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Abstract

The objective of this work is to express mixed Poisson distributions in four ways; namely, in ex-

plicit form, in terms of special functions, in recursive form and in terms of transforms also called

expectation forms.

In explicit form, a gamma function and its properties is used. Posterior distributions and poste-

rior moments are also obtained.

Modified Bessel function of the third kind and confluent hypergeometric function with their

properties are used in expressing mixed Poisson distributions in terms of special functions.

Integration by parts is used in determining recursive models for mixed Poisson distributions.

To determine the corresponding differential equations for these recursive models, Wang’s recursive

approach is applied.

Laplace transform and jth moment of a mixing distribution are used to express Poisson mixtures

in expectation forms. Factorial moments, moments about the origin and moments about the mean

of the Poisson mixtures are determined in terms of probability generating functions of the mixtures.

A major bottle-neck in using Laplace transform technique is to obtain its xth derivative.

Determining some mathematical identities based on Poisson mixtures is a major contribution

in this research. These identities are obtained by equating results derived using explicit forms and

their corresponding method of moments. Identities are also obtained by equating Poisson mixtures

expressed in terms of special functions and their corresponding method of moments.

The other major contribution is use of integration by parts in determining recursive models.

Other researchers obtained similar results but with certain conditions to be fulfilled. The integration

by parts approach does not need these conditions.

In literature, Lindley distribution has been generalized to two parameters. A contribution in this

research work is the construction of a three-parameter generalized Lindley distribution which nests

the one and two parameter Lindley distributions.

The focus of this research is on constructions and properties of mixed Poisson distributions. For

further research, estimations and applications could be pursued. Other approaches to constructing

Poisson mixtures could also be identified and pursued.
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Abbreviations and Notations

Abbreviations and notations for specific chapters can be found in those chapters. Abbreviations and

notations generally used are given below:

cdf Cumulative distribution function

pdf Probability density function

pgf Probability generating function

pmf Probability mass function

PVF Power variance function

LHS Left hand side

RHS Right hand side

f (x) Probability mass function of a mixed Poisson distribution

Lλ (t) Laplace transform of mixing distribution

g (λ) Probability density function of a mixing distribution

G (s) Probability generating function of mixed Poisson distribution

µ
′
r (λ) rth raw moment of the mixing distribution

ψ (a, c;x) Tricomi confluent hypergeometric function

1F1 (a; c;x) Kummer’s confluent hypergeometric function

Kv (ω) Modified Bessel function of third kind

M {φ (x) , s} Mellin transform

vi



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abbreviations and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 GENERAL INTRODUCTION 1

1.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Definitions and Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Significance of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 MIXED POISSON DISTRIBUTIONS AND THEIR MOMENTS IN EXPLICIT

FORMS 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Mathematical Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Examples of Mixed Poisson Distributions and Their Moments in Explicit Forms . . 14

3 MIXED POISSON DISTRIBUTIONS IN TERMS OF SPECIAL FUNCTIONS 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Confluent hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Mixed Poisson distributions based on Confluent

Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Mixed Poisson Distributions based on Modified Bessel function of the third kind . . 54

vii



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 MIXED POISSON DISTRIBUTIONS IN RECURSIVE FORMS AND THEIR

DIFFERENTIAL EQUATIONS 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 A Review of Recursive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Recursive Models based on Integration by Parts and Differential Equations based on

Wang’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 MIXED POISSON DISTRIBUTIONS AND THEIR MOMENTS IN TERMS OF

TRANSFORMS 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Mixed Poisson Distribution and Properties based on Transforms . . . . . . . . . . . . 88

5.3 Examples of Mixed Poisson Distributions Based on Transforms . . . . . . . . . . . . 94

5.4 Mixed Poisson distributions by method of moments . . . . . . . . . . . . . . . . . . . 115

5.5 Identities based on Poisson mixtures and by method of moments . . . . . . . . . . . 146

6 CONCLUSIONS AND RECOMMENDATIONS 151

6.1 Summary of Results and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

REFERENCES 157

viii



Chapter 1

GENERAL INTRODUCTION

1.1 Background Information

One major area of Statistics is Probability Distributions: their constructions, properties, estimation

of parameters and applications.

There are various methods for constructing these probability distributions. There are those

based on power series, transformations, mixtures, recursive relations in probabilities, differential

equations, sums of independent random variables, hazard functions, stochastic processes, geometry

and trigonometry, Lagrangian expansion, generator approach, special functions, etc.

In this work we wish to mix a Poisson distribution which is discrete with a continuous distribution,

resulting in a new distribution known as continuous mixed Poisson distribution (Poisson mixture).

Poisson distribution can be constructed from an exponential power series, from a Poisson process,

as a limit of binomial distribution and as a limit of negative binomial distribution.

Historical background of mixed Poisson distributions goes back to 1920 when Greenwood and

Yule mixed a Poisson distribution with a gamma distribution to obtain a negative binomial dis-

tribution. This work considers many other continuous distributions to be mixed with a Poisson

distribution to produce new distributions known as mixed Poisson distributions; which will be ex-

pressed in different forms.

1.2 Definitions and Terminologies

Let f (x) be a function of a random variable x. If

f (x) ≥ 0 and
∫ ∞
−∞

f (x) dx = 1
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then f (x) is called a probability density function (pdf) of a continuous random variable X.

If

f (x) ≥ 0 and
∞∑

x=−∞
f (x) = 1

then f (x) is called a probability mass function (pmf) of a discrete random variable X.

Let (0, t] be a fixed interval of time, then a Poisson distribution with parameter λt is denoted as

f (x|λ) =
e−λt (λt)x

x!
, x = 0, 1, 2, . . . ;λ, t > 0 (1.1)

which is a conditional distribution of X given Λ = λ, that is, λ is a value of a continuous random

variable Λ whose pdf is g (λ) which is called a mixing distribution.

The mixed Poisson distribution (Poisson mixture) is the marginal distribution f (x) defined by

f (x) =

∫ ∞
0

f (x|λ) g (λ) dλ

=

∫ ∞
0

e−λt (λt)x

x!
g (λ) dλ (1.2)

Since the mixing distribution g (λ) is continuous, we call f (x) a continuous Poisson mixture.

1.3 Statement of the Problem

Haight (1967), Karlis and Xekalaki (2005) are among those who reviewed works on mixed Poisson

distributions. However, classifications based on ways of expressing Poisson mixtures were not exam-

ined.

In classifying the Poisson mixtures in this work, a number of issues arose and needed to be addressed.

Thus, some of these issues have formed part of the problem statement described below in terms of

questions.

(i) Only a few mixed Poisson distributions are obtained by direct integration. The question

therefore is; what are the other mixing distributions to be introduced so as to obtain more

mixed Poisson distributions explicitly?

(ii) Mixed Poisson distributions expressed in recursive forms were constructed under certain con-

ditions such as in Willmot’s (1993) approach. Could these conditions be relaxed?

(iii) Some Poisson mixtures are expressed in more than one form, that is, explicit form, special func-

tion form, recursive form and expectation form. The results obtained therefore look different.

Can these results be proved to be identical?

(iv) What are other by-products (such as posterior distribution and posterior moments) of con-

structing Poisson mixtures?

2



1.4 Objectives

1.4.1 General Objectives

The main objective is to construct mixed Poisson distributions for various cases of continuous mixing

distributions.

1.4.2 Specific Objectives

(a) To construct mixed Poisson distributions via the following routes:

(i) explicit evaluation

(ii) use of special functions; (modified Bessel function of third kind and confluent hypergeo-

metric function)

(iii) recursively

(iv) in expectation forms (transforms)

(b) To introduce other mixing distributions which have not been considered before. These include,

3-parameter generalized Lindley and transmuted exponential distributions.

(c) To construct mixed Poisson distributions recursively using Integration by Parts and compare

the results obtained using Willmot’s (1993) Approach .

(d) To obtain moments through the various routes as in (a).

(e) To use the constructed Poisson mixtures in explicit form to obtain Posterior distributions and

the posterior moments.

(f) To obtain identities based on the constructed Poisson mixtures.

1.5 Literature Review

Various mixed Poisson distributions can be constructed depending on the choice of the mixing

distribution using several ways such as the explicit evaluation, use of recursive relations, use of the

Laplace transforms of the mixing distributions and representing the mixed Poisson distributions in

terms of special functions.

Among the first review on this subject was done by Haight (1967) and Karlis and Xekalaki

(2005). In this work we shall re-examine what has been done and include the latest works on this

subject.
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1.5.1 Explicit Forms

Greenwood and Yule (1920) pioneered the derivation of mixed Poisson distributions. They mixed a

gamma density and the Poisson distribution resulting in a negative binomial distribution. In this

case they did not study the posterior distribution and expectation of the mixed Poisson distribution.

Taking Λ to have a shifted gamma (three parameter gamma) distribution, the resulting mixed Poisson

distribution is Delaporte distribution; a convolution of negative binomial distribution and Poisson

distribution (Ruohonen, 1988). This model is suitable for data having a distribution with a long

tail. It would be interesting to obtain other Mixed Poisson distributions which are convolutions.

The Poisson-linear exponential distribution is obtained by formally mixing the Poisson distribution

with the linear exponential family of distributions (Sankaran, 1970b).

The Poisson distribution is mixed with Lindley distribution resulting in the Poisson-Lindley

distribution (Sankaran, 1970a). Two applications to real data suggest that the Poisson-Lindley

distribution can be used as an approximation to the negative binomial distribution.

Further, Zakerzadeh and Dolati (2010) generalized the Lindley distribution to obtain a two-

parameter generalized Lindley distribution. Taking this distribution as the mixing density, Mah-

moudi and Zakerzadeh (2010) obtained a Poisson -generalized Lindley distribution. This distribution

is among the latest mixed Poisson distributions which can be expressed explicitly. It is shown that

generalized Poisson-Lindley distribution is flexible enough for the analysis of different types of count

data.

The most recent mixed Poisson distribution was obtained by Bhati et al (2015) where transmuted

exponential distribution was used as a mixing distribution. This mixing distribution is a finite

mixture of two exponential distributions. It should be noted that in very few cases, mixed Poisson

distributions are expressed explicitly. Hence there is need to find alternatives.

1.5.2 Mixed Poisson Distributions in Recursive Forms

Willmot (1993) devised a method now known as Willmot’s Approach to determine mixed Poisson

distributions in recursive forms. He obtained recursive formulae for the following mixing distribu-

tions:

(i) Gamma distribution to obtain negative binomial distribution.

(ii) Generalized inverse Gaussian distribution to obtain the Sichel distribution; Poisson - inverse

Gaussian distribution is a special case.

(iii) Beta distribution to obtain Poisson - beta

(iv) Generalized Pareto to obtain Poisson - generalized Pareto. Poisson - Pareto is a special case.

4



(v) Transformed or generalized gamma

(vi) Transformed beta

(vii) Inverse gamma

(viii) Mixing distributions based on hazard functions

(ix) Shifted and truncated mixing distributions; shifted gamma to obtain Delaporte distribution,

shifted Pareto, truncated gamma, truncated normal.

Gupta and Ong (2005) obtained recursive forms of some Poisson mixtures.Sankaran (1968) obtained

a recursive formula for Poisson - inverse Gaussian using differential equation in pgf.

1.5.3 Use of Generating Functions and Laplace Transforms

Probability generating function technique and Laplace transforms have been handy in determining

some mixed Poisson distributions. Ruohonen (1988) obtained the Delaporte distribution in terms

of a product of the pgfs of negative binomial and Poisson distributions. Gupta and Ong (2005)

obtained pgfs for Poisson - generalized gamma and Poisson - generalized exponential distributions.

Power variance function (PVF) distribution is a three parameter family uniting gamma and

positive stable distributions. The distribution is denoted by PVF(α, δ, θ). The Laplace transform is

L (s) = exp

{
− δ
α

[(θ + s)α − θα]

}
(1.3)

according to Hougaard et al (1997).

(i) For α→ 0, the gamma distribution is obtained

(ii) For θ = 0, the positive stable distribution is obtained

(iii) For α = 1
2 , the inverse Gaussian distribution is obtained

(iv) For α = −1, the non-central gamma distribution of shape parameter zero is obtained.

The mixed Poisson (Poisson - Power Variance) pmf can be obtained using the formula

f (x) = (−1)x
L(x) (1)

x!
(1.4)

where L(x) (s) denotes the xth derivative of L (s) .

Willmot (1986) obtained the Poisson - generalized inverse Gaussian (Sichel) distribution by

considering the Laplace transform of generalized inverse Gaussian distribution. He then converted

the Laplace into pgf by the relation;

G (s) = Lλ (1− s) (1.5)

5



which corresponds to t = 1. Hence the pmf as a coefficient of sx. He also used the pgf to determine

the recursive relation. Hougaard et al (1997) obtained f (x) in terms of L(x)
Λ (s). Willmot(1986)

used the relationship between G (s) and LΛ (s)to obtain f (x) .

Karlis and Xekalaki (2005) gave an alternative useful method which links the probability function

of a mixed Poisson distribution to the moments of the mixing distribution as

f (x) =
1

x!

∞∑
r=0

(−1)r

r!
µ
′
x+r (λ) (1.6)

where µ′r (λ) is the rth raw moment of the mixing distribution.

1.5.4 Mixtures in terms of Special Functions

Some integrals that cannot be evaluated explicitly can be expressed in terms of special functions.

Willmot (1993) expressed the pgf of Poisson - scaled beta distribution in terms of a confluent

hypergeometric distribution. This same result was obtained by Gurland (1958) by mixing a Poisson

with a parameter λp with the classical beta distribution.

1.5.5 Other Cases

Brown and Holgate (1970) found that the Poisson - lognormal distribution cannot be evaluated

explicitly. Bulmer (1974) also examined the Poisson - lognormal as a model for species abundance

and confirmed that there appears to be no simple form. Thus, Bulmer evaluated the model by

numerical integration.

1.6 Methods

The methods used in the construction of the mixed Poisson distributions are:

(i) Direct integration and substitution

(ii) Special functions: Beta function, gamma function, Modified Bessel function of the third kind

and Confluent hypergeometric function (Kummer’s and Tricomi).

(iii) Integration by parts

(iv) Transforms: Generating functions, Laplace transforms and Mellin transforms

1.7 Significance of the study

Mixed Poisson distributions can be applied in many fields, such as

6



(a) In Actuarial Data: Poisson-inverse Gaussian distribution was used by Tremblay (1992) in No

Claims Discount Systems. Klugman et al (1998) used negative binomial distribution to fit data

on number of accidents per driver of automobiles. The negative binomial distribution was also

used by Greenwood and Yule (1920) for modeling accident proneness among drivers. Ruoho-

nen (1988) considered the Delaporte distribution in modeling number of claims. Delaporte

distribution is a mixed distribution of Poisson and truncated gamma which is equivalently a

convolution of Poisson and negative binomial distributions - in the current context,it is being

used as a mixed distribution. Lemaire (1985) used negative binomial in modeling automobile

insurance data. Sankaran (1970a) applied Poisson-Lindley distribution to errors and accidents.

(b) Health Care: Bhati et al (2015) used Poisson-transmuted exponential distribution to model

epileptic seizure counts and compared the results with other Poisson mixtures.

(c) Biological Sciences: Shanker and Fesshaye (2015) used Poisson-Lindley distribution in mod-

eling some biological data. Bulmer (1974) used Poisson-lognormal as a model for species

abundance.

In this study, posterior distributions have been obtained from the mixed Poisson distributions

constructed explicitly. Posterior distributions play crucial role in Bayesian statistics and more so

Bayesian inference. Mixtures adequately describe heterogeneous populations - an inherent character-

istic not exhibited by simple probability distributions. This study has also made use of generalized

distributions nesting other distributions. Such generalized distributions are: generalized inverse

Gaussian, 3-parameter generalized Lindley and transmuted exponential. The focus in probability

distributions is on generalized distributions due to their flexibility.

Mathematical identities have been deduced as a result of expressing mixed Poisson distributions

in more than one route, that is explicitly, in special function form and in expectation form.

1.8 Outline of the thesis

The rest of the thesis is outlined as follows: In Chapter 2, mixed Poisson distributions have been

constructed in explicit forms and their moments obtained by conditional expectation approach. In

Chapter 3, mixed Poisson distributions have been expressed in terms of special functions, specifi-

cally, confluent hypergeometric functions and modified Bessel function of the third kind. Recursive

relations for mixed Poisson distributions have been obtained in Chapter 4. This has been achieved

through integration by parts. Differential equations for the mixed Poisson distributions are also

obtained. In Chapter 5, mixed Poisson distributions and their moments are derived in terms of

transforms. Specifically, Laplace transform, Mellin transform and probability generating function.

7



Mathematical identities based on Poisson mixtures are also deduced by equating result of mixture

obtained in explicit form with that obtained by method of moments and equating result of mixture

obtained in terms of special function with that obtained by the method of moments. Chapter 6 gives

the summary, conclusions and recommendations of the study.
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Chapter 2

MIXED POISSON DISTRIBUTIONS

AND THEIR MOMENTS IN EXPLICIT

FORMS

2.1 Introduction

In this chapter we consider mixed Poisson distributions in explicit form by direct integration. The

moments are also obtained by conditional expectation approach. We shall specifically derive formulae

for the first four moments about the origin (raw moments) and moments about the mean (central

moments) of the Poisson mixtures in terms of moments of the mixing distributions. The posterior

rth moment is also derived.

The following mixing distributions are used: gamma, shifted gamma, Lindley, 3-parameter gen-

eralized Lindley and transmuted exponential distribution. Some examples are given.

2.2 Mathematical Formulation of the Problem

A mixed Poisson distribution is defined by equation (1.2). The rth raw moment of the Poisson

mixture is

E (Xr) = EE (Xr | Λ)

= E

{
e−Λt

∞∑
x=0

xr (Λt)x

x!

}
. (2.1)

9



The posterior distribution is defined by

g (λ | x) =
f (x | λ) g (λ)∫∞

0 f (x | λ) g (λ) dλ

=
e−λt (λt)x g (λ)∫∞

0 e−λt (λt)x g (λ) dλ

=
λxe−λtg (λ)∫∞

0 λxe−λtg (λ) dλ
(2.2)

Moments about the origin (raw moments) and moments about the mean (central moments) of a

mixed Poisson distribution in terms of moments of the mixing distribution are as follows:

Proposition 2.2.1. The raw moments are:

(i)

E (X) = tE (Λ) (2.3)

(ii)

E
(
X2
)

= t2E
(
Λ2
)

+ tE (Λ) (2.4)

(iii)

E
(
X3
)

= t3E
(
Λ3
)

+ 3t2E
(
Λ2
)

+ tE (Λ) (2.5)

(iv)

E
(
X4
)

= t4E
(
Λ4
)

+ 6t3E
(
Λ3
)

+ 7t2E
(
Λ2
)

+ tE (Λ) (2.6)

Proof. (i) The first raw moment is obtained as

E (X) = E

{
e−Λt

∞∑
x=0

x (Λt)x

x!

}

= E

{
e−Λt (Λt)

∞∑
x=1

(Λt)x−1

(x− 1)!

}
= E

{
e−Λt (Λt) eΛt

}
= tE (Λ)

or simply

E (X) = EE (X | Λ) = E (Λt) = tE (Λ)

which is (2.3).
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(ii) The second raw moment is

E
(
X2
)

= E

{
e−Λt

∞∑
x=0

x2 (Λt)x

x!

}

= E

{
e−Λt

∞∑
x=1

(x− 1 + 1) (Λt)x

(x− 1)!

}

= E

{
e−Λt (Λt)2

∞∑
x=2

(Λt)x−2

(x− 2)!
+ e−Λt (Λt)

∞∑
x=1

(Λt)x−1

(x− 1)!

}
= E

{
(Λt)2 + Λt

}
= t2E

(
Λ2
)

+ tE (Λ)

which is (2.4).

(iii) The third raw moment is obtained as

E
(
X3
)

= E

{
e−Λt

∞∑
x=0

x3 (Λt)x

x!

}

= E

{
e−Λt

∞∑
x=1

(x− 1 + 1)2 (Λt)x

(x− 1)!

}

= E

e−Λt
∞∑
x=1

[
(x− 1)2 + 2 (x− 1) + 1

]
(Λt)x

(x− 1)!


= E

{
e−Λt

[ ∞∑
x=2

(x− 2) + 3

(x− 2)!
+
∞∑
x=1

1

(x− 1)!

]
(Λt)x

}

= E

{
e−Λt

[ ∞∑
x=3

1

(x− 3)!
+

∞∑
x=2

3

(x− 2)!
+

∞∑
x=1

1

(x− 1)!

]
(Λt)x

}

= E

{
e−Λt

[
(Λt)3

∞∑
x=3

(Λt)x−3

(x− 3)!
+ 3 (Λt)2

∞∑
x=2

(Λt)x−2

(x− 2)!
+ (Λt)

∞∑
x=1

(Λt)x−1

(x− 1)!

]}
= E

{
(Λt)3 + 3 (Λt)2 + (Λt)

}
= t3E

(
Λ3
)

+ 3t2E
(
Λ2
)

+ tE (Λ)

which is (2.5).
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(iv) The fourth raw moment is

E
(
X4
)

= E

{
e−Λt

∞∑
x=0

x4 (Λt)x

x!

}

= E

{
e−Λt

∞∑
x=1

(x− 1 + 1)3 (Λt)x

(x− 1)!

}

= E

{
e−Λt

∞∑
x=1

[
(x− 1)3 + 3 (x− 1)2 + 3 (x− 1) + 1

] (Λt)x

(x− 1)!

}

= E

{
e−Λt

[ ∞∑
x=2

(x− 2 + 1)2 + 3 (x− 2 + 1) + 3

(x− 2)!
+
∞∑
x=1

1

(x− 1)!

]
(Λt)x

}

= E

{
e−Λt

[ ∞∑
x=4

1

(x− 4)!
+
∞∑
x=3

6

(x− 3)!
+
∞∑
x=2

7

(x− 2)!
+
∞∑
x=1

1

(x− 1)!

]
(Λt)x

}
= t4E

(
Λ4
)

+ 6t3E
(
Λ3
)

+ 7t2E
(
Λ2
)

+ tE (Λ)

which is (2.6).

Proposition 2.2.2. The central moments are as follows:

(i) Variance

µ2 = t2V ar (Λ) + tE (Λ) (2.7)

(ii) Third Moment

µ3 = t3E [Λ− E (Λ)]3 + 3t2V ar (Λ) + tE (Λ) (2.8)

(iii) Fourth Moment

µ4 = t4E [Λ− E (Λ)]4 + 6t3
{
E [Λ− E (Λ)]3 + V ar (Λ)E (Λ)

}
+t2

{
7V ar (Λ) + 3 [E (Λ)]2

}
+ tE (Λ) (2.9)

Proof. (i) The variance is

µ2 = V ar (X)

= E
(
X2
)
− [E (X)]2

= t2E
(
Λ2
)

+ tE (Λ)− t2 [E (Λ)]2

= t2V ar (Λ) + tE (Λ)

12



Alternatively,

µ2 = V ar (X)

= V ar [E (X | Λ)] + E [V ar (X | Λ)]

= V ar (tΛ) + E (tΛ)

= t2V ar (Λ) + tE (Λ)

which is (2.7).

(ii) The third central moment is

µ3 = E [X − E (X)]3

= E
(
X3
)
− 3E

(
X2
)
E (X) + 2 [E (X)]3

= t3E
(
Λ3
)

+ 3t2E
(
Λ2
)

+ tE (Λ)− 3t3E
(
Λ2
)
E (Λ)− 3t2 [E (Λ)]2 + t3 [E (Λ)]3

= t3E [Λ− E (Λ)]3 + 3t2V ar (Λ) + tE (Λ)

which is (2.8).

(iii) The fourth central moment is

µ4 = E [X − E (X)]4

= E
(
X4
)
− 4E

(
X3
)
E (X) + 6E

(
X2
)

[E (X)]2 − 3 [E (X)]4

= t4
{
E
(
Λ4
)
− 4E

(
Λ3
)
E (Λ) + 6E

(
Λ2
)

[E (Λ)]2 − 3 [E (Λ)]4
}

+6t3
{
E
(
Λ3
)
− 2E

(
Λ2
)
E (Λ) + [E (Λ)]3

}
+t2

{
7E
(
Λ2
)
− 4 [E (Λ)]2

}
+ tE (Λ)

= t4E [Λ− E (Λ)]4 + 6t3
{
E [Λ− E (Λ)]3 +

[
E
(
Λ2
)
− (E (Λ))2

]
E (Λ)

}
+t2

{
7V ar (Λ) + 3 [E (Λ)]2

}
+ tE (Λ)

= t4E [Λ− E (Λ)]4 + 6t3
{
E [Λ− E (Λ)]3 + V ar (Λ)E (Λ)

}
+t2

{
7V ar (Λ) + 3 [E (Λ)]2

}
+ tE (Λ)

which is (2.9).

Proposition 2.2.3. The posterior rth moment is

E (Λr | X = x) =
E
[
Λx+re−Λt

]
E [Λxe−Λt]

(2.10)

and in particular the posterior mean is

E (Λ | X = x) =
E
[
Λx+1e−Λt

]
E [Λxe−Λt]

. (2.11)
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Alternatively,

E (Λr | X = x) =
(x+ r)!

trx!

f (x+ r)

f (x)
(2.12)

and

E (Λ | X = x) =
(x+ 1)

t

f (x+ 1)

f (x)
. (2.13)

Proof. The posterior rth moment is

E (Λr | X = x) =

∫∞
0 λx+re−λtg (λ) dλ∫∞

0 λxe−λtg (λ) dλ

=
E
[
Λx+re−Λt

]
E [Λxe−Λt]

which is (2.10) and in particular the posterior mean is

E (Λ | X = x) =
E
[
Λx+1e−Λt

]
E [Λxe−Λt]

which is (2.11).

Alternatively,

g (λ | x) =
e−λt (λt)x g (λ)

x!f (x)
. (2.14)

The posterior rth moment is

E (Λr | X = x) =

∫ ∞
0

λrg (λ | x) dλ

=
1

x!f (x)

∫ ∞
0

λre−λt (λt)x g (λ) dλ

=
(x+ r)!

trx!f (x)

∫ ∞
0

e−λt (λt)x+r

(x+ r)!
g (λ) dλ

=
(x+ r)!

trx!

f (x+ r)

f (x)

which is (2.12) and in particular the posterior mean is

E (Λ | X = x) =
(x+ 1)

t

f (x+ 1)

f (x)

which is (2.13).

2.3 Examples of Mixed Poisson Distributions and Their Moments

in Explicit Forms

2.3.1 Poisson-Gamma Distribution

A two - parameter gamma distribution is

g (λ) =
βα

Γ (α)
e−βλλα−1, λ > 0; α, β > 0 (2.15)
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Proposition 2.3.1. (a) The mixed Poisson distribution is

f (x) =

(
α+ x− 1

x

)(
t

t+ β

)x( β

t+ β

)α
, x = 0, 1, 2, . . . (2.16)

which is the negative binomial distribution with parameters α and β (Greenwood and Yule,

1920).

(b) The rth moment of gamma distribution is

E (Λr) =
Γ (α+ r)

Γ (α)βr
(2.17)

where Γ is the gamma function. Therefore

E (Λ) =
α

β
(2.18)

V ar (Λ) =
α

β2
(2.19)

E [Λ− E (Λ)]3 =
2α

β3
(2.20)

E [Λ− E (Λ)]4 =
3α (α+ 2)

β4
. (2.21)

(c) Moments of the mixture (negative binomial distribution)

E (X) =
α

β
t (2.22)

V ar (X) =
α

β2
t2 +

α

β
t (2.23)

µ3 = E [X − E (X)]3

=
2α

β3
t3 +

3α

β2
t2 +

α

β
t (2.24)

µ4 = E [X − E (X)]4

=
3α (α+ 2)

β4
t4 +

6 (2− α)α

β3
t3 +

(7 + 3α)α

β2
t2 +

α

β
t (2.25)

(d) Posterior distribution is

g (λ|x) =
(t+ β)α+x

Γ (α+ x)
e−(t+β)λλα+x−1, λ > 0; α, β > 0 (2.26)

which is Gamma (α+ x, t+ β).

The posterior rth moment is

E (Λr | x) =
Γ (x+ α+ r)

Γ (x+ α) (t+ β)r
(2.27)

and in particular the posterior mean is

E (Λ | x) =
x+ α

t+ β
(2.28)

which is a linear function of x.
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Proof. From equation (2.15) the mixed Poisson distribution is

f (x) =

∫ ∞
0

e−λt (λt)x

x!

βα

Γ (α)
e−βλλα−1dλ

=
βαtx

Γ (α)x!

∫ ∞
0

λx+α−1e−λ(t+β)dλ

=
βα

Γ (α)

tx

x!

Γ (x+ α)

(t+ β)x+α

=
(
x+α−1
x
)( t

t+ β

)x( β

t+ β

)α
; x = 0, 1, 2, . . .

which is (2.16). Its pgf is,

G (s) =

∫ ∞
0

e−λt(1−s)
βα

Γ (α)
e−βλλα−1dλ

=
βα

Γ (α)

∫ ∞
0

λα−1e−λ(t−ts+β)dλ

=
βα

Γ (α)

Γ (α)

(t− ts+ β)α

=

[
β
t+β

1− t
t+β s

]α
. (2.29)

The posterior distribution is

g (λ|x) =
f (x|λ) g (λ)

f (x)

=

e−λt(λt)x

x!
βα

Γ(α)e
−βλλα−1(

x+α−1
x
)(

t
t+β

)x (
β
t+β

)α
=

e−λt (λt)x βαe−βλλα−1

x!Γ(α)Γ(α+x)txβα

x!Γ(α)(t+β)α+x

=
(t+ β)α+x

Γ (α+ x)
e−(t+β)λλα+x−1, λ > 0;α, β > 0 (2.30)

which is Gamma (α+ x, t+ β) and the posterior mean is

E (Λ | x) =

∫ ∞
0

λ
(t+ β)α+x

Γ (α+ x)
e−(t+β)λλα+x−1dλ

=
(t+ β)α+x

Γ (α+ x)

∫ ∞
0

λ(α+x+1)−1e−(t+β)λdλ

=
(t+ β)α+x

Γ (α+ x)

Γ (α+ x+ 1)

(t+ β)α+x+1

=
α+ x

t+ β
. (2.31)
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2.3.2 Poisson-Shifted Gamma Distribution

Consider the shifted gamma distribution

g (λ) =
βα

Γ (α)
e−β(λ−µ) (λ− µ)α−1 , λ > µ;µ, α, β > 0 (2.32)

where µ is the shift parameter.

Proposition 2.3.2. (a) The mixed Poisson distribution is

f (x) =
x∑
k=0

[
e−µt (µt)x−k

(x− k)!

](
k + α− 1

k

)(
t

t+ β

)k ( β

t+ β

)α
(2.33)

which is a convolution of Poisson distribution and a negative binomial distribution. It is called

Delaporte distribution (Ruohonen, 1988).

(b) The rth moment of the mixing distribution is

E (Λr) =
r∑

k=0

r!µr−k

(r − k)!

