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Abstract

In this project , we will study how a volleyball is swerved(laterally displaced from the main

path) as it travels though the air as a result of induced side-spin. Our study will assume the

ball is played in a controlled room to avoid the e�ect of wind to the swerving of the ball.
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1 Introduction

For those who study mathematics of sports, aerodynamic
properties of various sport object is of interest. Some of these
properties are roughness of balls’ surfaces and introduction of
dimples in golf balls. The research work on the physics of balls
has been carried out over the decades and several
wind-tunnel experiments and computer models have lead to
even a be�er understanding of these study topics.

The phenomena revolving around volleyball in the air
cannot be fully discussed without considering a non-dimensionless
Reynolds number. So far there is no specific le�er used
universally to denote Reynolds number and hence in my case
I am going to use Re to denote it. Reynolds number Re, is
defined as

Re =
υD
ν

(1)

Where υ is the air speed far from the ball in the balls rest frame
(speed of the ball in the stationary air’s frame). D represents
the diameter of the ball, whereas ν denotes the Kinemetic
viscocity, defined as the ration of viscosity µ to the density of
air ρ

Reynold numbers involved for a volleyball game is
approximately 400,000.
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It is interesting to note that as the Re increases through a
critical value, air flow on the ball’s boundary layer changes
from laminar flow to turbulent one. This in turn drops the
drag coe�icient since the boundary layer separates
further back on the ball.
Introduction of dimples in golf balls and Panel connections on
base balls and volleyball induce turbulence at Reynolds
numbers lower than that of a smooth ball.
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Now considering the trajectory of any ball in the air we will
note that the paths followed by a spinning ball and another
one by a non-spinning one are di�erent. There are three ways
in which a ball can be made to spin; topspin, down-spin and
side-spin. When a player imparts a spin on the ball it tends to
arc more than it would if it were not rotating. This can clearly
be seen in a video where Roberto Carlos’ free kick curved more
than expected earning him goal against France in 1997.
[htt ps : //www.youtube.com/watch?v = 2zcXJBINuTU ].

This phenomenon has motivated me to further investigate the
e�ect of inducing spin on a volleyball. I will also discuss the
forces associated with the spinning volley ball.

Its also important to note that the forces associated with
the spinning ball are parametrized by the Reynolds number
and by the dimensionless spin Parameter, Sp. Sp is defined as
the ratio of the tangential and center-of-mass speeds of the
rotating ball at the equator with respect to the air.
If we consider a ball of radius r, angular speed ω , and
center-of-mass speed ν ,Sp is given by

Sp =
rω

ν
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Figure 1. A standard volleyball pitch
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2 FORCES INVOLVED ON A BALL IN FLIGHT

In order to quantify the trajectory of the volleyball , we will
derive the equation of motion from the first principle namely
Newton 2nd law of motion. And to fully understand these
forces, consider the following figure

Figure 2. m~g directed downwards is the ball’s weight, ~FD directed opposite to the motion of the
ball is the drag force, ~FL acting perpendicular to the direction of motion and in the plane

formed by the velocity and the ball’s weight is the li� force. Finally is the sideways force (not
shown) directed into the page.

Here we will assume the ball’s trajectory is close to the
earth’s surface so that the gravitational force on the ball m~g
is constant. the mass of the ball is m = 0.268kg
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Forces acting on the volleyball of mass m, and with
acceleration~a is given by

F = m~a = m
dv
dt

(2)

These forces are: earth’s gravitational force m~g , drag force
Fdrag and magnus force Fmagnus.
Substituting these forces into 2nd Newton law of motion we
get;

F = m~g+Fdrag+Fmagnus (3)

The magnus e�ect results from the asymmetric flow of air
around a spinning ball. This e�ect displaces the ball in the
direction perpendicular to the spin axis. This is to mean that,
if the spin axis is horizontal the magnus e�ect provides back
li� and if the spin is vertical, the magnus e�ect causes the
ball’s trajectory to bend sideways.
We may resolve this force into two components namely the
li� and lateral motion.
If the motion of the ball is to the direction defined by the unit
vector v̂ then we can define another vector l̂ perpendicular v̂
and in the same plane as v̂. Let ĝ be the acceleration due to
gravity and z be a positive component of l̂.

