > ¥ )\3 5
rz . 2
= Xlr Y —— (up to the term with r7)
Therefore .
T = M-d7 (3.43)
Therefore
_ In NRR
r =
1%
= }_n_.T‘B_R? (3.44)
A=A, =
1 2 2

We should note that (3.44) is equivalent to (3.34) for
)\1 and >‘2 are the mean u and various 02 respectively.

In the iterative fashion, we write

In NRR : o
rn+1 =T—'__;-’ n=1, 2, 3, «..
2
4 Ty

Coale used the first approximation as

In NRR_ _ In NRR

T (3.45)

1 A Hy _
So

. In NRR

1 oy _2_);: :n NRR
He let
T Ra
2. =0.8 (2.46)
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which he obtained from experimental data on various countries.

Therefore
_ In NRR
T2 TX - 0.8 I MR (3.47)
_ In NRR
i =
3 A
As = ——2— r
1 2 2
_ 'In NRR
A
-2
Jl‘1 7 >‘1 )
1
= .0 NRR (3.48)
)\1 (1 - 0.8 rz)
and in general
g _ __In NRR N In NRR
n+l 3 =
>‘1 (1-0.8 rn) My (1 - 0.8 rn)
forn®= 2, -3, 4, «a»

Corollary:

The age distribution of a growing population is younger
than that of the life table.

Proof:

From (3.40a)

< when r > 0. (3.49)

Ro

But Rl is the mean age of a staticnary pcpulaticn i.e. of
R
(o)



“ 8 Dedd) .~

a stable population with r equal to zero. The age distributions
of a growing stable population and that of a stationary
population is shown below:

a —>

0
3.7  How the intrinsic rate of increase affects birth rate,

death rate and age distribution.

We wish to find how b, d and c(a) vary with r.

@ b= o
M e p(a)da
o
Therefore
logb = - log éw e ' p(a)da
d d
- logb = e log / erap(a)da
i.e.,
T
/M e p(a)da
5. A, (as given in 3.39)
Therefore
db- =
= = ag b (3.50)
db

dr _ .



=" g8, L

F
which implies that b is a non-decreasing function of r.
(i1) c(a) =be "2 p(a)
Therefore

loge c(a) = loge b -ar + loge p(a)
There fore e log c(a) = Cii— log b) - a
ar 8 ar 98

_ 1 db
i e e

='# +a .cf (3.50)

i.e.,
A gela) -, g
¢(a) dr s
which implies
gcla) -, (a_ - a) &(a) , (3.51)
dr S

So as r increases, c(a) increases for all ages less than s

decreases for ages greater than 55 and does not change for

-

a, = a.
(iii) d = gw &(a) u(a) da
Therefore
d d W
& nd=— In[Fc(au(a)da
i.e.,
1 dd 1 w dc(a) i
e R ke 5 = u(a)da
T feew@a  °F
i.8.,
1 dd _ 1 5 W
a  dr J (as - a)c(a)u(a)da

gw c(a)u{a)da



= 3- ]_9 -

: [fw 5, cla)u(a)da - /¥
c(a)u(a)da | © o

a c(a)u(a) da]

M
o}
3% T %
Awhere
x é‘”' a c(a)u(a)da
ag =
é‘” c(a)u(a)da
is the mean age of death.
Therefore
dd _ g0 =
o = d(aS ad) (3.52)
For max. or min.,
dd _
dr =B
which implies that a G 55
The second derivative is
2 da
d = and .S a4
P 7 = (& ad) dr d ( dr dr aLd)
T
= e . d - _d -
= d(as ad) + d(a-; ag 3 ad) (3:53)
But
ng éwaerap(a)da
dr S dr M -T2 p(a)da "
0
= {fw e ™ p(a)da \(— Vil e 12 p(a)d% +}-;’ ac ‘rap{a}da‘?
— L, (o] (0] e
o 1 7
v AW '
J d
LO e p(a) a’l



Tl w Ben p(a)da
. 0 -2
= - + as

g R p(a)da
= - Qg + 52

s

_ =2 _ 2 :
= & - o | (3.54)

where cg. is the variance of the stablé population

Similarly, 5
d. =2 2 ‘
—ed. = 8y 93 (3.55)

Therefore (3.5) becomes

2 .
d d - -2 -2 2 -2 2
ar’ = dia, = a8y + d): (ag - o5) - (aq - Gd):s
r
- - .2 - -2 2 2 : 3
= 4G, - 3" +a[ @ -3 + (0 -] (356
When 55 = ad , then
¥a A
= d(o; =0o)) {(3.57)
2 d S
dr

- . . . 2 2
So ad is maximum if cd< g

3.8 What happens to two stable Populations under given

regimes of fertility and mortality schedules?

