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ABSTRACT
Aflatoxin, a carcinogenic toxin, is produced mainly by
Aspergillus flavus and Aspergillus parasiticus. Contamination
of maize (Zea mays L.) grain by these fungi occurs before
harvest, and the easiest strategy to prevent this is to
develop/use maize varieties resistant to Aspergillus spp. and
aflatoxin accumulation. The objective of this investigation was
to identify potential sources of resistance among 23 maize
inbred lines (13 obtained from the MAIZE Competitive Grants
Initiative, International Maize and Wheat Improvement Centre
and 10 from Agricultural Research Council, South Africa). The
inbred lines were planted in a randomized complete-block
design at two locations each in Kenya and South Africa.
Maize ears were inoculated at silking with three toxigenic
strains of A. flavus. The inoculated ears in each plot were
harvested at 12–18% moisture, dried, and visually assessed
for Aspergillus ear rot (AER). Aflatoxin concentration in the
kernels was determined using liquid chromatography–tandem
mass spectrometry. Significant variation for both AER and
aflatoxin concentration existed among the inbred lines at
both locations in Kenya and one location in South Africa.
Combined analysis revealed a significant (p < 0.001) lines ×
locations interaction for both AER and aflatoxin concentration.
Higher incidences of AER (0–86.0%) and aflatoxin concentra-
tion (0.21–6.51 µg/kg) were recorded at Kiboko in Kenya than
at the other three locations. A stronger genetic correlation
(rG = 0.936, p < 0.0001) between the AER and aflatoxin con-
centration was recorded in Potchefstroom than at the other
three locations. Repeatability of aflatoxin concentration was
high at Kiboko (0.87) and Potchefstroom in South Africa
(0.74). Three inbred lines, CML247, CML444, and CML495,
emerged as potentially useful sources of resistance to AER
and aflatoxin accumulation as they showed low levels of afla-
toxin contamination in both localities in Kenya and in South
Africa.
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Introduction

Maize (Zea mays L.) is the major staple food crop in Kenya grown at various
altitudes, from the coastal strip to >1600 m above sea level in the highlands,
with an annual production of 4 million metric tons of grain (Gov. of Kenya,
2016; Snipes and Kamau 2013). Maize is grown mainly by small-scale farm-
ers, located in the Rift Valley and Western regions, who produce >75% of the
total maize in Kenya. About 95% of the maize produced in the country serves
the subsistence needs, with per capita consumption of 98 kg per year and is
sold in domestic markets (Gov. of Kenya (Government of Kenya) 2016;
Snipes and Kamau 2013). Maize also serves as a staple food in several
other eastern and southern African countries, of which South Africa is the
main producer of maize, with an annual production of 10–12 million metric
tons (BFAP, 2011; DAFF (Department of Agriculture, Forestry and Fisheries,
South Africa) 2016). Commercial growers, however, produce most of the
South African maize. Maize production in East Africa is often adversely
affected by two fungi, Aspergillus flavus and Aspergillus parasiticus, which
cause Aspergillus ear rot (AER) and liberate toxic secondary metabolites
known as aflatoxins.

Following the consumption of maize contaminated with A. flavus and
aflatoxins, several cases of aflatoxicosis were reported from Kenya. In 1981,
an outbreak of aflatoxicosis occurred following a severe drought followed by
heavy rains during the harvest (Ngindu et al. 1982). The worst outbreak of
the disease in Kenya was in 2004 when 317 cases were reported and 125
people died in the Makueni and Kitui districts in eastern Kenya (Probst,
Njapau, and Cotty 2007). Since then, cases of aflatoxicosis among people
have been reported every year because of high levels of aflatoxins in their
predominantly maize-based diet. Chronic exposure to aflatoxins is more
serious than acute aflatoxicosis (Lauren et al. 2005; Okoth et al. 2012a;
Okoth and Kola, 2012b). Aflatoxin B1 (AFB1) is the most potent naturally
occurring carcinogen known (Liu and Wu 2010; Squire 1989).