We can then define a right-handed system through the 3rd

vector l̂× v̂ as shown in figure (3)
Now a�er spli�ing the magnus force into li� and spin forces
our equation looks like this

F = m~g+Fdrag+Fli f t +Fspin (4)
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For convenience we are going to abbreviate

Fdrag as FD

Fli f t as FL

and
Fspin as FS

where the drag force, Fd is directed opposite to the vector v̂
direction , FL is the li� force and is directed in the same
direction as l̂ whereas the lateral force Fs has a sense similar
to that of the vector l̂× v̂.
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2.1 THE DRAG FORCE

This force is directed opposite to the motion of the ball or
simply opposite to the velocity~v and maybe wri�en as

~Fd =−
1
2

ρAv2CDv̂ (5)

where ρ = 1.23kg/m3 is the density of air.

A = 0.36m2 if the cross-sectional area of the volleyball.

v =p~v p is the ball’s speed.

CD denotes dimensionless drag coe�icient and

v̂ = ~v
v

2.1.1 THE LIFT FORCE

The li� force which points perpendicular to the drag force and
remains in the plane formed by v̂ and the ball’s weight is given
by

~FL =−
1
2

ρAv2CLl̂ (6)

where CL is the dimensionless li� coe�icient and l̂ is a unit
vector normal to v̂ and lies on the plane formed by v̂ and the
balls weight.
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2.1.2 SIDEWAYS FORCE

This force is given by

~FS =
1
2

ρAv2CS (l̂× v̂) (7)

where CS is the dimensionless sideways coe�icient.
It is also important to note that Li� force FL and Spin force FS

occur as a result of the same phenomena and hence,
finding li� coe�icient CL as a function of Reynolds number
and Spin parameter means also knowing spin coe�icient CS

as a function of Reynolds number and spin parameter.
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For pure topspin or back-spin, spin coe�icient,
CS = 0
For pure side-spin, li� coe�icient CL = 0
It is also important to note that we can have a situation where
the ball is made to move in the air without any kind of rotation.
This phenomenon is known as "knuckle- ball" e�ect and when
we have such,

CL =CS = 0

We will also ignore the force exerted by the air particles on our
ball because its contribution to the air force from buoyancy is
small.

2.2 ASSUMPTIONS

• We assume the ball to be primarily played in the direction of
the y−axis. Due to this reason, the velocity in the y−direction
must be relatively higher than the velocities in the x− and
z− directions. Thus the ball travels furthest in the y−direction.

• We also assume that the force applied on the ball is such
that it causes a side-spin meaning that the the motion of
the ball is dominated by sideways swerve.

• Serving the ball is done in a way such that the vertical
velocity will be greater than zero. i.e w >> 0. This means
the ball will acquire some vertical length before it start falling
to the ground.
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3 DRAG COEFFICIENT OF A VOLLEYBALL

In our case we will take drag coe�icient as a constant.
However Beatrice Hahn and David Mc Culloch[1999], two
students at the University of Michigan did a wind-tunnel
experimental study to determine the drag on non-spinning
volleyball as a project in Aeronautical engineering under the
direction of Dr. Don Geister[2001]. Their results were
excellent set of data that were included along with other sport
balls in a paper by Dr. Rabi Mehta of NASA Ames and Dr. Jani
Pallis of Cislinar. Their result is shown below.

Figure 3. Drag coe�icients versus Reynolds number for di�erent sport balls. Volleyball data
courtesy of Don Geister [2001],Aerospace Department, University of Michigan.

It is also important to note that in the course of the ball’s
flight, the angular velocity keeps on vanishing at slow rate
so that we can comfortably consider it to be a constant.
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However, we realize that | | v | |, decreases with time due to
the force of drag so that the spin rate

Sp =
Rω

|v| increases.

Both Re and CD are dimensionless quantities and Re is very
important in fluid dynamics in that it shows us the
relationship between physical situations that appear to be
di�erent.
The drag coe�icient versus Reynold number for volleyball is
displayed below as Thomas W. Cairns [2004], a Ph.D student
at the University of Tulsa obtained it

Figure 4. Drag coe�icients of volleyballs

Here we will take Reynolds number to be the scalar multiple
of the ball’s speed given by

Re =
ρL
µ

v
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where

ρ−mass density of air = 1.23kg/m3

L−diameter = 0.214m
µ dynamic viscosity of air = 1.79×10−5Ns/m2

v ball’s speed in m/s

Thus we will have Re = 1470v
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The phenomenon at Re = 100,000 where CD drops an order
of magnitude is called Drag crisis. This occurs when a thin
boundary layer of air and next to the ball switches from
laminar to turbulent. Di�erent balls experience drag crisis at
di�erent Reynolds numbers because of the roughness of their
surfaces.

