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ABSTRACT 

The goal of this study was to utilize a robust multivariate chemometrics approach towards 

direct, rapid and accurate quantitative determination of Na, Mg, Zn, Fe, Cu, Mn and Co and 

speciation of Cu, Mn and Fe in complex light element matrix materials in this case soft body 

tissues. This study has relevance in disease diagnostics in body tissues utilizing trace biometals 

as the disease biomarkers. The technique in use is Energy Dispersive X-ray Fluorescence and 

Scattering (EDXRFS) spectrometry. 

Direct, rapid and simultaneous determination of trace biometal concentrations and their 

speciation in human body tissues utilizing Energy Dispersive X-ray fluorescence and Scattering 

(EDXRFS) spectrometry is challenging. This is because the spectra are characterized by analyte 

peak overlaps, weak fluorescence peak signals and extreme matrix effects due to the 

predominance of low-Z elements (dark matrix), poor signal-to-noise ratio (SNR) of the analyte 

peaks, and imprecise sample geometry. Moreover, there is not yet available a direct method for 

speciation analysis in EDXRF spectroscopy.   

The utility of chemometrics in EDXRF analysis is however still under development. High-noise 

and low-resolution EDXRF spectra are amenable to multivariate chemometric methods for 

qualitative and quantitative analysis. Simple univariate, classical linear regression and 

multivariate regression methods are restricted to linear relationships and are therefore 

inapplicable. 

Samples of soft body tissues prepared as thin (5µm), intermediate thick (10µm) and thick 

(20 µm) were analyzed. Robust chemometrics methods namely combined use of wavelet 

transform (WT), principal component analysis (PCA), independent component analysis (ICA) 

for spectral processing and artificial neural network (ANN) and partial least squares (PLS) for 

multivariate calibration based on the use of paraffin wax ‘standards’ spiked with Fe, Cu, Mn, 

Zn, Na, Mg and Co were utilized. 

WT was used in de-noising and resolution enhancement of the spectra to optimize them for the 

determination of the elemental concentration of Na, Mg, Mn, Fe, Cu, Co and speciation of Fe, 

Mn, Cu. When WT and PCA were combined, there was improved signal–to–noise ratio (SNR) 

of analyte as well as scatter peaks. ICA was used for both pattern recognition (classification) 

of tissues into those with lower and higher speciation of Fe, Mn, Cu and for spectral 

preprocessing and/or dimension reduction when combined with WT to optimize the spectra for 
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qualitative analysis. PCA was used for reduction of spectral data dimension and pattern 

recognition.  

The preprocessed spectra were used as an input to artificial neural networks (ANN) and partial 

least squares (PLS) models for development of calibration strategy for direct quantitative 

analysis using fluorescence spectral signature regions and Compton scatter peaks. Both ANN 

and PLS calibrations gave results for trace element concentration better than when raw spectra 

was utilized i.e. (R2  values for the elements Fe, Mg, Mn, Na, Co, Zn and Cu were; R2 ~ 0.889 

– 0.951 before and ~ 0.989 - 0.997 after preprocessing for ANNs; and R2 ~ 0.876 - 0.931 before, 

and ~ 0.969 – 0.993 after preprocessing for PLS). The results also indicate that there was 

improvement in determination of low–Z elements (Na and Mg) when the preprocessed spectra 

of both fluorescence and scatter regions were utilized simultaneously i.e. (R2 = 0.976 for 

featured fluorescence and R2 = 0.994 for both featured and Compton scatter for Na; and R2 = 

0.932 for featured fluorescence and R2 = 0.995 for both featured and Compton scatter for Mg 

utilizing ANN model). Normally Na and Mg cannot be analyzed by classical EDXRF 

spectroscopy. Quantitative analysis Oyster tissue by the analytical approach was in agreement 

with certified values of the analytes in the standard reference material (≤ 6 % or less for most 

elements). The results are independent of sample thickness.  

Quantitative analysis of dog tissues indicate that mammary and prostate cancer tissues were 

dominated with high concentration of Zn, Fe, Mg and Cu as compared to healthy mammary 

and prostate tissues. The results of speciation analysis indicate that mammary and prostate 

cancer tissues were rich in high oxidation state (Cu2+, Fe3+, Mn7+). The analytical approach 

reported here is novel for direct rapid analysis of concentration levels and speciation alterations 

of selected trace elements (Fe, Cu, and Mn) in the context of cancer characterization. 
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CHAPTER ONE: INTRODUCTION 

1.1 XRF spectroscopy 

X-ray fluorescence (XRF) spectrometry is an elemental analysis technique that is based on the 

principle that atoms/elements, when excited by an external ionizing radiation, emit X-ray 

radiation of characteristic energy (or wavelength) which when analyzed, the elements present 

in the excited sample can be quantified. XRF spectroscopy is capable of analyzing solid and 

liquid samples for major, minor and trace (i.e. ≤ 1000 µg/g) elements in a sample. XRF 

spectrometry is widely used for quantitative and qualitative determination of all but low (i.e. Z 

≥13) atomic number elements with detection limits down to µg/g or ng/g levels depending on 

the sample form and the element of interest (Wobrauscheck and Christina, 2010). The 

inapplicability of XRF spectroscopy to low- Z elements is due to enhanced scattered radiation 

and low fluorescence yield of the low Z- elements (Beckhoff, 2006). 

The advantages of XRF spectroscopy in material analysis compared to other competing 

methods are its large dynamic range (ng/g to %), high precision (~ 0.1 %) and minimal 

requirement for sample preparation. However, XRF spectrometry has some drawbacks namely; 

spectral interferences of element characteristic lines due to the poor resolution of the normally 

used solid-state detectors and matrix effects. Matrix effects make a direct conversion of 

fluorescence peak intensities into elemental concentrations difficult. This is because secondary 

X-rays from the sample to the detector are attenuated by absorption and X-ray fluorescence 

enhancement resulting into characteristic peak intensity that is a function of both the element’s 

concentration and that of the other elements in the sample (Potts and Webb, 1992). Sample 

destructivity, weak excitation of low-Z elements and stringent sample geometry requirements 

for the XRF- FP method are other limitations associated with the method (Beckhoff, 2006).  

Due to these drawbacks, a new method, energy dispersive X-ray and fluorescence scattering 
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(EDXRFS) spectrometry was recently developed that exploits both fluorescence and scatter 

radiation for material analysis. In this technique fluorescence as well as scatter radiation are 

utilized simultaneously and complimentarily for direct transformation of EDXRFS spectra to 

analytes concentration (Kaniu et al., 2011; Kaniu et al., 2012; Kaniu et al., 2014; Angeyo et 

al., 2012). 

1.1.1 Scatter radiation in XRF analysis 

In XRF spectroscopy, scatter radiation occurs when photons incident to a sample interact with 

loosely bound electrons of the target element in the sample matrix thus resulting into Rayleigh 

(coherent) and Compton (incoherent) scattering (Anjali, 2014). Scattered radiation is 

considered a drawback in elemental quantification analysis, for it introduces elevated 

background in the spectrum (Nielson, 1977), which masks weak fluorescent peak of analytes, 

that are the basis of quantitative XRF analysis.  

Samples especially those of organic nature such as soft body tissues are mostly composed of 

low-Z elements which enhance Compton scattering due to the low X-ray absorption cross-

section of such elements (Bueno et al., 2006) and enhanced background radiation. This in 

effect, masks, the especially subtle (trace and ultratrace) fluorescent peaks of analytes making 

it difficult to realize quantitative analysis based on direct correlation of the analyte peak 

fluorescence and the concentration of the analyte in the sample, as peak statistics and SNR of 

the analyte is very poor. 

1.1.2 Quantitative XRF spectrometry of materials 

In principle, elemental spectral peak intensities in an XRF energy spectrum are determined 

using, for example spectrum evaluation software such as AXIL. The determination of elemental 

concentrations is then done using QXAS software (Van Espen et al., 1977). However, the 
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relationship between the intensity of an element’s X-ray characteristic peak and its 

concentration is not a simple linear function in practice (Debertin and Helmer, 1988). 

Generally when a sample contains a large proportion of light elements (Z < 13), the incident 

excitation radiation beam is mainly scattered and highly absorbed in a sample. The number of 

fluorescence photons emitted from the analyzed sample is affected by the so called “matrix’’ 

effects categorized as: (i) X-ray absorption (ii) enhancement and (iii) sample macroscopic 

effects which constitute sample inhomogeneity (Brouwer, 2003). 

The matrix effects may be corrected using methods such as Influence Coefficients (IC) and 

Fundamental Parameter (FP) (Lachance, 1999). Use of mathematical expressions is the basis 

of FP method in which fluorescence and emission are quantified in terms of fundamental 

physical parameters of X-ray emission process. Mass absorption coefficients, fluorescence 

yields, absorption jump ratios, line emission probabilities and characteristic X-ray energies are 

referred to as the fundamental parameters (Nielson, 1977). 

The Influence Coefficients method enables quantification of matrix effects of each element 

individually i.e. the matrix effects of element j and k on analyte i etc. The concentration of an 

element j may be expressed as a function of its X-ray characteristic line intensity corrected for 

the concentration of other elements by influence coefficients (Gerald, 1999). The approach 

leads to accurate results but it is time consuming and expensive. 

The goal of this study was to design and exploit robust chemometrics methods in  (i) 

preprocessing of EDXRFS spectra to optimize for qualitative and quantitative analysis of soft 

body tissue (ii) realizing a direct rapid and accurate simultaneous determination of trace 

biometals and associated speciation in soft body tissue prepared as thin, intermediate thick and 

thick sections. 
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1.2 Statement of the problem 

The analytical challenges encountered in the determination of the trace and major biometal and 

associated speciation in complex light element matrices such as soft human body tissue through 

non-invasive, rapid and direct energy dispersive X-ray fluorescence (EDXRF) spectrometry 

necessitate the development of robust multivariate chemometrics techniques to aid in the 

analysis. EDXRF spectra obtained from complex low-Z element matrices are characterized by 

spectral overlaps, weak fluorescence signals of the analytes of interest and background noise 

which masks the normally subtle fluorescence peaks of analytes of interest thus making it 

difficult to perform quantitative analysis directly. Also the method is not applicable to 

speciation analysis.  In principle the utility of EDXRF is limited to high Z elements, but poor 

in performance for low-Z element. Consequently determination of trace biometal and 

associated speciation is an analytical challenge in the EDXRF analysis of complex low-Z 

dominated matrices. 

1.3 Objectives 

1.3.1 General objective  

The goal of this study was to design and utilize a robust multivariate chemometrics approach 

in energy dispersive X-ray fluorescence and scattering spectrometry to realize direct, rapid and 

more accurate simultaneous determination of trace and major biometals (namely: Na, Mg, Zn, 

Fe, Cu, Mn and Co) and associated speciation in soft body tissues prepared as thin (5 µm), 

intermediate thick (10 µm) and thick (20 µm) sections. 

 



5 

 

1.3.2 Specific objectives 

(i) To develop an analytical strategy for the hybrid use of WT, PCA and ICA in 

preprocessing of EDXRFS spectra to optimize for quantitative determination of Na, 

Mg, Zn, Fe, Cu, Mn and Co and speciation of Fe, Cu and Mn in soft body tissues. 

(ii) To apply the developed analytical strategy towards comparative direct and rapid 

quantification of trace and major biometals (namely: Na, Mg, Zn, Fe, Cu, Mn and 

Co) in soft body tissue utilizing EDXRFS spectrometry in conjunction with 

chemometrics techniques (ANN and PLS). 

(iii) To develop multivariate calibration for speciation analysis of Fe, Cu and Mn in soft 

body tissue utilizing EDXRFS spectrometry and chemometrics techniques. 

(iv) To apply the developed analytical methods above on native soft body (cancerous 

and non-cancerous) tissue so as to characterize them in the context of cancer 

prognostics and diagnostics. 

1.4 Justification and significance of the study 

The use of EDXRF spectroscopy for elemental determination in complex light element matrix 

samples requires proper spectrum evaluation. However, the complex nature of the processes 

that results in the realization of an X-ray fluorescence spectrum make it hard to get an accurate 

estimate of the analyte line intensities that can be utilized in determination of the content of the 

sample especially at trace and ultra-trace levels in low-Z dominated samples. Another major 

drawback of EDXRF spectrometry in elemental analysis is its inability of distinguishing 

elements in different valence states. This is because of poor resolution of e.g. Kα and Kβ 

fluorescence peaks of analytes. Multiple scattering and prominent Bremsstrahlung contribute 
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to the continuous portions of spectrum that overlap the subtle characteristics X-ray fluorescence 

lines of interest (Jahan et al., 2013).  

In this work a robust chemometrics approach for EDXRFS spectral preprocessing and 

determination of trace biometals namely Na, Mg, Co, Zn, Cu, Fe and Mn and associated 

speciation in soft body tissues utilizing fluorescence and scatter has been exploited. This 

approach is improvement to the common EDXRF practices. The approach involves hybrid use 

of chemometrics techniques (WT, PCA, ICA, ANN and PLS) in preprocessing of EDXRFS 

spectra and quantitative determination of trace biometals and associated speciation in soft body 

tissues. The ability to perform quantitative and speciation analysis of soft body tissue provides 

necessary diagnostic information about cancer. 

1.5 Scope and limitations of the study 

The study was limited to seven biometals namely; Fe, Cu, Mn, Zn, Mg, Co and Na. This is 

because these elements are essential trace materials in the body tissue and play a major role in 

body health. Mg and Na were included in the study to represent low-Z elements. The speciation 

analysis of trace biometals was limited to three elements namely; Cu, Fe and Mn since they are 

the most involved in generation of free radicals in Fenton reaction that initiates tissue 

pathogenesis. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Chapter overview 

This chapter presents three subsections that review the basis and context of the research 

presented in this thesis. Section 2.2 highlights utility of energy dispersive X-ray fluorescence 

scattering (EDXRFS) spectrometry in elemental analysis of material. Section 2.3 reviews 

analytical chemometrics in spectroscopy while section 2.4 highlights robust chemometrics 

approaches in EDXRFS spectrometry for complex matrix analysis. 

2.2 Utility of EDXRFS spectrometry in elemental analysis of material 

EDXRF spectrometry is suitable method for analyzing biometals in a variety of samples 

(Wobrauscheck and Christina, 2010). The technique utilizes conjointly fluorescence and the X-

ray scatter peaks acquired from target samples to build a quantitative analysis calibration 

approach for trace elements (Kaniu, 2011). The method is an extension of EDXRF to the scatter 

domain for material characterization in terms of elemental concentration and related physico-

chemical properties.  

Traditionally in the EDXRF technique, spectral deconvolution methods such as analytical 

functions or least squares fitting to reference spectra are used to obtain the net fluorescence 

peak intensities (Vekemans et al., 1994), whereas methods such as fundamental parameters 

(FP) or empirical models are used in quantitative determination of elements (Rousseau, 2006).  

However, FP method and empirical coefficients relies on the assumptions of sample 

homogeneity, plain sample surface, negligible microstructural effects and complete definition 

of the sample matrix composition. These assumptions limit the utility of EDXRF in the full 

quantitative analysis of “complex matrix” samples such as body tissues. By ‘‘complex matrix’’ 

(with respect to XRF spectroscopy) mean those which are dominated by severe matrix effects, 

overlapping peaks, ‘dark matrix’ problems, poor signal-to-noise ratio (SNR) of the X-ray 
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fluorescence spectra and imprecise analysis geometry. Such samples have enhanced Compton 

scatter and elevated background as well as severe matrix effects (Verbi et al., 2005). 

Consequently direct EDXRF analysis at trace and ultra-trace levels is a challenge. 

In principle, there are two ways to determine the speciation of an element in X-ray 

spectrometry; the direct method which utilizes the X-ray absorption near edge structure 

(XANES) technique but which is slow, costly and not easily available (Bernaus et al., 2006) 

and the second other method is based on XRF but it is done indirectly; i.e. it calls for the element 

species to be physically separated prior to irradiation of the sample (Grafe et al., 2008) and 

therefore is time consuming and it is not applicable to direct and simultaneous speciation 

analysis. 

Quantitative analysis of material in XRF spectroscopy has traditionally entailed two processes 

namely (i) spectrum analysis and (ii) matrix corrections. Analysis of spectrum is meant to 

reduce background noise and obtain the net peak intensity of fluorescence spectral peaks from 

elements existing in the sample. Next, the resulting fluorescence peak intensity from a 

collection of reference samples are used in an algorithm for matrix correction to resolve 

interfering peaks and to establish the relationship between each elements net peak intensity and 

concentrations linked to them.  