The production of aflatoxins starts in the field soon after maize kernels are
colonized by A. flavus and/or A. parasiticus. Aflatoxin continues to accumu-
late during kernel maturation. The Kenya Bureau of Standards has set 10 µg/
kg as the acceptable limit of total aflatoxins in maize for both human and
animal consumption (Brown et al. 2013b; KBS (Kenya Bureau of Standards)
2013), which is lower than the limit of 20 µg/kg set by the United States Food
and Drug Administration. Testing of food and feed quality in Kenya, how-
ever, has not been effective because of the high cost of mycotoxin analyses
and poor infrastructure to evaluate food quality. Most foodstuffs and feeds
sold in local markets do not go through any quality control measures. While
Kenya records regular occurrence of aflatoxicosis, high fumonisin levels
predominate in South Africa (Ncube et al. 2011).
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Management of aflatoxins in the maize value chain includes prevention
of fungal infection in the field and growth of the fungus in maize kernels,
inhibition of aflatoxin production, and the degradation of aflatoxins in the
grains (Bandyopadhyay et al. 2016; Maina et al. 2016). In Kenya, proper
and affordable storage facilities and the use of non-toxigenic A. flavus
strains (ACDI-VOCA 2015; Bandyopadhyay et al. 2016; Ehrlich 2014) are
currently being evaluated for aflatoxin management. Host–plant resistance
is considered a desirable and cost-effective approach (Williams 2006;
Williams et al. 2014), and inbred lines with pre-harvest resistance to A.
flavus have been identified by several researchers (Menkir et al. 2008; Scott
and Zummo 1988; Widstrom 1996; Widstrom, McMillian, and Wilson
1987; Zuber et al. 1978).

The application of new tools of proteomics and genomics in identifica-
tion of resistance mechanisms is a positive step toward the pursuit of
significant resistance in maize (Henry, Gary, and Michael 2012; Brown
et al. 2013a; 2013b; Williams et al. 2014; Williams and Windham 2015).
However, no commercial maize varieties with resistance to aflatoxin accu-
mulation have been released because some of the resistant parental maize
inbred lines currently available generally do not possess acceptable agro-
nomic attributes. The search therefore continues to identify new sources of
resistance to aflatoxin contamination in adapted maize germplasm.
Warburton and William (2014) provide a comprehensive analysis of the
progress made in the pursuit for aflatoxin resistance. Resistance in most of
the lines that had been earlier identified as resistant and used in breeding
was highly dependent on the environment (Scott and Zummo 1988;
Widstrom, Wilson, and McMillian 1984, 1986; Zuber et al. 1983). Some
of the newer germplasms evaluated for resistance to aflatoxin showed more
or less repeatable resistance under varying environments (Gorman et al.
1991; Guo et al. 2001; McMillian, Widstrom, and Wilson 1993; Walker and
White 2001; Williams and Windham 2001) and possessed favorable agro-
nomic traits (Betran, Isakeit, and Odvody 2002; Li et al. 2002; Williams and
Windham 2006). However, transferring the resistance genes from these
lines into elite cultivars has been less than effective because of the large
number of genes involved (Cary et al. 2011). Some of these genes report-
edly had only a small effect; and resistance imparted by some others was
environment-dependent, which hampered progress from breeding for resis-
tance to aflatoxin contamination of maize grain. Identification of quantita-
tive trait loci (QTL) conditioning resistance to aflatoxin accumulation could
aid in developing aflatoxin-resistant maize using marker-assisted selection
(Alwala et al. 2008; Kelley et al. 2012; Warburton et al. 2013; Willcox et al.
2013; Zhang, Kang, and Magari 1997). A pool of lines showing resistance
could not only increase breeder’s options for germplasm improvement but
also provide material for use in additional QTL mapping experiments.
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Most maize inbred lines developed in Africa possess desirable traits, such
as yield, good husk cover, and stress tolerance but with no consideration of
susceptibility to aflatoxin accumulation (Brown et al. 2016). The objective of
this study was to screen selected, adapted maize inbred lines in Kenya and
South Africa to identify those with resistance to Aspergillus infection and
aflatoxin accumulation. Such material should be useful for establishing
breeding populations and developing A. flavus-resistant germplasm/cultivars.