(
α+ k − 1

k

)
1

βk
(2.34)

and in particular,

E (Λ) = µ+
α

β
(2.35)

E
(
Λ2
)

= µ2 +
2µα

β
+
α (α+ 1)

β2

E
(
Λ3
)

= µ3 +
3αµ2

β
+

3α (α+ 1)µ

β2
+
α (α+ 1) (α+ 2)

β3

E
(
Λ4
)

= µ4 +
4αµ3

β
+

6α (α+ 1)µ2

β2
+

4α (α+ 1) (α+ 2)µ

β3

+
α (α+ 1) (α+ 2) (α+ 3)

β4

so that

V ar (Λ) =
α

β2
(2.36)

E [Λ− E (Λ)]3 =
2α

β3
(2.37)

E [Λ− E (Λ)]4 =
3α (α+ 2)

β4
. (2.38)

(c) Moments of the Delaporte distribution are

E (X) =

(
µ+

α

β

)
t (2.39)

V ar (X) =
α

β2
t2 +

(
µ+

α

β

)
t (2.40)
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µ3 = E [X − E (X)]3

=
2α

β3
t3 +

3α

β2
t2 +

(
µ+

α

β

)
t (2.41)

µ4 = E [X − E (X)]4

=
3α (α+ 2)

β4
t4 + 6

[
2α−

(
µ+

α

β

)3
]
t3

+

[
7α+ 3

(
µ+

α

β

)2
]
t2

β2
+

(
µ+

α

β

)
t. (2.42)

Remark: If µ = 0, we obtain the results of the Poisson-Gamma distribution.

(d) The posterior distribution is

g (λ | x) =

∑x
k=0

(
x
k

)
µx−k (λ− µ)k+α−1 e−(t+β)(λ−µ)∑x

k=0

(
x
k

)
µx−kΓ (k + α) (t+ β)−(k+α)

(2.43)

The posterior rth moment is

E (Λr | x) =

∑x
k=0

{(
x
k

)
µx−k

∑r
j=0

(
r
j

)
µr−jΓ (j + k + α) (t+ β)−(j+k+α)

}
∑x

k=0

(
x
k

)
µx−kΓ (k + α) (t+ β)−(k+α)

(2.44)

and in particular, the posterior mean is

E (Λ | x) =

∑x−1
k=0

(
x
k

)
µx−k Γ(k+α)

(t+β)k+α

(
µ+ k+α

t+β

)
+ Γ(x+α)

(t+β)x+α

(
µ+ x+α

t+β

)
∑x−1

k=0

(
x
k

)
µx−k Γ(k+α)

(t+β)(k+α)
+ Γ(x+α)

(t+β)x+α

. (2.45)

Proof. From equation (2.32) the mixed Poisson distribution is

f (x) =

∫ ∞
µ

e−λt (λt)x

x!

βα

Γ (α)
e−β(λ−µ) (λ− µ)α−1 dλ

=
tx

x!

βα

Γ (α)

∫ ∞
µ

e−λtλxe−β(λ−µ) (λ− µ)α−1 d

and making the substitution z = λ− µ, we obtain

f (x) =
tx

x!

βα

Γ (α)
e−µt

∫ ∞
0

(z + µ)x zα−1e−(t+β)zdz

=
tx

x!

βα

Γ (α)
e−µt

x∑
k=0

{(x
k
)
µx−k

∫ ∞
0

zk+α−1e−(t+β)zdz

}

=
tx

x!

βα

Γ (α)
e−µt

x∑
k=0

(x
k
)
µx−k

Γ (k + α)

(t+ β)k+α

= e−µt
x∑
k=0

(x
k
) Γ (k + α)

x!Γ (α)
(µt)x−k

(
t

t+ β

)k ( β

t+ β

)α
= e−µt

(
β

t+ β

)α x∑
k=0

Γ (k + α)

k! (x− k)!Γ (α)
(µt)x−k

(
t

t+ β

)k
=

x∑
k=0

[
e−µt (µt)x−k

(x− k)!

](
k+α−1
k

)(
t

t+ β

)k ( β

t+ β

)α
18



which is (2.33).

The pgf of Delaporte distribution is,

G (s) =
βα

Γ (α)

∞∑
x=0

1

x!

∫ ∞
µ

e−λt (λts)x e−β(λ−µ) (λ− µ)α−1 dλ

=
βα

Γ (α)

∫ ∞
µ

(λ− µ)α−1 e−λt(1−s)e−β(λ−µ)dλ

and making the substitution z = λ− µ, we obtain

G (s) =
βα

Γ (α)
e−µt(1−s)

∫ ∞
0

zα−1e−[β+t−ts]zdz

=
βα

Γ (α)
e−µt(1−s)

Γ (α)

(β + t− ts)α

= e−µt(1−s)
[

β

t+ β − ts

]α
(2.46)

which is the product of the pgf of Poisson (µt) and pgf of negative binomial (α, β) and hence

Delaporte distribution is a convolution of Poisson and negative binomial distributions.

2.3.3 Poisson-Transmuted Exponential Distribution

In general, a transmuted probability is defined as

F (x) = (1 + ν)H (x)− ν [H (x)]2 , −1 ≤ ν ≤ 1 (2.47)

where H (x) and F (x) are old and new cdfs, respectively. If h (x) and f (x) are the corresponding

pdfs, then by differentiation

f (x) = (1 + ν)h (x)− 2νH (x)h (x) . (2.48)

Given an exponential pdf,

h (x) = θe−θx, x > 0; θ > 0 (2.49)

then

F (x) = (1 + ν)
[
1− e−θx

]
− ν

[
1− e−θx

]2
(2.50)

and

f (x) = (1 + ν) θe−θx − 2ν
[
1− e−θx

]
θe−θx

= (1 + ν) θe−θx − 2νθe−θx + 2νθe−2θx

= (1− ν) θe−θx + 2νθe−2θx

= (1− ν) θe−θx + ν
(

2θe−2θx
)
x > 0; θ > 0. (2.51)

Let ν = α then

f (x) = (1− α) θe−θx + 2αθe−2θx (2.52)
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which is a transmuted exponential distribution (Bhati et al, 2015). This is a finite mixture of an

exponential distribution with parameter θ with another exponential distribution with parameter 2θ.

We shall thus denote the transmuted exponential mixing distribution as

g (λ) = (1− α) θe−θλ + 2αθe−2θλ, λ > 0; θ, α > 0 (2.53)

Proposition 2.3.3. (a) The Poisson-transmuted exponential distribution is

f (x) = (1− α)

(
t

t+ θ

)x( θ

t+ θ

)
+ α

(
t

t+ 2θ

)x( 2θ

t+ 2θ

)
, x = 0, 1, 2, . . . ; θ > 0 (2.54)

which is a finite mixture of geometric distributions with parameters θ
t+θ and 2θ

t+2θ .

(b) The rth moment of the mixing distribution is

E (Λr) =
r! [2r − (2r − 1)α]

2rθr
, r = 1, 2, 3, 4 (2.55)

so that

V ar (Λ) =
4− 2α− α2

4θ2
(2.56)

E [Λ− E (Λ)]3 =
3 (8− 7α)

4θ3
− 3 (4− 3α) (2− α)

4θ3
+

(2− α)3

4θ3
(2.57)

E [Λ− E (Λ)]4 =
3 (16− 7α)

2θ4
− 3 (8− 7α) (2− α)

2θ4
+

3 (4− 3α) (2− α)2

4θ4
− 3 (2− α)4

16θ4
. (2.58)

(c) Raw moments of the mixture are

E (X) =
2− α

2θ
t (2.59)

E
(
X2
)

=
4− 3α

2θ2
t2 +

2− α
2θ

t (2.60)

E
(
X3
)

=
3 (8− 7α)

4θ3
t3 +

3 (4− 3α)

2θ2
t2 +

2− α
2θ

t (2.61)

E
(
X4
)

=
3 (16− 15α)

2θ4
+

9 (8− 7α)

2θ3
t3 +

7 (4− 3α)

2θ2
t2 +

2− α
2θ

t. (2.62)

Thus, variance is

µ2 = V ar (X)

=

(
4− 2α− α2

)
4θ2

t2 +

(
2− α

2θ

)
t, (2.63)

third central moment is

µ3 = E [X − E (X)]3

=

(
8− 3α− 3α2 − α3

)
4θ3

t3 +
3
(
4− 2α− α2

)
4θ2

t2 +

(
2− α

2θ

)
t (2.64)
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and fourth central moment is

µ4 =

{
3
(
12− 22α+ 8α2 − 5α3

)
4θ4

− 3α4

16θ4

}
t4 +

3
(
24− 14α− 6α2 + α3

)
4θ3

t3

+

(
40− 26α− 3α2

)
4θ2

t2 +

(
2− α

2θ

)
t. (2.65)

(d) Posterior distribution is

g (λ | x) =
e−λtλx

(
(1− α) e−θλ + 2αe−2θλ

)
x!
[

(1−α)

(t+θ)x+1 + 2α
(t+2θ)x+1

] (2.66)

The posterior rth moment is

E [Λr | x] =
(x+ r)!

x!


(1−α)

(t+θ)r+x+1 + 2α
(t+2θ)r+x+1

(1−α)

(t+θ)x+1 + 2α
(t+2θ)x+1

 (2.67)

and in particular, the posterior mean is

E [Λ | x] = (x+ 1)


(1−α)

(t+θ)x+2 + 2α
(t+2θ)x+2

(1−α)

(t+θ)x+1 + 2α
(t+2θ)x+1

 (2.68)

Proof. The Poisson-Transmuted Exponential distribution is obtained as;

f (x) =

∫ ∞
0

e−λt (λt)x

x!

[
(1− α) θe−θλ + 2αθe−2θλ

]
dλ

=
(1− α) θtx

x!

∫ ∞
0

λxe−(t+θ)λdλ+
2αθtx

x!

∫ ∞
0

λxe−(t+2θ)λdλ

=
(1− α) θtx

x!

Γ (x+ 1)

(t+ θ)x+1 +
2αθtx

x!

Γ (x+ 1)

(t+ 2θ)x+1

=
θtx (1− α)

(t+ θ)x+1 +
θtx2α

(t+ 2θ)x+1

= (1− α)

(
t

t+ θ

)x( θ

t+ θ

)
+ α

(
t

t+ 2θ

)x( 2θ

t+ 2θ

)
, x = 0, 1, 2, . . . ; θ > 0

which is (2.54). This result was obtained by Bhati et. al (2015), when t = 1.

2.3.4 Poisson-Lindley Distribution

The pdf of Lindley distribution is

g (λ) =
θ2

θ + 1
(λ+ 1) e−λθ, λ > 0; θ > 0 (2.69)

Proposition 2.3.4. (a) The Poisson-Lindley distribution is

f (x) =
θ2tx

(θ + 1)

[
x+ 1 + t+ θ

(t+ θ)x+2

]
, x = 0, 1, 2, . . . ; λ, θ > 0 (2.70)

When t = 1, we have a result similar to that of Sankaran (1970a).
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(b) The rth moment of Lindley distribution is

E (Λr) =
r!

θ + 1

(r + 1 + θ)

θr
, r = 1, 2, 3, 4 (2.71)

so that

V ar (Λ) =
2 + 4θ + θ2

(θ + 1)2 θ2
(2.72)

E [Λ− E (Λ)]3 =
2
(
8 + 6θ + 6θ2 + θ3

)
(θ + 1)3 θ3

(2.73)

E [Λ− E (Λ)]4 =
12
(
6 + 16θ + 17θ2 + 8θ3 + θ4

)
(θ + 1)4 θ4

. (2.74)

(c) Raw moments of Poisson-Lindley distribution are

E (X) =
(2 + θ)

(θ + 1) θ
t (2.75)

E
(
X2
)

=
2 (3 + θ)

(θ + 1) θ2
t2 +

(2 + θ)

(θ + 1) θ
t (2.76)

E
(
X3
)

=
6 (4 + θ)

(θ + 1) θ3
t3 +

6 (3 + θ)

(θ + 1) θ2
t2 +

(2 + θ)

(θ + 1) θ
t (2.77)

E
(
X4
)

=
24 (5 + θ)

(θ + 1) θ4
t4 +

36 (4 + θ)

(θ + 1) θ3
t3 +

14 (3 + θ)

(θ + 1) θ2
t2 +

(2 + θ)

(θ + 1) θ
t. (2.78)

Thus, variance is

µ2 =

(
2 + 4θ + θ2

)
(θ + 1)2 θ2

t2 +
(2 + θ)

(θ + 1) θ
t, (2.79)

third central moment is

µ3 =
2
(
8 + 6θ + 6θ2 + θ3

)
(θ + 1)3 θ3

t3 +
3
(
2 + 4θ + θ2

)
(θ + 1)2 θ2

t2 +
(2 + θ)

(θ + 1) θ
t (2.80)

and fourth central moment is

µ4 =
12
(
6 + 16θ + 17θ2 + 8θ3 + θ4

)
(θ + 1)4 θ4

t4 +
6
(
20 + 22θ + 18θ2 + 3θ3

)
(θ + 1)3 θ3

t3

+
2
(
13 + 20θ + 5θ2

)
(θ + 1)2 θ2

t2 +
(2 + θ)

(θ + 1) θ
t. (2.81)

(d) Posterior distribution is

g (λ | x) =
(t+ θ)x+2

x!

λx (λ+ 1) e−(t+θ)λ

(θ + x+ 1 + t)
(2.82)

Therefore, the rth moment of the posterior distribution is

E (Λr | x) =
(x+ r)!

x!

(x+ r + 1 + t+ θ)

(t+ θ)r
(2.83)

and in particular the posterior mean is

E (Λ | x) =
x2 + (3 + t+ θ)x+ (2 + t+ θ)

(t+ θ)
(2.84)
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Proof. From equation (2.69) the mixed Poisson distribution is

f (x) =

∫ ∞
0

e−λt (λt)x

x!

θ2

θ + 1
(λ+ 1) e−λθdλ

=
tx

x!

θ2

θ + 1

∫ ∞
0

(
λx+1 + λx

)
e−(t+θ)λdλ

=
txθ2

x! (θ + 1)

[
Γ (x+ 2)

(t+ θ)x+2 +
Γ (x+ 1)

(t+ θ)x+1

]
=

txθ2

x! (θ + 1)

Γ (x+ 1)

(t+ θ)x+1

{
x+ 1

t+ θ
+ 1

}
=

txθ2

θ + 1

1

(t+ θ)x+1

x+ 1 + t+ θ

t+ θ

=
txθ2

(θ + 1)

x+ 1 + t+ θ

(t+ θ)x+2 ; x = 0, 1, 2, . . .

which is (2.70).

The pgf of Poisson-Lindley distribution is

G (s) =

∫ ∞
0

e−λt(1−s)
θ2

θ + 1
(λ+ 1) e−λθdλ

=
θ2

θ + 1

{∫ ∞
0

λe−λ(θ+t−ts)dλ+

∫ ∞
0

e−λ(θ+t−ts)dλ

}
=

θ2

θ + 1

{
Γ (2)

(θ + t− ts)2 +
1

θ + t− ts

}
=

θ2

θ + 1

(1 + θ + t− ts)
(θ + t− ts)2 (2.85)

When t = 1 in (2.85), then

G (s) =
θ2

(θ + 1)

(θ + 2− s)
(θ + 1− s)2 (2.86)

as given by Johnson et al. (2005).

The posterior distribution is

g (λ|x) =
e−λt (λt)x θ2 (λ+ 1) e−λθ (t+ θ)x+2

x! (θ + 1) txθ2 (θ + x+ 1 + t)

=
e−λtλx (λ+ 1) e−λθ (t+ θ)x+2

x! (θ + x+ 1 + t)

=
(t+ θ)x+2

x! (θ + x+ 1 + t)
λx (λ+ 1) e−(t+θ)λ
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which is (2.82). The posterior mean is

E (Λ|x) =
(t+ θ)x+2

x! (θ + x+ 1 + t)

∫ ∞
0

λx+1 (λ+ 1) e−(t+θ)λdλ

=
(t+ θ)x+2

x! (θ + x+ 1 + t)

{∫ ∞
0

λx+2e−(t+θ)λdλ+

∫ ∞
0

λx+1e−(t+θ)λdλ

}
=

(t+ θ)x+2

x! (θ + x+ 1 + t)

{
Γ (x+ 3)

(t+ θ)x+3 +
Γ (x+ 2)

(t+ θ)x+2

}
=

(t+ θ)x+2 (x+ 1)!

x! (θ + x+ 1 + t) (t+ θ)x+2

{
x+ 2

t+ θ
+ 1

}
=

(x+ 1) (θ + x+ 2 + t)

(t+ θ) (θ + x+ 1 + t)

=
x+ 1

t+ θ
+

x+ 1

(t+ θ) (x+ 1 + θ + t)

=
x+ 1

t+ θ
+

x+ 1 + θ + t− θ − t
(t+ θ) (x+ 1 + θ + t)

=
x+ 2

t+ θ
− 1

x+ 1 + θ + t

which is (2.84).

2.3.5 Poisson- 3 Parameter Generalized Lindley Distribution

Consider the following finite mixture

g (λ) = p1g1 (λ) + p2g2 (λ) (2.87)

where p1 + p2 = 1, p1 > 0, p2 > 0. Suppose p1 = θ
θ+γ , then p2 = γ

θ+γ , and hence

g (λ) =
θ

θ + γ
g1 (λ) +

γ

θ + γ
g2 (λ) . (2.88)

If g1 (λ) is Gamma (α, θ) and g2 (λ) is Gamma (α+ 1, θ) then (2.88) becomes

g (λ) =
θα+1

θ + γ

1

Γ (α+ 1)
(α+ γλ)λα−1e−θλ; λ > 0, α, γ, θ > 0 (2.89)

which is a 3-parameter generalized Lindley distribution, with the following special cases:

(i) α = γ = 1, we have the one-parameter Lindley distribution used by Sankaran (1970a).

(ii) γ = 1, we have a 2-parameter generalized Lindley distribution

g (λ) =
θα+1

θ + 1

1

Γ (α+ 1)
(α+ λ)λα−1e−θλ; λ > 0, α, θ > 0 (2.90)

as obtained by Zakerzadeh and Dollati (2010).
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(iii) α = 1, we have a 2-parameter generalized Lindley distribution

g (λ) =
θ2

1 + γ
(1 + γλ) e−θλ;λ > 0; γ, θ > 0 (2.91)

as obtained by Bhati et al. (2015).

Proposition 2.3.5. (a) The Poisson-3 parameter generalized Lindley distribution is

f (x) =
Γ (x+ α)

x!Γ (α+ 1)

{(
α+

αt+ γx

θ + γ

)(
t

t+ θ

)x( θ

t+ θ

)α+1
}

(2.92)

with the following special cases:

(i) α = λ = 1 and t = 1, we have

f (x) =
θ2 (x+ θ + 2)

(1 + θ)x+α+2 (2.93)

as obtained by Sankaran (1970a).

(ii) γ = 1 and t = 1, we have

f (x) =
Γ (x+ α)

x!Γ (α+ 1)

{
α+

x+ α

1 + θ

}
1

(1 + θ)x+α+1 (2.94)

as obtained by Mahmoudi and Zakerzadeh (2010).

(iii) α = 1 and t = 1, we have

f (x) =
θ2

(θ + γ)

{
1 +

γ (x+ 1)

1 + θ

}
1

(1 + θ)x+1 ;x = 0, 1, 2, . . . (2.95)

as obtained by Bhati et al (2015).

(b) The rth moment of the 3-parameter generalized Lindley distribution is

E (Λr) =
Γ (α+ r)

θrΓ (α+ 1)

{
α+

rγ

θ + γ

}
, r = 1, 2, 3, 4 (2.96)

Therefore mean is

E (Λ) =
1

θ

{
α+

γ

θ + γ

}
(2.97)

variance is

V ar (Λ) =
αθ2 + 2 (α+ 1) γθ + (α+ 1) γ2

θ2 (θ + γ)2 , (2.98)

third central moment is

E [Λ− E (Λ)]3 =
2αθ3 + 6 (α+ 1) γθ2 + 6 (α+ 1) γ2θ + 2 (α+ 1) γ3

θ3 (θ + γ)3 (2.99)

and the fourth central moment is

E (Λ− E (Λ))4 =
3α (α+ 2) θ4 + 12 (α+ 1) (α+ 2) γθ3 + 6 (α+ 1) (3α+ γ) γ2θ2

θ4 (θ + γ)4

+
12 (α+ 1) (α+ 3) γ2θ + 3 (α+ 1) (α+ 3)

θ4 (θ + γ)4 (2.100)
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(c) The central moments of Poisson-3-parameter generalized Lindley distribution are:

(i)

µ2 =

[
αθ2 + 2 (α+ 1) γθ + (α+ 1) γ2

]
θ2 (θ + γ)2 t2 +

[αθ + (α+ 1) γ]

θ (θ + γ)
t (2.101)

When t = 1, then

µ2 =
αθ3 + [α (γ + 1) + γ (α+ 1)] θ2 + (2 + γ) (α+ 1) γθ + (α+ 1) γ2

θ2 (θ + γ)2 (2.102)

(ii)

µ3 =

[
2αθ3 + 6 (α+ 1) γθ2 + 6 (α+ 1) γ2θ + 2 (α+ 1) γ3

]
θ3 (θ + γ)3 t3

+
3
[
αθ2 + 2 (α+ 1) γθ + (α+ 1) γ2

]
θ2 (θ + γ)2 t2 +

[αθ + (α+ 1) γ]

θ (θ + γ)
t (2.103)

When t = 1, then

θ3 (θ + γ)3 µ3 = αθ5 + (3α+ 3αγ + γ) θ4 +
(
2α+ 9αγ + 6γ + 3αγ2 + 2γ2

)
θ3

+γ (α+ 1)
(
6 + 9γ + γ2

)
θ2 + 3 (α+ 1) (2 + γ) γ2θ

+2 (α+ 1) γ3 (2.104)

Proof. From equation (2.89), the Poisson - 3 parameter generalized Lindley distribution is

f (x) =

∫ ∞
0

e−λt
(λt)x

x!

θα+1

θ + γ
· 1

Γ (α+ 1)
(α+ γλ)λα−1e−θλdλ

=
tx

x!

θα+1

θ + γ

1

Γ (α+ 1)

{∫ ∞
0

αλx+α−1e−(t+θ)λdλ+

∫ ∞
0

γλx+αe−(t+θ)λdλ

}
=

tx

x!

θα+1

θ + γ

1

Γ (α+ 1)

{
αΓ (x+ α)

(t+ θ)x+α +
γΓ (x+ α+ 1)

(t+ θ)x+α+1

}
=

tx

x!

θα+1

θ + γ
· Γ (x+ α)

Γ (α+ 1)

[α (t+ θ) + γ (x+ α)]

(t+ θ)x+α+1

=
Γ (x+ α)

x!Γ (α+ 1)

[α (t+ θ) + γ (x+ α)]

θ + γ

(
t

t+ θ

)x( θ

t+ θ

)α+1

=
Γ (x+ α)

x!Γ (α+ 1)

(
α+

γx+ αt

θ + γ

)(
t

t+ θ

)x( θ

t+ θ

)α+1

, x = 0, 1, 2, . . . ; α, γ, θ > 0
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which is (2.92) and its pgf is

G (s) =

∫ ∞
0

e−λt(1−s)
θα+1

θ + γ

1

Γ (α+ 1)
(α+ γλ)λα−1e−θλdλ

=
θα+1

(θ + γ) Γ (α+ 1)

∫ ∞
0

(
αλα−1 + γλα

)
e−[θ+t−ts]λdλ

=
θα+1

(θ + γ) Γ (α+ 1)

{
α

∫ ∞
0

λα−1e−(θ+t−ts)λdλ+ γ

∫ ∞
0

λαe−(θ+t−ts)λdλ

}
=

θα+1

(θ + γ) Γ (α+ 1)

{
αΓ (α)

(θ + t− ts)α
+

γΓ (α+ 1)

(θ + t− ts)α+1

}
=

θα+1

(θ + γ)

{
1

(θ + t− ts)α
+

γ

(θ + t− ts)α+1

}
=

θα+1

θ + γ

[
θ + t− ts+ γ

(θ + t− ts)α+1

]
. (2.105)

When t = 1 and γ = 1 in (2.92)

f (x) =
Γ (x+ α)

x!Γ (α+ 1)

{
α+

α+ x

1 + θ

}(
1

1 + θ

)x( θ

1 + θ

)α+1

=
Γ (x+ α)

x!Γ (α+ 1)

(
α+

α+ x

1 + θ

)
θα+1

(1 + θ)x+α+1 (2.106)

and in (2.105)

G (s) =
θα+1

θ + 1

[
θ + 1− s+ 1

(θ + 1− s)α+1

]
=

θα+1

θ + 1
· θ + 2− s

(θ + 1− s)α+1

=

(
θ

θ − s+ 1

)α+1(θ − s+ 2

θ + 1

)
(2.107)

as obtained by Mahmoudi and Zakerzadeh (2010).

The rth moment of 3-parameter generalized Lindley distribution is

E (Λr) =

∫ ∞
0

λr
θα+1

(θ + γ)

1

Γ (α+ 1)
(α+ γλ)λα−1e−θλdλ

=
θα+1

(θ + γ) Γ (α+ 1)

∫ ∞
0

λr+α−1 (α+ γλ) e−θλdλ

=
θα+1

(θ + γ) Γ (α+ 1)

{
αΓ (r + α)

θr+α
+
γΓ (r + α+ 1)

θr+α+1

}
=

θα+1

(θ + γ) Γ (α+ 1)

Γ (r + α)

θr+α

{
α+

γ (r + α)

θ

}
=

θα+1Γ (r + α)

(θ + γ) Γ (α+ 1) θr+α

{
αθ + γr + γα

θ

}
=

θα+1Γ (r + α)

Γ (α+ 1) θr+α+1

{
α (θ + γ) + γr

(θ + γ)

}
=

Γ (r + α)

Γ (α+ 1) θr

[
α+

γr

θ + γ

]
, r = 1, 2, 3, 4
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which is (2.96) so that

V ar (Λ) = E
(
Λ2
)
− [E (Λ)]2

=
(α+ 1)

θ2

[α (θ + γ) + 2γ] (θ + γ)

(θ + γ)2 − [α (θ + γ) + γ]2

θ2 (θ + γ)2 .

Now,

θ2 (θ + γ)2 V ar (Λ) = (α+ 1) [α (θ + γ) + 2γ] (θ + γ)− [α (θ + γ) + γ]2

= α (α+ 1) (θ + γ)2 + 2 (α+ 1) γ (θ + γ)−
[
α2 (θ + γ)2 + 2αγ (θ + γ) + γ2

]
= α (θ + γ)2 + 2γ (θ + γ)− γ2

= (θ + γ) (αθ + αγ + 2γ)− γ2

= γθ2 + (2αγ + 2γ) θ + αγ2 + 2γ2 + γ2

= αθ2 + 2 (α+ 1) γθ + (α+ 1) γ2

Therefore

V ar (Λ) =
αθ2 + 2 (α+ 1) γθ + (α+ 1) γ2

θ2 (θ + γ)2

which is (2.98).

Next,

E [Λ− E (Λ)]3 = E
(
Λ3
)
− 3E

(
Λ2
)
E (Λ) + 2 [E (Λ)]3

θ3 (θ + γ)3 E [Λ− E (Λ)]3 = (α+ 1) (α+ 2) [α (θ + γ) + 3γ] (θ + γ)2

−3 (α+ 1) [α (θ + γ) + 2γ] [α (θ + γ) + γ] (θ + γ)

+2 [α (θ + γ) + γ]3

= α (α+ 1) (α+ 2) (θ + γ)3 + 3 (α+ 1) (α+ 2) γ (θ + γ)2

−3 (α+ 1)
[
α2 (θ + γ)3 + 3αγ (θ + γ)2 + 2γ2 (θ + γ)

]
+2 [α (θ + γ) + γ]3

=
[
α (α+ 1) (α+ 2)− 3 (α+ 1)α2

]
(θ + γ)3

+ [3 (α+ 1) (α+ 2) γ − 9αγ (α+ 1)] (θ + γ)2

−6 (α+ 1) γ2 (θ + γ) + 2 [α (θ + γ) + γ]3

=
[
(α+ 1)

(
α2 + 2α− 3α2

)]
(θ + γ)3

+ [3 (α+ 1) γ (α+ 2− 3α)] (θ + γ)2

−6 (α+ 1) γ2 (θ + γ) + 2 [α (θ + γ) + γ]3

= [2α (α+ 1) (1− α)] (θ + γ)3 + [3 (α+ 1) γ (2− 2α)] (θ + γ)2

−6 (α+ 1) γ2 (θ + γ) + 2 [α (θ + γ) + γ]3
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Further solving yields

θ3 (θ + γ)3 E [Λ− E (Λ)]3 =
[
2α
(
1− α2

)]
(θ + γ)3 + 6

(
1− α2

)
γ (θ + γ)2

−6 (α+ 1) γ2 (θ + γ)

+2
[
α3 (θ + γ)3 + 3α2 (θ + γ)2 γ + 3α (θ + γ) γ2 + γ3

]
=

[
2α− 2α3 + 2α3

]
(θ + γ)3 +

[
6
(
1− α2

)
γ + 6α2γ

]
(θ + γ)2

+
[
6αγ2 − 6 (α+ 1) γ2

]
(θ + γ) + 2γ3

= 2α (θ + γ)3 + 6γ (θ + γ)2 − 6γ2 (θ + γ) + 2γ3

= 2α
(
θ3 + 3θ2γ + 3θγ2 + γ3

)
+ 6γ

(
θ2 + 2γθ + γ2

)
− 6γ2θ − 4γ3

= 2αθ3 + [6αγ + 6γ] θ2 +
[
6αγ2 + 12γ2

]
θ

+2αγ3 + 6γ3 + 2γ3 − 6γ3

= 2αθ3 + 6 (α+ 1) γθ2 +
(
6αγ2 + 6γ2

)
θ + 2 (α+ 1) γ3

Therefore the third central moment is

E [Λ− E (Λ)]3 =
2αθ3 + 6 (α+ 1) γθ2 + 6 (α+ 1) γ2θ + 2 (α+ 1) γ3

θ3 (θ + γ)3

which is (2.99).

2.3.6 Special Cases of Poisson-3 Parameter Generalized Lindley Distribution

When α = γ = 1, then the second central moment of the mixture is

µ2 =
θ3 + 4θ2 + 6θ + 2

θ2 (θ + 1)2

a result obtained by Sankaran (1970a) and when γ = 1 then

µ2 =
αθ3 + (3α+ 1) θ2 + 3 (α+ 1) θ + (α+ 1)

θ2 (θ + 1)2

=
α
(
θ3 + 3θ2 + 3θ + 1

)
+ θ2 + 3θ + 1

θ2 (θ + 1)2

=
α (θ + 1)3 + θ2 + 3θ + 1

θ2 (θ + 1)2 (2.108)

as obtained by Mahmoudi and Zakerzadeh (2010).