Matrix effects in XRF analysis of samples organic in nature cause spectral complexity, which 

consequently makes spectrum evaluation and subsequent deconvolution of the net intensities 

into concentration and speciation difficult. Such samples are characterized by enhanced 

Compton scatter and high background (Verbi et al., 2005). Although scatter peaks are always 

regarded as a disadvantage, their utility in the analysis of light element matrices has been 

demonstrated (Kessler et al., 2002). Scatter peaks contain among others, information about low 

Z – elements in terms of their concentration and speciation. 
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The fundamental parameters method, based on the Sherman equation (Sherman, 1955), has 

been applied to correct matrix effects in XRF (Nielson, 1977). The equation allows for the 

calculation of net X-ray intensities emitted by each element from a specimen of known 

composition. A major problem is that the expressions involve multiple integrals and hence 

cannot be applied easily in practice. However, the application of FP method is hindered by lack 

of knowledge of the sample composition, elimination of the constraint of normalizing the 

concentrations to 100 % and matching theory with each spectrometer. Influence coefficients 

has also been applied to correct matrix effects. The method quantifies matrix effects 

individually. However, coefficients methods require more standards than FP. 

The limitations of FP and influence coefficients demanded a different approach that can 

combine practically flexible influence coefficient concept and the theoretical exactness of the 

FP method to be proposed (Rousseau, 1984). Such methodology should allow for example the 

calculation of theoretical influence coefficients within another algorithm referred to as the 

fundamental algorithm. These coefficients were referred to as multi-element influence 

coefficients since they depend on the full composition of the matrix (Rousseau, 2009)   . 

The properties of the solid-state detector and the nature of the detection process result in 

characteristic X-ray signals that exhibit spectral overlap. For an accurate quantitative and 

qualitative analysis, it is required that precise and non-biased peak intensities of the 

fluorescence lines are derived. There are different methodologies that exist for obtaining the 

intensity or area of an isolated peak, i.e. spectrum stripping, integration of peak, deconvolution 

and least-squares fitting. However, stripping of spectrum is difficult to use since accumulation 

of error occurs as stripping proceeds and thus it is not accurate. Peak deconvolution and 

integration are fundamentally different applications of the same principle since both of them 

rely on the model of detector to find peak intensity by mathematical methods; interpolating the 
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background under the peak and adding over the peak width, the contents of background 

corrected channel. The detector response model determines the accuracy of the two methods. 

Restricted by its functionality, resolution of overlapping peaks cannot be achieved by these two 

methods hence only part of the spectral information is used (Bechoff, 2006).  

In samples of organic origin, for example, the dark matrix is made of mostly carbon, hydrogen 

and oxygen (C-H-O) and low-Z elements (Z < 10) which cause enhanced Compton scattering 

due to low X-ray absorption coefficients (Vekemans et al., 1994). The intensity of the scattered 

peaks/scattering cross-section is inversely proportional to Z. The low Z elements have high 

background radiation associated with the scattering which gets to the detector as well. Hence, 

the signal-noise ratio (SNR) and the analyte detection limits are drastically affected in the 

analytes. The enhanced background masks and makes the tiny/subtle fluorescent peak intensity 

from the trace analytes difficult to determine. 

EDXRF spectra extracted from geological materials which were irradiated using a radioisotope 

source had a challenge of peak deconvolution. This was demonstrated when the problems 

related to utilization of pure element spectra for the evaluation of peak overlap factors were 

described and a detector peak model that might be used derived (Boyle, 1999). The model 

included correcting of dead time, sum peaks and escape peaks. The proposed model was 

effectively used to determine fifteen minor and trace elements in geological materials resulting 

in remarkably low detection limits. However, the result would have improved further if the 

approach was incorporated with chemometrics for spectral processing and quantitative analysis. 

The use of scattered radiation for matrix effects correction is well known (Nielson, 1977). It 

was applied to samples of varying composition by utilizing for instance, recently, Monte Carlo 

simulation of XRF spectra in studying photon scattering at high X-ray energies (Vincze et al., 
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1999). The simulation data was in agreement with data that was obtained from samples of 

copper, aluminium and polypropylene which were excited by monochromatic synchrotron 

radiation and an HPGe detector. Multiple Rayleigh and Compton scattering were witnessed in 

the light matrices of polypropylene and aluminium and Monte Carlo code was successfully 

used to model these effects. Matrix correction using scattered radiation involves the use of the 

intensity of the scattered radiation to correct for perturbations of the fluorescence intensities. 

In other spectroscopic techniques, many approaches based on chemometrics have been studied 

and applied to non-linear multivariate calibrations, which could be applied to XRF analysis. 

Matrix effects corrections in X-ray fluorescence spectrometry to perform accurate quantitative 

and qualitative analysis is the same as solving the non-linear effects in multivariate calibration 

(Kaniu, 2011; Okonda, 2015). 

2.3 Review of analytical chemometrics in spectroscopy 

The development of modern analytical instrumentation has brought up scientific challenges 

especially in the efficient utilization of the data acquired. Chemometrics uses statistics and 

mathematical procedures to obtain maximum information by analyzing data obtained from 

spectroscopic measurements (Kurt and Peter, 2008). 

Chemometrics methods can extract vital features (for instance underlying chemical properties) 

from complex spectral data and therefore can be developed for use in performing rapid and 

stable analyses. Chemometrics methods have an advantage of representing of multivariate data 

into few dimensions in a graphical interface. Incorporating chemometrics into analytical 

spectroscopy has other advantages which include the ability to reduce spectral noise, handle 

spectral interferences and outliers, and to achieve multivariate calibration (Kowalik and Einax, 

2006). 
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In an attempt to overcome the limitations of the classical EDXRF techniques discussed in 

section 2.2, multivariate chemometrics techniques such as principal component analysis (PCA), 

partial least squares (PLS), artificial neural network (ANN), wavelet transform (WT), etc., have 

been applied to analyze XRF  spectra for both multivariate calibration, pattern recognition and 

spectral preprocessing. The PLS and ANN techniques are characterized by calibration and 

prediction steps. During the calibration stage, a model is build, describing the relation between 

the EDXRF spectrum and the analyte concentration for a given set of samples. During the 

prediction step, the actual analysis, elemental concentrations in the unknown samples are 

determined. Compared to the classical methods like FP, these techniques enables spectrum 

evaluation, qualitative and quantitative analysis in one step (Kaniu, 2011). 

Antonio and Bruno (2001) were able to fit EDXRF spectra with a genetic algorithm (GA). The 

GA technique used was based on a set of genetic operators. It worked well even when the 

knowledge of the peaks was incomplete. The result obtained was superior with respect to a 

standard implementation of a Marquardt-Levenberg algorithm. However the method had a 

drawback in that the speed of convergence was slower than the Marquardt-Levenberg 

technique. 

Daniel and Thomas (2011) used handheld EDXRF spectrometry in the analysis of fossil bones 

from which important spectral information was obtained. Through statistical analysis of 

spectral data (i.e. normalization and mean centering) and multivariate processing (PCA) it was 

possible to interpret trends in the dataset. The two sample sites were segregated by PC1 score 

values and the distribution of score values was associated with geological control over bone 

chemistry.  

Wavelets transforms (WT) have progressively depicted remarkable application in the area of 

analytical chemistry. WT is usually used instead of other algorithms that exist for enhancing 
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resolution, noise reduction and compression of data. This is because of its efficiency, 

availability of large number of functions and pace in data treatment. Discrete wavelet transform 

(DWT) was effectively used for reducing noise in short wave NIR reflectance spectra and the 

resulting analyzed spectra were used as the input to support vector machine (SVM) (Vu, 2014).  

Signal processing of spectra by WT is nonetheless under development. 

A technique based on wavelet de-noising was applied to quantum-cascade laser spectrometer 

for in situ and real-time atmospheric trace-gas measurements (Li et al., 2012). The wavelet 

digital-filter technique in signal processing demonstrated to achieve better precision 

measurement with better detection without decreasing the fast temporal response, unlike other 

normally used digital-filter techniques (i.e., Wiener filter, moving average and Kalman filter). 

It was found that continuous wavelets transform (CWT) has better resolution of space-time and 

is moderately easier to perform as compared to DWT for reduction of the varying background 

in NIR spectra (Ma and Shao, 2004). However wavelets transform has been hardly applied to 

XRF spectral processing. 

X-ray fluorescence spectrometry combined with chemometrics has been applied to forensic 

analysis i.e., glass fragments identification at crime sites. Glass fragments retrieved from 

clothes of people who were suspected of committing offences, were rapidly analyzed by energy 

dispersive X-ray fluorescence spectrometry as a non-destructive method. Unlike routine 

refractive index which was not able to identify any of the samples, 112 pairs out of 129 samples 

were identified by Linear Discriminant Analysis (LDA) and neural networks (Grzegorz, 2007). 

The weakness of this approach is that the spectral data was not preprocessed and therefore the 

results were less accurate. 
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Long et al.  (1998) utilized ANN for deconvolution of low resolution (equivalent to spectral 

overlap e.g. of two speciation of the same element) XRF spectra. Instead of analyzing peak and 

fitting the experimental results to a mathematical function as is common when conventional 

algorithms are used, the ANN used the entire spectrum, comparing its shape with the patterns 

learnt during the network training. The results exhibited the potential for ANN to be used in 

XRF spectrum deconvolution. The combinations of multi-variables gives better correlation than 

using single variables (Kurt and Peter, 2008). 

Bos and Weber (1991) compared two ANN optimization procedures namely genetic algorithms 

and backward error propagation for quantitative XRF spectrometry. The authors used already 

published data from thin-film Fe-Ni-Cr samples for which the genetic algorithm approach 

performed poorly. They found that (as expected) the larger the training set, the better were the 

predictions. They furthermore, pointed out that samples outside the training set could not be 

predicted. Neural networks were nonetheless shown to be useful as empirical calibration 

models with good quantification abilities with sufficient accuracy because of their ability to 

correct nonlinearities. The method might have given better results if a preprocessing step was 

added to the analytical procedure before fitting data to ANNs. 

Bueno et al. (2006) designed a quantitative method for elemental analyses in food combining 

XRF analysis with PLS. Six PLS models were created based on XRF spectra and the known 

elemental concentrations of metallic (Fe, Mg, Ca, K, Mn, Zn) analytes. The study demonstrated 

the ability of PLS in conjunction with XRF analysis to predict macro (low-Z) element 

concentrations of Ca, K and Mg. 

Simultaneous determination of rare earth elements (Pr, Nd and Sm) simulated by their (similar) 

chemical properties and hence difficulty in quantitative analysis was conducted by Schimidt et 

al. (2003). Rare earth elements produce spectra which are composed of very complex 



15 

 

absorption and emission and thus separation of such spectra is challenging due to the absence 

of selective reagents. The oxides of these metals were diluted in a silica gel matrix and acquired 

spectral data were treated by ANNs and PLS. The back propagation-single component (BP-SC) 

ANN showed the best performance by giving the least root mean square error of prediction 

(REMSEP) of 17.5 % for Pr, 12.5 % for Nd and 12.6 % for Sm. BP-SC ANN made it possible 

the resolution of non-linearities in spectral calibration, thus effectively overcoming the 

challenge of spectral overlaps. 

In another study, Facchin et al. (1999) showed the predominance of ANN in the modeling of 

complex EDXRF spectral data for the simultaneous determination of (and therefore resolution) 

of Pb and S in solid samples. The study was stimulated by the common nature of intense 

overlapping of spectral lines for these elements which complicates their direct and simultaneous 

determination. The applicability of ANNs to this problem was evaluated and compared to five 

other data treatment methods; polynomial PLS (POLYPLS), partial least squares (PLS), PLS 

neural networks (NNPLS), linear regression (LR) and corrected intensity (CI). The standard 

errors of prediction (SEP) for ANNs compared to the other (linear) methods was lowered by 

35 % for Pb and 100 % for S. The study demonstrated the applicability of ANN in modeling 

non-linear (matrix effects) data in EDXRF spectroscopy. 

Kessler et al. (2002) demonstrated the applicability of multivariate chemometrics calibration 

to extract latent relationships in EDXRF spectra, and the feasibility of forming a chemical 

classification based on characteristic fluorescence and scattered (coherent and incoherent) X-

ray radiation. PCA was exploited to distinguish between spectra of different chemical 

compounds and also played an important role in the estimation of influences of the different 

physical (mean atomic number, µ/ρ, main element concentration) and technical parameters 

(grain size, sample position, packing wall thickness) on spectra of different chemical 
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compounds without packing. A multivariate relationship was built between the physical 

parameters of chemical compounds and the location of their spectra in PCA data space, thus 

building a spectra library data set which was used for fast and safe identification of chemical 

compounds in powdered chemicals packing plants. 

Maria et al. (2005) investigated mild variations in organic matrices which results from 

alterations in X-ray Raman scattering. Principal component analysis (PCA) and hierarchical 

cluster analysis (HCA) were utilized to picture out the effects. Conventional energy-dispersive 

X-ray fluorescence spectrometer was used, whereby organic compounds produced intense 

scattering of the X-ray from the source. Chemometrics showed the ability to classify natural 

samples despite their complexity. 

The greatest potential of application of chemometrics in X-ray spectrometry has been 

demonstrated in the fields of multivariate calibration, prediction and pattern recognition. This 

was shown in paint classification by use of XRF and chemometrics, resulting in a reliable, fast 

and easy-to-perform method (Verbi et al., 2005). Moreover, analysis of low-Z elements in 

organic liquid samples by principal component regression (PCR) coupled with EDXRF 

spectrometry using backscattered radiation revealed the parts of the scatter peaks that are 

important in determining H, C and O (Molt and Schramn, 1999). Further, utilization of partial 

least squares regression (PLSR) for quantitative EDXRF analysis of liquids has demonstrated 

the potential of chemometrics in qualitative analysis of organic and inorganic matrices 

(samples) (Lemberg and Van Espen, 1999). The enhanced analytical ability resulting from 

integrating chemometrics in XRF spectroscopy analysis of materials has moreover been shown 

in soils classification  (Custo et al., 2002), monitoring of sucrose conversion (Karen et al., 

2007), plant classification, characterization of honey (Enrich et al., 2007), classification of 

archaeological pottery (Bakraj, 2006) and Portland cement characterization (Karen et al., 
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2006). Chemometrics in this case was mainly utilized to perform quantitative analysis of 

analytes signals with interfering peaks.    

Utility scatter peaks of XRF spectroscopy in conjunction with use of chemometric techniques 

has been demonstrated in the determination of low-Z elements (Karen et al., 2006). However, 

the potential of chemometrics  XRF spectroscopy is still under development and has not yet 

largely been fully exploited. Robust multivariate chemometrics has analytical utility in EDXRF 

as it can enable the transformation of spectral responses directly to concentrations and other 

material properties contained in the spectral characteristics of the matrix (Verbi, 2005; Kaniu, 

2011). 

2.4 Robust chemometrics approach to spectroscopy for complex matrix analysis 

It is clear from the above studies that chemometrics can solve a number of problems that pose 

a challenge when using traditional spectroscopy.  However, the utility of chemometrics coupled 

with XRF spectroscopy in material analysis remains largely unexplored. XRF spectra with 

elevated background and poorly resolved peaks are amenable to multivariate chemometrics 

spectral quantitation. Simple univariate, classical linear regression and multivariate regression 

methods are limited to linear relationships and therefore cannot be easily applied. The major 

drawback of XRF is its inability of distinguishing elements in different valence states. This is 

because of poor resolution of 𝐾𝛼 fluorescence peaks of the analytes. 

Chemometrics-assisted EDXRFS spectrometry was utilized for direct rapid analysis of 

complex matrix liquids (Angeyo et al., 2012). The technique exploits X-ray fluorescence and 

scatter profiles obtained non-invasively from complex matrices to correct for matrix effects 

observed in the deconvolution of intensity signals to concentration and to develop a multivariate 

calibration strategy for analyses of chemical property of the sample matrix (concentration and 

speciation) utilizing multivariate chemometrics techniques (Okonda, 2015).  
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However, robust chemometrics spectral preprocessing techniques have not been well exploited 

and/ or developed to analyze spectra for accurate determination of trace element and their 

speciation. In this study therefore, robust chemometrics-assisted energy dispersive X-ray 

fluorescence and scattering (EDXRFS) spectroscopy is proposed as a non-destructive method 

for direct rapid and simultaneous determination of trace elements concentration and speciation 

which has hardly been exploited in EDXRF. The method reported in this study makes hybrid 

use of WT, PCA and ICA for spectra preprocessing to optimize them for qualitative analysis 

by PCA and ICA and quantitative analysis by ANN and PLS. The method has enabled trace 

and major biometal and speciation analysis in soft body tissue. The technique affords rapid 

analyses of large number of complex matrices for trace elements (Na, Mg, Fe, Mn, Co, Zn, Cu) 

in a manner that is applicable to disease characterization and diagnostics in native soft body 

tissue.  
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CHAPTER THREE: THEORETICAL BACKGROUND 

3.1 Chapter overview 

In this chapter, we outline the basic principles of X-ray fluorescence and scattering 

spectroscopy for analysis of complex matrix samples for determination of elemental content. 

In addition, we outline the principles of multivariate chemometrics techniques i.e. PCA, ICA, 

WT, ANNs and PLS for their utility in modeling XRF spectra to develop a robust chemometrics 

approach to complex matrix materials analysis. 

