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1.1

rnAPTER I

MEASUREMENTS OF MCRTALI1Y A"l"D FERTILI1Y

1.1 RATIO, PROPORTION AND RATE

1.1.1 Ratio

A ratio results from di.vidirig one quantity by another.
It surrmar.i.ses the ari thne t.i cnf re Lat.i.onshi.p between two characte ri s t

whim can be counted in a population. When the nunber of

occurrences are 'a' and 'b', then the ratio r is define:' as

ar =--
b

or (1.1)
br =--a

Another way of expressing

is simply a : b

Thus the calculation of a zat i.o is intended to provide

further meaningful information concerning the behaviour of two

characteristics. By calculating a ratio, the nurrerat.or is in
sorre ways adjusted with respect to the denominator which becomes

a reference va lue and leads to an expected value for the

nurrerator.

To eliminate decimal points,ratios are often multiplied

by a pcwer of 10. Thus the ratio r becomes

a 'Okr ='b X.J. (1.2)

where k is a non-negative mnrbe r ,

For

k = 0,
--- - ~- . - -- -.- --
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the expression is a s inpIe ratio with unity as the basis of

comparison.

For

k = 2

the expression, is a percentage.
If k = 3 it is per thousand and for k = 6 the basis is a

million.

The following are exawp1~s of a ratio:

~le 1:

Sex ratio
·nurrber ofma.lcs=

nunber of females

in a given population

Example 2:

Fetal death ratio = murber of fetal deaths
nurrber of Li ve births

in a given year for a given a population. This expresses the

nurrber of fetal deaths as compared to live births in the same

population.

Remark: The two examples given above, shew how a ratio is used

in comparing the frequencies of two mutually exclusive

classes.

Example 3: There are 2l()(x) operations and 30 doctors in a

hospital in a given year.

The crude nunbers alone tell us sone th ing about the work load

of the hospital and abcut the staffing.

But an administrator who \vishes to consider the expansion of the

hospi tal and how many adclitional doctors he might need would

have to do further IDlalysis. He could start by calcul~~ing

the ratio
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21000= 30

= 700

i.e., 700 operations per doctor per year.

This would suggest that one doctor was required for 700

operations. In this case, k = 0, and the ratio relates to the

work of one doctor.

Conversely, he might be interested in comparing different

hospi tals with different numbers of operations, then in order to

adjust for these different m.unbershe would calculate the ratio

b
r = --a

30=
21000

= 0.00l43

i.e., 0.00143 doctors per operation.

This figure seems meaningless, so we would PUt k = 4 so that H~ hai

r = b
a

= 14.3

i.e. 14.3 doctors per 10,000 operations.or 143 per 10,000.

This value of r is now a useful tool for comparing different

hospi tals with each other, adjusting for the differences in

work load.

EXample 4: A ratio is not limited to the relationship

between two counts but extends to all measurable variables.

For example, if the rrean height of a sample of womenis 165 an

and the meanheight of a sample of males is 175 em, then the
male to female ratio of height is
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r = 175
165

1.06

which implies that on the average, men are 6 per cent taller

than women.

1.1.2 Proportion

Proportion is a speci ai type of ratio in wh ich the n.ure rat;o

is a part of the denominator, i.e.,

p
_ a
- a+b (1.3)

.Lf the mnrerator and denominator are integers and represent

frequencies of certain events, then p is a relative frequency.

For example

number of males
nurrber of males + number of females

gives the proportion (relative frequency) of males in a given

cornmuni ty •

In a large population, proportion may determine the

probability of a certain event; in a sample (expe r inen t) proportic

can be used as an es timate of probability of an event.

For example, the quantity

number of fetal deaths
mnnber of fetal deaths + number of live births

in a given population for a given year is clearly a proport ion ,

It estimates the probability that a fetus might die before it

is born.

l£nerally, the nllileTator and the denominator in a/(a+b)

do not need to be integers. They can be rreasurnb l.e quant.i tics
such as weights, lengths, volwre etc. In such cases prcport.i ons

are also often calIcd fract ions . For exarrp Ie , in a chemical

anal.ys is , the mass of a given component can be expressed as
_____a fraction of the total weight of -the conpound; Percenta-ge is---
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a proportion or a fraction per hundred units. This proportion p
corresponds to lOOp pereen t.

1.1.3 Rates

Ratios and proportions are useful static summarymeasures

of phenomena that occurred under certain condi tions . The concept

of rate is associated with the dynamics of phenomena such as

chemical reactions, grrwth , birth, death, spread of epidemics

etc. Generally, rate can be defined a; a measure of change in

one quantity (y) per unit of a~other quantity ex) on which y
depends. Usually the independent variable ex) is t.i.rre, although

it might represent some other physical quanti ties such as

temperature or pressure. For convenience we mostly confine

ourselves to processes depending on tine, and denote time by t
rather than by x.

For definitions of absolute rate, relative rate, central

rate and rates for repeti ti ve events, the reader is referred to
Elandt Johnson and Johnson. Weshall conf'inc ourselves with the
rate of incidence which is defined as the nurrber of events that

occur wi, thin a given time interval over the nurrber of nerrbers of

the population who exposed to the risk of the event during that

same time interval. I

Specifying the nunber of persons exposed to risk in the

denominator is an irrportant re fi.nerrent , If we were studying

mortali ty over one-year period, we should note that a person

who died before the year ended was not exposed to risk for the

whole year and neither was a child who was born half Kay through

the year. People who moved to a count ry only one month before

the year ended, were not exposed to the risk of dy i.ng fOT the

whole year either. .The concept of 'person-years lived' is often

used to specify the population exposed to the ri sk of an event.

Let ~ denote the nnnber of in illvidual s ever observed

during a period of T years. Let Tj denote the length of the period

(in years) during which 2!1 .indivi dual (j) was under observati on,
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that is, exposed to risk of being observed to die. Then the
SlDIl of lengths of such periods of exposure

NT
A- = z LT.
- T j =1 J

(1.4)

gives the total amount of person years (ana.Iogous to mass-time)

exposed to risk.

As an example let T = 3 years. Suppose that N."= 10
1

individuals were observed during this period further following
lengths of time T. : 2.3, 1. 5, 2.8, 2.5, 3.0, 1. 8, 2~7, 2. S ,

J
3.0, 3.0 years.

Thus the nurrber of person-years is given by

= 2.3 + 1.5 + 2.8 +2.5+3.0+1.8+2.7+2.5+3.0+3.0

= 24.3

1.2 }.~asures of Mortality

Crude fuath Rate (CDR)

CDR = Deaths during a specified period
Person-years Li ved during the pe r.i.od of
population at risk

D= P
(1. Sa)

Conventionally rates are expressed per 1000 people .. SOwe have

DCDR = P x 1000 (1. Sb)

P is approximated by the mid-year population.

Specific Death Rates

A population maybe divided into sub-populations according

to one or ~re factors of classification such as age, sex,

mari t::tl status, occupat ion, urb anZrtrra l inci dence , durat ion cf

marr iage etc. These are called specific death rates . In other

__. .. _ .. . __~·o~cls, aspe cafi.cdeathxate is sinply Qne thaLrefers.onJyto-··· -
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some sub-group in the population. If the suh-popul at i.ons are

indivicuals in different age groups the resultLlg rates are

called age-specific deatll rates.

Age Specific Death Rate (nMx)

Mn x =
Dn x
Pn x

/ (1.6)

= Deaths of persO!J5 aged between (x, x+n)
Person-years lived by the population in
that group. /

The relationship between Crude Death'Rate and Age-Specific Death

Rate can be shown as follcws:-

COR D= P

z Dn x
= x

z r
x nx

(1. 7)

But
D ~1 Pnx = nx nx

from (1. 6) .

Therefore

r M P
COR x n x n x=

P
L nx
x--

(1. 8)

FOT the cont inuous case

CDR =
b~~(x) P (x) ax

£w pix} dx
(1.9)

where u (x) is the death rate at evently age x i.e.,

uIx) lim
11+0

Mn x, , (1..10)
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The greatest age reached is denoted by w.

Let

W Pnxnx =
z Pnx
x

Then
M

p
CDR l: 11 x= n x

x z p
nx

x

z M W= nx n x
x

(1.11)

(1.12)

Wn x is a measure of the relative size of the sub-group under

consideration such that

z
x

Wnx = I (1..13)

In other words the crude death rate is merely a weighted average
of the specific death rates. Thus a change in the crude death

rate may result from a change in the relative sizes of the
Wcomponent sub-populations subject to the restriction l: n x = I

x
without any change in the specific death rates measuring the

intensi ty of death per tine unit in the sub-populations.

So crude death rate depends on age cornposition. A young

population has low CDRwhile an old population has high CDR.

Infant Mortality Rate

For demographic statistical purposes, all children under

one year of age are considered infants and so the tern "infant

nort.al i ty" refers to rnortali ty amongchildren of less than one

year of age.

The infant mertali ty rate maybe defined as the nurroer of

infant deaths that occur per thousand live births in any population

in one calendar year. Thus if Do is the number of deaths occuring

for those under one year and B is the nunber of live bi rths in
the same year 1...11 the same ccrnmuni ty, then the mfrmt nortal i ty

--- ---- ---- ----rate Ls=de fined as: --- -
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DaIMR = -B- x 1000 (1.14)

Remark: IMRis not truly a rate nor a proportion.

It is a ratio for which the tine over which it is

recorded need not be specified so long as births
and infants deaths are recorded simultaneously.

1.3 ~asures of Fertility

Fertility is a measure of production of Li ve births.

FecundabiIi ty is the capacity of bearing alive birth.

Crude Birth Rate (CBR)

CBR = Births to a population in a period
Person - Years lived

It measures the fertility of the population as a whole, rather

than of that segment of the population biologically capable of

bearing children.

Due to lirni tations or di.s tortions of the CBR,we need to use

other rreasures of fertility.

