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Abstract 

In optical remote sensing, clouds have always been a major problem because they obstruct the 

details underneath them owing to the simple reason that the visible band of electromagnetic 

spectrum cannot penetrate clouds. This study presents a novel approach to address the problem of 

clouds and their shadows in optical images by combining optical and microwave data of Advanced 

Land Observation Satellite (ALOS) by taking advantage of the ability of microwaves to penetrate 

clouds, fog, haze and mist. The study focuses on development of an algorithm that is able to detect 

clouds, cloud shadow, mask both cloud and cloud shadow contaminated pixels and by use of 

interpolation technique between the optical and the microwave image, re-establish pixel values for 

the masked pixels. The detection of thick clouds is done by computing Total Reflectance Radiance 

Index (TRRI) using the four Bands of ALOS optical image (AVNIR-2 Image) and defining 

thresholds that accurately define thick clouds. Thin Clouds are detected using Cloud Soil Index 

(CSI) and also defining thresholds that define the thin clouds. Cloud shadows are detected by 

projecting the detected clouds by the average distance and bearing measured from a sample of 

clouds to their corresponding cloud shadows. In all cloud and cloud shadow contaminated pixels, 

their corresponding pixels are identified in the microwave image and using nearest search, other 

pixels with similar or nearest pixel values are searched for and once identified, their corresponding 

pixels in the optical image are identified and their pixel values are used to fill the masked pixels.  

The results show that the developed algorithm for detection of thick clouds using the defined TRRI 

thresholds worked very well and all the thick clouds were detected and masked out while the 

developed algorithm for detecting thin clouds using defined thresholds of CSI worked very well 

too with most of the thin clouds being detected and masked out. However, there were some 

remnants of thin cloud patches which still went on undetected and further research needs to be 

done for more precise methods of detecting thin clouds. The developed program function for 

detection and masking of cloud shadow worked very well with all the cloud shadow pixels being 

detected and masked out. The developed program for interpolation to fill the missing pixel values 

in the already masked cloud and cloud shadow pixels worked well with the missing information 

being revealed. Therefore, the algorithm for cloud and cloud shadow removal was successfully 

developed with all the subcomponents working well. However further research needs to be done 

for improved methods of thin cloud detection and future satellite developments needs to consider 

incorporation of both optical and microwave sensor in the same platform. 
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Chapter 1: Introduction 
1.1  Background to the Study 

One of the greatest challenges in economic planning, environmental studies and natural resource 

management is obtaining current and accurate information about the surface of the earth. Due to 

the expansive nature of the surface of the earth, remote sensing techniques are the most economical 

techniques of obtaining such information and satellite remote sensing as well as aerial photography 

are the commonly used techniques. Aerial photography is used for small areas (Large scale 

mapping) and has the advantage of high level details but the cost is high while satellite remote 

sensing is used for large areas (Small scale mapping) with relatively low-level details but the cost 

is comparatively low (Goodwin and Hudson 2002). Remote sensing is defined as the science (and 

to some extent, art) of acquiring information about the Earth's surface without actually being in 

contact with it and processing, analyzing, and applying that information (Canada Centre for 

Remote Sensing 2016). The development of remote sensing dates back in 1859 when Gaspard 

Tournachon took an oblique photograph of a small village near Paris from a balloon and with this 

picture, the era of earth observation and remote sensing just started (James and Randolph 2011).  

His example was soon followed by other people all over the world and this was the genesis of 

remote sensing with balloons and aircrafts being used in the first development stages and later 

satellites were developed and currently satellites account for the greatest percentage of remote 

sensing data (Aggarwal 2005). In either of these imaging platforms, there are sensors which detect 

and record the reflected energy from the surface of the earth and they are classified into optical, 

microwave, infrared and thermal sensors among others depending on the part of the 

electromagnetic spectrum which they detect and record the reflected energy. Optical sensors detect 

and record the visible and infrared (near infrared, intermediate infrared and thermal infrared) bands 

of the electromagnetic spectrum while microwave sensors detect and record microwaves (P, L, S, 

C, X, Ku, K and Ka) bands which have longer wavelengths than visible light and infrared rays, and 

observation is not affected by day, night or weather. Scientists found that many types of waves can 

be arranged together like notes on a piano keyboard to form a scale called electromagnetic 

spectrum which is defined as the distribution of electromagnetic radiation according to energy, 

wavelength or frequency (Klaus, Norman and Gerrit 2009) as shown in Figure 1.1 
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Figure 1.1 Electromagnetic Spectrum (Source: Principles of Remote Sensing, Aggarwal, 2005) 

Most electromagnetic waves are affected by atmospheric scattering which is defined as the process 

by which small particles suspended in the atmosphere (water, dust and gas particles) diffuse 

incident radiation in to different directions (Aggarwal 2005). Atmospheric scattering is a function 

of several factors and among them is wavelength of the incident radiation and the longer the 

wavelength, the less the scattering and therefore longer wavelengths are able to penetrate the 

atmosphere than short wavelengths. Since microwaves have longer wavelengths, they are able to 

penetrate clouds (water particles) and other particles suspended in the atmosphere whereas visible 

band of the electromagnetic spectrum is affected by atmospheric scattering (short wavelength) and 

it is for this reason that microwave data is being used for cloud removal in this research. There are 

three types of atmospheric scattering; Rayleigh, Mie and Nonselective scattering.  
 

Rayleigh scattering occurs when the scattering particles are very small compared to the wavelength 

of the incident radiation, Mie scattering occurs when the scattering particles are just about the same 

diameter with the wavelength of the incident radiation. Lastly, Nonselective scattering occurs 

when the scattering particles are larger than the wavelength of the incident radiation and this is the 

type of scattering that is responsible for clouds in optical remote sensing. It draws its name from 

the fact that incident radiations are scattered equally (non-selectively) and water droplets (which 

form clouds) as well as dust particles are responsible for this type of scattering. This type of 

scattering causes fog and clouds to appear white to our eyes because blue, green, and red light are 

all scattered in approximately equal quantities (blue + green + red light = white light) (Canada 

Centre for Remote Sensing 2016) as shown in Figure 1.2. Clouds not only obstruct image details 

but also cast their shadows on the ground obscuring image details in the areas of their occurrence 

and this limits the usage of optical images to various remote sensing applications.  
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Figure 1.2 Cloud Capture in Optical Images (Source: Centre for Remote Sensing, 2016) 

1.2   Problem Statement 
Remote Sensing is a very common and useful method for land cover mapping, land use mapping, 

resource mapping, weather forecasting, research among others. The data from optical remote 

sensing satellites such as SPOT, IKONOS, QuickBird and Geo-eye is often used in conventional 

methods because of their advantages including resolution, both radiometric and spatial. However, 

the disadvantage of the optical data is cloud effect. In areas frequently covered by clouds, such as 

Tropical environments, it becomes a considerable problem to obtain cloud free satellite images for 

mapping and other remote sensing applications. In contrast, microwave remote sensing data is not 

affected by cloud but only affected by the relief. In this study, it is expected that the information 

from radar image will be used to add to the absent information under cloud on the optical image 

because the microwaves have the ability to penetrate clouds and this will be achieved by use of 

interpolation technique. 

1.3 Objectives of the Study 
The general objective of the study was to develop a cloud and cloud shadow removal algorithm 

that removes clouds and their corresponding shadows from optical images using microwave data 

through interpolation technique. The following were the specific objectives of the study; 

i. Create a program function that can identify/define cloud in Satellite Images. 

ii. Design a program function that can identify/define cloud shadow in Satellite Images. 
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iii. Develop a program function that can remove cloud in Satellite Images using interpolation 

Technique. 

iv. Test the cloud and cloud shadow free image through land cover analysis. 

1.4 Justification for the Study 
Successful completion of this study will be a great milestone in the country for the problem of 

clouds in optical images will have been resolved and this will go a long way in ensuring accurate 

data and information is available for policy makers, researchers and other consumers of remote 

sensing data and information. Climate change has become a global phenomenon and accurate data 

to monitor the trend and impacts of climate change is required and remote sensing is one of the 

technologies that provides such information and presence of clouds in satellite images interferes 

with the accuracy of generated data and information. The resulting inaccuracies can lead to 

decision makers to make wrong decisions such as ongoing negotiations for climate change 

mitigation funds. Another example is in mapping of carbon sinks (mostly forests) where very 

accurate data on the coverage (area) is required for compensation in the carbon trade market and 

carbon credit concepts. 

1.5 Scope of work 
 

This study is intended for development of a tool for cloud removal from optical satellite images 

using radar images and is limited to the following; 

i. Development of a program function that defines clouds (Both thick and thin clouds) 

ii. Development of a program function defines cloud shadow. 

iii. Development of a program function that removes cloud and cloud shadows through 

interpolation technique. 

1.6 Organization of the Report 
This project report is organized in five chapters and as discussed below. 

i. Chapter 1: This chapter discusses the motivations behind the choice of the study topic, 

problem statement, objectives of the study as well as justification for the study. 

ii. Chapter 2: This chapter discusses how remote sensing has been applied in natural resources 

management, types of earth observation remote sensing sensors and status of remote 

sensing technology in Africa. It also discusses the general concepts of ALOS data as well 
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as review of methods or techniques which have been used to address the problem of clouds 

in optical images. 

iii. Chapter 3: This chapter outlines the methodology used for the study, the study area, data 

acquisition for the study, data pre-processing and how to define cloud both thin and thick. 

It also discusses how cloud shadow is defined or detected as well as how the detected 

clouds and cloud shadows were removed through interpolation technique.  

iv. Chapter 4: This chapter discusses the results of every step in the methodology. The chapter 

presents results from detection of thick clouds, thin clouds and cloud shadow as well as the 

results from the interpolation technique used for cloud and cloud shadow removal. 

v. Chapter 5: This chapter discusses the conclusions and recommendations of the study. 
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Chapter 2: Literature Review 

2.1 Remote Sensing for Natural Resource Management 
Remote sensing has successfully been applied in management of various natural resources both at 

global, regional and national scales.  Researchers from the U.S. Geological Survey, University of 

Nebraska–Lincoln and the European Commission’s Joint Research Centre, Ispra, Italy produced a 

1 km resolution global land cover characteristics database for use in a wide range of continental- 

to global-scale environmental studies (Loveland, et al. 2010). The database was developed using 

unsupervised classification of Advanced Very High-Resolution Radiometer (AVHRR) images 

acquired through the period 1992-1993. Food and Agriculture Organization (FAO) has been 

carrying out global forest resources mapping using satellite images through their project named 

“FAO Global Forest Resources Assessment project” which is carried out in five-year cycle (Food 

and Agriculture Organization 2015). Additionally, FAO has also been mapping land cover at 

regional levels for establishment of land cover databases such as Africover and Asiacover projects 

which established land cover databases for the whole of Africa and Asia continents respectively.  