3.2 Principles of X-ray fluorescence (XRF) spectroscopy 

3.2.1 Interaction of X-rays with soft body tissue 

When X-rays propagate through soft body tissue, a reduction in the intensity of the incident X-

ray beam occurs. This attenuation process leads to emission of secondary X-ray radiation by 

the soft body tissues. Two main processes are involved in the interaction. The X-rays may be 

photoelectrically absorbed. This process may cause (i) fluorescent emission of X-rays 

characteristic of the elements in the tissue, with energies that are independent of the primary 

radiation source (E fluorescence < E primary radiation) and (ii) emission of photoelectrons and Auger 

electrons. The X-rays may also scatter. This scattering can be (i) coherent if there is no loss of 

energy for the incident X-ray photon (E coh scattering = E primary radiation) or (ii) incoherent when 

there is a small loss of energy (E incoh scattering < E primary radiation) (Jenkins, 1986). 

3.2.2 Photoelectric absorption of X-rays 

The ability of X-rays to penetrate and even pass through matter is one of their best known 

properties. Part of this radiation will be absorbed by the material. The decrease in intensity 

(attenuation) of the incident X-ray beam is directly proportional to the thickness of the soft 

tissue. Considering an almost ‘infinitely’ thin layer of pure, single element material of thickness 
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dx and a monochromatic beam of X-ray radiation of intensity I0, the incremental loss of 

intensity, dI will be: 

                    𝑑𝐼 = −µ𝐼𝑑𝑥                                                                                                       (3-1) 

where is the linear absorption coefficient. If  represents the photoelectric absorption and 

the total scatter cross section, then . In most cases, the scattering effect is small 

compared with the absorption effect and, for practical purposes, it is possible to say that  

3.2.3 Scattering of X-rays 

Scattering of the incident radiation can also occur when an X-ray photon interacts with an atom 

of the sample. The scattering cross-section (is mathematically described as: 

 

 𝜎 = 𝑍𝑓2 + (1 − 𝑓2)                                                                                                    (3-2) 

 

where f is the atomic scattering factor (ratio of the amplitude of the wave scattered by an atom, 

to the wave scattered by a free electron), and Z is the atomic number. 

Coherent scattering is always present in the X-ray fluorescence spectrum and is the main cause 

of background signals. Incoherent scattering or the Compton effect (second term of equation 3-

2) occurs when the X-ray photon loses part of its energy in the collision. The electron involved 

in the scattering process will gain some of the energy of the photon, as the total momentum is 

to be maintained. The wavelength of the scattered photon will increase according to the 

expression: 

 

               ∆𝜆 = 0.0243(1 − 𝑐𝑜𝑠 𝜙)                                                                                       (3-3) 
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where 𝜙 is the angle of scatter and is the wavelength measured in Å. This type of scatter tends 

to displace the continuum background to the low energy regions. Broad peaks, corresponding 

to the characteristic primary wavelengths of the anode material of the X-ray tube, can also be 

found in that area of the spectrum. 

Incoherent scatter becomes more manifest for those samples with a high proportion of low-Z 

elements (i.e. Z < 13). Since all elements present in the sample contribute to both coherent and 

incoherent scattering (scatter peaks), the measured scatter peaks may be used to obtain 

information about overall sample composition (Beckoff et al., 2006). 

3.2.4 Quantitative approaches in EDXRF analysis 

In quantitative EDXRF spectroscopy, the net fluorescence spectral peak intensities are 

deconvolved and mathematically related to the corresponding elemental concentrations. The 

normally used procedure is to calibrate the spectrometer first by measuring certified reference 

materials. Through calibration procedure, the relationship between the concentrations of 

analytes and the corresponding intensity of the fluorescent lines of the elements is established. 

Once the relationship is known, the concentrations of unknown can be determined. 

3.3 Matrix effects and matrix correction models 

The transformation of X-ray fluorescence intensities into elemental concentrations is not direct. 

The number of photons emitted from the sample is also affected by physical properties of the 

sample (‘‘matrix effects’’). This takes place in three categories namely X-ray absorption, X-

ray enhancement and sample macroscopic effects. 

Absorption process attenuates the secondary X-rays from the sample. In order to calculate the 

absorption for a multi-element sample, the composition of the sample must be known. For 

analysis of an unknown sample, an iterative procedure is used. Sample macroscopic 
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effects comprise of effects of inhomogeneities of the sample, and non-uniform representation 

of the analytes at the sample surface. 

Enhancement arises when the secondary X-rays emitted by a heavier element have sufficient 

energy to excite additional secondary emission from a lighter element (Potts and Webb, 1992). 

As a result, characteristic peak intensity of an element is a function of both the element’s 

concentration of the other element in the sample. The use of a simple univariate linear function 

to correct matrix effects is often not viable and alternative approaches have to be used, ranging 

from the use influence (alpha) coefficients to fundamental parameter (FP) models based on a 

comprehensive knowledge of characteristics of the instrument and the sample (Rousseau, 

2006). 

3.3.1 Fundamental parameters (FP) model 

The fundamental parameters method is based on mathematical expressions, quantifying 

fluorescence emissions in terms of fundamental physical parameters of X-ray emission process 

and instrumental as well as sample parameters. Fundamental parameters are the mass 

absorption coefficients, absorption jump ratios, fluorescence yields, line emission probabilities 

and characteristic X-ray energies (Nielson, 1977). 

Since the composition of the sample is required to be known before creating a calibration 

model, the FP method is affected by uncertainties in mass absorption coefficients and 

fluorescence yields of the individual elements which results in a limited accuracy of the results 

of elemental composition. An additional problem is that of the so- called ‘‘dark matrix’’ (low-

Z matrix). In this respect, low–Z matrix samples pose a problem since most of the matrix 

consists of organics and other light elements. Moreover, the FP approach requires 

homogeneous and flat samples (Markowicz, 2011). The proposed method in this study 

incorporates robust chemometrics approaches to solve this geometric limitations. 

22 
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3.3.2 Influence Coefficient model (IC) 

Influence coefficients quantify matrix effects individually, i.e. the matrix effect of element j, 

the matrix effect of element k,…on analyte i. The concentration of an element j can then be 

written as a function of its characteristic line intensity, corrected for the concentrations of other 

elements by influence (alpha) coefficients (Lachance, 1999). 

The corrected concentration of element i (𝐶𝑖) is then estimated from elements concentrations. 

             𝐶𝑖 =𝑅𝑖 (1 + 𝛼𝑖𝑗 𝐶𝑗 +  𝛼𝑖𝑘 𝐶𝑘+ . . ) = 𝑅𝑖 (1 +  ∑ 𝐶𝑗𝑗 )                                              (3-4) 

𝑅𝑖   is the fluorescence intensity of element j relative to the pure analyte i. In general the 

coefficients methods require more standards than the fundamental parameters method. If the 

coefficients cannot be calculated from theory, at least one standard per influence coefficient is 

needed (one less if elimination of the major element is applied). Quite often, these empirical 

coefficients are system-specific, i.e. not transferable to other systems (Lachance, 1999).  

3.3.3 Compton scatter method 

This is an alternative method that is used to correct matrix effects which does not require major 

elements composition data and is especially applied in analysis of trace elements. The method 

relies on the direct measurement of intensity of the Compton Kα scatter peak from the sample 

undergoing analysis rather than basing on a mathematical model of absorption or enhancement 

effects. This method was derived from the observation that the intensity of Compton scatter 

peak is inversely proportional to the mean mass absorption coefficient of the sample 

(Andermann and Kemp, 1958). The matrix effects can be corrected by normalizing of the 

fluorescence line intensity to that of the Compton scatter peak with measurements being made 

on the sample being analyzed. Compton scatter approach has a limitation in that it fails if the 

measurement of analyte line and Compton scatter peak intensities are made on different sides 

of the major element’s X-ray absorption edge. 
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3.4 Chemometrics in XRF analysis 

It has been noted that spectral lines from the X-ray tubes excitation source can be exploited to 

achieve classification and quantification of organic and low atomic number elements 

traditionally not possible in conventional EDXRF. This is achieved by analyzing data using 

chemometrics tools such as PCA, ANNs and SVM (Sussulini et al., 2009). 

With chemometrics, it is possible to transform the EDXRF spectral data directly into elemental 

concentrations using implicit modeling techniques. In the present study, the applicability of 

robust chemometrics techniques in the modeling of EDXRF and scatter spectral data to perform 

trace biometal and speciation analysis of selected elements in complex matrices materials 

namely soft body tissue has been demonstrated. 

3.4.1 Principal component analysis (PCA) 

PCA is a bilinear modeling which gives an interpretable overview of spectral data in a reduced 

multidimensional space. The method is used to perform dimension reduction of the original 

data, modeling of data, detection of outliers, selection of main variables, classification, 

validation and prediction of samples. PCA creates new coordinate axes called principal 

components (PCs) that are uncorrelated; measuring different dimension (Brereton, 2003). Thus 

chemometrics is very important when analyzing complex matrices as it helps to visualize and 

obtain information from the original spectra data by applying PCA. Centering of original data 

matrix X is achieved by subtracting the mean spectrum x from each spectrum, after which the 

resulting centered data matrix Xc is decomposed to a score matrix T and loading matrix P 

(Brereton, 2003).  

                   𝑿𝑐 = 𝑻𝑷𝑇 + 𝑬                                                                                                    (3-5) 
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The residuals are gathered in a matrix E and that the position of the samples in the new 

coordinate system described by T. The loading matrix (P) defines the new axis (Virendra et al., 

2011). 

The importance of PC is expressed in terms of residual and explained variance. The residual 

variance explains the variation in the data that remains unexplained once the current PC has 

been taken into account whereas the explained variance, mostly measured as a percentage of 

the total variance in the data, is a measurement of the proportion of data variation accompanied 

for by the current PC. Variances are used to express how much of the information available in 

the data is described by the model.  

Loadings reflect both the contribution of variable to PC and how well the PC takes into account 

the variation of the same variable over the whole points in the data. In geometric terms, loading 

is simply the cosine of the angle lying between the variable and the current PC. Therefore 

smaller angle has a larger loading. Hence loadings can only vary from -1 to +1. 

Line plots of the loadings illustrate the importance of the original variables for each PC and 

may be used to deduce the quantitative differences causing the clusters or trends in the data. 

The loading vectors are considered to be hidden spectral profiles that cuts across sample 

spectra- i.e. the loadings contain qualitative information such as elemental concentrations 

giving rise to the spectra peaks.  

2-D scatter plots of the score vectors (in different combinations) depict covariance between 

samples, providing a data overview. Patterns and clusters of samples as well as outliers are 

easily identified in the score plots which enable the exploration of the expected and unexpected 

trends in the data. 
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3.4.2 Wavelet transforms (WT) 

Wavelet transform (WT) is one of the latest techniques for signal processing. WT is 

mathematical functions that divides up data into components of different frequency and 

studying the components with resolution matched to their scales (Graps, 1995). WT signal is 

reliable in signal-processing due to its unique properties (i.e., wavelets can be regular or 

irregular, sharp or smooth and symmetric or asymmetric). They have ability to extract transient 

features of signals and facilitate analysis of signals at multiple resolutions. X-ray fluorescence 

(XRF) spectra can been analyzed based on continuous wavelet transform filters to filter the 

signal and noise components of the spectrum (Sergey et al., 2011). 

Wavelet analysis is efficient in uncovering aspects of the data that alternative signal analysis 

techniques don’t, for example aspects like data trends and self-similarity. Wavelet analysis is 

capable of reducing noise in a signal without considerable loss of information. 

WT is categorized into discrete wavelet tools and continuous wavelet tools. Discrete wavelet 

tools are used for both signal analysis and signal processing such as peak detection, noise 

reduction and data compression. On the other hand, Continuous wavelet tools are used for 

signal analysis, such as time-frequency and self-similarity analysis (Goswami and Chana, 

2011).  

Considering a time varying signal, f (t), the Continuous Wavelet Transform (CWT) of such 

signal can be expressed as: 

   

               𝑊𝑓(𝜏, 𝑠) =
1

√∣𝑆∣
 ∫ 𝑓(𝑡)𝛹(

𝑡−𝜏

𝑆

+𝔴

−𝔴
)𝑑𝑡                                                               (3-6) 
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where τ and S are refer to as translation (or time location in this case energy) factor and the 

scaling (or dilation) factor respectively.  

To achieve multiresolution analysis, the wavelet must be efficient in both translation and 

scaling (i.e. stretching and shrinking). The factor /s/-1/2 represnts the energy normalization 

across the various scales, whereas Ψτ,s (t) is obtained by translations and dilations of a single 

function Ψ (t) called ‘‘mother wavelet’’:  

  

            𝛹𝜏,𝑠  (𝑡) =
1

√∣𝑆∣
𝛹(

𝑡−𝜏

𝑆
)                                                                                           (3-7)      

To measure the performance of the WT algorithm in spectral preprocessing, SNR was 

computed using the equation (3-8) (Kabir and Shahnaz, 2012). The definition of SNR is based 

on the height of the peaks and an estimation of the noise (Elise et al., 2010). 

 

                  𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 ∑ 𝑋2(𝑖)𝑁
𝑖=1                                                                                 (3-8) 

 

where 𝑋(𝑖) is the EDXRFS spectra and N is is the width of the EDXRFS signal. 

Wavelets separate the signal peaks from the normally high frequency spectral noise and reduces 

the baseline without necesarily modeling the baseline. The separation of signal peaks from the 

noise presents an opportunity to build a model that can determine the total element from XRF 

spectra without being distracted (Sergey et al., 2011). WT can be used to reduce the high 

background noise from the EDXF spectrum.          

3.4.3 Artificial Neural Networks (ANNs) 

Artificial neural networks are input-output–based empirical models that are used for modeling 

relationships for multi-input and multi-output. The information they contain and process is 
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distributed over a large number of model parameters which accounts for their great flexibility. 

ANNs mimic human cognitive process and as such inconsistent (fussy) data (Liu et al., 1993). 

These characteristics cannot be expressed through a classical well-defined algorithm; rather 

they are based on experience. It is commonly argued that ANNs can implement solutions to 

problems that are difficult to solve in a classical algorithmic way (Jose et al., 2009). The 

potential of ANNs as a modeling tool for multivariate calibration is well established; efforts are 

now directed on developing proper methodologies that ensure ideal conditions for calibration 

are met (Despagne and Massart, 1998). ANNs can be used to build empirical multivariate 

calibration models of the form.  

 

                   𝒀 = 𝐹(𝑿) + 𝜀                                                                                                     (3-9) 

 

with F being the network function, X matrix of the analyte measurements performed on a series 

of n samples, Y the vector matrix containing sample responses e.g. concentration of target 

analytes and ε, the error of calibration. 

ANNs are based on the principle that each neuron receives a series of inputs that are 

dynamically weighted. The ANNs compare the weighted sum of its inputs to a given threshold 

and apply a non-linear function to compute the output. The calibration of ANN comprises of 

iteratively optimizing the weights as a function of the difference between the predicted and the 

known values of concentration in calibration samples. Lastly the ability of the network to make 

prediction is evaluated from the validation data set (Beale and Jackson, 1991). Various ANNs 

techniques exist e.g. Back propagation networks BP-ANN, Kohen self-organizing maps 

(SOMs) and counterpropagation networks (CP-ANN). The commonly used technique is BP-

ANN because of its ability to be applied in regression and supervised classification. 
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3.4.3.1 Back propagation networks (BP-ANN) 

Error back-propagation artificial neural networks (BPNs) constitute without doubt the 

paradigm most widely applied to develop ANNs nowadays (Ramadan et al., 2005). It has a 

capability to solve a wide range of problems. The name refers to feed-forward ANNs which are 

trained using an error back-propagation algorithm. BPNs were developed in the 1960s (Werbos, 

1974). BPNs ‘learn’ how to relate a predefined set of spectra in the calibration set with their 

associated target values (e.g. concentrations) using a supervised two-phase cycle. The neural 

network consists of three layers of nodes: an input layer, a hidden layer and an output layer in 

the case of XRF analysis.  

Back propagation (BP) training functions is utilized in training feed forward networks (non-

linear regression). The training process consists of four stages namely; (i) collection of training 

data sets, (ii) creation of new network, (iii) training of the network and finally (iv) simulating 

the trained network response to new unknown inputs. To determine the number of neurons to 

be used in the hidden layer, the lowest value of minimum square error (MSE) and network 

performance for each trained network are utilized.  

In this study, ANNs was used for multivariate calibration. The input variables are the EDXRFS 

spectra at selected n energies depending on the elements of interest. The input variables were 

weighted and transferred to one or several hidden layers which are internal to the network. 

3.4.4 Independent component analysis (ICA)   

ICA is a deep-rooted statistical signal processing technique which decomposes multivariate 

signals into statistically independent components with little loss of information. In EDXRFS 

spectrum, the different energy (keV) positions can be considered to be different independent 

variables and while intensities relates to the magnitudes of the variables. ICA model can be 

illustrated using the following mathematical equation:    
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              𝑥 = 𝐴 ∗ 𝑠                                                                                                                   (3-10) 

 

where x refers to the mixed signal source vector, A the mixing matrix and s is the source signal. 