General Fertility Rate (GF.~

GFR =
Numberof birL~ in -a period
Total number of won-en of child-bearing
age-span

Age Specific Fertility Rate (ASFR)

ASFR
Births in a period to worren in a specific age
interval=
Person-years lived in this age interval

= births per womanper year in the specific
age interval
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Total Fertility Rate (TFR)

TFR = Average nurrber of births per womanthat would

occur to a hypothetical cohort of warren subject
through its life to the given fertility schedule.

= Sum of ASFRover all the age intervals.

Notations

Let

f. = Births per woman-year in the i th age interval
1

N- =
W =
B =

Nunbe r of warren in the i th age interval
• 'J....

Total popul at ion of both se)(es
Total number of warren in the child bearing age.

Total number of births

w. =
1

w. /c. _ 1

1 - "1r

and
w.

c~ _ 1

1 -W-

Therefore

CBR B
-N

. W._ f.
I 1 1=
i N

= L: c· f.
i 1 1

GFR B
=W

w. f.
L: 1 1 1: c~ f.= =
1. W 1 1 1

(3 f.TFR = L: 1
i=x

(1.15)

(1.16)

(1.17)

(1.18)

where c and S are the Io-e r and upper Limit.s of the child··bearing
__pg~ span~ __
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Suppose ex = 15 and S = 50, then in a 5-year age interval, we
have

7
TFR = 5 I f.

i=l 1

(1.19)

In the continuous case

CBR = 18 C(x)f(x)dx
~

(1.20)

GFR = 18 C*(x)f(x)dx
ex

(1.21)

and

TFR = 18 f(x)dx.
ex

(1.22)

Gross Reproduction Rate (GRR)

The gross reproduction rate is identical to total fertility

except that it sums female bi rths only, so that it Indi.ccates

the total nurrber of daughters that would be born. So GRRis

the number of female children per womansubject to given fertility
schedule from ex to 8.

Thus

GRR = l: ASFR (females)

= TFR female bi rths
. female birthS + male births

(1.23)

If for every 100 females there are 106 males,

then

GRR = TFR. 100
100 + 106

TFR=
2.06

(1. 24)

GRR= 1, implies that the females will be replacing themselves.
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Relationship between total fertility rate and general
fertili ty rate.

Let 1 a I be a uniform random variable within the interval a.

and S. So the dis tribution of 1 a I can be written as

h(a) 1=--S- a. a. < a < S

= 0, otherwise. (1.25)

If f(a) and c=t a) are functions of age, then they are also

random variables with expectations

E [f(a)] = IS f(a)h(a)da
ex

1 IS f(a)da
ex

(1.26)=
S-a

and

E [c*(a)] = IS c*(a)h(a)da
a.

= 1
S-CL

IS c*(a) da
CL

(1. 27)

Further

E r ff a) c*(a)] = [/ f(a)c*(a)hCa)da

c ~ IS f(a)c*(a)da
IJ-a CL

(1. 28)

Therefore correlation coefficient between f(a) and c*(a) is given

by

rf * = E [ f(a)c*(a) 1 - E [ f(a) l ' E[c*(a)l
.c uf ac*

I ;e . ,

1 ~8 f(a)c*(a)da - ~ &S f(a)da &8 c*(a)da
rf * 8-CL ( B-ex)

.c =
af ac
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B1
&. f(a)c*(a)da - . ~) ~8 f(a)dCl. r/ c*(a)da

(8 - ex) CJf CJc*
(1. 29)

This implies that

= fB f(a)c*(a)da-ex
1 f8 f(a)da fB c*(a)da

8-cx ex ex

= GFR - 1 TFRf3-cx (1.~)

using (1.21) and (1.22) and the fact that

fB c*(a)da = 1
ex

(1. 31)

Therefore

GFR = TFR
+ (B - ex) rf * of CJ *8-cx .C C

(1.32)

Net Reproduction Rate

Let mea) be the proportion of wonen at age 'a' who bear

a female child. Thus the gross reproductive rate can nCMbe
defined by

GRR = fB m(a)daex (1.33)

Let pea) be the proportion surviving from birth to age 'a'.

Thus the proportion of worren who sum ve to age 'a' and bear
a daughter is given by

~ (a) = p (a) mea) (1. 34)

Net Reproduction Rate (NRR) is defined as
\.

NRR = fB pea) m(a)da
·ex

(1.3Sa)

(1. 35b)

We may call
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pCa) ,
rnf a) ,

the schedule of survival

the schedule of matern i ty

and ¢ (a) , the schedule of net rnatemi ty.

If pea) is the probability of surviving from birth to

the rrean age of child hearing, then--
NRR = fS pea) . m(a)da

Ct

= pea) fS m(a)da
c

i.e. ,

NRR = pea) • GRR •

If mea) = constant, say k, then

GRR = fS mea)da
c

= fS k da
Ct

= k(S-Ct).

(1. 36)

(1. 37)

Other rreasures of fertility

Completed family s i ze : This indicates for a womanat the end

of her reproductive period, the total number of live births she

reports to have had.

Pari ty : The mnnber of children bom to a womanin the

different age-groups. Thus parity for a womanover SOyears

rreasures the conp l eted family size.
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rnAP1ER II

THE LI FE TABLE

2.1 Introduction

A life table is a device for exhibiting the mortality
history of an artificial population, called a cohort, as jt
gradually decreases in size until all. its members have died.

- t
A more general definition of a I life table is that it is

a device exhibiting the history of a hypothetical cohort
subject to attrition. The attrition could be death, cause of
death, marriage dissolution, in-migrants and out-migrants,
contraceptive failure, duration of breast-feeding, replacement
of buses due to deterioration etc.

For the case of death, we refer to age specific while in
contraceptive and migration, we talk of duration specific.
A life table can thus be a funct ion of duration for the case
of contraceptive failure and the like, while it is a function
of age for the case of death. Life tables that deal with age
intervals of one year are frequently referred to as complete life
tables, whereas those using longer intervals are called abridged
life tables.

2.2 Life table ftmctionsandtheir relationships

2.2.1 Survival ftmction £(x)

Let £ (x) or £ be the munber of survivors at age x, out
I ..', X

of the initial population size £(0). The initial group or
cohort is called a radix which is set equal to some arbitrary
constant, usually the powe r of 10 such as lCDO, 10,000, .100,000
etc. If, howeve r, the radix is set equal to uni ty , then Q, ex)

becomes the probability of an individual surviving up to age x.
Otherwise the proportion of survi vors at exact age x 15

..:p(x) __:: -- --- --.(LJ.J----~----
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The expected number of deaths in (x, x + 1) is given by

d = t - tx x x+l (2.2)

Thus the conditional probability that an individual dies at
age x + 1 given that he was alive at age x is

i
I

iThe probability that an individual at exact age x will not die
in (x, x + 1), i.e., will survive beyond age x + 1 is

(2.3a)

= (2.3b)

(2.4a)

(2.4b)

Thus we can express
tx
tx-l

2x-2
tx-3

to

Therefore the proportion surviving at age x is

p(x)

= PoPlP2 Px-3 Px-2 Px-l

x-I
= II P (2.6)y=o y

Alternatively, from (2.4b)

Px 2 = Q,
x ;;;+1

Px-l tx-I -. Q,
x
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etc
So

Thus
i

p(x) x= -
i
0

x-I
= If Pyy=o

The probability that a person of exact age x will
survive n years, is

i
= x+n (2.7)nPx ix

i.e.
ix+l z 1. ix+2 x+3 x+n

nPx =
i i ix+2 ix x+1 x+n-I

= PxPx+l Px+2 . . . Px+n-2 Px+n-1 (2.8)

The complement,
\

nqx = 1 - nPx
i .

1- x+n=
ix

i - X-
x x+n (2.9)=

X- x
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Now consider

n/qx Probability that a person aged x may die in
the nth year.

= Probability that a person aged x survives till
age (x+n-l) but dies in the age period
(x+n-l, x+n).

= P bCa person aged x survives for (n+L) years)TO
times the rTO~~ person aged x+n-l dies withln
one year.

Thus, by the compound probability theorem,
x.. 1x+n-

X.X

dx+n-l= X.
x

dx+n-l
X.x+n-l

X.x+n-l - x.x+n·
= x.

x
(2.10)

The probability that a person aged x will die between ages x+n
and x+n+m is denoted by

x.o/_x. ./x+n x+n+m
X.X (2.11)

From (2.2),
dx = X.x- X.x+l

Therefore
w

.L: d. =l=X 1 dx + d + d 2x+l x+ + ••• + d + dww-l \

=

+ •••. + (x.w-l - x.
w

)

R, vanishes
x

+ (X, - X, )-w co+I:

If w is the last age at which
i.e. ,

f), = 0
w
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Then
= 0

Therefore
w
E d.-i=x 1 I

w-l
L d.i=l 1

= (£ - £ 1) + (£ 1 - £ 2) + • • • + (£ , - £ )x x+ x+ x+ w-~ w

:: £
x

Thus
w-l
L d. = £i=x 1 X

(2.12)

2.2.2 Person -years lived

The number of person-years that £x persons, aged x are
expected to live through ex, x+l) is

x+1 £ dyL = !x x y ,

= !l tx+t dt
0

If deaths are assumed to be

(2.13)

uniformly distributed over the
y whole year or equivalently, if we assume the linecrity of 1x+t

for t £ (0, 1), then we get

Lx = !1! dto x+t

and
1 - t dx x (2.14 )

Thus
Lx = j i (1 - t d )dt

o x x

1= 1 - - d ./
X 2 x
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.-" .

R, . 1
- R, )= - "2 (R,x+1x 1).-

/,

1 (R,x + R,x+1) (2.1Sa)= 2

= ix+'! (2.1Sb)

1by applying formula (2.14) @id putting t - 2. Using the finite
difference technique) let

(2. 6)

Therefore
11 + ll) R, = R, + M,

x x x

(2.17)

(1 + ll) (1 + 1l)R,x

(2.18)

In general)
(2.19)

= i + t II R, to first differencex x :

= R, -tdx x
Therefore

Lx = b1 R,x+t dt

= 61 (R,x - t LlQ,x) dt

= t Q, - 1. t2 d
x 2 x
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1= "2 U'x + ix+ 1) j

as in (2.l5a).