Remote sensing has also been used for natural resources management at local scales, for example 

in Minnesota, it has been used for mapping and analysis of land and water resources using 

IKONOS and QuickBird images (Sawaya, et al. 2003) and in Turkey, forest mapping has been 

done using Landsat Images (Aydınm and Eker 2017). In Soviet Central Asia (Kazakhstan, 

Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan), remote sensing has been used for mapping 

of forests using Landsat and MODIS satellite images (Yin, et al. 2017) while in Congo, Synthetic 

Aperture Radar (SAR) has been used in mapping of forests in the Congo basin because of the 

ability of microwaves to penetrate all weather conditions (Cloud, Haze, Mist and Fog). In Kenya, 

remote sensing has successfully been used in mapping of water resources which produced Kenya 

Wetlands Atlas, a project that was undertaken by Ministry of Environment and Mineral Resources 

in collaboration with Department of Resource Surveys and Remote Sensing (DRSRS) ( Ministry 

of Environment and Mineral Resources, Kenya 2012). Lastly, remote sensing has successfully 

been used in mapping of land cover in Kenya for the years 2000, 2010, and 2012-2014 which was 

required as an input for the System for Land Based Emission Estimation in Kenya (SLEEK) 

programme using Landsat satellite images. This project was accomplished by DRSRS in 
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collaboration with Regional Center for Mapping of Resources for Development (RCMRD), Kenya 

Forest Service (KFS) and Survey of Kenya (SoK).  

2.2 Types of Earth Observation Remote Sensing Sensors 
There are two primary types of sensors based on the source of energy that is used to illuminate the 

ground objects and they are active and passive sensors. Active sensors provide their own energy 

to illuminate the ground objects being remotely sensed while passive sensors do not produce their 

own energy but they rely on energy from the other sources majorly the sun. Examples of passive 

sensors are Accelerometer, Hyperspectral radiometer, Imaging radiometer, Radiometer, Sounder, 

Spectrometer and Spectroradiometer. Examples of active sensors are Laser altimeter, Lidar, Radar, 

Ranging Instrument, Scatterometer and Sounder. In this research, optical sensor which is an 

example of a passive sensor and Microwave sensor which falls under active sensors are used for 

data acquisition. 

2.2.1 Optical Sensors 

Optical Sensors detect the visible, near infrared and short-wave infrared wavelengths of the 

electromagnetic spectrum to form images of the earth's surface by recording the solar radiation 

reflected from targets on the ground (Aggarwal 2005). Land cover types reflect and absorb 

radiations differently at different wavelengths and this enables their differentiation. Some 

examples are outlined below; 

i. Panchromatic imaging system- The sensor is a single channel detector sensitive to 

radiation within a broad wavelength range e.g. IKONOS PAN and SPOT HRV-PAN. 

ii. Multispectral imaging system: The sensor is a multichannel detector with a few spectral 

bands. Each channel is sensitive to radiation within a narrow wavelength band e.g. 

LANDSAT MSS, LANDSAT TM., SPOT HRV-XS and IKONOS MS. 

iii. Superspectral Imaging Systems: A Superspectral imaging sensor has many more spectral 

channels (typically >10) than a multispectral sensor e.g. MODIS and MERIS 

iv. Hyperspectral Imaging Systems: A hyperspectral imaging system is also known as an 

"imaging spectrometer". it acquires images in about a hundred or more contiguous spectral 

bands e.g. Hyperion 
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2.2.2 Microwave Sensors 

These are sensors that detect and record microwave portion of the electromagnetic spectrum that 

covers the range from approximately 1cm to 1m in wavelength. Compared to visible band, the 

microwaves have long wavelength and this property enables them to be of great importance in 

remote sensing. Longer wavelength microwave radiation can penetrate through cloud cover, haze, 

dust, and all but the heaviest rainfall as the longer wavelengths are not susceptible to atmospheric 

scattering which affects shorter optical wavelengths and this property allows detection of 

microwave energy under almost all weather and environmental conditions so that data can be 

collected at any time (Aggarwal 2005). 

2.3 Challenges of Clouds using Optical Remote Sensing Satellites 
The problem of clouds not only obstructs the ground but also cast their shadows on the ground 

hence impeding many applications of the optical images for remote sensing. Remote sensing 

satellites images have been used to monitor various phenomena on the surface of the earth such as 

land use change, land cover, floods, droughts, earthquakes and landslides and these applications 

are of great importance to humanity. Unfortunately, two thirds of the earth’s surface is covered by 

clouds every year causing serious problems in optical remote sensing (Wang, et al. 1999). The 

International Satellite Cloud Climatology Project- Flux Data (ISCCP-FD) dataset estimates the 

global annual mean cloud cover is approximately 66% (Zhang, et al. 2004).  Moreover, (Roy and 

Ju 2008) mentioned that Landsat-7 ETM+, one of the sources of optical satellite images, on 

average had about 35% cloud coverage in general. (Leckie 1990) found out that the probability of 

acquiring a cloud-free Landsat scene (cloud cover < 10%) can be as low as 10% for some regions 

in Canada. Therefore, it’s quite clear that getting 100% cloud free optical satellite image is purely 

by luck. There are many varieties of clouds based on distance from the Equator but tropical 

environments are the cloudiest whereas the subtropics and the polar environments are 10%-20% 

less cloud (Candra, Phinn and Scarth 2016). Cloud heights in the tropical regions are much higher 

compared to those in other regions and they are approximately 1-2 kilometers higher than clouds 

in the mid-latitudes and more than 2 kilometers for clouds in the subtropics and polar regions. It 

is therefore for this reason that Kenya, an equatorial country is chosen for this study. 
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2.4 Status of Remote Sensing Technology in Africa 
Africa comes very late in the field of remote sensing and spatial data infrastructures because it has 

no concrete means of possessing and creating satellite observation tools (Gerlinger 2013). One of 

the reasons is that Africa does not have any inter-governmental organization where resources can 

be pooled together for a specific purpose like in Europe where they have European Union. In 1979, 

the United Nations Economic Commission for Africa (UNECA) initiated five Remote Sensing 

Centers in the whole of African continent but to date, some of the centers are no longer functioning 

due to mismanagement and lack of funding. Out of the five centers, only three are functioning 

namely Remote Sensing Regional Centre of Ouagadougou (Burkina Faso), Regional Centre for 

Mapping of Resources for Development (RCMRD, Kenya) and Regional Centre for Training in 

Aerial Surveys (RECTAS) in Nigeria. Some African countries (Algeria, Nigeria, Egypt) have 

gained initial experience in building and/or operating remote-sensing satellites in cooperation with 

European countries and only South Africa has started building and operating its own satellites 

(Gerlinger 2013). South Africa’s current goal is to develop, build and operate a transnational 

African remote-sensing system consisting of several small satellites by 2018 and Algeria, Kenya 

and Nigeria wish to be involved (Gerlinger 2013).  

However, Kenya as a country has its own initiatives and has established a National Space Agency 

called “The Kenya Space Agency” through the signing by the president and gazettement of Kenya 

Space Agency order of 2017  (GoK 2017), the equivalent of National Aeronautics and Space 

Administration (NASA) of America. The Space Center is projected to cost the Kenyan tax payer 

ten billion Kenya shillings for a constellation of earth observation satellites and if successful will 

boost the country’s security and provide solutions to challenges facing agriculture, education and 

medical sectors among others (Standard Media Group 2015). It will also have Kenya transition 

from a passive user of space and space technologies to a contributor to the development of space 

technology. Kenya’s strategic location along the equator enables it exploit the ease of access to the 

equatorial orbits and particularly the geostationary orbits and the location of Indian Ocean to the 

East would facilitate ease of landing of space crafts as well as safe zone in case of unsuccessful 

launch. 

Apart from the attempt by Kenya to create its own Space Center, there is already an existing Space 

Center called Broglio Space Center (BSC, San Marco Project), established in 1964 in Malindi 

through cooperation between Kenya and Italy Governments (Ibba 2007). The facility management 
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was under University of Roma “La Sapienza” up to the year 2004 after which the management 

was transferred to Italian Space Agency (ASI). The center consists of two segments, the Earth 

Segment and the Oceanic Segment. The oceanic segment represents the launch oceanic platform 

while the earth segment is the data reception center. In the last 40 years, the activities at the center 

range from rocket launches to satellite telemetry, tracking, and command (TTandC) support and 

remote sensing image acquisition. The number of launches from the center is twenty-seven (27), 

nine (9) of which are satellite launches with 100% success with the first launch done on march 

1964 (Nike Apache) while the last launch was done in March 1988 (Scout Sv 206) (Ibba 2007). 

2.5   ALOS Data 
ALOS is an acronym which stands for Advanced Land Observing Satellite and it was launched in 

January 2006 by the Japan Aerospace Exploration Agency. Its Japanese name is “DAICHI” and it 

measures 3.5m wide, 4.5m long and 6.5m high and it uses solar battery and it has a gross weight 

of approximately four (4) tons which makes it one of the largest land observing satellites (Nguyen 

and Ryutaro 2009). ALOS has three sensors namely; 

i. Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), which is 

comprised of three sets of optical systems to measure precise land elevation. 

ii. Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2), which observes what 

covers land surfaces and  

iii. Phased Array Type L-band Synthetic Aperture Radar (PALSAR), which enables day-and-

night and all-weather land observation. 

ALOS general concepts are as outlined in Table 2.1 
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Table 2.1 General Concepts of ALOS Sensor 

Sensor Spatial Resolution 
/Swath Width Characteristics Utilization 

PRISM Spatial Resolution: 2.5m 

Swath Width: 35km (Triplet 

mode) 

70km (Nadir Only) 

It has three independent optical 

systems for viewing nadir, forward 

and backward producing a 

stereoscopic image along the 

satellite's track. 

Cartography, making DSM for 

mapping, urban planning, 

agriculture, forest monitoring, 

coastal monitoring, monitoring 

illegal dumping, flood 

monitoring etc. 

AVNIR-2 Spatial Resolution: 10m 

Swath Width: 70km 

The Advanced Visible and Near 

Infrared Radiometer type 2 (AVNIR-

2) is a visible and near infrared 

radiometer for observing land and 

coastal zones. 

It provides better spatial land-

coverage maps, wide range of 

urban planning, agriculture 

(vegetation research), forest 

monitoring, coastal monitoring, 

pollution monitoring on ports 

and harbors, plants monitoring, 

flood monitoring etc. 

PALSAR Spatial Resolution: 10m 

(fine resolution mode) 

100m (Scan SAR mode) 

Observation Swath: 70km 

(fine mode) 250-350km 

(Scan SAR) 

The Phased Array Type L-band 

Synthetic Aperture Radar (PALSAR) 

is an active microwave sensor using 

L-band frequency, which can 

observe with fine resolution in a 

conventional mode as well as wider 

swath with a SAR images. 

It enables to make DEM, extract 

topography data by 

interferometry, estimate 

biomass, forest monitoring, 

agriculture, monitoring oil spill, 

moisture of soil, shipping 

inspection etc. 