The objective of ICA technique is to determine a demixing matrix A‒1 that separates the source 

signal vector S into statistically independent  set of sources. Therfore, this  implies that A‒1 is 

the inverse matrix that goes from the source vector S to the signal vector X. Computed S is 

based on the following expression (Guonqing et al., 2008) 

 

             𝑆 = 𝐴−1 ∗ 𝑋                                                                                                             (3-11) 

The algorithm in this work is based on the FASTICA. This method was used in EDXRFS data 

dimension reduction, fluoreescence peak resolution and denoising without having a negative 

effect on the appropriate information obtained. 

3.4.5 Partial least squares (PLS)         

PLS is a multivariate regression method for creating a relationship between a set of independent 

variables X, which can be for example chemical measurements and a set of dependent variables 

Y illustrating the class in which the object belongs; where the object is X and the class is Y. 

Hence PLS may be utilized to model a relationship between measured EDXRFS spectral data 

and known concentration for trace bio-metals. This is different from conventional quantitative 

EDXRF methods that are based on the deconvolution of net characteristic peak intensities. The 

spectral data variables may be collected as the matrix X with a row number equal to the number 

of samples and a column number equal to channels in the spectra. 

The Y-matrix is used in approximating the response variables to make sure that the first 

components are the ones which are vital for predicting y-variables. The PLS method can model 

one component at a time (i.e. PLS-1) or it can determine two or more analytes (i.e. PLS-2) 
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simultaneously. In the case of PLS-1, there is only one response variable Y (Kurt and Peter, 

2008). In PLS-2, a matrix Y instead of vector y is used, multivariate x - and y -data are given by 

the matrix X of dimension 𝑛 𝑋 𝑚 and the matrix Y of the size 𝑛 𝑋 𝑞 

The purpose of calibration in PLS is to find a linear relation for prediction i.e. Y from X: 

          𝑌 = 𝑋. 𝐵 + 𝐸                                                                                                              (3-12) 

between the X- and Y- variables, using an m x q matrix B of regression coefficients, and an error 

matrix E. Y represents the concentrations and X is the calibration described by their scores. 

PLS method is also characterized by a calibration and prediction step. A model is built in 

calibration step which describes the relation between the response (in this case, the EDXRFS 

spectrum) and the analyte concentration for a given set of samples. The resulting model is then 

evaluated by a test set, with known values for X and Y. During the prediction step, the actual 

analysis, in this case the trace biometal concentrations in unknown samples are determined 

from the calibration model. The quality of the regression model is tested by, for example, root 

mean square error of RMSE which indicates the average error of prediction for the standard 

samples contained by the calibration model. 

3.4.5.1 Validating the PLS regression model 

Validating the PLS model is concerned with the selection of the optimal number of PLS 

components. Quite often, more than 1 PLS component are used to model Y by X. The optimum 

number of PLS components is estimated by cross validation (CV) method which divides data 

into different calibration and test sets. A calibration set creates an optimized model which is 

applied to the corresponding test set (Kurt and Peter, 2008). The relation between the scores 

then becomes 

                   𝐔 = 𝐓𝐃 + 𝐇                                                                                                      (3-13) 



32 

 

with D being a diagonal matrix with elements d1,d2,……dn, T score matrix and H the residual 

matrix. Furthermore, validation provides a value for the prediction error enabling the evaluation 

of the ability of the model to make prediction. An independent test data set is normally 

recommended for model validation because in CV, no test set data are used and thus the 

prediction performance is usually too optimistic. 

3.4.5.1.1 Root Mean Square Error (RMSE) 

The determination of the optimum number of PLS components is done by calculation of the 

RMSE. This value is a measure of the goodness of fit between the known and the predicted 

property: 

                  𝑅𝑀𝑆𝐸 = √
∑(𝑍− �̂�𝑖)2

𝑛
                                                                                            (3-14) 

with Zi being the reference value, �̂�𝑖 predicted value and n number of validation samples.  

The RMSE value is then plotted against number of scores. The corresponding score number is 

at its optimum when the RMSE value reaches a minimum or plateau. The RMSE value is a 

measure of predictive performance of the PLS model and it gives the expected average error 

when constituent properties of samples with unknown composition are to be predicted. 
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CHAPTER FOUR: MATERIALS AND METHODS 

4.1 Chapter overview 

In this chapter, we present the procedures used in the preparation of standard samples for 

calibration training of spectral data for subsequent sample spectral data analysis for trace 

biometal and speciation determination. The utility of robust chemometrics methods using X-

ray fluorescence spectra for quantification and speciation of trace elements has been 

investigated using calibration models developed from prepared simulate samples. X-ray 

fluorescence spectral data were obtained after sample irradiation for 50 s and 100 s live time 

using Amptek X-123 Mini-X spectrometer. Quantification method was validated for accuracy 

of measurements by analysis of NIST Oyster tissue 1566b as a certified reference material 

(CRM). All chemicals used in the sample preparation in this study were of analytical grade.  

4.2 Energy dispersive X-Ray fluorescence (EDXRF) instrumentation 

In this study the Energy dispersive X-ray fluorescence spectrometer (Amptek X-123 

spectrometer Mini-X) was used for measurements. The spectrometer consists of the following:  

(a) The Mini- X which includes the X-ray tube, the power supply, the control electronics and 

the USB communication to the computer. It features 50 kV/ 80 µA power supply, a silver 

(Ag) transmission target and Be end window with collimator and filters to facilitate its use 

in XRF. To simplify further the use of Mini-X an AC adaptor is provided to supply the 12 

VDC needed to power the system. 

(b) The X-ray spectrometer detector and signal processor consists of silicon drift detector 

which is air cooled mounted behind the Be window on the front of the extender. Resolution 

of detector is 125 eV FWHM at 5.9 keV. The signal processor consists of a shaping 

amplifier, high performance low power digital pulse processor, a multichannel analyzer 

and power supply. The XRF spectrometer incorporates FP quantitative analysis software, 
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test stand with shielding and sample enclosure. The spectrometer MCA unit has a memory 

of 2048 channels. 

All measurements were done in air and voltage were auto adjusted during acquisition of the 

spectrum. Sample exposure area was maintained at 2 mm diameter throughout the measurement 

in this study (Figure 4.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1: Schematic presentation of EDXRF instrumentation. 
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4.3 Sample preparation for calibration purposes 

Tissue simulates were prepared in two sets separately one for lower speciation (Fe2+, Cu+ and 

Mn2+) and the other for higher Speciation (Fe3+, Cu2+ and Mn7+) using high purity paraffin wax 

as a “base matrix” which is spiked with multi-element stock solution of the elements (Fe, Mn, 

Co, Zn, Na, Mg and Cu) at various concentration as they occur in body tissues (John et al., 

2006; Mona et al., 2013; Banas et al., 2001; Leitao et al., 2014). Table 4.3.1 shows the 

chemicals used in the preparation of tissue simulates. 

Table 4.3.1: Chemicals used in preparation of tissue simulates 

Source of cation Chemical formula Relative formula 

mass (g/mol) 

Cation 

Cuprous chloride CuCl 99.00 Cu+ 

Cupric nitrate Cu(NO3)2.3H2O 241.60 Cu2+ 

Manganese (II) chloride MnCl2.4H2O 197.70 Mn2+ 

Potassium permanganate KMnO4 158.03 Mn7+ 

Ammonium ferrous sulphate (NH4)2.SO4FeSO4.6H2O 392.14 Fe2+ 

Ferric chloride FeCl3.6H2O 270.32 Fe3+ 

Cobalt (II) chloride CoCl2. 6H2O 237.93 Co2+ 

Zinc nitrate Zn (NO3)2. 6H2O 297.48 Zn2+ 

Sodium acetate 3-hydrate CH3COONa.3H2O 136.10 Na+ 

Magnesium chloride MgCl2.6H2O 203.30 Mg+ 
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Preparation of standards demands that (i) they should have a matrix that has same chemical and 

physical properties as the samples for analysis and (ii) that they are homogenous. In this case 

paraffin wax was a suitable base matrix chosen for preparation of tissue simulation because it 

mimics soft tissue properties due to its organic matrix. 

4.3.1 Preparation of stock solutions and calibration standards 

Various concentrations of analyte stock solutions were prepared by dissolving a mass m of the 

salt in 10 ml of ethanol and the contents thoroughly shaken to enhance homogeneity. Salts of 

ammonium ferrous sulphate and cuprous chloride which were not directly soluble in ethanol 

were dissolved in a mixture of HCl and ethanol mixed in the ratio 1:4 to attain solubility. This 

procedure was developed in the course of coming up with a method of dissolving insoluble 

salts in ethanol. 

The mass m in grams (g), of the salt was weighted using the following formula; 

                             𝑚=
𝐶𝑠 𝑥 𝑉 𝑥 𝑟𝑚𝑚

1 000 000 𝑥 𝑟𝑎𝑚 𝑥 𝑝𝑝
                                                                           (4-1) 

where 𝐶𝑠 is the concentration of the stock solution, ram is the relative atomic mass of the trace 

element of interest, V is the volume of stock solution in ml, rmm is the relative molecular mass 

of the salt and pp is the percentage purity. Table 4.3.2 shows the analytes stock solutions used 

in this study.   
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Table 4.3.2: Elemental concentration of the stock solution  

Analyte Calculated mass m of the 

compound salt (mg) 

10 ml Stock solution 

(µg/g) 

Cu+ 12.600 800 

Cu2+ 30.569 800 

Mn2+ 22.260 600 

Mn7+ 17.430 600 

Fe2+ 142.570 2000 

Fe3+ 97.788 2000 

Co2+ 12.220 300 

Zn2+ 91.420 2000 

Na+ 2391.900 3600 

Mg+ 170.700 2000 

  

4.3.2 Spiking scheme of the trace biometals 

After preparing the stock solution of the analytes, the following elements of interest; Mg, Na, 

Mn, Fe, Co, Cu and Zn were spiked in the concentration range in which they occur in human 

tissue (Banas et al., 2001; Leitao et al., 2014) as shown in Tables 4.3.3 and 4.3.4 using the 

serial dilution formula below. 

                             𝐶1 x 𝑉1    =  𝐶2  x 𝑉2                                                                                                                                    (4-2) 

where C1 and C2 are the concentrations of the stock solution and sample respectively, V1 and 

V2 are the volumes of the stock solution used and the volume of the sample made respectively. 

To attain homogeneity solutions were shaken thoroughly. 
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Trace elements were spiked at various concentrations and oxidation states using the following 

scheme in Tables 4.3.3 and 4.3.4. Calibration standards were labelled as LA to LO to represent 

low speciation and HA to HO to represent higher speciation (Tables 4.3.3 and 4.3.4). Co was 

spiked in only one oxidation state (i.e. Co2+) while Na, Zn and Mg which have only one 

oxidation state appears in both low and high speciation sets for calibration purposes.  

Table 4.3.3: Calibration design for simulate tissue for Na+, Mg2+, Cu+, Mn2+, Fe2+, Co2+, Zn2+  

Ion of 

interest 

Sample concentration (µg/g) 

LA LB LC LD LE LF LG LH LI LJ LK LL LM LN LO 

Na+ 12 20 30 40 50 60 70 90 110 120 150 160 170 180 200 

Mg2+ 10 20 30 40 50 60 70 80 90 100 120 130 140 150 160 

Mn2+ 3 4 5 6 8 10 12 14 16 18 20 22 24 26 28 

Fe2+ 12 20 30 40 50 60 70 90 120 110 150 160 170 180 200 

Co2+ 1 3 4 6 9 10 12 14 16 18 21 22 24 27 30 

Cu+ 4 10 15 20 25 30 35 40 45 50 55 60 65 70 80 

Zn2+ 8 20 30 40 50 60 70 80 90 100 130 150 170 180 200 

 

Table 4.3.4:Calibration design for simulate tissue for Na+, Mg+, Cu2+, Mn7+, Fe3+, Co2+, Zn2+ 

Ion of 

interest 

Sample concentration (µg/g) 

HA HB HC HD HE HF HG HH HI HJ HK HL HM HN HO 

Na+ 12 20 30 40 50 60 70 90 110 120 150 160 170 180 200 

Mg2+ 10 20 30 40 50 60 70 80 90 100 120 130 140 150 160 

Mn7+ 3 4 5 6 8 10 12 14 16 18 20 22 24 26 28 

Fe3+ 12 20 30 40 50 60 70 90 120 110 150 160 170 180 200 

Co2+ 1 3 4 6 9 10 12 14 16 18 21 22 24 27 30 

Cu2+ 4 10 15 20 25 30 35 40 45 50 55 60 65 70 80 

Zn2+ 8 20 30 40 50 60 70 80 90 100 130 150 170 180 200 
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4.3.3 Simulate sample preparation 

The multi-elemental calibration standard samples solutions in vials were thoroughly stirred to 

enhance homogeneity and approximately 0.6 ml of the sample from each vial was pipetted onto 

steel mould and about 0.6 ml of acetone added to further dissolve the salts and also for 

dehydration. The sample content in the mould was placed in an oven for some time to raise 

their temperature to avoid instant solidification of molten paraffin wax on mixing, after which 

it was embedded in 0.6 ml of molten paraffin wax at 56 ºC for 10-15 minutes by placing the 

mould on an adjustable heater until all the acetone boiled off (evaporated) at this temperature 

leaving the elements of interest in paraffin wax. The mixture was stirred continuously using 

forceps to enhance homogeneity until cooled to room temperature. 

The cooled mixture in the mould was further cooled in a freezer at -20 ºC for 10-15 minutes to 

enhance effective solidification. This resulted into a tissue simulate block which was removed 

from the mould and kept in a sealed labeled plastic bag. 

The solidified simulate block samples were then sectioned into 5 µm, 10 µm and 20 µm 

specimens to represent thin, intermediate and thick samples approximately (Magdalena, 2012), 

for each element standard with a microtome and mounted on a 2 µm Mylar foil for analysis. 

The various thickness were based on the fact that absorption and enhancements effects vary 

from thin, intermediate to thick samples (Markowicz, 2011). The intensity of X-rays leaving 

light elements (low –Z) is low because the elements have low  X-ray energies and mostly give 

rise to high Compton scatter and therefore these elements are affected most than heavy elements  

in thin samples (Kvetoslav, 1999). The decrease in intensity (attenuation) of the incident X-ray 

beam is directly proportional to the thickness of the absorbing matter. Standard reference 

biological material (NIST Oyster tissue 1566b) was prepared in three replications for use in 

method validation. 
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4.4 Sampling and preparation of native soft body tissue (domestic dog tissues) 

In this study, approximately 50 g of healthy prostate tissues, healthy mammary tissues, prostate 

cancer tissues and mammary cancer tumors samples ten in number were surgically removed 

from prostate/mammary organs from domestic dogs at the Small Animal Clinic of Faculty of 

Veterinary Medicine, University of Nairobi, in June, 2013 following in patient admission and 

were later euthanized. The selected tissue samples were fixed in formalin for preservation of 

cellular details (Su et al., 2004) and later freeze  dried  at C080  for 48 hours (time  optimized  

for removal  of  water  and to stop cellular  activities) in petri dishes. 

The freeze dried samples weighing approximately 30 g were thawed at room temperature prior 

to sample preparation at Kenya Medical Research Institute (KEMRI) histology laboratory. The 

samples were then embedded in highly purified paraffin wax (Su et al., 2004) to provide the 

supportive and protective aid during sectioning and sectioned to 5 µm, 10 µm and 20 µm thick 

tissue sample sections using a microtome and then mounted on a 2 µm Mylar foil for EDXRFS 

analysis with another thin section preserved for histopathological analysis.  

4.5 Procedure of EDXRFS spectroscopy 

The samples in this study were irradiated for 50 s and 100 s with same operating conditions. 

The spectral data were recorded in the energy range of 0-42 keV with an interval of 0.02 keV 

and data acquisition dead time of less than 1 %. Standard reference material (NIST Oyster tissue 

1566b) were similarly prepared in triplicate and analyzed for method validation. 

4.6 Robust multivariate chemometrics analysis of EDXRFS spectra  

Analysis of EDXRFS spectral data obtained following sample irradiation time of 50 s and 100 

s, 50 keV and 80 µA tube current was done using robust multivariate chemometrics methods.  

Based on the fact that full spectral data require a large memory and the analytes of interest do 

not cover the whole spectral region, spectral data compression was done by selecting the 
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appropriate spectral regions corresponding to each selected elements of interest for 

determination of their concentration and speciation as shown in Table 4.3.5; 

Table 4.3.5: Selected spectral regions of interest of elements (Na, Mg, Mn, Fe, Co, Cu and Zn) 

Element Energy (keV) Channel numbers 

Na 
K

K  

1.000 

1.100 

48-52 

53-56 

Mg 
K

K  

1.250 

1.300 

57-63 

64-68 

Mn 
K

K  

5.895 

6.492 

272-288 

297-318 

Fe 
K

K  

6.400 

7.059 

292-316 

323-345 

Co 
K             

K  

6.925 

7.649 

319-343 

352-373 

Cu 

 

K

K  

8.041 

8.907 

372-392 

413-431 

Zn 

 

K

K  

8.631 

9.572 

395-422 

442-466 

 

For Compton scatter region, channel numbers (956-999) was selected. The inclusion of 

Compton scatter region is associated with the fact that most biological samples are composed 

of low-Z elements and other trace elements which are not observed in EDXRF spectral photo 

peak (Banas et al., 2001). However, Compton scatter peak has potential utility in quantitative 
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determination of light elements when treated with chemometrics. The presence of enhanced 

scatter in the spectrum is an indication of dominance with dark matrix. 