Also when γ = 1, the third moment about the mean for the mixture is obtained as
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θ3 (θ + 1)3 µ3 = αθ5 + (6α+ 1) θ4 + (14α+ 8) θ3 + 16 (α+ 1) θ2 + 9 (α+ 1) θ + 2 (α+ 1)

= αθ
[
θ4 +

(
4θ3 + 2θ3

)
+
(
6θ2 + 8θ2

)
+ (4θ + 12θ) + (1 + 8)

]
+ 2α+

[
θ4 + 8θ3 + 16θ2 + 9θ + 2

]
= αθ

[(
θ4 + 4θ3 + 6θ2 + 4θ + 1

)
+
(
2θ3 + 8θ2 + 12θ + 8

)]
+ 2α+

[
θ4 + 8θ3 + 16θ2 + 9θ + 2

]
= αθ (θ + 1)4 + αθ

[
2θ3 + 8θ2 + 12θ + 8

]
+ 2α+

[
θ4 + 8θ3 + 16θ2 + 9θ + 2

]
= αθ (θ + 1)4 + 2α

[
θ4 + 4θ3 + 6θ2 + 4θ + 1

]
+
[
θ4 + 8θ3 + 16θ2 + 9θ + 2

]
= αθ (θ + 1)4 + 2α (θ + 1)4 +

[
θ4 + 8θ3 + 16θ2 + 9θ + 2

]
= α (θ + 1)4 (θ + 2) +

[
θ4 + 8θ3 + 16θ2 + 9θ + 2

]
Which on further solving becomes:

θ3 (θ + 1)3 µ3 = α (θ + 1)4 (θ + 2) +
[
θ4 + 8θ2 (θ + 2) + 8θ + (θ + 2)

]
= α (θ + 1)4 (θ + 2) +

[
θ4 + 8θ +

(
8θ2 + 1

)
(θ + 2)

]
= α (θ + 1)4 (θ + 2) +

[
θ
(
θ3 + 8

)
+
(
8θ2 + 1

)
(θ + 2)

]
= α (θ + 1)4 (θ + 2) +

[
θ (θ + 2)

(
θ2 − 2θ + 4

)
+
(
8θ2 + 1

)
(θ + 2)

]
Therefore

µ3 =
α (θ + 1)4 (θ + 2) +

[
θ3 + 6θ2 + 4θ + 1

]
(θ + 2)

θ3 (θ + 1)3 (2.109)

as obtained by Mahmoudi and Zakerzadeh (2010).
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Chapter 3

MIXED POISSON DISTRIBUTIONS

IN TERMS OF SPECIAL FUNCTIONS

3.1 Introduction

In this chapter, mixed Poisson distributions and their probability generating functions have been

expressed in terms of special functions. Specifically, we shall express them in terms of confluent

hypergeometric functions and modified Bessel functions.

We shall first define confluent hypergeometric function and give its properties. Examples of

Poisson mixtures based on this function will follow. We shall next define modified Bessel function

of the third kind and gives its properties. Examples of Poisson mixtures based on this function will

follow.

3.2 Confluent hypergeometric functions

3.2.1 Kummer’s Series

The confluent hypergeometric function, also known as Kummer’s series, denoted by 1F1 (a, c;x) is

defined as:

1F1 (a, c;x) = 1 +
a

c

x

1!
+
a (a+ 1)

c (c+ 1)

x2

2!
+ . . .

= 1 +

∞∑
n=1

a (a+ 1) (a+ 2) . . . (a+ n− 1)

c (c+ 1) (c+ 2) . . . (c+ n− 1)

xn

n!
(3.1)

where c 6= 0,−1,−2,−3, . . .
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An integral representation is derived as follows:

1F1 (a, c;x) = 1 +
∞∑
n=1

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1) aΓ (a)

(c+ n− 1) (c+ n− 2) . . . (c+ 2) (c+ 1) cΓ (c)

Γ (c)

Γ (a)

xn

n!

= 1 +

∞∑
n=1

Γ (a+ n)

Γ (c+ n)

Γ (c)

Γ (a)

xn

n!

= 1 +
∞∑
n=1

Γ (a+ n) Γ (c− a)

Γ (c+ n)
· Γ (c)

Γ (a) Γ (c− a)

xn

n!

= 1 +
∞∑
n=1

B (a+ n, c− a)
1

B (a, c− a)

xn

n!

On further simplification, we have

1F1 (a, c;x) = 1 +
1

B (a, c− a)

∞∑
n=1

B (a+ n, c− a)
xn

n!

= 1 +
1

B (a, c− a)

∞∑
n=1

∫ 1

0
ta+n−1 (1− t)c−a−1 x

n

n!
dt

= 1 +
1

B (a, c− a)

∞∑
n=1

∫ 1

0
ta−1 (1− t)c−a−1 (xt)n

n!
dt

= 1 +
1

B (a, c− a)

∫ 1

0
ta−1 (1− t)c−a−1

( ∞∑
n=1

(xt)n

n!

)
dt

= 1 +
1

B (a, c− a)

∫ 1

0
ta−1 (1− t)c−a−1 (ext − 1

)
dt

=
1

B (a, c− a)

1∫
0

ta−1 (1− t)c−a−1 extdt (3.2)

and making the substitution z = (1− t) we obtain

1F1 (a, c;x) =
1

B (a, c− a)

∫ 1

0
zc−a−1 (1− z)a−1 ex(1−z)dz

=
ex

B (c− a, a)

∫ 1

0
zc−a−1 (1− z)c−(c−a)−1 e−xzdz

= ex 1F1 (c− a, c;−x) (3.3)

3.2.2 Tricomi Confluent hypergeometric function

Another confluent hypergeometric function also known as Tricomi has integral representation

ψ (a, c;x) =
1

Γ (a)

∞∫
0

ta−1 (1 + t)c−a−1 e−xtdt. (3.4)

The following relation holds:

ψ (a, c;x) = x1−cψ (a− c+ 1, 2− c;x) . (3.5)
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The connection between Tricomi and Kummer’s confluent hypergeometric functions is

ψ (a; c;x) =
Γ (1− c)

Γ (a− c+ 1)
1F1 (a, c;x) +

Γ (c− 1)x1−c

Γ (a)
1F1 (a− c+ 1, 2− c;x) (3.6)

where c 6= 0,−1,−2, . . ..

3.2.3 Incomplete Gamma Function

Incomplete Gamma function is defined as

γ (a, x) =

x∫
0

ta−1e−tdt (3.7)

which is related to confluent hypergeometric function as shown below:

γ (a, x) =

x∫
0

ta−1e−tdt

=

∫ x

0
ta−1

∞∑
n=0

(−t)n

n!
dt

=

∞∑
n=0

(−1)n

n!

∫ x

0
ta+n−1dt

=
∞∑
n=0

(−1)n

n!

xa+n

a+ n

= xa
∞∑
n=0

1

a+ n

(−x)n

n!

which becomes

γ (a, x) = xa

{
1

a
+

1

a+ 1

(−x)

1!
+

1

a+ 2

(−x)2

2!
+

1

a+ 3

(−x)3

3!
+ · · ·

}

=
xa

a

{
1 +

a

a+ 1

(−x)

1!
+

a

a+ 2

(−x)2

2!
+

a

a+ 3

(−x)3

3!
+ · · ·

}

=
xa

a

{
1 +

a

a+ 1

(−x)

1!
+

a (a+ 1)

(a+ 1) (a+ 2)

(−x)2

2!
+

a (a+ 1) (a+ 2)

(a+ 1) (a+ 2) (a+ 3)

(−x)3

3!
+ · · ·

}

=
xa

a

{
1 +

∞∑
n=1

a (a+ 1) (a+ 2) · · · (a+ n− 1)

(a+ 1) (a+ 2) · · · (a+ n)

(−x)n

n!

}
(3.8)

therefore

γ (a, x) =
xa

a
1F1 (a, a+ 1;−x) (3.9)

and using relation (3.3), we get the relation

γ (a, x) =
xa

a
e−x 1F1 (1, a+ 1;x) (3.10)

as given by Johnson et al (2005).
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3.3 Mixed Poisson distributions based on Confluent

Hypergeometric Functions

3.3.1 Beta I distribution

The Beta I distribution is

g (λ) =
λα−1 (1− λ)β−1

B (α, β)
, 0 < λ < 1; α, β > 0 (3.11)

Proposition 3.3.1. The Poisson-Beta I distribution is

f (x) =
tx

x!

B (x+ α, β)

B (α, β)
1F1 (x+ α, x+ α+ β;−t) , x = 0, 1, 2, . . . ;α, β > 0 (3.12)

and its pgf is

G (s) = 1F1 (α, α+ β;−t (1− s)) (3.13)

Proof. The mixed Poisson distribution is

f (x) =

1∫
0

e−λt (λt)x

x!

λα−1 (1− λ)β−1

B (α, β)
dλ

=
tx

x!B (α, β)

1∫
0

λx+α−1 (1− λ)(x+α)+β−(x+α)−1 e−λtdλ

=
tx

x!

B (x+ α, β)

B (α, β)
1F1 (x+ α, x+ α+ β;−t) , x = 0, 1, 2, . . . ;α, β > 0

which is (3.12) and has pgf

G (s) =
1

B (α, β)

1∫
0

λα−1 (1− λ)α+β−α−1 e−[t(1−s)]λdλ

= 1F1 (α, α+ β;−t (1− s))

as obtained by Gurland (1958) and Katti (1966) .

3.3.2 Rectangular distribution

The Rectangular distribution is

g (λ) =
1

b− a
, a ≤ λ ≤ b (3.14)

Proposition 3.3.2. The Poisson-Rectangular distribution is

f (x) =
tx

(x+ 1)! (b− a)

{
bx+1

1F1 (x+ 1, x+ 2;−bt)− ax+1
1F1 (x+ 1, x+ 2;−at)

}
(3.15)

and its pgf is

G (s) =
1

(b− a) (1− s) t

{
e−bt(1−s) − e−at(1−s)

}
(3.16)
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Proof. The mixed Poisson distribution is

f (x) =

b∫
a

e−λt
(λt)x

x!

dλ

b− a

=
tx

x! (b− a)


b∫

0

e−λtλxdλ−
a∫

0

e−λtλxdλ


and making the substitution y = λt we obtain

f (x) =
tx

x! (b− a)


bt∫

0

e−y
yx

tx+1
dy −

at∫
0

e−y
yx

tx+1
dy


=

1

x! (b− a) t
{γ (x+ 1, bt)− γ (x+ 1, at)}

=
1

x! (b− a) t

{
1

x+ 1
(bt)x+1

1F1 (x+ 1, x+ 2;−bt)
}

− 1

x! (b− a) t

{
1

x+ 1
(at)x+1

1F1 (x+ 1, x+ 2;−at)
}

=
tx

(x+ 1)! (b− a)

{
bx+1

1F1 (x+ 1;x+ 2;−bt)− ax+1
1F1 (x+ 1;x+ 2;−at)

}
which is (3.15) and its pgf is

G (s) =

b∫
a

e−λt(1−s)
dλ

b− a

=
1

(b− a) (1− s) t

{
e−bt(1−s) − e−at(1−s)

}
which yields a result obtained by Bhattacharya and Holla (1965) for t = 1.

3.3.3 Beta II distribution

The beta distribution of second kind also known as inverted beta distribution is

g (λ) =
λα−1

B (α, β) (1 + λ)α+β
, λ > 0; α, β > 0 (3.17)

Proposition 3.3.3. The Poisson-Beta II distribution is

f (x) =
tx

x!

Γ (x+ α)

B (α, β)
ψ (x+ α, x− β + 1; t) , x = 0, 1, 2, . . . ;α, β > 0 (3.18)

and its pgf is

G (s) =
Γ (α)

B (α, β)
ψ (α, 1− β; t (1− s)) , 0 < β < 1 (3.19)
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Proof. The mixed Poisson distribution is

f (x) =

∞∫
0

e−λt
(λt)x

x!

λα−1

B (α, β) (1 + λ)α+β
dλ

=
tx

x!B (α, β)

∞∫
0

λx+α−1 (1 + λ)x+1−β−(x+α)−1 e−λtdλ

=
tx

x!

Γ (x+ α)

B (α, β)
ψ (x+ α, x− β + 1; t)

which is (3.18) and its pgf is

G (s) =
1

B (α, β)

∞∫
0

λα−1 (1 + λ)1−β−α−1 e−λt(1−s)dλ

=
Γ (α)

B (α, β)
ψ (α, 1− β; t (1− s)) , 0 < β < 1

3.3.4 Scaled Beta distribution

Consider the classical Beta (Beta I) distribution

w (y) =
yα−1 (1− y)β−1

B (α, β)
, 0 < y < 1; α, β > 0

and making the substitution

y =
λ

µ
=⇒ λ = µy and

dy

dλ
=

1

µ

we have the scaled Beta distribution

g (λ) =
λα−1 (µ− λ)β−1

µα+β−1B (α, β)
, 0 < λ < µ; α, β > 0 (3.20)

Proposition 3.3.4. The Poisson-Scaled Beta distribution is

f (x) =
(µt)x

x!

B (α+ x, β)

B (α, β)
1F1 (α+ x, α+ x+ β;−µt) , x = 0, 1, 2, . . . (3.21)

and its pgf is

G (s) = 1F1 (α, α+ β;−µt (1− s)) (3.22)

Proof. The mixed Poisson distribution is

f (x) =
tx

x!µα+β−1B (α, β)

µ∫
0

e−λtλα+x−1 (µ− λ)β−1 dλ
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and making the substitution λ = µz we obtain

f (x) =
txµx

x!B (α, β)

1∫
0

zα+x−1 (1− z)α+x+β−(α+x)−1 e−µztdz

=
(µt)x

x!

B (α+ x, β)

B (α, β)
1F1 (α+ x, α+ x+ β;−µt) , x = 0, 1, 2, . . .

Its pgf is

G (s) =
1

µα+β−1B (α, β)

µ∫
0

λα−1 (µ− λ)β−1 e−λt(1−s)dλ

and using the above substitution we obtain

G (s) =
µα−1+β−1+1

µα+β−1B (α, β)

1∫
0

zα−1 (1− z)α+β−α−1 e−µt(1−s)zdz

= 1F1 (α, α+ β;−µt (1− s))

which yields a result obtained by Willmot (1986) when t = 1.

A more general situation is given by letting

y =
λ− σ
µ

=⇒ λ = µy + σ and
dy

dλ
=

1

µ

If

ω (y) =
yα−1 (1− y)β−1

B (α, β)
, 0 < y < 1; α, β > 0

then

g (λ) =
(λ− σ)α−1 ((µ+ σ)− λ)β−1

µα+β−1B (α, β)
, σ < λ < σ + µ;α, β, σ > 0

and therefore

f (x) =
tx

x!µα+β−1B (α, β)

σ+µ∫
σ

λx (λ− σ)α−1 [(σ + µ)− λ]β−1 e−λtdλ

and making the substitution

z =
λ− σ
µ

=⇒ λ = µz + σ and dλ = µdz,

we obtain

f (x) =
tx

x!µα+β−1B (α, β)

1∫
0

(µz + σ)x (µz)α−1 [(σ + µ)− µz − σ]β−1 e−(µz+σ)tµdz

=
txe−σt

x!B (α, β)

∫ 1

0
(µz + σ)x zα−1 (1− z)β−1 e−µztdz

=
txe−σt

x!B (α, β)

∫ 1

0

{
x∑
k=0

(
x

k

)
σx−k (µz)k

}
zα−1 (1− z)β−1 e−µztdz

=
txe−σt

x!B (α, β)

x∑
k=0

{(
x

k

)
σx−kµkB (α+ k, β) 1F1 (α+ k, α+ k + β;−µt)

}
. (3.23)
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Its pgf is

G (s) =
1

µα+β−1B (α, β)

σ+µ∫
σ

e−λt(1−s) (λ− σ)α−1 [(µ+ σ)− λ]β−1 dλ

and making the above substitution we obtain

G (s) =
e−σt(1−s)

B (α, β)

1∫
0

zα−1 (1− z)α+β−α−1 e−µt(1−s)zdz

= e−σt(1−s)1F1 (α, α+ β;−µt (1− s)) (3.24)

The special case when α = t = 1 is

G (s) = eσ(s−1)
1F1 (1, 1 + β;µ (s− 1)) (3.25)

as obtained by Willmot (1986) .

3.3.5 The Full Beta model

Kempton (1975) mixed two gamma distributions to obtain what he called Full beta model given by

g (λ) =

∫ ∞
0

ap

Γ (p)
e−aλλp−1 · 1

bqΓ (q)
e−

a
b aq−1da

=
bp

B (p, q)

λp−1

(1 + bλ)p+q
, λ > 0; b, p, q > 0 (3.26)

This distribution can also be obtained by the following transformation:

From the Beta II pdf

ω (y) =
yp−1

B (p, q) (1 + y)p+q
, y > 0; p, q > 0

we make the substitution

y = bλ =⇒ dy

dλ
= b

and therefore the Full beta distribution is

g (λ) =
bp

B (p, q)

λp−1

(1 + bλ)p+q
, λ > 0; b, p, q > 0

Proposition 3.3.5. The Poisson-Full Beta distribution is

f (x) =

(
t

b

)x Γ (x+ p)

B (p, q)x!
ψ

(
x+ p, x+ 1− q; t

b

)
, x = 0, 1, 2, . . . (3.27)

and its pgf is

G (s) =
Γ (p)

B (p, q)
ψ

(
p, 1− q; t

b
(1− s)

)
(3.28)
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Proof. The mixed Poisson distribution is

f (x) =
bp

B (p, q)

tx

x!

∞∫
0

e−λtλx+p−1 (1 + bλ)−p−q dλ

and making the substitution

z = bλ =⇒ λ =
z

b
and dλ =

dz

b
,

we obtain

f (x) =
bptx

B (p, q)x!

1

bx+p

∞∫
0

zx+p−1 (1 + z)x+1−q−(x+p)−1 e−
t
b
zdz

=
bptx

B (p, q)x!

Γ (x+ p)

bx+p
ψ

(
x+ p, x+ 1− q; t

b

)
=

1

x!

(
t

b

)x Γ (x+ p)

B (p, q)
ψ

(
x+ p, x+ 1− q; t

b

)
.

and using relation (3.5) we have

f (x) =

(
t

b

)x Γ (x+ p)

B (p, q)x!
ψ

(
p+ q, x+ 1− q; t

b

)
, x = 0, 1, 2, . . .

which yields the result given by Gupta and Ong (2005) when t = 1.

Its pgf is

G (s) =
bp

B (p, q)

∞∫
0

λp−1 (1 + bλ)−p−q e−λt(1−s)dλ

and making the substitution

z = bλ =⇒ λ =
z

b
and dλ =

dz

b

we obtain

G (s) =
1

B (p, q)

∞∫
0

zp−1 (1 + z)1−p−q−1 e−
t
b
(1−s)zdz

=
Γ (p)

B (p, q)
ψ

(
p, 1− q; t

b
(1− s)

)

3.3.6 Pearson Type I Distribution

The Pearson Type I distribution is

g (λ) =
1

B (p, q)

(λ− a)p−1

(b− a)p−1

(b− λ)q−1

(b− a)q−1

1

b− a
, a ≤ λ ≤ b (3.29)
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Proposition 3.3.6. The Poisson-Pearson Type I distribution is

f (x) =
(at)x e−at

x!

Γ (p+ q)

Γ (p)
x∑
k=0

(
x

k

)(
b− a
a

)k Γ (k + q)

Γ (k + p+ q)1

F1 (k + p; k + p+ q;− (b− a) t) , x = 0, 1, 2, . . .(3.30)

and its pgf is

G (s) = e−at(1−s)B (p, q) 1F1 (p, p+ q;− (b− a) t (1− s)) (3.31)

Proof. The mixed Poisson distribution is

f (x) =

b∫
a

e−λt
(λt)x

x!

1

B (p, q)

(λ− a)p−1

(b− a)p−1

(b− λ)q−1

(b− a)q−1

dλ

b− a

=
tx

x!B (p, q)

b∫
a

e−λtλx
(
λ− a
b− a

)p−1 [
1− λ− a

b− a

]q−1 dλ

b− a

and making the substitution

z =
λ− a
b− a

=⇒ λ = a+ (b− a) z and dλ = (b− a) dz

we obtain

f (x) =
txe−at

x!B (p, q)

1∫
0

e−(b−a)tz [a+ (b− a) z]x zp−1 (1− z)q−1 dz

=
txe−at

x!B (p, q)

1∫
0

e−(b−a)tz

[
x∑
k=0

(
x

k

)
ax−k (b− a)k zk

]
zp−1 (1− z)q−1 dz

=
txe−at

x!

x∑
k=0

{(
x

k

)
ax−k (b− a)

B (k + p, q)

B (p, q)
1F1 (k + p, k + p+ q;− (b− a) t)

}
=

(at)x e−at

x!

Γ (p+ q)

Γ (p)
x∑
k=0

(
x

k

)(
b− a
a

)k Γ (k + p)

Γ (k + p+ q)
1F1 (k + p, k + p+ q;− (b− a) t)

Its pgf is

G (s) =

1∫
0

e−[a+(b−a)z]t(1−s)zp−1 (1− z)q−1 dz

= e−at(1−s)B (p, q)1 F1 (p, p+ q;− (b− a) t (1− s))
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3.3.7 Pearson Type VI Distribution

The Pearson Type VI distribution is

g (λ) =

(
λ−d
d−c

)b−a−1
1
d−c

B (a, b− a)
(

1 + λ−d
d−c

)b , λ > d; a, b, c, d > 0 (3.32)

Proposition 3.3.7. The Poisson-Pearson Type VI distribution is

f (x) =
(dt)x e−dt

x!B (a, b− a)
x∑
k=0

{(
x

k

)(
d− c
d

)k
Γ (k + b− a)ψ (k + b− a, k − a+ 1; (d− c) t)

}
(3.33)

and its pgf is

G (s) =
e−dt(1−s)

B (a, b− a)
Γ (b− a)ψ (b− a, 1− a; (d− c) t (1− s)) (3.34)

Proof. The mixed Poisson distribution is

f (x) =

∞∫
d

e−λt
(λt)x

x!

(
λ−d
d−c

)b−a−1
1
d−c

B (a, b− a)
(

1 + λ−d
d−c

)bdλ
and making the substitution

z =
λ− d
d− c

=⇒ λ = d+ (d− c) z and dλ = (d− c) dz

we obtain

f (x) =
txe−dt

x!B (a, b− a)

∞∫
0

(d+ (d− c) z)x zb−a−1 (1 + z)−b e−(d−c)tzdz

=
txe−dt

x!B (a, b− a)

∞∫
0

{
x∑
k=0

(
x

k

)
dx−k (d− c)k zk+b−a−1

}
(1 + z)−b e−(d−c)tzdz

=
(dt)x e−dt

x!B (a, b− a)
x∑
k=0

{(
x

k

)(
d− c
d

)k
Γ (k + b− a)ψ (k + b− a, k − a+ 1; (d− c) t)

}

and for x = 0 we have

f (0) =
e−dt

B (a, b− a)
Γ (b− a)ψ (b− a, 1− a; (d− c) t)

=
e−dtΓ (b)

Γ (a) Γ (b− a)
Γ (b− a)ψ (b− a, 1− a; (d− c) t)

= e−dt
Γ (b)

Γ (a)
ψ (b− a, 1− a; (d− c) t)
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which is a result given by Albretch (1984) when t=1.

Its pgf is

G (s) =

∞∫
d

e−λt(1−s)
(
λ−d
d−c

)b−a−1

B (a, b− a)
(

1 + λ−d
d−c

)b dλ

d− c

=
e−dt(1−s)

B (a, b− a)

∞∫
0

zb−a−1 (1 + z)−a+1−(b−a)−1 e−(d−c)t(1−s)zdz

=
e−dt(1−s)

B (a, b− a)
Γ (b− a)ψ (b− a, 1− a; (d− c) t (1− s)) (3.35)

3.3.8 Shifted Gamma (Pearson Type III) Distribution

Consider Shifted Gamma distribution given by (2.32).

Proposition 3.3.8. The Poisson-Shifted Gamma distribution is

f (x) =
(µt)x (µβ)α e−µt

x!
ψ (α;α+ x+ 1; (t+ β)µ) , x = 0, 1, 2, . . . (3.36)

and its pgf is

G (s) =
βa

Γ (α)
e−µt(1−s)Γ (α)ψ (α;α+ 1; t (1− s) + β) (3.37)

Proof. The mixed Poisson distribution is

f (x) =
tx

x!

βα

Γ (α)

∞∫
µ

e−λtλxe−β(λ−µ) (λ− µ)α−1 dλ

=
txβαe−µt

x!Γ (α)

∞∫
µ

λx (λ− µ)α−1 e−(t+β)(λ−µ)dλ

and making the substitution

z = λ− µ =⇒ λ = z + µ and dλ = dz,

we obtain

f (x) =
txβαe−µt

x!Γ (α)

∞∫
0

(z + µ)x zα−1e−(t+β)zdz

Next, making the substitution

z = µy =⇒ dz = µdy
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we obtain

f (x) =
txβαe−µt

x!Γ (α)

∞∫
0

µx (1 + y)x µα−1yα−1e−(t+β)µyµdy

=
txβαe−µtµx+α

x!Γ (α)

∞∫
0

yα−1 (1 + y)α+x+1−α−1 e−(t+β)µydy

=
(µt)x (µβ)α e−µt

x!
ψ (α, α+ x+ 1; (t+ β)µ)

as obtained by Rolski et al (1999) . Using the relation (3.5), Albretcht (1984) obtained

f (x) =
txβαe−µt

x!
[(t+ β)]−(α+x) ψ (−x, 1− α− x, (t+ β)µ) . (3.38)

By letting z = λ− µ, its pgf is

G (s) =

∞∫
µ

e−λt(1−s)
βa

Γ (α)
e−β(λ−µ) (λ− µ)α−1 dλ

=
βa

Γ (α)
e−µt(1−s)

∞∫
µ

(λ− µ)α−1 e−(λ−µ)[t(1−s)+β]dλ

=
βa

Γ (α)
e−µt(1−s)

∞∫
0

zα−1 (1 + z)α+1−α−1 e−z[t(1−s)+β]dz

=
βa

Γ (α)
e−µt(1−s)Γ (α)ψ (α, α+ 1; t (1− s) + β)

3.3.9 Truncated Gamma (from above) Distribution

A two-parameter gamma is

h (y) =
ab

Γ (b)
e−ayyb−1; y > 0; a, b > 0 (3.39)

.

Consider the integral

I =

p∫
0

e−ayyb−1dy, p > 0

and making the substitution

x = ay =⇒ y =
x

a
and dy =

dx

a
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we obtain

I =

ap∫
0

e−x
(x
a

)b−1 dx

a

=
1

ab

ap∫
0

e−xxb−1dx

=
1

ab
γ (b, ap) .

Therefore
ab

Γ (b)

p∫
0

e−ayyb−1dy =
ab

Γ (b)

1

ab
γ (b, ap) =

γ (b, ap)

Γ (b)

where γ (b, ap) is a truncated gamma function. Therefore,

ab

Γ (b)

Γ (b)

γ (b, ap)

p∫
0

e−ayyb−1dy = 1

p∫
0

ab

γ (b, ap)
e−ayyb−1dy = 1

which also implies that
p∫

0

e−ayyb−1dy =
γ (b, ap)

ab

Thus, the mixing distribution to be considered is truncated gamma (from above)

g (λ) =
ab

γ (b, ap)
e−aλλb−1, 0 < λ < p; a, b > 0 (3.40)

where p is the truncation parameter.

Proposition 3.3.9. The Poisson-truncated gamma (from above) distribution is

f (x) =
(pt)x

x!

b

b+ x
1F1 (x+ b, x+ b+ 1;−pt− ap)

1F1 (b, b+ 1;−ap)
(3.41)

and its pgf is

G (s) =
1F1 (b, b+ 1;−pt (1− s)− ap)
b−1 (ap)b 1F1 (b, b+ 1;−ap)

(3.42)

Proof. The mixed Poisson distribution is

f (x) =
txab

x!γ (b, ap)

p∫
0

e−λ(t+a)λx+b−1dλ

=
txab

x!γ (b, ap)

γ (x+ b, (t+ a) p)

(t+ a)x+b

=
(pt)x (ap)b

x! (pt+ ap)x+b

γ (x+ b, (pt+ ap))

γ (b, ap)
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and using relation (3.9) we obtain

f (x) =
(pt)x (ap)b

x! (pt+ ap)x+b

(x+ b)−1 (pt+ ap)x+b
1F1 (x+ b, x+ b+ 1;−pt− ap)

b−1 (ap)b 1F1 (b, b+ 1;−ap)

=
(pt)x

x!

b

b+ x
1F1 (x+ b, x+ b+ 1;−pt− ap)

1F1 (b, b+ 1;−ap)

and using relation (3.9), we obtain

f (x) =
(pt)x (ap)b

x! (pt+ ap)x+b

(x+ b)−1 (pt+ ap)x+b

b−1 (ap)b
e−pt−ap1F1 (1, x+ b+ 1; pt+ ap)

e−ap1F1 (1, b+ 1; ap)
(3.43)

which yields a result given by Johnson et al.( 2005) for t = 1.

Its pgf is

G (s) =

p∫
0

e−λt(1−s)
abe−aλλb−1

γ (b, ap)
dλ

=
ab

[t (1− s) + a]b
γ (b, (t (1− s) + a) p)

γ (b, ap)

=
1F1 (b, b+ 1;−pt (1− s)− ap)
b−1 (ap)b 1F1 (b, b+ 1;−ap)

.

3.3.10 Truncated Gamma (from below) Distribution

Consider gamma distribution with two parameters α and β

h (y) =
βα

Γ (α)
e−βyyα−1, y > 0; α, β > 0

therefore
βα

Γ (α)

∞∫
0

e−βyyα−1dy = 1

βα

Γ (α)


λ0∫

0

e−βyyα−1dy +

∞∫
λ0

e−βyyα−1dy

 = 1

γ (α, βλ0)

Γ (α)
+

βα

Γ (α)

∞∫
λ0

e−βyyα−1dy = 1.

Therefore
∞∫
λ0

e−βyyα−1dy =
Γ (α)

βα
− γ (α, βλ0)

βα

=
1

βα
{Γ (α)− γ (α, βλ0)}
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which implies that
∞∫
λ0

βαe−βyyα−1dy

Γ (α)− γ (α, βλ0)
= 1.

Therefore a truncated gamma (from below) distribution is

g (λ) =
βαe−βλλα−1

Γ (α)− γ (α, βλ0)
, λ > λ0 (3.44)

where

γ (α, βλ0) =

∫ βλ0

0
e−yyα−1dy.

Proposition 3.3.10. The Poisson-truncated gamma (from below) distribution is

f (x) =
1

x!

(
β

t+ β

)α( t

t+ β

)x Γ (α+ x)− γ (α+ x, (t+ β)λ0)

Γ (α)− γ (α, βλ0)
(3.45)

and its pgf is

G (s) =

(
β

β + t (1− s)

)α Γ (α)− γ (α, [t (1− s) + β]λ0)

Γ (α)− γ (α, βλ0)
. (3.46)

Proof. The mixed Poisson distribution is

f (x) =

∞∫
λ0

e−λt
(λt)x

x!

βαe−βλλα−1

Γ (α)− γ (α, βλ0)
dλ

=
1

x!