 

The main Characteristics of ALOS satellite are shown in Table 2.2 
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Table 2.2 Major Characteristics of ALOS 

Launch Date January 24, 2006 

Launching Vehicle H - IIA 

Launch Site Tanegashima Space Center, Japan 

Spacecraft Mass Approx. 4 tons 

Generated Power (Solar paddle) Approx. 7kw (at End of Life) 

Designed EOL (End of Life) 3-5 years 

Orbit Sun Synchronous, Sub recurrent Repeat Cycle: 46 days Sub-
Cycle: 2 days Altitude: 691.65km (Above the equator) 
Inclination: 98.16 deg. 

Attitude Determination Accuracy 2.0 x 10-4 deg. (off-line, with GCP) 

Position Determination Accuracy 1m (off-line) 

Data Rate 240Mbps (Via Data Relay Test Satellite) 

120Mbps (Direct Transmission) 

On-board Data Recorder Solid-state Data Recorder (90Gbytes) 

The wavelengths of ALOS/AVNIR-2 bands are shown in Table 2.3 

Table 2.3 Characteristics of ALOS AVNIR-2 

Band Wavelength (Nanometers) 

1 4 2 0 – 5 0 0 

2 5 2 0 – 6 0 0 

3 6 1 0 – 6 9 0 

4 7 6 0 – 8 9 0 
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2.6 Techniques used to address Clouds in Remote Sensing Data 
  Many approaches have been used for cloud and cloud shadow detection as well as their removal 

and these approaches can be grouped in to four categories; 

i. Inpainting-based Approaches: In this approach, without use of multispectral and 

multitemporal data, regions contaminated by cloud and cloud shadow are reconstructed 

using inpainting techniques and image synthesis. 

ii. Multispectral-based Approaches: In this approach, multispectral data is used for detection 

and removal of cloud and cloud shadow contaminated pixels. The different bands of the 

image are used to construct the cloud contaminated pixels. 

iii. Multitemporal-based Approaches: This approach utilizes both temporal and spatial 

coherence to reconstruct the information missing from the cloud and cloud shadow 

contaminated pixels. 

iv. Contamination detection approach: This approach uses either multispectral data or 

mathematical models to detect cloud and cloud shadows without proposing any approach 

for their removal in the images. 

2.6.1 Multitemporal-based Approaches 

The Multi-temporal based method is somewhat better method when compared to the Multi-spectral 

and in-painting method, it relies on both temporal and spatial coherence and has better ability to 

cope with large clouds (Ramya, KarthiPrem and Nithyasri 2014). Several researches have been 

done based on multitemporal approach and (Candra, Phinn and Scarth 2016) developed a Multi-

Temporal Cloud Masking (MCM) algorithm which is based on multi-temporal satellite images of 

Landsat 8. The basic idea of this approach was to detect cloud and cloud shadow by using the 

difference reflectance values between clear pixels and cloud and cloud shadow contaminated 

pixels using two sets of images one with clouds and another one without clouds (Candra, Phinn 

and Scarth 2016). Band 3 and Band 4 were used for detecting cloud and non-cloud pixels whereas 

Band 5 and Band 6 are used for detecting cloud shadow pixels and non-cloud shadow pixels. 

According to the MCM, the accuracy assessment is very high and MCM approach can identify 

clouds to almost 100%. However, the drawback of this approach is that the assumption that very 

little or no change during between the acquisition dates of the two images may not hold especially 

when mapping or monitoring a highly changing geographical phenomenon. Secondly, Cloud and 
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Cloud Shadow Masking using Multi-Temporal Cloud Masking Algorithm is only able to detect 

thick clouds in optical images (Landsat 8 Images) and the problem of thin clouds in optical images 

still remains unresolved.  

In another quest towards cloud free optical satellite images, (Wang, et al. 1999) presents another 

approach titled “Automated detection and removal of clouds and their shadows from Landsat TM 

Images”. In this research, reflectance difference between cloud and non-cloud areas is used to 

detect cloud contaminated pixels and replace them with information acquired from cloud free 

multitemporal satellite images using image fusion technique. The cloud shadow areas are 

successfully detected by use of wavelet transform. After successfully detecting clouds and cloud 

shadow pixels, image fusion technique is used to replace information from cloud free image pixels 

to their corresponding cloud and cloud shadow contaminated pixels in the cloud image. The 

strength of this approach is that it has a lower computational complexity and it can successfully be 

used to detect and remove fog, haze, and mist from Landsat thematic mapper images. Nevertheless, 

this approach still has drawbacks and one of them is that the resulting fused image has some 

blocking artifacts which means the image would need further processing to make it useful for 

remote sensing applications. Again, accuracy assessment was not done for this approach which is 

a major gap because the user would like to know to what extent will the approach be able to remove 

clouds and cloud shadows so as to judge whether the algorithm will   be useful depending on the 

intended use of the Landsat Thematic Mapper (TM) Images. Lastly, this approach needs further 

research with large number of images so as to get more precise threshold values for defining clouds 

and cloud shadows.  

 (Chao-Hung, et al. 2010) in their research “Cloud Removal from Multitemporal Satellite Images 

Using Information Cloning” also addressed the problem of clouds and cloud shadow in optical 

satellite images using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor images. The 

approach removes cloud-contaminated portions of a satellite image, and then reconstructs the 

information of missing data by utilizing temporal correlation of multitemporal images. The basic 

idea is to clone information from cloud-free patches to their corresponding cloud-contaminated 

patches under the assumption that land covers change insignificantly over a short period of (Chao-

Hung, et al. 2010). Clouds are detected based on the fact that clouds are bright as well as cold in 

the thermal band and thresholding based technique is used to outline cloud extends/boundaries in 

the spectral temperature space. Once cloud boundaries have been outlined, cloud shadows are 
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identified roughly based on cloud location and solar illumination angle or direction. One strength 

of this approach is that it has the ability to process clouds from heterogeneous landscape and 

processes large amounts of cloud. However, this algorithm only detects thick clouds and the 

problem of thin clouds remains a challenge and it only proposes future plans to address the 

problem. This approach also cannot reconstruct information accurately for the cloud contaminated 

areas when the land cover changes significantly within a short time. The results presented by this 

approach also show that there is a slight discontinuity at the cloud contaminated boundaries even 

when smoothing operation is applied to these regions. Lastly, the manual refinement of cloud and 

cloud shadow using an interface needs further research for automation because it is tedious and 

time consuming. 

Most high-resolution images have been distributed without an associated cloud mask and (Hagolle, 

et al. 2010) developed an algorithm called Multi-Temporal Cloud Detection (MTCD) for 

FORMOSAT-2 and LANDSAT images. This algorithm uses the blue wavelength to detect sudden 

reflectance increase on pixel by pixel basis and linear correlation tests based on pixel 

neighborhoods based on couple of images successfully acquired. Therefore, cloud detection 

criteria is guided by setting threshold values that define cloud using the blue spectral band. 

Computation of variations in order to detect cloud in an image requires cloud free reference image 

which is not always available and it has to be constructed from partly cloudy images. One strength 

of this algorithm is that it only uses blue band which all optical satellite data have and therefore 

this approach can be used for all optical satellite data (Candra, Phinn and Scarth 2016). However, 

this approach does not work well above inland water surfaces, which are prone to sudden variations 

of reflectance because of sunlight, turbidity or foam and water pixels must be discarded before 

computing the cloud mask (Hagolle, et al. 2010). Secondly, this algorithm does not detect thin 

clouds and high aerosols thicknesses and thin clouds may be confused as well with high aerosols 

thicknesses being regarded as clouds. Lastly, surface reflectance variations may occur as a result 

of agricultural activities such as cropping and ploughing or due to natural events like fires and 

snow covers or quick drying up of vegetation and when this occurs, rigorous processes are required 

to mask these activities so that they don’t end up being masked as cloud. 

Closest Spectral Fit (CSF) method is presented by (Meng, et al. 2009) for cloud and cloud shadow 

removal from Landsat 5 Thematic Mapper images. The basic idea in Closest Spectral Fit (CSF) is 

to replace cloud and cloud shadow pixels with the most similar pixels from the cloud free areas in 
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the same image. In this approach, two images of the same area acquired at different times are used. 

The base image is the image with clouds and cloud shadows that requires masking and removal 

while the other image is called auxiliary image. In order for this CSF technique to work, cloud and 

cloud shadow areas in the base image should be cloud and cloud shadow free in the auxiliary 

image. Cloud and cloud shadows are detected based on the principle of sensitivity of visible and 

infrared bands to cloud and cloud shadows and for CSF, band 1 and band 3 are used for cloud 

detection while band 4 is used for cloud shadow detection and thresholds for defining both are 

derived. Once all the cloud and cloud shadow contaminated pixels are identified in the base image, 

their corresponding pixels in the auxiliary image are identified and their pixel values noted. The 

CSF algorithm then searches for the nearest pixels in the auxiliary image with the closest DN 

values and once identified, their corresponding pixels are identified in the base image. The 

identified base image pixel DN values are used to replace the cloud and cloud contaminated pixel 

and through such, clouds and cloud shadows are eliminated. One advantage of CSF is that accuracy 

of removing clouds and cloud shadows can be diagnostically checked when it is applied and 

statistical check of errors in predicting band values indicates whether this band could be used for 

further applications (Meng, et al. 2009). However, CSF has drawbacks and one of them is that this 

algorithm performs well for Landsat 5 Thematic Mapper but performs poorly when tested on 

Moderate Resolution Imaging Spectro-radiometer (MODIS) images.  

In another attempt towards cloud free optical satellite images, (Stournara, Tsakiri-Strati and Patias 

2013) presents another approach. In their study titled ‘Detection and removal of cloud and cloud 

shadow contamination from hyperspectral images of Hyperion sensor’, a scheme based on 

utilization of two multitemporal images one with clouds and another one without clouds for the 

same area is presented. In this study, cloud is detected based on the fact that reflectance values for 

clouds is much higher than the reflectance values of other pixels representing other land uses in 

the image. Similarly, reflectance values of cloud shadow pixels are relatively lower compared to 

other pixel values representing different land cover types within the image and therefore this 

characteristic enables discrimination of clouds and cloud shadow pixels from the rest of image 

pixels using thresholding. Generally, cloud removal based on multi-temporal images are known to 

yield better results but there is usually one drawback for all these approaches with regard to 

temporal resolution. Therefore, one of the drawbacks of this approach is that a span of considerable 

time might have elapsed until a cloud free image is available especially for countries in the tropics 
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which have (10%-20%) more cloud cover that the polar regions (Candra, Phinn and Scarth 2016). 

As a result, this drawback makes this approach and any other which utilizes the concept of multi-

temporal images unsuitable for monitoring of high changing geographical phenomena. The other 

drawback is that this approach cannot be generalized for all the satellite images (Sensors) because 

the threshold values for defining clouds and cloud shadows are not fixed and they are different 

from one satellite sensor to another. Lastly, although cloud and cloud shadow contaminated pixels 

are replaced, there is still evidence of outline boundary of the previous cloud shadow or cloud 

region.  