For determination of speciation of trace metals Cu, Fe and Mn, spectral data compression was 

done by selecting the appropriate spectral regions corresponding to each selected elements of 

interest shown in Table 4.3.5. 

4.6.1 EDXRFS spectral preprocessing 

4.6.1.1 Classical multivariate wavelets analysis  

Wavelet analysis of spectral data was achieved using Matlab version R2014a software 

specifically for de-noising and resolution of Kα1 and Kα2. In this work, a data matrix consisting 

of columns corresponding to n samples and 2048 rows corresponding to elements energy 

channels was constructed. This formed multivariate signal ready for the analysis. 

The critical issue is how to choose wavelets as different wavelets serve different purposes. For 

denoising and resolution enhancement, the appropriate wavelet function should resemble the 

shapes of true peaks, i.e. a cone shape in our EDXRFS peaks, thus symlet wavelet family with 

different parameters in MATLAB was chosen (Zhi et al., 2012). The de-noising consists of the 

steps: (i) transforming the spectra to the wavelet domain using 2D wavelets and (ii) applying 

soft thresholding methods. 

For the purpose of speciation analysis, the EDXRFS spectra was analyzed via classical wavelet 

transform analysis combined with ICA (WT-ICA) based on the fact that de-noising was carried 

out without smoothing the sharp structures (peaks). The result is a cleaned-up signal that still 

contains analytes information.  
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4.6.1.2 Combined use of wavelet transform (WT) and principal component analysis (PCA) 

for quantitative analysis 

Signals from EDXRFS measurements are usually superposed with high frequency noise and / 

or trends (like offsets or baselines). Elevated background masks tiny photo peaks making it 

difficult to perform quantitative analysis as this distracts analytical model development. 

In connection to the above challenge PCA was combined with WT to provide more enhanced 

noise reduction by combining with soft thresholding on detail coefficients as compared to 

wavelet analysis alone (classical wavelet analysis). This optimizes the spectra towards total 

elemental determination. 

The SNR values of wavelet transform principal component assisted analysis of EDXRFS 

spectra Kα fluorescence peaks of the analytes were computed and compared with those from 

classical multivariate wavelet analysis and were used as a measure of algorithm performance.  

4.6.1.3 Independent component analysis (ICA) of EDXRFS spectra 

Independent component analysis in this work was done using fastica algorithm in Matlab 

version (R2014a software). Data dimension reduction, computing of the final independent 

components and resolution enhancement was done using the following stages (i) the spectral 

data was mean centered (ii) then whitened (iii) iteration until convergence (iv) computing 

independent components. 

ICA has the ability to identify the components of a mixture and hence demixing is an effective 

denoising (Uzay et al., 2003). SNR of Kα  photo peaks (fluorescence) before and after ICA 

analysis were computed and used as a measure of the algorithm performance. ICA was 

conjointly used with WT for processing of spectra towards speciation analysis. 
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4.6.2 Multivariate calibration for quantitative analysis 

4.6.2.1 ANNs calibration for elemental concentration determination 

The ANNs analysis of spectral data in this work was realized using Matlab version R2014a 

software. The calibration dataset consisted of simulate tissue spectra which had been 

preprocessed via combined use of wavelet and principal component analysis. ANN network for 

the elements (Mn, Co, Fe, Zn, Na, Mg and Cu) was created. Back propagation neural network 

(BP-ANNs) with a two-layer (input and output with a hidden layer) was utilized. The training 

process comprised of the following four steps namely; (i) organizing of the training data (ii) 

building the network (iii) training the network and finally (iv) simulating the network response 

to new inputs (Kaniu et al., 2012).  

Training process of ANN was achieved after repeating the training of a number of times and 

the resultant trained network with the best performance (i.e. low MSE) was reserved for 

utilization. Simulating the output of the neural network with the measured outputs was used to 

test the results after network selection. A correlation coefficient, R2, was used evaluate the 

performance of the network. 

4.6.2.2 Multivariate calibration by PLS for elemental concentration determination 

PLS in this study was performed using both selected fluorescence and selected fluorescence in 

conjunction with Compton scatter peaks in the energy range (0 keV – 42 keV) for the 30  soft 

body simulate spectra calibration samples within 2048 variables (energy channels). The 

samples and the variables were defined in terms of selected fluorescence region of interest 

(ROI). Compton scatter and total scatter regions were used to characterize the low Z-elements. 

The calibration dataset was 30 simulate tissue spectra which had been preprocessed via wavelet 

assisted principal component analysis.  
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The PLS model was developed from a training set of  X-variables (spectral intensities) and  Y-

variables (known concentrations). These training data formed two matrices X and Y. The 

regression models were calibrated and validated by the CV method. The ability of the 

regression models to make prediction was then assessed using coefficient of multiple 

determination (R2). 

4.6.3 Multivariate calibration for elemental speciation analysis 

4.6.3.1 EDXRF spectrum analysis by PCA 

Prior to PCA analysis, the selected spectral region of interest (fluorescence signatures) were 

analyzed via combined use of WT and ICA for noise reduction and peak resolution. Principal 

component analysis (PCA) was used to identify possible patterns within the data for 

classification (speciation) and exploratory purposes. PCA was done using Matlab version 

R2014a software. PCA model was built for speciation analysis using simulate samples and the 

results validated by full cross validation.  

4.6.3.2 Independent component analysis (ICA) of EDXRFS spectral data 

For purposes of pattern recognition (classification), ICA was done using jade algorithm coded 

in Matlab version R2014a software. Prior to ICA analysis, the selected spectral region of 

interest intensities were analyzed via combined use of WT and ICA using fastica algorithm for 

noise reduction and resolution of Kα1 and K α2 fluorescence peaks. ICA in this study was 

performed using the selected fluorescence (region of interest) in the energy range (0 keV – 42 

keV) for the 30 simulate soft body simulate spectra calibration samples. 

4.6.4 Summary of robust chemometrics-EDXRFS calibration approach  

Figure 4.6.1 shows a summary of the robust chemometrics approach used in this study for trace 

biometal and speciation analysis of native soft body tissues. 
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Figure 4.6.1: Schematic diagram in the development of a robust chemometrics analytical procedure. 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

5.1 Chapter overview 

In this chapter, we present the results of the robust multivariate chemometrics approaches in 

EDXRFS analysis of trace biometals and their speciation in both model and native soft tissue. 

Included, also are results of EDXRFS spectral data of simulate tissue samples analyzed with 

(PCA, WT, and ICA) for spectral preprocessing to optimize for both qualitative and quantitative 

calibration. Results of quantitative multivariate calibration (PLS and ANN) of EDXRFS 

spectral data for elemental concentration and (ICA and PCA) for speciation analysis of simulate 

samples are presented. Finally, the application of the robust analytical chemometrics - 

EDXRFS method on both healthy and diseased (cancerous) native soft body tissue samples is 

reported. 

5.2 Spectral preprocessing of EDXRFS data from simulate soft tissue 

5.2.1 Classical wavelet (CW) analysis 

Typical EDXRFS spectrum for trace (Mn, Cu, Fe, Zn and Co) and major (Na and Mg) elements 

before preprocessing, spiked in simulate tissue at concentrations shown in Table 4.3.3 and 

Table 4.3.4 respectively is shown in Figure 5.2.1(i). The fluorescence and scatter spectra were 

obtained by irradiating the simulate samples for 50 s live time. 

Figure 5.2.1 (ii) shows classical wavelet analyzed spectrum for simulate tissue sample. To test 

the performance of the wavelet analysis, SNR of Kα peaks for each analyzed element was 

computed in Matlab before and after spectral preprocessing.  The background noise after WT 

analysis is reduced with improved values of SNR (Table 5.2.1). Background is more 

pronounced in the typical sample spectrum as compared to the preprocessed one. 
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                                                                                             (ii) 

Figure 5.2.1: (i) Raw spectrum and (ii) Classical wavelet (CW) analyzed spectrum of simulate sample 

10 µm thick at a live time of 50 s. 
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The effectiveness of this preprocessing process depends on the selection of the mother wavelet 

and thresholding of the detail coefficients (Miguel and Lucia, 2011). SNR of Kα peaks for each 

element before and after CW analysis for 5 µm, 10 µm and 20 µm thickness were calculated 

using algorithm shown in Appendix 1 and are presented in Table 5.2.1. 

Table 5.2.1: SNR for raw and classical wavelet (CW) analyzed EDXRFS spectra of simulate tissue 

samples at alive time of 50 s 

Peak Signal to noise ratio (SNR) 

5 µm 10 µm 20 µm 

Raw CW Raw CW Raw CW 

Zn Kα 0.13 0.83 0.34 0.98 0.72 2.00 

Cu Kα 3.20 12.12 4.74 15.00 6.50 14.14 

Co Kα 0.46 9.30 0.73 11.52 0.89 10.12 

Fe Kα 4.91 20.32 6.40 23.49 9.86 22.31 

Mn Kα 0.18 6.41 0.52 7.62 3.16 8.02 

Mg Kα 0.29 2.30 0.81 2.89 1.05 3.03 

Na Kα 0.16 2.07 0.86 2.41 1.61 3.12 

 

Table 5.2.1 shows that sample thickness influences the value of SNR when raw spectra is 

utilized. The smaller the thickness the lower the SNR for unpreprocessed spectral data and more 

pronounced in low – Z elements due to low fluorescence yield (Kvetoslav, 1999) since 

Compton scattering is enhanced because of low X-ray absorption cross section of such elements 

hence high background radiation (Bueno, 2006). 

Further, Table 5.2.1 shows an improvement in the SNR for the various thickness after 

preprocessing with classical wavelet (CW) for all analytes. There is much improved signal to 
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noise ratio for Cu, Mn, Co and Fe peaks. This can be attributed to the fact that these are heavy 

elements and therefore the intensities of X-rays fluorescence leaving them is high. 

Table 5.2.2: SNR of classical wavelet analyzed spectra of 5 µm thick simulate tissue irradiated at a live 

time of 50 and 100 seconds respectively 

Peak SNR of classical wavelet analysis of spectra 

5 µm 50 s 5 µm 100 s 

Zn Kα 0.83 0.97 

Cu Kα 12.12 13.86 

Co Kα 9.30 10.50 

Fe Kα 20.32 21.95 

Mn Kα 6.41 7.49 

Mg Kα 2.30 2.85 

Na Kα 2.07 2.39 

 

Table 5.2.2 shows  that  SNR results for 100 s are slightly better than for 50 s and therefore  

development of rapid  robust chemometrics enabled EDXRFS analytical procedure  was based 

on the spectra acquired at 50 s irradiation time since longer times (100 s) do not change the 

performance of the method significantly. 

5.2.2 EDXRFS spectra analysis combining wavelets and principal component analysis 

Since background is still pronounced in the CW analyzed sample spectrum with low SNR, 

EDXRFS spectrum of a simulate tissue sample, 10 µm thick, obtained by irradiating the sample 

at a live time of 50 s was preprocessed by combined use of wavelet transform and principal 

component analysis and the resulting spectrum is shown in Figure 5.2.2. PCA was used to 

remove components without vital information of the signal via dimension reduction. This 
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allows the expression of the data set in new reduced space that maximizes its variance. In this 

work PCA was performed on approximation coefficients to keep only the most important 

features of the spectra.  Wavelet denoising reduces the noise in the signal while preserving the 

signal characteristics irrespective of its frequency (Jeana et al., 2013). 

To compare the spectrum of classical wavelet analysis, Figure 5.2.1 (ii) with that of combined 

use of wavelet transform and principal component analysis (WT-PCA), Figure 5.2.2, SNR were 

used. Table 5.2.3 shows results of SNR values for WT-PCA preprocessed spectrum are higher 

when compared with that obtained for CW alone. 

Table 5.2.3: SNR results of raw spectra and combined WT and PCA of simulate tissue samples at 

various thickness at a live time of 50 s 

Peak Signal to noise ratio (SNR) 

5 µm 10 µm 20 µm 

CW PCA + WT CW PCA + WT CW PCA + WT 

Zn Kα 0.83 1.11 0.98 1.12 2.00 3.32 

Cu Kα 12.12 30.36 15.00 34.12 14.14 34.56 

Co Kα 9.30 27.76 11.52 34.16 10.12 34.28 

Fe Kα 20.32 28.24 23.49 33.99 22.01 37.04 

Mn Kα 6.40 9.60 7.62 12.23 8.02 14.00 

Mg Kα 2.30 4.64 2.89 6.11 3.03 7.46 

Na Kα 2.07 4.69 2.41 5.98 3.12 6.33 

 

Table 5.2.3 shows improved SNR for all the three sample thickness when combined use of 

wavelets and principal component analysis is utilized as compared to wavelet transform alone 
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for all elements.  Reducing noise from a signal aims at improving signal to noise ratio (SNR) 

and also better peak detection (Elise et al., 2010). 
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Figure 5.2.2: EDXRFS full spectrum of de-noised simulate tissue at live time of 50 s via wavelets 

combined with PCA. 

 

PCA was executed on both the coarser approximation coefficients matrix in the wavelet domain  

and the final reconstructed matrix. By careful selection of the numbers of retained principal 

components, resulting simple signals are reconstructed (Hyvarinen and Oja, 2000; Aminghafari 

et al., 2006). 
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In summary therefore, it can be deduced that WT assisted PCA (Table 5.2.3) produces better 

results as compares to classical wavelet (CW) analysis (Table 5.2.1) in spectral preprocessing 

towards total elemental determination since elevated background which masks subtle peaks 

making quantification in EDXRFS difficult is eliminated. In general, for unpreprocessed 

spectral data, sample thickness has a profound influence on the SNR which when after 

preprocessed there is no significant difference for the sample thickness variation between 5-20 

µm. Therefore, 10 µm thickness which gave on average better SNR of Kα peaks of the elements 

analyzed was utilized and thus was adopted for analysis. Biological specimens such as soft 

body tissue obtained from human body are recommended to be extracted in small quantity to 

avoid body damage (Markowicz et al., 1993). 

5.2.3 ICA of simulate tissue samples 

The use of ICA analysis was motivated by the fact that the EDXRFS spectral data consists of a 

set of independent signals additively combined Kα1 and Kα2 to form Kα line. ICA identifies the 

components of a mixture and so demixing is effectively a de facto denoising. The spectral data 

used in this study meets the conditions of ICA in separation of source namely: (i) the 

components should be statistically independent (ii) mixing at the detectors is linear. The ICA 

algorithm does not differentiate between noise and signal but simply separates components as 

compared to the wavelet denoising technique (Uzay et al., 2003). 

Therefore ICA was used to extract spectral line components contribution to Kα1  and K α2 from 

atomic element transitions which consists of electronic random noise. To quantify the ability 

of ICA in spectral preprocessing (i.e. noise reduction), the performance measure i.e. signal to 

noise ratio (SNR) of  Kα peaks of the elements of interest were computed and compared for 

unpreprocessed spectra and ICA analyzed spectra. Results of  SNR before and after application 

of ICA are shown in Table 5.2.4. 



54 

 

Table 5.2.4: SNR for various peaks for 10 µm thick simulate tissue, 50 s live time before and after ICA 

Peak SNR unpreproceesed spectra SNR after (ICA) 

Zn Kα 0.34 1.27 

Cu Kα 4.74 14.61 

Co Kα 0.73 1.36 

Fe Kα 6.40 16.35 

Mn Kα 0.52 1.26 

Mg Kα 0.81 1.07 

Na Kα 0.86 1.03 

 

The extracted signal obtained when ICA seperates all the sources that make up an observed 

mixture becomes the denoised signal. Results of Table 5.2.4 show that SNR values after ICA 

are more than before ICA analysis although less than combined use WT and PCA (Table 5.2.3). 

ICA simply seperates the components (resolving Kα and Kβ energy peaks) which is not 

sufficient to denoise the data and this explains the low values of SNR (Uzay et al., 2003). 

However, this preprocessing was aimed at resolving the Kα and Kβ energy peaks for speciation 

purposes. 

This sub-section presented a robust chemometric approach in EDXRFS spectra preprocessing 

towards quantification and speciation analysis of trace and major biometals. Combined use of 

wavelet analysis and principal component analysis of EDXRFS spectra was adopted as 

preprocessing technique towards determination of trace biometals since the technique reduces 

backgrounds which masks subtle peaks and also corrects matrix effects which makes 

quantification analysis difficult. Combined use of wavelet analysis and independent component 

analysis was utilized as a preprocessing technique toward determination of speciation of trace 
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biometals. This is because resolution of Kα peak as well noise reduction was enhnaced.  For 

rapidness of analytical procedure towards trace biometal and speciation analysis, 50 s was 

adopted since results of 100 s for preprocessing  did not change significantly. Furthermore 10 

µm sample thickness was also utilized since there was little change in the SNR  results for all 

the thickness after preprocessing. 