(
β

t+ β

)α( t

t+ β

)x Γ (α+ x)− γ (α+ x, (t+ β)λ0)

Γ (α)− γ (α, βλ0)

and its pgf is

G (s) =

∞∫
λ0

e−λt(1−s)
βαe−βλλα−1

Γ (α)− γ (α, βλ0)
dλ

=

(
β

β + t (1− s)

)α Γ (α)− γ (α, [t (1− s) + β]λ0)

Γ (α)− γ (α, βλ0)
.

3.3.11 Truncated Gamma (from above and below) Distribution

Consider the integral

b∫
a

e−βyyα−1dy =

b∫
0

e−βyyα−1dy −
a∫

0

e−βyyα−1dy

=
γ (α, βb)

βα
− γ (α, βa)

βα

therefore
b∫
a

βαe−βyyα−1dy = γ (α, βb)− γ (α, βa)
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which implies
b∫
a

βαe−βyyα−1

γ (α, βb)− γ (α, βa)
dy = 1.

Hence truncated gamma (from above and below) distribution is

g (λ) =
βαe−βλλα−1

γ (α, βb)− γ (α, βa)
, 0 < a < λ < b <∞; α, β > 0. (3.47)

Proposition 3.3.11. The Poisson - truncated gamma (from below and above) distribution is

f (x) =
1

x!

(
t

t+ β

)x( β

t+ β

)α γ (x+ α, (t+ β) b)− γ (x+ α, (t+ β) a)

[γ (α, βb)− γ (α, βa)]
(3.48)

and its pgf is

G (s) =

[
β

β + t (1− s)

]α
{
γ (α, [β + t (1− s)] b)− γ (α, [β + t (1− s)] a)

γ (α, βb)− γ (α, βa)

}
. (3.49)

Proof. The mixed Poisson distribution is

f (x) =

b∫
a

e−λt
(λt)x

x!

βαe−βλλα−1

γ (α, βb)− γ (α, βa)
dλ

=
txβα

x! [γ (α, βb)− γ (α, βa)]

b∫
a

λx+α−1e−λ(t+β)dλ

=
1

x!

(
t

t+ β

)x( β

t+ β

)α
γ (x+ α, (t+ β) b)− γ (x+ α, (t+ β) a)

[γ (α, βb)− γ (α, βa)]

and its pgf is

G (s) =

b∫
a

e−λt(1−s)
βαe−βλλα−1

γ (α, βb)− γ (α, βa)
dλ

=

[
β

β + t (1− s)

]α
{
γ (α, [β + t (1− s)] b)− γ (α, [β + t (1− s)] a)

γ (α, βb)− γ (α, βa)

}
.

3.3.12 Truncated Pearson Type III Distribution

The Pearson differential equation is

1

y

dy

dx
= − a+ x

c0 + c1x+ c2x2
(3.50)
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where y = f (x) is a probability distribution function. Pearson Type III corresponds to the case of

c2 = 0 and c1 6= 0 in (3.50). Therefore

1

y

dy

dx
= − x+ a

c1x+ c0

= − 1

c1

[
x+ a

x+ c0
c1

]

= − 1

c1
+

c0
c1
− a

c1x+ c0

∫
dy

y
=

∫ [
− 1

c1
+

c0
c1
− a

c1x+ c0

]
dx

log y = − x
c1

+
(
c0c
−1
1 − a

)
c−1

1 log (c1x+ c0) + logK

= − x
c1

+ log (c1x+ c0)m + logK

where m = c−1
1

(
c0c
−1
1 − a

)
. Therefore

log y = log e
− x
c1 + log (c1x+ c0)m + logK

y = Ke
− x
c1 (c1x+ c0)m , c1 6= 0.

If c1 > 0,then c1x+ c0 > 0 implies x > − c0
c1
.

If c1 < 0,let c1 = −δ where δ > 0 then c1x+ c0 > 0 which implies that

−δx+ c0 > 0 =⇒ −δx > −c0 =⇒ δx < c0 =⇒ x <
c0

δ

so that

c1 < 0 =⇒ x < −c0

c1

a case we want to consider. Therefore

y = Ke
− x
c1 (c1x+ c0)m

= Ke
x
δ (c0 − δx)m

= Kδme
x
δ

(c0

δ
− x
)m

.

Making the substitution
c0

δ
= 1 and α =

1

δ

we obtain

y =
K

αm
eαx (1− x)m , x < 1

but

y = f (x)
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therefore
1∫

0

f (x) dx =
K

αm

1∫
0

eαx (1− x)m dx

1 =
K

αm

1∫
0

eαx (1− x)m dx.

Consider the integral
1∫

0

eαx (1− x)m dx =

1∫
0

x1−1 (1− x)2+m−1−1 eαxdx

= B (1,m+ 1) 1F1 (1,m+ 2;α) (3.51)

and making the substitution

β = m+ 2 =⇒ β − 1 = m+ 1 and m = β − 2

we obtain
1∫

0

eαx (1− x)β−2 dx = B (1, β − 1) 1F1 (1, β;α) (3.52)

implying
1∫

0

(1− x)β−2 eαx

B (1, β − 1) 1F1 (1, β;α)
dx = 1.

Thus, the mixing distribution (Truncated Pearson Type III) under consideration is

g (λ) =
(1− λ)β−2 eαλ

B (1, β − 1) 1F1 (1, β;α)
, 0 < λ < 1 (3.53)

Proposition 3.3.12. The Poisson-Truncated Pearson Type III distribution is

f (x) = tx
Γ (β)

Γ (x+ β)
1F1 (x+ 1, x+ β;α− t)

1F1 (1, β;α)
(3.54)

and its pgf is

G (s) =
1F1 (1, β;α− t+ ts)

1F1 (1, β;α)
(3.55)

Proof. The mixed Poisson distribution is

f (x) =

1∫
0

e−λt
(λt)x

x!

(1− λ)β−2 eαλ

B (1, β − 1) 1F1 (1, β;α)
dλ

=
tx

x!B (1, β − 1) 1F1 (1, β;α)

1∫
0

λ(x+1)−1 (1− λ)x+β−(x+1)−1 e(α−t)λdλ

=
tx

x!

B (x+ 1;β − 1)

B (1, β − 1)
1F1 (x+ 1, x+ β;α− t)

1F1 (1, β;α)

= tx
Γ (β)

Γ (x+ β)
1F1 (x+ 1, x+ β;α− t)

1F1 (1, β;α)
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and its pgf is

G (s) =

1∫
0

e−λt(1−s)
(1− λ)β−2 eαλ

B (1, β − 1) 1F1 (1, β;α)
dλ

=
1

B (1, β − 1) 1F1 (1, β;α)

1∫
0

λ1−1 (1− λ)β−1−1 e[α−t(1−s)]λdλ

=
1F1 (1, β;α− t+ ts)

1F1 (1, β;α)
.

When α = t, we have

G (s) =
1F1 (1, β; ts)

1F1 (1, β;α)

a result similar to that given by Johnson et al (2005).

3.3.13 Pareto I Distribution

The Pareto I distribution is

g (λ) =
αβα

λα+1
, λ > β > 0; α > 0 (3.56)

and is sometimes called Pareto of the first kind. Willmot (1993) calls it Shifted Pareto.

Proposition 3.3.13. Poisson-Pareto I distribution is

f (x) =
α (tβ)x e−βt

x!
ψ (1, x− α+ 1;βt) (3.57)

and its pgf is

G (s) = αe−βt(1−s)ψ (1, 1− α;βt (1− s)) . (3.58)

Proof. The mixed Poisson distribution is

f (x) =
αtxβα

x!

∞∫
β

e−λtλx−α−1dλ

and making the substitution

λ = z + β =⇒ z = λ− β and dλ = dz

we obtain

f (x) =
αtxβαe−βt

x!

∞∫
0

(z + β)x−α−1 e−ztdz

and further making the substitution

z = βy =⇒ dz = βdy
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we obtain

f (x) =
αtxβαe−βt

x!

∞∫
0

βx−α−1 (y + 1)x−α−1 e−βytβdy

=
α (tβ)x e−βt

x!

∞∫
0

y1−1 (y + 1)x−α+1−1−1 e−βytdy

=
α (tβ)x e−βt

x!
ψ (1, x− α+ 1;βt) .

Its pgf is

G (s) = αβα
∞∫
β

λ−α−1e−λt(1−s)dλ

and making the substitution

λ = z + β =⇒ z = λ− β and dz = dλ

we obtain

G (s) = αβαe−βt(1−s)
∞∫

0

(z + β)−α−1 e−t(1−s)zdz

and further making the substitution z = βy =⇒ dz = βdy we obtain

G (s) = αβαe−βt(1−s)
∞∫

0

β−α−1 (1 + y)−α−1 e−t(1−s)βyβdy

= αe−βt(1−s)
∞∫

0

y1−1 (1 + y)1−α−1−1 e−t(1−s)βydy

= αe−βt(1−s)ψ (1, 1− α;βt (1− s)) .

3.3.14 Pareto II (Lomax) Distribution

The Pareto II distribution also referred to as Lomax is

g (λ) =
αβα

(λ+ β)α+1 , λ > 0; α, β > 0 (3.59)

Proposition 3.3.14. The Poisson-Pareto II distribution is

f (x) = α (βt)x ψ (x+ 1, x− α+ 1;βt) (3.60)

and its pgf is

G (s) = αψ (1, 1− α;βt (1− s)) (3.61)
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Proof. The mixed Poisson distribution is

f (x) =
tx

x!
αβα

∞∫
0

λx (λ+ β)−α−1 e−λtdλ

and making the substitution

λ = βu =⇒ dλ = βdu

we obtain

f (x) =
tx

x!
αβα

∞∫
0

βxuxβ−α (1 + u)−α−1 e−βtudu

=
tx

x!
αβx

∞∫
0

ux+1−1 (1 + u)1+x−α−(x+1)−1 e−βtudu

= α (βt)x ψ (x+ 1, x− α+ 1;βt) .

Its pgf is

G (s) = αβα
∞∫

0

(λ+ β)−α−1 e−λt(1−s)dλ

= αβα
∞∫

0

(βu+ β)−α−1 e−βut(1−s)βdu

= α

∞∫
0

u1−1 (1 + u)1−α−1−1 e−βt(1−s)udu

= αψ (1, 1− α;βt (1− s)) .

3.3.15 Generalized Pareto Distribution

The generalized Pareto distribution also known as gamma- gamma is

g (λ) =

∫ ∞
0

kβ

Γ (β)
e−kλλβ−1 µα

Γ (α)
e−µkkα−1dk

=
µαλβ−1

B (α, β) (λ+ µ)α+β
, λ > 0; α, β, µ > 0. (3.62)

Proposition 3.3.15. The Poisson-Generalized Pareto distribution is

f (x) =
(µt)x

x!B (α, β)
Γ (x+ β)ψ (x+ β, x− α+ 1;µt) (3.63)

and its pgf is

G (s) =
Γ (α+ β)

Γ (α)
ψ (β, 1− α;µt (1− s)) (3.64)
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Proof. The mixed Poisson distribution is

f (x) =
txµα

x!B (α, β)

∞∫
0

λx+β−1 (λ+ µ)−α−β e−λtdλ

and making the substitution

λ = µz =⇒ dλ = µdz

we obtain

f (x) =
txµα

x!B (α, β)

∞∫
0

µx+β−1−α−β+1zx+β−1 (1 + z)−α−β e−µztdz

=
(µt)x

x!B (α, β)

∞∫
0

zx+β−1 (1 + z)x+1−α−(x+β)−1 e−µztdz

=
(µt)x

x!B (α, β)
Γ (x+ β)ψ (x+ β, x− α+ 1;µt)

which yields a result obtained by Willmot (1993) for t = 1.

Its pgf is

G (s) =
µα

B (α, β)

∞∫
0

λβ−1 (λ+ µ)−α−β e−λt(1−s)dλ

=
µα

B (α, β)

∞∫
0

(µz)β−1 (µz + µ)−α−β e−µzt(1−s)µdz

=
1

B (α, β)

∞∫
0

zβ−1 (1 + z)1−α−β−1 e−µt(1−s)zdz

=
1

B (α, β)
Γ (β)ψ (β, 1− α;µt (1− s))

=
Γ (α+ β)

Γ (α)
ψ (β, 1− α;µt (1− s)) .

Using relation (3.6) we have

f (x) =
(µt)x

Γ (α) Γ (β)

Γ (x+ β)

Γ (x+ 1)
Γ (α− x) 1F1 (x+ β; 1 + x− α;µt)

+
(µt)x

Γ (α) Γ (β)

Γ (x+ β)

Γ (x+ 1)
1F1 (α+ β; 1− x+ α;µt)

This result is similar to that of Bruno et al (2006) for t = 1.

The pgf becomes

G (s) = 1F1 (β; 1− α;µt (1− s)) +
Γ (−α)

B (α, β)
[µt (1− s)]α 1F1 (α+ β; 1 + α;µt (1− s)) . (3.65)
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3.4 Mixed Poisson Distributions based on Modified Bessel function

of the third kind

In this section, mixed Poisson distributions are expressed in terms of modified Bessel function of the

third kind.

3.4.1 Modified Bessel function of the third kind

The modified Bessel function of the third kind denoted by Kv (ω) is defined as

Kv (ω) =
1

2

∞∫
0

xv−1e−
ω
2 (x+ 1

x)dx (3.66)

which is a function of ω with index v. Some properties of the Bessel function of the third kind are:

Kv (ω) = K−v (ω) (3.67)

Kv+1 (ω) =
2v

ω
Kv (ω) +Kv−1 (ω) (3.68)

K ′v (ω) =
d

dω
Kv (ω) = −1

2
[Kv−1 (ω) +Kv+1 (ω)] (3.69)

Kv+ 1
2

(ω) =

√
π

2ω
e−ω

{
1 +

v∑
i=1

(v + i)! (2ω)−i

(v − i)!i!

}
(3.70)

K 1
2

(ω) =

√
π

2ω
e−ω. (3.71)

3.4.2 Inverse Gamma Distribution

The inverse gamma distribution is

g (λ) =
βα

Γ (α)
e−

β
λλ−α−1, λ > 0; α, β > 0 (3.72)

Proposition 3.4.1. The Poisson-inverse gamma distribution is

f (x) =
2

x!

(βt)
x+α
2

Γ (α)
Kx−α

(
2
√
βt
)
, x = 0, 1, 2, . . . (3.73)

and its pgf is

G (s) =
2βα

Γ (α)

(√
β

t (1− s)

)−α
K−α

(
2
√
βt (1− s)

)
. (3.74)

Proof. The mixed Poisson distribution is

f (x) =
tx

x!

βα

Γ (α)

∞∫
0

λx−α−1e−t(λ+β
t

1
λ)dλ

and making the substitution

λ =

√
β

t
z =⇒ dλ =

√
β

t
dz
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we obtain

f (x) =
tx

x!

βα

Γ (α)

∞∫
0

(√
β

t
z

)x−α−1

e
−t
√
β
t (z+

1
z )
√
β

t
dz

=
tx

x!

βα

Γ (α)

(√
β

t

)x−α ∞∫
0

zx−α−1e−
2
√
βt
2 (z+ 1

z )dz

=
2

x!

(βt)
x+α
2

Γ (α)
Kx−α

(
2
√
βt
)

; x = 0, 1, 2, . . .

Its pgf is

G (s) =
βα

Γ (α)

∞∫
0

λ−α−1e−λt(1−s)−
β
λ dλ

=
βα

Γ (α)

∞∫
0

λ−α−1e
−t(1−s)

[
λ+ β

t(1−s)
1
λ

]
dλ

and making the substitution

λ =

√
β

t (1− s)
z =⇒ dλ =

√
β

t (1− s)
dz

we obtain

G (s) =
βα

Γ (α)

(√
β

t (1− s)

)−α ∞∫
0

z−α−1e−
2
√
βt(1−s)
2 (z+ 1

z )dz

=
2βα

Γ (α)

(√
β

t (1− s)

)−α
K−α

(
2
√
βt (1− s)

)
.

3.4.3 Pearson Type V Distribution

The Pearson type V distribution is

g (λ) =
βα

Γ (α)
e−

β
λ−c (λ− c)−(α+1) , λ > c; α, β > 0. (3.75)

Proposition 3.4.2. The Poisson-Pearson type V distribution is

f (x) =
2βα (ct)x e−ct

x!Γ (α)

x∑
k=0

(
x

k

)
1

ck

(
β

t

) k−α
2

Kk−α

(
2
√
βt
)

(3.76)

and its pgf is

G (s) = 2
βα

Γ (α)

(√
β

t (1− s)

)−α
e−t(1−s)cK−α

(
2
√
βt (1− s)

)
. (3.77)
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Proof. The mixed Poisson distribution is

f (x) =
tx

x!

βα

Γ (α)

∞∫
c

λx (λ− c)−(α+1) e−λt−
β
λ−cdλ

and making the substitution z = λ− c we have

f (x) =
tx

x!

βα

Γ (α)
e−ct

∞∫
0

(z + c)x z−α−1e−tz−
β
z dz

=
txβαe−ct

x!Γ (α)


x∑
k=0

(
x

k

)
cx−k

∞∫
0

zk−α−1e−t(z+
β
t

1
z )dz


and further making the substitution

z =

√
β

t
u =⇒ dz =

√
β

t
du

we obtain

f (x) =
txβαe−ct

x!Γ (α)


x∑
k=0

(
x

k

)
cx−k

∞∫
0

(√
β

t

)k−α
uk−α−1e−

2
√
βt
2 (u+ 1

u)dz


=

txβαe−ct

x!Γ (α)

x∑
k=0

(
x

k

)
cx−k

(
β

t

) k−α
2

2Kk−α

(
2
√
βt
)

=
2βα (ct)x e−ct

x!Γ (α)

x∑
k=0

(
x

k

)
1

ck

(
β

t

) k−α
2

Kk−α

(
2
√
βt
)
.

When c = 0, we obtain the result for Poisson-Inverse Gamma distribution.

Its pgf is

G (s) =
βα

Γ (α)

∞∫
c

(λ− c)−(α+1) e−λt(1−s)−
β
λ−cdλ

and making the substitution

z = λ− c =⇒ dz = dλ

we obtain

G (s) =
βα

Γ (α)

∞∫
0

z−α−1e−t(1−s)(z+c)−
β
z dz

=
βα

Γ (α)
e−t(1−s)c

∞∫
0

z−α−1e
−t(1−s)

[
z+ β

t(1−s)
1
z

]
dz

=
βα

Γ (α)
e−t(1−s)c

∞∫
0

(√
β

t (1− s)

)−α
y−α−1e

− 2
√
βt(1−s)
2

(
y+ 1

y

)
dy

= 2
βα

Γ (α)

(√
β

t (1− s)

)−α
e−t(1−s)cK−α

(
2
√
βt (1− s)

)
.
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3.4.4 Inverse Gaussian Distribution

The inverse Gaussian distribution is

g (λ) =

(
φ

2π

) 1
2

e
φ
µλ−

3
2 exp

{
− φλ

2µ2
− φ

2λ

}
, λ > 0 (3.78)

Proposition 3.4.3. The Poisson-Inverse Gaussian distribution is

f (x) =

(
2φ

π

) 1
2 txe

√
ϕφ

x!

(√
φ

2t+ ϕ

)x− 1
2

Kx− 1
2

(√
φ (2t+ ϕ)

)
(3.79)

and its pgf is

G (s) = exp

{
−µ
β

[√
1− 2βt (s− 1)− 1

]}
. (3.80)

Proof. Consider inverse Gaussian distribution given by (3.78), making the substitution µ =
√

φ
ϕ

implying µ2 = φ
ϕ , we have

g (λ) =

(
φ

2π

) 1
2

λ−
3
2 e
√
ϕφ exp

{
−1

2

(
ϕλ+

φ

λ

)}
(3.81)

The distribution of Poisson Inverse Gaussian can be obtained directly with the use of Bessel function

of the third kind as

f (x) =

(
φ

2π

) 1
2 e
√
ϕφtx

x!

∫ ∞
0

λ(x− 1
2)−1 exp

{
−λt− 1

2

(
ϕλ+

φ

λ

)}
dλ

=

(
φ

2π

) 1
2 e
√
ϕφtx

x!

∫ ∞
0

λ(x− 1
2)−1 exp

{
−
(

2t+ ϕ

2

)[
λ+

φ

2t+ ϕ

1

λ

]}
dλ

Let λ =
√

φ
2t+ϕz, implying that dλ =

√
φ

2t+ϕdz, then

f (x) =

(
φ

2π

) 1
2 e
√
ϕφtx

x!

(√
φ

2t+ ϕ

)x− 1
2 ∫ ∞

0
z(x−

1
2)−1 exp

{
−
√
φ (2t+ ϕ)

2

(
z +

1

z

)}
dz

=

(
2φ

π

) 1
2 txe

√
ϕφ

x!

(√
φ

2t+ ϕ

)x− 1
2

Kx− 1
2

(√
φ (2t+ ϕ)

)
(3.82)

Its pgf is

G (s) =

(
φ

2π

) 1
2

e
φ
µ

∞∫
0

λ−
1
2
−1 exp

{
−
[

2µ2t (1− s) + φ

2µ2

]
λ− φ

2

1

λ

}
dλ

=

(
φ

2π

) 1
2

e
φ
µ

∞∫
0

λ−
1
2
−1 exp

{
−
(

2µ2t (1− s) + φ

2µ2

)[
λ+

φµ2

2µ2t (1− s) + φ

1

λ

]}
dλ

and making the substitution

λ =

√
φµ2

2µ2t (1− s) + φ
z
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we have

G (s) =

(
φ

2π

) 1
2

e
φ
µ

(√
φµ2

2µ2t (1− s) + φ

)− 1
2 ∞∫

0

z−
1
2
−1e
− 1

2

√
φ[2µ2t(1−s)+φ]

µ2
(z+ 1

z )dz

=

(
φ

2π

) 1
2

e
φ
µ

(√
φµ2

2µ2t (1− s) + φ

)− 1
2

2K− 1
2

(√
φ [2µ2t (1− s) + φ]

µ2

)
. (3.83)

Using Willmot’s notation, φ = µ2/β

G (s) =

(
µ2

2βπ

) 1
2

e
µ
β

(√
µ4

2βµ2t (1− s) + µ2

)− 1
2

2K− 1
2

√2µ2t (1− s) + µ2

β

β


= 2

(
µ2

2βπ

) 1
2

e
µ
β µ−

1
2

(√
2βt (1− s) + 1

) 1
2
K− 1

2

(
µ

β

√
2βt (1− s) + 1

)
=

(
2µ

βπ

) 1
2

e
µ
β

(√
2βt (1− s) + 1

) 1
2
K 1

2

(
µ

β

√
2βt (1− s) + 1

)
but K 1

2
(ω) =

√
π
2ωe
−ω therefore

G (s) =

(
2µ

βπ

) 1
2

e
µ
β

1(
2µ
βπ

) 1
2

e
−µ
β

√
2βt(1−s)+1

= e
µ
β e
−µ
β

√
2βt(1−s)+1

= exp

{
−µ
β

[√
1− 2βt (s− 1)− 1

]}
.

3.4.5 Reciprocal Inverse Gaussian Distribution

The Reciprocal Inverse Gaussian distribution is

g (λ) =

(
φ

2π

) 1
2

eφ/µλ−
1
2 exp

{
−φ

2
λ− φ

2µ2λ

}
, λ > 0 (3.84)

and making the substitution µ =
√

φ
ϕ ; implying that µ2 = φ

ϕ , we have

g (λ) =

(
φ

2π

) 1
2

e
√
ϕφλ−

1
2 exp

{
−φ

2
λ− ϕ

2

1

λ

}
, λ > 0. (3.85)

Proposition 3.4.4. The Poisson-Reciprocal Inverse Gaussian distribution is

f (x) =
tx

x!

(
2φ

π

) 1
2

e
√
ϕφ

(√
ϕ

2t+ φ

)x+ 1
2

Kx+ 1
2

(√
ϕ (2t+ φ)

)
. (3.86)
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Proof. The mixed Poisson distribution is

f (x) =
tx

x!

(
φ

2π

) 1
2

e
√
ϕφ

∞∫
0

λx−
1
2 exp

{
−tλ− φ

2
λ− ϕ

2λ

}
dλ

=
tx

x!

(
φ

2π

) 1
2

e
√
ϕφ

∞∫
0

λx−
1
2 exp

{
−1

2

[
(2t+ φ)λ+

ϕ

λ

]}
dλ

=
tx

x!

(
φ

2π

) 1
2

e
√
ϕφ

∞∫
0

λx−
1
2 exp

{
−(2t+ φ)

2

[
λ+

ϕ

2t+ φ

1

λ

]}
dλ

and making the substitution λ =
√

ϕ
2t+φz; implying that dλ =

√
ϕ

2t+φdz, we obtain

f (x) =
tx

x!

(
φ

2π

) 1
2

e
√
ϕφ

(√
ϕ

2t+ φ

)x+ 1
2

∞∫
0

zx+ 1
2
−1 exp

{
−
√
ϕ (2t+ φ)

2

(
z +

1

z

)}
dz

=
tx

x!

(
φ

2π

) 1
2

e
√
ϕφ

(√
ϕ

2t+ φ

)x+ 1
2

2Kx+ 1
2

(√
ϕ (2t+ φ)

)
=

tx

x!

(
2φ

π

) 1
2

e
√
ϕφ

(√
ϕ

2t+ φ

)x+ 1
2

Kx+ 1
2

(√
ϕ (2t+ φ)

)
.

3.4.6 Generalized Inverse-Gaussian Distribution

The generalized inverse-Gaussian distribution is

g (λ) =

(
ϕ
φ

) v
2

2Kv

(√
ϕφ
)λv−1 exp

{
−1

2

(
ϕλ+

φ

λ

)}
; λ > 0 (3.87)

with the parameters taking values in one of the ranges:

(i) φ > 0, ϕ ≥ 0 if v < 0

(ii) φ > 0, ϕ > 0 if v = 0

(iii) φ ≥ 0, ϕ = 0 if v > 0.

Proposition 3.4.5. The Poisson-Generalized Inverse Gaussian Distribution is

f (x) =
tx

x!

(
ϕ

φ

) v
2
(

φ

2t+ ϕ

)x+v
2 Kx+v

(√
φ (2t+ ϕ)

)
Kv

(√
ϕφ
) , x = 0, 1, 2, . . . (3.88)

and its pgf is

G (s) =

(
ϕ

2t (1− s) + ϕ

) v
2 Kv

[√
2t (1− s) + ϕ

]
Kv

(√
ϕφ
) . (3.89)
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Proof. The mixed Poisson distribution is

f (x) =
tx

x!

(ϕ/φ)
v
2

2Kv

(√
ϕφ
) ∞∫

0

λx+v−1 exp

{
−1

2
(2t+ ϕ)

[
λ+

φ

(2t+ ϕ)

1

λ

]}
dλ

and making the substitution

λ =

√
φ

(2t+ ϕ)
z =⇒ dλ =

√
φ

(2t+ ϕ)
dz

we obtain

f (x) =
tx

x!

(
ϕ

φ

) v
2
(

φ

2t+ ϕ

)x+v
2 1

2Kv

(√
ϕφ
) ∞∫

0

zx+v−1 exp

{
−1

2

√
φ (2t+ ϕ)

(
z +

1

z

)}
dz

=
tx

x!

(
ϕ

φ

) v
2
(

φ

2t+ ϕ

)x+v
2 Kx+v

(√
φ (2t+ ϕ)

)
Kv

(√
ϕφ
) , x = 0, 1, 2, . . . .

Its pgf is

G (s) =
(ϕ/φ)

v
2

2Kv

(√
ϕφ
) ∞∫

0

λv−1e−
1
2 [(2t(1−s)+ϕ)λ+φ

λ ]dλ

=
(ϕ/φ)

v
2

2Kv

(√
ϕφ
) ∞∫

0

λv−1e
− 1

2
[2t(1−s)+ϕ]

{
λ+ φ

2t(1−s)+ϕ
1
λ

}
dλ

=

(
ϕ

φ

) v
2 1

2Kv

(√
ϕφ
) (√ φ

2t (1− s) + ϕ

)v ∞∫
0

zv−1e−
1
2

√
2t(1−s)+ϕ(z+ 1

z )dz

=

(
ϕ

2t (1− s) + ϕ

) v
2 Kv

[√
2t (1− s) + ϕ

]
Kv

(√
ϕφ
) .

3.5 Conclusion

A number of mixed Poisson distributions can be expressed in terms of special functions. This

chapter has derived Poisson mixtures in terms of confluent hypergeometric functions and modified

Bessel functions of the third kind for continuous mixing distributions. These expressions seem quite

involving.Algorithms have also been developed by Press et al (1992) and have been used to calculate

Generalized Pareto mixtures of Poisson distributions by Bruno et al (2006).

‘
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Chapter 4

MIXED POISSON DISTRIBUTIONS

IN RECURSIVE FORMS AND THEIR

DIFFERENTIAL EQUATIONS

4.1 Introduction

The main difficulty with the use of mixed Poisson distributions is that, with the exception of a few

mixing distributions, its probability mass function is difficult to evaluate. One way of circumventing

this problem is to express the mixed distributions in terms of recursive relations.

A number of methods for deriving such recursive relations have been developed: Katz (1965),

Panjer (1981), Sundt and Jewel (1981), Panjer and Willmot (1982), Schroter (1990), Sundt (1992),

Willmot (1993), Hesselager (1994), Wang (1994), etc.

The main objectives of this chapter are:

(i) To review some recursive models obtained by other researchers

(ii) To use integration by parts to obtain recursive models

(iii) To correspond the recursive models obtained using integration by parts to Wang’s (1994) model

and then deduce the corresponding differential equations.
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4.2 A Review of Recursive Models

4.2.1 Panjer’s Class of Recursive Relations

Pearson difference equation is given by

f (x+ 1)

f (x)
=
P (x)

Q (x)
(4.1)

where f (·) is the discrete probability distribution; P (x) and Q (x) are polynomials.

Katz (1965) considered the difference equation

f (x+ 1)

f (x)
=
α+ βx

1 + x
, x = 0, 1, 2, ... (4.2)

Equation (4.2) can be rewritten as

f (x) =

(
α+ β (x− 1)

x

)
f (x− 1)

=

(
a+

b

x

)
f (x− 1) ;x = 1, 2, 3, ... (4.3)

where a = β and b = α− β.

Equation (4.3) is the Panjer’s recursive relation model. By iteration or pgf technique, it can

be shown that only Poisson, binomial and negative binomial distributions satisfy the Katz - Panjer

model (Sundt and Jewel, 1981; Katz, 1965).