A practical method that produces cloud and shadow masks by flexibly using spectral (blue, NIR, 

MIR, and thermal bands), temporal information from two-date imagery, and spatial relationship 

(size, distance, and direction) between cloud and corresponding shadow is presented by (Jin, et al. 

2013). In this approach, the pair of images (Target and Reference Images) are geometrically 

corrected and their digital numbers converted to top of atmosphere reflectance and thermal bands 

of the two images are transformed to at sensor brightness. Landsat blue and thermal bands are used 

for cloud detection due to the fact that clouds are normally brighter in the blue band and colder 

than the surface of the land from which they obscure information. In detection of shadows, band 

5 mid infrared (MIR) is used and cloud shadows are detected based on the fact that shadows are 

usually darker and colder than the surface of the earth which they obstruct (Irish 2000). This 

algorithm removes false shadows based on the assumption that cloud shadow cannot be bigger 

than the cloud itself, clouds and cloud shadows are related based on the cloud location and sensor 

sun geometry. Once the clouds and cloud shadows are masked out, back filling of missing 

information is done. Pixels having the same spectral values are likely to be of the same land-cover 

type, and those pixels will likely have similar spectral values on a different date if no significant 

environmental and land-cover changes have taken place (Chen, et al. 2011). One of the strengths 

of this approach is that it produces one of the highest user accuracy after assessment of the final 

inputs. However, the drawback is that its only applicable when the assumption that there is 

negligible change of phenomena between the time of acquisition of the target image and the 

reference image otherwise the algorithm will not work. 
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2.6.2 Multispectral-based Approaches 

This approach uses the multispectral information contained in a single image to detect clouds and 

cloud shadows and their removal using information contained in the same image. In the study 

“Removal of Thin Clouds Using Cirrus and QA Bands of Landsat-8” by (Shen, et al. 2015), a 

multispectral approach for cloud removal is developed. In this study, an algorithm to remove thin 

cirrus clouds and alto-thin clouds of Landsat 8 was developed. Cloud detection here is done using 

the Quality Assurance (QA) band which provides information on the presence or absence of clouds 

in Landsat 8 and reflectance data of band 9 is used for removal of cirrus clouds from Landsat 8. 

(Gao, Goetz and Wiscombe 1993) established a linear relationship between the reflectance at 1380 

nm (γ1380) and cirrus effect on the reflectance of wavelengths from 400 to 1000 nm. In this study 

(γ1380) can be approximated by reflectance of Band 9. Thus, after the removal of cirrus clouds, 

the surface reflectance, γλ at wavelength of λ is (γλ = γλ – γc) where γλ is the reflectance after 

atmosphere correction at wavelength λ (Shen, et al. 2015). The removal is separately applied for 

all the bands from band 1 to band 5 above using band 9. The remaining thin clouds are removed 

using the quality assurance (QA) band. This approach however has got several drawbacks with the 

first one being that the QA band data is used and the thermal infrared data is required to generate 

the QA band but majority of the current operational optical sensors don’t have a single thermal 

infrared (TIR) band. Secondly, the success of the replacement is dependent on the ability of Band 

6 and Band 7 to penetrate clouds and in the event of any doubt, this would make the replacement 

questionable. Thirdly, if the cloud-covered area is over a water surface or the cloud-free area is 

water, the replacement can be erroneous because water absorbs almost all the solar radiation in 

Bands 6 and 7 and lastly, the possible existence of cloud effects on Bands 6 and 7 are not 

considered (Yang, et al. 2015). 

2.6.3 Contamination detection approach 

In this approach, algorithms are developed purely for detecting clouds, cloud shadows and other 

optical images contaminants such as snow without attempting to remove the contaminants from 

the optical images. Markov Random Fields for automatic cloud/shadow detection on high 

resolution optical images was developed by (Hégarat-Mascle and André 2009). This study was 

based on physical properties of clouds and shadows that both are connex objects with same shape 

and area and their relationship is based on their relative locations. Clouds and cloud shadows are 
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detected by Markov Random Field (MRF) framework at two distinct levels where one MRF for 

connexity modelling is done over the pixel graph and for cloud and cloud shadow relationship 

modelling, another MRF is done over the graph of objects. Some of the strengths of this approach 

is that performance is good based on the tested databases (39 SPOT/HRV images database), 

reduced false alarm rates (relative to classical pixel level approaches) and lastly fast convergence 

(relatively to methods requiring global optimization) (Hégarat-Mascle and André 2009).  

However, this approach has got some drawbacks and one of them is the assumption of priori 

knowledge of the objects number and interactions between the objects and practically, this has an 

implication of over-detection of clouds and their shadows initially which will definitely have an 

impact in the final result. In order to address this short coming, this study tried to compare its 

approach to an approach where the number of objects and relationships among objects are 

unknown at a priori namely the Marked Point Processes (MPP). The Marked Point Processes 

(MPP) also has another drawback in that it is much heavier with regard to optimization process 

and computational time. Moreover, since Marked Point Processes (MPP) utilizes the global 

optimization approach, it’s a mandatory requirement for setting of the model parameters precisely 

whereas local optimization of Markov Random Field (MRF) demands avoidance of such fastidious 

process. 

The trade-off in multitemporal cloud, cloud shadow, and snow screening between higher accuracy 

and the possibility of masking out land cover change is significant and in an attempt to solve this 

problem, a new algorithm designed specifically for change detection that employs many images 

called Tmask (multiTemporal mask) was developed by (Zhu and Woodcock 2014). This algorithm 

was specifically meant for automated cloud, cloud shadow and snow detection in Landsat 7 

images. This algorithm has two steps, the first step is based on a single-date algorithm called Fmask 

(Function of mask) that initially screens most of the clouds, cloud shadows, and snow while the 

second step benefits from the extra temporal information from the remaining “clear” pixels and 

further improves the cloud, cloud shadow, and snow mask (Zhu and Woodcock 2014). Instead of 

using the blue band (Band 1) for cloud detection as many multitemporal algorithms do, Tmask 

uses the green band (Band 2) for detecting clouds and snow (Wang, et al. 1999). The advantage of 

green band is that its less frequently saturated and its sensitivity to atmospheric influences is much 

less. The choice of near infrared (NIR) band (band 4) for cloud shadow and snow separation is 

based on the fact that cloud shadows are darker in NIR band and snow is brighter in NIR band. 
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The short-wave infrared band (Band 5) is chosen to separate clouds and snow because clouds are 

brighter in this band while snow is darker. One of the strengths of this algorithm is that compared 

to Fmask, Tmask has most improvement in cloud shadow detection than Fmask. Again, the Tmask 

algorithm does not falsely identify changes in landcover as cloud, cloud shadow or snow because 

it has the capacity of modelling land cover change. The results of snow and cloud detection in 

Tmask are better than Fmask as well. However, Tmask has a drawback in that the assumption that 

there is no significant land cover change between the date of acquisition between the multitemporal 

images may not hold for a fast-changing physical phenomenon. (Irish 2000) 

A scene average Automated Cloud-Cover Assessment (ACCA) algorithm by (Irish, et al. 2006) 

has also been used to define clouds in Landsat 7 Image scenes. The primary goal of the Landsat-7 

(L7) mission was to populate the U.S. held Landsat data archive with seasonally refreshed, 

essentially cloud-free Enhanced Thematic Mapper Plus (ETM+) imagery of the Earth’s 

landmasses (Irish 2000). To achieve this goal, the Landsat Project Science Office (LPSO) at 

NASA’s Goddard Space Flight Center (GSFC) developed the Long-Term Acquisition Plan 

(LTAP), a mission-long imaging strategy designed to optimize the 250 scenes acquired each day 

by the ETM+ (Arvidson, Gasch and Goward 2001). One of the techniques employed by LTAP 

was to use cloud cover reports from the Landsat 7 scene images already acquired for image 

acquisition scheduling by mission planners and it is for this reason that ACCA was developed 

purposely to provide cloud cover reports. Landsat 7 scenes ACCA algorithm uses visible, near 

infrared (NIR), shortwave infrared (SWIR) and thermal infrared to mask cloud  (Irish 2000). 

Despite the rigorous efforts used in development of this algorithm, some drawbacks still exist and 

one of them is that it cannot detect clouds at extreme latitudes and high illumination angles because 

of presence of snow in those areas (Irish 2000) which is falsely identified as clouds. Although this 

algorithm can be used to define clouds on most parts of the earth, ACCA also has another drawback 

in its inability to detect thin cirrus clouds owing to the simple reason that it lacks high thermal 

response. Lastly, the greatest drawback of ACCA is that it only detects clouds and cannot detect 

cloud shadows which also obstruct image details. 

A new method called Fmask (Function of mask) for cloud and cloud shadow detection was 

developed by (Zhu and Woodcock 2011) for Landsat Thematic Mapper (TM) and Enhanced 

Thematic Mapper Plus (ETM+) images. Probability mask is used for computing the cloud mask 

as well as image based thresholds. Lapse rate, flood fill transformation and object matching all 
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combined are used for cloud shadow masking in Fmask. Landsat Top of Atmosphere (TOA) 

reflectance (Bands 1,2,3,4,5and7) and band 6 Brightness Temperature (BT) are used as inputs and 

Fmask first uses rules based on cloud physical properties to generate potential cloud and cloud 

shadow layer (Zhu and Woodcock 2011). Through utilization of flood fill transformation, Near 

InfraRed (NIR) band is used to acquire layer of potential cloud shadow. One interesting fact in 

Fmask is the fact that estimation of cloud shadow location is done by use of satellite sensor view 

angle, solar zenith angle, solar azimuth angle and the clouds relative height. The latest version of 

Fmask utilizes the presence of new cirrus band in Landsat 8 for more accurate detection of thin 

cirrus clouds (Zhu, Wang and Woodcock 2015). In comparison with ACCA, Fmask has better 

accuracy of overall cloud detection (96.4%) whereas ACCA has overall accuracy of (84. 8%). 

Additionally, this algorithm exhibits good performance in high latitudes, it accurately does 

separate shallow/turbid water from clouds and above all, it can detect thin clouds and their shadows 

which is a capability rarely found in many algorithms. Lastly, Fmask has the ability to mask out 

snow in addition to masking cloud and cloud shadows which is another ability not found in many 

cloud and cloud shadow removal algorithms. However, Fmask still has some drawbacks associated 

with it and one of them is that it is unable to detect cloud which is warm and thin. Secondly, in the 

process of cloud classification, Fmask classifies very bright and cold land as clouds which is not 

the case. Lastly, Fmask may fail to detect cloud and cloud shadow for images which have 

heterogeneous surface reflectance because it uses a scene-based threshold and applies the same 

threshold to whole pixels in the image (Candra, Phinn and Scarth 2016). 
 