Materials and methods

Germplasm

Twenty-three maize inbred lines of diverse origin (mid-altitude Africa and
lowland/sub-tropical adaptation) were used in this study (Table 1). These
included 13 maize inbred lines from the MAIZE Competitive Grants
Initiative, International Maize and Wheat Improvement Centre (CIMMYT)
Kenya and 10 inbred lines from the Agricultural Research Council’s Grain
Crops Institute (ARC-GCI) in Potchefstroom, South Africa. The lines from
Kenya had been observed to exhibit low AER severity under field conditions
(Dr. D. Makumbi, personal communication), and they were also character-
ized for resistance to Fusarium ear rot (FER) and fumonisins (Rose et al.
2017). The lines from South Africa were characterized as resistant to FER and
fumonisins (Rose et al. 2016, 2017; Small et al. 2012).

Field locations, experimental design, and management

The trials were conducted in Kenya at the Kenya Agricultural and Livestock
Research Organization stations at Katumani (1°35’S, 37°14ʹE, 1600 m asl) and
Kiboko (37°75ʹ E, 2°15ʹ S; 975 m asl) in 2013. These stations are situated in
Machakos County in the semi-arid eastern Kenya, which is considered an
aflatoxin hot spot (Lauren et al. 2005). The region has bimodal rainfall, with
long rains falling in March–May and short rains from October to December/
January. The long rainy season is characterized by prolonged heavy rainfall
compared with the short rains that occur for a few weeks in the season. At
Kiboko, the average rainfall from December to May was 75.2 mm, and
maximum and minimum temperatures were 31.5°C and 18.3°C, respectively.
The average rainfall, and maximum and minimum temperatures measured at
Katumani were lower (2.5 mm, 26.4°C, and 15.0°C, respectively) during the
same time period.

Field trials in South Africa were conducted at Potchefstroom (26°73’S,
27°07ʹE; 1349 m asl) in the North West province and at Vaalharts (27°
95’S, 24°83ʹE; 1180 m asl) in the Northern Cape province during the
2012/2013 maize-growing season. At Potchefstroom, the average rainfall,

JOURNAL OF CROP IMPROVEMENT 865

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ai
ro

bi
 L

ib
ra

ry
] 

at
 2

3:
41

 0
3 

D
ec

em
be

r 
20

17
 



and maximum and minimum temperatures from December to May were
97.3 mm, 27.5°C, and 12.5°C, respectively. The average rainfall measured
at Vaalharts was lower (75.3 mm), whereas the mean maximum tempera-
ture was higher (30.6°C) during the same period. The experiments were
conducted using a randomized complete-block design with three replica-
tions at all four locations. Each entry was planted in a single 10-m-long
plot. The inter-row spacing was 0.90 m, whereas intra-row spacing was
0.30 m. Four border rows of a commercial maize hybrid were planted
around each field at each location. Standard agronomic practices, includ-
ing application of irrigation water and fertilizer, were followed as recom-
mended for each location.

Table 1. List of maize inbred lines, their origin, and characteristics.
Line Name/pedigree Origin† Key characteristics

1 CB-222 ARC Mid-altitude (MA) adaptation, tolerant to Fusarium
ear rot (FER), white grain

2 CB-248 ARC MA adaptation, tolerant to FER, white grain
3 CKL05003 CIMMYT MA adaptation, turcicum leaf blight (TLB), and grey

leaf spot (GLS) tolerant, semi-dent, white grain
4 CKL05015 CIMMYT MA adaptation, TLB, and maize streak virus (MSV)

tolerant, semi-flint
5 CKL05019 CIMMYT MA adaptation, intermediate maturity, TLB, and GLS

tolerant, flint, white
6 CKL05022 CIMMYT MA adaptation, TLB, and GLS tolerant, flint, white
7 CML182 ARC Subtropical adaptation, quality protein maize line,

dent, white
8 CML247 CIMMYT Lowland tropical (LT) adaptation, GLS tolerant, semi-

dent, white
9 CML264 CIMMYT LT adaptation, flint, white
10 CML390 ARC MA adaptation, MSV tolerant, flint, white
11 CML442 CIMMYT MA adaptation, drought tolerant, dent, white,

susceptible to ear rot
12 CML444 CIMMYT MA adaptation, TLB and GLS tolerant, drought

tolerant, semi-dent, white
13 CML495 CIMMYT LT adaptation, flint, white
14 I137tnW ARC MA adaptation, susceptible to FER, white grain
15 La Posta Seq C7-F103-2-1-1-