The region of rapidly falling CD is called the Critical
region. The significance of the CD values for a volleyball is
that much of the game is played in the critical region. A spike
at 30m/s (Re = 400,000) is a very hard hit while serves at
25m/s are hard and at 20m/s are common. From Hahn Mc
Culloch [1999] data, we can say that there is no volleyball ever
hit faster than 34m/s which is Re = 500,000. Below is a table
showing four data points in the volleyball critical regions.
v denotes velocity in m/s.

v CD

10.2 0.47

15.7 0.15

17.0 0.10

19.7 0.08
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4 DERIVATION OF THE GOVERNING EQUATION

From our previous computations of the forces a�ecting the
ball, we were able to calculate drag force (5), li� force (6) and
sideways force (7) and now we will put them in Newton’s
second law equation to obtain the total force acting on the
ball.

ma =−1
2

ρAv2CDv̂− 1
2

ρAv2CLl̂ +
1
2

ρAv2CS (l̂× v̂)

From here we will divide all through by m and the find
accelerations in x, y and z directions.

Figure 5. The polar angle θ and the azimuthal angle is φ of the velocity vector. The angle
measured from the horizontal is ϕ = π

2−θ
.

With the aid of fig 5 , we will easily calculate unit vectors as
follows. The unit vector along v̂ may be wri�en as

v̂ = sinθ cosφ i+ sinθ sinφ j+ cosθk (8)
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The unit vector l̂ is found by taking v̂ and rotating the angle
θ back by π

2 and keeping φ the same.
Since sin(θ − π

2) =−cosϕ

and

cos(θ − π

2) = sinϕ

then the unit vector l̂ is given as

l̂ =−cosθ cosφ i− cosθ sinφ j+ sinθk (9)

The third vector we need is l̂× v̂ from (8) and (9) we obtain

l̂× v̂ =−sinφ i+ cosφ j (10)

These angles can be expressed in terms of Cartesian velocity
components as

sinθ =
| vp |
| v |

, cosθ =
ż
| v |

, cosφ =
ẋ
| vp |

, sinφ =
ẏ
| vp |

(11)

where vp = (ẋ, ẏ) denotes projection of v on the x− y plane.
(see fig 5)
We then write the motion equation in form of components as:
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ẍ =−kd | v | ẋ+ kl
| v |
| vp |

ẋż+ ks
| v |2

| vp |
ẏ (12)

ÿ =−kd | v | ẏ+ kl
| v |
| vp |

ẏż− ks
| v |2

| vp |
ẋ (13)

z̈ =−g− kd | v | ż− kl | v || vp | (14)

The scaled drag coe�icients are

kd =
ρACD

2m

kl =
ρACL

2m

ks =
ρACS

2m



18

5 NON-DIMENSIONALIZING THE GOVERNING
EQUATIONS

We realize there are many variables in our equations and since
we want to make analytic progress in our computations we
would need to work with a consistent set of units. For example
time can be measured in seconds(sec), distance in meters(m),
and mass in (kg). We notice that these quantities time,length
and mass are dimensions . For our equations to make sense ,
we need to measure all dimensions with consistent units. Also
we need to realize that the dimension of a variable is an
inherent property of the variable, but the units are something
we can choose. For example x, y and z are lengths , but we may
choose it in terms of furlongs ,miles,meters and centimeters or
even kilometers. The idea is to measure our variables in "units"
that are intrinsic to our problems.
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The following procedure for non-dimensionalizing a
di�erential equation will be followed.

• We will list all the variables and parameters along with their
dimensions.

• For each variable, say x, form a product (or quotient) L of
parameter that has the same dimensions as x and define a
new variable X = x

L , where X is the "dimensionless" variable.
We notice that its numerical value is the same no ma�er
what system of units is used.

• Rewrite the di�erential equation in terms of the new
variables.

• Since our aim is also to reduce the number of parameters,
we will group them into non-dimensional combinations, and
define a new set of non-dimension parameters expressed as
the non-dimensional combinations of the original
parameters.