The number of person-years that i persons, aged x arex
expected to Li ve through (x, x+n) is '

[x+n i '~

= d,Y i'
L '1nx x Y I

n dt (2.20)= -6 ix+t

An approximation to nLx based an numerical quadrature is given
by the formula

L nnX~-2(i +i )x x+n
n d d'

+ M (n x+n - n x-n) (2.21)

2.2.3 Total number of years lived Tx
The expected total number of years lived beyond exact

age x by i persons alive at that age isx

Where w is the highest age attained.
But

L = i + i + i 2 + •••W w w+l· w+
= 0

since

Therefore
T = L + LX x x+l + ••• + Lw-1 (2.22a)

w-x-l
= L L ..i=o X~l (2.22h)
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or simply
co

T "'.L: L .X 1"'0 X+1 (2.22c)

In the continuous case,

Tx '" jJJ s. dy
y=x y.

•r= dt'" 9.. .
o X"1"t

'" 600
i dtx+t (2.23).

For an n-year age interval,
L L LTx '" n x + n x+n + n x+2n + ••.
00 L

'" h~o n x+nh (2.24)

for fixed n '" 1, 2, 3, 4, 5 •..

The expression in (2.22) can be re-wri tten as follows:-

'" L + T 1x x+ (2.25)

Also (2.24) can be written as

L 00 L
Tx '" n x + h~l n x+nh

L'" n x + Tx+l (2.26)

2.2.4 The Force of ~10rtality
\-,

This is tile instanteneous death rate at exactly age x,
denoted by 11 Ex)'.
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Thus

l1(x) = lim
Ill-+o

t (x) - t (x+~x)
t (x) ti.x

1 lim= --
1(x) I1x-+o

t (x+~x) - t (x)
I1x

=
·1 ill,

(2.27a)- rex) ax
d (2.27b)= - d leg tx x

To express t(x) in terms of l1(x) , we integrate formula {2.27b)

and get

i.e. ,
t(y)

log = - lY l1(x)dx
t(o) J.

which implies :.w. - lY l1(x)dx ,t
= e ( .A

t(o) l...

l '\
i.e. ,

pfy) =
- lY l1(x)dx

(2.28)e

or

tCy) t(o)
- f~ 11 (x)dx

(2.29)= e

Since
ill,

x
dx cf 2.27a

•
it follows that

-ill, =t II dxx x x (2.30)

which is the number of deaths cccurr ing at the moment of

attaining age x (out of £. persons alive at that age). x
d£.

11 dx = X"x - -y-
x.

(2.31)
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represents the probability that a person of exact age x will
die at. that noment , Therefore ix+t llx+t dt represents the

•number of deaths occurring at that ~oment of age x+t.
Since dx is the number of deaths occurring between ages x and
x+l, it foll~s that

(2.32)

and
- 1 fl dqx - 0- i .•.+ ~ +t t"x 0 x+t, x+ •

(2.33a)

(2.33b)

We should note that tPx is the p;obability of a person aged x
surviving up to age x+t. The probability that having reached
age x+t , a person will die at that nonent is u +t dt. Thus the_ _ x _
probability that a person aged x will die a! mOment of age x+t

Pis t ~ ~ +t dt. Integrating this expression within the limits
v / x

t = 0 and t = 1, the result is the probability that ex) will
die within one year.
That is

1 P
q = f .' 11 +t dtx 0 t x x

as before (cf 2.33b) .
If the function tP' 11 t dt is integrated between the. x x+

limits 0 llild00, the result is the total probability that ex)
will die, which is a certainty.

Thus
= 1 {2.34)

Beyond the limit age there are no survivors and the value
Pof t x, where x+t >w, is zer~.

Therefore

= ~-x
0--

P 11 dt
t X -x+t - - --



If the limits be taken as t = n to t = n + 1, the result is

qx+n = n/l~

= jn+l p J.l dt.- . +tn t x x

1 jn+l d tx+t dt= --
t n ' dtx

t -~, .j;

= x+n x+n-J r
i .Ix

d i.. : (2.35)= x+n
tx

If the integration is from t = n to t = n+m then, we have

·n/mqx = mqx+n = jn+m p J.l dtn t, x x+t
i - tx+n x+n+m (2.36)= R,

x
Next, from .d t

J.lx = x
tx

or

if x = - d ix
we can deduce that

which implies that

~n ix+t J.lx+t dt = ~n d tx+t

= i - tx x+n
Therefore

1._-
ix

jn Q. " dto x+t "x+t ¥

=
t - R..x x+n Q= n LX.

tx
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By the stochastic approach Ch.i.ang' (1968), used the notion
of force of mortality to determine the probability of survival
as follows:-
Let

u (x) fix + a (Ax) = Probability of dying between age x
I

and x+~x (2.37)

P b (X ~ x) = F(x)ro _
= Prol.abi lity of dying at or before

age x (2,.38) .

So
F (x+ax) = Probability of dying at or before

age x+~

= Probability of dying at or before
age x or probability of living up to
age x and dying between ag~s
(x, x + Ax)

= F(x) + E1 - F(x)] .rJl(x)~x + O(~x)] (2.39

Therefore
lim
~-+o

F(x+~x) - F(x)
~ x

F' (x) = [1 - F(x) ] Jl(x)

i.e.,

dF(IX = [1 - Fex) ] II(x) (2.40)

Using the dummy variable t,

d 1::
d~ = ~ I-F(t) ] uIt) (2.41)

Therefore
d F/dt
1 - FCt)

= Jl(t)
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This implies

l.e.,

- In [I - F(xj J + In n ~F (0) ] = IX 11(t) dt
o

But
F (0) = 0

and
In 1 = 0

Therefore
- In [1 - F(x)] = 6x ll(t) dt

l..e.,

1 - F(x) :: e
X .

-! 11(t) dt
o (2.42)

Which is the probability of living up to age x from birth.

2.2.5 Estimation of force of mortality 11__________________________ ~r x

. I

Various fo~lae can be obtained for the approximate
value of 11x. Assuming.R.x to be a funct.ion of the fourth degree,
the value of 11x can be ex-pressed as follows:
Let

.£ ~ fa ~ b x "+ cx2 + d x3 + e x4
x

¥here <1" b, c , d and e are constants.
(2.43)

'Then

d ~\
._-.wc 7 3.;: b"+ lex ~ 3d.-x- + 4ex
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when x = 0,

.d£o
dx =b

Also

£_1 = a - b + C - d + e

£+1 = a + b + c + d + e
•

Therefore
2b - 2d

Next
t_2 = a - 2b + 4c - 8d + 16e

and
£+2 = a + 2b + 4c + 8d + 16e

Therefore
~ - ~ = - 4b - 16d-2 +2

Therefore

Whence
1 d t

0llo = --
to dx

1 b= --
~
0

12b
= - -129-

o -,

=
8(9-_1- 2+1) - (9-_2- 9-+2)

12£
o

(2.42)

=
8(9-_1 - to + to - £+1) - (£_2 - £_1 + t_l - 9-~

12£o
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Therefore also,

llX =

=
7(d_l + do) + (d_l+do) - (d_Z~~-l - t+Z)

lZt ~
o

7(d_l+do) + (~-l-to) + (to-tl) - (d_Z+t_l-t+Z)
lZto

7(d_l+do) + (t_1-t1) - (d_Z+t_l - t+Z)
lZto

=

=

=
7(d_l + do) - tl - d_Z + t+Z

lZto

=
7(d_l + do) - (d_Z + tl - t+Z)

1Zto
7(d_l + do) - (d_Z + d+l)

1Zto
(Z.43)=

8(~x-l - ~x+l) - (tx-z - tx+Z)
12tx

(Z.44)

=
7(dx~1 + dx) - (dx-Z+dx+l)

12tx

(2.45)

Using Taylor's expansion on t , thenx
, h2 -> h3 '"t +h = t + M + -)tv + -- tx +.x x x 2! x 3!

and

(2.46)

Therefore

+ • • •

3
£ - ~ ::::2h~" + ~ !l ' , ,x+h x-h x 3 x (2.47)
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Assuming that £' I I and higher order differential coefficientx
are negligible, on putting h = 1, then

2£-'
x (2.48)

This implies

J.lx =

(£. 1 .~9.) + (£ - £1)x- x x x+= 2 £x

d 1 + d
= x- x x > 1,

2 £x

(2.49)

(2.50)

A better approximation to J.lx i3 obtained on retaining terms
up to fourth order differential coefficient of £ andx
neglecting higher orderdiff8rentia1 coefficients.
Thus on putting h = 1 and h = 2 respectively in (2.47), we get

(2.51)

and
I 8 I I I£ £ 2 = 4£- + - £-x+2 - x- x 3 x (2.52)

Eliminating £~" between these equations, multiply (2.51)
by 8 and subtract the result from (2.52) i.e.,

8 " i+ - £-
3 x

-,

£ - £x+2 x-2
-8- III-£3 x (1.53)
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Therefore
1-' 12£ 'x xllx = - -£-
x

= - 12£x

8(1x-:l ~.1 ·1) - (1 2 ~ £ 2)x+ x- x-= 12 1x

as in (2.44).