1xMIRTC5 Bco F80-4-2-1-1-1-3-1-B-
B-B

CIMMYT LT adaptation, drought-tolerant background

16 MIRTC5 Bco F78-2-2-1-1-1xDERRc2
15-3-7-1-1-B-B-B-B

CIMMYT LT adaptation, semi-flint, white

17 P502c2-185-3-4-2-3-B-2-B-B-B-B-B-
B

CIMMYT LT adaptation, semi-dent, white

18 R119W ARC MA adaptation, susceptible to FER, white grain
19 R2565Y ARC MA adaptation, susceptible to FER, white grain
20 RO549W ARC MA adaptation, tolerant to FER, white grain
21 US2540W ARC MA adaptation, tolerant to FER, white grain
22 VL06688 CIMMYT MA adaptation, semi-dent, white susceptible to ear

rot
23 VO617y-2 ARC MA adaptation, tolerant to FER, white grain

†ARC = Agricultural Research Center, South Africa; CIMMYT = International Maize and Wheat Improvement
Center.
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Inoculum preparation

Three A. flavus isolates (V201365, V100130, and V100095) from the Makueni
andNandi districts (Okoth et al. 2012b) were used as inoculum for the field trials
conducted in Kenya. For inoculation of the field trials in South Africa, three
toxigenic strains of A. flavus (MRC 3951, MRC 3952, and MRC 3954) were
obtained from the Medical Research Council’s Programme on Mycotoxins and
Experimental Carcinogenesis unit (MRC-PROMEC, Tygerberg, South Africa).

The inoculum for field trials was prepared by growing the A. flavus isolates
on sterile maize kernels. The kernels (50 g) were first soaked in 25-mL sterile
distilled water in 250-mL conical flasks for 6 hr or overnight, after which they
were autoclaved at 120°C for 40 min. The isolates were transferred onto the
kernels in the conical flasks, mixed well, and incubated at 30°C. To prevent
clumping, the conical flasks were shaken once daily. After 7–14 days, fungal
conidia were washed from the kernels with a soap solution consisting of 40 µL
Tween20 added to 20-mL H2O. The suspension was thereafter sieved using
sterile double cheesecloth, and the conidia were collected in a beaker. The
concentration of the conidia was then determined with a hemocytometer, and
for inoculation purposes, a concentration of 1 × 106 conidia per mL was
prepared using sterile distilled water. Inoculum of each of the three isolates
was raised separately and only mixed a few minutes before inoculating maize
ears. Equal quantities of the three A. flavus isolates per country were mixed
thoroughly before field inoculations were conducted. Before use, the conidial
suspension was refrigerated at 4°C for a maximum of 72 hr, and the capped
plastic bottles were submerged in ice during use in the field.

Field inoculation

The primary maize ear on each plant was inoculated using the silk-channel
method (Zummo and Scott 1989). Inoculation was done after at least 50% of the
individual plants in a plot had emerged silks and when the silk length was at
least 2.5 cm. The ears were inoculated once. Two milliliters of the well-mixed
conidial suspension was slowly injected into each maize ear through the silk
channel using a 10-mL syringe and sterile needle (gauge 18). Because the inbred
lines were of diverse maturity, inoculation of different lines was staggered
accordingly. Two inbred lines (CML442 and VL06688), characterized as sus-
ceptible to AER and aflatoxin accumulation under natural infection were used
as positive controls. All inoculated ears were labeled for identification at harvest.

Assessment of AER Rating

Inoculated ears in each plot were harvested by hand at 12–18% moisture,
determined using a field moisture meter (Superpro®, Supertech Agroline,
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Bogense, Denmark). The AER was visually estimated using a method adapted
fromHenry et al. (2009). Per ear percentage ear rot (the area of a rotten ear) was
determined using the following scale: 0% = no ear rot symptoms, 25% = rot
covering a quarter of the ear, 50% = rot covering half of the ear, 75% = rot
covering three quarters of the ear, and 100% = rot covering the entire ear. The
average AER per plot was then calculated. The ears from each plot were bulked
and hand shelled. The grains were then thoroughly mixed and a 250-g sample
was collected, milled, and stored at 4°C until aflatoxin extraction was performed.