(Hughes and Hayes 2014) developed a novel algorithm to define and classify clouds called Spatial 

Procedures for Automated Removal of Cloud and Shadow (SPARCS). This algorithm was 

developed using Landsat images and the approach uses Neural Network Approach (NNA) to 

define cloud, cloud shadow, water, snow, ice and clear sky classes for each pixel in the Landsat 

image scenes used. SPARCS development was motivated by the need for efficient and reliable 

cloud and cloud shadow masking in a forest change detection application over highly 

heterogeneous land cover in the eastern U.S. because existing methods were either too 

computationally intensive or missed many clouds or cloud shadows, which were detected as 

change  (Hughes and Hayes 2014). The neural networks were trained by use of Landsat scene 

images with clouds and cloud shadows defined by human operators at united states geological 

survey (USGS) and evaluation done using manually defined data. One of the strengths of this 



23 
 

approach is that it uses sun and sensor geometry to identify regions of potential cloud shadow 

which reduces the ambiguity of wetland, hill shade and other land cover features which might have 

the same spectral signatures from being classified as cloud shadows when they are not. In a 

comparison with Fmask, a high-quality cloud and cloud shadow classification algorithm currently 

available, SPARCS performs favorably, with substantially lower omission errors for cloud shadow 

(Hughes and Hayes 2014). Again, in SPARCS, a measure of uncertainty is provided for the 

outcome of its classification which can be utilized by other algorithms that might be in need of 

clear sky pixels and looking at the overall accuracy, it outperforms even other methods that 

operates in the same conditions/constraints with an accuracy of 98.8% against 95.3%. 

Additionally, the SPARCS is fully automated and does not need specification of new parameters 

for any new scenes that can be used as an input and classification of any Landsat scene is completed 

under five (5) minutes on a standard desktop computer. However, this approach has got one 

drawback that there is limited support for inclusion of spatial information as an input. 

Automated cloud and cloud shadow identification algorithms designed for Landsat Thematic 

Mapper (TM) and Thematic Mapper Plus (ETM+) satellite images have greatly expanded the use 

of Earth observation data by providing a means of including only clear-view pixels in image 

analysis and efficient cloud-free compositing (Braaten, Cohen and Yang 2015). In an attempt to 

actualize these capabilities to multispectral scanner (MSS) image, (Braaten, Cohen and Yang 

2015) introduces MSS Clearview-mask (MSS-cvm). In definition, MSS-cvm is an automated rule-

based algorithm for identifying clouds, cloud shadows, and clear-view pixels in MSS imagery 

(Braaten, Cohen and Yang 2015). In this approach, Thermal Infrared Band (TIR) is of great 

importance because of its characteristic interaction with cold temperatures of the cloud in order to 

separate clouds from other similar bright and white landcover or land use type like barren land, 

bare sand soils and rocks. TIR data are also used to identify cloud shadows by cloud projection 

and dark object matching using cloud temperature and adiabatic lapse rate to estimate cloud height, 

which is more accurate than spectral tests alone (Zhu and Woodcock 2011). Cloud identification 

is based on brightness in Band1 (B1) and the normalized difference between B1 and B2 according 

to the spectral test equation. One of the strengths of this approach is its high accuracy in cloud 

shadow masking because of its use of the thermal band to estimate cloud height, which allows for 

a more precise estimate of cloud projection and that is why MSScvm has less commission and 

omission error for the cloud shadow class than Fmask algorithm (Braaten, Cohen and Yang 2015). 
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However, this approach has some drawbacks with one of them being the fact that compared to 

other cloud and cloud shadow detection algorithms, its accuracy is 2.6% less compared to the 

Fmask algorithm therefore it’s not emerging as one of the most accurate algorithms. Moreover, 

MSScvm algorithms accurately captures thick clouds irrespective of land cover type but it 

erroneously captures very bright barren land cover type as clouds and therefore more research 

needs to be carried out in order to improve on this. This approach is only applicable for sensors 

with the Thermal Infrared (TIR) Band and therefore it cannot be used as a universal approach 

towards cloud and cloud shadow masking from optical images.  

The Landsat free and open data policy (Zhu and Woodcock 2014) provided the opportunity to 

realize the full potential of Landsat's unparalleled record of Earth observation data and this is why 

a lot of research has been done with the usage of Landsat images.  (Huang, et al. 2010) presents 

another approach in their research titled “Automated masking of cloud and cloud shadow for forest 

change analysis using Landsat images” using Landsat Thematic Mapper (TM) and Enhanced 

Thematic Mapper Plus (ETM+) Images. The detection of cloud in this approach is guided by the 

characteristic that the spectral reflectance of clouds is much higher compared to other land cover 

feature types and clouds are also cold in the thermal band. Therefore, based on this fact, threshold 

values are derived to define cloud boundaries so as to separate cloud from other non-cloud features 

in the spectral-temperature space. Once this is achieved, the defined cloud pixels are used to define 

cloud shadow geometrically and also using spectral characteristics. Geometrically, the projected 

cloud shadow pixels are defined using the location of cloud pixels, the height of the clouds and the 

solar illumination geometry. The heights of the clouds are determined by using the normal 

environmental lapse rate of 6.40 C Km-1   based on differences in temperature between a cloud pixel 

and adjacent surface air. This approach has several limitations and firstly, due to the fact that it 

requires forest pixels to define the cloud boundaries, it can only be applied in areas where forest 

exists so that forest pixels can be derived and further research is required to establish whether it 

can be used for areas having few or no forest pixels at all. Secondly, this algorithm masks snow as 

cloud owing to the simple reason that snow is bright and cold and also confuses shadow and water 

due to dark appearance of both in the MSS Landsat Images. Lastly, this algorithm cannot detect 

clouds, smoke and fogs at lower altitudes which might have the same warmth as surface air. 

Despite the drawbacks associated with this algorithm, one of its strengths is that although it was 

designed for use with the Landsat EM and EM+, it can be adopted for use with other images 
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acquired by other sensors such as Advanced Space borne Thermal Emission and Reflection 

Radiometer (ASTER) and MODIS because these images contain both thermal and spectral bands. 
 

In Satellite pour l’Observation de la Terre 5 (SPOT5) high resolution geometrical imagery, clouds 

and many other land cover features have very similar reflectance properties in all the four available 

bands of SPOT5 (green, red, near-infrared and shortwave-infrared). However, (Fisher 2014) 

presented a study called SPOT cloud and shadow masking (SPOTCASM) which was the first 

cloud masking process specifically designed for SPOT5 high resolution geometrical imagery. 

SPOTCASM is build based on the approach by (Hégarat-Mascle and André 2009) but there are 

some new inclusions. Firstly, water bodies are masked out of the images before searching for 

clouds and cloud shadows, the search area for shadows is limited by the assumption that clouds 

are similar in heights, removal of small objects by filtering possible clouds and growing clouds 

and cloud shadow segments based on marker pixels using watershed-from-markers transform. This 

model has got some strengths one of them being the ability to detect majority of thick clouds and 

it works across many landscapes from semi-arid shrubland to agricultural and forested areas. 

However, there are some drawbacks one of them being the assumption that all the clouds in the 

input images are of same height might not be true although it seemed to work for the input images 

used in the study (2 of the 313 images invalidated this assumption). Again, thin clouds are 

completely omitted by this model due to their similarity in spectral properties with some ground 

features. Another drawback is that false positive clouds which expected cloud shadow pixels are 

out of image extent are impossible to get rid of them by cloud-shadow routine matching. Lastly 

the manual editing of cloud and cloud shadow masks take a lot of time and further research needs 

to be done to automate it. 

Cloud and cloud shadow removal from Landsat 8 imagery by use of both spectral and geometrical 

properties after a super-pixel segmentation process is presented by (Kalkan and Maktav 2017). In 

this approach, spectral and geometric properties of cloud and cloud shadow are employed for their 

detection with complementation from use of thermal infrared channels of Landsat 8 imagery. 

Neighborhood relations too is employed for improvement of accuracy detections of cloud shadows 

in the areas around clouds. This study can be regarded as a simplified, modified, automated and 

segmentation based version of ACCA and Fmask methods (Kalkan and Maktav 2017). The cloud 

areas are defined by use of rule-set based classification in which the calibrated reflectance images 
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are subjected to using super-pixel segmentation. Once the cloud areas are defined, evaluation of 

spectral tests as well as neighborhood relations with cloud areas is carried out to define cloud 

shadows. Near infrared band (Band 5) and shortwave infrared (SWIR) are used for cloud detection 

because in these bands, clouds have high brightness values than the other landcover features which 

makes them easily distinguishable. Cloud shadows are discriminated from other features by 

dividing thermal channel to the multiplication of three bands based on information of low-

temperature characteristic of cloud features on thermal infrared bands (Red*NIR*Blue/Thermal 

2) (Kalkan and Maktav 2017) .  One of the strengths of this algorithm is that the precision and 

recall rates is better than the Fmask for the four different sites used for these tests. Additionally, 

this algorithm shows higher accuracy for cloud shadow detection compared to Fmask because of 

its adoption of cloud geometry projection combined with cloud shadow index for detection of 

cloud shadows. Lastly, the computation work load is greatly reduced because of its adoption of 

super pixel approach. However, this approach has got one drawback that adding neighbor edges 

of cloud and cloud shadow classes by region growing may end up classifying non-cloud and non-

cloud shadow pixels as cloud and cloud shadow pixels respectively. 

A simple threshold based algorithm by (Ghosh, et al. 2012) was developed for cloud detection for 

tropical environment of Bangladesh and its adjacent areas based on National Oceanic and 

Atmospheric Administration Advanced Very High-Resolution Radiometer (NOAA - AVHRR) 

satellite time-series data. This algorithm was developed in three tests, and test 1 is based on 

reflectance of channel 1 on AVHRR images, test 2 is based on temperature of channel 4 on 

AVHRR images and test 3 involves both channel 1 and channel 4 data. Test 1 and Test 2 are used 

for detection of clouds while Test 3 is used for cloud shadow detection. According to this study, 

one drawback is that reference values of temperature and reflectance are dynamic with seasonal 

variations and this means this algorithm needs to be subjected for all seasons to obtain the reference 

values for each season. Additionally, based on the tests that this algorithm is subjected to for 

detection of clouds, there is underestimation and overestimation witnessed. Another drawback is 

that dynamic threshold test cannot detect very thin clouds and during the monsoon period, visual 

inspection shows that test 2 cannot detect most of the low altitude broken clouds. The identified 

strength for this algorithm is that it can detect all clouds with reasonable accuracy and this 

judgement is based on visual inspection.  
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2.6.4 Inpainting-based Approaches 

A novel method to produce continuous cloud free Landsat images imagery using spatially and 

temporarily weighted regression (STWR) is presented by (Chen, et al. 2017). The approach 

proposed in this study makes good use of the cloud-free information of the Landsat image scenes 

used as input and then uses the STWR model for optimal integration of complimentary information 

from invariant similar pixels. Identification of cloud and cloud shadow pixel is the first step before 

application of this STWR model/algorithm is used. In this approach by (Chen, et al. 2017) object 

based cloud and cloud shadow detection called Fmask is employed which has been discussed as 

an independent algorithm for cloud and cloud shadow detection in this literature. Once the cloud 

and cloud shadow pixels are identified, the input image is refined in to separate clouds because 

post cloud removal is based on patch by patch processing. One of the strengths of this approach is 

that a complete framework for continuous cloud removal is provided and has a potential for use in 

the other optical images. Testing of the STWR model was done using both simulated and actual 

Landsat series of images and yields visually and quantitatively good results. However, one of the 

drawbacks of this approach is that the mutual difference resulting from atmospheric conditions 

and solar illumination are not considered which in an ideal situation it should. Secondly, this 

approach lacks the ability to restore accurate information in the event of landcover change 

occurrence.  