Other approximate expressions can be obtained from the
relation connecting the differential operator with tre finite
difference operator ts:

t:.2 t:.3D = log(l + t:.) = t:. - -2- + 3 (2.54)

Thus
dt1 xllx = --

1 dxx

1 D£= --
1x x

1= --
X-
x

1 1 1 2 ) (2.56)= - (d - - t:. d +-t:. d - . . .
1 x 2 x 3 xx

Alternatively

1 2 1 3= - (t:. log 1x - - t:. log 1 + - ~ log £ - • • • )2 x 3 x

112= colog P - - t:. colog P + - t:. colog P
x 2 x 3 x

(2.57)
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We have shown in (2.29), that

x
- jo 1..1y d~y

i = ie-x 0

Therefore

Then

- jx+n - dv1..1y -.
i = i e o -

x+n 0

i
I

i rnPx = x+n
ix i

I

I

i - jx+n 1..1 dye o -y
0

=

;I

= jx+n d-- 1..1 Y
e x Y (2.58)

Let y = x + t

This implies that

t = Y - x

and

dt = dy

Therefore when y = x, t = 0

and when y = x+n, t = n

Therefore
n

- j 1..1 +t dt
= e 0 x (2.59)

Now, when n = 1,
fl dt- 1..1x+t

= e 0 (2.60)

Taking Iogar.i thrns, we have

1log p(x) = - f 1..1x+tdt
___ ..'___ _ 0 __ __-__
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The definite integral

the ages x and x + 1.
11 -; we have•..x + .~ '

represents the mean value of u between

If we approximate this mean value by

If we integrate between t == - 1 and t = 1, we find

1
£1 ).lx+t dt = - log PX-'l - log Px (2.61)

and this is twice the mean value of u between the ages X'- 1 and

x+l. This leads to the following approximation:

(2.62)

(2.63)

2.2.6 Laws of Mortality

Wenow wish to express the relation (2.29) for various

types of force of mortality ).l(x). Abraham De Moivre (1725)

proposed a very simple law of mortality, namely

II(x) 1 (2.64 )
w-x

Therefore

£(y) = £(0) e
- JY llCx)dx

o
(2.29)

becorres

:Y _1_ dx
£(y) = £(0) e 0 w-x

log w-J Yo
=£(o)e I

= 1(0) e
w-v100' ---'-

b W
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i.e.,

R. (y) = Leo) (e-y)
i w (2.65a)

= k(w-y) (2.65b)

,
where k is a constant and w is the highest attainable age.

The most famous mathematical express ion of the force of

mor-tat i ty is the Gompertz-Makehamfonnu1a. In a paper on "the
"Law of HumanMortality Benj ainin Gompertz (1825) attributed

death to either of two causes:

1. due to chance

2. deterioration of the power to withstand cl~struction.

In deriving his law of mortality, however, he considered only

the second cause and stipulated that "man's power to resist

death decreases at a rate proportional to the power itse1£'.
Since ~(x) is a measure of man's susceptibility to death,

Gompertz used

R(x) (2.66)

as a measure of man's resistance to death. He then translated

his postulation into the differential equation

d-ax R(x) = - hR(x) (2.67)

where h is a positive constant.
Solving (2.67) we get

S .1 k· Rex) dx = f - h dx
R(x)

which impli es

log Rex) - hx + kc i.e. ,

R(x) -hx + k= e
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i.e. ,

1 ' - hx + k=lilx) e-

Therefore
IIex) hx - k= e

- k hx= e e i
= B eX l

!where B and e are parameters (constants).
i

(2.68)

So
- fY Bex dx

.t,(Y) = .t,(o) e a

- B fY eX dx
= .t(o) e 0 (2.69)

Let

then
log Z = X log e

Thus

~ log Z = log C

i.e. ,

1 dz
Z dx = log e

Therefore
dzdx = z log e

Therefore, from (2.69), .

c
fY eX dx eY

= f
0 z=l

= fY
1

z • d z
z log e

d z
log C

cY - 1
-- --. log C
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Therefore (2.69) becomes

iCy) = iCo)

= iCo)

= iCo) exp (- _B_ )CY exp _B_,
log C , log C

I
'f'
'I

B ,I,'g = exp - log C i

'I

Let

and

B
k = iCo) exp log C

Then (2.69) becomes

'Y
iCy) = k gC

Makeharn (1860) suggested the modification

~(X) = A + BCx

(2.70)

(2.7l)

(2.72)

(2.73)

(2.74)

to restore the missing component "chance" to the Gompertz

fOTImlla.

So
iCy) =

- rY (A+B~)dx
iCo) e 0

= i (0) e
- rY Adx

o e

Ay - rY B~dx
= iCo) e e 0

- Ay - rY B~dx
= e i (0) eO.

Using (2.69) and (2.73) and letting

- AS = e

then (2.75) becomesc
iCy)

, y cY
;;: K S' g

{2.75)

(2.76)



2.23

For

1J (x) = A + Hx + BCx (2.77)

£(y) = £(0) exp [ - JY (A + Hx + B~) dx ]
0

£(0)
-

CAy+ !:! y2 + JY B~ dxj= exp [
·20

= £ Co) exp f - bY B~ dx J exp r .•...Ay _ ~ y2 ]

Y H 2C -Ay --2Y= kg e e

(2.78)

where
- H/2

u = e (2.79)

and the other parameters are as have been defined before.

In 1932, in the Journal of the Institute of Actuaries,

Perk proposed to modify the Gompertz - ~1akehamformula to

1 + BCx
II(x) = (2.80)

1 + nee
Remark: Gompertz - type laws are primarily fitting with

adult ages and not for infant and child mortality.

About ~870 Oppermann suggested a formula for graduation
of infant and childhood mortality. He defined

ll(X) = 2..-. + b + clX;;-
or in terms of the continuous survivorship function

(2.81)
\

3/2log £Cx) = AI:X + Bx + ex (2.82)

where log could be either the natural Logarithmi c function or log10
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Using the method of unweighted Least equares teclmiques, we

have the following normal equations

KLx. + m: x. 3/2 + C L 2 = L rx:- log i (x, ) (2.o-S i)x·
i 1 1 1 i 1 ill

A'£,x~/2+ B L x~/2 + C L x.5/2 = L x. log i (x.) (2.83ii)
1 1 i 1 i 1 ill

PJ:, 2 + B ~ x.5/2 3 3/2 (2.83ii~jx· + C L x. = ~ xi log i(xi)1 1 1 1 i 1 1

Thiele (1872) was of the~inion that such formulae should
take into aCCOl.IDtthe di ffe rences in mortality behaviour during

the major epochs of life. Thus he wanted to partition the
survivorship curve into three components.

For childhood he used the formula

(2.84 )

For adult ages,

112(x)
. 1 2 2= a eXD(- - b (x-c) )

2' 2 2
(2.85)

and for old ages, the formula is

(2.86 )

The formula meant for graduation of mortality throughout all

ages was written

u Ix) = 111(x) + 112(x) + 113(x) (2.87)

For studies of life span of materials, Weibull (1939)

recommended

a-I11(x) = flax (2.88)

where u and a are constants.

( Therefore the survival function

y a-I- f ua x dx
iCy) = i(o) e 0

a- lJY= Z(o) e (2.89) .
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Weibull distribution is extensively used in reliability theory.

If

u (x) = u , constant

then
- fY u dx

~(y) = i(o) e 0

= i (0) e - ~Y

(2.90)

(:.91)
'which plays a central role in the problem of life testing.

According to the Landnhl model,

~(x) = P
l+kx

(2.92)

where p and k are parameters representing the combined effects

of all "risks which may result in death.

Therefore
-fY~ dx

iCy) = i(o) e o l+kx

- P/k log(l+k y)
= iCo) e

i(o) 1=
Cl+ky)p/k

(2.93)

2.2.7 Expectation of Life

Weknow that the total probability that a person aged x

will die is a certainty.

That is

Q - fro F 11 dt = 1
x - 0 t x "x+t

as shown in formula (2.34).

The function tPx ~x+t dt is the p-obab iLi ty that a person aged x
will die at norren t of age x+t . This function is a probability

density. 'Therefore its expectation is given by
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--'

0 00 p .
e = f t t~x llx+tdtx 0

foo t
R.x+t

llx+t dt= .
0 R.

x

1 00

llx+t dt= -- f t . R.
R. 0 x+t
x

(2.94 )

, d R.1 00 1: x+t] dt= -f t • R.x+t -[--
R. 0 R.x4t dtx .,

I
d R.x+t i

1 foo I

(2.95)= t dt'- --R. 0 dtx

Integrating by parts, let

v = t and du = dR.x+t

Therefore

dv = dt.. and u = R.x+t

Therefore (2.95) becorres

0 1 t • R.x+t
1

00 foo
ix+t dte = - --x R. 0x 0

1 o - foo R.x+t dt= - -- .R. 0x

1 I"') R. dt= --R. 0 x+t
x .,. -

Tx (2.96)= R.
x

which is the required relation.

2.2.8 Age Specific 10rtality Rate

This is the mortality rate for the speci.r.i c age group.

It is The ratio of the deaths recorded during a year to the mid-

year pcpul at i on . Thus the observed death rate n~lx is define d by
--.-.-- -- . ,.. - - - .-' ---- -'-
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Mnx
.Dn x= Knx

(2.97)

Dwhere n x is the number of deaths of people aged between
x and x+n and nKx is the mid-papulation for that age group.
The age specific mortality rate at exact age x is defined as
the force of mortality denoted by ~(x).
'!'11atis

lirn
IrJ-O

Using finite approximations, we
function i(a) by

. ~(x) = Mn x

i
~*/l (2.98)
.\

can e~ress the survival

- fa ~(x) dx
i(a) = i(o) e 0

- 1Mo - 1~ - lA~
= i(o) e

(2.99)
assuming linearity in one year age interval. ..