Aflatoxin quantification

Aflatoxin content in maize inbred lines was determined by the dilute-and-shoot
method using liquid chromatographic tandemmass spectrometry (LC-MS/MS).
Aflatoxins were extracted from subsamples of 5 g each according to Rose et al.
(2016) and submitted to the Central Analytical Facility at Stellenbosch
University, South Africa, for the quantification of AFB1 and AFB2. A mixture
of aflatoxins B and G, guaranteed 95% pure, was purchased from Sigma Aldrich
(St. Louis, Missouri, USA) to serve as standards. Ten percent of the total number
of samples was evaluated in triplicate (three samples per plot) to determine the
sample variation for aflatoxin content. Additionally, 10% of the samples in each
LC-MS/MS assay was analyzed in triplicate to determine the within-assay
variation. A dilution series, ranging from 0.15 × 10–4 to 0.38 µg/kg for AFB1
andAFG1 and 0.44 × 10–5 to 0.11 µg/kg for AFB2, and 0.83 × 10–5 and 0.08 µg/kg
for AFG2, was analyzed with field trial samples. Each standard and sample (5 μL)
was injected into the LC-MS/MS system, and samples with results above the
calibration curve limit were diluted with 70% methanol and reanalyzed.

Data analysis

The data on AER and aflatoxin content were log-transformed [ln(y + 1)] to
normalize data before conducting analyses of variance (ANOVA). Individual
location and across locations ANOVA were conducted using PROC GLM of
SAS (SAS Institute 2011). Transformed means were back-transformed to original
values for reporting. Means were separated using Fisher’s Protected LSD (Lentner
and Bishop 1986). Repeatability (R) was calculated as the proportion of genetic
variance divided by the total phenotypic variance and estimated for each indivi-
dual trial as

R ¼ σ2g= σ2g þ ðσ2e=rÞ
h i

where σ2g is the genotypic variance, σ2e is the residual variance, and r is the
number of replications. Repeatability for AER and aflatoxin content and the
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genotypic correlation between the two traits were estimated using META-R
software (Alvarado et al., 2016).

Results

AER Infection

ANOVA revealed significant differences among the inbred lines for AER at
three of the four locations (Table 2). Lines × locations interaction for AER
was significant (p < 0.001). AER expression was higher at the Kenyan
locations compared with the South African locations (Table 3). The AER
severity was higher in the majority of lines at Kiboko compared with
Katumani in Kenya; whereas at Potchefstroom and Vaalharts, the lines
expressed almost similar AER severity. Lines that showed the least AER in
both countries were CML390, CKL05022, CML247, and P502c2-185-3-4–2-
3-B-2-B*5 (P502c2). Lines that showed some of the highest AER severity at
different locations in both countries were CB248 RO549W, CML264,
VL06688, CML442, and CKL05003. Lines CML182, R119W, RO549W, and
VO617y-2 had higher AER than others in Potchefstroom. Repeatability for
AER ranged from 0.41 at Vaalharts to 0.87 at Katumani.

Response of maize inbred lines to A. flavus and genotypic correlation
between traits

The mean aflatoxin content in maize inbred lines varied significantly
(p < 0.001) at three locations and across countries (Table 2). Locations and
lines × locations interaction were significant (p < 0.001) for aflatoxin content.
Aflatoxin content was higher in the inbred lines at Kiboko compared with
Katumani and Potchefstroom (Table 4). Inbred lines with significantly higher

Table 2. Mean squares from analysis of variance for Aspergillus ear rot rating (AER) and aflatoxin
content at four locations and across locations in Kenya and South Africa in 2013.
Source of variation df Katumani Kiboko Potchefstroom Vaalharts df Across locations

AER rating (%)
Loc 3 29.209***
Rep(Loc) 8 0.332ns†

Line 22 1.680*** 4.979*** 0.191* 0.212ns 22 3.269***
Line × Loc 62 1.333***
Error 44 0.222 0.873 0.081 0.125 168 0.336

Aflatoxin (AFB1 and AFB2) content (µg/kg)
Loc 3 11.229***
Rep(Loc) 8 0.003ns
Line 22 0.001** 0.805*** 2.018E-04*** 0.006ns 22 0.200***
Line × Loc 62 0.217***
Error 44 3.45E-04 0.104 5.296E-05 0.003 168 0.028

