THE ROLE OF FRUIT BAT *EIDOLON HELVUM* AND AVIAN FRUGIVORES IN GUAVA SEED DISPERSAL AND TREE ESTABLISHMENT IN AGRICULTURAL LANDSCAPES IN VIHIGA, WESTERN KENYA

BY

ROGERS KATUA MAKAU, B. Sc. (Hons, University of Nairobi)

(REG. NO. 156/79604/2012)

Thesis submitted in partial fulfilment of the requirement for the award of the degree of Master of Science in Biology of Conservation, University of Nairobi.

SCHOOL OF BIOLOGICAL SCIENCES

COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES

MSC. BIOLOGY OF CONSERVATION

UNIVERSITY OF NAIROBI

SEPTEMBER, 2016
DECLARATION

This thesis is my original work and has not been presented for award of a degree in any other university.

Makau Rogers Katua

Reg. No 156/79604/2012

Signature Date 19/6/2017

I confirm that this thesis has been submitted for examination with my approval as a supervisor.

Dr. Robert Chira

School of Biological Sciences

University of Nairobi

Signature Date 19/6/2017
DEDICATION

This thesis is dedicated to all conservation practitioners in the world.
AKNOWLEDGEMENTS

My utmost gratitude goes to the Almighty God for the provision of strength, knowledge and understanding throughout the study period. I wish to express my sincere gratitude to my supervisors Dr. R. Chira and the late Dr. R. Okoola for their unwavering support, expertise, guidance and tireless efforts that made completion of this study possible. I extend my appreciation to Mr. Kitheka, a botanist from the National Museums of Kenya Herbarium Section, for helping in plant species identification. I am also grateful to Mr. Odalo, my field assistant. He made my data collection work easier and enjoyable. My research would not be complete if it were not for his encouragement and support. Special thanks go to Mr. Simon Musila of National Museums of Kenya, Department of Mammalogy and Dr. P. Webala of Maasai Mara University for their precious advice and encouragement that enabled me to pursue this study on bats. My gratitude goes to Gilbert Kosgey of KENWEB, National Museums for his assistance in editing the thesis. Sincere thanks go to my wife (Jane Wayua) and children (Victoria, Prosper and Blessing) for their support and encouragement throughout my research work. Finally, I thank the Bat Conservation International (BCI) through the University of Nairobi for granting me a scholarship to pursue my research project. They have made my dream come true.
TABLE OF CONTENTS

TITTLE PAGE...i
DECLARATION.. ii
DEDICATION .. iii
AKNOWLEDGEMENTS.. iv
TABLE OF CONTENTS ... v
LIST OF FIGURES .. viii
LIST OF TABLES .. ix
LIST OF PLATES ... x
ABBREVIATIONS AND ACRONYMS ... xi
ABSTRACT ... xii

CHAPTER ONE: INTRODUCTION ... 1
 1.1 Problem statement and justification of the study..4
 1.2 General and Specific objectives...6
 1.3 Research hypotheses ..6

CHAPTER TWO: LITERATURE REVIEW .. 7
 2.1 The straw-coloured fruit bat (Eidolon helvum)... 7
 2.2 Frugivorous birds .. 8
 2.3 Frugivory and seed dispersal ... 11
 2.4 Dietary analysis of fruit visiting bats and birds .. 14
 2.5 Factors influencing dispersed seed germination ... 16
 2.5.1 Seed dispersal effectiveness .. 16
 2.5.2 Gut conditioning .. 18
 2.6 The importance of seed dispersal to plant regeneration 19

CHAPTER THREE: STUDY AREA, MATERIALS AND METHODS 21
 3.1 Study area ... 21
 3.1.1 Location .. 21
 3.1.2 Climate .. 22
3.1.3 Topography and soils .. 22
3.1.4 Fauna ... 23
3.1.5 Vegetation .. 23
3.1.6 Population and social-economic activities 24
3.2 Materials and Methods ... 24
 3.2.1 Sampling design ... 24
 3.2.2 Frugivore observations ... 25
 3.2.2.1 Selection of focal trees .. 25
 3.2.2.2 Frugivores visits ... 26
 3.2.3 Guava seed germination ... 27
 3.2.3.1 Seed collection .. 27
 3.2.3.2 Seed germination .. 27
 3.2.4 Seed rain, seedling establishment and tree density sampling .. 29
 3.2.4.1 Seed rain and spats sampling .. 29
 3.2.4.2 Seedling and tree density sampling 30
3.3 Data analysis ... 32

CHAPTER FOUR: RESULTS .. 33

4.1 Frugivore observations ... 34
 4.1.1 *Eidolon helvum* visits ... 34
 4.1.2 Time of visits by *E. helvum* fruit bats on guava trees 34
 4.1.3 Distance between focal trees and *E. helvum* visits 35
 4.1.4 Activities carried out by frugivores on guava trees 36
 4.1.5 Comparison between *E. helvum* and avian frugivores visits 37
 4.1.6 Avian observations within sites .. 39
 4.1.7 Time of visits by avian frugivores on *P. guajava* trees 41
4.2 Seed germination ... 41
4.3 Seed rain, seedling and tree densities 43
 4.3.1 Seed rain density ... 43
 4.4.2 Seedling density ... 44
4.4.3 Tree density and diversity ...45

CHAPTER FIVE: DISCUSSION, CONCLUSION AND RECOMMENDATIONS48

5.1 Discussion ...48
 5.1.1 Frugivore observations ...48
 5.1.2 Seed germination ...51
 5.1.3 Seed rain ...52
 5.1.4 Seedling and tree establishment ..54
5.2 Conclusion ...55
5.3 Recommendations ..56
 5.3.1 Further research ...56

REFERENCES ...57

Appendix 1: ...83
Appendix 2: ...84
Appendix 3: ...85
Appendix 4: ...87
Appendix 5: ...88
LIST OF FIGURES

Figure 1: A map showing the study area and study sites ...22

Figure 2: Nocturnal trends in E. helvum visits to P. guajava trees in all study sites..............35

Figure 3: A graph showing correlation between the numbers of E. helvum fruit bats recorded on guava trees and the distance in meters from the nearest roosting site. ..36

Figure 4: A graph showing correlation between the mean number of avian frugivores and bats recorded on guava trees. ...39

Figure 5: Diurnal trends in the mean number of avian frugivores visiting P. guajava trees in different study sites. ..41

Figure 6: Seed germination rate of four treatments. ...42

Figure 7: Mean (± SE) density (number of pellets/m²) of pellets with guava seeds deposited by E.helvum under the crowns of guava trees in different sites.................43

Figure 8: Mean (± SE) seedling densities (seedlings/m²) among different sites......................44

Figure 9: Mean density (trees/ha) of guava trees (DBH > 10cm) counted in the study sites. ..46

Figure 10: Mean (±) basal area (m²) of focal trees in study sites. ..47
LIST OF TABLES

Table 1: Contingency table showing the observed and expected values (in parenthesis) of avian frugivores observed feeding or perching on guava trees in the study sites. ...37

Table 2: A Chi square contingency table showing the observed and expected value of E.helvum fruit bats and avian frugivores in all the study sites.38

Table 3: Contingency table showing the observed and expected values of feeding guilds among the study sites. ..40
LIST OF PLATES

Plate 1: Guava seeds germination ...28
Plate 2: Seed trap used for seed rain sampling ...29
Plate 3: Quadrat sampling for seedling establishment ...31
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDG</td>
<td>Beginning day of Germination</td>
</tr>
<tr>
<td>DBH</td>
<td>Diameter at Breast Height</td>
</tr>
<tr>
<td>Gok</td>
<td>Government of Kenya</td>
</tr>
<tr>
<td>GP</td>
<td>Germination Percentage</td>
</tr>
<tr>
<td>MGT</td>
<td>Mean Germination Time</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Environment and Management Authority</td>
</tr>
</tbody>
</table>
ABSTRACT

Seed dispersal by bats and avian frugivores is significant for plant regeneration in fragmented agricultural landscapes in tropical regions. This study was aimed at determining the role of the Eidolon helvum and other avian frugivores in guava seed dispersal and tree establishment in farmlands within Vihiga County. Its objectives were to: establish which frugivore assemblages are dispersing the seeds of Psidium guajava and their relative importance, determine the effects of gut treatment by E. helvum on germination of guava seeds and assess seed rain, seedling establishment, and tree density. Three study sites including two E. helvum roosting sites (Mbale and Ilwanda) and a non-roosting site (Chugi) were selected for study. In each site, 2 ha plots were defined where five transects measuring 100m long and 20m apart were established and 10 focal trees selected for sampling frugivores. Under, the crowns of the focal trees, data on seed rain was collected using 1m² quadrats. Germination experiments were conducted to determine the effect of four treatments (manually extracted seeds, intact seeds, seeds from bat excreta and seeds obtained from spats) on the rate of germination of guava seeds. Data on seedling establishment were collected below the crowns of 20 selected trees in each study site by mapping seedlings in six randomly chosen 1m² quadrats. In each site, one hectare plot was divided into 10 sampling plots measuring 10 m by 10m to collect data on tree density and diversity. Statistical analyses were performed using SPSS version 20.0 and STAT program software and were evaluated at p < 0.05 level of significance. A total of 4288 E. helvum fruit bats were recorded visiting guava trees in all the study sites. These were categorized as; Ilwanda (46%, n=1991), Mbale (34%, n=1446) and Chugi (20%, n=851). A total of 1,835 individual birds comprising of 61 species belonging to 21 families were observed visiting 30 P. guajava trees in all the three study sites. Visits by E. helvum fruit bats were significantly higher than avian frugivore visits in all the study sites (Z = - 4.78, p < 0.05). Germination distributions of seeds among the four treatments were not significantly different (Kruskal-Wallis Test, $\chi^2 = 4.32$, d.f. = 2, $p > 0.05$). The mean density of pellets (number of pellets/m²) containing guava seeds deposited by E. helvum under the crowns of P. guajava trees were significantly different among sites ($F_{2, 27} = 10$, $p < 0.05$). The mean density of seedlings (number of seedlings/m²) varied significantly among the ($F_{2, 57} = 29.5$, $p < 0.05$). The density of trees was highest in Ilwanda at 45.7 ± 1.3 trees/ha compared to Mbale at 38.1 ± 1.1 trees/ha and Chugi at 30.9 ± 0.86 trees/ha. These findings clearly indicate that, the E. helvum is the most effective disperser of guava seeds and hence conservation of its roosting sites is critical to ensure plant regeneration in agricultural landscapes in Vihiga County.
CHAPTER ONE: INTRODUCTION

Seed dispersal ecology has recently gained rigorous scientific consideration focusing on the role it plays in various aspects of plant population and community dynamics (Nathan and Muller-Landau, 2000; Kunz et al., 2008; Uriante et al., 2011; Seltzer et al., 2013). Dispersal of seeds facilitates progenies to break away from competition with conspecifics, and closely related plant species so as to reduce dangers in spatiotemporally fluctuating environments and arrive at suitable areas that have suitable biotic or abiotic habitat requirements (Schupp and Fuentes, 1995; Wenny, 2000). In addition, dispersal affects abundance or steadfastness in meta-population dynamics (Premoli and Kitzberger, 2005), degrees of plant establishment and subjugation (Cain et al., 2000; Nielsen et al., 2005), genetic drift and population differentiation (Levin, 1974; Ennos, 1994), and species richness (Tilman, 1994; Snyder and Chesson, 2004).

Naturally, Seeds can be dispersed to a location though several means (Van der Pijl, 1982). For instance, in some plants species seeds are spread mechanically in which the ripe fruit open explosively or by the springing of a trip-lever. However, wind, water and animals are the main agents of seed dispersal. Animals are largely the main seed dispersers in the tropical ecosystems (Howe and Small wood, 1982, Levin et al., 2003; Dennis and Westcott, 2006). It is estimated that more than 95% of angiosperm species in tropical forests are dispersed by this method (Terborgh et al., 2002) where plants with fruits suited for vertebrate seed dispersal make 75-92 % of the vegetation (Jordano, 2000).

Guava (Psidium guajava L.) is an important tree cultivated in orchards or in home gardens in many tropical countries. It is widely cultivated in Africa, and incorporated into agroforestry systems in India (CABI, 2013). Guava is mainly grown for its edible fruits that are eaten raw or made into
purée (pulp), jam, jelly, paste, juice, syrup, chutney, etc. (Murray and Campbell, 1989; El Boushy and van der Poel, 2000). In Vihiga County, guava is mainly grown for its fruits. It is also used as natural fence, a source of firewood and provides shade in homesteads (Orwa and Campbell, 2009). Guava can grow under a wide range of environmental conditions and is considered invasive in some regions, which may be due to its allelopathic effects on native species (Smith, 1998). However, Guava has a positive environmental impact in some environments. For instance, in Gujarat (India), guava trees have been planted in association with *Leuceana leucocephala*, buffel grass (*Cenchrus ciliaris*) and African stylo (*Stylosanthes fruticosa*) in agro-silvo-pastoral systems to increase productivity and reclaim eroded, degraded and compacted soils with gullies and rocky parts (Raturi and Hiwale, 1993). A study by Berens *et al.*, 2007 in western Kenya showed that guava trees did not suppress the establishment of indigenous species in Kakamega, and are gradually replaced during the course of succession.

Fruit bats are keystone species in the preservation and restoration of natural flora in the tropical regions (Fujita and Tuttle, 1991; Lobova *et al.*, 2009). Their function in dispersal of seeds and pollination is essentially crucial in succession and composition of plant communities in tropical rainforests (Henryi and Jouard, 2007; Muscarella and Fleming, 2007). Studies have shown that the 170 species of Pteropodidae bats in Africa, Southern Europe, Asia, Australia, and islands in Pacific and Indian oceans (Wilson and Reeder, 2005) are involved in seed dispersal of 145 plant genera (Marshall, 1985). One of the most important fruit bat species is the straw-coloured fruit bat *Eidolon helvum*. The species is characterized by occurrence in large colonies in tropical forests and farmlands such as the one in Kasanka National Park in Zambia, which seasonally hosts approximately ten million individuals (Richter and Cumming, 2006). Colonies in West Africa
range from a few thousand to one million bats (Thomas, 1983; Hayman et al., 2012a; Fahr et al., 2015). Its role as a seed disperser is significant for maintenance and establishment of plant species diversity and composition in forested habitats (Richter and Cumming, 2006). However, despite its importance in providing ecosystem services such as, seed dispersal and pollination the species is relatively understudied in Kenya.