The life table central death rate 1S denoted by small rn.
That is

i - irn x x+nn x =
nLx

d
= n x (2.100)Ln x

In particular

rnx
d

=_x_
Lx

(2.101)

which is the number of deaths per person-years lived in
x, x+l

2.2.9 The relationship~ between nqx andnrnx
C Case 1: Using the notion of fraction of last years_QL.life.

Eadl of the ndx people who die during the interva]
..-Lx~.x±n)has Lived x conp lete-years .y Ius SOIre -Fra0tion---··'---'·-
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say' a'. So

a = Person-years lived by those who die in (x, x+n)
Number who die in ex, x+n)

=
L tn x - n. x+n
t - tx x+n

aCt - t + )x x n

.
\,-

L - n l R.=nx x+n

This implies

i.e. ,
L = a t + (n - a) t (2.102)nx x x+n

•From the definitions
t - tm x x+nnx =

nLx

and t - tnqx x x+n
tx

we get
L

n~ m n x (2.103)= nx .11.
x

Therefore
a t .+ .(n-q) tx+n

n~ m x= n x
tx

= [nmx (a +(n a) nPx]
rn [ a + (n - a)(1 - nqx)·]= nx
m (a + n . q - a + a . nqx)= n x - n nx
m [ n (n - a) nqx ]= n x -

= n. rn - m en - a) qnx nx nx
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Le. ,

Therefore
rnq n. n xn x = -----':..:...---

1 + (n-a) rnn x
(2.104)

n
a = 2

I
\

l
\

(2.105)

When

then
n rn

nqx = . n x

1 +!! rn
2
. n x

(2.106)

and further when
n = 1 (2.107)

then
II)c

qx =~-
l+-rn2 x

(2.108a)

(2.108b)

Case 2: Relationship between nqx aridnffixwhen the
survival function is linear

Let
R, = a+bxx

Therefore, by definition
(2.109)

i - R,
rn x x+nn x =

Ln x
R, - R,x x+n=---....:..:..~--

Jx+n d
x ky Y

-- - --- _.------- - - . - - -- ----- - - .-- -.- ..----~ ...
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(a+bx)- (a .f.·b(x + n))

Jx+n (a+by)dy
x

.; b n=
( b 2) Ix+naY+1Y -

x

- b n
=

( ) b. )2a x+n + - (x+n
2

b 2-ax--x
2

.. ...;'b- n
::::

b 2 2 b 2
a(x+n) + "2 (x" + 2JCIl+n) - a x - "2 x

- bri ..=

·...;b

a + b- (2x + n)
2

i.e. ,

mnx
... ...;b

(2.110)
bna+bx+--
2

Nex-t
£. - £.

nqx x x+n=
.9-
x

= '-bn
a + bx

But from (2.110)

C a + bx b b n= --- -
n~ 2

(2.111)
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which when substituted in (2.111), we get

- b n
b b n------

2n~

= n

=
2n. .mn x (2.112)
2 + n. mnx

Case 3: Relationship beh<Jeen nqx and nffix when the

survi val flU1ction is eiDonential

Let

Next

i
a+bx= ex

a+bx a+b(x+n)e - em =n x Jx+n a+bye dy
x

a+bx a+b(x+n)e e
= . a+by Ix+ne-b x

= dea+bx _ ea+b(X~

a+b (x+n) a+bxe e

- b

i - £
nqx

x x+n=
£,
x

a+bx a+b(x+n)e - e=
a+bxe

1 - bne

(2.113)

Then

(2.114)

(2.115)



i.e. ,

Therefore

Case 2:

£2 d£x x co £y dy= --- - J
£2 dx x
x

~

1
..d!. -., x co= - 1 •.. - 'J l'y dy£ dx xx

2x

d
dx

, T
e
x
o = - 1 +]..1 _x_

x £
x

= - 1 +]..1 eOx x

+ 1 o=]..1 ex xdx

l
l
I
'1

(2.117)

Relationship between the central death rate ~ and
the force of mort.ality ]..Ix.

By definition,
the central death rate is

dx
---mx Lx

and the force of mortality is

Also

d!x
dx

d= - -- log idx x
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Therefore

dL x = ~l ~ ~x+t dtdx
i.e. ,

d Lx
dx

= - (~ -x

= - dx

Dividing both sides by L we getx

1 dL dx x
L cr; = --r; = - mxx

Therefo~e
1

dLx = -Lx
mdx x

or
= d log Lxm -_.

x dx

Assuming linearity,

cf (2.1Sa)

Then
dm = - - log ~ A

IX dx x+ :!

= l1x+ l.
2

by definition of llx'

•

(2.118)

(2.119)

(2.120)

(2.121)
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ffiAPTER 3

THESTABLEPOPULATIQ\J

3.1 Birth rate,Death rate and Age distribution in general:

Suppose n(a,t) is the number of persons at age a and

time t. If N(t) is the total number of persons at tine

t , then the proportion of persons at age a and tine t is

c(a,t) = nea,t)
N(t)

(3.1)

Next, consider a female population whose annual death rate
at age a and tine t is denoted by ]..l(a,t). So the nunber of

deaths at age a and time t is n(a,t)x]..l(a,t). The total number of

deaths for all ages at tirre t is therefore

D(t) w= f 0 nf a, t) )J{a, t) da (3.2)

Simi Lar Iy , if the annual rate of bearing a female child at
age a and time t is denoted by mea,t) , then the total

number of births at tine t is

B(t) w= f n(a,t) m(a,t) dao
(3.3)

Formula (3.3) can be expressed in another way as follows:

Suppose p(a,t) is the

birth up to age a at time t.

age a and tire t must be the
ago.

probability of surviving from

Then the number of persons at

survivors of births (t-a) years

Therefore
JINIyERSITy, 0 ~

LIBRaRy;

n(a,t) = B(t-a) p(a,t)

QBJ
\

(3•.1)

. So fonnula (3.3) can be expressed as

Bet) = w6 Bet-a) p(a,t) m(a,~) da
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= &S B(t-a) p(a,t) m(a,t) da (3.5)

where a and S are the Lower and upper Li.mi ts of child-
bearing.

Wenow wish to determine crude death and birth rates

using formulae (3.2) and (3.3). Crude death rate at tire t
is defined as

d(t) = Q[!l
N(t)

= i'i n(C')2 l1(a, t) dao N t

= f~ c(a,t) l1(a,t) da (3.6)

Crude birth rate at time t is

bet) = B(t)jN(t)

= fW n(a, t) m(a,t) da
0 N(t)

= fW c(a,t) m(a,t) da(0 (3.7)

3.2 The concept of a stable Population:

Lopez (1967) showed that two populat ions with the sane

sequence of fertility and mortality schedules over a long

period of tire, but with different age distributions a long

tire ago, have the sane current age distribution.

Alternatively, the age distribution of a closed
population is determined by the hi story of its fertility

and mortality in the recent past and does not depend on age

distribution or fertility and mortality in the remote past.
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Defini tion: A population that is established by a
prolonged regime of unchanging fertility and mortality is called

a stable population.

So, a stable population has a fixed age compos i t.ion,

constant birth and death rates and hence a constant rate of

increase. In other words, age distribution, birth rate, death

rate and the rate of increase are independent of tire. So.
f-
l
'\

\
1
I
1

g(a, t) = c(a)

bet) = b
and

d(t) = d

Thus the birth rate is

wb = f c(a) mea) dao (3.8)

and the death rate is

wd = fo c(a) ~ (a) da (3~9)

With fixed age composition, birth and death rates are constant;

and the difference between them, which in a closed population

is the rate of increase, is also constant. That is

b - d F r (3.10)

The total m.unberof persons is

N(t) = N(O)ert (3.11)

Because of constant birth and death rates, the armual-nurnber
of births and deaths fo l Io, similar ro\t!lS. _
That is

B(t) = B(O)ert (3.12)
and

D(t) = D(O)ert (3.13)
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3.3 Relations in Stable Papulation:

From (3.1) and (3.4)

C(a, t) :: n(a, t)
N(t)

But by definition of birth rate,

= B(t-a) p (a,t)
N(t) i

+
~(t(a~
\ N t
i
I
I

= B(t-a)
Net-a) p (a, t)

B(t-a)

N(t-a)
= bet-a)

Therefore

( ) _ Net-a) )c a,t - bet-a) N(t) p(a,t (3.14)

If a population is grcwing at the rate 'r', then the

population size at time t can be expressed in terms of the

populaticn size 'a' years ago as

N(t) ra= N(t-a)e

which implies

N(t-a) = N(t)e-ra

Substituti~g (3.l5b) into (3.14) we get

c(a, t) -ra= b(t-a)e p(a,t)

(3.15a)

(3.1Sb)

(3.16)

But in a stable population, mortality, fertility and age
distribution are independent of t irre t , So (3.16) becomes

Ieea) = be -ra pea) I (3.17)

This implies
-r~

be- a P (Q) cia
..•_--- .--- ----.- .. -
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l.e. ,
W -ra1 = b f e pea) dao

which implies

,I b = 1/f~ e -ra pea) cia I (3.18)

using the expression (3.8) in section 3.2 for birth rate

and formula (3.17) then,

b = fW c(a) mea) daa

= f~ be-ra ~(a) mCa) da
i.e. ,

.1.1 ~f~ e-rapea) mea) da [ . (3.19)

which is known as the characteristic equation of the stable

population.

3.4 Stationary Population:

A special- case of a stable population is when the rate

of increase is zero. Then we have a zero growth population

which is also known as a staticnary population. In a st.at ionary

population, the total number of persons is the SaJI'Bevery
year. This is so because the number of births is the same

so the number of deaths. A life table is a stationary

population. So when

r· = 0 ,
c(a) = b pea)

b = 1
Wf p(a)daa .