• Also we will make as many non-dimensional constants equal
to one as possible

So let

X =
x
L1

, Y =
y
L2

, Z =
x
L3

, T =
l
τ
. (15)

where L2 is the distance moved by the ball in a
direction parallel to the y−axis, τ = L2

v is the symbol used to
represent the chosen time-scale in the course of motion of the
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ball until it reaches the target. L3 = gτ2 represents the length
scale vertically and X ,Y,Z,T are non-dimensional length
variables

Due to assumptions made the length-scale L1 is to be
determined but L1� L2.
Writing velocity vectors in non-dimensional form

| v |=
√

ẋ2+ ẏ2+ ż2 (16)

Using (15) equation (16) simplifies to

| v |= L2

τ
Ẏ

√
L2

1Ẋ2

L2
2Ẏ 2

+1+
L2

3Ż2

L2
2Ẏ 2

| v |= L2

τ
Ẏ r1 (17)
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Where r1 is the value under the square root

| vp |=
√

ẋ2+ ẏ2

| vp |=
L2

τ
Ẏ

√
1+

L2
1Ẋ2

L2
2Ẏ 2

| vp |=
L2

τ
Ẏ r2 (18)

Where r2 =

√
1+

L2
1Ẋ2

L2
2Ẏ 2

We have isolated L2Ẏ 2

τ
since it is the highest magnitude in the

expression for velocity

and therefore r1,r2 have the order of unity i.e.
r1,r2 = O(1).

kd = 0.013 ρ = 1.23kgm−3

ks = 0.0108 A = 0.036m2

Kl = 0.004 D = 0.214m

CD = 0.3 v = 20,25,30m/s

CL = 0.1 m = 0.268kg

CS = 0.25
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We can now substitute our scaled factors into the governing
equations (12)(13)(14) to get

Ẍ =−kdL2ẊẎ r1+ klL3
r1

r2
Ẋ Ż + ks

L2
2r1

2

L1r2
Ẏ 2

(19)

Ÿ =−kdL2Ẏ 2r1+ klL3
r1

r2
Ẏ Ż− ks

L1r1
2

r2
ẊẎ (20)

Z̈ =−1− kdL2r1Ẏ Ż− kl
L2

2

L3
r1r2Ẏ 2

(21)

Since our study is focusing on the arching of the ball in the
x - direction, it is important to note that this arching is
determined by spin component in the y- direction and initial
velocity in the same direction.

We thus take the initial velocity in the direction of the variable
x (swerving direction) to be zero, i.e. ẋ(0) = Ẋ(0) = 0
We scale the velocity vectors so that r1r2 = O(1) (order unity)
It is clear the dominant term in (19) is the one involving Ẏ 2 .

Thus ks
L2

2
L1
= 1.

It implies that
L1 = ksL2

2

Our volleyball pitch is 18m long and since we want the ball
to travel long enough past the net, we will chose L2 to be
between 9.1 m -18 m and for convenience we will work with
18 m. From the table above L1 ≈ 2m i.e. we expect the ball to
have a swerve of the order 2m laterally in the course of flight.
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The dominant term in (20) involve Ẏ 2

kdL2 = 0.2 .

Lets denote this by ε = kdL2 which is the small parameter
and

(ε2 ≈ 0.04)

Our vector components contains ratios L2
1

L2
2
≈ 0.02 and

L2
3

L2
2
≈ 0.1

We notice that in the z -direction ,L3, the ball can be
analyzed from any height that is above 2.43m for men and
2.24m for women (wysc.org/page.asp?n = 32591).

Lets denote

L2
1

L2
2

as c1ε
2 and

L2
3

L2
2

as c1ε
2

Notice also

ksL1 =
L2

1

L2
2
≈ c1ε

2

klL3 ≈ 0.02 denoted as c3ε
2
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klL2
2

L3
= c4ε ≈ 0.18

Substituting these in the governing equations we end up
ge�ing

Ẍ =−εẊẎ r1+ c3ε
2r1

r2
Ẋ Ż +

r1

r2
Ẏ 2

(22)

Ÿ =−εẎ 2r1+ c3ε
2r1

r2
Ẏ Ż− c1ε

2r2
1

r2
ẊẎ (23)

Z̈ =−1− εr1Ẏ Ż− c4εr1r2Ẏ 2
(24)