Therefore, in an effort to build on these developments, and to further enhance usability of optical 

remote sensing images by cloud and cloud shadow removal, this research presents a completely 

different approach which combines optical and microwave data for cloud and cloud shadow 

removal through interpolation technique. A step by step approach on development of this 

algorithm is as outlined in the next chapter on methodology. 
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Chapter 3: Methodology 
The methodology used in this research is as outlined in Figure 1.1 and it gives an overview of how 

data from Advanced Land Observation Satellite (ALOS) was used in development of cloud and 

cloud shadow removal algorithm. In this study, the Advanced Visible and Near Infrared 

Radiometer type 2 (AVNIR-2) was used as the source of the optical image and Phased Array L-

band Synthetic Aperture Radar (ALOS/PALSAR) image was used for the microwave data. Cloud 

is always a problem in optical images and ALOS/AVNIR-2 being an optical image is not spared 

either but ALOS/PALSAR is not affected due to the ability of microwaves to penetrate clouds, 

haze, fog and other bad weather conditions. In this study, clouds are removed from optical images 

(ALOS/AVNIR-2) based on interpolation technique from microwave data (ALOS/PALSAR). 

Clouds are defined by use of two indices namely Total Reflectance Radiance Index (TRRI) and 

Cloud Soil Index (CSI). TRRI is an index developed by Professor Nguyen Dihn Duong and CSI 

is an index developed by Nguyen Thanh Hoan based on studies he had carried out before (Nguyen 

and Ryutaro 2009). This approach works best when the optical image and the microwave image 

acquisition date is not far apart and with ALOS this condition is fulfilled perfectly because the 

optical sensor and the microwave sensor are onboard in the same imaging platform. Cloud shadow 

is later defined by projecting the defined clouds using average distance and bearing derived from 

measurements carried out between sampled clouds and their corresponding shadows. 

3.1   Study Area 
The study area measures forty-five Kilometers (45 Km) by twenty-five Kilometers (25Km) 

polygon and geographically it cuts across Bomet, Narok and Nakuru Counties. It also cuts across 

Maasai Mau, Transmara, Olpusmoru, Eastern Mau and South West Mau forests which form part 

of one of Kenya’s water tower, the Mau forest complex. This is as shown in Figure 3.2. Universal 

Transverse Mercator (UTM) zone 37S based on WGS84 datum coordinate system was used for 

the study area map and using coordinates, the study area rectangle is defined by top left corner 

(781556.699m,9945201.99m) and bottom right corner (826556.69m,9920201.99m). The study 

area linked with the acquired cloud image is as shown in Figure 3.3
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Figure 3.1 Flow Chart of Methodology
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Figure 3.2 Study Area Map 
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Figure 3.3: Study Area Linked with Image 
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3.2 Data Acquisition 
In this study AVNIR-2 optical image and ALOS PALSAR image for the study area were purchased 

from Remote Sensing Technology (RESTEC) center of Japan. They are as shown below. 

 

 

 

 

 

 

 
 
 
 
 
 
         Plate 3.1  AVNIR-2 Image                                                          

                                                                                                   

 

 

 

 

 

 

 

 

   

 

 

Plate 3.2  ALOS PALSAR Image 
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The acquired images had been projected to Universal Transverse Mercator (UTM) zone 37 South 

using WGS 84 datum and the coordinate system was maintained for subsequent project processes. 

3.3 Data Pre-processing 
The acquired data could not be used as it was and data pre-processing was carried out to both the 

radar and optical image. The following data processing activities were carried out. 

3.3.1 Geo-Rectification 

The AVNIR-2 Image and the Radar (ALOS PALSAR) image were not overlaying correctly when 

loaded and viewed in ArcGIS. This was noted by non-overlaying of similar features in both sets 

of images as observed in ArcMap and geo-rectification was done. Geo-Rectification was done 

using image registration by use of similar features which appeared in both the Radar (ALOS 

PALSAR) and optical (AVNIR-2) images. The rectified images were then resampled to pixel size 

of ten by ten meters and snapping was done during resampling to ensure pixel to pixel matching 

in both images. 

3.3.2 Radiance and Reflectance Conversion 

In the computation of Total Reflectance Radiance Index (TRRI), the input bands information is 

usually calibrated image values which is reflectance. In order to process image reflectance, the 

image radiance was first computed because radiance is used as an input in computation of 

reflectance and this was done for all the AVNIR-2 image bands. This was done using MATLAB 

and the following formula was used. 

Lλ = DN*Gain + Offset                                                                             ( 3.1) 

Where; 

Lλ = Radiance 

DN = Digital Number 

Gain = Band Multiplication Factor 

Offset = Band Additive Factor 

The digital number is usually the pixel values of the image while the gain and offset values for 

each band was contained in the image header file and are as shown in  Table 3.1 
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Table 3.1  Band Gain and Offset for AVNIR-2 Image 

Band  Gain Offset 

Band 1 0.5880 
 

0.000 

Band 2 0.5730 
 

0.000 

Band 3 0.5020 
 

0.000 

Band 4 0.5570 
 

0.000 

 

Gains and offsets are in units W/ (m2 * sr * µm) and therefore radiance will be in units of W/ (m2 

* sr * µm). Reflectance was computed using the following formula for all the bands; 

ρλ=π Lλd2/ESUNλSinϴ                                                    ( 3.2) 
Where; 

Lλ = Radiance in units of W/ (m2 * sr * µm) 

d = Earth-sun distance, in astronomical units. 

ESUNλ = Solar irradiance in units of W/ (m2 * µm) 

ϴ = Sun elevation in degrees 

The parameter Lλ is computed in Lλ = DN*Gain + Offset while π, d, ESUNλ and ϴ are 

provided in the metadata header file. This is as shown in Table 3.2 
         

Table 3.2  Reflectance Computation Parameters 

Parameter Value 

d 1.0103742 

ESUNλ B1=1943.3, B2=1813.7, B3=1562.3 B4=1076.5 

ϴ 65.20 

 

3.4 Cloud and Cloud Shadow Definition 
Thick Cloud is defined using the TRRI using the defined thresholds while thin cloud is defined 

using the CSI using the defined thresholds as well. Cloud shadow is defined by projecting the 
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defined clouds using bearings and distances measured from a sample of the defined cloud patches. 

A detailed discussion of each is as shown in the following sub-sections. 

3.4.1 Thick Cloud 

The ALOS/AVNIR-2 image is a four-band image with spatial resolution of ten (10m) meters 

(Japan Aerospace Exploration Agency, 2016) and the wavelengths are as outlined in Table 3.3 

Table 3.3 AVNIR-2 Image Bands Wavelengths 

The reflectance of clouds is always high from visible bands to near infrared bands of the 

electromagnetic spectrum and therefore the reflectance values of clouds will be high in all the four 

(4) bands of ALOS/AVNIR-2 image. As a result, thick clouds were defined by the TRRI index 

which is defined by the following formula; 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∫ 𝐼𝐼𝑖𝑖
𝑛𝑛
1  ∆

∫ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛
1  ∆

∗ 100                                 ( 3.3) 

Where: TRRI = Value of Index;  

 𝑇𝑇𝑖𝑖 = Digital count of channel I; 

𝑛𝑛 = Number of spectral channels; 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚= Maximum digital count  

∆= Spectral channel difference 

 In other words, TRRI as defined by the above formula is the area under the spectral reflectance 

curve which is then expressed as a percentage. Using reflectance, it is simplified as; 

TRRI= (B1+ {2*(B2+B3)} +B4)/2) *100                        ( 3.4) 

Using the TRRI index computed, any pixel whose TRRI Index is greater 60% is considered a cloud 

pixel. The TRRI image is as shown in Plate 3.3. 

Band Wavelength (micrometers) 

Band 1 0.42 to 0.50 

Band 2 0.52 to 0.60 

Band 3 0.61 to 0.69 

Band 4 0.76 to 0.89 
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Plate 3.3: TRRI Index Image 
 

3.4.2 Thin Cloud 

Thin clouds are usually more difficult to define because they have some similarities with some 

land cover types like dry sand or dry barren soil. However, from visual to infrared wavelength, 

reflectance of dry barren land is always increasing as per increasing wavelength whereas for water 

it always dips. In the mixture part between clouds and dry barren land or dry sand, reflectance of 

thin cloud in blue band (band 1) is higher than that of dry soil and reflectance of thin cloud in band 

4 is lower than that of dry soil and therefore thin cloud and other dry objects can be separated by 

Cloud -Soil Index (CSI) (Nguyen and Ryutaro, 2009). This index is calculated as follows: 

𝐶𝐶𝐶𝐶𝑇𝑇 = 𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵 1−𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵 4
𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵 1+𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵 4

                                                  ( 3.5) 

Using the CSI index, any pixel whose CSI index is greater than -0.30 and less than -0.20 is 

considered a thin cloud pixel. The resulting CSI index image is as shown Plate 3.4. 
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Plate 3.4: CSI Index Image 

3.4.3 Cloud Shadow 

Defining cloud shadows in this research was based on the assumption that clouds and their cloud 

shadows are similar in area and therefore to define cloud shadows, average distances and bearings 

of clouds to their corresponding shadows was measured for a sample of clouds patches. The 

average of distances and bearings measured was computed and these averages were used to project 

cloud shadows from the already defined clouds. Clouds are usually at different height and the 

assumption made here is that clouds are at the same height, but this results in under and over 

detections of clouds. To address this, the average under detection was used to grow the cloud 

shadow areas so as to ensure all the cloud shadows are captured. The average distance and bearing 

from clouds to their corresponding shadows are as shown in Table 3.4 
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Table 3.4 Average Distance and Bearing to Cloud Shadows 

 

3.5 Developing Algorithm for Cloud Removal 
Development of the algorithm started from detection and masking of cloud and cloud shadow 

contaminated pixels in the optical satellite image. Thick clouds were detected using TRRI while 

thin clouds were detected using CSI. The defined thresholds for TRRI and CSI were used to mask 

out thick and thin cloud contaminated pixels respectively. Cloud shadows were detected by 

projecting the detected clouds using the average of measured distances and bearings of sampled 

cloud patches to their corresponding cloud shadows. In order to remove cloud and cloud shadow 

contaminated pixels from the cloud image, interpolation technique was used. For every cloud and 

cloud shadow contaminated pixel in the optical cloud image, their corresponding pixels in the radar 

image were identified. The identified pixel values in the radar image were then used to search for 

the nearest pixels with similar or closest pixel value and once identified, their corresponding pixels 

were identified in the optical image and these pixel values in the optical image were used to replace 

pixel values for the cloud and cloud shadow contaminated pixels.  This concept is based on the 

first law of geography which states that “everything is related to everything else, but near things 

are more related than distant things” and this is why the search is done inward out from the pixels 

as shown in  Figure 3.4. This was done using MATLAB programming language starting from the 

detection of thick clouds, thin clouds and cloud shadow as well as the use of interpolation 

technique for cloud and cloud shadow removal.  