(3.20)
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= 1

1 6w £(a)daT[O)

1=
1

To'£(0)

1 (3.21)= --0eo i
1,

where I'
'\
i

tea) = survivors at age a

t(o) = the initial cohort

T = total population
0

0 expectation of life at birthe =
0

Next, since from formula (3.10),

b-d = r J

then b = d (for r = 0) (3.22)

3.5 Five-year Age-intervals:

Let SCa be the age distribution between exact ages 5

and a+S. Then

C = Ja+S c(x)dx5 a a

= Ja+5 be-rx p(x)dx
a

= r+S be-rx £ (x) dx
a £(0)

= ~ Ja+5 e-rx £(x)dx£(0) a
o -rx

Now, let us replace x in e by the mid-value between a

and a+S wh.ich is a+2.S. Then

- ------- -------.-.. -"- -.- --
..---- ",--,. ----.-- .... -
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b:::--
i (0)

fa+5 e-r(a+2.S) i(x)dx
a

= b e-r(a+2.S) fa+S i{x)dx
i(o) a

b= ;
i (0)

e-r(a+2.S) SLa

\
where SLa ~s the pe rson-years lived ~ctween
Formrl.a (3.23) Inp Ii.es that I

i·
I
I

W w -r(a+2.S)
f 0 SCa da « b foe

But

Therefore
b ::: 1

Therefore

In the discrete form

1

and

r '

C :::b e-r(a+2.S)
5 a =

(3.23)

ages a and a+S.

-r(a+2.S) SLe a
~ e-r(a+2 .5)SLa

a=o

(3.24)

.(3.25)

(3.26)

. (3.27)

Next, given proportions of two five-year-age intervals,
say SCa and SCy' hO\ITdo we determine the rate of increase
and birth rate?

-. _. ~----.-. -.-- _. ----.,.... , - -- ~- - -~ -.---.- -."- - ..-------------, ..---
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Consider

e-r(x+2.s) sLx
~ -------------~~----

~ e-r(x+2.s) sLx
x=o

y~o e-r(y+2.s) sLy

e-r(y+2 .5) SLy

= r(y-x) sLxe
sly i

l'.
"';~ich il(plies that I

'\
\

Sex
\

1 1n
sly

(3".28)r ~
y-x SCy SLx

Birth rate b can be obtained by substituting this value of r

into the fonnula (3.24) or (3.26) where 'a' can be replaced

by x or y.

3.6 Determining the Intrinsic rate of increase

The intrinsic rate of natural increase, is the growth

rate attained by a population under a fixed reg irre of

survivership and fertility; that is, it is the growth rate
. of a stable population.

A mmbe r of ways are avai lable for calculating this

rate, whose inter-relatibn throes light on the process by
which a population grows.

Fundamerrta.lIy , the problem of determining the intrinsic

rate is trying to solve the characteristic equation o~ a

stable population by nunerical rrethods , Such solutions

have been sought by Lotka (1925), Coale (1957), Pollard (J970),
McCann(1973) and Keyfitz (1975).

Weshall show the t.echniques used by Lotka and Coale

in trii s text.

- - .. - -.,. ....-- -.- - ...~---.--.---- --
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Lotka's Method

The characteristic equation is given by fonnula

(3.19) as

W +ra .I". e pea) m(a)da = 1
01

which is equivalent to

8 -ra .
,f e pea) m(a)da = 1
a

Net Reproductive Rate is defined by

NRR = f8 pea) m(a)da
a

which implies

1 = f8 pea) mea) da
a NRR

(3.29)

So we can look at pea) m(a)/NRR as a probability density

function.
Define

R = f8 an pea) m(a)dan a'-I
(3.30)

Then

R = f8 p(a)m(a)da = NRRo a

R1 = ~S a pea) m(a)da

and

Rz = ~8 a2 pea) m(a)da

Divide the characte ri st ic equation by Ro. So we have
-ra

fS e p(a)m(s)da = _1_ (3.31)
a Ro Ro

This implies

= - 1n Ro
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Expanding -ra h . 2 he up to t e tenn ill r , we ave

In t G - ra + r2/2 J p(a~m(aJ
o

da ~ _ In R
o

L,e , ,

In, '[£B p(a)m(a)da: .: r lB " a 2(a)m(a)da + L B 2 '" "
v. R ex R 2 ~ a p(a)~(a)d

o 0

L,e , )

tl = -
J
i

[
" 2 2 2 ] ,:

In I - IV + + (u + 0) = "-In Ro (3.32)

Applying the expansion.

In (1 + y) = y _ ~ + y3 _ ~
234 + -

equation (3.32)becorres

i 2 2r u +~-- (u + 0 )
2

= - In Ro

which implies

2
O2 r2 - ur + 111 R ~ 0

(I ,

Therefore

(3.33)

Altemati veIy ,
lnR a (3.34)

2
1 " (]

II - - r
2

which call be solved iteratively by denoting the 'r' on the

left hand side of (3.34) by rn+l and the other by rn.

Thus we have

rn+l = ,/
--l-1' - --r-2 n

lnR o (3.35)
-- -. - .--. --- --- -- .._._---....-----._---
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for n = 1, 2, 3, •.•

Coale 's ~thod

Coale used the notion of the mean length of female

generation T which is the m.nnber of years required to multiply

the stable population by the ~verage ratio of daughters
to mother (NRR). That; is

rTe = NRR

Therefore

r = In NRR
T

(3.36)

The problem is nCMto determine T.

Let
f8

m = Ct. am(a)da

f8 m(a)da
Ct.

age of child-bearing in

(3.37)

which is the mean a cohort subject
to no mortali ty .

f8
= Ct. a p(a)m(a)da~l

8
f p(a)m(a)da
Ct.

which is the mean age of child-bearing when mortality is
taken into account.

f8 -ra
Ct. a e p(a)m(a)da

. (3.39)=
f8 -ra
Ct. e p(a)m(a)da

is the mean age of child-bearing in a stable population.
Expanding e-ra in the numerator and denominator of formul a

(3.39) , we have

~Ba [1 - ra +

2 2
r a ]2 + ••• p(a)m(a]da

;8 fll - ra +
Ct. _

2 2r a
2

+ ••• j p (a) m(a) da



3.12
--'

=

2 3r r11.- Rz r + ~-2- - R4 3I + ..•

r2 r3
R -Rlr+1L-.--R-+o --l, 2 3 3 ~

.~ Rz R3 2 R4 r3r~- -r +~ ---- .. 3'" +
R R R Z R
0 0 0 0=

z
RI Rz

1 - - r +R Ro 0

2
r

By long division,

r + t:: -
(3.40a)

(3.40b)

where

JS n= a., f(a)da
a

= JS an p (a)m(a) da
a R

0

the nth monen t.

If we let

Al = "i = E(a)

2 2AZ = f.lZ - fll = E(a - fl1)

.• 3
A3 = fl3 - 3f.iZf.i1 + Zf.if = E(a - fl1)

etc.
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then,

(3.4Oc)

-
Alternatively, a$ can be expressed as

a~s -

IS -raa ae p(a)m(a)/Ro da

IS -raex e p(a)m(a)/Ro da t
t
I

= - ~r In o~S e
o
-ra p (a)m(~)/Ro da

= d S -raIn I e f(a)da
dr ex

(3.41)

where

f(a) = p(a)m(a)/Ro

which is a probability density funct.i on,

So IS e+ra f(a)da is a morrent generating funct ion of r.

Tak~g its log, we have a cumulant generating fuact ion.

Expanding e-ra then

d
a = --s dr

2 a2
- ra + r

2
..J f(a)da

d\". r2 r3 l= - --ar- In Ll - III r + ll2 -2- - "s 3T + ••• J
Using the fact that

r.2 y3 y4In (l+y) = Y - 2 + --3--- ~ +

then

da = --s dr

---_._. --- ~.. - -.- ..•...-.- -".- .-...._.--_ .. _---.-.- ..
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as in (3.4Cb)

~.r
I-

as in (3. 40c):
I 2(- r)

1n
where A' (n > 1, 2, 3, ... ) is the coefficient ofn

usually knoen as the nth CtmIulant of the net fertility

schedule.

Wealso notice that

a. = - ~ In 18 e-ra p(a)m(a)da
s ~ a ~

= d In _1_
dr R

o
characteristic equationbecause of the

18 e-ra p(a)m(a)da = 1
a

Therefore

a.s
=_d_

dr In Ro. ,

i.e. ,

= I a. dr
5

i.e. ,
R = era dr

o s
i.e. J

NRR = I a dre .S

But NRRis als 0 given by

-- --- ---.- ..--.' -,._-.--- - --- - -
- .---~-.. '.- ~- ---- . - ~.-
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Therefore

r T = f as dr (3.42)

L.e , ,

Therefore

(3.43)

Therefore
1n NRRr =

T

(3.44)

Weshould note that (3.44) is equivalent to (3.34) for

Al and A2 are the mean u and various ci respectively.

In the iterative fashion, we write

n = r, 2~ $, .••

Coale used the first approximation as

r =1
1n NRR=---J.l

l
(3.45)

So
1n NRR

He let

= 0.8 (3.46)

._- __ - __ 0- __. ..-.__
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which he obtained from experimental data en various countries.

Therefore

r2 = Al - 0.8 In NRR
In NRR (3.47)

1n NRR

... ·1riNRR= ----:----- ).2
A ---I 2Al

.. 1n NRR=-------
Al (1 - 0.8 r2)

(3.48)

and in general

1n NRR In NRR=-------
111 (1 - 0.8 rn)

for n = 2, 3, 4, ...

Corollary:

The age distribution of a growing population is younger

than that of the life table.

Proof:

From (3. 40a)

Rl
< -- when r > O.Ro (3.49)

But ~
Ro

is the rrean age of a st at ionary pcpul.at icn .i ,e , of

-- - .-- -- --- ------.--
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a stable population withr equal to zero. The age distributions

of a growing stable population and that of a stationary

population is shownbelow:

t
C(a)

3.7
o

Haw the intrinsic rate of increaSe affectsbi~h rate,

a ~

death rate and age distribution.

Wewish to find howb, d and c(a) vary with r ,

(i) b = 1

fW e-ra p(a)da
o

Therefore

log b
NY -ra= - log f e p(a)da

o

d
dr log b = d log fW e-ra p(a)da- dr 0

L,e . ,

1 . db 1
b dr = -w----r-a---

f e p(a)da
o

NY -raf ae p(a)da
o

= as (as given in. 3.39) \.•

Therefore

d b
dr

(3. SO)

db
dT

> 0
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which implies that b is a non-decreasing function of r.