*. **, ***Significant at 0.05, 0.01, and < 0.001 levels, respectively. †ns = not significant.
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aflatoxin levels than the positive control inbred lines (VL06688 and CML442)
at Kiboko were P502c2, CKL05015, CKL05003, and I137tnW (Table 4). Lines
CB222, CML247, CML444, CML495, LaPostaSeqC7-F103-2-1-1-1xMIRTC5
BcoF80-4-2-1-1-1-3-1-B*5 (LaPosta), and CML390 accumulated less afla-
toxin than the positive controls. Repeatability for aflatoxin content ranged
from 0.39 at Vaalharts to 0.87 at Kiboko. A significant (p < 0.001) genotypic
correlation between AER severity and aflatoxin content was detected at
Katumani and Potchefstroom but not at the other two locations (Table 5).
A stronger genotypic correlation between the two traits (rG = 0.936,
p < 0.0001) was found at Potchefstroom than at the other three locations.

Discussion

Screening germplasm for resistance to aflatoxin accumulation under field
conditions provides an opportunity to select superior germplasm. Field
screening for resistance to aflatoxin accumulation, however, is difficult

Table 3. Aspergillus ear rot (AER) rating in maize inbred lines evaluated in different localities in
Kenya and South Africa in 2013.

Aspergillus ear rot rating (%)†

Kenya South Africa

Inbred line Katumani Kiboko Potchefstroom Vaalharts

CML390 1.47 ± 0.39 1.00 ± 0.54 1.06 ± 0.17 1.14 ± 0.23
CML444 1.00 ± 0.27 3.65 ± 1.97 1.26 ± 0.21 1.58 ± 0.32
CML182 1.68 ± 0.46 3.88 ± 2.09 2.02 ± 0.33 1.10 ± 0.22
VO617y-2 1.75 ± 0.48 2.91 ± 1.57 1.68 ± 0.28 1.12 ± 0.23
RO549W 6.46 ± 1.75 10.07 ± 9.47 1.87 ± 0.31 2.54 ± 0.52
US2540W 1.00 ± 0.27 17.56 ± 3.63 1.25 ± 0.21 2.33 ± 0.48
R119W 1.00 ± 0.27 6.74 ± 3.63 1.89 ± 0.31 1.04 ± 0.21
CB248 5.50 ± 1.49 66.46 ± 35.85 1.90 ± 0.31 1.00 ± 0.20
CB222 5.97 ± 1.62 2.28 ± 1.23 1.08 ± 0.18 1.37 ± 0.28
I137tnW 1.00 ± 0.27 11.78 ± 6.35 1.52 ± 0.25 1.19 ± 0.24
R2565y 2.52 ± 0.68 2.73 ± 1.47 1.63 ± 0.27 1.71 ± 0.35
CKL05003 5.85 ± 1.59 14.16 ± 7.64 1.05 ± 0.17 1.66 ± 0.34
CKL05015 1.82 ± 0.49 7.79 ± 4.20 1.05 ± 0.17 1.45 ± 0.30
CKL05019 1.00 ± 0.27 16.33 ± 8.81 1.00 ± 0.16 1.12 ± 0.23
CKL05022 1.21 ± 0.33 1.00 ± 0.54 1.00 ± 0.16 1.21 ± 0.25
CML247 2.43 ± 0.66 1.00 ± 0.54 1.07 ± 0.18 1.02 ± 0.21
CML495 1.13 ± 0.31 4.66 ± 2.51 1.01 ± 0.17 1.30 ± 0.26
CML264 1.04 ± 0.28 33.07 ± 17.84 1.07 ± 0.18 1.18 ± 0.24
MIRTC5 1.69 ± 0.46 4.08 ± 2.20 1.00 ± 0.16 1.43 ± 0.29
P502c2 1.60 ± 0.44 1.00 ± 0.54 1.25 ± 0.21 1.00 ± 0.20
LaPosta 1.17 ± 0.32 3.32 ± 1.79 1.25 ± 0.21 1.00 ± 0.20
CML442 9.30 ± 2.53 16.77 ± 9.05 NP‡ NP
VL06688 6.00 ± 1.63 86.99 ± 46.92 NP NP
Mean 2.05 13.88 1.29 1.31
LSD(0.05) 2.17 4.65 1.60 1.79
Repeatability 0.87 0.82 0.57 0.41

†Values are mean ± SE.
‡Not planted.
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because Aspergillus is not uniformly distributed, but this difficulty is
overcome by use of artificial inoculation. Significant variation among
inbred lines in this study indicated the presence of sufficient genetic
variation for both AER and aflatoxin accumulation, which meant that
this genetic variability can be exploited for developing cultivars resistant
to AER and aflatoxin accumulation in the maize grain. The consistently
high repeatability for the two traits at the Kenyan locations suggested

Table 4. Aflatoxin accumulation in inoculated ears of maize inbred lines evaluated in different
localities in Kenya and South Africa in 2013.