Frugivorous birds play a key role in seed dispersal and establishment of a range of exotic plant species, such as the *Psidium guajava* (Berens et al., 2008) and Brazilian Pepper *Schinus terebinthifolius*, D’avila et al., 2010). Comprehensive studies of single plant-frugivores seed dispersal interactions have been undertaken in other tropical areas; Bas et al., (2005), D’avila et al., (2010), Nayara et al., (2017) but only a few studies have been made in Kenya (Berens et al., 2008 and Kirika et al. 2008). Moreover, few studies have compared the contribution made by both bats and birds to seed dispersal in degraded habitats in tropical regions (Rodrigo and Osiris, 1999), in Kenya there is paucity of knowledge in this field of study.

Fragmentation of landscapes is detrimental to biodiversity because it involves the removal, reduction, and isolation of native vegetation (Fahrig, 1999). Although native habitat loss is the leading cause of the loss of world’s biodiversity (Myers et al., 2000), some agroecosystems can harbour a substantial portion of the biodiversity of the original land cover (Vandermeer and Perfecto, 1997) and can also buffer and complement protected areas (Curran et al., 2004; Schroth et al., 2004). Therefore, knowledge on the role of bat and avian frugivores in seed dispersal in degraded landscapes can be used to implement conservation strategies so as to restore native plant species in agricultural lands.
Vihiga County is among the highly populated counties in Kenya prompting an increased demand for arable land (GOK, 2005). This has led to severe land degradation exacerbated by encroachment of forested hilltops, wetlands and riverine ecosystems (NEMA, 2009). Eventually, the land cleared for agriculture loses its productiveness and is abandoned leading to slow recuperation of flora. According to Nepstad et al., (1991), Zimmerman et al., (2000), and Cubina and Aide (2001), the greatest impediments to vegetation regeneration are deficiency of seeds in the soil seed bank and extremely low levels of seed arrival at suitable sites through dispersers. The *E. helvum* and other avian frugivores can play a critical role in the regeneration of vegetation in degraded landscapes through dispersal of guava which are considered to be a foci of plant regeneration in Kenyan farm lands (Berens *et al.*, 2008). However, the role of the frugivores in vegetation regeneration in agro-ecosystems is poorly known. This study was, therefore, aimed at determining the contribution made by the *E. helvum* and avian frugivores to guava seed dispersal and regeneration in degraded landscapes in Vihiga County, Western Kenya by using the *Psidium guajava* as a means to achieve the objectives. The objectives of the study were achieved through determination of the frugivore assemblages dispersing guava seeds, germination of guava seeds and seedling establishment. The results of the study will help to shed light on the effectiveness of the *E. helvum* and other avian frugivores as a seed dispersers in fragmented landscapes and hence raise the awareness on the importance of conserving the species to ensure plant regeneration in agroecosystems.

1.1 Problem statement and justification of the study

Vihiga County is one of the densely populated counties in Kenya prompting an increased demand for arable land. This has led to severe land degradation exacerbated by encroachment of forested hilltops, wetlands and riverine ecosystems. Anecdotal evidence shows that the land cleared for
agriculture eventually loses its fertility and vegetation recovery is slow. According to Nepstad et al., (1991), Zimmerman et al., (2000), and Cubina and Aide (2001), the greatest impediments to vegetation regeneration are deficiency of seeds in the soil seed bank and extremely low levels of seed arrival at suitable sites through dispersers. This problem is aggravated further by serious decline in the population of vertebrate dispersers such as primates owing to hunting pressure and changes in land use (von Hippel et al., 2000). Markedly, fruit bats are among the few remaining important groups of small to medium-sized vertebrate seed dispersers in western Kenya. They are highly mobile and potentially disperse seeds over long distances. As such, they play an important ecosystem service of maintaining floristic diversity in the region hence of conservation significance.

Degraded areas are recognized as appropriate sites for exotic species which foster native plants thus affecting plant regeneration positively (Neilan et al., 2006; Schlaepfer et al., 2012). For instance, exotic guavas are considered to be important foci of plant regeneration in farmlands in western Kenya (Berens et al., 2008). Since guavas are part of E. helvum and birds diet, they can largely contribute to vegetation reinforcement in degraded landscapes. However, our knowledge on the role of E. helvum and birds in seed dispersal and plant regeneration in farmlands is still scanty. This research study was therefore designed to evaluate the significance of E. helvum and birds in guava seed dispersal so as to demonstrate their functions in plant regeneration in degraded farmlands. The information obtained will be used as leverage for the protection and justification for the continued existence of the species and their current roosting sites.
1.2 General and Specific objectives

The general objective was to investigate the importance of the straw coloured fruit bat *Eidolon helvum* and avian frugivores in guava fruit seed dispersal, germination and tree establishment in fragmented landscapes of Vihiga County. The specific objectives were to:

1. To determine the frugivores that are responsible for dispersal of guava seeds in Vihiga farmlands.
2. To establish the effect of gut treatment by fruit bat *Eidolon helvum* on germination of guava seeds.
3. To determine the effect of *E. helvum* and avian frugivores seed dispersal on seed rain, seedling and tree establishment in bat roosting and non-roosting sites.

1.3 Research hypotheses

This research work was guided by two hypotheses which were:

1. The *E. helvum* fruit bat is the most effective disperser of *P. guajava* seeds in fragmented landscapes of Vihiga.

2. The passage of seeds through the gut of *E. helvum* influence the rate of guava seed germination.
CHAPTER TWO: LITERATURE REVIEW

2.1 The straw-coloured fruit bat (*Eidolon helvum*)

The *Eidolon helvum* also known as straw-coloured fruit bat is the second largest fruit bat in Africa and belongs to the family Pteropodidae. It is classified as Near-threatened under the IUCN Red Data List (IUCN, 2013) owing to habitat loss. Adult *E. helvum* weigh 250-310g, have mean wing span of 0.8m and show minor differences between sexes (DeFrees and Wilson, 1988; Bergmans, 1990; Kingdon *et al.*, 2013). Even though the main habitat for *E. helvum* is along the equator, its migratory range spreads out from sub-Saharan Africa to South Africa (Kingdon, 1984). Its body morphology is adapted to enable extensive movements while confining its foraging activities to the upper forest canopy due to its rather low maneuverability (Thomas, 1983; Kingdon *et al.*, 2013). However, colonies of *E. helvum* are rarely found in protected areas or deep in dense forests, but within human habitation especially roosting on trees in gardens, institutional houses (governement offices) or in big towns (Racey, 2004).

The straw-coloured fruit bat, is a prime example of an animal disperser that could be particularly effective for seed dispersal and pollination of plants, especially in fragmented landscapes. This species congregates across tropical Africa in sometimes huge colonies such as the one in Kasanka National Park in Zambia, which seasonally hosts roughly ten million individuals (Richter and Cumming, 2006). Colonies in West Africa range from a few thousand to one million bats (Thomas, 1983; Hayman *et al.*, 2012; Fahr *et al.*, 2015). In Kenya, the largest colony of *E. helvum* occurs in Western Kenya with a population of approximately 25,000 bats (Webala *et al.*, 2014). *Eidolon helvum* seasonally migrates for more than 2000 km between forest and savanna biomes, likely in
response to seasonal fluctuations in food availability (Thomas, 1983; Richter and Cumming, 2008; Ossa et al., 2012). On a daily basis, *E. helvum* flies up to 88 km from its colony to foraging areas (Fahr et al., 2015) and in the process potentially disperses seeds and pollen over both short and long distances. Consequently, the *E. helvum* is significant in preserving and restoring vegetation in wooded habitats (Richter and Cumming, 2006). Studies by Thomas (1982) show that seed dispersal by the species facilitated the spread of the introduced neem tree (*Azadirachta indica*) across Ghana’s Accra plains. Moreover, Taylor (2005) observed that the *E. helvum* was the main disperser of the *Milicia excelsa* and *M. regia* which are tropical hardwoods.

2.2 Frugivorous birds

Many frugivorous birds are persisting, at least in the short term, in human-dominated landscapes (Greenberg et al., 1997; Hughes et al., 2002). These birds serve important functions, such as seed dispersal and pollination (Sekercioglu, 2006). In their role as dispersers, birds are not only fundamental to the maintenance of diverse plant communities (Stiles, 1985), but may also have the capacity to restore them (Wunderle, 1997), thus potentially serving as important partners in tropical reforestation (Holl et al., 2000).

The relative importance of different frugivorous bird families varies with the stage of forest succession or restoration (Corlett and Hau, 2000). Frugivorous birds that can tolerate degraded landscapes are more important at the initial stage of forest succession or reforestation (Corlett, 1998). They include passerine birds belonging to the Corvidae (magpies, jays, orioles etc.), Muscicapidae-Turdinae (thrushes), Muscicapidae-Saxicolini (robins and chats), Sturnidae (starlings and mynas), Pycnonotidae (bulbuls), Zosteropidae (white-eyes) and Sylviidae-
Garrulacinae (laughing thrushes) (Corlett and Hau, 2000). However, none of these birds are strict frugivores and all depend on insects for a significant part of their diet. Other bird families, which are tolerant of fragmentation and disturbance and could make use of secondary and disturbed habitats. These will become increasingly important as forest succession or reforestation proceed, notably the highly frugivorous non-passerines Megalaimidae (barbets) and some Columbidae (fruit pigeons) (Corlett and Hau, 2000). The more tolerant species of Bucerotidae (hornbills) may also appear if there is primary forest nearby and no hunting (Corlett and Hau, 2000).

The fruit handling behaviour of frugivorous birds plays a key role in determining their contribution to the seed dispersal process (Jordano and Schupp, 2000). Frugivores that can swallow whole fruits, transport and defecate intact seeds in suitable habitats are often regarded as legitimate dispersers (Jordano and Schupp, 2000). Whether or not fruit consumption by birds translates into successful seed dispersal is still a subject of much debate. Successful seed dispersal involves not only the removal of fruit from a source plant and depositing the seed into suitable sites, but also the ability of the deposited seeds to germinate and establish seedlings after passage through digestive tracts of birds (Herrera and Jordano, 1981; Schupp, 1993). Frugivorous birds play a key role in seed dispersal and establishment of a range of tropical plant species, such as the Accacia thonigii Kirika et al., (2008), Brazilian Pepper Schinus terebinthifolius, D’avila et al., (2010). In addition to the role of avian frugivores in dispersing exotic plants, frugivores undertake a crucial importance in areas where endozoochory contributes toward regeneration of degraded areas or maintenance of forests (Silva and Tabarelli, 2000; Pizo, 2004; Hansen and Galetti, 2009). Comprehensive studies of single plant-frugivores seed dispersal interactions have been undertaken.
in other tropical areas; D’avila et al., (2010), Nayara et al., (2017) but only a few studies have been made in Kenya (Berens et al., 2008 and Kirika et al. 2008).

Although less than 1 % of the world’s bird species primarily prefer agricultural areas, nearly a third of all bird species occasionally use such habitats (Sekercioglu et al. 2007), often providing important ecosystem services, such as pest control, pollination, seed dispersal, and nutrient deposition (Sekercioglu, 2006). There is growing interest in avian functional diversity in tropical forests and agroecosystems, especially in tree-dominated agroforestry systems such as shade coffee and cacao plantations that harbor higher bird diversity than open agricultural systems with few or no trees (Marsden et al. 2006; Clough et al. 2009). However, recent research has focused disproportionately on Neotropical coffee plantations (Komar, 2006). More studies on other types of tropical agroforest systems are needed particularly in Africa where there has been less research on these issues than in Asia and the Neotropics (Naidoo, 2004; Waltert et al. 2005; Holbech, 2009). In this study the diversity of birds visiting guava fruiting trees was investigated.

One major aspect of the behaviour of fruit eating birds that affect their suitability as seed dispersers is the amount of time they spend in fruiting plants during foraging trips. The more time birds spend on a tree, the higher the chances of the seeds falling beneath the plant where the seeds and seedlings suffer mortality (Howe et al., 1985). If bird visits are short, they are more likely to carry seeds away from the parent plant, make more visits per day, and produce a less clumped distribution of seeds (Howe and Estabrook, 1977). In this study, the time spent by avian frugivores on selected focal guava trees was investigated.
2.3 Frugivory and seed dispersal

Animal seed dispersal is largely the main method of seed dispersal in the tropical ecosystems (Howe and Smallwood, 1982, Levin et al., 2003; Dennis and Westcott, 2006). It is estimated that more than 95% of angiosperm species in tropical forests are dispersed by this method (Terborgh et al., 2002) where plants with fruits suited for vertebrate seed dispersal make 75-92% of the vegetation (Jordano, 2000). Many of these plants have evolved traits for attracting fruit eating fauna. These include fruits that are often brightly coloured, have relatively high nutritional content (e.g. lipids and proteins), have characteristic odors, and are positioned on the parent plant to facilitate capture and consumption by frugivores (Howe, 1986). In highly degraded landscapes, throughout the world, the presence of frugivores is a major factor behind the dispersal and success of animal dispersed plants found establishing there (Maina and Howe, 2000; Martinez-Garza and Howe, 2003).