Panjer’s class of order k is defined by

f (x+ 1)

f (x)
=
α+ βx

1 + x
, x = k, k + 1, k + 2, . . . ; k = 0, 1, 2, . . . (4.4)

4.2.2 The Ratio Method for Mixtures in Explicit Form

Most Poisson mixtures expressed in explicit form can be expressed in a recursive form by taking the

ratio of two consecutive probabilities as described below:

Poisson-Gamma Distribution

Using (2.16)
f (x+ 1)

f (x)
=

(
t

t+ β

)(
x+ α

x+ 1

)
; x = 0, 1, 2, . . . (4.5)

with

f (0) =

(
β

t+ β

)α
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Poisson-Lindley Distribution

Using (2.70),
f (x+ 1)

f (x)
=

t

t+ θ

(
x+ t+ θ + 2

x+ t+ θ + 1

)
; x = 0, 1, 2, . . . (4.6)

with

f (0) =
θ2

θ + 1

(1 + t+ θ)

(t+ θ)2

Poisson-Generalized Lindley Distribution

Using (2.92),

f (x+ 1)

f (x)
=
x+ α

x+ 1

[α (t+ θ) + γ (x+ α+ 1)]

[α (t+ θ) + γ (x+ α)]

t

t+ θ
; x = 0, 1, 2, . . . (4.7)

with

f (0) =

(
1 +

t

θ + γ

)(
θ

θ + t

)α+1

4.2.3 Willmot’s Recursive Model

Consider the Poisson mixture given in equation (1.2); when t = 1, its pgf is

G (s) =

∫ ∞
0

eλ(s−1)g (λ) dλ (4.8)

whose nth derivative of is

G(n) (s) =

∫ ∞
0

λneλ(s−1)g (λ) dλ. (4.9)

A generalization of a Pearson system, according to Ord (1972), is given by

d

dλ
log g (λ) =

η (λ)

ϕ (λ)

=

∑i
n=0 ηnλ

n∑j
n=0 ϕnλ

n
(4.10)

that is,
g
′
(λ)

g (λ)
=
η (λ)

ϕ (λ)
(4.11)

Willmot (1993) used this generalization to derive a recursive model.

Proposition 4.2.1. (a) Willmot’s differential equation in pgf for a Poisson mixture is given by

k∑
n=0

(sϕn + φn)G(n) (s) = g (λ1)ϕ (λ1) eλ1(s−1) − g (λ0)ϕ (λ0) eλ0(s−1) (4.12)
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(b) The corresponding Willmot’s recursive model is given by

k∑
n=0

x (n+ x− 1)!ϕnf (n+ x− 1) +

k∑
n=0

(n+ x)!φnf (n+ x)

= g (λ1)ϕ (λ1) e−λ1λx1 − g (λ0)ϕ (λ0) e−λ0λx0 (4.13)

where φn = (n+ 1)ϕn+1 − ϕn + ηn and λ0 ≤ λ ≤ λ1.

(c) When λ0 = 0 and λ1 =∞, then the recursive model becomes

k∑
n=0

x (n+ x− 1)ϕnf (x+ n− 1) +
k∑

n=0

(n+ x)φnf (n+ x) = 0. (4.14)

Proof. Consider

d

dλ

[
eλ(s−1)g (λ)ϕ (λ)

]
= (s− 1) eλ(s−1)g (λ)ϕ (λ) + eλ(s−1)

{
g (λ)ϕ

′
(λ) + g

′
(λ)ϕ (λ)

}
= eλ(s−1)g (λ)

{
(s− 1)ϕ (λ) + ϕ

′
(λ) +

g
′
(λ)

g (λ)
ϕ (λ)

}
= eλ(s−1)g (λ)

{
sϕ (λ)− ϕ (λ) + ϕ

′
(λ) + η (λ)

}
= eλ(s−1)g (λ) {sϕ (λ) + φ (λ)} (4.15)

where

φ (λ) =

k∑
n=0

φnλ
n

= ϕ
′
(λ)− ϕ (λ) + η (λ)

=
d

dλ

k∑
n=0

ϕnλ
n −

k∑
n=0

ϕnλ
n +

k∑
n=0

ηnλ
n

=
k∑

n=1

nϕnλ
n−1 −

k∑
n=0

ϕnλ
n +

k∑
n=0

ηnλ
n

=
k−1∑
n=0

(n+ 1)ϕn+1λ
n −

k∑
n=0

ϕnλ
n +

k∑
n=0

ηnλ
n (4.16)

and therefore

φn = (n+ 1)ϕn+1 − ϕn + ηn, n = 0, 1, 2, . . . , k. (4.17)

Integrating (4.15) over (λ0, λ1), we have∫ λ1

λ0

d

dλ

[
eλ(s−1)g (λ)ϕ (λ)

]
dλ =

∫ λ1

λ0

eλ(s−1)g (λ) {sϕ (λ) + φ (λ)} dλ

that is,

eλ(s−1)g (λ)ϕ (λ)
∣∣∣λ1
λ0

=

∫ λ1

λ0

eλ(s−1)g (λ)

{
s

k∑
n=0

ϕnλ
n +

k∑
n=0

φnλ
n

}
dλ.
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Therefore

eλ1(s−1)g (λ1)ϕ (λ1)− eλ0(s−1)g (λ0)ϕ (λ0) =
k∑

n=0

∫ λ1

λ0

(sϕn + φn)λneλ(s−1)g (λ) dλ

=

k∑
n=0

(sϕn + φn)

∫ λ1

λ0

λneλ(s−1)g (λ) dλ

=
k∑

n=0

(sϕn + φn)G(n) (s)

and rearranging, we have

k∑
n=0

(sϕn + φn)G(n) (s) = g (λ1)ϕ (λ1) eλ1(s−1) − g (λ0)ϕ (λ0) eλ0(s−1)

which is a differential equation in pgf.

To obtain the corresponding recursive model, we start from (4.12), that is,

k∑
n=0

(sϕn + φn)

∫ ∞
0

λneλse−λg (λ) dλ = g (λ1)ϕ (λ1) e−λ1eλ1s − g (λ0)ϕ (λ0) e−λ0eλ0s

therefore

k∑
n=0

(sϕn + φn)

∫ ∞
0

λn
∞∑
l=0

(λs)l

l!
e−λg (λ) dλ = g (λ1)ϕ (λ1) e−λ1

∞∑
l=0

(λ1s)
l

l!

−g (λ0)ϕ (λ0) e−λ0
∞∑
l=0

(λ0s)
l

l!

∞∑
l=0

{
k∑

n=0

(sϕn + φn)

∫ ∞
0

λn+l

l!
e−λg (λ) dλ

}
sl =

∞∑
l=0

[
g (λ1)ϕ (λ1) e−λ1

λl1
l!

]
sl

−
∞∑
l=0

[
g (λ0)ϕ (λ0) e−λ0

λl0
l!

]
sl

On further simplification, we have

∞∑
l=0

{
k∑

n=0

(sϕn + φn)
(n+ l)!

l!

∫ ∞
0

e−λλn+l

(n+ l)!
g (λ) dλ

}
sl =

∞∑
l=0

{
g (λ1)ϕ (λ1)

e−λ1λl1
l!

}
sl

−
∞∑
l=0

{
g (λ0)ϕ (λ0)

e−λ0λl0
l!

}
sl

∞∑
l=0

{
k∑

n=0

(sϕn + φn)
(n+ l)!

l!
f (n+ l)

}
sl =

∞∑
l=0

{
g (λ1)ϕ (λ1)

e−λ1λl1
l!

}
sl

−
∞∑
l=0

{
g (λ0)ϕ (λ0)

e−λ0λl0
l!

}
sl
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Therefore
∞∑
l=0

{
k∑

n=0

ϕn
(n+ l)!

l!
f (n+ l)

}
sl+1 +

∞∑
l=0

{
k∑

n=0

φn
(n+ l)!

l!
f (n+ l)

}
sl

=
∞∑
l=0

{
g (λ1)ϕ (λ1)

e−λ1λl1
l!

− g (λ0)ϕ (λ0)
e−λ0λl0
l!

}
sl

Comparing the coefficient of sx, by letting l = x− 1 in the first term and l = x in the second term

of the above equation, we get

k∑
n=0

ϕn
(n+ x− 1)!

(x− 1)!
f (n+ x− 1) +

k∑
n=0

φn
(n+ x)!

x!
f (n+ x)

= g (λ1)ϕ (λ1)
e−λ1λx1
x!

− g (λ0)ϕ (λ0)
e−λ0λx0
x!

therefore
k∑

n=0

x (n+ x− 1)!ϕnf (n+ x− 1) +

k∑
n=0

(n+ x)!φnf (n+ x)

= g (λ1)ϕ (λ1) e−λ1λx1 − g (λ0)ϕ (λ0) e−λ0λx0

which is Willmot’s recursive model.

The following are examples of recursive models, for some Poisson mixtures, obtained using Will-

mot’s model.

Poisson-Gamma Distribution

Consider the Gamma distribution given by (2.15), then

d

dλ
log g (λ) =

g
′
(λ)

g (λ)

=
(α− 1)− βλ

λ
(4.18)

=

∑k
n=0 ηnλ

n∑k
n=0 ϕnλ

n

This implies that (α−1)−βλ
λ is equivalent to η0+η1λ

ϕ0+ϕ1λ
, therefore, η0 = α − 1, η1 = −β, ϕ0 = 0, and

ϕ1 = 1.

From (4.12), the differential equation becomes

k∑
n=0

(sϕn + φn)G(n) (s) = g (λ1)ϕ (λ1) e−λ1(1−s) − g (λ0)ϕ (λ0) e−λ0(1−s) (4.19)

In this case, λ0 = 0 and λ1 = ∞. Hence the RHS of (4.19) is zero, since e−λ1(1−s) = 0 for λ1 = ∞

and g (λ0) = 0, for λ0 = 0. Therefore, (4.19) becomes

(sϕ0 + φ0)G(0) (s) + (sϕ1 + φ1)G(1) (s) = 0
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which is equivalent to

φ0G (s) + (s+ φ1)G
′
(s) = 0

since ϕ0 = 0 and ϕ1 = 1. But φn = (n+ 1)ϕn+1 − ϕn + ηn, therefore φ0 = α and φ1 = − (1 + β).

The differential equation is therefore

[s− (1 + β)]G
′
(s) + αG (s) = 0 (4.20)

From (4.13), the recursive model is
k∑

n=0

x (n+ x− 1)!ϕnf (n+ x− 1) +
k∑

n=0

(n+ x)!φnf (n+ x) = 0

that is,

ϕ0f (x− 1) + xϕ1f (x) + φ0f (x) + (x+ 1)φ1f (x+ 1) = 0

Since ϕ0 = 0 and ϕ1 = 1, we have

xf (x) + φ0f (x) + (x+ 1)φ1f (x+ 1) = 0

But φ0 = α and φ1 = − (1 + β); therefore the recursive relation for Poisson-Gamma distribution is

(1 + β) (x+ 1) f (x+ 1) = (x+ α) f (x) (4.21)

Poisson-Lindley Distribution

Consider the Lindley distribution whose pdf is given in (2.69), then

d

dλ
log g (λ) =

g
′
(λ)

g (λ)

=
(1− θ)− θλ

1 + λ
(4.22)

This implies that (1−θ)−θλ
1+λ is equivalent to

∑k
n=0 ηnλ

n∑k
n=0 ϕnλ

n
and hence η0 = 1 − θ, η1 = −θ, ϕ0 = 1 and

ϕ1 = 1.

Since λ0 = 0 and λ1 = ∞, e−λ1(1−s) = 0 and g (λ0) = θ2

1+θ . The differential equation (4.12)

becomes

(s+ φ0)G (s) + (s+ φ1)G
′
(s) = 0

But φn = (n+ 1)ϕn+1−ϕn+ηn, therefore φ0 = 1− θ and φ1 = − (1 + θ). The differential equation

now becomes

(s− θ − 1)G
′
(s) + (s− θ + 1)G (s) = 0 (4.23)

The corresponding recursive model is

ϕ0f (x− 1) + xϕ1f (x) + φ0f (x) + (x+ 1)φ1f (x+ 1) = 0

which, on further simplification and substitution, becomes

f (x− 1) + (x+ 1− θ) f (x)− (1 + θ) (x+ 1) f (x+ 1) = 0. (4.24)
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4.2.4 Hesselager Recursive Model

Hesselager (1994) considered the class of counting distributions which satisfy the recursive relation

f (x) = f (x− 1)

∑k
r=0 arx

r∑k
r=0 brx

r
, x = 1, 2, 3, . . .

for some k. Therefore

f (x)
k∑
r=0

brx
r = f (x− 1)

k∑
r=0

arx
r

= f (x− 1)

k∑
r=0

ar [1 + (x− 1)]r

= f (x− 1)
k∑
r=0

ar

{
r∑
l=0

al

(
r

l

)
(x− 1)r

}
.

Therefore the recursion becomes

f (x)
k∑
r=0

brx
r = f (x− 1)

k∑
r=0

r∑
l=0

ar

(
r

k

)
(x− 1)l

= f (x− 1)
k∑
l=0

{
k∑
r=0

ar

(
r

l

)}
(x− 1)l

= f (x− 1)

k∑
l=0

cl (x− 1)l (4.25)

where cl =
∑k

r=0 ar
(
r
l

)
.

4.2.5 Wang’s Recursive Model

Wang(1994) extended Hesselager (1994) model to

f (x)
k∑
i=0

bix
i =

s∑
j=1

[
f (x− j)

k∑
i=0

aji (x− j)i
]
, x = c, c+ 1, c+ 2, . . .

where c is a positive integer, and f (x) = 0 for x < c.

When k = s = c = 2, then

f (x)
2∑
i=0

bix
i =

2∑
j=1

[
f (x− j)

2∑
i=0

aji (x− j)i
]
.

Proposition 4.2.2. When k = s = c = 2, then Wang’s recursive model becomes

(
b0 + b1x+ b2x

2
)
f (x) =

[
a10 + a11 (x− 1) + a12 (x− 1)2

]
f (x− 1)

+ [
a20 + a21 (x− 2) + a22 (x− 2)2

]
f (x− 2) , x = 2, 3, . . . (4.26)
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The corresponding differential equation is given by

s2
(
b2 − a12s− a22s

2
)
G
′′

(s) + s
[
(b1 + b2)− (a11 + a12) s− (a21 + a22) s2

]
G
′
(s)

+
(
b0 − a10s− a20s

2
)
G (s) = b0f (0)− [a10f (0) + (−b0 + b1 + b2) f (1)] s (4.27)

Proof. The corresponding differential equation is determined by considering the following:

∞∑
x=2

(
b0 + b1x+ b2x

2
)
f (x) sx =

∞∑
x=2

[
a10 + a11 (x− 1) + a12 (x− 1)2

]
f (x− 1) sx

+
∞∑
x=2

[
a20 + a21 (x− 2) + a22 (x− 2)2

]
f (x− 2) sx.

On expansion, the above expression becomes

b0

∞∑
x=2

f (x) sx + b1s

∞∑
x=2

xf (x) sx−1 + b2

∞∑
x=2

x2f (x) sx

= a10s
∞∑
x=2

f (x− 1) sx−1 + a11s
2
∞∑
x=2

(x− 1) f (x− 1) sx−2

+a12

∞∑
x=2

(x− 1)2 f (x− 1) sx + a20s
2
∞∑
x=2

f (x− 2) sx−2

+a21s
3
∞∑
x=2

(x− 2) f (x− 2) sx−3 + a22

∞∑
x=2

(x− 2)2 f (x− 2) sx

and therefore

b0 [G (s)− f (0)− f (1) s] + b1s
[
G
′
(s)− f (1)

]
+ b2

∞∑
x=2

x (x− 1 + 1) f (x) sx

= a10s [G (s)− f (0)] + a11s
2G
′
(s) + a12

∞∑
x=2

(x− 1) (x− 2 + 1) f (x− 1) sx

+a20s
2G (s) + a21s

3G
′
(s) + a22

∞∑
x=2

(x− 2) (x− 3 + 1) f (x− 2) sx.

On further expansion, we have

b0G (s)− b0f (0)− b0f (1; t) s+ b1sG
′
(s)− b1f (1) s+ b2s

2
∞∑
x=2

x (x− 1) f (x) sx−2 + b2s

∞∑
x=2

xf (x) sx−1

= a10sG (s)− a10f (0) s+ a11s
2G
′
(s) + a12s

3
∞∑
x=2

(x− 1) (x− 2) f (x) sx−3

+a12s
2
∞∑
x=2

(x− 1) f (x− 1) sx−2 + a20s
2G (s) + a21s

3G
′
(s)

+a22s
4
∞∑
x=2

(x− 2) (x− 3) f (x− 2) sx−4 + a22s
3
∞∑
x=2

(x− 2) f (x− 2) sx−3
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and therefore

b0G (s)− b0f (0)− b0f (1) s+ b1sG
′
(s)− b1f (1) s+ b2s

2G
′′

(s) + b2s
[
G
′
(s)− f (1)

]
= a10sG (s)− a10f (0) s+ a11s

2G
′
(s) + a12s

3G
′′

(s) + a12s
2G
′
(s)

+a20s
2G (s) + a21s

3G
′
(s) + a22s

4G
′′

(s) + a22s
3G
′
(s).

Putting like terms together, we obtain the differential equation:

s2
(
b2 − a12s− a22s

2
)
G
′′

(s) + s
[
(b1 + b2)− (a11 + a12) s− (a21 + a22) s2

]
G
′
(s)

+
(
b0 − a10s− a20s

2
)
G (s) = b0f (0)− [a10f (0) + (−b0 + b1 + b2) f (1)] s.

4.3 Recursive Models based on Integration by Parts and Differential

Equations based on Wang’s Model

A proper choice of u and dv is necessary to apply integration by parts formula:∫
udv = uv −

∫
vdu

In order to deduce the differential equations, the recursive relation for the Poisson mixture should

be in the form of Wang’s recursive model (4.26).

4.3.1 Beta I distribution

The mixing distribution used here is the Beta I given in (3.11).

Proposition 4.3.1. The recursive relation for Poisson-Beta I distribution is

(x+ 1)xf (x+ 1) = (β + t+ x+ α− 1)xf (x)− t (x+ α− 1) f (x− 1) , x = 1, 2, 3, . . . (4.28)

with initial conditions

f (0) = 1F1 (α, α+ β;−t)

and

f (1) =
tB (α+ 1, β)

B (α, β)
1F1 (α+ 1, α+ β + 1;−t) .

Proof. The Poisson-Beta I distribution is

f (x) =
tx

x!B (α, β)

∫ 1

0
e−λtλx+α−1 (1− λ)β−1 dλ
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and using integration by parts, let

u = e−λtλx+α−1 and dv = (1− λ)β−1 dλ.

Therefore the recursive relation is

(x+ 1)xf (x+ 1) = (β + t+ x+ α− 1)xf (x)− t (x+ α− 1) f (x− 1) ; x = 1, 2, 3, . . . .

The recursive relation can be rewritten as:

x (x− 1) f (x) =
[
(α+ β + t− 1) (x− 1) + (x− 1)2

]
f (x− 1)−t [α+ x− 2] f (x− 2) , x = 2, 3, . . . .

(4.29)

Recursive relation (4.29) is equivalent to Wang’s recursive model (4.26), whose coefficients are:

b0 = 0, b1 = −1, b2 = 1; a10 = 0, a11 = (α+ β + t− 1) , a12 = 1; a20 = −αt, a21 = −t, a22 = 0. The

corresponding differential equation is therefore obtained by replacing the coefficients in equation

(4.27) with the obtained values. This results in the following differential equation:

(1− s)G′′ (s)− [α+ β + t− ts]G′ (s) + αtG (s) = 0. (4.30)

4.3.2 Rectangular distribution

The Rectangular distribution is the mixing distribution given in equation (3.14).

Proposition 4.3.2. The recursive relation for Poisson-Rectangular distribution is

f (x+ 1) = f (x) +

{
e−at (at)x+1 − e−bt (bt)x+1

t (b− a) (x+ 1)!

}
; x = 0, 1, 2, . . . (4.31)

with initial condition

f (0) =
e−at − e−bt

t (b− a)
.

Proof. The Poisson-Rectangular distribution is obtained as

f (x) =
tx

x! (b− a)

{∫ b

0
e−λtλxdλ−

∫ a

0
e−λtλxdλ

}
.

Let y = λt ⇒ λ = y
t and dλ = dy

t , then,

f (x) =
1

t (b− a)x!

{∫ bt

0
e−yyxdy −

∫ at

0
e−yyxdy

}
=

1

t (b− a)x!
{γ (x+ 1, bt)− γ (x+ 1, at)}

where

γ (x, c) =

∫ c

0
yx−1e−ydy
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is an incomplete gamma function.

Consider

γ (x+ 1, bt) =

∫ bt

0
e−yyxdy

making the substitution u = yx and dv = e−ydy. we have

f (x+ 1) = f (x) +

{
e−at (at)x+1 − e−bt (bt)x+1

t (b− a) (x+ 1)!

}
; x = 0, 1, 2, . . . .

4.3.3 Beta II distribution

Consider the Beta II given by (3.17)

Proposition 4.3.3. The recursive relation for Poisson-Beta II distribution is

(x+ 1)xf (x+ 1) = (x− β − t)xf (x) + t (x+ α− 1) f (x− 1) ; x = 1, 2, 3, . . . (4.32)

with initial conditions

f (0) =
Γ (α)

B (α, β)
ψ (α, 1− β; t)

and

f (1) =
tΓ (α+ 1)

B (α, β)
ψ (α+ 1, β, t) .

Proof. The Poisson-Beta II distribution is

f (x) =
tx

x!B (α, β)

∫ ∞
0

λx+α−1 (1 + λ)−α−β e−λtdλ.

Let u = λx+α−1e−λt and dv = (1 + λ)−(α+β) dλ. Therefore the recursive relation is

(x+ 1)xf (x+ 1) = (x− β − t)xf (x) + t (x+ α− 1) f (x− 1) ; x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

x (x− 1) f (x) =
[
− (β + t) (x− 1) + (x− 1)2

]
f (x− 1) + t [α+ (x− 2)] f (x− 2) , x = 2, 3, 4, . . . .

(4.33)

Therefore the values for the coefficients are: b0 = 0, b1 = −1, b2 = 1; a10 = 0, a11 = − (β + t) , a12 =

1; a20 = αt, a21 = t, a22 = 0 and the corresponding differential equation is

(1− s)G′′ (s) + [β + t− ts− 1]G
′
(s)− αtG (s) = 0. (4.34)
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4.3.4 Scaled Beta distribution

Consider the Scaled Beta distribution given by equation (3.20).

Proposition 4.3.4. The recursive relation for Poisson-Scaled Beta distribution is

x (x+ 1) f (x+ 1) = (β + µt+ x+ α− 1)xf (x)− (x+ α− 1) (µt) f (x− 1) , x = 1, 2, 3, . . . (4.35)

with initial conditions

f (0) = 1F1 (α, α+ β;−µt)

and

f (1) =
µtB (α+ 1, β)

B (α, β)
1F1 (α+ 1, α+ β + 1;−µt) .

Proof. The Poisson-Scaled Beta distribution is

f (x) =
tx

x!B (α, β)µα+β−1

∫ µ

0
λx+α−1 (µ− λ)β−1 e−λtdλ.

Let λ = µz, ⇒ dλ = µdz and z = λ
µ , therefore,

f (x) =
(µt)x

x!B (α, β)

∫ 1

0
zx+α−1 (1− z)β−1 e−µtzdz.

Put u = e−µtzzx+α−1 and dv = (1− z)β−1 dz, therefore the recursive relation is

x (x+ 1) f (x+ 1) = (β + µt+ x+ α− 1)xf (x)− (x+ α− 1) (µt) f (x− 1) , x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

x (x− 1) f (x) =
[
(α+ β + µt− 1) (x− 1) + (x− 1)2

]
f (x− 1)−µt [α+ (x− 2)] f (x− 2) , x = 2, 3, 4, . . .

(4.36)

Therefore the values for the coefficients are: b0 = 0, b1 = −1, b2 = 1; a10 = 0, a11 = (α+ β + µt− 1) , a12 =

1; a20 = −αµt, a21 = −µt, a22 = 0 and the corresponding differential equation is

(1− s)G′′ (s) + [µts− (α+ β + µt)]G
′
(s) + αµtG (s) = 0. (4.37)

4.3.5 Full Beta Model

Consider full beta model given by (3.26)

Proposition 4.3.5. The recursive relation for Poisson-Full Beta distribution is

b2x (x+ 1) f (x+ 1) = [b (x− q)− t] bxf (x) + bt (x+ p− 1) f (x− 1) ; x = 1, 2, 3, . . . (4.38)
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with initial conditions

f (0) =
Γ (p)

B (p, q)
ψ

(
p, 1− q; t

b

)
and

f (1) =

(
t

b

)q Γ (p+ 1)

B (p, q)
ψ

(
p+ q, q;

t

b

)
.

Proof. The Poisson-Full Beta distribution is

f (x) =
txbp

x!B (p, q)

∫ ∞
0

λx+p−1 (1 + bλ)−(p+q) e−λtdλ.

Let z = bλ; dz = bdλ and λ = z
b , then

f (x) =

(
t

b

)x 1

x!B (p, q)

∫ ∞
0

zx+p−1 (1 + z)−(p+q) e−
t
b
zdz.

Put u = zx+p−1e−
t
b
z and dv = (1 + z)−(p+q) dz then the recursive relation is

b2x (x+ 1) f (x+ 1) = [b (x− q)− t] bxf (x) + bt (x+ p− 1) f (x− 1) ; x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

b2x (x− 1) f (x) = b
[
(bq − t) (x− 1) + b (x− 1)2

]
f (x− 1)+bt [p+ (x− 2)] f (x− 2) , x = 2, 3, 4, . . . .

(4.39)

Therefore the values for the coefficients corresponding to Wang’s model are: b0 = 0, b1 = −b2, b2 =

b2; a10 = 0, a11 = b (bq − t) , a12 = b2; a20 = btp, a21 = bt, a22 = 0 and the corresponding differential

equation is

b2 (1− s)G′′ (s) +
[
bt (1− s)− b2 (q + 1)

]
G
′
(s)− btpG (s) = 0. (4.40)

4.3.6 Transformed Beta Distribution

A transformed beta distribution is

g (λ) =
cµα

B (α, β)

λcβ−1

(µ+ λc)α+β
, λ > 0 (4.41)

Proposition 4.3.6. The recursive relation for Poisson-Transformed Beta distribution is

µtc (x− c+ 1) f (x− c+ 1) =tc (x− c+ cβ)µf (x− c) + (x− cα)

c∏
i=1

(x− c+ i) f (x)

−
c+1∏
i=1

(x− c+ i) f (x+ 1) , x = 0, 1, 2, . . . . (4.42)
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Proof. The Poisson-Transformed beta distribution is

f (x) =
cµα

B (α, β)
· t
x

x!

∫ ∞
0

λx+cβ−1 (µ+ λc)−α−β e−λtdλ

and making the substitution u = λx−c+cβe−λt and dv = cλc−1 (µ+ λc)−α−β dλ, we have the recursive

relation

µtc (x− c+ 1) f (x− c+ 1) =tc (x− c+ cβ)µf (x− c) + (x− cα)

c∏
i=1

(x− c+ i) f (x)

−
c+1∏
i=1

(x− c+ i) f (x+ 1) x = 0, 1, 2, . . . . (4.43)

4.3.7 Inverse Gamma Distribution

Consider the inverse gamma distribution given by equation (3.72).

Proposition 4.3.7. The recursive relation for Poisson-Inverse Gamma distribution is

x (x+ 1) f (x+ 1) = (x− α)xf (x) + βtf (x− 1) ; x = 1, 2, 3, . . . (4.44)

with initial conditions

f (0) =
2 (βt)

α
2

Γ (α)
K−α

(
2
√
βt
)

and

f (1) =
2 (βt)

α+1
2

Γ (α)
K1−α

(
2
√
βt
)
.

Proof. The Poisson-Inverse Gamma distribution is

f (x) =
βα

Γ (α)

tx

x!

∫ ∞
0

λx−α−1e−(λt+β
λ)dλ.

Making the substitution u = e−(λt+β
λ) and dv = λx−α−1dλ we have the recursive relation

x (x+ 1) f (x+ 1) = (x− α)xf (x) + βtf (x− 1) ; x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

x (x− 1) f (x) =
[
−α (x− 1) + (x− 1)2

]
f (x− 1) + βtf (x− 2) , x = 2, 3, . . . . (4.45)

Therefore the values for the coefficients corresponding to Wang’s model are: b0 = 0, b1 = −1, b2 =

1; a10 = 0, a11 = −α, a12 = 1; a20 = βt, a21 = 0, a22 = 0 and the corresponding differential equation

is

(1− s)G′′ (s) + (1− s)G′ (s)− βtG (s) = 0. (4.46)
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4.3.8 Shifted Gamma Distribution

Consider a shifted gamma distribution given by (2.32).

Proposition 4.3.8. The recursive relation for Poisson-Shifted Gamma distribution is

(t+ β) (x+ 1) f (x+ 1) = [x+ α+ (t+ β)µ] tf (x)− µt2f (x− 1) ; x = 1, 2, 3, . . . (4.47)

with initial conditions

f (0) = (µβ)α e−µtψ (α, α+ 1; (t+ β)µ)

and

f (1) = µt (µβ)α e−µtψ (α, α+ 2; (t+ β)µ) .

Proof. The Poisson-Shifted gamma distribution is

f (x) =
txβα

x!Γ (α)

∫ ∞
µ

e−λtλxe−β(λ−µ) (λ− µ)α−1 dλ

and making the substitution z = λ− µ, ⇒ dz = dλ and λ = µ+ z, we have

f (x) =
txβα

x!Γ (α)

∫ ∞
0

e−(µ+z)t (µ+ z)x e−βzzα−1dz.

On further substitution z = µy, ⇒ dz = µdy, we have

f (x) =
(µt)x (µβ)α

x!Γ (α)
e−µt

∫ ∞
0

yα−1 (1 + y)x e−(t+β)µydy.

Using integration by parts, let u = (1 + y)x e−(t+β)µy and dv = yα−1dy, therefore the recursive

relation is

(t+ β) (x+ 1) f (x+ 1) = [x+ α+ (t+ β)µ] tf (x)− µt2f (x− 1) ; x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

(t+ β)xf (x) = t [α+ (t+ β)µ+ (x− 1)] f (x− 1)− µt2f (x− 2) , x = 2, 3, 4, . . . . (4.48)

Therefore the values for the coefficients are: b0 = 0, b1 = (t+ β) , b2 = 0; a10 = t [α+ (t+ β)µ] , a11 =

t, a12 = 0; a20 = −µt2, a21 = 0, a22 = 0 and the corresponding differential equation is

s (t+ β − ts)G′ (s) +
[
µt2s2 − ts (α+ tµ+ tβ)

]
G (s) = −ts (α+ tµ+ tβ) f (0)− s (t+ β) f (1) .

(4.49)
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4.3.9 Truncated Gamma (from below) Distribution

Consider truncated gamma (from below) distribution given by (3.44)

Proposition 4.3.9. The recursive relation for the Poisson-Truncated gamma (from below) is

(t+ β) (x+ 1) f (x+ 1) = t (x+ α) f (x) + tx+1e−tλ0g (λ0)
λx+1

0

x!
, x = 0, 1, 2, . . . (4.50)

with initial condition

f (0) =

(
β

t+ β

)α Γ (α)− γ (α, (t+ β)λ0)

Γ (α)− γ (α, βλ0)
.

Proof. The Poisson-Truncated gamma (from below) distribution is

f (x) =
βαtx

x! [1− γ (α, βλ0)]

∫ ∞
λ0

λx+α−1e−(t+β)λdλ.