(ii) +rac(a) = b e pea)

Therefore

loge c(a) = loge b - ar + loge pea)
I

d . d
Therefore dr log c(a) = (- dr log b) - a

- a

-= as - a cf (3.50)
j

i.e. )

1
C(a)

dc(a)
dr

which implies

dc(a)
dr

= (as - a) c(a) (3.51)

So as r increases) c(a) increases for all ages less than as)

decreases for ages greater than a and does not change fors-a = a.s

(iii) d = /w d(a) u (a) da
a

Therefore

d d W
dr In d = dr In ~ c(a)~(a)da

i.e. ,

1
d

dd =
dr

1 JW dc(a) ~(a)da
o dr~"J C(2)1,l (a)da

o

i.e. )

1
d

dd
:::

dr
1 rW -

J (a - a)c(a)~(a)da
JW c(a)~Ca)da a s
a
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= 1 It as c(a)~(a)da - t a c(a)~(a)J
fW c(a)~ (a)da J
o

= a - as d

where

adr =

is the mean age of death.
Therefore

dd
dr (3.52)

For max. or min ,,

dd
dr = 0

which implies that -a = ad s
The second derivative is

= d(a - ad)2 + d(~ a - ~ a )s dr .s dr d (3.53)

But

~a =~
dr s dr

fw -raa e p(a)da
o

fW e-ra p (a)da
o
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=
fw 2 -ra ()d. a e p a a
o

W -raf e p(a)da
o

-2+ a
5

2 -2
= - a + a5 5

-2= a
5

2- a
5

(3.5£1)

where 0;. is the vari ance of the

Similarly)

,
stabld population

I
\

\
\
.\

d --adr 5
(3.55)

Therefore (3.5) becomes

d2 d d(a - - 2 r -2 (2) -2 2 j
dr2

= ad) + d (as- (ad - ad)5 5

d(as
- 2 [-2 -2 2 2 1 (3.56:= - ad) + d (as - ad) + (ad - as)

When as = ad then

d2 d 2 2 (3.57)= d (0d -':0'5)
dr2

So ad is - if 2 2maxirmrnlad < a
5

3.8 l\hat happens to two stable Populatioris under given

regimes of fertility and mortality schedules?

Theorem 3.1

Twostable populations with the sane moitali ty schedule

intersect at or about the mean of their mean ages.

_0- _ ...--------_.
~--- .--- --..--. - ~.-
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Proof:

c(a) -ra= b e pea)

If the two stable populations have age distributions c1(a) and

cZ(a), then

-r a
= bI e 1 p (a)

bZ e-rZa pea)
l
.~,

,I
\

- (r - ~ )al:Z (3.58)

At the intersection point,

Cl (a)

cZ(a)
= 1

i.e.,

~ e - (rl - rZ)a = 1
bZ

which implies that

a = 10~bI - log bZ
rl - rZ

(3.59)

where a the horizontal axis of the intersecting point.

But we knew from (3.50) that

db
dr

= a bs

which implies

1 d b
b dr

which further Inp Ii.es that

d
. dr Iogb = as
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Therefore

..
L.e , ,

a dr (3.60)s

t

I,
I

shO'~ in the diagram below,

r
\

is linear from rl to rZ as

a (r)s

then
r
2

_
J as dr = the area of the trapezium
Tl

(3.61)

From (3.60) and (3.61), we therefore have

whiCh implies that

=
log bZ - log bl

T2 - T1
(3.62)

Equating (3.59) and (3.62), we see that

a =

Hence the proof.

Theo:-em 3~2

1\"'-0 stable populations wi th a -constant c1i££ere1~_~__~~~ _
---mori<iilty-sciledules -at ali ag~;- co~;ncd\vi.th -tl~e-samefertility
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schedule, have the same age distribution.

Proof:

We know that

-ra
= b e- pea)

- fa l.l(x)dx,-ra 0
=be e _~I

,I-

\

'\

cCa)

Let

and

c2(a) -r a= b2 e 2 P2(a)

Further let

1.12(X) = 1.1l(x) + k

wherek is a constant.

Then

a-r a - f 1.1l(x)dx e -ak= b2 e 2 e
-r a -ak

= b2 e 2 PICa) e

Using the characteristic equation of the stable populations,

W -r a W -r a1= f e 1 PlCa)m(a)da = f e 2 P2(a)m(a)da
o 0

This implies that

-.r7a= e _ P2(a)

-------- .----
- ---- .. -
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i.e. ,

e +(rZ - rl)a = PZ(a)
PI (a)

-ale PI (a) -ak
= e = e

Plea)

This implies that

r --r = - kZ 1

I

l
t
1
\
I

L,e , ,

(3.63)
Therefore

-r a
= bZ e Z pz(a)

_ -(r - k)a- bZ e 1 PZ(a)

-(r - k)a -ale= bZ e 1 e PI (a)

-r a= bZ e 1 PI (a)

-r a
= bI e 1 PI (a)

= cI (a) (3.64)
So the two stable populations have the sane fertility

schedule,

So we have shewn a difference in mortality that would have

no effect on the stable age distribution.

- . - ..•....•.. _- .. ".-'- -- ---- - -~.-
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GIAPTER IV

A GENERALIZATION OF STABLE POPULATION RELATIONS

4.1 Relation between current popluation siZe and mortality
schedule wi th age dependent growth rate.

Let N(x) be the number of persons aged x, ~(x)

age specific mortality rate at exact {ge x, and r the
constant growth rate. .\

I
'I

the

In a stable population,

N(x)
, -rx= N(o) e p(x) (4.1)

where p(x) is the probability of surviving up to age x from

birth. ,

Differentiating (4.1) with respect to x , we get

dN
dx = N(o) l- re -TX p(x) -rx+ e

= N(o) [- re -rx p(x) + e -TX El!l ~J
p(x) dx

= N(o) [ - re -TX p(x) + e-rx p(x) ~ log p(x) J
= N(o) e-rx p(x) ~- r + ~ log P(X)~

= N(x) [ - r + ~ log p(x) ] (4.2)

But

lJ (x) 1 d t= - t(x) -ax-
d= - -ax log £(x)

d= - dx log

d
= - - leg

dx

qx) . l(o)
t(o)

~
l(o).
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d= - - log p(x)dx (4.3)

Therefore (4.2) becomes

d N r '1~ = N(x) L - r - u (x) J

which implies that

1 d N =, N(x) dx - T - II (x) (4.4)

. Thus the relative change in the number of persons at age x

diminishes at a rate of r + lJ(x).

Suppose now that the rate of increase is no longer a
constant, but rather a function of age. Then equation (4.4)

can be modified to

1 ddxN = - rex) - lJ(X)
N(x)

i.e. t

~ log N(x) = - rex) - lJ(x) (4.5)

If a ~ x $. a+n , then integrating (4.5), we have

log N(x) C' '"r~rex) - v(xJlx

a
which implies. that

log NCa+n)
N(a) = -

L,e , ,
a+n

N(a+n) = N(a) e- £: r(x)dx nPa (4.6)

where

J>a = e
fa+n (' dx- lJ x)
a (4.7)
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is the probability of surviving from age a to age a+n,

If . 0 ~ x ~ a, then we have
a- 6 T(x)dx

N(a) = N(o) e pea)

where
a- f l1(x'ldxo .J

pea) = e

is the probability of surviving from birth up to age a.

An alternative approach to obtaining the results
derived above, is as follows:-

Let N(X,t.): .be the ammber of persons aged x at time t.

Using the noti?fi of total differentials,

(4.8)

dN(a,t) = a N~:,t) da + ;t N(a,t)dt (4.9)

At tine t+dt , the m.unberof persons aged x at time t

who have died is

D(a,t) = N(a,t) - N(a+da, t+dt)

assuming closed population and the same cohort.
Re-arranging (4.lOa) , we get

- D(a,t) = NXa+da, t+dt) - N(a,t)

By the principle of differential calculuss if

df = f(x+h, y+h) - f(x,y)

then

df = h af + k afax ay

as (h , k) -+ O.

So (4.1Ob) becomes

D(a~tl = ~~ da +

(4. lOa)

(4.lOb)

(4.11)

(4.12)
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as da = dt ~ 0

Therefore
_ DCa, t) = (aN + aN) __ 1__

N(a,t)da \.aa at, N(a,t)

L,e , ,

1- jJ(a, t) = ---.,;~-
N(a,t)

aN 1-+---aa N(a, t)
l
'1.I
1
I

"

aN
at

But
1 aN

N(a,t) at = rea,t)

Therefore

-llea,t) = 1 aN + rea,t)
N(a,t) aa

i.e. ,

1 aN = _ r(a,t) - jJ(a,t)Nea, t) aa

L,e , ,

a- log N(a, t) = - rea, t) --u (a,t)aa
as in (4.5). The results in (4.6) and (4.8) follow by
Irrteg rat.ing this equation if a ~ x ~ a+n and if a ~ x ~ a
respecti V(: 1y •

4.2 Generalization of the equations characteristic of
stable population.

The birth rate of the population is

b = N(o},__
leD N(a)da
o

-~'-.~. -- ...-- - -~- ---- --_._----_.-_.
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= N(o)

, ~ fa r(x)da
~ N(o) e 0 p(a)da
o

1

, -;a r(a)da
Je 0 p(a)da
o

'The proportion of the population that is age a is

c(a) = N(o)
r N(a)da
o

a- 6 r(x)cWc= N(o) e pea)

. -r r(a)da
j N(o) e 0 p(a)da
o

=
- fa r(a)dx' pea)

e
a

foo e - ~ r(x)dx p(a)da
o
_ fa r(x)dx

= b e 0 pea)

The birth rate can also be represented as

b = fS c(a)m(a)da
a

aS - 6 r(x)dx
= f be p(a)m(a)da

ex

which implies that
a

B - 6 r(x)dx
1 = & e p(a)m(a)da

where mf a) is the rate of bearing female chi Idren-f rom

womenaged a.