Theorem 3.1

Two stable populations with the same mortality schedule

intersect at or azbout the mean of their mean ages.



= 3adl " -

Proof:
c(a) =be " p(a)

If the two stable populations have age distributions cl(a) and
<, (a), then

-r.a
cl(a) ) ble 1 p(2)
§2-(a) b, e %22 p(a) E‘
4
B % = h Ja -
= — e 1 2 (3.58)
b2 ,

At the intersection point,

c; (a)
c,(a)

b -
bl e~ (fp -T2 oy

2
which implies that
log b1 - log b

as= £

(3.59)

L L

where 3 the horizontal axis of the intersecting point.
But we kncw from (3.50) that

db

e = asb
which implies

e s

b dr S

which further implies that

B 5. logh = a_
dr S
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Therefore
T T
logb| > =/ % 3 dr
T T
i.e.,
T,
log b2 - log b1 =[ a_dr (3.60)
T, >!

If 55 is linear from r; to r, as sho‘}n:n in the diagram below,

a (1)
>T
then
T, .
S a dr = the area of the trapezium
*1
= 7 (ry - 13 + 3y (3.61)
From (3.60) and (3.61), we therefore have
1 2. +3 % )
> (a1 + az) (r2 - rl) = log b2 log b1
which implies that
a, +a log b, - 1og b
Sl R : . (3.62)
2 T, -1

Equating (3.59) and (3.62), we see that
2, + a,
2

3 =

Hence the proof.

Theorem 3.2

Two stable populations with a-constant difference in

“mortality schedules at all ages corbined with the same fertility



= Held =

schedule, have the same age distribution.

Proof:
We know that
c(@) =be " p(a)
=be ™ e- éa U(X)(?x

Let 5{\’

él(a) = b, e 112 p,(a) 1
and |

c,(a) = b, g 22 p,(a)
Further let

uz(x) = ul(x) + k
where k is a constant.

Then

b. e T3 o - ' uz(x)dx

c, (a) 5 € o

a s

= bZ g 28 ‘g [ul (a) + k] dx

a -
- b2 L I ul(x)dx - ak

= b2 g “zf pl(a) e
Using the characteristic equation of the stable populations,

y R ol i oy p(a)m(a)da = Me p,(a)m(a)da
o} o

This implies that

e 1% p(a) = ¢72% py(a)



- Delh - =

p,(a)
ek P ak
Pl(a)
This implies that ;I
T, =T = - k :‘
i.e.,
rz = I‘l e k (3.63)
Therefore
c,(a) =b, e 2% p,(a)
» -(r; - kK)a
b2 &8 .V PZ(a)

= b2 e-(rl - Ka e.ak pl(a)

= b2 g 17 pl(a)

= b1 e 17 pl(a)

¢, (a) (3.64)

So the two stable populations have the same fertility
schedule,

So we have shown a difference in mortality that would have
no effect on the stable age distribution.



CHAPTER IV

A GENERALIZATION OF STABLE POPULATION RELATIONS

4,1 Relation between current population siZe and mortality

schedule with age dependent growth rate.

Let N(x) be the number of persons aged x, p(x) the
age specific mortality rate at exact a'{ge X, and r the
{
constant growth rate. l

|

In a stable population,

N(x) =N(o) e X p(x) (4.1)

where p(x) is the probability of surviving up to age x from
birth.