Among all vertebrates, three classes are particularly recognized as important seed dispersers in tropical ecosystems. These include; birds, reptiles and mammals (Stiles, 2000; Olesen and Valido, 2003). Even though avian and mammal species are significant in continents, reptiles perform a significant part on islands, mainly within those situated at tropical and subtropical latitudes (Olesen and Valido, 2003 and Kaiser-Bunbury et al., 2010). Lizards are regarded as fundamental dispersers of seeds belonging to gymnosperms and angiosperms (Tiffney, 1984; Olesen and Valido, 2003). Evidently, among the most developed reptiles, tortoises are the only animals recognized as essential seed dispersers since 25% of tortoises are herbivorous in nature (King, 1996).
Primates constitute 25 to 40% of frugivore biomass in tropical forests (Chapman, 1989) and are major seed dispersers (Gross-amp, 2009), for example, the Neotropical howler monkeys (*Alouatta seniculus*) and spider monkeys (*Ateles spp.*) (Andersen, 2002; Link and Di Fiore, 2006). The Tana River Mangabeys (*Cercocebus galeritus*) have been reported as effective dispersers of *Phoenix reclinata* seeds; one of their main dietary plants (Kimuyu *et al.*, 2012). Other animals such as the African elephants (*Loxodonta africana*), Asian gibbons (*Hylobates spp.*), Moustached tamarin (*Saguinus mystax*) and Saddleback tamarins (*S. fuscicollis*) are known to disperse many plant species (McConkey, 2000; Culot *et al.*, 2010). Large carnivorous mammals are also considered to be potential seed dispersers of fleshy-fruited plants in tropical ecosystems (Jordano *et al.*, 2007).

Scatter-hoarding rodents bury intact seeds in shallow caches, and those seeds that are not retrieved by the animals, are protected from invertebrate predation, and can germinate and establish (Briggs *et al.*, 2009, Hirsch *et al.*, 2012, Jansen *et al.*, 2012). Thus, seed dispersal by scatter-hoarding rodents results from forgotten cached or re-cached intact seeds. Generally, however, rodents will not disperse intact or undamaged seeds; instead, they remove the seeds and either (1) eat them completely or (2) partially consume them, discarding uneaten seed fragments (e.g., Steele *et al.*, 1993, Perea *et al.*, 2011, Shiels and Drake, 2011).

Worldwide birds are the most studies group of vertebrates with regard to seed dispersal. This is because they are the main fruit consumers (Ingle, 2003; Pejchar *et al.*, 2008; Böhning-Gaese, 2012). In their role as dispersers, birds such as the African hornbill (*Bycanistes spp.* and *Ceratogymna* spp.) are fundamental to the maintenance of diverse plant communities (Stiles, 1985; Holbrook and Loiselle, 2009; Kitamura, 2011). In addition, they have the capacity to restore them thus potentially serving as important partners in tropical reforestation. The interaction between
frugivorous birds and fruiting plants has been examined in a range of studies (Jordano, 1995). But the relationship between frugivorous birds and fruiting plants has often been asymmetrical (Mccann et al., 1998; Paine, 1992) and not all frugivores are effective dispersers to the plant species consumed (Bradford and Westcott, 2011). For example, for a given species of plant, not all the visiting birds but only one or two bird species have a mutualistic and compact relationship with it (Silveira et al., 2012).

Fruit bats are keystone species in the maintenance and re-establishment of natural vegetation in the Old World (Fujita and Tuttle, 1991; Mickleburgh et al., 1992; Lobova et al., 2009). Their role in seed dispersal and pollination is particularly important in tropical rain forest succession and community composition (Henryi and Jouard, 2007; Muscarella and Fleming, 2007). The Neotropical Phyllostomid fruit bats are exceptionally diverse of which about 142 species are recognized as being partially frugivorous, dispersing over 549 plant species in 191 genera belonging to 62 families (Lobova et al., 2009). The Pteropodidae bats comprised of over 170 species (Wilson and Reeder, 2005), are involved in dispersal of at least 145 distinct plant genera (Marshall, 1985). These bats disperse seeds over long-distances of about 1-20km for eaten seeds (Tsoar et al., 2010). In Tanzania, studies by Seltzer et al. (2013) show that at least 49 plant species are dispersed by bats. Out of this, 28 species are considered as new reports in Africa concerning dispersal of seeds by bats. This encompasses approximately 20% of the sub- montane trees found in East Usambara Mountains (Ruffo et al., 1989; Lovett et al., 2006). Notably, this is above the 6% of tree plant life dispersed by bats in central French Guiana where fruit bats are largely acknowledged as agents of seed dispersal (Lobova et al., 2009). Moreover, in other parts of Africa 20 genera and 16 plant species have been verified as being dispersed by bats. This clearly
underpins the extensive involvement of fruit bats in seed dispersal and plant re-establishment throughout Africa.

In Kenya, a study by Webala et al (2014) on the movements and roost occupancy of the *E. helvum* indicate that the species colonies are located in areas near human habitations. For instance, the roost site at Ilwanda Village is located on a 2.0-ha private agroforestry farm with more than 100 indigenous and exotic trees interspersed within crops such as coffee, bananas, and maize. According to Webala et al. (2014) direct observations of fruit fragments and fecal material at active roost sites showed that *E. helvum* consumed fruits from at least 31 plant species belonging to 15 families. These included fruits from locally-cultivated fruit trees (both indigenous and exotic) such as; *Psidium guajava, Carica papaya; Eriobotrya japonica* as well as water berries (*Syzygium cordatum* and *S. guineense; Myrtaceae*) (Webala et al., 2014). No previous studies have examined in detail the role of *E. helvum* in dispersal of individual plant species.

2.4 Dietary analysis of fruit visiting bats and birds

Conventional methods of dietary analysis of fruit visiting bats have relied on visual identification of food items directly consumed by bats (Kunz, 1990). Fruit-eating bats may eat either whole fruits or parts of them, in case of whole fruits, seeds pass through their digestive tract and can be found in feces (Fleming, 1981; Tang et al., 2007). Fruit eating bats may only take a bite, ingest the fruit pulp, and reject masticated pellets. Fig eating bats, for example, masticate figs and spit out pellets with seeds (Morrison, 1978; Charles –Dominique, 1991). The timing of the appearance of seeds in the excreta depends on the time of fruit ingestion and the gut transit time. Transit time through the digestive tract ranges from 15 and 60 minutes in small fruit eating bats (Fleming and Heithaus,
1981) and seeds may vary in their retention characteristics according to their size and morphology. In large flying foxes, seeds may remain in the digestive tract for a prolonged time so that the animals may disperse the fruit more than 100km from the source tree (Shilton et al., 1999).

When bats ingest and digest a fruit close to the fruiting tree, fecal droppings can be found close to the fruiting tree. More often however, fruit eating bats remove fruits and transport them from the fruiting tree to a feeding roost, where they process the given food item (Fleming, 1988). Bats that commute between fruiting trees and feeding roosts often defecate on their way to and from fruiting trees, thus depositing seeds along their way (Charles–Dominique, 1986; Duncan and Chapman, 1999). The latter phenomenon is referred to as seed dispersal resulting in the production of ‘seed rain.’ Past studies have demonstrated the importance of fruit bat seed dispersal by investigating the germination rates, seed deposition and seed predation in forest ecosystems (Nyhagen et al., 2004; Taylor, 2005; Muscarella and Fleming, 2007; Tang et al., 2008; Selter et al., 2013). However, there is paucity in studies on the effect of gut treatment on germination of guava seeds. Most fruit-eating birds feed on only a portion of the diversity of fleshy fruits produced in any habitat (Snow, 1976). Fruit selection presumably depends on the behavior, morphology, and nutritional requirements of birds, the abundance of alternative food resources, and fruit characteristics such as temporal availability, habitat, taste, color, abundance, and placement on a plant (Sorensen, 1983; Wheelwright and Janson, 1985). Fruit characteristics such as, fruit size, pulp-to-seed ratio and nutrient composition also partly determine the net value of a fruit. The quality of treatment these birds provide to the guava seeds they ingest (i.e., if they destroy or pass
seeds intact through the gut or even if they alter the germination pattern) requires further investigation.

2.5 Factors influencing dispersed seed germination

2.5.1 Seed dispersal effectiveness

The mechanisms of frugivore seed dispersal and the design in which seeds are positioned are known to influence several factors that affect plant regeneration including; seed viability and survival, germination, emergence, and development of novel plants (Izhaki et al., 1991; Traveset and Wilson, 1997; Alcantara et al., 2000). Therefore, the role of frugivores in plant survival is subject to the quantity and quality of seed dispersal (Schupp, 1993; Jordano and Schupp, 2000).

The quantity of seed dispersal is governed mainly by the number of frugivores visiting the parent plant and the quantity of seeds eaten during every visit (Schupp, 1993). However, the quality of dispersal is centered on the action of digestion on the seeds and the suitability of the site where seeds are deposited and subsequent seedlings establishment (Howe and Smallwood, 1982). Both aspects of quantity and quality determine if a frugivore is a genuine disperser for a specific plant species (Alcantara et al., 2000; Jordano and Schupp, 2000). Several studies have compared the relative importance of different frugivores in relation to seed dispersal of specific individual tree species. For example, Taylor (2005) observed that E. helvum bats flew constantly around focal trees, as well as back and forth to several feeding roosts, or among several fruit bearing (Milicia) trees while foraging. This behaviour, combined with their large foraging group and colony size, ability to excrete during flight, and fast digestion (Thomas, 1982) proves that Eidolon carry out an important ecological service by dispersing thousands of seeds throughout the forest.
Disturbed areas are commonly avoided by animal dispersers owing to low availability of resources and vulnerability to predation. Birds living in such habitats, are observed to drop seeds below the parent tree or transport fruit to a perch or roost preceding falling or excreting seeds (Charles-Dominique, 1986; McClanahan and Wolfe, 1993; Corlett, 1998). Therefore, avian frugivores are less likely to deposit seeds in forest glades or in exposed areas compared to bats (Medellin and Gaona, 1999; Ingle, 2003). Fruit bats drop several seeds while flying regardless of their inclination to deposit most of the seeds at roosting trees (Thomas et al., 1988; Banack et al., 2002; Hodgkison et al., 2003). As such, seeds dispersed by bats are predisposed to reach extensively degraded sites without settling and nesting sites required by avian frugivores. Due to this variation, bats are more significant dispersers of seeds than birds during the first phases of plant succession (Muscarella and Fleming, 2007).

Many studies indicate that worldwide habitat loss and fragmentation lead to a decline in bird species richness (Turner, 1996; Brooks et al., 1999). It is also known that dispersal mutualists such as birds are important for seed dispersal, for without them seedling recruitment is limited due to the high mortality in non-dispersed seeds that merely fall beneath parent trees (Janzen et al., 1976; Augspurger, 1983; Howe et al., 1985). However, understanding of the link between bird species diversity and its consequences in vegetation regeneration in agroecosystems is still meagre. Few studies have compared the consequences of disperser declines for plant populations, although some possible scenarios have been presented (Howe, 1984; Bond, 1995). Studies by Pizo, (1997) indicate that local bird species richness determined the frugivore assemblages of fruiting trees, with a higher number of more reliable and efficient bird species visiting trees and dispersing seeds in a large forest site than in a small forest fragment. Santos and Telleria (1994) also showed in a
comparison of large and small forest sites that a low number of dispersal agents at the small sites, both in species and abundance, led to a reduction in seed transfer and seedling establishment in *Juniper* trees. In this study, the avian species diversity visiting guava trees in both bat roosting sites and non-roosting sites will be investigated to determine the most effective guava seed disperser.

2.5.2 Gut conditioning

The greatest impact of seed dispersal by vertebrates is the transfer of propagules from parent plants to sites where conditions are suitable for establishment (Primack and Miao, 1992; Howe and Miriti, 2000; Herrera, 2002). Vertebrate seed dispersal also enhances the germination of seeds through passage of seeds through their digestive tract (McKey, 1975; Thomas, 1982). This is referred to as quality of treatment (Schupp, 1993) and has been evaluated by Traveset (1998) who established the enhancement of seed germination through gut passage. The rate of seed germination generally takes place through two ways. Primarily seeds undergo mechanical or chemical processes that change the seed coat thus influencing germination capacity (Agami and Waisel, 1988; Yomtov and Fried Man, 1990). Secondly, viability of seeds is influenced through separation of seeds from chemical inhibitors in the fruit pulp thereby enhancing germination by changing the seed’s immediate environment (Lisci and Pacini, 1994; Cipollini and Levey, 1997). Passage of seeds through the gut of some frugivores particularly birds and mammals enhance seed germination rates (McKey, 1975; Thomas, 1982). Utzurrum and Heideman (1991) report germination rates of 91 percent for *Ficus chrysolepis* seeds from the excreta of three different pteropid fruit bats, compared to germination rates of 48% seeds from ejecta pellets, and 57%
from fruit fragments. Izhaki et al., (1995) fed ripe fruits from six different species of wild and
cultivated fruits to captive Egyptian rousette bats, *Rousettus aegypticus*. They compared the
temporal and total germination rates of seeds from bat excreta, ejecta pellets, and uneaten fruits
(control). The results showed that germination rates were significantly higher for only one fruit
species for seeds ejected in pellets. Studies by Lopez and Vaughan (2004) established that seeds
of *Piper multiplinervium* and *Ficus insipida*, defecated by *Carollia brevicauda* and *Artibeus
jamaicensis*, displayed higher germination rates than seeds not consumed by bats. However,
Naranjo et al (2003) studied the germination of *Stenocereus griseus* and *Subpilocereus repandus*
seeds after passing through the alimentary canal of the Miller’s long tongued bat *Glossophaga
longirostris* and report that gut treatment had no effect on germination rate and only facilitated
seed dispersal by distribution of seeds. Similarly, Taylor (2005) found that gut treatment by *E.
helvum* had no effect on germination of *Milicia* seeds. Furthermore, Tiang et al., (2008) established
that the movement of seeds across the digestive system of bats did not enhance germination rate
of *M. macroura* seeds. In this study, the effect of gut treatment on the germination of guava seeds
will be investigated.