 

 

 

Cloud Patch Distance to Shadow (M) Bearing (Degrees) 

Patch 1 762.851 238.184198 

Patch 2 736.348 240.095521 

Patch 3 763.205 243.212873 

Patch 4 878.703 239.960885 

Patch 5 917.753 242.437638 

Patch 6 968.726 237.039112 

Average 837.931 240.1550378 
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Figure 3.4  Interpolation Technique for Cloud Removal 

3.6 Testing the Algorithm 
The developed algorithm was tested using the acquired data in order to assess its performance with 

regard to cloud and cloud shadow detection and removal. The input datasets were the cloud 

contaminated image and the radar image which were required for cloud and cloud shadow 

detection and removal using interpolation technique. 

3.7 Application of the Cloud and Shadow Free Image for Land Cover 

Analysis 
The cloud and cloud shadow free optical satellite image resulting from the cloud removal 

algorithm was subjected to land cover analysis to test its suitability for land cover mapping. This 

was meant to assess the usefulness of the resulting cloud free optical image for other remote 

sensing applications. 
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Chapter 4: Results and Discussions 
This chapter presents the results of the algorithm and discussions of the results. This is as discussed 

in the subsequent sections based on the methodology described in Chapter three. 

4.1 Identified Clouds and Cloud Shadows 
Thick clouds were defined using Total Reflectance Radiance Index (TRRI) while thin clouds were 

defined using Cloud Soil Index (CSI) thresholds as defined in the methodology. The detection and 

masking of each is as discussed in the following subsections. 

4.1.1 Thick Clouds Masked. 

The detection of thick clouds was done using Total Reflectance Radiance Index (TRRI) and based 

on the defined thresholds (TRRI>=60%), the thick clouds were masked out of the AVNIR-2 image. 

This is as shown Plate 4.1 where yellow areas are the thick cloud areas in the optical satellite 

image. 

 

 

 

 

 

 

 

 

 

 

  

 
Plate 4.1: AVNIR-2 Image Thick Clouds Masked 

The thick clouds as observed above cuts diagonally across the image with their distribution 

occurring both over forest and farmland and obscuring details there under together with their 

corresponding clouds. Visual examination shows that thick clouds are well masked out using the 
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Total Reflection Radiance Index (TRRI) without any omissions and the results are quite 

impressive. 

4.1.2 Thin Clouds Masked. 

Detection of thin clouds was done using Cloud Soil Index defined thresholds (-0.3<CSI<-0.2). 

Any pixel whose cloud soil index was between the defined range was defined as a thin cloud pixel 

and therefore masked out from the AVNIR-2 image. This is as shown in Plate 4.2 where thick 

clouds are the yellow areas and thin clouds are the red areas. 

 
Plate 4.2: AVNIR-2 Image with Thin Clouds Masked 

As it is observed above, most of the thin clouds are occurring around the thick clouds because the 

intensity of thick clouds decreases as you move to the edges hence forming thin clouds around the 

thick ones. Again, visual examination shows that there still remain patches of undetected thin 

clouds both around the thick clouds and isolated standalone patches which still obscure image 

information below them. Therefore, as CSI is used to detect thin clouds, there remains a 

considerable amount that remains undetected and they still obscure image information below them. 
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4.1.3 Cloud Shadows Masked 

Masking of cloud shadow was done by projecting the already defined thick and thin clouds based 

on the average distances and bearings measured from a sample of the cloud patches in the optical 

satellite image. The red color shows projected cloud shadows while the yellow color depicts both 

thin and thick clouds as shown in Plate 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 4.3: Cloud Shadow Mask 

As shown above, visual observation shows that all the cloud shadows are occurring to the west of 

their corresponding cloud meaning that the image was taken in the morning hours and the cloud 

shadow detection approach used captured most of the cloud shadows. However, it should be noted 

that the regional growth of cloud shadows around their area of occurrence by using the average of 

the under-detection distance is what enabled good capture of the cloud shadows and to some extend 

covered the thin clouds patches which were occurring around the thick clouds. This approach 

however good it is in capture of undetected cloud shadow has the negative effect of increasing the 

computational effort required during interpolation to remove the cloud shadows in areas captured 

as cloud shadows when they are not. 
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4.1.4 Cloud and Cloud Shadow Masking combined 

The masking of both cloud and cloud shadow was done for the AVNIR-2 image and this is as 

shown in Plate 4.4  where the dark areas are the masked areas. Visual observations show that the 

combined thick and thin clouds and their corresponding shadows were well masked out of the 

image but close observation shows that the thin clouds are still present in the image because as 

discussed in the thin clouds masking, there were some thin clouds which went undetected and that 

is why they are still present. Thin clouds therefore are a challenge and need rigorous detection 

approach for effective masking. The image which has been masked from cloud and cloud shadow 

contaminated pixels is as shown in Plate 4.5 linked with the study area. 

 

 

 

 

 

 

 

 

 

 

 
 

Plate 4.4: Cloud and Cloud Shadow Masked 
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Plate 4.5: Cloud and Cloud Shadow Masked Image Linked with Study Area 
 

4.2 Cloud and Cloud Shadow Free Image 
The interpolation technique was used to get missing information for the cloud and cloud shadow 

masked pixels and the resulting image is as shown in Plate 4.6 .Visual examination of the results 

shows that the areas masked as cloud and cloud shadow areas were well interpolated and the image 

information beneath them revealed. However, the interpolated areas still show the boundary 

outlines of the removed clouds and their shadows and there is contrast imbalance between the 

interpolated areas and other areas of the image. This is due to the fact that during interpolation, 

pixels with the closest value to the pixel being interpolated were used to replace the cloud and 

cloud shadow contaminated pixels and post cloud removal processing is required to address this 

problem. 
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Plate 4.6: Interpolated Cloud and Cloud Shadow Free Image 

seen, however, contrast difference between the interpolated areas and the non-interpolated areas 

could visually be seen making the image not smooth. As a result of the contrast difference between 

the interpolated and non-interpolated areas, the cloud and cloud shadow boundaries could visually 

be seen after close observation. The thin clouds which were not detected were also visible in the 

interpolated image and they obscured details in their areas of presence. The cloud free image linked 

with the study area is as shown in Plate 4.7. 
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Plate 4.7: Interpolated Cloud Free Image Linked with Study Area 
 

4.3 Cloud and Cloud Shadow Free Image Land Cover Analysis 
The analysis of the results is as discussed in the following subsections. Focus was done on 

verification of correctness of information revealed below the cloud and cloud shadow interpolated 

areas as well as comparisons between land cover types between the cloud free image and the cloud 

image.  

4.3.1 Verification of Results 

Results verification was done using a high-resolution QuickBird cloud free image whose 

acquisition time was same month with that of the cloud contaminated optical image so as to verify 

whether land cover types revealed in the interpolated image are the same as the ones in the high-

resolution cloud free image. This is as shown in  Plate 4.8 and Plate 4.9. Four samples of different 

locations of the cloud free interpolated image were taken and compared to their corresponding 

locations in the high-resolution image. The comparisons showed that the land cover features in the 

interpolated cloud free image were similar to their corresponding features in the high-resolution 
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image and this confirmed the correctness of the details revealed in the cloud image after 

interpolation. 
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Plate 4.8: Interpolated Cloud Free Image 

 

 

  

Plate 4.9: High Resolution Image  

Same Features 
Same Features 

Same Features 

Same Features 
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4.3.2 Test of Interpolated Image for Other Applications 

In order to test the usability of the interpolated image for other applications like data capture 

through digitization, an attempt was made to digitize a linear feature cutting across interpolated 

and non-interpolated areas in the image. This was to test whether the features can be captured 

without any difficulties and rivers were digitized for this test and the results are as shown Plate 

4.10 

 

Plate 4.10: Test of Interpolated Image for Digitization  

The usability of the interpolated image for other applications like data capture through digitization 

was done and it was found that data capture was done with ease except for the areas where thin 

clouds were not detected and masked. 

4.3.3 Comparative Analysis for Land cover 

This was done to demonstrate how the cloud free image can be used for Land Cover Mapping by 

comparing the cloud image and the interpolated cloud free image to show the land cover types 

revealed below the clouds after interpolation. Plate 4.11 shows the farmland from the cloud image 

revealed in the interpolated image. 
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Plate 4.11: Cloud and Cloud Shadow Removal on Farmland Landcover 

Another comparison between cloud contaminated image area and the interpolated cloud free image 

was done and the cloud free image revealed the cloud obscured details below the cloud cover in 

the cloud image. This is as shown in Plate 4.12 

 

 

 

 

 

 

 

 

 

 

Plate 4.12:Cloud and Cloud Shadow Removal on Forest Landcover 
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4.4    Discussions of the Results 
Thick clouds were defined using the TRRI (TRRI>60%), thin clouds were defined using CSI (-

0.3<CSI<-0.2) while cloud shadows were defined by projecting the defined clouds with the 

average of distances and bearings measured from a sample of the defined clouds. Using the 

developed program function to define thick clouds using the defined thresholds of TRRI, thick 

clouds were successfully detected and masked out. Using the developed program function to detect 

thin clouds by using the defined threshold of CSI, majority of thin clouds were successfully 

detected and masked out but there were still some remnants of thin clouds which still remained 

undetected. Using the developed program for cloud shadow detection and by use of average of 

distances and bearings of clouds to their cloud shadows, cloud shadows were successfully detected 

and masked out although there were instances of over-detection and under-detection. To address 

the problem of under-detection, regional growth of the already detected cloud shadow areas was 

done so as to detect the un-detected cloud shadow areas which although it solves the problem, it 

increases the computational during interpolation. The cloud and cloud shadow masked image 

showed that all the detected cloud and cloud shadow contaminated pixels were well masked out 

leaving only the cloud and cloud shadow free pixels. 