5.3 Multivariate calibration for quantitative analysis 

5.3.1 ANNs for quantitative analysis of trace biometals in simulate tissues 

Owing to the fact that EDXRF spectra is prone to background noise and poor resolution, 

preprocessing was performed prior to ANN analysis. This was done via combined use of 

wavelet transform and principal component analysis which resulted in high SNR when 

compared to classical wavelets. 

In principle ANNs technique needs a computation capacity that is high to enable handling of 

large data set. In this study smaller data set was used instead referred to as regions of interest 

(ROI) of fluorescence region corresponding to preselected peak regions of (Na, Mg, Fe, Cu, 

Zn, Mn and Co) as shown in Table 4.3.5 and Compton scatter regions to determine the least 

mean square error (MSE). Further, the ROI was utilized to determine whether it is useful for 

quantitative determination of trace biometal or not. 

A sample training performance plots are shown in Figure 5.3.1.1 (i) and Figure 5.3.1.1(ii). The 

plots show the MSE of the network starting at a large value and decreasing to a smaller value, 

an indication that the network is learning. The plots have three lines which represents the 

randomly divided inputs and targets into three sets, i.e. 70 % being used to train the network, 

15 % used to validate how well the network is generalized and 15 % to test how the network 

will perform on new set of data. 
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                                                                 (i) 

 

                                                                      (ii) 

Figure 5.3.1.1: Performance plot for ANNs training errors exploiting (i) selected fluorescence regions 

of Na, Mg, Fe, Cu, Zn, Mn and Co plus Compton scatter peaks and (ii) selected fluorescence regions of 

Na, Mg, Fe, Cu, Zn, Mn and Co. 
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Table 5.3.1 shows the results obtained following training the neural network at various neurons 

in the hidden layer. The efficiency in predicting is based on the R value which a measure of 

how variation in the output is well explained by the targets. A numerical value approximately 

equal to 1 shows a good correlation between targets and the outputs. The best model 

corresponded to low mean-squared error, high R value and fewer neurons in  the hidden layer. 

Hidden layer with high number of neurons is likely to cause over-fitting whereas too few would 

not be capable in achieving an accurate classification. A model with 5 neurons was therefore 

selected. 

Table 5.3.1: Analytical performance indices for different ANN models 

 

Model Number 

of 

neurons 

in hidden 

layer 

Best 

validation 

performance  

mean squared 

error 

Number  of 

epochs/ 

iterations 

Correlations coefficient 

Training 

R-value 

Validation 

R-value 

Test R-

value 

Overall 

R-value 

(i) 1 0.0101 11 0.9979 0.8881 0.9303 0.9503 

(ii) 2 0.608 8 0.9752 0.9681 0.9353 0.9658 

(iii) 3 0.0258 11 0.9989 0.9254 0.8821 0.9270 

(iv) 4 0.485 10 0.9803 0.7582 0.8715 0.9320 

(v) 5 0.0245 12 0.9919 0.9515 0.9814 0.9815 

(vi) 6 0.323 16 0.9917 0.9786 0.9405 0.9489 

(vii) 7 0.032 15 0.9983 0.9528 0.9206 0.9741 
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Figure 5.3.1.2 shows the linear regressions between the network outputs and corresponding 

trace element targets for four datasets (training, validation, test and total response) utilizing 

selected fluorescence region alone. 

 

 

Figure 5.3.1.2: Linear regression of ANN outputs and corresponding trace elements targets for simulate 

tissues utilizing the selected fluorescence regions. 

 

ANN was able to simultaneously train the model for the trace and major biometals namely; Na, 
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value of 0.95. Thus the output tracked the targets satisfactory for training and validation and 

the R – value was over 95 % for the total response. 

It can be deduced  from Figure 5.3.1.3 that selected fluorescence regions plus Compton gives 

a better model with R values so close to 1; 0.996, 0.944 and 0.963 for training, validation and 

prediction respectively. This resulted to a good overall R value of 0.984 which is over 98 % for 

the total response. Compton scatter has utility in quantitative analysis of especially low- Z 

elements. 

 

Figure 5.3.1.3: Linear regression of ANN outputs and corresponding trace elements targets for simulate 

tissues utilizing the selected fluorescence regions plus Compton scatter. 
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In general, the utility of Compton scatter peak in addition to the selected fluorescence region 

(Kα and Kβ) for each analyzed trace and major biometal has a better utility in development of 

quantitative model for elemental determination especially for low –Z elements which is not 

possible with traditional XRF. This can be viewed from the fact that the output satisfactorily 

tracked the targets (Figure. 5.3.1.3) for an overall R value of over 98 % for the total response. 

This is an improvement to overall R value obtained by Kaniu (2011) and Okonda (2015) when 

both featured fluorescence and Compton scatter were utilized conjointly. The improved R value 

is as a result of utilization hybridized chemometrics spectral preprocessing approach. The 

preprocessing approach improves peak statistics by reducing elevated background which masks 

the normally subtle fluorescence peaks making quantitative analysis in EDXRFS difficult. 

ANN quantitative analysis of EDXRFS spectra before spectral preprocessing was done and the 

results were compared with those obtained after WT-PCA analysis of EDXRFS spectra. The 

results clearly show that the preprocessed spectra data gives improved results. The values of R2 

were used as a measure of the performance (Table 5.3.2). 
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Table 5.3.2: Regression coefficients of ANN for feature selected fluorescence plus Compton scatter 

before and after WT-PCA of spectra for 10 µm thick simulate tissue at a live time of 50 s 

Element / and flurescence 

signature 

Regression coefficient (R2) 

Before spectral analysis After spectral analysis 

Na (Kα and Kβ) 0.889 0.994 

Mg (Kα and Kβ) 0.890 0.995 

Mn (Kα and Kβ) 0.921 0.994 

Fe (Kα and Kβ) 0.916 0.989 

Co (Kα and Kβ) 0.951 0.993 

Cu (Kα and Kβ) 0.923 0.997 

Zn (Kα and Kβ) 0.903 0.996 

 

Table 5.3.2 shows improved regression coefficients for all the analyzed elements (Na, Mg, Mn, 

Fe, Co, Cu and Zn) after spectral preprocessing as compared with before spectral preprocessing 

utilizing selected fluorescence and scatter region conjointly. Thus the use of WT-PCA in 

preprocessing of EDXRFS spectral data in conjunction with ANN affords direct and rapid 

quantification of the trace biometals including the low – Z elements which is a difficult task for 

classical XRF. 

The predicted verses known concentrations regression plots (Figure 5.3.1.4-10) show the ability 

of ANN model in predicting Na, Mg, Mn, Fe, Co, Cu and Zn in simulate tissue samples 10 µm 

thick and how well the model is likely to perform in analysis of tissue sample of similar matrix 

composition. 
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                               (i)                                                                                        (ii) 

Figure 5.3.1.4: ANN regression plots for predicted verses known concentration of Na utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                              (i)                                                                                   (ii) 

Figure 5.3.1.5: ANN regression plots for predicted verses known concentration of Mn utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                    (i)                                                                              (ii) 

Figure 5.3.1.6: ANN regression plots for predicted verses known concentration of Fe utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                          (i)                                                                                       (ii) 

Figure 5.3.1.7: ANN regression plots for predicted verses known concentration of Co utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                            (i)                                                                                          (ii) 

Figure 5.3.1.8: ANN regression plots for predicted verses known concentration of Cu utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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Figure 5.3.1.9: ANN regression plots for predicted verses known concentration of Zn utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                    (i)                                                                                  (ii) 

Figure 5.3.1.10: ANN regression plots for predicted verses known concentration of Zn utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 

 

Results from Figure 5.3.1.4 and Figure 5.3.1.10 show that utility of Compton scatter peak in 

combination with selected fluorescence region in the context of EDXRFS spectrometry enabled 

by robust chemometrics has potential in developing a quantitative model for trace biometal 

determination for low - Z elements (Na and Mg). The low values of R2 for low – Z elements 

when selected fluorescence region alone is  utilized is as a result of emission of low X-ray 

fluorescence as compared to heavy elements thus mostly giving rise to high Compton scatter 

(Kvetoslav, 1999). The R2 values improve when selected fluorescence region plus Compton 

scatter peak are utilized. 

Table 5.3.3 summarizes R2 values for the biometals when selected fluorescence signature alone 

is utilized and when selected fluorescence and Compton scatter regions are utilized conjointly 

after spectral preprocessing. There is an improved R2 value for Na and Mg from 0.976 and 
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0.932 respectively for selected fluorescence region alone to 0.994 and 0.995 respectively for 

selected fluorescence plus Compton scatter region. This shows the utility of scatter region in 

quantitative analysis of biometals especially the low –Z elements (Kaniu, 2011). 

 

Table 5.3.3: Regression coefficients of ANN for processed EDXRFS spectra for 10 μm simulate tissue 

Element Regression coefficient (R2) 

Selected flourescence region Selected flourescence plus 

Compton scatter peak 

Na 0.976 0.994 

Mg 0.932 0.995 

Mn 0.980 0.994 

Fe 0.985 0.989 

Co 0.981 0.993 

Cu 0.986 0.997 

Zn 0.971 0.996 

 

The accuracy and precision of the ANNs multivariate calibration technique depends on the 

quality of the input data, spectra and sample reproducibility and the ability to fit the known 

data. Errors originating from preparation of simulate tissue models were largely due to manual 

spiking during sample preparation procedure which was subject to error and thus inaccurate. 

Errors due to spectral noise were reduced by combined use wavelet analysis and PCA and the 

non-linear (training functions) handling capabilities of ANNs. 
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5.3.2 PLS for quantitative analysis of trace biometal in simulate tissues 

Owing to the fact that spectral data is prone to elevated background, poor resolution of (Kα and 

Kβ) energy peaks, a preprocessing step (section 4.6.1.2) was performed prior to PLS analysis 

to develop a calibration model. The processed EDXRFS spectra were used as an input to 

building a PLS-2 model for biometal analysis in soft body tissue. 

PLS was performed using (i) selected fluorescence peaks (Kα and Kβ) alone and (ii) selected 

fluorescence plus Compton scatter peak regions of biometals (Na, Mg, Mn, Fe, Co, Cu, Zn). 

The regressions of Y (concentrations) was based on selected PLS components of X (Figure 

5.3.2.1 and 5.3.2.2) instead of original X-variables by cross-validation approach. Thus 8 PLS 

with the largest variances to explain as much of the total variation of the X-variables as possible 

for good correlation with the dependent Y-variables was utilized. 

 

Figure 5.3.2.1: Percentage variance explained in y vs number of PLS components 

 

Figure 5.3.2.1 suggests that PLS with four components explains most of the variance in the 

observed y. The mean squared prediction error (MSEP) curve (Figure 5.3.2.2) for PLS indicates 
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compared to selected florescence region alone. The regions were therefore utilized in 

developing PLS calibration. The 8 PLS components were then regressed against the given 

elemental concentrations to get the regression coefficients which were used on the test data to 

predict elemental concentrations. 

 

 

                           (i)                                                                                     (ii) 

Figure 5.3.2.2: Mean squared prediction error (MSEP) curve showing number of PLS components in 

PLS analysis of simulate tissue samples utilizing (i) featured fluorescence and (ii) featured plus 

Compton scatter. 

 

The predicted verses known concentrations regression plots (Figure 5.3.2.3-9) show the ability 

of PLS model in predicting Na, Mg, Mn, Fe, Co, Cu and Zn in simulate tissue samples 10 µm 

thick (i) utilizing preselected fluorescence region and (ii) preselected fluorescence region plus 

Compton scatter and how well the model is likely to perform in analysis of tissue sample of 

similar matrix composition. 
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                                    (i)                                                                                   (ii) 

Figure 5.3.2.3: PLS regression plots for predicted verses known concentration of Na utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                 (i)                                                                                (ii) 

Figure 5.3.2.4: PLS regression plots for predicted verses known concentration of Mg utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                     (i)                                                                             (ii)  

Figure 5.3.2.5: PLS regression plots for predicted verses known concentration of Mn utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                    (i)                                                                                (ii) 

Figure 5.3.2.6: PLS regression plots for predicted verses known concentration of Fe utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                (i)                                                                                (ii) 

Figure 5.3.2.7: PLS regression plots for predicted verses known concentration of Co utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                (i)                                                                                (ii) 

Figure 5.3.2.8: PLS regression plots for predicted verses known concentration of Cu utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 
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                                  (i)                                                                                (ii) 

Figure 5.3.2.9: PLS regression plots for predicted verses known concentration of Zn utilizing (i) 

selected fluorescence (ii) selected fluorescence plus Compton scatter at a live time of 50 s. 

 

Results show that utility of Compton scatter peak in combination with selected fluorescence 

region in the context of EDXRFS spectrometry enabled by chemometrics has utility in 

developing a quantitative model for trace biometal determination for low - Z elements (Na and 

Mg), Figure 5.3.2.3 and 5.3.2.4. The R2 values improve when selected fluorescence region plus 

Compton scatter peak are utilized. 
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Table 5.3.4: Regression coefficients of PLS calibration before and after WT-PCA preprocessing of 

selected fluorescence (Kα and Kβ) and Compton scatter peak 

Element Regression coefficient (R2) 

Before WT-PCA preprocessing After WT-PCA preprocessing 

Na 0.876 0.980 

Mg 0.890 0.993 

Mn 0.931 0.973 

Fe 0.884 0.970 

Co 0.921 0.969 

Cu 0.910 0.975 

Zn 0.892 0.969 

 

Table 5.3.4 shows better prediction of elemental concentrations when preprocessed spectral 

data is utilized as compared to before preprocessing. This is because the use of WT-PCA in 

spectral preprocessing optimizes the spectra towards quantification analysis. Background 

which masks subtle peaks making it difficult to perform quantitative analysis is reduced. 

The results of ANN and PLS calibration models were compared to determine the most 

appropriate multivariate method for quantitative analysis of each of the elements of interest; 

Na, Mg, Fe, Cu, Mn, Zn and Co which would be applied in analysis of native soft body tissue 

samples. The results of comparison are shown in Table 5.3.5. 
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Table 5.3.5: Comparison of regression coefficients of ANN and PLS calibration for selected 

fluorescence plus Compton scatter peak 

Element Regression coefficient (R2) 

PLS ANNs 

Na 0.980 0.994 

Mg 0.993 0.995 

Mn 0.973 0.994 

Fe 0.970 0.989 

Co 0.969 0.993 

Cu 0.975 0.997 

Zn 0.969 0.996 

 

The results show that ANN calibration model gives better prediction for elemental 

concentrations of Na, Mg, Mn, Fe, Cu, Zn, Co overall than PLS calibration model. The results 

are accurate for most elements of interest with (𝑅2 > 0.99) than the corresponding values 

obtained through PLS model (𝑅2 < 0.98) as shown in Table 5.3.5. This is because ANN model 

considers both linear and non-linear relations. The lower  𝑅2  values of PLS model is due to 

non-linearity of the model as it could not deal with nonlinear spectral relations to analyze 

concentrations in the calibration samples. However, there is little difference in  𝑅2 values of 

both models due to the utility of the combined use of WT and PCA in preprocessing of 

EDXRFS spectral data for quantification analysis. 

5.4 Analysis of NIST Oyster tissue using WT-PCA and ANNs 

The accuracy and reliability of the use of WT-PCA in spectral preprocessing and ANN 

calibration model in prediction of concentrations of the biometals namely Fe, Co, Cu, Mn, Zn, 

Na, Mg in soft tissue was evaluated by analysis of Oyster tissue standard reference material 
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(NIST 1566b) for comparison with fundamental parameter (FP) – EDXRF method. The 

concentrations for most biometals obtained using robust chemometrics approach are in good 

agreement (≤ 6% or less for most elements) with the certified values (Table 5.4.1). However, 

the concentrations of the biometals using classical FP-EDXRF method are not in agreement 

with the certified values in Oyster tissue (Table 5.4.1). Thus FP- EDXRF is inapplicable for 

direct rapid analysis of biometals especially the low-Z elements in soft body tissue. This is 

because the FP-EDXRF approach assumes X-ray fluorescence peak intensity as a linear 

function of concentrations (He and Van Espen, 1990) which is not easily achieved in direct 

biometal analysis of complex matrices (soft body tissues). 

Table 5.4.1: Comparison of elemental concentrations in CRM Oyster tissue (NIST1566b) utilizing 

robust chemometrics enabled EDXRFS approach and classical EDXRF fundamental parameter method 

 

 

Element Certified value  

± standard 

deviation (µg/g) 

EDXRF-FP values 

± standard 

deviation ( µg/g ) 

EDXRFS measured 

value ± standard 

deviation ( µg/g ) 

% deviation 

from 

certified values 

Zn 1424± 46 1270 ± 16 1376 ± 25 3.3 

Mg 1085 ± 23 - 1036 ± 21 4.6 

Mn 18.5 ± 0.2 23.3 ± 6.5 18.2 ± 0.8 1.6 

Fe 205.8  ± 6.8 231 ± 27 225 ± 25 3.5 

Co 0.371 ± 0.009 - 0.354 ± 0.086 4.5 

Cu 71.6 ± 1.6 77.9 ± 3.5 73 ± 3 2.0 

Na 3292 ± 53 - 2950 ± 31 5.8 
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5.5 Multivariate calibration for speciation analysis  

5.5.1 Principal component analysis (PCA) analysis of simulate samples  

Principal component analysis (PCA) was used to reduce the spectral data dimensions for sample 

exploration in order to identify possible discriminating features between the 2 sets of simulate 

calibration standard samples ( higher and lower speciation) at irradiation time of 50 s. The 

irradiation time of 50 s was chosen based on the earlier research which had shown that an 

increasing irradiation time doesn’t have an effect on speciation analysis (Okonda, 2015). Before 

performing PCA, the spectra was preprocessed by combined use of WT and ICA for s resolution 

Kα and Kβ peaks and noise reduction. The PCA classification results of simulate tissue obtained 

are based on the analyte preselected fluorescence peaks Kα and Kβ for the elements (Mn, Fe, 

and Cu) as inputs to PCA. 