2.6 The importance of seed dispersal to plant regeneration

Seed dispersal is recognized as one of the several processes that determine the extent and patterns
of plant regeneration (Wang and Smith, 2002). For, example, following seed dispersal, the process
of plant regeneration may strongly be influenced by seed predation, which is in turn related to seed
predator abundance (Murray and Garcia, 2002; Babweeteera et al., 2007). Nevertheless, seed
dispersal establishes the critical template for plant regeneration (Nathan and Muller-Landau, 2002;
Levin et al., 2003) and makes an important contribution to individual plant reproductive success,
plant dynamics and the ability of plant species to colonise new habitats (Howe and Smallwood, 1982). Seed dispersal increases the likelihood of successful reproduction by individual plant by removing its seeds from the region of highest seedling mortality (Howe and Smallwood, 1982; Harms et al., 2000). However, the benefits of escape depend on how these agents of mortality vary in relation to the position of the parent tree and to seed and seedling density (Levin et al., 2003). For example, seedlings of certain plant species may suffer high mortality beneath parent plants (Chapman and Chapman, 1995), whereas those of other plant species may not (Baider and Florens, 2006). Seed dispersal may increase a plants reproductive success by delivering seeds to ‘microsites’ that contain combinations of abiotic conditions (e.g., soil fertility, moisture, light) and biotic factors (e.g., competitors, predators) that improve germination, survival and growth (Grubb, 1977; Hubbell, 1979).

Seed dispersers affect the demographic characteristics and dynamics of plant populations. For example, the size and rate of expansion of plant populations are products of reproductive success of individual plants which depends on the successful dispersal and establishment of propagules (Levin et al., 2003). Furthermore, seed dispersal to suitable ‘microsites’ is critical factor in the recovery of plant populations following localized extinctions, whether from stochastic environmental and demographic causes or from human activities (Cochrane et al., 1999). Seed dispersal is fundamental to plant colonization of new habitats. For example, in fragmented forest landscapes seed dispersal strongly influences patterns of plant regeneration on cleared land (Zimmerman et al., 2000; Hooper et al., 2004; Franklin and Rey, 2007). In this study, seedling establishment will be compared between the bat roosting sites and non-roosting site.
CHAPTER THREE: STUDY AREA, MATERIALS AND METHODS

3.1 Study area

3.1.1 Location

This study was carried out in Vihiga County in western Kenya. It is approximately 355km from Nairobi and 25km from Kisumu. The county lies between longitudes 34° 30´ and 35° 0´ east of the Prime Meridian and 01° 5´ north and at an altitude range of between 1750 – 2000m above the sea level. It neighbours Kakamega County to the North, Kisumu County to the South, Nandi County to the East and Siaya County to the South-west. The total area covered by the county is approximately 530.9 km² (G.o.k, 2005) making it one of the smallest counties in the country (Fig.1). Three study sites, each measuring 20,000m² (2 hectares) were selected. These included two E. helvum roosting sites (Mbale and Ilwanda) and a non - roosting site (Chugi). The roost sites were located using records from previous studies in the area. Mbale site lies at coordinates 0° 05´ 35” N, 34° 43’ 09” E and is located near Mbale town a few meters from the Kakamega-Kisumu road. It is dotted by private farms of <0.5 ha with roost trees positioned along the hedge rows. Ilwanda lies at coordinates 0°05’ 47” N, 34°44’21” E and is 2km from Mbale town. It is the largest of the roosting sites with roost trees occurring within a private farm of approximately 20,000m² and along the hedge rows. Chugi study site lies at co-ordinates 0° 04‘ 32” N 34° 35’ 69”E. It is non-roosting site and the control for this study. The site is located 5.36km Mbale town (Fig 1).
3.1.2 Climate

Annual rainfall average is 900mm spread over two seasons with the long rains and short rains occurring in April - May and October - November respectively. Other seasons within the area are a Cold - Dry season which occurs in June - August and a short dry season around December - February. The mean daily minimum temperature is approximately 14° C while maximum daily temperature is about 26 °C (NEMA, 2009).

3.1.3 Topography and soils

Vihiga County is situated on the eastern parts of the Rift Valley’s Lake Basin. The altitude ranges between 1750-2000m above the sea level and slopes gently from east to west. It is characterized by undulating hills and valleys. The main rivers are Esalwa and Yala which drain in Lake Victoria.
The southern part is characterized by rugged granite hills of Maragoli, Bunyore and Nyangori. Major soils found in the area are acrisols which are deep, well drained and slightly acidic. Humic nitosols and ferrosols are also found but to a smaller extent especially on the southern parts of the county (GoK, 2009). These soils are very fertile and exhibit characteristics that favour most of the agricultural activities carried out by most of the residents.

3.1.4 Fauna

Historically, large animals were common in this region due to plenty of habitats. They included: lions, leopards, buffaloes, hippos and antelopes. As the population grew and more land for settlement was sought, most of these animals were displaced from their habitats. The major animals now common in the county are: colobus monkey, baboon, small antelopes, civet cats, bats, birds, snakes, fish, frogs and very few crocodiles in River Yala. The forested areas are also rich in many insect species of butterflies and bees (NEMA, 2009).

3.1.5 Vegetation

The vegetation in the area is natural moist forest comprising of riverine vegetation along rivers and thick bushes and woodland with dense undergrowth in the undulating plains. Like in most areas of Kenya where crop husbandry is the major land use system, natural vegetation in most parts of the county is disturbed and has been replaced with fast growing exotic species. This is due to increasing demand for arable land. Remnants of the original tree cover can still be found only in gazetted forest nature reserve, along river banks in some Tiriki cultural forests and rain making groves of the Bunyore tribe. Apart from the gazetted area, most of these natural forest remnants are under intense human pressure despite concerted efforts for their conservation. The main exotic species include: *Eucalyptus spp*, *Pinus patula*, *Cupressus lusitanica*, *Gravellea robusta*, *Persea*
americana and Zygisum cuminii. Indigenous trees include: Croton megalocarpus, Ficus thonningii, Ficus sycomorus, Croton machrostachyus, Teclea nobils, Antiaris toxicaria, Bridelia micrantha, Ficus sp among others. Other indigenous trees are being domesticated such as, Prunus africana, Maesopsis eminii, Markhamia lutea, Olea spp. and Cordia abyssinica (NEMA, 2009).

3.1.6 Population and social-economic activities

Vihiga County has the highest human population in rural Kenya at more than 1000 persons per square kilometer and a population growth rate of 3.3 percent. The county has seen the average farm sizes steadily decline to 0.5 ha (GoK, 2005). Agriculture is the major economic activity carried in the area. Tea is the main cash crop, usually cultivated in plantations located on the highlands. Subsistence crops in the county include: millet, cassava, vegetables, beans, maize, potatoes and peas. These crops are mainly produce for domestic consumption but the surplus is sold locally. Dairy, beef, fish and poultry farming are also practiced. There exist a few industries in the county that are agricultural based. Other industrial activities in the county include the formal Jua Kali who specialises in making house hold furniture, metal and motor vehicle garages. These are found in major shopping and market centers all over the county. Currently, individuals carry out gold mining on a small scale along the river valleys (GoK, 2005).

3.2 Materials and Methods

3.2.1 Sampling design

This study was carried out over a period of 6 months with sampling every month starting from December 2013 to June 2014. Three study sites including two E. helvum roosting sites (Mbale and Ilwanda) and a non - roosting site (Chugi) were selected for study. In each site, 2 ha plots were
defined where five transects measuring 100m long and 20m apart were established and 10 focal trees selected for sampling frugivores. Under, the crowns of the focal trees, data on seed rain was collected using 1m² quadrats. Germination experiments were conducted to determine the effect of four treatments (manually extracted seeds, intact seeds, seeds from bat excreta and seeds obtained from spats) on the percentage germination of guava seeds. Data on seedling establishment were collected below the crowns of 20 selected trees in each study site by mapping seedlings in six randomly chosen 1m² quadrats. In each site, one hectare plot was divided into 10 sampling plots measuring 10 m by 10m to collect data on tree density and diversity.

3.2.2 Frugivore observations

3.2.2.1 Selection of focal trees

To select study trees for frugivore assemblages in each site 2-hactare plots were demarcated. In each one hectare plot five transects measuring 100m long and 20m apart were established (Kirika, 2005). Fruiting trees were sampled for fruit availability by walking along transects using a pair of binoculars (Nikon 10x50). All trees with ripe fruits occurring within 10m on either side of transect were identified and recorded (Bleher & Böhning-Gaese, 2001). In each site, 10 study trees were selected for sampling of frugivore assemblages. Focal trees were selected based on the occurrence of least 10 to15 ripened fruits, with ripeness assessed relative to the colour of fruit (Berens et al., 2007). A Global Positioning System (GPS) device (Garmin etrex 10) was used to take the geographical coordinates of each focal tree. In addition, the distance of the focal tree from the nearest roosting site was measured using GPS device.
3.2.2.2 Frugivores visits

This method involved observation of frugivores visiting guava fruiting trees selected for study. Observations were conducted for three months from May 2014 to July 2014 to determine which avian and bat assemblages were visiting fruiting guava trees. For avian frugivores a total of 300 hours of diurnal observations were conducted at 30 fruiting trees, 10 from each study site by two observers. Observations were done starting from 0600h to 1100h and conducted twice for every fruiting tree at a distance of 15 to 20 m (distance far enough that the behavior of birds was unaffected) with the aid of a 10 x 40 binoculars (Berens et al., 2008). Each bird entering a fruiting was recorded and identified using bird guide by Zimmerman et al. (1998) (Berens et al., 2008; Yilangai et al., 2014). Feeding guilds were classified using a list of main diet items of birds from sub-Saharan Africa. (Kissling et al. 2007). The feeding guilds included: frugivores (fruit eaters), granivores (seed eaters), insectivores (invertebrate eaters), nectivores (feeding on nectar) and omnivores (consuming both plant and animal materials).

To collect data on the number of *E. helvum* fruit bats visiting guava trees, a total of 300 hours of nocturnal observations were conducted at the 30 selected fruiting guava trees by two observers. Each focal tree was watched for two nights consecutively from 1900h to 2400h, a peak feeding time for bats using a NI-TEC night vision scope (Fleming and Williams, 1990). After recording the number frugivores, focal animal sampling was carried out in which a single frugivore was monitored. The arrival time, departure time, and activities (feeding, patching, moving) carried out by the targeted frugivore was recorded. The duration of the frugivore’s visit was defined as the time of departure minus the time of entry. The same method was applied to both bats and birds.
The diversity of birds visiting guava trees in the three study sites was calculated using Shannon Diversity Index (H), (Zar, 1996); $H = \sum - (P_i \ast \ln P_i)$. Where $H =$ Shannon diversity index, $P_i =$ proportion of a species relative to the total number of species present, $\ln P_i =$ natural logarithm of P_i and \sum is the total sum.

3.2.3 Guava seed germination

3.2.3.1 Seed collection

Fruits selected by *E. helvum* are usually, sweet, juicy and pulpy (Taylor, 2005). As such, 60 ripe fruits were collected directly from the focal trees. This was carried out during their peak fruiting period in June 2014. They were then packed in sealed plastic bags and transported to the laboratory for seed extraction. Among the fruits collected 10 were left intact and placed in a drying tray in the open air to dry. The remaining 50 were used to obtain the manually extracted seeds for germination. To obtain seeds from ripe guava fruits, fruits were crushed by hand and washed with distilled water. The seeds were then dried for two consecutive days in the open air to minimize water content (Djossa *et al*., 2008). Dry intact fruits and fruit fragments from spats were crushed gently using pestle and mortar and seeds extracted by hand. The extracted seeds were then put in sealed paper envelopes and labeled for use in the germination experiment.

3.2.3.2 Seed germination

Germination experiments involving four treatments: manually extracted seeds, seeds from bat excreta (fecal), intact seeds and seeds from fruit fragments dropped by the bats (ejecta or spats) were carried out (Samuels and Levey, 2005; Nakamoto *et al*., 2007) for a period of two months.
Manually extracted seeds included seeds extracted from ripe guava fruits. Intact seeds were obtained from un-manipulated fruits. Gut passed seeds included those that were defecated by bats. Ejecta were seeds obtained from fruit fragments dropped by bats while feeding. Seeds were first tested for viability before germination. This was done by soaking them in 400 ml of distilled water in 500 ml-beakers. The seeds that floated were discarded as they were not viable (Mabundza et al., 2010). From each treatment 10 samples containing 30 seeds were selected for germination (Nakamoto et al., 2007). These were put in petri dishes (10 cm diameter) on moistened cotton wool and placed in an unheated glasshouse (Izhaki and Safriel, 1990). These were inspected and watered daily with distilled water (Pjil van der, 1972). Germination was ascertained through growth of seed radicle. Germinated seeds were counted and immediately removed to minimize their influence on the remnant seeds (Izhaki et al, 1995). The germination experiments were stopped one month after the last seed was observed to germinate.

Plate 1: Guava seeds germination

Three aspects of seed germination were examined. Beginning day of germination (BDG) referring to the first day when seeds were observed to germinate. Mean germination time (MGT), which was obtained by the following equation: MGT = Σni di /n, where n is sum of seeds germinated in
the course of the experiment; \(ni \) is number of seed germinated on day \(di \); \(di \) is day during germination period (Tang et al., 2008). Percentage germination (germination rate) was calculated from each treatment by the formula:

\[
\text{Percentage germination} = \frac{\text{Number of germinated seeds}}{\text{Total number of seeds}} \times 100
\]

3.2.4 Seed rain, seedling establishment and tree density sampling

3.2.4.1 Seed rain and spats sampling

Seed rain refers to the pattern of seed fall to the ground (Wang and Smith, 2002). Spats refer to fruit fragments dropped by bats while feeding. Data on seed rain were collected below the crowns of \(P. \) guajava trees for a period of one month to collect seed rain generated by bats through fecal droppings and spats. This was done by placing seed traps in six randomly chosen 1m\(^2\) quadrats (Bleher and Böhning-Gaese, 2001; Kirika, 2005). The quadrats were placed randomly within the radius of the crown of the selected tree (Duncan and Chapman, 1999). Thus, a total area of 6m\(^2\) per tree was covered. Seed traps were wooden frames covered with a nylon paper and had a size of 1m by 1m (1m\(^2\) per trap).