Let u = e−(t+β)λ and dv = λx+α−1dλ then the recursive relation is

(t+ β) (x+ 1) f (x+ 1) = t (x+ α) f (x) + tx+1e−tλ0g (λ0)
λx+1

0

x!
, x = 0, 1, 2, . . . .

4.3.10 Generalized Gamma Distribution

Consider the generalized gamma distribution

g (λ) =
αm−δe−αλλm−1

Γδ (m,αn) (λ+ n)δ
, λ ≥ 0; m,α, n > 0, δ ≥ 0 (4.51)

where

Γδ (m,αn) =

∫ ∞
0

ym−1e−y

(y + αn)δ
dy.

Proposition 4.3.10. The recursive relation for Poisson-Generalized Gamma distribution is

(α+ t)x (x+ 1) f (x+ 1) = [x+m− δ − n (α+ t)]x (nt) f (x)

+ (x+m− 1) (nt)2 f (x− 1) , x = 1, 2, 3, . . . (4.52)

with initial conditions

f (0) =
αm−δ

Γδ (m,αn)

∫ ∞
0

e−(α+t)λλm−1 (n+ λ)−δ dλ

and

f (1) =
tαm−δ

Γδ (m,αn)

∫ ∞
0

e−(α+t)λλm (n+ λ)−δ dλ.
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Proof. The Poisson-Generalized gamma distribution is

f (x) =
txαm−δ

x!Γδ (m,αn)

∫ ∞
0

e−(α+t)λλx+m−1 (n+ λ)−δ dλ

therefore
x!f (x) Γδ (m,αn)

txαm−δ
=

∫ ∞
0

e−(α+t)λλx+m−1 (λ+ n)−δ dλ.

Making the substitution λ = nz ⇒ dλ = ndz we have

RHS =

∫ ∞
0

e−(α+t)nz (nz)x+m−1 n−δ (1 + z)−δ ndz

= nx+m−δ
∫ ∞

0
e−(α+t)nzzx+m−1 (1 + z)−δ dz.

Let u = zx+m−1e−(α+t)nz and dv = (1 + z)−δ dz, then the recursive relation is

(α+ t)x (x+ 1) f (x+ 1) = [x+m− δ − n (α+ t)]ntxf (x)

+ (x+m− 1) (nt)2 f (x− 1) , x = 1, 2, 3, . . .

a result similar to Ong (1995) for t = 1.

The recursive relation can be rewritten as

(α+ t)x (x− 1) f (x) = nt
[
(m− δ − nα− nt) (x− 1) + (x− 1)2

]
f (x− 1)

+ (nt)2 [m+ (x− 2)] f (x− 2) , x = 2, 3, 4, . . . . (4.53)

The values for the coefficients are therefore: b0 = 0, b1 = − (α+ t) , b2 = (α+ t) ; a10 = 0, a11 =

nt (m− δ − nα− nt) , a12 = nt; a20 = (nt)2m, a21 = (nt)2 , a22 = 0 and the corresponding differen-

tial equation is

(α+ t− nts)G′′ (s) +
[
nt− nt (m− δ − nα− nt)− (nt)2

]
G
′
(s)− (nt)2mG (s) = 0. (4.54)

4.3.11 Transformed Gamma Distribution

Consider a transformed gamma distribution

g (λ) = c
βα

Γ (α)
λcα−1e−βλ

c
, λ > 0; α, β > 0, c ∈ Z+. (4.55)

Proposition 4.3.11. The recursive relation for Poisson-transformed gamma distribution is

(x+ cα) f (x) = (x+ 1) f (x+ 1) +
cβ

tc

{
c∏
i=1

(x+ i)

}
f (x+ c) , x = 0, 1, 2, . . . (4.56)
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Proof. The Poisson-Transformed gamma distribution is

f (x) =
cβαtx

Γ (α)x!

∫ ∞
0

λx+cα−1e−λt−βλ
c
dλ.

Let u = e−λt−βλ
c and dv = λx+cα−1dλ, then the recursive relation is

(x+ cα) f (x) = (x+ 1) f (x+ 1) +
cβ

tc

{
c∏
i=1

(x+ i)

}
f (x+ c) , x = 0, 1, 2, . . . .

4.3.12 Pareto I Distribution

Consider Pareto I distribution given by (3.56)

Proposition 4.3.12. The recursive relation for Poisson-Pareto I distribution is

(x+ 1) f (x+ 1) = (x− α) f (x− α) +
αtxe−βtβα

x!
, x = 0, 1, 2, . . . (4.57)

with initial condition

f (0) = αe−βtψ [1, (1− α) ;βt] .

Proof. The Poisson-Pareto I distribution is

f (x) =
tx

x!
αβα

∫ ∞
β

e−λtλx−α−1dλ.

Let u = e−λt and dv = λx−α−1dλ, then the recursive relation is

(x+ 1) f (x+ 1) = (x− α) f (x− α) +
αtxe−βtβα

x!
, x = 0, 1, 2, . . . .

4.3.13 Pareto II (Lomax) Distribution

Consider the Lomax distribution given in (3.59)

Proposition 4.3.13. The recursive relation for Poisson-Pareto II distribution is

(x+ 1) f (x+ 1) = (x+ βt− α) f (x) + tβf (x− 1) ; x = 1, 2, . . . (4.58)

with initial conditions

f (0) = αψ (1, 1− α;βt)

and

f (1) = αβtψ (2, 2− α;βt) .
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Proof. The Poisson-Pareto II distribution is

f (x) = αβα
tx

x!

∫ ∞
0

e−λtλx (λ+ β)−α−1 dλ.

Let u = e−λtλx and dv = (λ+ β)−α−1 dλ, then the recursive relation is

(x+ 1) f (x+ 1) = (x+ βt− α) f (x) + tβf (x− 1) ; x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

xf (x) = (βt− α+ x− 1) f (x− 1) + βtf (x− 2) , x = 2, 3, 4, . . . . (4.59)

Comparing equation (4.59) with equation (4.26), we have the following values for the constants: b0 =

0, b1 = 1, b2 = 0; a10 = (βt− α) , a11 = 1, a12 = 0; a20 = βt, a21 = 0, a22 = 0. The corresponding

differential equation is therefore obtained by replacing the given constants in equation (4.27). The

resulting differential equation is:

(1− s)G′ (s) + [α− βt (1 + s)]G (s) = (α− βt) f (0)− f (1) . (4.60)

4.3.14 Generalized Pareto Type I distribution

Consider the generalized Pareto Type I distribution given by equation (3.62).

Proposition 4.3.14. The recursive relation for Poisson-Generalized Pareto distribution is

x (x+ 1) f (x+ 1) = (x− α− µt)xf (x) + tµ (x+ β − 1) f (x− 1) , x = 1, 2, 3, . . . (4.61)

with initial conditions

f (0) =
Γ (β)

B (α, β)
ψ (β, 1− α;µt)

and

f (1) =
µt

B (α, β)
Γ (1 + β)ψ (1 + β, 2− α;µt) .

Proof. The Poisson-Generalized Pareto Type I distribution is

f (x) =
µαtx

x!B (α, β)

∫ ∞
0

e−λtλx+β−1 (λ+ µ)−α−β dλ.

Let u = e−λtλx+β−1 and dv = (λ+ µ)−α−β dλ, then the recursive relation is

x (x+ 1) f (x+ 1) = (x− α− µt)xf (x) + tµ (x+ β − 1) f (x− 1) . (4.62)
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The recursive relation can be rewritten as

(
−x+ x2

)
f (x) =

[
− (α+ µt) (x− 1) + (x− 1)2

]
f (x− 1)+µt [β + (x− 2)] f (x− 2) , x = 2, 3, 4, . . .

(4.63)

Therefore the values for the coefficients corresponding to Wang’s model (4.26) are: b0 = 0, b1 =

−1, b2 = 1; a10 = 0, a11 = − (α+ µt) , a12 = 1; a20 = µtβ, a21 = µt, a22 = 0 and the corresponding

differential equation is

(1− s)G′′ (s) + [(α+ µt− 1)− µts]G′ (s)− µtβG (s) = 0 (4.64)

4.3.15 Generalized Pareto Type II Distribution

The generalized Pareto type II distribution is

g (λ) =
1

k

(
1− c

k
λ
) 1
c
−1

; λ > 0 (4.65)

Consider the following three cases for the possible values of c:

Case (i): When c < 0

Let c = −d where d > 0, therefore

g (λ) =
1

k

(
1 +

d

k
λ

)− 1
d
−1

; λ > 0 (4.66)

Proposition 4.3.15. The recursive relation with respect to (4.66) is

c (x+ 1) f (x+ 1) = (cx+ kt+ 1) f (x)− tkf (x− 1) ; c < 0, x = 1, 2, 3, . . . (4.67)

with initial conditions

f (0) =
1

k

∫ ∞
0

e−λt
(

1 +
d

k
λ

)− 1
d
−1

dλ

and

f (1) =
t

k

∫ ∞
0

e−λtλ

(
1 +

d

k
λ

)− 1
d
−1

dλ.

Proof. The Poisson-Generalized Pareto Type II distribution is

f (x) =
tx

kx!

∫ ∞
0

e−λtλx
(

1 +
d

k
λ

)− 1
d
−1

dλ.

Let u = e−λtλx and dv =
(
1 + d

kλ
)− 1

d
−1
dλ, then the recursive relation is

c (x+ 1) f (x+ 1) = (cx+ kt+ 1) f (x)− tkf (x− 1) ; c < 0, x = 1, 2, 3, . . . .
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The recursive relation can be rewritten as

cxf (x) = [kt+ 1 + c (x− 1)] f (x− 1)− ktf (x− 2) , x = 2, 3, 4, . . . . (4.68)

The values for the coefficients corresponding to Wang’s model are therefore: b0 = 0, b1 = c, b2 =

0; a10 = (kt + 1), a11 = c, a12 = 0; a20 = −ktβ, a21 = 0, a22 = 0 and the corresponding differential

equation is

c (1− s)G′ (s) + [kts− (kt+ 1)]G (s) = − (kt+ 1) f (0)− cf (1) . (4.69)

Case (ii): When c→ 0 The mixing distribution is

g (λ) = lim
c→0

1

k

(
1− c

k
λ
) 1
c
−1

=
1

k
e−

λ
k , λ > 0 (4.70)

which is an exponential distribution with mean k.

Proposition 4.3.16. The recursive relation with respect to (4.70) is

f (x+ 1) =
tk

kt+ 1
f (x) ; x = 0, 1, 2, . . . (4.71)

with initial condition

f (0) =

∫ ∞
0

e−λt
1

k

(
1 +

d

k
λ

)− 1
d
−1

dλ.

Proof. The Poisson-Generalized Pareto Type II distribution is

f (x) =
tx

kx!

∫ ∞
0

e−λ(t+
1
k )λxdλ.

Let u = e−λ(t+
1
k )λx and dv = dλ, then the recursive relation is

(kt+ 1) f (x+ 1) = tk (x) , x = 0, 1, 2, . . .

which can be rewritten as

(kt+ 1) f (x) = ktf (x− 1) , x = 1, 2, 3, . . . . (4.72)

The values for the coefficients corresponding to Wang’s model are therefore: b0 = kt+ 1, b1 = b2 =

0; a10 = kt, a11 = a12 = 0; a20 = a21 = a22 = 0 and the corresponding differential equation is

G (s) = (kt− kts+ 1) f (0) + (kt+ 1) sf (1) . (4.73)
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Case (iii): When c > 0

g (λ) =
1

k

(
1− c

k
λ
) 1
c
−1

; 0 < λ <
k

c
(4.74)

Proposition 4.3.17. The recursive relation with respect to (4.74) is

c (x+ 1) f (x+ 1) = (1 + tk + cx) f (x)− tkf (x− 1) ; x = 1, 2, 3, . . . (4.75)

with initial conditions

f (0) =
1

k

∫ k
c

0
e−λt

(
1− c

k
λ
) 1
c
−1
dλ

and

f (1) =
t

k

∫ k
c

0
e−λtλ

(
1− c

k
λ
) 1
c
−1
dλ.

Proof. The Poisson-Generalized Pareto Type II distribution is

f (x) =
tx

kx!

∫ k
c

0
e−λtλx

(
1− c

k
λ
) 1
c
−1
dλ.

Let u = e−λtλx and dv =
(
1− c

kλ
) 1
c
−1
dλ, then the recursive relation is

c (x+ 1) f (x+ 1) = (1 + tk + cx) f (x)− tkf (x− 1) ; x = 1, 2, 3, . . .

which is the same as equation (4.67). Therefore the corresponding differential equation will be

similar to equation (4.69).

4.3.16 Inverse Gaussian Distribution

Consider inverse Gaussian distribution given in (3.78).

Proposition 4.3.18. The recursive relation of Poisson-Inverse Gaussian distribution is

(
2µ2t+ φ

)
x (x+ 1) f (x+ 1) = µ2 (2x− 1)xtf (x) + µ2φt2f (x− 1) ; x = 1, 2, 3, . . . (4.76)

with initial conditions

f (0) =

(
φ

2π

) 1
2

e
φ
µ

(√
µ2φ

2µ2t+ φ

)− 1
2

K− 1
2

(√
(2µ2t+ φ)φ

µ2

)

and

f (1) = t

(
φ

2π

) 1
2

e
φ
µ

(√
µ2φ

2µ2t+ φ

) 1
2

K 1
2

(√
(2µ2t+ φ)φ

µ2

)
.
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Proof. The Poisson-Inverse Gaussian distribution is

f (x) =

(
φ

2π

) 1
2 tx

x!
e
φ
µ

∫ ∞
0

λx−
3
2 e
−
(
t+ φ

2µ2

)
λ− φ

2λdλ

Let u = e
−
(
t+ φ

2µ2

)
λ− φ

2λ and dv = λx−
3
2dλ, then the recursive relation is

(
2µ2t+ φ

)
x (x+ 1) f (x+ 1) = µ2 (2x− 1)xtf (x) + µ2φt2f (x− 1) , x = 1, 2, 3, . . .

The recursive relation can be rewritten as

(
2µ2t+ φ

) [
−x+ x2

]
f (x) = 2µ2t

[
(x− 1) + (x− 1)2

]
f (x− 1) + µ2φt2f (x− 2) , x = 2, 3, 4, . . .

(4.77)

Wang’s coefficients are therefore:b0 = 0, b1 = −
(
2µ2 + φ

)
, b2 =

(
2µ2 + φ

)
; a10 = 0, a11 =

2tµ2, a12 = 2tµ2; a20 = µ2φt2, a21 = 0, a22 = 0. The corresponding differential equation is therefore

obtained by replacing the given constants in equation (4.27). The resulting differential equation is:

[
2µ2t+ φ− 2µ2ts

]
G
′′

(s)− 4µ2tG
′
(s)− µ2φt2G (s) = 0 (4.78)

4.3.17 Reciprocal Inverse Gaussian Distribution

Consider reciprocal inverse Gaussian distribution given in (3.84).

Proposition 4.3.19. The recursive relation for Poisson-Reciprocal Inverse Gaussian distribution is

µ2 (φ+ 2t)x (x+ 1) f (x+ 1) = tµ2 (2x+ 1)xf (x) + φt2f (x− 1) , x = 1, 2, 3, . . . (4.79)

with initial conditions

f (0) =

(
2φ

π

) 1
2

e
√
ϕφ

(√
ϕ

2t+ φ

) 1
2

K 1
2

(√
ϕ (2t+ φ)

)
and

f (1) = t

(
2φ

π

) 1
2

e
√
ϕφ

(√
ϕ

2t+ φ

) 3
2

K 3
2

(√
ϕ (2t+ φ)

)
.

Proof. The Poisson-Reciprocal Inverse Gaussian distribution is

f (x) =

(
φ

2π

) 1
2 tx

x!

∫ ∞
0

λx−
1
2 exp

{
−λt− φ (1− µλ)2

2µ2λ

}
dλ.

Let u = exp
{
− φ

2µ2λ
− (2t+φ)λ

2

}
and dv = λx−

1
2dλ, then

µ2 (φ+ 2t)x (x+ 1) f (x+ 1) = tµ2 (2x+ 1)xf (x) + φt2f (x− 1) , x = 1, 2, 3, . . .
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The recursive relation can be rewritten as

µ2 (φ+ 2t)
[
−x+ x2

]
f (x) = tµ2

[
(x− 1) + 2 (x− 1)2

]
f (x− 1) + φt2f (x− 2) , x = 2, 3, 4, . . .(4.80)

The values for Wang’s coefficients are therefore:b0 = 0, b1 = −µ2 (φ+ 2t) , b2 = µ2 (φ+ 2t) ; a10 =

0, a11 = tµ2, a12 = 2tµ2; a20 = φt2, a21 = 0, a22 = 0. The corresponding differential equation is

therefore obtained by replacing the given constants in equation (4.27). The resulting differential

equation is [
µ2φ+ 2tµ2 (1− s)

]
G
′′

(s)− 3tµ2G
′
(s)− φt2G (s) = 0. (4.81)

4.3.18 Generalized Inverse Gaussian Distribution

Consider a generalized inverse Gaussian distribution given by (3.87).

Proposition 4.3.20. The recursive relation for Poisson-generalized inverse Gaussian distribution

is

(2t+ ϕ)x (x+ 1) f (x+ 1) = 2t (x+ v)xf (x) + φt2f (x− 1) , x = 1, 2, 3, . . . (4.82)

with initial conditions

f (0) =

(
ϕ

φ

) v
2
(

φ

2t+ ϕ

) v
2 Kv

(√
φ (2t+ ϕ)

)
Kv

(√
ϕφ
)

and

f (1) = t

(
ϕ

φ

) v
2
(

φ

2t+ ϕ

) 1+v
2 K1+v

(√
φ (2t+ ϕ)

)
Kv

(√
ϕφ
) .

Proof. The Poisson-Generalized Inverse Gaussian distribution is

f (x) =

(
ϕ
φ

)v
tx

2Kv

(√
ϕφ
)
x!

∫ ∞
0

e−λtλx+v−1 exp

{
−1

2

(
ϕλ+

φ

λ

)}
dλ.

Let u = exp
{
−λt− 1

2

(
ϕλ+ φ

λ

)}
and dv = λx+v−1dλ, then

(2t+ ϕ)x (x+ 1) f (x+ 1) = 2t (x+ v)xf (x) + φt2f (x− 1) , x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

(2t+ ϕ)
[
−x+ x2

]
f (x) = 2t

[
v (x− 1) + (x− 1)2

]
f (x− 1) + φt2f (x− 2) , x = 2, 3, 4, . . . (4.83)

The values of Wang’s coefficients are:b0 = 0, b1 = − (2t+ ϕ) , b2 = (2t+ ϕ) ; a10 = 0, a11 = 2tv, a12 =

2t; a20 = φt2, a21 = 0, a22 = 0. The corresponding differential equation is therefore obtained by

replacing the given constants in equation (4.27). The resulting differential equation is:

[ϕ+ 2t (1− s)]G′′ (s)− 2t (v + 1)G
′
(s)− φt2G (s) = 0. (4.84)
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4.3.19 Confluent Hypergeometric Distribution

The Confluent Hypergeometric distribution is

g (λ) =
λa−1 (1 + λ)c−a−1 e−kλ

Γ (a)ψ (a, c; k)
, λ > 0; −∞ < a <∞; −∞ < c <∞ (4.85)

Proposition 4.3.21. The recursive relation for the Poisson-Confluent Hypergeometric distribution

is

(k + t)x (x+ 1) f (x+ 1) = (c+ x− 1− k − t)xtf (x) + (x+ a− 1) t2f (x− 1) , x = 1, 2, 3, . . .

(4.86)

with initial conditions

f (0) =

∫ ∞
0

λa−1 (1 + λ)c−a−1 e−(k+t)λ

Γ (a)ψ (a, c; k)
dλ

and

f (1) =

∫ ∞
0

tλa (1 + λ)c−a−1 e−(k+t)λ

Γ (a)ψ (a, c; k)
dλ.

Proof. The Poisson-Confluent Hypergeometric distribution is

f (x) =

∫ ∞
0

e−λt (λt)x

x!
· λ

a−1 (1 + λ)c−a−1 e−kλ

Γ (a)ψ (a, c; k)
dλ.

Let u = λx+a−1e−(k+t)λ and dv = (1 + λ)c−a−1 dλ, then the recursive relation is

(k + t)x (x+ 1) f (x+ 1) = (c+ x− 1− k − t)xtf (x) + (x+ a− 1) t2f (x− 1) , x = 1, 2, 3, . . . .

The recursive relation can be rewritten as

(k + t)
[
−x+ x2

]
f (x) = t

[
(c− k − t− 1) (x− 1) + (x− 1)2

]
f (x− 1)+t2 [α+ (x− 2)] f (x− 2) , x = 2, 3, 4, . . .

(4.87)

Therefore the values for the coefficients corresponding to Wang’s model (4.26) are: b0 = 0, b1 =

− (k + t) , b2 = (k + t) ; a10 = 0, a11 = t (c− k − t− 1) , a12 = t; a20 = αt2, a21 = t2, a22 = 0 and the

corresponding differential equation is

[k + t (1− s)]G′′ (s) +
[
t (k − c) + t2 (1− s)

]
G
′
(s)− αt2G (s) = 0. (4.88)

4.3.20 Half-Normal Distribution

The half normal distribution is

g (λ) =
2√

2πσ2
e−

(λ−µ)2

2σ2 ; λ > 0; −∞ < µ <∞; σ2 > 0. (4.89)

86



Proposition 4.3.22. The recursive relation for Poisson-Half-normal distribution is

(x+ 2) f (x+ 2) = t2σ2f (x)−
(
tσ2 − µ

)
tf (x+ 1) , x = 0, 1, 2, . . . (4.90)

with initial conditions

f (0) =

∫ ∞
0

2√
2πσ2

exp

{
−λt− (λ− µ)2

2σ2

}
dλ

and

f (1) =

∫ ∞
0

2λt√
2πσ2

exp

{
−λt− (λ− µ)2

2σ2

}
dλ.

Proof. The Poisson-Half-normal distribution is

f (x) =

∫ ∞
0

e−λt (λt)x

x!
· 2√

2πσ2
e−

(λ−µ)2

2σ2 dλ.

Let u = e−λt−
(λ−µ)2

2σ2 and dv = λxdλ, then the recursive relation is

(x+ 2) f (x+ 2) = t2σ2f (x)−
(
tσ2 − µ

)
tf (x+ 1) , x = 0, 1, 2, . . . .

The recursive relation can be rewritten as

xf (x) = −t
(
tσ2 − µ

)
f (x− 1) + t2σ2f (x− 2) , x = 2, 3, 4, . . . . (4.91)

Therefore the values for the coefficients corresponding to Wang’s model are: b0 = 0, b1 = 1, b2 =

0; a10 = −t
(
tσ2 − µ

)
, a11 = 0, a12 = 0; a20 = t2σ2, a21 = 0, a22 = 0 and the corresponding differen-

tial equation is

G
′
(s) +

[
t2σ2 (1− s)− tµ

]
G (s) =

(
t2σ2 − tµ

)
f (0)− f (1) (4.92)

4.4 Conclusion

In this chapter a number of recursive formulae for mixed Poisson distributions are derived using

Integration by parts technique. This technique is simple and straight forward provided the choice

of u and dv in the integrand is done correctly to facilitate integration.

The differential equations obtained provide a compact form of obtaining moments for the cor-

responding Poisson mixtures, if the differential equations are solved. However there is a limitation

in generating probabilities when the initial condition is in terms of special functions, therefore a

numerical approximation of the initial conditions suffice.
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Chapter 5

MIXED POISSON DISTRIBUTIONS

AND THEIR MOMENTS IN TERMS

OF TRANSFORMS

5.1 Introduction

The objective of this chapter is to derive mixed Poisson distributions and their moments in terms

of transforms. Specifically, Laplace and Mellin transforms are used in the construction and the

probability generating function is used in obtaining moments.

The pgf of the mixed Poisson distribution is expressed in terms of the Laplace transform of the

mixing distribution. The rth factorial moment is obtained using the pgf and is expressed in terms of

the rth moment of the mixing distribution. Raw moments and central moments of a mixed Poisson

distribution are obtained using pgf.

The index of dispersion of mixed Poisson distribution is also considered. The mathematical

formulation follows.

5.2 Mixed Poisson Distribution and Properties based on Transforms

For a mixed Poisson distribution defined in equation (1.2), its probability generating function is

G (s) =

∞∑
x=0

f (x) sx, s ∈ R

= E
[
sX
]
. (5.1)
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The Laplace transform of φ (x) is

L {φ (x)} =

∫ ∞
0

e−sxφ (x) dx = τ (s) (5.2)

whenever the improper integral converges. Thus, L is an operator acting on φ (x) to produce another

function, say τ (s). If φ (x) is a probability density function, then

L {φ (x)} = E
[
e−sX

]
(5.3)

Mellin transform is

M {φ (x)} =

∫ ∞
0

xs−1φ (x) dx (5.4)

provided the integral exists and if φ (x) is a probability density function, then

M {φ (x)} = E
[
Xs−1

]
. (5.5)

Proposition 5.2.1. Mixtures based on Laplace and Mellin transforms of mixing distribution

(a) The mixed Poisson distribution in terms of the Laplace transform is

f (x) = (−1)x
tx

x!
L

(x)
Λ (t) (5.6)

where

LΛ (t) = f (0)

is the Laplace transform of the mixing distribution g (λ) and its xth derivative is

L
(x)
Λ (t) =

dx

dtx
LΛ (t)

= f (x) (0) (5.7)

(b) The mixed Poisson distribution in terms of Mellin transform is

f (x) =
tx

x!

∞∑
r=0

(−t)r

r!
M {g (λ) , x+ r − 1}

=
tx

x!

∞∑
r=0

(−t)r

r!
µ
′
x+r. (5.8)

where µ′x+r is the (x+ r)th raw moment of mixing distribution g (λ).

Proof. (a) The mixed Poisson distribution is

f (x) =
tx

x!

∫ ∞
0

e−λtλxg (λ) dλ

=
tx

x!
E
[
e−ΛtΛx

]
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and when x = 0 we have

f (0) = E
[
e−Λt

]
= LΛ (t)

which is the Laplace transform of the mixing distribution g (λ) . On taking the first derivative,

we have

d

dt
f (0) =

d

dt
LΛ (t)

= E
[
−Λe−Λt

]
, (5.9)

the second derivative is
d2

dt2
f (0) = E

[
(−1)2 Λ2e−Λt

]
(5.10)

and in general, the xth derivative is

f (x) (0) = (−1)x E
[
Λxe−Λt

]
(5.11)

hence the mixed Poisson distribution is

f (x) = (−1)x
tx

x!
f (x) (0)

= (−1)x
tx

x!
L

(x)
Λ (t) .

(b) The mixed Poisson distribution in terms of Mellin transform is

f (x) =
tx

x!

∫ ∞
0

λxe−λtg (λ) dλ

=
tx

x!

∫ ∞
0

λx
∞∑
r=0

(−λt)r

r!
g (λ) dλ

=
tx

x!

∞∑
r=0

(−t)r

r!

∫ ∞
0

λ(x+r+1)−1g (λ) dλ

=
tx

x!

∞∑
r=0

(−t)r

r!
M [g (λ) , x+ r + 1]

=
tx

x!

∞∑
r=0

{
(−t)r

r!
E
[
Λx+r

]}

=
tx

x!

∞∑
r=0

(−t)r

r!
µ
′
x+r

or equivalently, letting r = j − x, we have

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!
µ
′
j (5.12)

where µ′j = E
(
Λj
)
is the jth raw moment of the mixing distribution g (λ).
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Proposition 5.2.2.

(a) The probability generating function of the mixed Poisson distribution is expressed in terms of the

Laplace transform of the mixing distribution as

G (s) = LΛ [(1− s) t] (5.13)

and therefore

E [X (X − 1) (X − 2) . . . (X − r + 1)] = trE [Λr] (5.14)

where the LHS of (5.14) is the rth factorial moment of the mixed Poisson distribution.In particular,

E (X) = tE [Λ] (5.15)

and

V ar (X) = t2V ar (Λ) + tE (Λ) . (5.16)

The index of dispersion is

IX =
V ar (X)

E (X)

= 1 + tIΛ. (5.17)

(b) (i) The raw moments of Poisson mixtures in terms of pgf are:

E (X) = G
′
(1) (5.18)

E
(
X2
)

= G
′′

(1) +G
′
(1) (5.19)

E
(
X3
)

= G
′′′

(1) + 3G
′′

(1) +G
′
(1) (5.20)

E
(
X4
)

= G(iv) (1) + 6G
′′′

(1) + 7G
′′

(1) +G
′
(1) (5.21)

(ii) Moments of Poisson mixtures about the mean in terms of pgf

The second central moment is

E (X − µ)2 = G
′′

(1) +G
′
(1)−

[
G
′
(1)
]2

(5.22)

third central moment is

E (X − µ)3 = G
′′′

(1) + 3
[
1−G′ (1)

]
G
′′

(1)

+2
(
G
′
(1)
)3
− 3

(
G
′
(1)
)2

+G
′
(1) (5.23)

and the fourth central moment is

E (X − µ)4 = G(iv) (1) +
(

6− 4G
′
(1)
)
G
′′′

(1)

+

(
7− 12G

′
(1) + 6

(
G
′
(1)
)2
)
G
′′

(1) +G
′
(1)

−4
(
G
′
(1)
)2

+ 6
(
G
′
(1)
)3
− 3

(
G
′
(1)
)4
. (5.24)
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Proof. (a) From equation (5.1) the probability generating function of a Poisson mixture is

G (s) =

∫ ∞
0

e−λt(1−s)g (λ) dλ

= LΛ ((1− s) t)

To obtain the rth factorial moment, the pgf is differentiated r times and the value obtained

when s = 1. The first two derivatives are:

G
′
(s) =

∫ ∞
0

λte−λteλtsg (λ) dλ (5.25)

G
′′

(s) =

∫ ∞
0

(λt)2 e−λteλtsg (λ) dλ (5.26)

and in general the rth derivative is

G(r) (s) =

∫ ∞
0

(λt)r e−λteλtsg (λ) dλ. (5.27)

The rth factorial moment is

E (X (X − 1) (X − 2) · · · (X − r + 1)) = G(r) (1)

=

∫ ∞
0

(λt)r g (λ) dλ

= trE (Λr) , r = 1, 2, 3, . . . (5.28)

and in particular,

E (X) = G
′
(1)

= tE (Λ) (5.29)

and

V ar (X) = G
′′

(1) +G
′
(1)−

(
G
′
(1)
)2

= t2E
(
Λ2
)

+ tE (Λ)− t2 (E (Λ))2

= t2V ar (Λ) + tE (Λ) . (5.30)

The index of dispersion is

IX =
tE (Λ) + t2V ar (Λ)

tE (Λ)

= 1 + tIΛ. (5.31)

(b) (i) Raw moments of Poisson mixtures

When r = 1, we have the first raw moment

E (X) = G
′
(1)
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and when r = 2, we have the second raw moment

E
(
X2
)

= G
′′

(1) +G
′
(1) .

When r = 3 we have

G
′′′

(1) = E (X (X − 1) (X − 2))

= E
(
X3
)
− 3E

(
X2
)

+ 2E (X)

and therefore the third raw moment is

E
(
X3
)

= G
′′′

(1) + 3G
′′

(1) +G
′
(1) .