Differentiating (4.1) with respect to x, we get

{}% = N(o) [_- re X px) +e %—}
= N - X + X R(_ﬁ. Q
(@ [~ 7 pog + o7 B &
= N [~ ™ pe) + e p(0) = 1log p(x) |
= N©) ™ pe) [~ 1+ 10g b0 |
= N(x) E- T+ —%i log p(x)] (4.2)
But
1 dg
W) = “ o
_ —%,—( log 2(x)
PR 2(x)
ax log 2(0) . 2(0)
= - ——cl_.. 1o &_(.Z(l
dx ~ ° (o

)
)
|



= - % log p(x) (4.3)

Therefore (4.2) becomes

S =N [ -r-ww

which implies that

S B - E® (4.4)

" Thus the relative change in the number of persons at age x
diminishes at a rate of r + u(x).

Suppose now that the rate of increase is no longer a
constant, but rather a function of age. Then equation (4.4)
can be modified to

1 dN _ _ -
NGo & T e
1845 a
< log N = - 100 - u) (4.5)

If a < x < atn, then integrating (4.5), we have
a+n

atn
log N(x) l = S Er(x) - u(x:)}dx
a

a
which implies that

log —N-l%“r’— -=- T (x)dx - £a+rh(x)dx
i.e.,

N(am) = Na) & & TOOEX » (4.6)
where |

- A (0 dx
a (4.7)

a -
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is the probability of surviving from age a to age a+n.

If O<x<a, then we have

- §F T |
N(o) e p(a) (4.8)

b
—~
s8]
L
]

where %
- cf) u(x)dx

p(a) = e

is the probability of surviving from birth up to age a.

An altemative approach to obtaining the results
derived above, is as follows:-

Let N(X,t)" be the anumber of persons aged x at time t.
Using the notion of total differentials,

dN(a,t) = a—Ng-:-z-‘il da + 2= N@a,)dt  (4.9)

At time t+dt, the number of persons aged x at time t
who have died 1is

D(a,t) = N(a,t) - N(a+da, t+dt) (4.10a)

assuming closed population and the same cohort.
Re-arranging (4.10a), we get

- D(a,t) = N[a+da, t+dt) - N(a,t) (4.10b)

By the principle of differential calculus, if

df = f(x+h, y+h) - f(x,y)
then
_ of , , of
df = h 5;*‘1(-3-;; (4.11)
as (h, k) - O.
So (4.10b) becomes
ol oN . (4.12)

]

- D(a,t) a da + =— dt



- -

as da=dt->0

Therefore
D(a,t) _ (3N , aN 1
N(a,t)da oa at N(a,t)
1%€;
1 oN 1 oN
- u(a,t) = +
wah) =T e NG ot
But ﬁ
1 N _
Nia.t) ot ~reatd
Therefore
T oN
- i(a,t) = —— == + r(a,t
u(a,t) N(a.t) 3a (a,t)
i.e.,
1 N _ . '
N(a,t) oa r(a,t) -~ u(s,0)
i.e.,

—g—a— log N(a,t) = - r(a,t) = u(a,t)

as in (4.5). The results in (4.6) and (4.8) follow by
integrating this equation if a <x g¢atnand if o <x < a
respective:ly.

4.2 Generalization of the equations characteristic of

stable population.

The birth rate of the population is

b = N(o)
£ N(a)da
8]




S e e
/ No) e & T4 [ ayag
(o]

= L _
. - /ar(a)da
gne ? p(a)da

The proportion of the population that is age a is

c(a) =-— N(o)
é‘” N(a)da
- 7 r(dx
N(o) e p(a)
a
s N(o) e-é r(a)dap(a)da
)
a :
] 2 - /7 r(a)dx p(a)
_
fm o é r(x)dx p(a)da
)
_ 12 rx)dx
=be ° p(a)

The birth rate can also be represented cs

b = £B c(a)m(a)da
. ée b & r(X)pr(a)m(a)da
which implies that
1 = g° ot & r(X)dxp(a)m(a)da

(4.13)

(4.14)

(5.15)

where m(a) is the rate of bearing female children-from

women aged a.