![Seed trap used for seed rain sampling](image)

Plate 2: Seed trap used for seed rain sampling
The seed rain traps were placed at 1800h and the fecal material removed at 0600h to ensure that only seeds generated by bats were collected. The seeds of *P. guajava* in each fecal pellet were counted and the number of pellets containing guava seeds in each quadrat was recorded and used to calculate the density of pellets containing guava seeds. All seeds belonging to tree species other than *P. guajava* were collected, identified to genus level and where possible to a species level and counted at the end of each monitoring day (Kirika, 2005). From each seed trap faecal samples were collected to extract guava seeds for germination experiment. The seeds were then dried for two consecutive days in the open air to minimize water content (Djossa et al., 2008). Guava seeds were later separated from other seeds in the laboratory for germination. Fruit fragments dropped by bats (spats) on the seed traps were also recorded. Samples of spats were collected for germination experiments in the green house. They were then dried using the same procedure as the faecal samples. All the samples were later packed in sealed paper envelopes and labelled for germination.

3.2.4.2 Seedling and tree density sampling

In each site, 20 trees were randomly selected for studying tree seedling establishment. This was done by selecting 50 roosting trees within the study sites based on the presence bat scats at the tree base or DBH ≥ 20 cm in the case of non-roosting site. These have the likelihood of being used as roost trees by *E. helvum* according to Webala et al. (2014). The DBH was used as an indicator of tree size (Caughlin, et al., 2012). Markers made of white cotton cloth were numbered 1-50 with a mark pen and pinned on the selected tree trunks with a small nail (0.25 inch) to identify them. Then numbers 1-50 were written on small pieces of paper and placed in a box after which 20 pieces of paper were handpicked through blind grabs. The numbers written on the chosen pieces of paper were then used to select the sampling trees. Data on seedling establishment were collected below
the crowns of selected trees for a period of one month. This was done by mapping seedlings in six randomly chosen 1m² quadrats (Bleher and Böhning-Gaese, 2001; Kirika, 2005). Thus, a total area of 6m² per tree was covered. The quadrats were placed randomly within the radius of the crown of the selected tree (Duncan and Chapman, 1999). All the seedlings belonging to tree species occurring within each quadrat were identified and counted. The seedlings considered were those having cotyledons and first or second set of true leaves. Seedling species recorded were classified according to their succession status as either pioneer or climax species and by their mode of dispersal as either wind, animal or ballistically dispersed.

Plate 3: Quadrat sampling for seedling establishment

Guava tree densities in each of the study sites were obtained to determine to ascertain if they correlate to patterns of guava seed dispersal by both bat and bats. In each study site, 2 one-hectare plots were established for vegetation sampling. Each one hectare plot was then divided into 10 sampling plots measuring 10 m by 10m. Overall, 60 plots were sampled in all the study sites for a period of two months. Trees with diameter at breast height DBH > 20 cm were identified and counted, a common standard for the tree data collection (Gentry, 1982). Tree species were identified according to Beentje (1994). The diameter at breast height (DBH) of each guava tree
was measured using a tape measure. The DBH was measured at 1.3 m above the ground (Kennard, 2002) using a tape measure. For trees that forked just below 1.3M, diameter was measured just below the point of branching (Lwanga, 2003). For trees splitting into several stems, DBH was obtained by calculated as the square root of the sum of all squared stem DBHs (Lwanga, 2003). For trees growing vertically on the slope the DBH of the trunk on the upper side of the slope was measured (Lwanga, 2003). Basal area for the guava trees was calculated using the formula; Basal area \((BA) = \pi \left(\frac{DBH}{2}\right)^2\). Shannon-Wiener diversity index \((H')\) was used to determine the diversity of tree species in all the study sites.

3.3 Data analysis

All data collected were entered into an excel spread sheet. Statistical analyses were performed using SPSS version 20.0 and STAT program software. Prior to analysis necessary data sets were subjected to Sharpiro-Wilk test for normality, non-normal data was log transformed and analyzed using parametric statistics. However, non-parametric tests were used if variables did not conform to conditions of normality and homoscedasticity after transformation. All statistical analyses were evaluated at \(p < 0.05\) level of significance. Contingency Chi square test was performed to compare; avian feeding guilds, frugivore visits; time spent by avian frugivores and \textit{E. helvum} visits between the study sites. Wilcoxon test was used to compare the number of individual frugivores observed in all the study sites.

Independent t test was used to compare bird diversity between the sites. Wilcoxon test was performed to examine significant differences between the activities and time of visits by frugivores. Correlation was calculated to determine the relation between \textit{E. helvum} visits and the
distance between focal trees and the nearest roosting site. Non-parametric Kruskal–Wallis test was carried out to determine whether the mean germination time (MGT) and seed germination proportions were different among all treatments. One way ANOVA was used to compare densities of pellets of *E. helvum* with guava seeds, fruit fragments and seedlings among the study sites. Where significance differences occurred a *post hoc* test (Tukey honestly significance difference test) was applied to identify homogenous subsets of means that were not different from each other. Independent t test was used to; compare the densities of pioneer and climax seedling species, compare tree species diversity indices and to compare tree densities and basal area among the study sites.
CHAPTER FOUR: RESULTS

4.1 Frugivore observations

4.1.1 *Eidolon helvum* visits

During the 240 hours of nocturnal observations, a total of 4288 individual of *E. helvum* fruit bats were recorded visiting guava trees in all the study sites (see appendix 1). Those encountered in Ilwanda were 1991 representing 46% of the total. In Ilwanda Mbale 1446 were observed representing 34% of the total while in Chugi 851 bats were observed representing 20% of the total. The number of individual bats recorded per night on *P. guajava* trees were significantly higher in Ilwanda than in Mbale (*Z* = -2.8, *p* < 0.05) and Chugi (*Z* = 3.74, *p* < 0.05). Similarly, the number of individual *E. helvum* bats recorded per night per guava tree in Mbale were significantly higher than in Chugi (*Z* = 3.74, *p* < 0.05).

4.1.2 Time of visits by *E. helvum* fruit bats on guava trees

E. helvum fruit bats visited the focal trees throughout the night with peak visits made early in the night between 7pm to 9pm (Figure 2). The number of visits was significantly higher between 7 pm to 9pm than between 9pm to 11pm (*Z* = 1.8, *p* < 0.05). This indicates that bat activity was high during the early hours of the night and decrease towards late night hours. The time spent by *E. helvum* on fruiting guava trees in Ilwanda and Mbale was not significantly different (*Z* = -0.26, *p* > 0.05). However, the time spend by bats in Ilwanda was significantly lower than Chugi (*Z* = -1.83, *p* < 0.05). Time spent by *E. helvum* on focal trees in Mbale and Chugi were not significantly different (*Z* = -1.31, *p* > 0.05).
Figure 2: Nocturnal trends in *E. helvum* visits to *P. guajava* trees in all study sites.

4.1.3 Distance between focal trees and *E. helvum* visits

Correlations between *E. helvum* visits and the distance between the focal trees and the nearest roosting site was explored to show the relationship between distance from the roost site and visitation rate. There was a significant weak negative correlation between the two variables in Ilwanda (Pearsons correlation, $r = -0.1$, d.f. = 8, $p < 0.05$), Mbale (Pearsons correlation, $r = -0.36$, d.f. = 8, $p < 0.05$) and Chugi (Pearsons correlation, $r = -0.1$, d.f. = 8, $p < 0.05$). Overall, there was a strong significant negative correlation between the distance from the roost site and number of visits in all the study sites (Pearsons correlation, $r = -0.82$, d.f. = 28, $p < 0.05$), Figure 3.
Figure 3: A graph showing correlation between the numbers of *E. helvum* fruit bats recorded on guava trees and the distance in meters from the nearest roosting site.

4.1.4 Activities carried out by frugivores on guava trees

Activities carried out by *E. helvum* fruit bats included feeding and moving across the branches. Out of 4288 individuals of *E. helvum* fruit bats recorded on guava trees, 75% (n= 3216) were seen feeding on guava fruits. The remaining 25% (n = 1072) individuals were observed moving across the tree branches. Among all the sites the number of bats recorded feeding on guava fruits were significantly higher than those moving along the branches ($\chi^2 = 4.3$, d.f. = 2, $p < 0.05$). The number of bats observed feeding on guava fruits was significantly higher in Ilwanda than in Mbale ($Z= -3.4$, $p < 0.05$) and significantly higher in Ilwanda than in Chugi ($Z = -2.8$, $p < 0.05$). Similarly, bats recorded consuming guavas in Mbale was significantly higher than those in Chugi ($Z= -2.6$, $p < 0.05$).
Activities carried out by avian visitors included feeding and perching. Out of 1313 frugivore birds observed on guava trees, 67% (n= 884) were seen feeding on guava fruits. The remaining 33% (n = 429) individuals perched on the trees (Table 1). Among all the study sites the number of birds observed feeding and perching on the guava trees were significantly different ($\chi^2 = 3.7$, d.f. = 2, $p < 0.05$). The number of birds recorded feeding on guava fruits Mbale were significantly higher than those recorded in Ilwanda (Z = -2.31, $p < 0.05$). Similarly, the number of birds observed feeding on guava fruits in Chugi were significantly higher than those observed in Ilwanda (Z = -2.68, $p < 0.05$). However, the number of birds observed feeding on guavas in Mbale and Chugi were not significantly different (Z = -0.42, $p > 0.05$).

Table 1: Contingency table showing the observed and expected values (in parenthesis) of avian frugivores observed feeding or perching on guava trees in the study sites.

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>STUDY SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ilwanda</td>
</tr>
<tr>
<td>Feeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>(237.66)</td>
</tr>
<tr>
<td>Perching</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>(115.34)</td>
</tr>
<tr>
<td>Total</td>
<td>353</td>
</tr>
</tbody>
</table>

4.1.5 Comparison between *E. helvum* and avian frugivores visits

A Chi square test show that the mean number of *E. helvum* fruit bats observed visiting guava trees in all the study sites were significantly higher than avian frugivores in all the study sites ($\chi^2 = 215.7$, d.f. = 2, $p < 0.05$), Table 2. The mean number of bats and avian frugivores observed visiting
guava fruiting trees was not significantly different between Mbale and Ilwanda ($Z = 6.4$, $p > 0.05$). However, the mean number of bats and avian frugivores observed in Chugi were significantly lower than in Ilwanda ($Z = 18.9$, $p < 0.05$) and Mbale ($Z = 10.8$, $p < 0.05$). In Chugi, a significant weak negative correlation was observed between the mean number of *E. helvum* bats and avian frugivores visiting guava trees (Pearsons correlation, $r = -0.38$, d.f. = 8, $p < 0.05$). However, there was a significant weak positive correlation between the mean number of *E. helvum* and avian frugivores recorded on guava tree in Ilwanda (Pearsons correlation, $r = 0.04$, d.f. = 8, $p < 0.05$) and Mbale (Pearsons correlation, $r = 0.42$, d.f. = 8, $p < 0.05$). Overall, there was a significant negative correlation between the mean number of *E. helvum* and avian frugivores observed visiting guava trees in all the study sites ($r = -0.65$, d.f. = 28, $p < 0.05$), Figure 4.

Table 2: A Chi square contingency table showing the observed and expected values (in parenthesis) of *E. helvum* fruit bats and avian frugivores in all the study sites.

<table>
<thead>
<tr>
<th>Frugivore</th>
<th>Study Site</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ilwanda</td>
<td>Mbale</td>
</tr>
<tr>
<td>E. helvum</td>
<td>1991</td>
<td>1446</td>
</tr>
<tr>
<td>Birds</td>
<td>353</td>
<td>476</td>
</tr>
<tr>
<td>Total</td>
<td>2344</td>
<td>1922</td>
</tr>
</tbody>
</table>
During the 420 hours of observations, a total of 1,835 individual birds comprising of 61 species belonging to 21 families were observed visiting 30 *P. guajava* trees in all the three study sites (see appendix 3). Bird species observed included: Frugivores (72%, n = 1313), Granivores (15%, n = 278), Insectivores (8%, n = 148), Nectivores (3%, n = 62) and Omnivores (2%, n = 33), Table 3. The number of individuals in each feeding guild were not significantly different among the study sites ($\chi^2 = 8.8$ d.f. = 8, $p > 0.05$). A total of 12 frugivore species were recorded on *P. guajava* trees (see appendix 2). The most common frugivore visitors were the Speckled Mouse bird (*Colius striatus kikuyuensis*), Common Bulbul (*Pycnonotus barbatus*) and the Yellow White-eye (*Zosterops senegalensis*) accounting for 27.8%, 19.8% and 7.6% respectively of the visits made by avian frugivore. The mean number of avian frugivore individuals recorded per day on *P. guajava* trees were highest in Chugi (66.3 ± 3.1) followed by Mbale (64.6 ± 3.5) and Ilwanda (53.0...
± 1.8) respectively. The mean number of avian frugivores recorded in Mbale and Ilwanda were significantly different (Z = -3.33, p < 0.05). Similarly, the mean number of avian frugivores observed in Ilwanda and Chugi were significantly different (Z = -3.69, p < 0.05). However, the mean number of avian frugivores recorded on focal guava trees in Mbale and Chugi were not significantly different (Z = -0.08, p < 0.05). Shannon- Wiener diversity index (H') for avian frugivores among the sites were; Ilwanda (H' = 2.02), Mbale (H' = 2.26) and Chugi (H' = 2.25). Diversity indices between Ilwanda and Mbale were significantly different (t (16) = 2.1, d.f = 18, p < 0.05). Similarly avian frugivores diversity indices were significantly different between Ilwanda and Chugi (t (16) = 2.12, d.f = 18, p < 0.05). However, the diversity indices were not significantly different between Mbale and Chugi study sites (t (16) = 0.42, d.f. = 18, p > 0.05).

Table 3: Contingency table showing the observed and expected values of feeding guilds among the study sites.