When r = 4, we have

G(iv) (1) = E (X (X − 1) (X − 2) (X − 3))

= E
(
X4
)
− 6E

(
X3
)

+ 11E
(
X2
)
− 6E (X)

and therefore the fourth raw moment is

E
(
X4
)

= G(iv) (1) + 6G
′′′

(1) + 7G
′′

(1) +G
′
(1)

(ii) Central moments

The second central moment is

E (X − µ)2 = E
(
X2
)
− 2µE (X) + µ2

= E
(
X2
)
− µ2

= G
′′

(1) +G
′
(1)−

(
G
′
(1)
)2

The third central moment is obtained in terms of probability generating function as

E (X − µ)3 = E
(
X3
)
− 3µE

(
X2
)

+ 3µ2E (X)− µ3

= G
′′′

(1) + 3
(

1−G′ (1)
)
G
′′

(1)

+2
(
G
′
(1)
)3
− 3

(
G
′
(1)
)2

+G
′
(1)

and the fourth central moment is

E (X − µ)4 = E
(
X4
)
− 4µE

(
X3
)

+ 6µ2E
(
X2
)
− 3µ4

= G(iv) (1) +
(

6− 4G
′
(1)
)
G
′′′

(1)

+

(
7− 12G

′
(1) + 6

(
G
′
(1)
)2
)
G
′′

(1) +G
′
(1)

−4
(
G
′
(1)
)2

+ 6
(
G
′
(1)
)3
− 3

(
G
′
(1)
)4
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5.3 Examples of Mixed Poisson Distributions Based on Transforms

The following are examples of Mixed Poisson distributions based on Laplace and Mellin transforms

of the mixing distributions.

5.3.1 Poisson-Gamma distribution

The gamma distribution given in equation (2.15) has Laplace transform

LΛ (t) = E
[
e−Λt

]
=

βα

Γ (α)

∫ ∞
0

λα−1e−(t+β)λdλ

=
βα

Γ (α)

Γ (α)

(t+ β)α

=

(
β

t+ β

)α
(5.32)

with the first three derivatives as:

L
′
Λ (t) = −αβα (t+ β)−α−1

L
′′
Λ (t) = (−1)2 (α+ 1)αβα (t+ β)−α−2

L
′′′
Λ (t) = (−1)3 (α+ 2) (α+ 1)αβα (t+ β)−α−3 .

Therefore in general the xth derivative is

L
(x)
Λ (t) = (−1)x (α+ x− 1) (α+ x− 2) · · · (α+ 1)αβα (t+ β)−α−x

= (−1)x x!

(
α+ x− 1

x

)
βα (t+ β)−α−x (5.33)

. and from equation (5.6) the Poisson-gamma distribution is

f (x) =
(−t)x

x!
L

(x)
Λ (t)

=
(−t)x

x!
(−1)x x!

(
α+ x− 1

x

)
βα (t+ β)−α−x

=

(
α+ x− 1

x

)(
t

t+ β

)x( β

t+ β

)α
;x = 0, 1, 2, . . .

which is (2.16).

From equation (5.13) and (5.32) its pgf is

G (s) = LΛ ((1− s) t)

=

(
β

(1− s) t+ β

)α
=

(
β

(t+ β)− ts

)α
=

(
β

t+ β

)α(
1− t

t+ β
s

)−α
(5.34)
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and the first three derivatives are:

d

ds
G (s) = α

(
t

t+ β

)(
β

t+ β

)α(
1− t

t+ β
s

)−α−1

d2

ds2
G (s) = (α+ 1)α

(
t

t+ β

)2( β

t+ β

)α(
1− t

t+ β
s

)−α−2

d3

ds3
G (s) = (α+ 2) (α+ 1)α

(
t

t+ β

)3( β

t+ β

)α(
1− t

t+ β
s

)−α−3

therefore, the rth derivative is generalized as

dr

dsr
G (s) = (α+ r − 1) (α+ r − 2) · · · (α+ 1)α

(
t

t+ β

)r ( β

t+ β

)α(
1− t

t+ β
s

)−α−r
= r!

(
α+ r − 1

r

)(
t

t+ β

)r ( β

t+ β

)α(
1− t

t+ β
s

)−α−r
and making the substitution s = 1, we have

dr

dsr
G (1) = r!

(
α+ r − 1

r

)(
t

t+ β

)r ( β

t+ β

)α( t+ β

β

)α+r

= r!

(
α+ r − 1

r

)(
t

β

)r
that is

E (X (X − 1) (X − 2) · · · (X − r + 1)) = tr
r!

βr

(
α+ r − 1

r

)
(5.35)

and from equation (5.28)

E (Λr) =
r!

βr

(
α+ r − 1

r

)
=

Γ (α+ r)

Γ (α)βr
. (5.36)

When r = 1, we have the first moment

E (X) =
t

β
α. (5.37)

When r = 2, we have the second factorial moment

E (X (X − 1)) =
2t2

β2

(
α+ 1

2

)
=

t2 (α+ 1)α

β2
,

therefore the variance is

V ar (X) = E (X (X − 1)) + E (X)− (E (X))2

=
t2 (α+ 1)α

β2
+
tα

β
− t2α2

β2

=
tα

β

(
t

β
+ 1

)
(5.38)
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and the index of dispersion is

IX =
t

β
+ 1. (5.39)

The jth moment of the gamma distribution is

E
(
Λj
)

=

∫ ∞
0

λj
βα

Γ (α)
e−βλλα−1dλ

=
βα

Γ (α)

∫ ∞
0

λj+α−1e−βλdλ

=
Γ (j + α)

Γ (α)βj
(5.40)

and the Poisson-gamma distribution by method of moments is

f (x) =

∞∑
j=x

tx (−t)j−x

(j − x)!x!

Γ (j + α)

Γ (α)βj
. (5.41)

Let k = j − x ⇒ j = k + x, therefore

f (x) =
∞∑
k=0

tx (−t)k

k!x!

Γ (k + x+ α)

Γ (α)βk+x

=

(
α+ x− 1

x

)(
t

β

)x ∞∑
k=0

(−1)k
(
x+ α+ k − 1

k

)(
t

β

)k
=

(
α+ x− 1

x

)(
t

β

)x ∞∑
k=0

(
− (x+ α)

k

)(
t

β

)k
=

(
α+ x− 1

x

)(
t

β

)x(
1 +

t

β

)−(x+α)

=

(
α+ x− 1

x

)(
β

β + t

)α( t

β + t

)x
5.3.2 Special cases of Poisson-Gamma Distribution

Exponential distribution

When α = 1 we have:

g (λ) = βe−βλ; λ > 0, β > 0 (5.42)

LΛ (t) =
β

t+ β
(5.43)

L
(x)
Λ (t) = (−1)x x!

β

(t+ β)x+1

Therefore,

f (x) =

(
t

t+ β

)x( β

t+ β

)
; x = 0, 1, 2, ... (5.44)

which is a Geometric distribution with parameter β
t+β .

G (s) =
β

(1− s) t+ β

=
β

t+ β

(
1− t

t+ β
s

)−1

(5.45)
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µ
′
r = E [Λr]

=
r!

βr

then

E (X) =
t

β
(5.46)

V ar (X) =
t (t+ β)

β2
(5.47)

and

IX = 1 +
t

β
. (5.48)

One parameter Gamma distribution

When β = 1, we have

g (λ) =
e−λλα−1

Γ (α)
; λ > 0, α > 0 (5.49)

LΛ (t) =

(
1

t+ 1

)α
(5.50)

L
(x)
Λ (t) = (−1)x x!

(
α+ x− 1

x

)
(t+ 1)−α−x

Therefore,

f (x) =

(
α+ x− 1

x

)(
t

t+ 1

)x( 1

t+ 1

)α
; x = 0, 1, 2, ... (5.51)

which is NBD (α, 1).

G (s) =

[
1

(1− s) t+ 1

]α
=

(
1

t+ 1

)α(
1− 1

t+ 1
s

)−α
(5.52)

E (Λr) =
Γ (r + α)

Γ (α)
(5.53)

then,

E (Λ) = α

E
(
Λ2
)

= α (α+ 1)

V ar (Λ) = α (5.54)

E (X) = tα

V ar (X) = αt (t+ 1) (5.55)

and

IX = 1 + t. (5.56)
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Chi-Squared distribution

When α = n
2 , β = 1

2 , where n is a fixed positive integer, we have:

g (λ) =
1

2
n
2 Γ
(
n
2

)e−λ2 λn2−1, λ > 0 (5.57)

LΛ (t) =

(
1

1 + 2t

)n
2

(5.58)

L
(x)
Λ (t) = (−1)x x!

(n
2 + x− 1

x

)(
1

1 + 2t

)n
2
(

2

1 + 2t

)x
Therefore,

f (x) =

(n
2 + x− 1

x

)(
2t

2t+ 1

)x( 1

2t+ 1

)n
2

; x = 0, 1, 2, . . . (5.59)

which is NBD
(
n
2 ,

1
x+1

)
with pgf

G (s) =

(
1

2t+ 1

)n
2
[
1− 2t

2t+ 1
s

]−n
2

(5.60)

E (Λr) =
2rΓ

(
n
2 + r

)
Γ
(
n
2

) (5.61)

E (Λ) = n, E
(
Λ2
)

= (n+ 2)n and V ar (Λ) = 2n.

E (X) = nt (5.62)

V ar (X) = nt (1 + 2t) (5.63)

and

IX = 1 + 2t. (5.64)

Scaled Chi-Squared distribution

When α = n
2 and β = 1

2σ2 , we have:

g (λ) =
1

(2σ2)
n
2 Γ
(
n
2

)e− λ
2σ2 λ

n
2
−1; λ > 0 (5.65)

LΛ (t) =

(
1

2σ2t+ 1

)n
2

=
(
1 + 2σ2t

)−n
2 (5.66)

L
(x)
Λ (t) = (−1)x x!

(n
2 + x− 1

x

)(
1

1 + 2σ2t

)n
2
(

2σ2

1 + 2σ2t

)x
Therefore

f (x) =

(n
2 + x− 1

x

)(
2σ2t

1 + 2σ2t

)x(
1

1 + 2σ2t

)n
2

; x = 0, 1, 2, . . . (5.67)
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which is NBD
(
n
2 ,

1
1+2σ2t

)
.

G (s) =

(
1

1 + 2σ2t

)n
2
[
1− 2σ2t

1 + 2σ2t
s

]−n
2

(5.68)

E (Λr) =

(
2σ2
)r

Γ
(
r + n

2

)
Γ
(
n
2

) (5.69)

then E (Λ) = nσ2, E
(
Λ2
)

= n (n+ 2)σ4 and V ar (Λ) = 2nσ4.

E (X) = ntσ2 (5.70)

V ar (X) = nt
(
1 + 2σ2t

)
σ2 (5.71)

and

IX = 1 + 2σ2t. (5.72)

5.3.3 Poisson-3 Parameter Generalized Lindley Distribution

Consider the generalized 3-parameter Lindley distribution given in (2.89), its Laplace transform is

LΛ (t) =

∫ ∞
0

e−tλθ2 (θλ)α−1 (α+ γλ) e−θλ

(θ + γ) Γ (α+ 1)
dλ

=
θα+1

(θ + γ) Γ (α+ 1)

{
α

∫ ∞
0

λα−1e−(t+θ)λdλ+ γ

∫ ∞
0

λ(α+1)−1e−(t+θ)λdλ

}
=

θα+1

(θ + γ) Γ (α+ 1)

{
αΓ (α)

(t+ θ)α
+
γΓ (α+ 1)

(t+ θ)α+1

}
=

θα+1

θ + γ

[
(t+ θ)−α + γ (t+ θ)−α−1

]
(5.73)

The first three derivatives of the laplace transform (5.73) are:

L
′
Λ (t) =

θα+1

θ + γ

{
(−1)α (t+ θ)−α−1 + γ (−1) (α+ 1) (t+ θ)−α−2

}
L
′′
Λ (t) =

θα+1

θ + γ

{
(−1)2 α (α+ 1) (t+ θ)−α−2 + γ (−1)2 (α+ 1) (α+ 2) (t+ θ)−α−3

}

L
′′′
Λ (t) =

θα+1

θ + γ

{
(−1)3 α (α+ 1) (α+ 2) (t+ θ)−α−3 + γ (−1)3 (α+ 1) (α+ 2) (α+ 3) (t+ θ)−α−4

}
=

θα+1

θ + γ

{
(−1)3 Γ (α+ 3)

Γ (α)
(t+ θ)−α−3 + γ (−1)3 Γ (α+ 4)

Γ (α+ 1)
(t+ θ)−α−4

}
Therefore, the xth derivative is

L
(x)
Λ (t) =

θα+1

θ + γ

{
(−1)x

Γ (α+ x)

Γ (α)
(t+ θ)−α−x + γ (−1)x

Γ (α+ x+ 1)

Γ (α+ 1)
(t+ θ)−α−(x+1)

}
(5.74)

99



and the Poisson-Generalized Lindley is obtained via laplace transform is

f (x) =
(−t)x

x!
L

(x)
Λ (t)

=
θα+1tx

θ + γ

{
Γ (α+ x)

x!Γ (α)
(t+ θ)−α−x +

γΓ (α+ x+ 1)

x!Γ (α+ 1)
(t+ θ)−α−x−1

}
=

θα+1tx

θ + γ

{(
α+ x− 1

x

)(
1

t+ θ

)α+x

+ γ

(
α+ x

x

)(
1

t+ θ

)α+x+1
}
. (5.75)

Making the substitution α = γ = 1 in equation (5.75) we have

f (x) =
θ2tx

θ + 1

{(
1

t+ θ

)x+1

+ (x+ 1)

(
1

t+ θ

)x+2
}

=
θ2tx

(θ + 1) (t+ θ)x+2 (t+ θ + x+ 1) (5.76)

which is Poisson-Lindley distribution.

The pgf for Poisson-3-parameter generalized Lindley distribution is

G (s) =
θα+1

θ + γ

(
((1− s) t+ θ)−α + γ ((1− s) t+ θ)−α−1

)
(5.77)

and the first three derivatives are:

d

ds
G (s) =

θα+1

θ + γ

(
tα

((1− s) t+ θ)α+1 +
γ (α+ 1) t

((1− s) t+ θ)α+2

)

d2

ds2
G (s) =

θα+1

θ + γ

(
t2α (α+ 1)

((1− s) t+ θ)α+2 +
γ (α+ 1) (α+ 2) t2

((1− s) t+ θ)α+3

)

d3

ds3
G (s) =

θα+1

θ + γ

(
t3α (α+ 1) (α+ 2)

((1− s) t+ θ)α+3 +
γ (α+ 1) (α+ 2) (α+ 3) t3

((1− s) t+ θ)α+4

)
therefore the rth derivative is generalized as

dr

dsr
G (s) =

θα+1

θ + γ

(
trα (α+ r − 1) (α+ r − 2) · · · (α+ 1)α

((1− s) t+ θ)α+r +
γ (α+ r) (α+ r − 1) · · · (α+ 1) tr

((1− s) t+ θ)α+r+1

)
.

Making the substitution s = 1, we have

dr

dsr
G (1) =

θα+1tr

θ + γ

(
α (α+ r − 1) (α+ r − 2) · · · (α+ 1)α

θα+r
+
γ (α+ r) (α+ r − 1) · · · (α+ 1)

θα+r+1

)
that is

E (X (X − 1) (X − 2) · · · (X − r + 1)) =
trr!

θ + γ

(
1

θr−1

(
α+ r − 1

r

)
+
γ

θr

(
α+ r

r

))
(5.78)

and from equation (5.28),

E (Λr) =
1

θ + γ

(
Γ (α+ r)

θr−1Γ (α)
+
γΓ (α+ r + 1)

θrΓ (α+ 1)

)
, r = 1, 2, 3, . . . . (5.79)
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When r = 1, we have the first moment

E (X) =
t

θ (θ + γ)
(αθ + γ (α+ 1)) . (5.80)

When r = 2, we have the second factorial moment

E (X (X − 1)) =
t2

θ2 (θ + γ)
(α (α+ 1) θ + γ (α+ 2) (α+ 1)) . (5.81)

The jth moment of the 3-parameter generalized Lindley distribution is

E
(
Λj
)

=

∫ ∞
0

λj
θα+1

(θ + γ) Γ (α+ 1)
(α+ γλ)λα−1e−θλdλ

=
θα+1

(θ + γ) Γ (α+ 1)

{
α

∫ ∞
0

λj+α−1e−θλdλ+ γ

∫ ∞
0

λ(j+α+1)−1e−θλdλ

}
=

θα+1

(θ + γ) Γ (α+ 1)

{
αθΓ (j + α)

θj+α+1
+
γ (j + α) Γ (j + α)

θj+α+1

}
=

Γ (j + α)

Γ (α+ 1)

{
αθ + jγ + γα

θj (θ + γ)

}
which simplifies to

E
(
Λj
)

=
Γ (j + α)

Γ (α+ 1)

{
α (θ + γ) + γj

(θ + γ) θj

}
=

Γ (j + α)

Γ (α+ 1)

{
α+

γj

θ + γ

}
1

θj
(5.82)

Therefore, the Poisson-generalized Lindley distribution is obtained by the method of moments as

f (x) =

∞∑
j=x

tx (−t)j−x

(j − x)!x!

Γ (j + α)

Γ (α+ 1)

{
α+

γj

θ + γ

}
1

θj

=

∞∑
j=x

j!tx (t)j−x (−1)j−x

(j − x)!x!

Γ (j + α)

j!Γ (α+ 1)

{
α+

γj

θ + γ

}
1

θj

=

∞∑
j=x

(−1)j−x
(
j

x

)(
j + α− 1

j

)(
1 +

γ

α (θ + γ)j

)(
t

θ

)j
=

∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)(
t

θ

)j
+

γ

α (θ + γ)

∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)
j

(
t

θ

)j
(5.83)
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But
∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)(
t

θ

)j
=

∞∑
j=x

(−1)j−x Γ (α+ j)

x! (j − x)!Γ (α)

(
t

θ

)j
=

Γ (x+ α) tx

x!Γ (α) θx

∞∑
j=x

(−1)j−x Γ (x+ α+ j − x)

(j − x)!Γ (x+ α)

(
t

θ

)j−x
=

Γ (x+ α)

x!Γ (α)

(
t

θ

)x ∞∑
k=0

(−1)k
(
x+ α+ k − 1

k

)(
t

θ

)k
=

Γ (x+ α)

x!Γ (α)

(
t

θ

)x ∞∑
k=0

(
− (x+ α)

k

)(
t

θ

)k
=

Γ (x+ α)

x!Γ (α)

(
t

θ

)x( θ

θ + t

)x+α

=
Γ (x+ α)

x!Γ (α)

txθα

(θ + t)x+α (5.84)

Next, consider

γ

α (θ + γ)

∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)
j

(
t

θ

)j
=

γ

α (θ + γ)

∞∑
j=x

(−1)j−x

x! (j − x)!

Γ (α+ j)

Γ (α)
j

(
t

θ

)j
=

γΓ (x+ α)

(θ + γ) Γ (α+ 1)

∞∑
j=x

(−1)j−x

x!

Γ (x+ α+ j − x)

(j − x)!Γ (x+ α)

(j − x+ x)

(
t

θ

)j−x+x

=
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

(
t

θ

)x ∞∑
k=0

(−1)k Γ (x+ α+ k)

k!Γ (x+ α)
(k + x)

(
t

θ

)k
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Further simplification yields the following

γ

α (θ + γ)

∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)
j

(
t

θ

)j

=
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

(
t

θ

)x{ ∞∑
k=0

(−1)k Γ (x+ α+ k)

(k − 1)!Γ (x+ α)

(
t

θ

)k
+ x

∞∑
k=0

(−1)k
(
x+ α+ k − 1

k

)(
t

θ

)k}

=
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

(
t

θ

)x{
−
[
t (x+ α)

θ

] ∞∑
k=1

(−1)k−1 Γ (x+ α+ k)

(k − 1)!Γ (x+ α+ 1)

(
t

θ

)k−1

+ x

(
θ

θ + t

)x+α
}

=
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

(
t

θ

)x{
−
[
t (x+ α)

θ

] ∞∑
k=1

(−1)k−1

(
x+ α+ 1 + k − 1− 1

k − 1

)(
t

θ

)k−1

+ x

(
θ

θ + t

)x+α
}

=
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

(
t

θ

)x{
−
[
t (x+ α)

θ

](
θ

θ + t

)x+α+1

+ x

(
θ

θ + t

)x+α
}

=
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

txθα

(θ + t)x+α

{
− t (x+ α)

θ + t
+ x

}
=

γΓ (x+ α)

(θ + γ) Γ (α+ 1)

txθα

(θ + t)x+α {θx− tα} (5.85)

Now, replacing (5.84) and (5.85) in (5.83) we obtain the following expression

∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)(
1 +

γj

α (θ + γ)

)(
t

θ

)j
=

Γ (x+ α)

x!Γ (α)

txθα

(θ + t)x+α +
γΓ (x+ α)

(θ + γ) Γ (α+ 1)

txθα

(θ + t)x+α {θx− tα}

=
Γ (x+ α) txθα

x!Γ (α+ 1) (θ + t)x+α

{
α (θ + γ) (θ + t) + γ (θx− tα)

(θ + γ) (θ + t)

}
=

Γ (x+ α) txθα

x!Γ (α+ 1) (θ + γ) (θ + t)x+α+1 {(αθ + αγ) (θ + t) + γθx− γtα}

=
Γ (x+ α) txθα+1 [α (θ + γ) + αt+ γx]

x! (θ + γ) Γ (α+ 1) (θ + t)x+α+1

=
Γ (x+ α)

x!Γ (α+ 1)

(
α+

αt+ γx

θ + γ

)(
θ

θ + t

)α+1( t

θ + t

)x
5.3.4 Poisson-Transmuted Exponential Distribution

Consider the transmuted exponential distribution given in (2.53), its Laplace transform is

LΛ (t) =

∫ ∞
0

e−λt
[
(1− α) θe−θλ + 2αθe−2θλ

]
dλ

= (1− α) θ

∫ ∞
0

e−(t+θ)λdλ+ 2αθ

∫ ∞
0

e−(t+2θ)λdλ

= (1− α) θ (t+ θ)−1 + 2αθ (t+ 2θ)−1 , (5.86)

the first three derivatives of (5.86) are

L
′
Λ (t) = (1− α) θ (−1) (t+ θ)−2 + 2αθ (−1) (t+ 2θ)−2
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L
′′
Λ (t) = (1− α) θ (−1)2 2! (t+ θ)−3 + 2αθ (−1)2 2! (t+ 2θ)−3

L
′′′
Λ (t) = (1− α) θ (−1)3 3! (t+ θ)−4 + 2αθ (−1)3 3! (t+ 2θ)−4

and in general, the xth derivative is

L
(x)
Λ (t) = (1− α) θ (−1)x x! (t+ θ)−(x+1) + 2αθ (−1)x x! (t+ 2θ)−(x+1) . (5.87)

The Poisson-transmuted exponential distribution is obtained via laplace transform as

f (x) =
(−t)x

x!
L

(x)
Λ (t)

=
(1− α) θtx

(t+ θ)x+1 +
2αθtx

(t+ 2θ)x+1

= (1− α)

(
θ

t+ θ

)(
t

t+ θ

)x
+ α

(
2θ

t+ 2θ

)(
t

t+ 2θ

)x
, x = 0, 1, 2, . . . (5.88)

The jth moment of transmuted exponential distribution is

E
(
Λj
)

=

∫ ∞
0

λj
[
(1− α) θe−θλ + 2αθe−2θλ

]
dλ

= (1− α) θ

∫ ∞
0

λje−θλdλ+ 2αθ

∫ ∞
0

λje−2θλdλ

= (1− α) θ
Γ (j + 1)

θj+1
+ 2αθ

Γ (j + 1)

(2θ)j+1

=
j!

θj

(
(1− α) +

α

2j

)
(5.89)

therefore, by method of moments, the Poisson-transmuted exponential distribution is

f (x) =
∞∑
j=x

tx (−t)j−x j!
(j − x)!x!θj

(
(1− α) +

α

2j

)
=

∞∑
j=x

(−1)j−x
(
j

x

)(
(1− α) +

α

2j

)( t
θ

)j
= (1− α)

∞∑
j=x

(−1)j−x
(
j

x

)(
t

θ

)j
+ α

∞∑
j=x

(−1)j−x
(
j

x

)(
t

2θ

)j
= (1− α)

∞∑
j=x

(−1)k
(
x+ k

k

)(
t

θ

)x+k

+ α

∞∑
j=x

(−1)k
(
x+ k

k

)(
t

2θ

)x+k

= (1− α)

(
t

θ

)x ∞∑
k=0

(−1)k
(
x+ 1 + k − 1

k

)(
t

θ

)k
+α

(
t

2θ

)x ∞∑
k=0

(−1)k
(
x+ 1 + k − 1

k

)(
t

2θ

)k
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On further solving, the expression becomes

f (x) = (1− α)

(
t

θ

)x ∞∑
k=0

(−1)k
(
− (x+ 1)

k

)(
t

θ

)k
+α

(
t

2θ

)x ∞∑
k=0

(−1)k
(
− (x+ 1)

k

)(
t

2θ

)k
= (1− α)

(
t

θ

)x( θ

θ + t

)x+1

+ α

(
t

2θ

)x( 2θ

2θ + t

)x+1

=
θtx (1− α)

(t+ θ)x+1 +
θtx2α

(t+ 2θ)x+1

= (1− α)

(
t

t+ θ

)x( θ

t+ θ

)
+ α

(
t

t+ 2θ

)x( 2θ

t+ 2θ

)
5.3.5 Poisson-Inverse Gamma Distribution

Consider the inverse gamma distribution given by (3.72), its Laplace transform is

LΛ (t) = E
[
e−λt

]
=

∫ ∞
0

e−λt
βα

Γ (α)
e−

β
λλ−α−1dλ

=
βα

Γ (α)

∫ ∞
0

λ−α−1e−λt−
β
λ dλ

=
βα

Γ (α)

∫ ∞
0

λ−α−1et(λ+β
t

1
λ)dλ (5.90)

and making the substitution λ =
√

β
t z, implying dλ =

√
β
t dz, we have

LΛ (t) =
βα

Γ (α)

∫ ∞
0

(√
β

t
z

)−α−1

e
−t
√
β
t (z+

1
z )
√
β

t
dz

=
βα

Γ (α)

(√
β

t

)−α ∫ ∞
0

z−α−1e−2
√
βt
2 (z+ 1

z )dz

=
βα

Γ (α)

(√
t

β

)α
2K−α

(
2
√
βt
)

=
βα

Γ (α)

t
α
2

β
α
2

2K−α

(
2
√
βt
)

= 2
(βt)

α
2

Γ (α)
K−α

(
2
√
βt
)
. (5.91)

The pgf is

G (s) =
2 [β (1− s) t]

α
2

Γ (α)
K−α

(
2
√
β (1− s) t

)
. (5.92)

To obtain derivatives of LΛ (t) take

LΛ (t) = 2
(βt)

α
2

Γ (α)
Kα

(
2
√
βt
)
.

105



The first derivative is

L
′
Λ (t) =

d

dt
Lλ (t)

=
2

Γ (α)

{
α

2
(βt)

α
2
−1 βKα

(
2
√
βt
)

+ (βt)
α
2
d

dt
Kα

(
2
√
βt
)}

,

but

K
′
v (ω) =

d

dω
Kv (ω)

= −1

2
[Kv−1 (ω) +Kv+1 (ω)]

and

Kv+1 (ω) =
2v

ω
Kv (ω) +Kv−1 (ω) ,

therefore

K
′
v (ω) = −1

2

{
Kv−1 (ω) +

2v

ω
Kv (ω) +Kv−1 (ω)

}
= −1

2

{
2Kv−1 (ω) +

2v

ω
Kv (ω)

}
and

K
′
v (ω) = −Kv−1 (ω)− v

ω
Kv (ω) .