4.3 Five - year age - groups.

For computational purposes, we shall consider S-year
age intervals along with some approximations. Proportion

of people between ages x and x+5 is given by

sly = ){’“5 C(a)da
- 1% ry)ay
i R p(a)da (4.16)

X
using formula (4.14).
The mid-point of x and x*5 is x+2.5. So replace 'a' by
-sa
0

x+2.5 in e r(y)dy . So we have

E fx+2.5
sCx = }f("*s be ° TOIH ,(a)da

_ f;+2.5
5 e o r(y)dy g(-x"s p(a)da

_ X+2.5
= be o‘r(}’)d}’ S'Lx

%o (4.17)

where

SLx = £§+S 2(a)da

is the person-years lived between ages x and x+5

But

225 5 10 15 2.5
iy = Drndy + Lrmdy <L t;dy + e v Lrmayf 1)

(4.18)

Assuming constant growth rates within the 5-year age interval

r b
so that 5 x becomes the growth rate between ages x and x*5,

then (4.18) can be re-written as



i 5 9
o r(y)dy = SLSIO 5 %onie # B H er-S_J +2.5(5™)  (4.19)

Therefore
. < 5(870"5 L+ ..o "% SRS OS5 ) .
5x=be 4 5 (4.20)
: 20
From (4.17), we should note that %
i
: - Ahray
55o==be O 570
20
=~ 2:5{3°a)
= be 5% (4.21)
20
To determine b, we sum (4.17) over x and get
_ fx+2.5
? s =b § e o TOIY gLy
X=0 X=0 2o
But
W
z Scx =1
X=0
Therefore
" 1 _
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From two censuses, we can calculate the growth rate
gra simply by applying the formula
: (N )t
© Rt G S, e (4.25)
o | ()t

vwhere 12} and t, are the periods censuses were taken. Note
that formula (4.25) is from the fact that the population at

time t growing at a rate r since X years ago

HeCars
N(t) = N(t - x)e' ¥

which implies that

T = i In N(t)

x Ny or-



. For the open interwal, say age A and over denoted
by -A+, we have

e S o T 2
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Clhd = s (4.272)
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where
e(A) = expectation of life at age A
TA" = the intrinsic growth rate of increase for
ages A and over.
TA = the total population for those aged A and over.
1.e.’
T, = [Ya(a)da
A A a L]
. . . T T
We now wish to determine the ratio "x and X
A T10

These ratios are useful in detecting age mis-reporting.

From (4.23b) and (4.24b),

[ 5(5%o*sT5+...+5Tx-3) +2.5(5)J
C L
5X . € 57X
T
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which implies that

2.5(5%0)+5(575+5710 + ...+ 57x-5)+2.5(5'%)

ey g=s (4.28)
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: L
Once we have obtained a column of §r§ it is now a matter of adding
5o
. TX
these values from bottom upwards to get T
' o
Hence
'Tx ‘Tx 4T5
- =+ (4.29)
Ty byt ehy
and
. . To
T10 EEB EE;

From the office of Population Research, computerized tables of

u-ﬂ N'_]

and.Tzﬁ- against mortality ievels have been made for each region (i.e.
East, West, North and South) and sex, A graph of age against mortality
level is then plotte.d It is hypothesized that if the graph is rising
then there is an indication of over-statement of age. If the graph is

showing a downward trend then we have under-estimation of age. Horizontal

graph implies correct age statement.

4.4 Singulate Mean Age at Marriage (SMAM)

4.4.1 Derivation

The singulate mean at marriage (SMAM) is the mean age at first

marriage among those who ever marry.

U(a)

the mumber of single persons at age a

N(a) = the total number of persons (all marital conditions)
at age a.

Therefore, the proportion single at age a is

S(a) = 1%{% (4.30)
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The proportion ever married at age a is
G(@) =1 - S(a) (4.31)

Let g(a) be the first marriage rate, Therefore

a
G(a) = J g(x)dx (4.32)
o

The first marriage distribution function can be constructed as

- g(a)
a
[ og(x)dx
o

f(a)

i.e.,
£@ 0O<a<A (4.33)
1-S(a) B

f(a)

= 0 , otherwise

A
/ af(a)da
0

E(a)

1.8.3
A
é af(a)da

A

J ag(a)da
DSt
L1

J/ g(a)da

o

SMAM

A
' / ag(a)da
i .