<table>
<thead>
<tr>
<th>SITE</th>
<th>FEEDING GUILDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frugivores</td>
</tr>
<tr>
<td>Ilwanda</td>
<td>353 (360.63)</td>
</tr>
<tr>
<td>Mbale</td>
<td>476 (480.84)</td>
</tr>
<tr>
<td>Chugi</td>
<td>484 (471.54)</td>
</tr>
<tr>
<td>Total</td>
<td>1313</td>
</tr>
</tbody>
</table>
4.1.7 Time of visits by avian frugivores on *P. guajava* trees

Frugivores visited the focal trees throughout the day with peak visits made early in the morning hours (Figure 5). Visits made by avian frugivores between 0700-0900h were significantly higher than visits were made between 0900-1100h ($Z = 1.6$, $p < 0.05$). Avian frugivores spent approximately equal amounts of time in *P. guajava* trees in Ilwanda and Mbale ($Z = 1.6$, $p > 0.05$). However, avian frugivores spent a significantly longer time in Ilwanda compared to Chugi ($Z = -3.4$, $p < 0.05$) and in Mbale compared to Chugi ($Z = 4.3$, $p < 0.05$).

![Mean avian frugivore visits](image)

Figure 5: Diurnal trends in the mean number of avian frugivores visiting *P. guajava* in different study sites.

4.2 Seed germination

Seeds obtained from dried fruits (intact) started to germinate after 14 days, while seeds from the other treatments (Ejecta, Fecal and manually extracted) began to germinate after 15 days. Among
the four treatments seeds from fecal treatment had the highest Mean Germination Time (MGT) of 22 days followed by seeds obtained from ejecta which had a MGT of 21 days. Both intact and manually extracted seeds had the same MGT of 20 days. A Kruskal Wallis test showed that the distributions of MGT was not the same among the four treatments (Kruskal Wallis Test, $X^2 = 25.7$, d.f. = 3, $p < 0.05$). Overall, seeds from fecal materials had the highest germination percentage (86.6%) followed by intact (82.2%), manually extracted (76.5%) and ejecta (73.3%) respectively. The seeds were observed to germinate exponentially; slowly at beginning, increased rapidly and then leveled off (Figure 6). In all the treatments the numbers of germinated seeds were significantly higher than the non-germinated seeds ($\chi^2 = 16.8$, d.f. = 1, $p < 0.05$). Although seed from fecal samples were observed to have a higher germination percentage, germination distributions of seeds among the four treatments (ejecta, fecal, intact and manually extracted) was not significantly different (Kruskal-Wallis Test, $X^2 = 4.32$, d.f. = 3, $p > 0.05$).

Figure 6: Seed germination rate of four treatments.
4.3 Seed rain, seedling and tree densities

4.3.1 Seed rain density

Accumulative total of 1656 fecal pellets were recorded in all the study sites, out of this 63.1% were observed to contain guava seeds. The mean density of pellets (number of pellets/m²) containing guava seeds deposited by *E. helvum* under the crowns of *P. guajava* trees were significantly different among sites (*F*₂, 27 = 10, *p* < 0.05). This suggests that the presence of roosting sites in Ilwanda and Mbale had an effect on the number of *E. helvum* visiting guava trees and hence the densities of pellets. Significantly lower densities of pellets with guava seeds (Figure 7) were recorded in Chugi compared to Ilwanda and Mbale (Tukey HSD, *p* < 0.05). The mean density of guava fruit fragments (number of fruit fragments/ m²) dropped by *E. helvum* under the crowns of guava trees were significantly different among the sites (*F*₂, 27 = 17.6, *p* < 0.05). Overall, the mean density of fruit fragments dropped by the *E. helvum* were significantly higher than the mean density pellets with guava seeds (*t* = 21.6, d.f. = 29, *p* < 0.05) in all study sites.

![Figure 7: Mean (± SE) density (number of pellets/m²) of pellets with guava seeds deposited by *E. helvum* under the crowns of guava trees in different sites.](image-url)
4.4.2 Seedling density

Pioneer plant species are hardy species which are the first to colonize previously disrupted or damaged ecosystems, beginning a chain of ecological succession that ultimately leads to a more biodiverse steady-state ecosystem. Climax species, also called late seral, late-successional, K-selected or equilibrium species, are plant species that will remain essentially unchanged in terms of species composition for as long as a site remains undisturbed. A total of 3,651 seedlings belonging to 18 tree species were recorded in all the sites (see appendix 4). Out of this, 2,456 individuals (67.3%) belonged to the pioneer species whereas 1,195 individuals (32.7%) were of climax species. *P. guajava* had the highest density of 30.3 seedlings/m2 followed by *Makhamia lutea* (4 seedlings/m2) and *Bridelia micrantha* (2.1 seedlings/m2). The mean density of seedlings (number of seedlings/m2) varied significantly among the sites ($F_{2, 57} = 29.5, p < 0.05$) with Ilwanda having the highest density followed by Mbale and Chugi respectively (Figure 8). Overall, the densities of pioneer species were significantly higher than the climax species in all study sites ($t = 23.6, \text{ d.f.} = 29, p < 0.05$).

![Figure 8: Mean (± SE) seedling densities (seedlings/m2) among different sites.](image)
4.4.3 Tree density and diversity

A total of 476 trees (DBH > 20 cm) comprising of 49 species belonging to 21 families were recorded in all the study sites (see appendix 5). Out of this 76% (n = 354) were of exotic species while 24% (n = 122) belonged to indigenous species. The highest number of tree species were recorded in Ilwanda (48) followed by Mbale (46) and Chugi (41). The Eucalyptus spp had the highest density (16.34 ± 1.7 trees ha\(^{-1}\)) followed by Compressus lusitanica (8.16 ± 2.3 trees ha\(^{-1}\)) and Croton macrostachyus (6.71 ± 2.2 trees ha\(^{-1}\)) respectively. Tree density was significantly higher in Mbale at 41.9 ± 1.04 trees/ha compared to Chugi at 30.9 ± 0.86 trees/ha (t = 7.02, d.f. = 38, p < 0.05). Similarly, the density of trees was significantly higher in Ilwanda at 45.7 ± 1.3 trees/ha compared to Mbale at 38.1 ± 1.1trees/ha (t = 5, d.f. = 38, p < 0.05). Moreover, the density of trees was significantly higher in Ilwanda than in Chugi (t = 6.4, d.f. = 38, p < 0.05). A One Way Anova test showed that the density of guava trees (DBH > 10 cm) was significantly higher in Ilwanda at 27.8 ± 1.5 trees/ha followed by Mbale 22.2 ± 0.6 trees/ha and Chugi at 11 ± 0.7 trees/ha respectively (F\(_{2,57}\) = 8.6, p < 0.05), Figure 9. Shannon-Wiener diversity index (H') for tree species was higher in Ilwanda (H’=3.1) than in Mbale (H’ = 2.98) however, the two indices were not significantly different (t = 0.24, d.f. = 58, p > 0.05). Chugi (H’ = 1.54) had a lower tree species diversity compared to Ilwanda (t = 1.72, d.f = 38, p < 0.05) and Mbale (t = 1.81, d.f= 38, p < 0.05).
Figure 9: Mean density (± SE) of guava trees (trees/ha) recorded at the study sites.

There were no significant differences between sampled focal trees basal area among the study sites (One Way Anova, F$_{2,27} = 0.8$, $p > 0.05$), Figure 10. This indicates that the selected focal trees in all the study sites had similar characteristics and could be compared against each other. A linear correlation was performed to determine the relationship between basal area as a measure of tree size and mean number of frugivore species recorded on the focal trees. There was a significant positive correlation between mean number of avian frugivore species and the basal area (Pearson’s correlation, $r = 0.39$, d.f. = 28 $p < 0.05$). Similarly, there was a significant positive correlation between visits by *E. helvum* fruit bats and focal tree basal area (Pearson’s correlation, $r = 0.55$, d.f. = 28, $p < 0.05$).
Figure 10: Mean (±) basal area (m²) of focal trees in study sites.
CHAPTER FIVE: DISCUSSION, CONCLUSION AND RECOMMENDATIONS

5.1 Discussion

5.1.1 Frugivore observations

Even though frugivore bats are commonly acknowledged as vital seed dispersers, limited studies have revealed the relative significance of bats and avian frugivores compared concurrently (Medellin and Gaona (1993). The magnitude of seed dispersal is determined mainly by the quantity of visits by frugivores to the plant. In this study, a higher number of E. helvum fruit bats was observed visiting P. guajava fruiting trees compared to other studies. For instance, a study by Ritcher and Cumming, 2006, sighted a total of 42 E. helvum on Uapaca sansibarica fruiting trees in Kasanka National Park, Central Zambia. Similarly, Daïnou et al, 2010, recorded a low number of E. helvum visiting Milicia excelsa in western Africa forests. This study clearly indicate a higher foraging activity of the species on guava trees in agricultural landscapes in which fruits can be considered to be higher than in protected areas. However, this requires further investigation. The higher number of E. helvum can also be attributed to the decrease in the number of other fruiting trees foraged by the species owing to increased deforestation. This is supported by the high density of guava trees in the roosting sites. The presence of roosting sites appeared to influence the number of visits by the E. helvum to the guava fruiting trees. This is evidenced by highest number of visits in Ilwanda where bats were roosting during the study period and lowest number of visits recorded in the non-roosting site. As such, increased visits can be attributed to the proximity of the fruiting guava trees to the roosting sites which reduced the distance covered in flight in search for food by the E. helvum. This concurs with energy maximization idea in the theory of optimal foraging (Pyke
et al., 1977). This theory suggests that animals will optimize their total energy intake while searching and consuming food. Therefore, the *E. helvum* selectively forage to minimize travel time and maximize energy gain by feeding closer to the roosting site hence the high number of sightings. Certainly, fruits close to the roost site should be depleted before the bats travel farther to feed. This is supported by the low number of *E. helvum* recorded in guava tree in Chugi about 3 km from the nearest roosting site. The loss of roosting sites for the *E. helvum* could lead to diminished seed flow of plant species throughout the landscape, limited seedling establishment and hence extirpation of certain plant species as observed by Da Silva and Tabarelli (2000).

In this study, the number of *E. helvum* visits to guava trees was higher than that of avian frugivores. This is in line with other studies that showed a high frequency of frugivorous bat visits to fruiting trees (Korine *et al.*, 2000, Godnez-Alvarez *et al.*, 2002, Meng *et al.*, 2012). Elsewhere, avian frugivores have generally been shown as being the main dispersers of seeds and architects of successional activities in farmland occurring in tropical ecosystems (Galindo-Gonzalez, 2000; Böhning-Gaese, 2012). However, the latter studies did not investigate the contribution made by fruit bats to seed dispersal in such areas. Avian frugivores had higher visitation rates and species diversity in non-roosting than in roosting site. This could be attributed to high removal rates of guava fruits by *E. helvum* in the roosting sites owing to the high number of visits and requires further investigation. Low diversity of avian frugivores is evident in disturbed areas such as agricultural fields in which trees are few and hence nesting and perching sites become a major limiting factor for the dispersal role of birds (Gorcho *et al.*, 1993). The *E. helvum* can therefore play a critical role in dispersing seeds in Vihiga as it is considered to be the most abundant frugivore.
In this study, avian frugivores spent more time on guava fruiting trees than *E. helvum*. These results have also been reported elsewhere by (Bronstein and Hoffmann, 1987; Kalko *et al.*, 1996). The avian frugivores spent more time in non-roosting site than in roosting site. This may be explained by resource partitioning between the *E. helvum* and the avian frugivores to minimize interspecific competition. However, this subject needs further investigation. Larger avian frugivores such as the hornbills spent much longer time in the trees than most of the other avian frugivores. This observation is in agreement with Green (1993) and Kirika *et al.*, (2008) that birds reduce the danger of predation by decreasing their ability to be seen at the foraging site and by choosing suitable places in adjacent foliage were they can be hidden them when processing food. When birds spend more time on a tree most of the seeds fall beneath the plant where the seeds and seedlings suffer mortality (Howe and Schupp, 1985). Since bat visits are short they are more likely to carry seeds away from the parent plant, make more visits per day, and produce a less clumped distribution of seeds (Howe and Estabrook, 1977). Birds mainly deposit seeds beneath the focal tree or transport fruits to a perch or roost prior to passing out the seeds (Charles-Dominique, 1986; McClanahan and Wolfe, 1993; Corlett, 1998). In western Kenya the *E. helvum* bats were observed to drop some seeds during flight and deposited the majority at roosting trees and also under feeding and focal trees. These observations were also noted by Banack *et al.*, (2002), Hodgkison *et al.*, (2003) and Webala *et al.*, (2014). Guava seeds dispersed by the *E. helvum* are more probable to reach greatly disturbed areas deficient in perching and nesting sites than seeds dispersed by birds. Therefore, the *E. helvum* can be considered to be the main disperser of *P. guajava* seed in fragmented landscapes of Vihiga county contributing largely to vegetation regeneration and hence of conservation importance.
5.1.2 Seed germination

The influence of digestion process on germination rate is an important property of foraging behaviour that determines the efficacy of animals as dispersers of seeds (McKey, 1975; Howe, 1986). In this study, the passage of guava seeds through the gut of *E. helvum* had not effect on the rate of germination. A similar study by Taylor, (2005) indicated that gut treatment by *E. helvum* had no effect on the germination of *Milicia excelsa*. Other studies by Naranjo *et al.* (2003), Hodkgison *et al.*, (2003) and Tiang *et al.*, (2008) established that the passage of seeds across the gut of bats did not enhance germination of seeds from single fruit species. Owing to the little period by which food materials pass through the bat digestive tract (Abedi-Lartey, 2016), it is possible that ingestion has insignificant scarifying influence on the seed testa. However, other studies have reported that passage of seeds through the gut of bats enhance germination (Izhaki *et al.*, 1995; Lopez and Vaughan, 2004). Evidently, many guava seeds capable of germinating were spread out by *E. helvum* through defecation. Since the *E. helvum* fruit bats are known to repeatedly alter their roosting locations and regularly excrete while flying, the guava seeds from excreta can be dispersed widely and help to foster plant regeneration in degraded landscapes.