For speciation analysis of Cu, the preselected fluorescence region of interest for Cu Kα and Kβ 

peaks were utilized as input to PCA. As shown in Figure 5.5.1, two clusters are evident which 

are identified as Cu+ and Cu2+ oxidation state respectively; explained by variance of 96 % (92 

% and 4 % for PC1 and PC2) respectively. The outliers constituted to the remaining 4 % which 

can be attributed to noise.  The two clusters are influenced by both Kα and Kβ intensity signals 

of Cu as shown in on PCA loadings plot in Figure 5.5.2. Positive loadings of the Cu in PC1 (92 

%), Figure 5.5.2, significantly contribute to the classification of Cu simulate samples into lower 

and higher oxidation states. Cu loading have negative influence on PC2 clustering. 
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Figure 5.5.1: PC1 (92 %) × PC2 (4 %) score plot of speciation analysis of Cu simulate samples 10 µm 

thick at live time of 50 s.  

 

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ad

in
gs

Energy (keV)

 PC1- 92%

 PC2- 4%

Cu K


Cu K


 

Figure 5.5.2: PCA loading plot showing the variables of simulate samples simulate samples 10 µm 

thick at live time of 50 s using preselected fluorescence signature of Cu. 
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To perform speciation analysis of Fe, similarly the preselected fluorescence region (Kα and Kβ 

peaks) of Fe were utilized as input to PCA. Figure 5.5.3 shows two clusters of Fe2+ and Fe3+ 

respectively; with an explained variance of 97 % (93 % and 4 % for PC1 and PC2). The outliers 

constituted the remaining 3 % which can be attributed to noise.  The two clusters in Figure 5.5.3 

are influenced by both Kα and Kβ intensity signals of Fe as shown in on PCA loadings plot in 

Figure 5.5.4. Positive loadings of the Fe in PC1 (93 %), Figure 5.5.4, significantly contribute 

to the clustering of Fe simulate samples into their respective oxidation states. Fe loading have 

positive influence on PC2 clustering. 

 

Figure 5.5.3: PC1 (93%) × PC2 (4%) score plot of speciation analysis of Fe simulate samples 10 µm 

thick at live time of 50 s.  
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Figure 5.5.4: PCA loadings plot showing the variables of simulate samples 10 µm thick at a live time 

of 50 s using preselected fluorescence signature of Fe. 

 

Likewise speciation analysis of Mn was carried out by preselecting fluorescence region of Mn 

Kα and Kβ peaks as inputs to PCA. PCA score plot of simulate samples in Figure 5.5.5 shows 

classification of Mn into the two clusters of Mn2+ and Mn7+ respectively  based on composition 

of Fe in the simulate samples. The explained variance is 95 % i.e. 87 % and 8 % for PC1 and 

PC2 respectively. The outliers constituted to the remaining 5 % which can be attributed to noise.  

The two clusters in Figure 5.5.5 are influenced by both Kα1 and Kα2 intensity signals of Fe as 

shown in on PCA loadings plot in Figure 5.5.6. Positive loadings of the Mn in PC1 (87 %), 

Figure 5.5.6, significantly contribute to the clustering of Mn simulate samples into their 

respective oxidation states.  
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Figure 5.5.5: PC1 (87 %) × PC2 (8 %) score plot of speciation analysis of Mn simulate samples 10 µm 

thick at live time of 50 s.  
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Figure 5.5.6: PCA loadings plot showing the variables of simulate samples simulate samples 10µm 

thick at live time of 50 s using preselected fluorescence signature of Mn. 
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In general, the loading plots in Figures 5.5.2, 5.5.4 and 5.5.6 indicate that PC1 and PC2, based 

on 2 major clusters were able to distinguish between simulate samples containing either the 

lower speciation (Fe2+, Cu+ and Mn2+) or higher speciation (Fe3+, Cu2+ and Mn7+). The 2 clusters 

were influenced by Kα intensities of Fe2+, Cu+ and Mn2+ and Fe3+, Cu2+ and Mn7+ together with 

total elemental content of spiked trace biometals based on the positive contribution of PC1 

loadings. The classified oxidation states of the trace biometals in simulates were in agreement 

with the known spiked oxidation states thus this generally validates PCA as a tool for speciation 

analysis in soft tissue which has an application in disease prognostic and diagnosis such as 

cancer. 

5.5.2 Speciation analysis of model soft tissue via Independent component analysis (ICA) 

Before performing speciation analysis using ICA, the EDXRFS spectra were preprocessed via 

combined use of WT and ICA (WT-ICA) for noise reduction and peak resolution enhancement 

whereby noise in the signal was reduced while preserving signal characteristics. WT-ICA was 

preferred to wavelet transform assisted principle component analysis (WT-PCA) because the 

information useful for speciation analysis is retained unlike WT-PCA which performs well in 

denoising but removes information useful for speciation analysis i.e. the subtle peaks of Kα1 

and Kα2. 

Speciation analysis of Mn in model soft tissue samples was performed by preselecting the 

fluorescence region of Kα and Kβ peaks of the EDXRFS spectra for Mn. The spectra was then 

preprocessed by the combined use of wavelet transform and ICA analysis for noise reduction 

and resolution of the peaks. Figure 5.5.7 shows the classification of Mn samples into low and 

high oxidation states via ICA. The samples were effectively discriminated into low speciation 

(containing Mn2+) and high speciation (containing Mn7+). The two clusters are influenced by 

Kα intensity of Mn.  
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Figure 5.5.7: ICA scores for speciation analysis model of Mn simulate tissues 10 µm thick at 50 s 

utilizing selected fluorescence. 

 

To perform speciation analysis of Cu in model soft tissue samples, preselected fluorescence 
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Figure 5.5.8: ICA scores for speciation analysis model of Cu simulate tissues, 10 µm at 50 s utilizing 

selected fluorescence. 

 

For speciation analysis of Fe, selected fluorescence region of Fe peaks was utilized as input 
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Figure 5.5.9: ICA scores for speciation analysis model of Fe simulate tissues 10 µm at 50 s utilizing 

selected fluorescence. 
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lower speciation (Fe2+, Cu+ and Mn2+) or higher speciation (Fe3+, Cu2+ and Mn7+). ICA 

ellipsoids corresponding to the two oxidation states are significantly smaller. This means that 

ICA models have greater stability and reliability. ICA enables the separation of samples that 

overlap in the space of PCA scores. If the values of ICA scores of new samples fall into an 

ellipsoid of smaller size, that indicates a higher probability of identification of sample group 

affiliation in comparison with PCA model.  

 

-2 -1 0 1 2 3 4

x 10
5

-4

-3

-2

-1

0

1

x 10
5

IC1

IC
2

ICA (F for Wilks lambda = 7.0454)

LA

LB

HB

LD

HM
HA

LG

LH

LI

LJ

LK
LLLM LN

LO

LF

LC
HC

HD

HE

HF

HG

HH

HI

HJ

HK

HL

LE

HN

HO

Fe3+ samples  
Fe2+   samples  



85 

 

In general, the above results are in agreement with the known speciation of Cu, Mn and Fe in 

the calibration samples. This therefore validates ICA as a tool to qualitatively determine the 

speciation of Cu, Mn and Fe in unknown tissue samples of the similar matrix. Therefore ICA 

was consequently applied to perform classification of native body tissues to identify ones that 

were having lower or higher oxidation states of the biometals. This analytical results has great 

significance in disease diagnostics utilizing tissue trace biometal and associated speciation as 

disease biomarkers. 

Furthermore it was found that two ICA models makes the attributes of the samples to lie inside 

a subspace which is limited (Frank, 2005). It is concluded therefore that two components are 

inadequate in describing the data and all the results henceforth are from ICA model with three 

components. 

5.6 Application of robust chemometrics approach in analysis of domestic dog tissue  

In practice EDXRF spectra of soft body tissue is characterized by spectral overlaps, weak 

fluorescence signals and background noise making it difficult to perform quantitative analysis. 

The use of EDXRF method is not applicable to speciation analysis in principle.  Therefore this 

calls for development of a robust multivariate chemometrics techniques towards elemental 

analysis for low-Z elements in biological samples. The domestic dog was chosen in this study 

as it has the same pathogenic base for cancer as humans. 

5.6.1 Combined use of WT-PCA and ANN for quantitative analysis of trace biometals 

Before analysis of the EDXRFS spectral data by ANN for determination of concentration of 

the biometals, the spectra were preprocessed by the combined use of WT and PCA for 

background noise reduction and resolution enhancement which makes quantitative analysis 

difficult. The elemental concentrations in domestic dog tissues were obtained by using the 

validated ANN which was the better model as compared to PLS. Table 5.6.1 shows the results 
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of trace elements: Fe, Cu, Na, Mg, Zn, Mn, Co concentrations in cancerous and healthy 

domestic dog tissue. 

Based on the histopathological reports, the dog tissues were classified as cancerous or non-

cancerous. Results of concentration levels are presented in Table 5.6.1 in which there is a 

significant differences in concentrations of the biometals namely; Fe, Zn, Cu and Mg between 

healthy and cancerous tissues. As shown in Table 5.6.1, concentrations of Fe, Zn, Cu and Mg 

in mammary cancer tissues were high as compared to normal mammary tissues in the ratio 3:1, 

2:1, 3:1 and 2:1 respectively; showing that cancer is strongly affected by the level of 

concentrations present in the tissues.  

Similarly, concentrations of Fe, Zn, Cu and Mg in prostate cancer tissues (Table 5.6.1) were 

high as compared to normal prostate tissues in the ratio 5:2, 2:1, 2:1, and 2:1 respectively; also 

signifying that the prostate cancer is strongly affected by the level of concentrations of these 

elements present in the tissues. Thus the biometals are the cancer biomarkers. 

Results in Table 5.6.1 shows elevated concentrations of Fe, Zn, Cu and Mg in mammary cancer 

and prostate cancer tissues as compared to normal mammary and prostate tissues; suggesting 

that they may strongly be affected by the type of cancer. 

 

 

 

 

 

 

 

 



87 

 

Table 5.6.1: Concentrations of biometals for histopathologically classified dog tissue samples analyzed 

using selected fluorescence and scatter peaks  

 

Health 

status 

Sample 

name 

Elemental concentrations ± standard deviation (µg/g) 

Na Fe Mn Co Zn Mg Cu 

Normal 

mamary 

SD 34.8±0.5 45.4±3.0 29.2±3.5 64.3±3.6 165.4±8.0 80.6±5.0 39.3±4.0 

SI 34.8±1.5 46.5±3.0 29.9±2.5 65.2±4.2 171.1±10.1 70.1±5.0 40.4±2.7 

Mammary 

cancer 

SA 37.4±1.0 137.0±8.2 30.5±3.6 61.8±5.1 289.3±4.0 110.3±5.0 127.9±10.0 

SC 35.4±1.0 139.3±6.2 28.8±4.1 60.8±6.5 300.6±3.0 109.0±7.8 131.4±6.5 

SG 35.7±1.7 138.4±9.2 29.8±2.5 59.8±4.1 288.6±11.1 112.2±3.5 120.2±4.5 

Normal 

prostate 

SE 34.5±0.8 50.3±2.0 30.3±2.0 68.6±1.5 159.6±3.0 122.8±7.5 48.8±3.5 

SH 37.3±1.0 58.7±5.0 30.1±2.5 74.5±6.0 108.3±7.5 79.7±5.2 67.90±4.0 

Prostate 

cancer 

SB 35.4±1.0 152.5±9.1 29.9±2.5 71.3±3.6 301.4±4.0 125.4±10.0 148.4±7.5 

SJ 37.4±1.0 145.1±3.8 29.8±2.5 68.9±3.5 296.0±15.0 113.4±5.0 134.9±7.0 

SF 36.4±1.0 144.9±3.2 29.8±2.5 70.3±1.7 291.5±5.6 111.5±5.4 132.3±8.0 

 

The results show concentration of Zn was relatively high in all the tissues (108.3±7.5 - 

301.4±4.0) as compared to any other biometal (e.g. Fe at 45.4±3.0 -152.5±9.1) which is the 

closest in comparison particularly in prostate and mammary cancer tissues. This can be 

attributed to the fact that Zn is vital for growing cells and cancer is known to be uncontrolled 

growth of cells, thus accumulation of Zn in those tissues implies that Zn participates in 

tumorigenesis. Zn is found to accumulate in mammary tumors and support tumor growth (Lee 

et al., 2003).  The accumulation of Zn in the healthy prostate as well is because it plays an 

important role for male fertility. 

There was increased level of Fe in both mammary cancer tissues (SA, SC and SG) and prostate 

cancer tissues (SB, SJ and SF) as compared to healthy tissues (SD, SE, SH and SI). Fe is 
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associated with tumorigenesis since it is the source of formation of mutagenic hydroxyl radical 

which interferes with the repairing of DNA and thus affecting the signal transduction in cancer 

cells by acting as a nutrient that proliferates tumors (Zhang and Zhang, 2015).  

Increased concentrations of Cu in mammary and prostate cancer tissues as compared to healthy 

mammary and prostate tissue was evident. Cu has been found to increases in malignant states. 

Reducing agents such as ascorbate or superoxide radical reduces copper complexes to the 

cuprous state. The complexes react with hydrogen peroxidase forming hydroxyl radicals as 

product that damage DNA. OH radicals may perhaps cause double strand breaks in the cellular 

DNA initiating malignant process (Ehud et al., 1983). 

Figure 5.6.1 summarizes how the concentration of Na, Mg, Co, Zn, Fe, and Cu are varying with 

the status of the tissue ( i.e. normal mamary, mammary cancer, normal prostate and prostate 

cancer). 
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Figure 5.6.1: 3-D Grouped bar graph showing the variation in concentration of trace and major 

elements in cancerous and healthy tissues. 

 

In general, most of the above biometals are important for various biological and enzymatic 

processes hence changes in concentrations of these elements (Mn, Fe, Cu, Zn, Mg) in cancerous 

tissue are realistic. This therefore strongly supports the fact that the trace biometals are 

biomarkers for disease diagnosis (cancer). 

The relationship between biological processes and biometals concentrations in tumor in native 

soft body tissue (ten dog tissues) were determined using correlation tests between biometals 

(Mn, Fe, Cu, Zn, Co, Mg and Na) concentrations in malignant tissues. Pearson correlation 

coefficients between the biometal concentrations in cancerous tissues are presented in Tables 

5.6.2 and 5.6.3. 
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Table 5.6.2: Pearson correlation coefficients between biometals concentrations in mammary cancer 

tissue  

Element Pearson correlation coefficients between biometal concentrations 

Na Fe Mn Co Zn Mg Cu 

Na 1       

Fe -0.967 1      

Mn 0.884 -0.974 1     

Co 0.788 -0.604 0.410 1    

Zn -0.574 0.765 -0.890 0.052 1   

Mg 0.032 -0.287 0.495 -0.590 -0.837 1  

Cu 0.073 0.184 -0.400 0.672 0.775 -0.994 1 

 

Table 5.6.3: Pearson correlation coefficients between biometal concentrations in prostate cancer tissue  

Element Pearson correlation coefficients between biometal concentrations 

Na Fe Mn Co Zn Mg Cu 

Na 1       

Fe -0.854 1      

Mn -0.867 0.999 1     

Co -0.995 0.801 0.814 1    

Zn -0.545 0.901 0.891 0.462 1   

Mg -0.796 0.995 0.992 0.734 0.941 1  

Cu -0.781 0.992 0.989 0.718 0.949 0.999 1 

 

In prostate cancer, the Pearson correlation coefficient between Mn and Fe, Zn and Fe, Cu and 

Mn and Cu and Zn was found to be positive (0.999, 0.901, 0.989 and 0.949) respectively. There 
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is strong positive correlation between Mn with Fe and Cu. This is a result of Mn being a co-

factor of these elements in cancerous prostate tissues thus resulting to increased metabolic 

activities for carcinogenesis.  

In mammary cancerous tissues, the Pearson correlation coefficient between Zn and Fe (0.765), 

Cu and Zn (0.775), Mn and Na (0.884) and Co and Na (0.788) was evident. This can be related 

to their co-factor roles to development of of mammary cancer. 