Aflatoxin (AFB1 and AFB2) content (µg/kg)
†

Kenya South Africa

Inbred line Katumani Kiboko Potchefstroom Vaalharts

CML390 1.01 1.56 ± 0.29 1.00 1.00 ± 0.00
CML444 1.00 1.47 ± 0.28 1.00 1.00 ± 0.03
CML182 1.03 3.40 ± 0.63 1.00 1.03 ± 0.03
VO617y-2 1.00 2.16 ± 0.40 1.02 1.00 ± 0.03
RO549W 1.02 3.10 ± 0.58 1.00 1.10 ± 0.04
US2540W 1.02 4.07 ± 0.76 1.00 1.04 ± 0.03
R119W 1.00 1.79 ± 0.33 1.02 1.00 ± 0.03
CB248 1.06 1.63 ± 0.30 1.03 1.12 ± 0.04
CB222 1.06 1.21 ± 0.23 1.00 1.00 ± 0.03
I137tnW 1.00 5.88 ± 1.10 1.01 1.01 ± 0.03
R2565y 1.00 1.60 ± 0.30 1.01 1.08 ± 0.04
CKL05003 1.00 5.51 ± 1.03 1.00 1.18 ± 0.04
CKL05015 1.00 6.26 ± 1.17 1.00 1.00 ± 0.03
CKL05019 1.00 1.98 ± 0.37 1.00 1.06 ± 0.04
CKL05022 1.00 1.56 ± 0.29 1.00 1.03 ± 0.03
CML247 1.00 1.28 ± 0.24 1.00 1.07 ± 0.04
CML495 1.00 1.46 ± 0.27 1.00 1.06 ± 0.04
CML264 1.00 1.63 ± 0.30 1.00 1.00 ± 0.03
MIRTC5 1.00 2.04 ± 0.38 1.01 1.02 ± 0.03
P502c2 1.00 4.72 ± 0.88 1.00 1.05 ± 0.04
LaPosta 1.00 1.50 ± 0.28 1.00 1.02 ± 0.03
CML442 1.00 2.85 ± 0.53 NP‡ NP
VL06688 1.00 2.63 ± 0.49 NP NP
SE 0.01 – 0.01 –
Mean 1.01 2.32 1.01 1.04
LSD(0.05) 1.03 1.70 1.01 1.10
Repeatability 0.62 0.87 0.74 0.39

†Values are mean ± SE.
‡Not planted.

Table 5. Genotypic correlations (rG) between AER rating and aflatoxin (AFB1 and AFB2) content in
different locations in Kenya and South Africa.
Country Location Genetic correlation

Kenya Katumani rG = 0.544, p = 0.007
Kenya Kiboko rG = 0.300, p = 0.163
South Africa Potchefstroom rG = 0.936, p < 0.0001
South Africa Vaalharts rG = 0.080, p = 0.730
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that it would be possible to make selection progress for these two traits.
The repeatability for aflatoxin accumulation recorded in this study was
within the range reported by Betrán et al. (2006) in a study involving
quality protein maize (QPM) inbred lines and testcrosses but lower than
that reported by Chiuraise et al. (2016) in a study involving mid-altitude
maize in South Africa. The range of repeatability for AER recorded in
this study was similar to that reported by Chiuraise et al. (2016).