Results indicate that the germination rates of seeds obtained from intact fruits and those manually extracted from fresh fruits did not differ significantly. This is contrary to other studies which indicate that seeds from intact fruits have a much lower germination percentage (Samuels and Levey, 2005; Robertson *et al.*, 2006). However, the results concur with Ferreira *et al.*, (2016) that the germination rates of intact and extracted seeds of Babasu seeds were not different. Germination rates of seeds obtained from spats were significantly lower than all the other treatments. This could
have been as a result of chemical substances in the pulp that hinder germination if allowed to remain in contact with the seeds (Yagihashi et al., 1998; Samuels and Levey, 2005). In addition, seeds that are dispersed through spats have high chances of being destroyed by fungal contaminations than those that are excreted (Utzurrum, 1995). The results indicate then that ingestion of guava seeds by E. helvum is not necessary for germination. Irrespective of whether the passage of guava seeds through the gut of E. helvum directly affects germination of guava seeds, the E. helvum may nevertheless contribute significantly through positioning of seeds in microsites that differ in suitability for germination (Schupp, 1993).

5.1.3 Seed rain

The quantity of seeds that reach at a site and death of seeds and seedlings in the site restrict plant regeneration (Schupp et al. 1989; Tilman, 1997; Svenning and Wright 2005). As such, a large number of seeds of pioneer species are necessary to guarantee seedling establishment. The difference in the number of visits by the most effective dispersers has implications for the successful dispersal of zoochorous seeds (Jordano, 1994). Seed rain deposition under remnant trees in degraded habitats by bats is significant vegetation regeneration as the offer food or perch sites (Ragusa-Nettoa, 2015). In this study, high seed deposition was observed under the crowns of P. guajava in the roosting sites compared to the non-roosting site. The difference in the densities of E. helvum fecal pellets among the three study areas suggest the importance of the roosting sites in seed dispersal. Therefore, the conservation of the current roosting site is critical for effective plant regeneration in Vihiga County farmlands. The Eidolon helvum continuously moved within the study sites while feeding a phenomenon observed as well by Taylor (2005). Owing to this foraging behavior, their inclination to excrete while flying, and their fast digestion time (Thomas, 1982),
the *E. helvum* conduct out a first-class dispersal service spreading thousands of guava seeds throughout the farmlands every night. Although agricultural fruits may be less nutritionally beneficial than wild fruits for bats (Nelson *et al*., 2000), the presence of large amounts of such fruits could allow a higher density to be supported than by primary forest (Dallimer *et al*., 2006). Large numbers of *E. helvum* were observed during the peak fruiting season of the guava trees (June, July and August) thus helping to disperse enormous quantities of guava seeds during this time. Richter and Cumming (2006) reported a similar pattern for *E. helvum* in Kasanka National Park, Zambia, where the relative abundance of this species also increased during the peak fruiting period of key resources. *Eidolon helvum* has the ability to forage as far as 59 km or more from the roost site in a single night (Richter and Cumming, 2008), suggesting that the species is a long-distance seed disperser. Thus because of their high mobility, the *E. helvum* can transport guava seeds to sites with suitable light and water conditions for germination, especially in areas of lower land-use intensity such as farm edges and abandoned lands. The *E. helvum* fruit bats are effective seed dispersers of guava trees as they were observed to drop seeds beneath the guava fruiting trees either as excreta or spats. They also carried the fruits to roosting sites where large number of seeds were deposited as excreta under the canopies of the roosting trees. However, there were no feeding roosts observed. Since guavas are important pioneer plants that act as “recruitment foci” for other early successional species in Kenyan farmlands (Berens *et al*., 2008). When they eat guava fruits the *E. helvum* contribute immensely to plant succession and vegetation regeneration in degraded farmlands.
5.1.4 Seedling and tree establishment

In this study, seedling establishment was significantly different among the sites with Ilwanda having the highest seedling density. This could be attributed to the presence of the roosting sites, thus the movement of bats between the roosting sites and the focal trees could be responsible for high seed deposition and hence increased seedling establishment. It could also be as a result of facilitation by guava seedlings which are important pioneer species in farmlands (Berens et al., 2008). Frugivores are responsible for the seed rain that enables the parent plant to place seeds in locations that are appropriate for germination. With a high visitation rate by highly mobile E. helvum, guava trees are likely to achieve a higher success rate in the recruitment of seedlings (Tellería et al. 2005). Many bat dispersed plants are from pioneer species which are the first to grow in degraded landscapes (Muscarella and Fleming, 2007). In this study, pioneer species had the highest density in all the three sites being higher in the roosting sites. This has conservation implications as to enhancement of plant biodiversity in degraded landscape. A decrease in the number animal seed dispersers or their extinction can contribute to less frugivores visiting fruit bearing trees and therefore smaller amount of seeds may be dispersed (Kirika et al. 2008; Holbrook and Loiselle 2009). These reductions in dispersal of seeds by animals can eventually culminate to a decrease in recruitment of seedlings (Cordeiro and Howe 2003, Uriarte et al., 2010), and local plant extinction and hence diminishing plant species richness.

In this study, the diversity of tree species was low in non-roosting sites where avian frugivore diversity was also observed to be low. This concurs with other studies in which tree species is positively correlated to species richness (Harvey, et al., 2006, Ana et al., 2017). Markedly, the density of P. guajava trees was also found to be high in roosting sites than in non-roosting sites.
However, a higher seedling establishment does not necessarily lead to higher tree densities as shown by Kirika, (2005) and Berens et al., (2008). In these studies carried out in Kakamega forest and the surrounding farmlands, the survival of seedlings to maturity was observed to be curtailed in the forest fragments. As such, the low densities of adult trees were attributed to other factors such as logging or pole wood collection rather than low seedling establishment. In this study the low density of trees could be attributed to similar anthropogenic factors.

5.2 Conclusion

When they eat guava fruits, the E. helvum and avian frugivores perform important ecological role in vegetation regeneration in Vihiga farmlands. With a high visitation rate and low duration of visits the E. helvum can be described as the most important disperser of P. guajava seeds within Vihiga agricultural farmlands. Due to habitat degradation in agro ecosystems the abundance and diversity of avian frugivores is declining in tropical regions. This will in turn contribute to decline in seeds arrival at suitable sites leading low vegetation regeneration. In Vihiga County, the E. helvum occur in fairly large numbers at specific roosting sites. These sites are located in homesteads where the bats are constantly being persecuted by farmers mainly through cutting down of the roosting trees and use of pesticides. Decline in the abundance of E. helvum in these farmlands could have serious implications on plant regeneration. The results of the study show clearly that the E. helvum is imperative to vegetation regeneration in these fragmented landscapes. As such, concerted efforts are required by all conservation stake holders including the county government and the public to conserve the species and their roosting sites. This is imperative so as to safeguard the role that Eidolon helvum fulfills not only in seed dispersal but also in pollination of numerous plant species. More conservation education projects are therefore recommended to
ensure that the local people recognize the value of bats and do not cause damage through the careless destruction of vital habitats.

The passage of guava seeds through the gut of *E. helvum* was found to be unimportant to guava seed germinations. However, the effect produced by ingestion of seeds by the same bat species may vary according to the plant species. In this study only the guava tree was considered. Since the *E. helvum* fruits are known to defecate while in flight they are significant ensuring plant regeneration in Vihiga farmlands. The results show that presence of roosting sites is closely linked to dispersal seedling establishment. As such, there is need for concerted efforts to conserve the existing roosting sites to ensure seed dispersal of other important keystone species such as the *F. thonningii*. However, there other factors which influence seed dispersal and seedling establishment such as light availability, predation of seeds, scatter hoarding and secondary seed dispersal which are beyond the scope of this study. As only one tree species was studied, these results apply to the *P. guajava* and to make generalizations, further studies on other species are required. Despite the fact that guava trees are exotic species, they are significant pioneer species and hence act as a baseline for the growth and establishment of other late successional plants.

5.3 Recommendations

5.3.1 Further research

- A comparative study on the effects on human disturbance on dispersal of seeds by avian and bat frugivores in farmlands.
- A study on the role of *E. helvum* movements on seed dispersal in agro ecosystems through closer monitoring of individual bats by the use of either radio–telemetry equipment or satellite transmitters could provide invaluable data.
- The effect produced by ingestion of seeds by the same bat species may vary according to the plant species therefore, the same concept can be tested to determine the effects of gut conditioning by *E. helvum* on other tree species.

- Additional studies on the effects of *P. guajava* on local ecological communities are needed regarding, for instance, relations with indigenous plant species and its influence on soil, water and nutrient cycling.
REFERENCES

APPENDICES

Appendix 1: A list of the 30 *P. guajava* focal trees, their location, habitats, basal area and the number of frugivores recorded.

<table>
<thead>
<tr>
<th>Focal Tree</th>
<th>Site</th>
<th>Basal area (m²)</th>
<th>Avian frugivore visits</th>
<th>E. helvum visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ilwanda</td>
<td>0.018</td>
<td>31</td>
<td>188</td>
</tr>
<tr>
<td>2</td>
<td>Ilwanda</td>
<td>0.035</td>
<td>32</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>Ilwanda</td>
<td>0.025</td>
<td>32</td>
<td>213</td>
</tr>
<tr>
<td>4</td>
<td>Ilwanda</td>
<td>0.038</td>
<td>39</td>
<td>209</td>
</tr>
<tr>
<td>5</td>
<td>Ilwanda</td>
<td>0.023</td>
<td>35</td>
<td>193</td>
</tr>
<tr>
<td>6</td>
<td>Ilwanda</td>
<td>0.031</td>
<td>35</td>
<td>207</td>
</tr>
<tr>
<td>7</td>
<td>Ilwanda</td>
<td>0.045</td>
<td>38</td>
<td>216</td>
</tr>
<tr>
<td>8</td>
<td>Ilwanda</td>
<td>0.028</td>
<td>32</td>
<td>196</td>
</tr>
<tr>
<td>9</td>
<td>Ilwanda</td>
<td>0.02</td>
<td>35</td>
<td>172</td>
</tr>
<tr>
<td>10</td>
<td>Ilwanda</td>
<td>0.025</td>
<td>44</td>
<td>192</td>
</tr>
<tr>
<td>11</td>
<td>Mbale</td>
<td>0.045</td>
<td>50</td>
<td>164</td>
</tr>
<tr>
<td>12</td>
<td>Mbale</td>
<td>0.035</td>
<td>54</td>
<td>137</td>
</tr>
<tr>
<td>13</td>
<td>Mbale</td>
<td>0.042</td>
<td>41</td>
<td>155</td>
</tr>
<tr>
<td>14</td>
<td>Mbale</td>
<td>0.028</td>
<td>54</td>
<td>148</td>
</tr>
<tr>
<td>15</td>
<td>Mbale</td>
<td>0.031</td>
<td>53</td>
<td>150</td>
</tr>
<tr>
<td>16</td>
<td>Mbale</td>
<td>0.035</td>
<td>41</td>
<td>134</td>
</tr>
<tr>
<td>17</td>
<td>Mbale</td>
<td>0.025</td>
<td>38</td>
<td>137</td>
</tr>
<tr>
<td>18</td>
<td>Mbale</td>
<td>0.018</td>
<td>41</td>
<td>132</td>
</tr>
<tr>
<td>19</td>
<td>Mbale</td>
<td>0.038</td>
<td>56</td>
<td>154</td>
</tr>
<tr>
<td>20</td>
<td>Mbale</td>
<td>0.023</td>
<td>48</td>
<td>135</td>
</tr>
<tr>
<td>21</td>
<td>Chugi</td>
<td>0.031</td>
<td>51</td>
<td>95</td>
</tr>
<tr>
<td>22</td>
<td>Chugi</td>
<td>0.045</td>
<td>47</td>
<td>98</td>
</tr>
<tr>
<td>23</td>
<td>Chugi</td>
<td>0.035</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>Chugi</td>
<td>0.028</td>
<td>52</td>
<td>77</td>
</tr>
<tr>
<td>25</td>
<td>Chugi</td>
<td>0.025</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>26</td>
<td>Chugi</td>
<td>0.028</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>27</td>
<td>Chugi</td>
<td>0.038</td>
<td>48</td>
<td>97</td>
</tr>
<tr>
<td>28</td>
<td>Chugi</td>
<td>0.031</td>
<td>54</td>
<td>74</td>
</tr>
<tr>
<td>29</td>
<td>Chugi</td>
<td>0.023</td>
<td>49</td>
<td>74</td>
</tr>
<tr>
<td>30</td>
<td>Chugi</td>
<td>0.053</td>
<td>43</td>
<td>97</td>
</tr>
</tbody>
</table>
Appendix 2: A list of the 12 avian frugivores observed visiting *P. guajava* trees.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Species name</th>
<th>Percentage visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Thrush</td>
<td>Turdus pelios</td>
<td>3</td>
</tr>
<tr>
<td>Black and white casqued Hornbill</td>
<td>Bycanistes subcylindricus</td>
<td>0.4</td>
</tr>
<tr>
<td>Common Bulbul</td>
<td>Pyconatus barbatus</td>
<td>24.7</td>
</tr>
<tr>
<td>Speckled Mousebird</td>
<td>Colius striatus kikuyensis</td>
<td>43.1</td>
</tr>
<tr>
<td>Veioillet’s Black Weaver</td>
<td>Ploceous nigrermus</td>
<td>2.1</td>
</tr>
<tr>
<td>Violet backed starling</td>
<td>Cinnyricinclus leucogaster</td>
<td>0.6</td>
</tr>
<tr>
<td>Yellow White-eye</td>
<td>Zosterops senegalenses</td>
<td>16</td>
</tr>
<tr>
<td>Yellow-rumped Tinkerbird</td>
<td>Pogoniulus bilineatus</td>
<td>1.1</td>
</tr>
<tr>
<td>Yellow-throated Leaf love</td>
<td>Chlorocinchila flavicollis</td>
<td>5.8</td>
</tr>
<tr>
<td>African green pigeon</td>
<td>Treron calva</td>
<td>0.4</td>
</tr>
<tr>
<td>Black cap</td>
<td>Sylvia atricapila</td>
<td>0.4</td>
</tr>
<tr>
<td>Double-toothed Barbet</td>
<td>Lybius bidentatus aequatorialis</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Appendix 3: A checklist of bird species observed visiting *P. guajava* trees in all the study sites. Given are their mean visits and feeding guild (Nomenclature by Bennun *et al.*, 1996)