However, the most significant differences in elemental associations between prostate and 

mammary  cancer can possibly be based on the strong positive correlation between Cu and Mg 

(0.999) and, Mn and Fe (0.999) in prostate tumors with corresponding negative correlations in 

mammary tumors; Cu and Mg (-0.994), Mn and Fe (-0.974). Furthermore, there exist strong 

positive correlations between Cu and Zn, Fe and Zn in both prostate and mammary cancer 

tissues. This can be related to their co-factor roles to development of cancer. 

In conclusion therefore, the strong positive correlation between the biometals Mn and Fe, Cu 

and Zn, Cu and Mn , Mn and Zn supports the fact that the coexistence of these trace biometals 

in tissues can be used as biomarker for diagnostic of prostate cancer. The positive correlations 

between Zn and Fe, Cu and Zn, Mn and Na , Co and Na can also be used as biomarkers for 

diagosis of mammary cancer. 

5.6.2 Speciation analysis of dog tissues spectra by independent component analysis (ICA) 

The determination of the speciation of Fe, Cu and Mn was aimed to give better insight in the 

mechanism of cancer development. The results of section 5.5.2 were in agreement with the 

known speciation of Cu, Mn and Fe in the calibration samples. This therefore validates ICA as 

a tool to qualitatively determine the speciation of Cu, Mn and Fe in unknown tissue samples of 

the similar matrix. Thus validated ICA multivariate technique was utilized for determination of 
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the speciation of Fe, Cu and Mn in native cancerous soft tissues to find their role in progression 

of cancer. 

Prior to ICA speciation analysis, the EDXRF spectral was preprocessed via wavelet transform 

for noise reduction and ICA for Kα1 and Kα2 peaks resolution. The native domestic dog tissue 

were identified either as of low speciation (Cu+, Fe2+ and Mn2+) or high speciation (Cu2+, Fe3+ 

and Mn7+) depending on whether they were classified together with the known speciation of the 

calibration samples.  

Figure 5.6.2 shows the classification of the dog tissue samples into high speciation and low 

speciation of Fe via ICA. The samples; SA, SB, SC, SD, SC, SE, SF, SG, SI, SJ are native soft 

dog body tissues. The spectra was preprocessed via WT-ICA before performing speciation 

analysis.  

Figure 5.6.2 shows that two clusters were identified which represents the samples with high 

(Fe3+) and low (Fe2+) speciation respectively. The samples SH, SE, SI and SD were found to 

have (Fe2+) and while samples SA, SB, SC, SF, SG and SJ were found to be dominated by 

(Fe3+) as they were classified together with respective high and low oxidation states of the 

known simulate samples. According to histopathological results of analyses, SD, SI are healthy 

mammary tissues and SE, SH are healthy prostate tissues. The samples SA, SC, SG are 

mammary cancerous tissues while SB, SF and SJ are prostate cancer tissues. 
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Figure 5.6.2: ICA score plot for speciation of Fe in domestic tissue utilizing selected fluorescence. 

 

Figure 5.6.3 shows two clusters were identified which represents the samples with low (Mn2+) 

and high (Mn7+) oxidation states respectively. The samples SH, SE, SI and SD were found to 

have (Mn2+) and while samples SA, SB, SC, SF, SG and SJ were found to be dominated by 

(Mn7+) as they were classified together with respective high and low speciation of the known 

simulate samples.  
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Figure 5.6.3: ICA score plot for speciation of Mn in domestic tissue utilizing selected fluorescence. 

 

Figure 5.6.4 shows two clusters were identified which represented the samples with high (Cu2+) 

and low (Cu+) speciation respectively. The samples SH, SE, SI and SD were dominated by 

(Mn2+) and while samples SA, SB, SC, SF, SG and SJ consisted mostly of (Mn7+) as they were 

classified together with respective low and high speciation of the known simulate samples. 
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Figure 5.6.4: ICA score plot for speciation of Cu in domestic tissue utilizing selected fluorescence. 
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-2 -1 0 1 2 3 4

x 10
5

-4

-3

-2

-1

0

1

x 10
5

IC1

IC
2

ICA (F for Wilks lambda = 4.1953)

HG

HN

LC

SA

LE
LF

SG

SB

SF

HI

HC
SCHO HJ

SJ

HA

HB
LK

HD

SE

LL

LA

SD

LJ

LN

SI

SH

HM

LB

LM

Cu2+ samples  

Cu+ samples  

Contains healthy mammary 

and prostate tissues 

Contains mammary and 

prostate cancer tissues 



96 

 

The ability of the analytical method to perform speciation analysis enables the development of  

an approach for spectral diagnosis of cancer utilizing tissue biometal speciation profiles as 

cancer biomarkers. From these results it is clear that speciation alterations, as well as 

correlations of trace biometals in body tissues are cancer biomarkers. 

5.6.3 Principal component analysis (PCA) of dog tissue  

Figure 5.6.5 shows classification of the native soft dog tissue based on the tissue pathological 

state, in which 3 classes have been identified in the PC1×PC2 score plot with explained variance 

of 99 % (91 % and 8 % for PC1 and PC2 respectively). 

 

Figure 5.6.5: PC1 (91%) × PC2 (8%) score plot analysis for native soft dog tissue samples using 

selected fluorescence signature plus Compton scatter at a live time of 50 s 10 µm thick. 
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Prior to PCA of the spectral data, the spectra was first preprocessed by combined use of WT 

and ICA for noise reduction and resolution of peaks. The preselected fluorescence region of 

interest for the elements Na, Mg, Fe, Mn, Cu, Zn and Co was used as an input into PCA model. 

Fig. 5.6.6 shows the variables biometals responsible for the above classification of dog tissues. 

Based on the PC1 loadings plot, trace elements; Cu, Mn, Fe and Zn determine the health state 

of tissues depending on the concentration levels. Prostate and mammary cancer are influenced 

by concentrations of the biometals Cu, Zn and Fe. The results clearly show that biometals 

especially; Fe, Cu, Mn, and Zn are valuable biomarkers for cancer diagnosis 
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Figure 5.6.6: PCA Loadings spectrum showing the variables in domestic dog tissue samples 10 µm at 

a live time of 50 s using selected fluorescence peaks plus Compton scatter. 

 

Figure 5.6.7 shows clustering of the native soft dog tissue based on the tissue pathological state, 

where 3 classes have been identified in the PC1×PC2 score plot with explained variance of 97 

% (90 % and 7 % for PC1 and PC2 respectively). The result of classification shows that 
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exclusion of Compton scatter has a slight impact on classification with reduced explained 

variance from 99 % to 97 %. This can be attributed to the fact Compton scatter contains 

information about low- Z elements (Na and Mg) which were present in both healthy and 

cancerous tissues.  

 

Figure 5.6.7: PC1 (90%) × PC2 (7%) score plot analysis for native soft dog tissue samples using 

selected fluorescence signature at a live time of 50 s 10 µm thick. 

 

In general, these results show that PCA exploratory analysis can be used in discriminating body 

tissue samples based on their healthy status and thus can have an application in cancer 

diagnosis. Based on the results of exploratory, quantitative and speciation analysis of biometals 
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Mn, Zn, Na, Mg, Cu, Co and Fe in soft body tissue (simulate and dog) using the robust 

chemometrics approach, can be utilized in diagnosis of prostate and mammary cancer.  
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusions 

This study was undertaken to develop a robust chemometrics approach in energy dispersive X-

ray fluorescence and scattering (EDXRFS) spectrometry of complex matrices such as native 

soft body tissues towards direct, rapid and noninvasive determination of the concentration and 

speciation of selected trace elements (Zn, Fe, Na, Mg, Cu, Mn and Co) in various thickness. 

Methods for spectral preprocessing and multivariate calibration based on chemometrics 

techniques were developed. Chemometrics techniques namely principal component analysis 

(PCA), wavelet transforms (WT), independent component analysis (ICA), artificial neural 

networks (ANN) and partial least squares (PLS) were utilized. 

Combined use of wavelet analysis and independent component analysis was utilized in spectral 

preprocessing towards speciation analysis which was reliable in resolution Kα and Kβ peaks and 

noise reduction. However the signal to noise ratio (SNR) values were low and the algorithm 

retained significant amount of noise. ICA simply seperates the components which is not 

sufficient to denoise the data and this explained the low values of SNR. The combined use of 

multivariate wavelet and principal componet analysis (PCA) processing of EDXRFS spectra 

was able to reduce the noise present in the signal while preserving the signal characteristics 

irrespective of its frequency with much improved SNR and it optimized well the spectra for 

determination of elemental concentration by reducing background noise which masks subtle 

peaks making quantitative analysis difficult. 

ICA speciation analysis results of Mn, Fe and Cu after spectral preprocessing were better than 

that of PCA. This could be applied to characterization of cancer based on concentration of trace 

elements (Fe, Cu, Zn, Mn, Co, Mg  and Na) and speciation of Cu, Fe and Mn qualitatively, 

using the featured X-ray fluorescence and scatter peaks conjointly.  
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The X-ray scatter peaks had a strong relationship with low-Z elements. Preselected fluorescence 

(Fe, Cu, Zn, Mn and Co) signature performed correctly for ANNs for the high-Z elements, and 

fluorescence plus Compton scatter peak for the low-Z elements (Na and Mg) making it possible 

to quantify the low-Z elements which is difficult task with classical XRF. The non-linear 

quantitative relationships (matrix effects) between trace and major elements concentration and 

EDXRFS spectra were corrected significantly by spectral preprocessing procedures and ANNs. 

The ANNs models results were significantly improved as compared to those of PLS in 

predicting of major and trace biometals in tissues used. 

The developed analytical strategy which involved the hybrid use of chemometrics techniques 

in spectral preprocessing towards quantitative and qualitative speciation analysis of biometals 

performed better compared to the traditional XRF for the two samples (simulate and native soft 

body tissues), with the former furnishing elemental concentration and speciation information 

rapidly i.e. shorter sample analysis times, 50 s compared to classical EDXRF, 2 000 s. 

6.2 Recommendations 

For future result reliability, further research is recommended on the development of proper 

simulate samples encompassing a wider range of the trace and major elements in the 

representative concentrations and speciation. Alternative chemometrics techniques needs to be 

utilized especially for pattern recognition since PCA and ICA cannot fully quantify how much 

of each sample contains in terms of particular ionic species of the trace elements for total 

elemental speciation analysis. The two are only able to classify as either low or high speciation. 

Most promising would be incorporating in the methodology the use of K- nearest neighbor 

(KNN) technique. 
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APPENDICES 

Appendix 1: Wavelet transform Training Algorithm Used in this Work 

% load a multivariate signal 

>> load XC; % input spectral data 

>> level=5; 

>> wname='sym4'; 

>> tptr='rigrsure'; 

>> sorh='s'; 

%set PCA parameters by retaining all the principal component analysis 

>> npc_app=4; 

>> npc_fin=4; 

>> npc_fin=4; 

>> npc_fin=4; 

%Finally perform multivariate denoising 

>> XC_den=wmulden(XC,level,wname,npc_app,npc_fin,tptr,sorh); 

%Improve the first result by retaining fewer principal components 

[XC_den,npc,nestco]=wmulden(XC,level,wname,npc_app,npc_fin,tptr,sorh
); 

%  Use kais rule 

>> npc_app='kais'; 

>> npc_fin='kais'; 

>> 
[XC_den,npc,nestco]=wmulden(XC,level,wname,npc_app,npc_fin,tptr,sorh
); 

% computing signal to noise before wt analysis 

>>r=snr(XC(:)); % db 

>> rr=10.^(r/10); % from db to linear; 

% computing signal to noise ratio after wt analysis 

>> R=snr(XC_den(:)); % db;  

>> RR=10.^(R/10); % from db to linear 
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Appendix 2: ICA spectral preprocessing Training Algorithm Used in this 
Work 

>> m = mean(XC)'; 

>> Xc = XC'-repmat(m,1,size(XC,1)); % Center and transpose 

>> R = cov(Xc'); % Whitening 

>> [V,D] = eig(R); 

>> WhiteT = V*diag(diag(D).^-0.5)*V'; % Whitening transform 

>> Xw = WhiteT*Xc; 

>> Ww = fastica(Xw); % Finally perform fastica  
>> W = Ww'*WhiteT; % Reconstruct 

Appendix 3: ANNs Training Algorithm Used in this Work 

net=fitnet(7,'trainlm'); % Create a feedforward network with 7 hidden 
neurons, 3 output neurons and assign the Levenberg-Marquardt training 
function - TRAINLM 
net.divideParam.trainRatio=.7;% divide samples into training 

net.divideParam.valRatio=.15; ;% divide samples into validation 

net.divideParam.testRatio=.15; ;% divide samples into test 

[net,pr]=train(net,input,target); % Train the network.  
 
net=init(net);% initialize the net if it is not satisfactory and      

              train again 

[net,pr]=train(net,input,target); 

output=net(sample); % Simulate the trained network. 
 
Appendix 4: PLS Algorithm used in this study 

% load data containing spectral intensities 

X = input;% input spectral data 

y = target; % target concentration 

Z=Test data; % test spectral data 

% choosing number of components with cross-validation 

>>[Xl,Yl,Xs,Ys,beta,pctVar,PLSmsep] = plsregress(X,y,17,'CV',10); % 
Transpose X and y to have same number of rows 

% Plot MSEP curve for PLSR to determine the number of PLS compnents 

>> plot(0:17,PLSmsep(2,:),'b-o'); 
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xlabel('Number of components'); 

ylabel('Estimated Mean Squared Prediction Error'); 

legend({'PLSR'},'location','NE'); 

>> [XL,yl,XS,YS,beta,PCTVAR,MSE] = plsregress(X,y,8); % Transpose X 
and y to have same number of rows 

% Plot the percent of variance explained in the response variable as 
a function of the number of components. 

>>plot(1:8,cumsum(100*PCTVAR(2,:)),'-bo'); 

xlabel('Number of PLS components'); 

ylabel('Percent Variance Explained in y'); 

>> yfit = [ones(size(Z,1),1) Z]*beta; 

% Plot fitted vs. observed response for the PLSR  fit. 

>> plot(y,yfit,'o') ; xlabel('Observed Response'); 

ylabel('Fitted Response'); 

legend({'PLSR with 8 Components'},'location','NW'); 

Appendix 5: ICA classification Training Algorithm Used in this Work 

% Load (meas) spectral data 

>>Species=[zeros(15,1);ones(15,1)]; 

 [u,s,v] =  svd(meas,'econ'); 

     t=u*s; 

>> ICs=3; 

>>  Options.Method ='Normal';   

     Options.Data= 'Data'; 

[Scores] =  jadeR_2005 (meas,ICs);  % ensure that the current path is 
JadeR_2005 

>>figure; 

     imagesc(Scores(:,1:2)),axis tight; 

     xlabel('ICs'); 

      title('ICA'); 

>>figure; 

     plot(Scores(:,1:2)),axis tight; 

     xlabel('Samples'); 
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     title('ICA'); 

>>[lambda_ICA,F_ICA,pr_ICA,df,Fdf] = 
manova_Strauss(Scores(:,1:2),Species,0); % Transpose scores first for 
inner matrix dimension to match 

>>figure; 

scatter(Scores(:,1),Scores(:,2),200,Species,'Filled'),axis tight; 

xlabel('IC1'); 

ylabel('IC2'); 

title(['ICA (F for Wilks lambda = ',num2str(F_ICA),')']); 

% Load meas 

>>Species=[zeros(10,1);ones(10,1); 2*ones(10,1)]; 

 [u,s,v] =  svd(meas,'econ'); 

     t=u*s; 

>> ICs=3; 

>>   Options.Method ='Normal';   

     Options.Data= 'Data'; 

[Scores] =  jadeR_2005 (meas,ICs);  % ensure that the current path is 
JadeR_2005 

>>figure; 

     imagesc(Scores(:,1:2)),axis tight; 

     xlabel('ICs'); 

      title('ICA'); 

     figure; 

     plot(Scores(:,1:2)),axis tight; 

     xlabel('Samples'); 

     title('ICA'); 

>>[lambda_ICA,F_ICA,pr_ICA,df,Fdf] = 
manova_Strauss(Scores(:,1:2),Species,0); % Transpose scores first for 
inner matrix dimension to match 

>>figure; 

scatter(Scores(:,1),Scores(:,2),80,Species,'Filled'),axis tight; 

xlabel('IC1'); 

ylabel('IC2'); 
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title(['ICA (F for Wilks lambda = ',num2str(F_ICA),')']); 

Appendix 6: PCA classification Training Algorithm Used in this Work 

% replacing the 1s and 0s in species with desired phrases  

spec = cell(size(species)); 

keys = {'Lower Speciation','Higher Speciation'}; 

for n = 1:length(species) 

    if species(n) == 0 

        spec{n} = keys{1}; 

    else 

        spec{n} = keys{2}; 

    end 

end 

species = spec; 

X = meas; 

X = bsxfun(@minus, X, mean(X));    % zero-centered data 

[~,S,V] = svd(X,0);                % singular value decomposition 

 

[S,ord] = sort(diag(S), 'descend'); 

pc = V(:,ord);                    % principle components 

latent = S.^2 ./ (size(X,1)-1)    % variance explained 

score = X*pc;                     % projected data 

gscatter(score(:,1), score(:,2), species, [], [], [], 'on', 'PC1', 
'PC2') 

 

 