Inbred lines with resistance to A. flavus infection and subsequent accu-
mulation of aflatoxin were identified in this study. Six inbred lines (CB222,
CML247, CML444, CML495, LaPosta, and CML390) were relatively resistant
to A. flavus infection at both Katumani and Kiboko. Kiboko recorded higher
rainfall and temperature during the season, which promoted significantly
more AER development and aflatoxin accumulation when compared with
Katumani in Kenya. These results should be viewed with caution because
disease development was not uniform at all locations. Resistance or suscept-
ibility of all the inbred lines included in the study should be validated in
further field tests and perhaps with the use of two different inoculation
techniques. The side-needle inoculation technique might be a good choice
as it has been reported to be effective in germplasm evaluation (Windham
and Williams 2002). Additionally, the kernel screening procedure developed
by Li and Kang (2005) could be utilized to validate genotype reaction before
declaring lines as resistant to A. flavus in breeding programs targeting both
fungal infection and aflatoxin accumulation. However, it is encouraging to
note that inbred line CML247, with low aflatoxin accumulation and low AER
in this study, was also reported as resistant in a different study (Williams
et al. 2014). This indicates that this line certainly holds promise as a source of
resistance to aflatoxin accumulation. CML247 would be an important addi-
tion to African-adapted germplasm reported to be resistant to aflatoxin
accumulation (Brown et al. 2016; Chiuraise et al. 2016; Menkir et al. 2008).
It is also interesting to note that in another study (Rose et al. 2016), two lines
(CML444 and CML390) possessing resistance to aflatoxin accumulation were
found to be resistant to FER and fumonisin accumulation, whereas line
CB222 was found to be tolerant to fumonisin accumulation. Therefore,
these lines, if confirmed as resistant, could be a good resource for improving
resistance to aflatoxin accumulation. Robertson-Hoyt et al. (2007) reported
that genes responsible for resistance to ear rots are genetically linked to those
responsible for resistance to mycotoxin contamination.

In the present study, there was a significant lines × locations interaction for
both AER and aflatoxin accumulation. This suggested that the inbred lines
responded differently to inoculation with A. flavus at the different locations and
that resistant lines would need to be identified for each location. The presence
of significant genotypes × locations interaction is common for aflatoxin accu-
mulation (Betrán et al. 2006; Giorni, Bertuzzi, and Battilani 2016; Williams et al.
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2011; Williams, Windham, and Buckley 2008). Differences in genotypic
response across locations may be a result of different climatic/environmental
conditions experienced at the different locations. A dry and hot climate favors
A. flavus infection and aflatoxin accumulation (Chauhan, Wright, and
Rachaputi 2008; Cotty and Jaime-Garcia 2007; Fountain et al. 2015, 2014;
Windham and Williams 2002). Widstrom et al. (1990) noted that aflatoxin
concentration was highly correlated with minimum and maximum daily tem-
peratures and daily evapotranspiration after silking. It is also possible that
inoculation carried out on separate days might have caused some variation
because of differing environmental conditions experienced by lines after inocu-
lation (Williams et al. 2011). The climatic conditions at the two South Africa
locations seemed unfavorable for A. flavus growth and aflatoxin production.
However, locations with favorable climate for AER development and aflatoxin
accumulation have been reported in South Africa (Chiuraise et al. 2016). The
low disease severity in South Africa could also be attributable to differences in
virulence of the different strains used in the two countries. The significant lines
× locations interaction might also indicate the need to develop region-specific
maize germplasm that is resistant to aflatoxin accumulation. In general, geno-
type variability across locations would make breeding for reduced aflatoxin
accumulation a challenge. There was a moderately to strongly significant
genotypic correlation between AER and aflatoxin accumulation at two locations
in this study (Katumani rG = 0.544, p = 0.007; Potchefstroom rG = 0.936,
p < 0.0001). The strong genotypic correlation suggested that selection of lines
for reduced AER should result in reduced aflatoxin accumulation among the
lines. This result supported the findings of Robertson-Hoyt et al. (2007) in a
study with the temperate maize germplasm. In studies with maize inbred lines
(Henry et al. 2009) and segregating families (Chiuraise et al. 2016), a significant
correlation between AER and aflatoxin accumulation has also been reported.

In conclusion, several tropical maize inbred lines with the potential resis-
tance to AER development and aflatoxin accumulation were identified. A
number of lines potentially resistant to aflatoxin accumulation were also
reported as being resistant to fumonisin accumulation, which enhances their
potential as an important breeding resource. Resistance of these lines to afla-
toxin accumulation should be validated using different inoculation techniques
across locations. This information will be essential to African maize breeding
programs targeting development of aflatoxin-resistant germplasm and cultivars.
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