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Scientific name</th>
<th>Mean visits</th>
<th>Feeding Guild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcedinidae</td>
<td>African Pygmy Kingfisher</td>
<td>Ispidina p. picta</td>
<td>0.38</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Yellow-rumped Tinkerbird</td>
<td>Pogoniulus bilineatus</td>
<td>0.31</td>
<td>F</td>
</tr>
<tr>
<td>Bucerotidae</td>
<td>Black-and-white-casqued Hornbill</td>
<td>Bycanistes subcylindricus subquadratus</td>
<td>0.07</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Red-faced Cisticola</td>
<td>Cisticola erythrops Sylvia</td>
<td>0.03</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Red-faced Cisticola</td>
<td>Cisticola erythrops Sylvia</td>
<td>0.03</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Tawny-flanked Prinia</td>
<td>Prinia subflava melanorhyncha</td>
<td>0.38</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>White-chinned Prinia</td>
<td>Prinia leucopogon reichenowi</td>
<td>0.03</td>
<td>I</td>
</tr>
<tr>
<td>Cisticolidae</td>
<td>Speckled Mousebird</td>
<td>Colius striatus kikuyensis</td>
<td>19.79</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>African Green Pigeon</td>
<td>Treron calva gibberifrons</td>
<td>0.07</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Red-eyed Dove</td>
<td>Streptopelia semitorquata</td>
<td>0.03</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Blue-spotted Wood Dove</td>
<td>Turtur afer</td>
<td>0.17</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Laughing Dove</td>
<td>Streptopelia s. Senegalensis</td>
<td>0.03</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Ring-necked Dove</td>
<td>Streptopelia capicola somalica</td>
<td>0.03</td>
<td>O</td>
</tr>
<tr>
<td>Columbidae</td>
<td>Diederik Cuckoo</td>
<td>Chrysococcyx caprius</td>
<td>0.03</td>
<td>I</td>
</tr>
<tr>
<td>Estrildidae</td>
<td>African Firefinch</td>
<td>Lagonosticta rubricata hildebrandti</td>
<td>0.1</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Black-crowned Waxbill</td>
<td>Estrilda n. nonnula</td>
<td>0.07</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Bronze Mannikin</td>
<td>Lonchura cucullata scutata</td>
<td>0.83</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Red-billed Firefinch</td>
<td>Lagonosticta senegala rubrima</td>
<td>0.69</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Red-cheeked Cordon-bleu</td>
<td>Uraeginthus b. bengalus</td>
<td>0.24</td>
<td>G</td>
</tr>
<tr>
<td>Fringillidae</td>
<td>African Citril</td>
<td>Serinus citrinelloides</td>
<td>0.21</td>
<td>G</td>
</tr>
<tr>
<td>Lybiidae</td>
<td>Yellow-fronted Canary</td>
<td>Serinus mozambicus</td>
<td>1.9</td>
<td>G</td>
</tr>
<tr>
<td>Malaconotidae</td>
<td>Brown-crowned Tchagra</td>
<td>Tchagra australis eminii</td>
<td>0.03</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Tropical Boubou</td>
<td>Laniarius aethiopicus</td>
<td>0.07</td>
<td>O</td>
</tr>
<tr>
<td>Motacillidae</td>
<td>Yellow Wagtail</td>
<td>Motacilla flava</td>
<td>0.14</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>African Blue Flycatcher</td>
<td>Elminia longicauda teresita</td>
<td>1.28</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>African Dusky Flycatcher</td>
<td>Muscicapa adusta interposita</td>
<td>0.17</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>African Grey Flycatcher</td>
<td>Bradornis m. microrhynchos</td>
<td>0.17</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>African Paradise Flycatcher</td>
<td>Terpsiphone viridis</td>
<td>0.24</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Brown-backed Srub Robin</td>
<td>Cercotrichas hartlaubi</td>
<td>0.03</td>
<td>I</td>
</tr>
<tr>
<td>Muscicapidae</td>
<td>Northern Black Flycatcher</td>
<td>Melaenornis pammelaina</td>
<td>0.45</td>
<td>I</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Scientific Name</td>
<td>Abundance</td>
<td>Feeding Guild</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Nectariniidae</td>
<td>Pale Flycatcher</td>
<td>Bradornis pallidus murinus</td>
<td>0.21</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Spotted Flycatcher</td>
<td>Muscicapa striata neumanni</td>
<td>0.48</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>White-browed Robin-chat</td>
<td>Cossypha h. heuglini</td>
<td>0.1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>White-eyed Slaty Flycatcher</td>
<td>Melaenornis f. fischeri</td>
<td>0.03</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Eastern Grey Plantain-Eater</td>
<td>Crinifer zonurus</td>
<td>0.48</td>
<td>F</td>
</tr>
<tr>
<td>Ploceidae</td>
<td>Bronze Sunbird</td>
<td>Nectarinia k. kilimensis</td>
<td>2.07</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Variable Sunbird</td>
<td>Nectarinia venusta</td>
<td>1.57</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Copper Sunbird</td>
<td>Nectarinia cuprea</td>
<td>0.03</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Green-headed Sunbird</td>
<td>Nectarinia verticalis viridisplendens</td>
<td>0.03</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Marico Sunbird</td>
<td>Nectarinia mariquensis suahelica</td>
<td>0.07</td>
<td>N</td>
</tr>
<tr>
<td>Pycnonotidae</td>
<td>Baglafecht Weaver</td>
<td>Ploceus baglafecht</td>
<td>2.55</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Black-headed Weaver</td>
<td>Ploceus cucullatus</td>
<td>1.83</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Grey-headed Sparrow</td>
<td>Passer griseus</td>
<td>1.97</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Lesser-masked Weaver</td>
<td>Ploceus i. intermedius</td>
<td>0.14</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Yellow-mantled Widowbird</td>
<td>Euplectes macrourus</td>
<td>0.1</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Spectacled Weaver</td>
<td>Ploceus ocularis suahelicus</td>
<td>0.21</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Vieillot’s Black Weaver</td>
<td>Ploceus nigerrimus</td>
<td>0.34</td>
<td>O</td>
</tr>
<tr>
<td>Pycnonotidae</td>
<td>Common Bulbul</td>
<td>Pycnonotus barbatus</td>
<td>14.83</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Yellow White-eye</td>
<td>Zosterops senegalensis</td>
<td>5.52</td>
<td>F</td>
</tr>
<tr>
<td>Sturnidae</td>
<td>Violet backed starling</td>
<td>Cinnyricinclus leucogaster</td>
<td>0.43</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Superb Starling</td>
<td>Lamprotornis superbus</td>
<td>0.03</td>
<td>O</td>
</tr>
<tr>
<td>Sylviidae</td>
<td>Blackcap</td>
<td>Sylvia atricapilla dammholzi</td>
<td>0.07</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Garden Warbler</td>
<td>Sylvia borin</td>
<td>0.21</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Olivaceous Warbler</td>
<td>Hippolais pallida elaeica</td>
<td>0.14</td>
<td>O</td>
</tr>
<tr>
<td>Turdidae</td>
<td>African Thrush</td>
<td>Turdus pelios centralis</td>
<td>1.03</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Common Stonechat</td>
<td>Saxicola torquata axillaris</td>
<td>0.1</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Olive Thrush</td>
<td>Turdus olivaceus abyssinicus</td>
<td>0.07</td>
<td>O</td>
</tr>
<tr>
<td>Viduidae</td>
<td>Pin-tailed whydah</td>
<td>Streptopelia semitorquata</td>
<td>0.03</td>
<td>G</td>
</tr>
</tbody>
</table>

Feeding guild: I = Insectivore, F = Frugivore, G = Granivore, N = Nectivore, and O = Omnivore
Appendix 4: Seedling species found established below the crowns of trees. Included are the study sites, density of seedlings (seedlings/m²), mode of dispersal, ecological succession and succession stage of each species. Nomenclature is according to Beentje, 1994.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Ilwanda</th>
<th>Mbale</th>
<th>Chugi</th>
<th>Mode of dispersal</th>
<th>Ecological succession</th>
<th>Succession stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allophylus rubifolius</td>
<td>0</td>
<td>0</td>
<td>0.74</td>
<td>Animal</td>
<td>Climax</td>
<td>Late</td>
</tr>
<tr>
<td>Antiaris toxicaria</td>
<td>1.14</td>
<td>0</td>
<td>0</td>
<td>Animal</td>
<td>Climax</td>
<td>Early</td>
</tr>
<tr>
<td>Bridelia micrantha</td>
<td>2.3</td>
<td>2.16</td>
<td>1.67</td>
<td>Animal</td>
<td>Pioneer</td>
<td>Early</td>
</tr>
<tr>
<td>Clausena anisata</td>
<td>0.5</td>
<td>0.53</td>
<td>1.02</td>
<td>Animal</td>
<td>Climax</td>
<td>Late</td>
</tr>
<tr>
<td>Craterispermum schweinfurthii</td>
<td>0</td>
<td>1.07</td>
<td>0.75</td>
<td>Animal</td>
<td>Climax</td>
<td>Early</td>
</tr>
<tr>
<td>Croton macrostachyus</td>
<td>0.42</td>
<td>2.68</td>
<td>0.63</td>
<td>Wind</td>
<td>Climax</td>
<td>Early</td>
</tr>
<tr>
<td>Croton megalocarpus</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>Animal</td>
<td>Pioneer</td>
<td>Early</td>
</tr>
<tr>
<td>Cupressus lusitanica</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>Wind</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Ficus sycomorus</td>
<td>0.43</td>
<td>0</td>
<td>0</td>
<td>Animal</td>
<td>Climax</td>
<td>Late</td>
</tr>
<tr>
<td>Harungana madagascariensis</td>
<td>0</td>
<td>0.2</td>
<td>0.95</td>
<td>Animal</td>
<td>Climax</td>
<td>Early</td>
</tr>
<tr>
<td>Maesa lanceolata</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>Animal</td>
<td>Climax</td>
<td>Early</td>
</tr>
<tr>
<td>Makhania lutea</td>
<td>8.54</td>
<td>3.15</td>
<td>0.35</td>
<td>Wind</td>
<td>Climax</td>
<td>Late</td>
</tr>
<tr>
<td>Morus mesozygia</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>Animal</td>
<td>Pioneer</td>
<td>Early</td>
</tr>
<tr>
<td>Persea americana</td>
<td>0</td>
<td>1.26</td>
<td>0</td>
<td>Animal</td>
<td>Climax</td>
<td>Late</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>70.5</td>
<td>18.9</td>
<td>1.48</td>
<td>Animal</td>
<td>Pioneer</td>
<td>Early</td>
</tr>
<tr>
<td>Sapium ellipticum</td>
<td>0</td>
<td>0</td>
<td>1.27</td>
<td>Animal</td>
<td>Pioneer</td>
<td>Early</td>
</tr>
<tr>
<td>Teclea nobilis</td>
<td>0.61</td>
<td>1.07</td>
<td>1.08</td>
<td>Animal</td>
<td>Climax</td>
<td>Early</td>
</tr>
<tr>
<td>Zanthoxylum gillettii</td>
<td>0.2</td>
<td>0</td>
<td>0.86</td>
<td>Wind</td>
<td>Climax</td>
<td>Late</td>
</tr>
</tbody>
</table>
Appendix 5: Plant species recorded in the study sites. Plant nomenclature follows the International Plant Names Index (2005).

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>SCIENTIFIC NAME</th>
<th>Exotic/Indigenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bignoniaceae</td>
<td>Makhamia lutea</td>
<td>Exotic</td>
</tr>
<tr>
<td>Lauraceae</td>
<td>Persea americana</td>
<td>Exotic</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Mangifera indica</td>
<td>Exotic</td>
</tr>
<tr>
<td>Cyatheaceae</td>
<td>Cyathea manniana</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Cupressaceae</td>
<td>Cupressus lusitanica</td>
<td>Exotic</td>
</tr>
<tr>
<td>Cupressaceae</td>
<td>Juniperus procera</td>
<td>Exotic</td>
</tr>
<tr>
<td>Podocarpacea</td>
<td>Podocarpus latifolius</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Piperaceae</td>
<td>Piper capense</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Capparaceae</td>
<td>Capparis tomentosa</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Capparaceae</td>
<td>Maerua decumbens</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Phytolaccaceae</td>
<td>Phytolacca dodecandra</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Balsaminaceae</td>
<td>Impatiens sodenii</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>Faurea saligna</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>Protea gaugedi</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Flacourtiaceae</td>
<td>Oncoba routledgei</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Flacourtiaceae</td>
<td>Trimeria grandifolia</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Canellaceae</td>
<td>Warburgia ugandensis</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Ochnaceae</td>
<td>Ochna holstii</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Syzygium cordatum</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Eucalyptus spp*</td>
<td>Exotic</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Psidium guajava</td>
<td>Exotic</td>
</tr>
<tr>
<td>Combretaceae</td>
<td>Combretum molle</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Rhizophoraceae</td>
<td>Cassipourea malosana</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>Grewia bicolor</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>Grewia similis</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>Grewia tembensis</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>Triumfetta tomentosa</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Sterculiceae</td>
<td>Dombeya burgessiae</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Abutilon maurintianum</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Hibiscus calphyllus</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Pavonia urens</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Bridelia micrantha</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Croton dichogamus</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Croton macrostachys</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Croton megalocarpus</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia candelabrum</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Indigenous</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Ricinus communis</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Prunus africana</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Mimosaceae</td>
<td>Acacia abyssinica</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Mimosaceae</td>
<td>Acacia nilotica</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Mimosaceae</td>
<td>Acacia xanthophloea</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Mimosaceae</td>
<td>Albizia gummifera</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus ovata</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus sur</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus sycomorus</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus thonningii</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Clausena anisata</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Zanthoxylum gilleti</td>
<td>Indigenous</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Teclea nobilis</td>
<td>Indigenous</td>
</tr>
</tbody>
</table>