Factoring Ẏ r1 in equation (22),(23) and (24) we obtain

Ẍ =−Ẏ r1[εẊ− c3ε
2 Ẋ Ż
r2Ẏ
− 1

r2
Ẏ ] (25)

Ÿ =−Ẏ r1[εẎ − c3ε
2 Ż
r2
+ c1ε

2r1

r2
Ẋ ] (26)

Z̈ =−1− Ẏ r1[εŻ + c4εr2Ẏ ] (27)
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Scaled velocity component is given by

r1 =

√
1+ c1ε2 Ẋ2

Ẏ 2
+ c2ε

Ż2

Ẏ 2

r2 =

√
1+ c1ε2 Ẋ2

Ẏ 2

At this point we can be able to observe that all terms in
equation (26) involve ε which is a parameter of small
magnitude, this indicates that the motion is dominant in the
Y direction and is we describe this situation by Ÿ = 0 and the
drag represented by ε has a negligible e�ect.

Now we have the initial conditions such that the ball is
kicked with dimensional velocity (0,v,ω). We have chosen
the velocity in x- direction (our arching direction) to be zero
since we assumed our ball is dominantly moving in the y
direction. If we had chosen x - direction as our dominant path,
then we could have chosen velocity in y- direction to be zero.
In non-dimensional form , these conditions become
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X(0) = Y (0) = Z(0) = 0,

Ẋ(0) = 0,

Ẏ (0) = 1,

Ż(0) =W

where

W = ωτ

L3



27

6 METHODOLOGY

PERTURBATION METHOD

Now we will employ perturbation method based on the small
parameter ε to obtain our solution and we will solve up to
second order for convenience.

Regular Purtabation expansion: Our familiarity with Tylor
expansion principle for an analytic function f (x) tells us that
we can expand close to a point x = a as

f (a+ ε) = f (a)+ ε f ′(a)+
1
2

ε
2 f ′′+ .....

But we realize that for general functions f (x), the expansion
can fail if it fails to converge or simply if the series is unable
to capture the behavior of the function. The paradigm of the
expansion in which a small change to x makes a small change
to f (x) is a powerful tool and it forms the backbone of regular
perturbation expansions.
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Below are the steps to be followed in our work in order to
obtain a perturbation solution;

• Set ε = 0 and solve the resulting system.

• Perturb the system by allowing ε to be non-zero (but small
in some sense).

• Formulate the solution to the new perturbed system as a
series

f0+ ε f1+ ε
2 f2+ ....

• Expand the governing equations as a series in ε , collecting
terms with equal powers of ε .

• Solve the equation in turn and as far as the solution will be
required. In our case we will expand up to O(ε2).

Having said that, we will let

X = X0+ ε(X1)+ ε
2(X2)+ ....

Y = Y0+ ε(Y1)+ ε
2(Y2)+ ....

Z = X0+ ε(Z1)+ ε
2(Z2)+ ..

A�er perturbing to O(ε2) the solution becomes

X =
T 2

2
+ ε[

c2W 2T 2

2
− (3+2c2W )

T 3

6
+

c2T 4

12
]
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+ε
2[(−9

2
c2W 2+3c3W −2c2c4W )

T 3

6

+(6c2W +
11
2
−2c3−

c1

2
+2c2c4)

T 4

12
− 13c2T 5

120
] (28)

Y =T−ε
T 2

2
+ε

2[−(c2W 2−2c3W )
T 2

4
+(2−c1+c2W−c3)

T 3

6
− c2T 4

24
]

(29)

Z =WT − T 2

2
+ ε[−(W + c4)

T 2

2
+

T 3

6
]

ε
2[−c2W 2(W +C4)

T 2

4
+(4W +6c4+3c2W 2+2c2c4W )

T 3

12
]

− (3+3c2W + c2c4)
T 4

24
+

c2T 5

40
] (30)



30

Bray and Kerwin[2003] presented a 2-D system which was
more simplified. This was achieved equating the acceleration
to the largest term on the RHS of the equation and from
equation (25, 26) we will have Ẍ = Ẏ 2 and

Ÿ =−εẎ 2

with r1 ≈ r2 ≈ 1

Using the initial conditions we obtain

Y =
1
ε

ln | 1+ εT |

X =−1
ε
(T −T )

If we set W = 0, ci = 0 to remove z- dependence in order to
appear two dimensional, The Tylor series expansion for
ε << 1 is applied to obtain that