(4.13)

(4.14)

C4. is)



- 4.6 -

4.3 Five - year age - groups.

For computational purposes, we shall consider S-year
age intervals along with sorre approximations. Proportion

of people between ages x and x+S is given by

- fa r(y)dv
= fX+S b e 0 -p(a)da

x
using formula (4.14).

(4.16)

The mid-point of x and x+S is x+2. S. So replace 'a' by
-fax+2.S in e 0 r(y)dy. So we have

_ Lx+2•S
= r+S be ? r(y)dy p(a)da

x

f~+2.5
= b e- 6 r(y)dy ?+S p(a)da

x

_r+2•5
= b e 0 r(y)dy SLx

to
(4.17).

where
L x+5

5 x = (x t(a)da

is the person-years lived between ages x and x+S

But

~+2.5 5 10 15
~ I(y)dy = ~ r(y)dy + { r(y)dy +lb r(y)dy + ... r (+2.S+x-Sr(y)dy+ r(y)'(

(4.18)

Assuming constant growth rates within the 5-year age interval

so that 5rx becomes the growth Tate between ages x and x+5,

then (4.18) can be re-wr i tten as
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...,
+ 5r2 + 5rx-5J + 2.5(5rx) (4.19)

Therefore
r r r r

C - 5(S 0+5 1 + .•• + S 2.5) + 2.S(5 x)
S x ~ b e (4.20)

c - f2,Sr(y)dy L
5 0 ~ b e 0 5 0

Roo

i

\
--I';
, J

t-
'\

I
I

From (4.17), we should note that

r- 2.5(5 0) L
= b e 5 0-ro (4.21)

To determine b , we sum (4.17) over x and get

VI
Lx=o

But

Therefore

b ~ 1 (4.22a)x+2.5
e - f r(y)dy SLx

to
w
rx=o

= 1

W- - r r r r r ]r" e - l5(S 0 + 5 5+ •..+5 2.5)+2-5(5 x) L
x=o 5xRoo

(4.22b)
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Therefore

r- 2.5(5 0) L
C e 5 05 0 ~ ------....;;...-=----._ rx+2•5

o r(y)d:y

(4.23<:1)

w [L: e
x=o

- 2.5 (5ro) T
e 5-'0

= -------------------------
:'l5(5ro+5~5+ .. +5r~..5)+2.5(5rx)] L

5 x
(4.23b)

w
- L: e
x=o

and

e (4.24a)

w
L:

x=o
e

... -.. [5 (sro+srs sT 5) 2 5 (sr ):1e + .~. + x- +. x'J 5Lx
(4.24=

w \ r r r r lr e - ls(5 0+5 5+.•. +5 x-5)+2.S(5 x)~ L
x=o 5 x

From two censuses, we can calculate the grovth rate

§ra simply by applying the f0TIlIUla

(4.25)

\\here tl and t2 are the periods censuses were taken. Note

that formula (4.25) is from the fact that the population at

tirre t growing at a rate r since x years ago

Le. ,
N(t) = N(t IT- x)e

which implies that

1 In N(t) (4.26 )r = -x t (t-oe)
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For the open interval, say age A and over denoted
+by A , we have

2- - e(A)r +
3 A T

A--ro-
(4.27a)

= (4.27b

where

e(A) = expectation of life at age A

rA+ = the intrinsic growth rate of increase for

ages A and over.

TA = the total population for those aged A and over.

i.e.,

TA
w= J 2. (a)da.

A

Wenow wish to detennine the ratio Tx and Tx
TS TlO

These ratios are useful in detecting age rrrrs-reporting.

From (4.23b) and (4.24b),

_[S(Sro+srs+ ••. +Srx-I)) +2.S(Srx)] L
e 5 x

r- 2.5(5 0) L
e 5 0

- [Z.5(Sro)+S(SrS+SrlO +••• + Srx-S)+2.S(Srx)J L \
= e 5 x

SLo

which implies that

2.S(Sro)+S(SrS+SrlO + .•• + Srx-S)+2.S(SYx)
e

=
(4.2-8)
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5LxOnce we have obtained a column of it is now a matter of adding
5Lo

.T
xthese values from bottom upwards to get ~.
o

Hence
Tx ='IS

T .TSx .
T" TS 0 S 0

(4.29)

and
T__ x.
I'S 0

From the office of Population Research, computerized tables of Tx
15

T
and ~ against mortality levels have been made for each region (i.e.

10
East, West, North and South) and sex, A graph of age against mortality
level is then plotte.d It is hypothesized tr~t if the graph is rising
then there is an indication of over-statement of age. If the graph is-
showing a downward trend then we have under-est imat ion of age. Horizontal
graph implies correct age statement.

4.4 Sin~_ate Mean Age at Marriage· (SMAM)

4.4.1 Derivation

The singulate mean at marriage (SMAM) is the mean age at first
marriage among those who ever marry.

U(a) = the number of single persons at age a
N(a) = the total number of persons Call marital condtt ions)

at age a.
Therefore, the proportion single at age a is

Sea) = UCa)NlaT (4.30)
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The proportion ever married at age a is

G(al = 1 - Sea) l4.311

Let g(a) be the first marriage rate. Therefore
a

G(a) = J g(x)dx (4.32)
o

The first marriage distribution functi0D can be constructed as

fea) = 'g(a)
a

J. g(x)dx
o

I,e , ,
f(a} ~' 'g(a)

i-sto
o < a < A (4.33)

. -- 0 , otherwise

So
A

E(a) = J af(a)da
o

i.e. ;
A

SMAM = 6 af(a)da
A

J ag(a)da
6= . A
J g(a)da
o

Ar ag(a)da
o- ------- (4.34 )
1 .". SeA)

where A is the greatest age of the first marriage.
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Integrating by parts; i.e. letting

implies

Then

Therefore

u = a and dv = g(a)da

du = da and v -= fgCa}da = G(a}

A
f 'agCa)da
o

s.1AM =

lA A
= uv ," f GCalda

o . 0 '

aG(a)I
A A

-= f G(a)da
, 0 0

A
= AG(A) - ! G(a)da

0

= AfI:-S(~ - t~-s(a2.lda
= A-AS(A) - [A - ts(a)daI

A= A-AS (A) - A + ! S(a)da
o

A
- ! S(a)da - AS(A)

o
A
! S(a)da - AS(A)
o (4.35)

1 -.S(A)

Let d be the earliest age of marriage, then

But

SMAM =

a A
! S(a)da + J S(a)da - AS(A)
o d

1- SCA)

Sea) = 1 for 0 < a < d
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SMAM :::

A
d + ! Sea) da - AS(A)

o (4.36)

Therefore

1 ~ SeA)

In particular if

d :::15 and A :::SO

then SO
15 + I S(a)da - 50 3(50)

15 (4.37)
1 - S(50)

In the discrete form this would be
45

15 + r 5Sx - 50 S(SO)
15 (4.38a)

1 - S(SO
7

15 + 5 r S. - SO S(50).111= (4.38b)=
1- S(SO)

where tit is the ith age interval i.e. 15-19, 20-24,
25-29, ••• , 45-49.

4.4.2 How to obtain ~~ using generalized stable population

Consider any aggregate of persons or objects with a continuous
distribution by age since origin, or duration since event that defines
membership. 'fhen suppose a set of independent attrition factors
(positive or negative: negative attrition could be people coming in by

miracle, migration etc.) such that numbers leave the aggregate because
of factor i at a rate ~.(x).

1

Redistribution by age (duration) at a given Ir.omenthas a given structure
detennined by arbitrary historical influences - wars I migration, varying
births, deaths, miracles etc.
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lhder these cond i.tons, then
a a

-f r'(xjdx •.L f J.l.. (x)dx
o e i 0 1N(a) = N(o) e (4.39)

where
N(a) = Population size at age a
rea) = age specific growth rate

J.l.i(x)= age specific attrition rate of factor i.

The number of single persons at age a is given by

a a ~f r (x)dx + f J.l.(x)dxo s 0 s
e
-I~j(x)dx +

U(a) = U(o) ~ (4.40)

where
j(x) = the risk of first marriage

rs(x) = the age specific growth rate of single persons.

Therefore the proportion single is given by

a a a
- f j (x)dx - f r (x)dx - f J.l.s(x)dx

Sea) = U(a) = UCo) e 0 0 s 0
N(a) Neo)

(4.41)
a a

e f r(x)dx - f J.l.(x)dx
o 0

But
Ueo) = Neo)

Therefore

Sea)

a
- f j (xjdx

o= e (4.42a)

(4.42b)

where a
S* (a) = e - f j (xjdx

o

_ - which .Ls.rtheproportion single in a nc-mcrt al.rty.cohor-t;



- 4.17 -

Thus
/" r;:5 Cxl-rCxJ]dx + ~ ( \ (X) - P Cx~dx

= sCal e 0 L J L~ J*S ca)

and

SMAM =

45 *15 + r Sea) - SO S (SO)
a=15· .

*1 - S (50)
(4.43)

In actual c~lculatiorr, Sea) is considered as the average proportion
single in two censuses

U(x,tz)
In----

U(x, t1)
(4.44)

Precisely
U(x,tz) - U(x,tl)

rs(x) = --------Person-years lived
(4.45)

or
rsex) = Increas~ of single pop-S(I)-S(E)

Mean population
(4.46)

Increase of total pop-I-E
Mean population

(4.47)

4.5 Hpw to obtain migration rates using age specific grmV'"Lh rates

We have already shown in the earlier section that
,a a

- i r(x)dx r ,- J lJ.. (x)dx
C e i 0 1N(a) &: N(e) e

where \.Ii(x) is a decrement due to death, marriage, eamigrat.ion , etc.
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Suppose

which is emmigration at age x,
then

5 .
1 Sl.x dx =
o

~~,
+'\;-
I
J,

This :implies

5 r
+ .< 1 5 x dx

o
(4.48)

For
a :::5

we have

(4.49)