The developed program function for cloud and cloud shadow removal through interpolation was 

applied on the cloud and cloud shadow masked image and the resulting cloud free image looked 

good with all the image information obscured by cloud and cloud shadows revealed. However, the 

resulting cloud free image still had contrast mismatch and artifacts boundary between the 

interpolated and non-interpolated parts of the optical image hence making the cloud free 

interpolated image not smooth. Image verification was done so as to confirm the revealed image 

details in the cloud and cloud shadow areas of the interpolated optical image are the correct details 

by comparing it with another acquired high resolution cloud free satellite image of the same area 

acquired at the same time. The results of the verification confirmed that the details revealed in the 

cloud and cloud shadow obstructed areas were the correct image details because comparison 

between cloud and cloud shadow obstructed areas with their corresponding location in the acquired 

cloud free high-resolution image showed similar image features. The interpolated cloud and cloud 

shadow free image was also subjected to tests on usability of the image to other remote sensing 

applications like data capture through digitization and the results looked very good with the 

digitized features (rivers) being captured with ease because they were easily visible. 
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 Chapter 5: Conclusions and Recommendations 
 

5.1    Conclusions 
Many approaches or techniques have been used towards cloud and cloud shadow removal but in 

this research, a technique has been presented which makes use of both optical and microwave data 

for cloud and cloud shadow removal using ALOS data. Development of a program function to 

define thick clouds was successfully achieved using MATLAB programming language where 

Total Reflectance Radiance Index (TRRI) was used to distinguish between thick and non-thick 

cloud pixels. Using the program, thick clouds contaminated pixels of the optical satellite image 

were detected and masked out successfully. Total Reflectance Radiance Index (TRRI) is therefore 

a very good index for detection of all thick clouds in an optical image and can be applied in all 

optical images because it is computed using the reflective bands in an optical image. Thin Clouds 

detection program function was also successfully developed using MATLAB programming 

language by making use of Cloud Soil Index (CSI) to define thin clouds. Although majority of the 

thin clouds were detected, there were still some patches which still remained undetected. 

Therefore, CSI does not detect all the thin clouds present in the optical image as some remnants 

could still be seen in the image despite the developed function successfully detecting and masking 

thin clouds pixels based on input thresholds. 

Development of a program function to detect cloud shadows was successfully achieved using 

MATLAB programming language where cloud shadows were detected by projecting the average 

of distances and bearings measured from a sample of cloud patches to their corresponding 

shadows. However, it is important to note that this technique resulted in some cloud shadows going 

undetected and some non-cloud shadow areas being detected as cloud shadows. A program 

function for cloud and cloud shadow removal from optical image using interpolation technique 

was successfully achieved and using the program, a cloud free interpolated image was realized. 

The interpolation program function developed for cloud removal worked very well and all the 

masked areas details were revealed and therefore use of optical and microwave data for cloud and 

cloud shadow removal can be adopted henceforth as an addition to the existing approaches for 

cloud and cloud shadow removal. Testing of the cloud and cloud shadow free image through land 

cover analysis was done and it can be concluded that the actual land cover types obscured by the 
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clouds and their shadows were successfully revealed and verification was successfully done. 

Verification was done by comparing the land cover types in the cloud and cloud shadow obscured 

areas with their corresponding parts in the acquired cloud free high-resolution satellite image 

which also confirmed similar land cover types. 

 

5.2 Recommendations 
The developed cloud and cloud shadow removal algorithm worked very well and cloud and cloud 

shadows were successfully removed, however, the following recommendations are proposed;  

i. Further research needs to be carried out for a more rigorous approach towards detection of 

thin clouds because using CSI, majority of the thin clouds were detected but there were 

still some which remained undetected. 

ii. The technique used in detection of clouds shadows needs further research to improve its 

accuracy especially an approach which takes in to account the height of the clouds. This is 

because the used approach either had an over-detection or under-detection of cloud 

shadows. 

iii. Lastly new satellite developers need to consider the possibility of incorporating both 

optical and microwave sensor onboard the same satellite so as to make data availability for 

this approach easily accessible and cheap. 
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Appendix A 
Appendix A1: The developed MATLAB Algorithm 
 

%% Reading Image Bands in to Array From and the Projection Information  

[Band1,R]=geotiffread('F:\Thesis\Images\0000146611_001001_ALAV2A191273610\01-ALAV2A191273610-
O1B2R_U.tif'); 

[Band2,R]=geotiffread('F:\Thesis\Images\0000146611_001001_ALAV2A191273610\02-ALAV2A191273610-
O1B2R_U.tif'); 

[Band3,R]=geotiffread('F:\Thesis\Images\0000146611_001001_ALAV2A191273610\03-ALAV2A191273610-
O1B2R_U.tif'); 

[Band4,R]=geotiffread('F:\Thesis\Images\0000146611_001001_ALAV2A191273610\04-ALAV2A191273610-
O1B2R_U.tif'); 

%% Setting the Gain and Offset Co-efficients for Computing each Band Radiance 

Gain_B1=0.5880; 

Gain_B2=0.5730; 

Gain_B3=0.5020; 

Gain_B4=0.5570; 

Offset_B1=0.0000; 

Offset_B2=0.0000; 

Offset_B3=0.0000; 

Offset_B4=0.0000; 

%% Computing each Band Radiance: L? = DN*Gain + Offset 

Band1_Rad= double(Band1)*double(Gain_B1)+double(Offset_B1); 

Band2_Rad= double(Band2)*double(Gain_B2)+double(Offset_B2); 

Band3_Rad= double(Band3)*double(Gain_B3)+double(Offset_B3); 

Band4_Rad= double(Band4)*double(Gain_B4)+double(Offset_B4); 

%% Setting Parameters for Computing Reflectance; ? = ?*L?*d2 /(ESUN?)*Sin? 

d=1.0103742; 

ESUN_B1=1943.3; 

ESUN_B2=1813.7; 

ESUN_B3=1562.3; 

ESUN_B4=1076.5; 

theta=65.20; 
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%% Computing Reflectance; ? = *L?*d2 /(ESUN?)*Sin? 

Band1_Ref=double(Band1_Rad)*double(pi)*double(d^2)/(double(ESUN_B1)*sind(theta)); 

Band2_Ref=double(Band2_Rad)*double(pi)*double(d^2)/(double(ESUN_B2)*sind(theta)); 

Band3_Ref=double(Band3_Rad)*double(pi)*double(d^2)/(double(ESUN_B3)*sind(theta)); 

Band4_Ref=double(Band4_Rad)*double(pi)*double(d^2)/(double(ESUN_B4)*sind(theta)); 

%% Computing Total Reflectance Radiance Index  (TRRI); TRRI= (b2+ 2*(b3+b4+b5+b6)+b7)/2 for Landsat 

% where b2, b3 ... b7 is TOA or surface reflectance 

% ALOS AVNIR-2 Images; TRRI= (b1+2*(b2+b3)+b4)/2 

TRRI= ((Band1_Ref+2*(Band2_Ref+Band3_Ref)+Band4_Ref)/2)*100; 

%% Writing the Final TRRI Image 

coordRefSysCode = 32736; 

filename = 'TRRI.tif'; 

geotiffwrite(filename, TRRI, R,'CoordRefSysCode',coordRefSysCode); 

%% Computing the Cloud Soil Index (CSI)Band1-Band4/Band1+Band4 and writing it as an Image 

CSI= double(Band1_Ref-Band4_Ref)./(Band1_Ref+Band4_Ref); 

filename1 = 'CSI.tif'; 

geotiffwrite(filename1, CSI, R,'CoordRefSysCode',coordRefSysCode); 

%% Defining Cloud Using the TRRI Index; Any Pixel greater than 60 is a cloud Pixel 

idx1=find(TRRI>=60); 

idx2=find(CSI>=-0.3 and CSI<=-0.2); 

Band1_Cloud=Band1; 

Band2_Cloud=Band2; 

Band3_Cloud=Band3; 

Band4_Cloud=Band4; 

%%  Writing the TRRI Image Combining the 3 Bands  

filename2='TRRI.tif'; 

geotiffwrite(filename2, TRRI, R,'CoordRefSysCode',coordRefSysCode); 

%% All Cloud Pixels are being allocated Value 0 in all Bands 

Band1_Cloud(idx1)=0; 

Band2_Cloud(idx1)=0; 

Band3_Cloud(idx1)=0; 

Band4_Cloud(idx1)=0; 



61 
 

%%Combining the Bands and writing the cloud masked image 

Cloud_Masked_Image=cat(3,Band1_Cloud,Band2_Cloud,Band3_Cloud); 

filename3='Cloud_Masked_Image.tif'; 

geotiffwrite(filename3, Cloud_Masked_Image, R,'CoordRefSysCode',coordRefSysCode); 

%% Masking thin Cloud Pixels by allocating value zero and writing the image 

Band1_Cloud(idx2)=0; 

Band2_Cloud(idx2)=0; 

Band3_Cloud(idx2)=0; 

Band4_Cloud(idx2)=0; 

Cloud_thin_Masked=cat(3,Band1_Cloud,Band2_Cloud,Band3_Cloud); 

filename4='Cloud_thin_Masked.tif'; 

geotiffwrite(filename4,Cloud_thin_Masked, R,'CoordRefSysCode',coordRefSysCode); 

%% Masking cloud shadows by projectingcloud pixels using distance and Bearing 

Distance=837.931; 

Bearing=240.1550378; 

idx4 = knnsearch(Band1_Cloud(idx1),Distance,Bearing); 

Band1_Cloud(idx4)=0; 

Band2_Cloud(idx4)=0; 

Band3_Cloud(idx4)=0; 

Band4_Cloud(idx4)=0; 

%% Writing the cloud shadow Masked Image 

Cloud_Sgadow_Masked=cat(3,Band1_Cloud,Band2_Cloud,Band3_Cloud); 

filename5='Cloud_Shadow_Masked.tif'; 

geotiffwrite(filename5,Cloud_Shadow_Masked, R,'CoordRefSysCode',coordRefSysCode); 

%% Interpolation between cloud Image and Radar Image 

All_Bands_Masked_Image=cat(Band1_Cloud,Band2_Cloud,Band3_Cloud); 

idx5=find(All_Bands_Masked_Image==0); 

SAR=geotiffread('F:\Thesis\Images\Thesis_Works\SAR.tif'); 

Cloud_Pixels=SAR(idx5); 

SAR_Norm=SAR; 

SAR_Norm(idx5)=0; 

%% Interpolating the SAR Image 
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SAR_Norm_CV=reshape(SAR_Norm,[],1); 

idx6 = knnsearch(SAR_Norm_CV,Cloud_Pixels); 

for i=1:idx5; 

        if(Band1_Cloud(idx5)~=0); 

        Band1_Cloud(idx5)=Band1_Cloud(idx6); 

        Band2_Cloud(idx5)=Band2_Cloud(idx6); 

        Band3_Cloud(idx5)=Band3_Cloud(idx6); 

        end 

end 

       

%%Combining the interpolated Bands in to single image  

Cloud_Free_Image=cat(Band1_Cloud,Band2_Cloud,Band3_Cloud); 

filename6='Cloud_Free_Image.tif'; 

geotiffwrite(filename6,Cloud_Free_Image, R,'CoordRefSysCode',coordRefSysCode); 
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