(4.34)
1 - S(A)

where A is the greatest age of the first marriage.
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Integrating by parts; i,e. letting

u=a and dv = g(a)da
implies '

du

da and v= Jg(a)lda = G(a)

Then
A

[ ag(a)da
0

A A
uv| - [ G(a)da
Y. 0

A A

= -aG(a) - [ G(a)da
o

(0]

A
= AG(A) - [ G(a)da
(o}

A
= A[l-s@] - s E—S(a) da
o]

A

= A-AS(A) - E— / S(a)a
(o)
A

= A-AS(A) - A + [ S(a)da
8]

A
/ S(a)da - AS(A)
(o)

A
Therefore J S(a)da - AS(A)

M = 2

1-.SA)

Let d be the earliest age of marriage, then

! a A
fS(a)da + [ S(a)da - AS(A)

M = -2 g

1- 5@

But

Sfajy=1 for O0<d«<d

(4.35)
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Therefore A
d + / S(a)da - AS(A)
SMAM = = (4.36)

1-SA)

In.particular if

d=15 and A = 50

then

50
15 + f S(a)da - 50 S(50)
SiM = (4.37)
1 - S(50)
In the discrete form this would be
45 g
15 + & 5° - 50 S(50)
MAM = 1> (4.382)
1 - §(50
7
15+5 IS, - 50 S(50)
= isl (4.38b)
1 - S(50)

where 'i' is the ith age interval i.e. 15-19, 20-24,
25"29’ see 45-49 .

4.4.2 How to obtain SMAM using generalized stable population

Consider any aggregate of persons or objects with a continuous
distribution by age since origin, or duration since event that defines
membership. Then suppose a set of independent attrition factors
(pdsitive or negative: negative attrition could be people coming in by
miracle, migration etc.) such that numbers leave the aggregate because
of factor i at a rate ui(x).

Redistribution by age (duration) at a given moment has a given structure
determined by arbitrary historical influences - wars, migration, varying

births, deaths, miracles etc. : -
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Under these conditons, then

a a
-/ r(x)dx - L J ui(x)dx
N(a) = N(o) e ° e (4.39)
where
N(a) = Population size at age a
r(a) = age specific growth rate

ui(x) = age specific attrition rate of factor i.

The number of single persons at age a is given by

a a a
-l:fj ix)dx + rs(x)dx # J us(x)%
U(a) = Uo) e 0 o o (4.40)

where

j(x) = the risk of first marriage

rs(x) = the age specific growth rate of single persons.

Therefore the proportion single is given by

a a a
-/ jix)dx - f rS(x)dx - 7 us(x)dx
Sa) = U(a) _U@) e ° = e (4.41)
N(a) N(o) a a
e Jr(xX)dx -/ u(x)dx
o o
But
U(o) = N(o)
Therefore
- f J(X)d.c - ECX) - r(] - f L(x)-uuc ) jdx
S(a) = e e (4.42a)
d -J E(x) -r(xX)|d&x - S Es(x)-u(x) dx
=S@e ° ° (4.42b)
where

a
S*(a) = g . é‘ j(X)dX

. which is_the proportion single in a no-mortality- cohort.- o e
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Thus
a a
. / ES(XI-r(XI dx +_J ES(X) - u(xgdx

S()= S@aye® o % & ° :

and 45 i
15+ I S(a) - 50§ (50)
0T SR -« - (4.43)
1 - S (50)

In actual calculation, S(a) is considered as the average proportion

single in two censuses

1 Ux,t,)
r (x) = In < - (4.48)
-t U(x,tl) %
Precisely #
U(x,t,) = U(x,t))
r (x) = (4.45)
Person-years lived )
or
7 x) = Increase of single pop=-S(I1)-S(E) (4.46)
Mean population
rp(x) . _Increase of total pop-I-E (4.47)

Mean population

4.5 How to obtain migration rates using age specific growth rates

We have already shown in the earlier section that

a a
~JrX& I~ J ui(x)dx
)

N(2) = N{o) e o el

where pi(x) is a decrement due to death, marriage, emmigraticn, etc.
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Suppose
b0 = -1G)

which is emmigraticn at age x,

then a i
- Jr(x)d&x [ 57xdx L
N, _ N o o} & Sud
5a=50e e -S-L.O-

This implies ” |
S 2N B 5
f51xdx= InGN?lérq +,,f5rxdx
(o} 5 5

For

we have

RN N L |
2.5(5%0+515) = {E%(?Né i ét%) + 2.5(5T0+5%5)
(]

(4.48)

(4.49)