X =
T 2

2
− ε

T 3

3
+ ε

2T 4

4

Y = T − ε
T 2

3
+ ε

2T 3

3
We realize that x solution di�ers at o(ε) while the y solution
di�er at o(ε2)

Now expressing our equations in dimension form as we had
done earlier

X =
x
L1

, Y =
y
L2

Z =
z

L3
, T =

t
τ
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We also need to express our constants in terms of dimensional
parameters

ε = kdL2 , c1 =
k2

s

k2
d

c2 =
g2L2

kdv4 , c3 =
klg

vk2
dL2

c4 =
klv2

gkdL2
, W =

ωv
gL2
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Where we note that

L1 = ksL2
2 , L3 = gτ

2 , τ =
L2

v
L2 is the initial distance and v the initial velocity in the
y - direction thus the dimensional solution is thus given by

x =
ks(vt)2

2
[1−{kdvt− g2t2−4gwt +6w2

6v2 }] (31)

y = vt[1−{kdvt
2
}] (32)

z = wt− gt2

2
+{kdgvt3

6
− (kdw+ klv)

vt2

2
} (33)
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7 RESULTS, DISCUSSIONS AND CONCLUSION

7.1 RESULTS AND DISCUSSIONS

In our study of an in-flight volleyball, we have perturbed our
governing equations to order o(ε2) .From equation (31) it can
be seen that the deflection of the ball in the x direction is
dominantly influenced by the spin coe�icient ks and (vt), where
(vt) denotes the initial approximation of the distance traveled
in the direction of y.
Ball’s design and atmospheric conditions are the major
contributors to the spin coe�icient ks. This has been greatly
discussed by Rabindra D.Mehta and Jani Macari Pallis[2001]
on their work on sport balls aerodynamics: E�ect of Velocity,
Spin and Surface roughness.
It is also important to note that the quadratic
g2t2−4gwt +6w2 is positive provided w >> 0 and thats why
we assumed the ball in our case will not be kicked into the
ground but rather will be served in such a way that the
velocity in the z direction will not be equal to zero. A 2-D
analysis will be free of this e�ect.
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All of our equations (31 ,32 & 33) are dependent on time
and we realize that as time increases they will become less
accurate. Hörzer [2010] in his experiment showed that drag
coe�icient shows a weak dependence on spin parameter and
to prove his point we have used our data to justify our next
step of holding drag coe�icient a constant as we vary the spin
coe�icient.

Figure 6. Graph showing the e�ect of varying initial velocity to the swerving of the volleyball.

From fig 6 We can assert Hörzer’s[2010] claims that varying
velocity which in turn vary the drag coe�icient has a minimal
e�ect on the lateral displacement of the ball and we can hold
drag coe�icient as a constant without having a�ected the final
results greatly.
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In volleyball, serves range from 20 m/s to 30 m/s and we have
used this range to draw the above graph. Again we note that
if we can decide to vary both drag and spin coe�icients at the
same time, our problem will become very complex to solve.

Spin coe�icient increase with increase in the rate of
spinning of the ball and reduces as the ball spins slowly. That
is to mean that, the higher the number of revolutions made
per second the greater the angular velocity and the larger the
spin coe�icient. Numerous experimental studies have shown
that spin coe�icients of balls ranges from ranges 0<CS < 0.35
and in scaled form 0.01 < ks < 0.035 and we have the
following graph;

Figure 7. Graph showing the e�ect of varying spin coe�icient to the arching of the volleyball.
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From our graph it is clear that the larger the spin
coe�icient the greater the swerve and the smaller the
magnitude of the spin the lesser the swerve. Thus from our
research study we can conclude that volleyball players who
want the ball to swerve more they should induce faster spin
and if they are aiming for less swerve, then they need induce
slower spin. If they don’t want the ball to swerve at all they
should not induce any spin.(This condition is known as
knuckle-ball e�ect).



37

7.1.1 CONCLUSION

We have been investigating how inducing a side-spin on
volleyball a�ect the movement of the ball. We have have seen
that increasing spin rate of the ball increases the spin
coe�icient and this cause the ball to deflect more from the
main path a phenomenon we have termed as swerving. Thus
we can conclude that swerving rate increases as spin
coe�icient increase. This means that swerving increase as the
ball spins faster.
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