Now, the first derivative is

L
′
Λ =

2

Γ (α)

{
αβ

2
(βt)

α
2
−1Kα

(
2
√
βt
)}

+
2

Γ (α)
(βt)

α
2

[
−Kα−1

(
2
√
βt
)
− α

2
√
βt
Kα

(
2
√
βt
)]

(βt)−
1
2 β

=
2

Γ (α)

[
αβ

2
(βt)

α
2
−1Kα

(
2
√
βt
)
− (βt)

α
2 β (βt)−

1
2 Kα−1

(
2
√
βt
)]

− 2

Γ (α)

[
(βt)

α
2 β (βt)−

1
2

α

2
√
βt
Kα

(
2
√
βt
)]

=
2

Γ (α)

{
αβ

2
(βt)

α
2
−1Kα

(
2
√
βt
)
− β (βt)

α−1
2 Kα−1

(
2
√
βt
)}

− 2

Γ (α)
· αβ

2
(βt)

α
2
−1Kα

(
2
√
βt
)

=
2

Γ (α)

[
−β (βt)

α−1
2 Kα−1

(
2
√
βt
)]

= − 2β

Γ (α)
(βt)

α−1
2 Kα−1

(
2
√
βt
)
,
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the second derivative is

L
′′
Λ (t) = − 2β

Γ (α)

(
α− 1

2

)
(βt)

α−1
2
−1 βKα−1

(
2
√
βt
)

− 2β

Γ (α)
(βt)

α−1
2

[
−Kα−2

(
2
√
βt
)
− α− 1

2
√
βt
Kα−1

(
2
√
βt
)]

2 · 1

2
(βt)−

1
2 β

= − 2β

Γ (α)

[
(α− 1)β

2
(βt)

α−1
2
−1Kα−1

(
2
√
βt
)]

− 2β

Γ (α)
(βt)

α−1
2 β (βt)−

1
2

[
−Kα−2

(
2
√
βt
)
− α− 1

2
√
βt
·Kα−1

(
2
√
βt
)]
,

therefore,

L
′′
Λ (t) = − 2β

Γ (α)

{
(α− 1)

2
β (βt)

α−1
2
−1Kα−1

(
2
√
βt
)

+ (βt)
α−1
2 β (βt)−

1
2 · −Kα−2

(
2
√
βt
)}

− 2β

Γ (α)
(βt)

α−1
2 β (βt)−

1
2 · −α− 1

2
√
βt
Kα−1

(
2
√
βt
)

= − 2β

Γ (α)

{
(α− 1)

2
β (βt)

α−1
2
−1Kα−1

(
2
√
βt
)
− β (βt)

α−2
2 Kα−2

(
2
√
βt
)}

+
2β

Γ (α)

(α− 1)β

2
(βt)

α−1
2
−1Kα−1

(
2
√
βt
)

= − 2β

Γ (α)

{
−β (βt)

α−2
2 Kα−2

(
2
√
βt
)}

= (−1)2 2β2

Γ (α)
(βt)

α−2
2 Kα−2

(
2
√
βt
)

and the third derivative is

L
′′′
Λ (t) = (−1)2 2β2

Γ (α)

{
d

dt
(βt)

α−2
2 Kα−2

(
2
√
βt
)}

=
2

Γ (α)
(−1)2 β2

{(
α− 2

2

)
(βt)

α−2
2
−1 βKα−2

(
2
√
βt
)

+ (βt)
α−2
2

d

dt
Kα−2

(
2
√
βt
)}

=
2

Γ (α)
(−1)2 β2

{
(α− 2)β

2
(βt)

α−2
2
−1Kα−2

(
2
√
βt
)}

+
2

Γ (α)
(−1)2 β2

{
(βt)

α−2
2

[
−Kα−3

(
2
√
βt
)
− α− 2

2
√
βt
Kα−2

(
2
√
βt
)]

2 · 1

2

1√
βt
β

}
=

2

Γ (α)
(−1)2 β2

{
α− 2

2
β (βt)

α−2
2
−1Kα−2

(
2
√
βt
)
− β (βt)

α−2
2
− 1

2 Kα−3

(
2
√
βt
)}

− 2

Γ (α)
(−1)2 β2

{
β (βt)

α−2
2
−1 α− 2

2
Kα−2

(
2
√
βt
)}

=
2

Γ (α)
(−1)2 β2

{
α− 2

2
β (βt)

α−2
2
−1Kα−2

(
2
√
βt
)
− β (βt)

α−3
2 Kα−3

(
2
√
βt
)}

− 2

Γ (α)
(−1)2 β2

{
(α− 2)

2
β (βt)

α−2
2
−1Kα−2

(
2
√
βt
)}

therefore

L
′′′
Λ (t) =

2

Γ (α)
(−1)3 β3 (βt)

α−3
2 Kα−3

(
2
√
βt
)
.
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By induction

L
(x)
Λ (t) =

2

Γ (α)
(−1)x βx (βt)

α−x
2 Kα−x

(
2
√
βt
)

(5.93)

and therefore the mixed Poisson distribution is

f (x) =
(−t)x

x!
L

(x)
Λ (t)

=
(−t)x

x!
· 2

Γ (α)
(−1)x βx (βt)

α−x
2 Kα−x

(
2
√
βt
)

=
2

Γ (α)

(βt)x

x!
(βt)

α−x
2 Kα−x

(
2
√
βt
)

=
2

Γ (α)

(βt)
x+α
2

x!
Kα−x

(
2
√
βt
)

; x = 0, 1, 2, . . . . (5.94)

The jth moment of inverse gamma is

E
(
Λj
)

=

∫ ∞
0

λj
βα

Γ (α)
e−

β
λλ−α−1dλ

=
βα

Γ (α)

∫ ∞
0

λj−α−1e−
β
λ dλ

and making the substitution z = β
λ , implying λ = β

z and dz = − β
z2
dz we have

E
(
Λj
)

=
βα

Γ (α)

∫ ∞
0

(
β

z

)j−α−1

e−z
β

z2
dz

=
βα

Γ (α)
βj−α−1 · β

∫ ∞
0

z−j+α+1−2e−zdz

=
βj

Γ (α)

∫ ∞
0

z−(j−α)−1e−zdz

=
βj

Γ (α)

∫ ∞
0

zα−j−1e−zdz

=
βj

Γ (α)
Γ (α− j) ;α > j. (5.95)

Now, the variance of inverse gamma distribution is

V ar (Λ) =
β2

(α− 1) (α− 2)
− β2

(α− 1)2

=
β2

α− 1

[
1

α− 2
− 1

α− 1

]
=

β2

(α− 1)2 (α− 2)
,

the mean of mixed Poisson distribution is

E (X) =
tβ

α− 1
, (5.96)
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the variance is

V ar (X) = tE (Λ) + t2V ar (Λ)

=
tβ

α− 1
+

t2β2

(α− 1)2 (α− 2)

=
tβ

α− 1

[
1 +

tβ

(α− 1) (α− 2)

]
, (5.97)

and the index of dispersion is

IX = 1 +
tβ2

(α− 1)2 (α− 2)
· α− 1

β

= 1 +
tβ

(α− 1) (α− 2)
. (5.98)

The Poisson-inverse gamma distribution is therefore obtained by method of moments as

f (x) =

∞∑
j=x

tx (−t)j−x βj

(j − x)!x!

Γ (α− j)
Γ (α)

=
1

x!Γ (α)

∞∑
j=x

(−1)j−x (βt)j

(j − x)!

∫ ∞
0

zα−j−1e−zdz

=
1

x!Γ (α)

∫ ∞
0


∞∑
j=x

(−1)j−x

(j − x)!

(
βt

z

)j zα−1e−zdz

=
1

x!Γ (α)

∫ ∞
0

{ ∞∑
k=0

(−1)k

k!

(
βt

z

)x+k
}
zα−1e−zdz

=
1

x!Γ (α)

∫ ∞
0

(
βt

z

)x [ ∞∑
k=0

(
−βt
z

)k 1

k!

]
zα−1e−zdz

=
1

x!Γ (α)

∫ ∞
0

(
βt

z

)x
e−

βt
z zα−1e−zdz

=
1

x!Γ (α)
(βt)x

∫ ∞
0

zα−x−1e−(z+βt
z )dz

and making the substitution z =
√
βty, implying dz =

√
βtdy, we have

f (x) =
(βt)x

x!Γ (α)

∫ ∞
0

(√
βty
)α−x−1

e
−
√
βt
(
y+ 1

y

)√
βtdy

=
(βt)x

(√
βt
)α−x

x!Γ (α)

∫ ∞
0

yα−x−1e
−
√
βt
(
y+ 1

y

)
dy

=
2 (βt)

α+x
2

x!Γ (α)

[
1

2

∫ ∞
0

yα−x−1e
− 2
√
βt
2

(
y+ 1

y

)
dy

]
=

2 (βt)
α+x
2

x!Γ (α)
Kα−x

(
2
√
βt
)
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5.3.6 Special Cases of Poisson-Inverse Gamma Distribution

Inverse Exponential distribution

When α = 1, we have

g (λ) = βe−
β
λλ−2; λ > 0, β > 0 (5.99)

and its Laplace transform is

LΛ (t) = 2 (βt)
1
2 K−1

(
2
√
βt
)
. (5.100)

The pgf is

G (s) = 2 [β (1− s) t]−
1
2 K−1

(
2
√
β (1− s) t

)
. (5.101)

The xth derivative of the Laplace transform is

L
(x)
Λ = 2 (−β)x (βt)

1−x
2 K1−x

(
2
√
βt
)

(5.102)

µ
′
r = βrΓ (1− r) (5.103)

E (Λr) = β
0 =∞ E

(
Λ2
)

=∞, V ar (Λ) =∞.

E (X) =∞, V ar (X) =∞, IX =∞.

The mixed Poisson distribution is

f (x) = 2 (βt)
x+1
2 K1−x

(
2
√
βt
)

(5.104)

Inverse Chi-Squared distribution

When α = n
2 , and β = 2, we have

g (λ) =
2
n
2

Γ
(
n
2

)e− 2
λλ−

n
2
−1; λ > 0 (5.105)

and its Laplace transform is

LΛ (t) =
2 (2t)

n
4

Γ
(
n
2

) K−n
2

(
2
√

2t
)

(5.106)

with the xth derivative

L
(x)
Λ =

(−1)x

Γ
(
n
2

) 2
x
2

+n
4

+1t
n
4
−x

2Kn
2
−x

(
2
√

2t
)

(5.107)

The mixed Poisson distribution is

f (x) =
2

Γ
(
n
2

) (2t)
1
2(x+n

2 )

x!
Kn

2
−x

(
2
√

2t
)
, (5.108)

the rth raw moment of inverse chi-squared distribution is

E (Λr) =
2r

Γ
(
n
2

)Γ
(n

2
− r
)
,
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E (Λ) =
2

Γ
(
n
2

)Γ
(n

2
− 1
)

=
2

n
2 − 1

=
4

n− 2

and variance

V ar (Λ) =
22(

n
2 − 1

)2 (n
2 − 2

)
=

4
(n−2)2

4
(n−4)

2

=
32

(n− 2)2 (n− 4)
.

The mean of Poisson mixture is

E (X) =
2t

n
2 − 1

=
4t

n− 2
,

variance is

V ar (X) =
2t

n
2 − 1

[
1 +

2t(
n
2 − 1

) (
n
2 − 2

)]

=
4t

n− 2

[
1 +

8t

(n− 2) (n− 4)

]
(5.109)

and the index of dispersion is

IX = 1 +
2t(

n
2 − 1

) (
n
2 − 2

)
= 1 +

8t

(n− 2) (n− 4)
. (5.110)

The pgf is

G (s) =
2 [2 (1− s) t]

n
4

Γ
(
n
2

) K−n
2

(
2
√

2 (1− s) t
)
.

Scaled Inverse Chi-Squared distribution

For α = n
2 , β = 2σ2,

g (λ) =

(
2σ2
)n

2

Γ
(
n
2

) e− 2σ2

λ λ−
n
2
−1 (5.111)

LΛ (t) =
2

Γ
(
n
2

) (√2σ2t
)n

2
K−n

2

(
2
√

2σ2t
)

(5.112)

f (x) =
2
(√

2σ2t
)x

2
+n

4

x!Γ
(
n
2

) Kn
2
−x

(
2
√

2σ2t
)

;x = 0, 1, 2, . . . (5.113)
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G (s) =
2

Γ
(
n
2

) [√2σ2 (1− s) t
]n

2
K−n

2

(
2
√

2σ2 (1− s) t
)

µ
′
r =

(
2σ2
)r

Γ
(
n
2

) Γ
(n

2
− r
)

(5.114)

E (X (X − 1) (X − 2) · · · (X − r + 1)) =

(
2σ2t

)r
Γ
(
n
2

) Γ
(n

2
− r
)

E (X) =
2σ2t
n
2 − 1

V ar (X) =
2σ2t
n
2 − 1

[
2σ2t(

n
2 − 1

) (
n
2 − 2

) + 1

]
(5.115)

IX =
2σ2t(

n
2 − 1

) (
n
2 − 2

) + 1 (5.116)

5.3.7 Poisson-Hougaard Distribution

To determine Poisson-Hougaard distribution through Laplace transform, we use equation (5.6),

implying that

f (0) = LΛ (t)

= exp

{
− δ
α

[(θ + t)α − θα]

}
, α ∈ (0, 1) .

The first derivative of the Laplace transform is

L
′
Λ (t) = (−1) δ (0 + t)α−1 f0 (t)

second derivative is

L
′′
Λ (t) = (−1) δ

{
(α− 1) (θ + t)α−2 f (0) + (θ + t)α−1 f

′
(0)
}

= (−1) δ
{

(α− 1) (θ + t)α−2 + (θ + t)α−1 (−1) δ (θ + t)α−1
}
f (0)

= (−1)2
{

(1− α) δ (θ + t)α−2 + δ2 (θ + t)2α−2
}
f (0)

= (−1)2

{
(1− α)

Γ (1− α)

Γ (1− α)
δ (θ + t)α−2 + δ2 (θ + t)2α−2

}
f (0)

= (−1)2

{
Γ (2− α)

Γ (1− α)
δ (θ + t)α−2 + δ2 (θ + t)2α−2

}
f (0)

= (−1)2
{
c2,1 (α) δ (θ + t)α−2 + c2,2 (α) δ2 (θ + t)2α−2

}
f (0)

= (−1)2
2∑
i=1

c2,i (α) δi (θ + t)iα−2 f (0) (5.117)

where c2,1 (α) = Γ(2−α)
Γ(1−α) and c2,2 (α) = 1.
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The third derivative is obtained as follows:

L
′′′
Λ (t) = (−1)2

2∑
i=1

c2,i (α) δi
{

(iα− 2) (θ + t)iα−3 f (0) + (θ + t)iα−2 f
′
(0)
}

= (−1)2
2∑
i=1

c2,i (α) δi
{

(iα− 2) (θ + t)iα−3 + (θ + t)iα−2 (−1) δ (θ + t)α−1
}
f (0)

= (−1)3
2∑
i=1

c2,i (α) δi
{

(2− iα) (θ + t)iα−3 + (θ + t)iα−2 (−1) δ (θ + t)α−1
}
f (0)

= (−1)3
2∑
i=1

c2,i (α)
{

(2− iα) δi (θ + t)iα−3 + δi+1 (θ + t)(i+1)α−3
}
f (0)

On solving further, then

L
′′′
Λ (t) = (−1)3

2∑
i=1

{
(2− iα) c2,i (α) δi (θ + t)iα−3 + c2,i (α) δi+1 (θ + t)(i+1)α−3

}
f (0)

= (−1)3
{

(2− α) c2,1 (α) δ (θ + t)α−3 + c2,1 (α) δ2 (θ + t)2α−3
}
f (0) +

(−1)3
{

(2− 2α) c2,2 (α) δ2 (θ + t)2α−3 + c2,2 (α) δ3 (θ + t)3α−3
}
f (0)

= (−1)3

{
(2− α)

Γ (2− α)

Γ (1− α)
δ (θ + t)α−3 + c2,1 (α) δ2 (θ + t)2α−3

}
f (0) +

(−1)3
{

2 (1− α) c2,2 (α) δ2 (θ + t)2α−3 + c2,2 (α) δ3 (θ + t)3α−3
}
f (0)

= (−1)3

{
Γ (3− α)

Γ (1− α)
δ (θ + t)α−3 + [c2,1 (α) + (2− 2α) c2,2 (α)] δ2 (θ + t)2α−3

}
f (0) +

(−1)3
{
c2,2 (α) δ3 (θ + t)3α−3

}
f (0)

= (−1)3
{
c3,1 (α) δ (θ + t)α−3 + c3,2 (α) δ2 (θ + t)2α−3 + c3,3 (α) δ3 (θ + t)3α−3

}
f (0)

therefore,

L
′′′
Λ (t) = (−1)3

3∑
i=1

c3,i (α) δi (θ + t)iα−3 f (0)

where

c3,1 (α) =
Γ (3− α)

Γ (1− α)

c3,2 (α) = c2,1 (α) + c2,2 (α) {2− 2α}

and

c3,3 (α) = c2,2 (α) = 1.
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Next,

L
(iv)
Λ (t) = (−1)3

3∑
i=1

c3,i (α) δi
{

(iα− 3) (θ + t)iα−4 f (0) + (θ + t)iα−3 f
′
(0)
}

= (−1)3
3∑
i=1

c3,i (α) δi
{

(iα− 3) (θ + t)iα−4 + (−1) δ (θ + t)(i+1)α−4
}
f (0)

= (−1)4
3∑
i=1

c3,i (α) δi
{

(3− iα) (θ + t)iα−4 + δ (θ + t)(i+1)α−4
}
f (0)

= (−1)4
3∑
i=1

{
(3− iα) c3,i (α) δi (θ + t)iα−4 + c3,i (α) δi+1 (θ + t)(i+1)α−4

}
f (0)

that is,

L
(iv)
Λ (t) = (−1)4

3∑
i=1

{
(3− iα) c3,i (α) δi (θ + t)iα−4 + c3,i (α) δi+1 (θ + t)(i+1)α−4

}
f (0)

= (−1)4
{

(3− α) c3,1 (α) δ (θ + t)α−4 + c3,1 (α) δ2 (θ + t)2α−4
}
f (0)

+ (−1)4
{

(3− 2α) c3,2 (α) δ2 (θ + t)2α−4 + c3,2 (α) δ3 (θ + t)3α−4
}
f (0)

+ (−1)4
{

(3− 3α) c3,3 (α) δ3 (θ + t)3α−4 + c3,3 (α) δ4 (θ + t)4α−4
}
f (0)

= (−1)4
{
c4,1 (α) δ (θ + t)α−4 + [c3,1 (α) + (3− 2α) c3,2 (α)] δ2 (θ + t)2α−4

}
f (0)

+ (−1)4
{

[c3,2 (α) + (3− 3α) c3,3 (α)] δ3 (θ + t)3α−4
}
f (0)

+ (−1)4
{
c3,3 (α) δ4 (θ + t)4α−4

}
f (0) .

Therefore,

L
(iv)
Λ (t) = (−1)4

4∑
i=1

c4,i (α) δi (θ + t)iα−4 f (0)

where c4,1 (α) = Γ(4−α)
Γ(1−α) ; c4,2 (α) = c3,1 (α) + c3,2 (α) {3− 2α}; c4,3 (α) = c3,2 (α) + c3,3 (α) {3− 3α}

and c4,4 (α) = c3,3 (α) = 1.

In general the xth derivative is

L
(x)
Λ (t) = (−1)x

x∑
i=1

cx,i (α) δi (θ + t)iα−x f (0) (5.118)

where cx,1 (α) = Γ(x−α)
Γ(1−α) , cx,i (α) = cx−1,i−1 (α) + cx−1,i (α) {(x− 1)− iα} for i = 2, 3, . . . , x− 1 and

cx,x (α) = 1.

The Poisson-Hougaard distribution is therefore

f (x) =
tx

x!

x∑
i=1

cx,i (α) δi (θ + t)iα−x f (0) (5.119)

where

f (0) = exp

{
− δ
α

[(θ + t)α − θα]

}
, α ≤ 1.

114



Remark: Hougaard distribution is a case where the Laplace of a mixing distribution is relatively

easier to handle than the pdf. We shall therefore not obtain the pgf, factorial moments, the index

of dispersion and Poisson mixture in terms of Mellin transform.

5.4 Mixed Poisson distributions by method of moments

In this section, we shall obtain Poisson mixtures by method of moments only. We shall also derive

the Laplace transform of the mixing distribution and hence the pgf of the mixture. We shall not

however obtain the xth derivative of the Laplace transform.

5.4.1 Lindley Distribution

Consider Lindley distribution given in (2.69), its Laplace transform is

LΛ (t) = f (0)

=
θ2 (θ + t+ 1)

(θ + 1) (t+ θ)2 (5.120)

and therefore the pgf of Poisson-Lindley distribution is

G (s) =
θ2 (θ + (1− s) t+ 1)

(θ + 1) ((1− s) t+ θ)2 (5.121)

The jth moment of Lindley distribution is

E
(
Λj
)

=

∫ ∞
0

λj
θ2

θ + 1
(λ+ 1) e−θλdλ

=
θ2

θ + 1

∫ ∞
0

(
λj+2−1 + λj+1−1

)
e−θλdλ

=
θ2

θ + 1

[
Γ (j + 2)

θj+2
+

Γ (j + 1)

θj+1

]
=

θ2

θ + 1

Γ (j + 1)

θj+1

(
j + 1

θ
+ 1

)
=

j!

(θ + 1) θj
(j + 1 + θ) (5.122)
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The Poisson-Lindley distribution is therefore obtained by the method of moments as

f (x) =
∞∑
j=x

tx (−t)j−x

(j − x)!x!

j!

(θ + 1) θj
(j + 1 + θ)

=
1

θ + 1

∞∑
j=x

(
−t
θ

)j
(j + 1 + θ) (−1)x

(
j

x

)

=
1

θ + 1

∞∑
k=0

(−1)k

(θ)k+x
tk+x

(
j

x

)
(k + x+ 1 + θ)

=
tx

(θ + 1) θx

∞∑
k=0

(−1)k
(
x+ 1 + k − 1

k

)
(k + x+ 1 + θ)

(
t

θ

)k
=

tx

(θ + 1) θx

∞∑
k=0

(
− (x+ 1)

k

)(
t

θ

)k
(k + x+ 1 + θ)

=
tx

(θ + 1) θx

{
(x+ 1 + θ)

∞∑
k=0

(
− (x+ 1)

k

)(
t

θ

)k}

+
tx

(θ + 1) θx

{ ∞∑
k=0

k

(
− (x+ 1)

k

)(
t

θ

)k}

=
tx

(θ + 1) θx

{
(x+ 1 + θ)

(
1 +

t

θ

)−(x+1)
}

+
tx

(θ + 1) θx

{ ∞∑
k=0

k (−1)k
(
x+ 1 + k − 1

k

)(
t

θ

)k}

which becomes

f (x) =
tx

(θ + 1) θx

{
(x+ 1 + θ)

(
θ

θ + t

)x+1
}

+
tx

(θ + 1) θx

{ ∞∑
k=0

k (−1)k
(
x+ k

k

)(
t

θ

)k}

=
tx

(θ + 1) θx

{
(x+ 1 + θ)

(
θ

θ + t

)x+1
}

+
tx

(θ + 1) θx

{(
−t
θ

)
(x+ 1)

∞∑
k=1

(
x+ k

k − 1

)(
−t
θ

)k−1
}

=
tx

(θ + 1) θx

{
(x+ 1 + θ)

(
θ

θ + t

)x+1
}

− tx

(θ + 1) θx

{(
t (x+ 1)

θ

) ∞∑
k=1

(−1)k−1

(
x+ 2 + k − 1− 1

k − 1

)(
t

θ

)k−1
}
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therefore;

f (x) =
tx

(θ + 1) θx

{
(x+ 1 + θ)

(
θ

θ + t

)x+1
}

− tx

(θ + 1) θx

{(
t (x+ 1)

θ

) ∞∑
k=1

(
− (x+ 2)

k − 1

)(
t

θ

)k−1
}

=
tx

(θ + 1) θx

{
(x+ 1 + θ)

(
θ

θ + t

)x+1
}

− tx

(θ + 1) θx

{(
t (x+ 1)

θ

)(
θ

θ + t

)x+2
}

On solving further, we have

f (x) =
txθx+1

θx (θ + 1) (θ + t)x+1

[
(x+ 1 + θ) (θ + t)− t (x+ 1)

(θ + t)

]
=

txθ2

(θ + 1) (θ + t)x+2 (x+ 1 + θ + t)

5.4.2 Beta I Distribution

Consider Beta I distribution whose pdf is given in (3.11), then its Laplace transform is

LΛ (t) = 1F1 (α, α+ β;−t) (5.123)

and the pgf of Poisson-Beta I distribution is

G (s) = 1F1 (α, α+ β;−t (1− s))

The jth moment of Beta I distribution is obtained as

E
(
Λj
)

=

∫ 1

0

λj+α−1 (1− λ)β−1

B (α, β)
dλ

=
B (j + α, β)

B (α, β)
(5.124)
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Therefore, Poisson-Beta I distribution obtained in terms of moments is

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

B (j + α, β)

B (α, β)

=
tx

x!B (α, β)

∞∑
j=x

(−t)j−x

(j − x)!

∫ 1

0
yj+α−1 (1− y)β−1 dy

=
tx

x!B (α, β)

∫ 1

0

yα−1 (1− y)β−1

 ∞∑
j=x

(−t)j−x

(j − x)!
yj

 dy

=
tx

x!B (α, β)

∫ 1

0

{
yα−1 (1− y)β−1

[ ∞∑
k=0

(−t)k

k!
yk+x

]}
dy

=
tx

x!B (α, β)

∫ 1

0

{
yx+α−1 (1− y)β−1

∞∑
k=0

(−yt)k

k!

}
dy

=
tx

x!B (α, β)

∫ 1

0
yx+α−1 (1− y)(x+α+β)−(x+α)−1 e−tydy

Further simplification yields

f (x) =
txB (x+ α, β)

x!B (α, β)

∫ 1

0

yx+α−1 (1− y)(x+α+β)−(x+α)−1 e−ty

B (x+ α, β)
dy

=
txB (x+ α, β)

x!B (α, β)
1F1 (x+ α;x+ α+ β;−t)

5.4.3 Rectangular Distribution

Consider the Rectangular distribution given by equation (3.14), then its Laplace transform is

LΛ (t) =
1

(b− a) t

(
e−bt − e−at

)
(5.125)

and the pgf of Poisson-Rectangular distribution is

G (s) =
1

(b− a) (1− s) t

(
e−bt(1−s) − e−at(1−s)

)
.

The jth moment of Rectangular distribution is

E
(
Λj
)

=

∫ b

a

λj

b− a
dλ

=
1

b− a

(
bj+1 − aj+1

j + 1

)
. (5.126)
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The Poisson-Rectangular distribution is therefore obtained by method of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

1

b− a

(
bj+1 − aj+1

j + 1

)

=
tx

x! (b− a)

∞∑
j=x

(−t)j−x

(j − x)!

∫ b

a
zjdz

=
tx

x! (b− a)

∞∑
j=x

(−t)j−x

(j − x)!

{∫ b

0
zjdz −

∫ a

0
zjdz

}

=
tx

x! (b− a)

∫ b

0

∞∑
j=x

(−t)j−x

(j − x)!
zj−x+xdz −

∫ a

0

∞∑
j=x

(−t)j−x

(j − x)!
zj−x+xdz

=
tx

x! (b− a)

∫ b

0
zx
∞∑
j=x

(−tz)j−x

(j − x)!
dz −

∫ a

0
zx
∞∑
j=x

(−tz)j−x

(j − x)!
dz

=
tx

x! (b− a)

∫ b

0
zxe−tzdz −

∫ a

0
zxe−tzdz

and making the substitution tz = y, implying z = y
t and dz = dy

t , we have

f (x) =
tx

x! (b− a)

∫ bt

0

(y
t

)x
e−y

dy

t
−
∫ at

0

(y
t

)x
e−y

dy

t

=
tx

x! (b− a)

1

tx+1

{∫ bt

0
y(x+1)−1e−ydy −

∫ at

0
y(x+1)−1e−ydy

}
=

tx

x! (b− a)

1

tx+1
{γ (x+ 1, bt)− γ (x+ 1, at)}

Formula (3.9) gives the relationship between incomplete gamma function and confluent hypergeo-

metric function; that is

γ (a, x) =
xa

a
1F1 (a; a+ 1;−x)

therefore

f (x) =
tx

x! (b− a)

1

tx+1

{
(bt)x+1

x+ 1
1F1 (x+ 1;x+ 2;−bt)− (at)x+1

x+ 1
1F1 (x+ 1;x+ 2;−at)

}

=
tx

(x+ 1)! (b− a)

(
bx+1

1F1 (x+ 1;x+ 2;−bt)− ax+1
1F1 (x+ 1;x+ 2;−at)

)
5.4.4 Beta II Distribution

Consider Beta II distribution given in equation (3.17), then its Laplace transform is

LΛ (t) =
Γ (α)

B (α, β)
ψ (α, 1− β; t) (5.127)

and the pgf of Poisson-Beta II distribution is

G (s) =
Γ (α)

B (α, β)
ψ (α, 1− β; t (1− s)) .
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The jth moment of Beta II distribution is

E
(
Λj
)

=

∫ ∞
0

λj+p−1

B (p, q) (1 + λ)p+q
dλ

=
1

B (p, q)

∫ ∞
0

λj+p−1

(1 + λ)(j+p)+(q−j)dλ

=
B (p+ j, q − j)

B (p, q)
(5.128)

Therefore, the Poisson-Beta II distribution by method of moments is

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

B (p+ j, q − j)
B (p, q)

=
tx

x!B (p, q)

∞∑
j=x

(−t)j−x

(j − x)!

∫ ∞
0

zp+j−1

(1 + z)(p+j)+(q−j)dz

=
tx

x!B (p, q)

∞∑
j=x

(−t)j−x

(j − x)!

∫ ∞
0

zp+j−1

(1 + z)p + q
dz

=
tx

x!B (p, q)

∫ ∞
0

zp−1

(1 + z)p+q

∞∑
j=x

(−t)j−x

(j − x)!
zjdz

=
tx

x!B (p, q)

∫ ∞
0

zx+p−1

(1 + z)p+q

∞∑
j=x

(−tz)j−x

(j − x)!
dz

=
tx

x!B (p, q)

∫ ∞
0

zx+p−1

(1 + z)p+q
e−tzdz

Further simplification yields

f (x) =
tx

x!B (p, q)

∫ ∞
0

zx+p−1 (1 + z)(x−q)−(x+p) e−tzdz

=
tx

x!B (p, q)

∫ ∞
0

zx+p−1 (1 + z)(x−q+1)−(x+p)−1 e−tzdz

=
tx

x!B (p, q)
Γ (x+ p)

∫ ∞
0

zx+p−1

Γ (x+ p)
(1 + z)(x−q+1)−(x+p)−1 e−tzdz

=
tx

x!B (p, q)
Γ (x+ p)ψ (x+ p, x− q + 1; t)

5.4.5 Scaled Beta Distribution

Consider the scaled Beta distribution given in (3.20), then its Laplace transform is

LΛ (t) = 1F1 (α, α+ β;−µt) (5.129)

and the pgf of Poisson-Scaled Beta distribution is

G (s) = 1F1 (α, α+ β;−µt (1− s)) .
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The jth moment of Scaled Beta distribution is

E
(
Λj
)

=

∫ µ

0

λj+α−1 (µ− λ)β−1

µα+β−1B (α, β)
dλ

=
1

µα+β−1B (α, β)

∫ µ

0
λj+α−1 (µ− λ)β−1 dλ

Let λ = µz implying that z = λ
µ and µdz = dλ, therefore

E
(
Λj
)

=
1

µα+β−1B (α, β)

∫ 1

0
(µz)j+α−1 (µ− µz)β−1 µdz

=
µj+α+β−1

µα+β−1B (α, β)

∫ 1

0
zj+α−1 (1− z)β−1 dz

=
µj

B (α, β)
B (j + α, β) (5.130)

Therefore, Poisson-Scaled Beta distribution by method of moments is given as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

µjB (j + α, β)

B (α, β)

=
(µt)x

x!

∞∑
j=x

(−µt)j−x

(j − x)!

B (j + α, β)

B (α, β)

=
(µt)x

x!B (α, β)

∞∑
j=x

(−µt)j−x

(j − x)!

∫ 1

0
zj+α−1 (1− z)β−1 dz

=
(µt)x

x!B (α, β)

∫ 1

0

∞∑
j=x

(−µtz)j−x

(j − x)!
zx+α−1 (1− z)β−1 dz

=
(µt)x

x!B (α, β)

∫ 1

0
zx+α−1 (1− z)(x+α)+β−(x+α)−1 e−µtzdz

=
(µt)xB (x+ α, β)

x!B (α, β)

∫ 1

0

zx+α−1 (1− z)(x+α)+β−(x+α)−1

B (x+ α, β)
e−µtzdz

=
(µt)xB (x+ α, β)

x!B (α, β)
1F1 (x+ α;x+ α+ β;−µt)

5.4.6 Full Beta Distribution

Consider the Full Beta model given in equation (3.26), then its Lapalce transform is

LΛ (t) =
Γ (p)

B (p, q)
ψ

(
p, 1− q; t

b

)
(5.131)

and the pgf of Poisson-Full Beta distribution is

G (s) =
Γ (p)

B (p, q)
ψ

(
p, 1− q; t

b
(1− s)

)
.

The jth moment of Poisson-Full Beta distribution is

E
(
Λj
)

=
bp

B (p, q)

∫ ∞
0

λj+p−1

B (p, q) (1 + bλ)p+q
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Let bλ = z implying λ = z
b and dλ = dz

b , therefore

E
(
Λj
)

=
bp

B (p, q)

∫ ∞
0

zj+p−1

bj+p−1 (1 + z)p+q
dz

b

=
1

bjB (p, q)

∫ ∞
0

zj+p−1

(1 + z)pj+q−j
dz

=
B (p+ j, q − j)
bjB (p, q)

(5.132)

Therefore, Poisson-Full Beta distribution is obtained by the method of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

B (p+ j, q − j)
bjB (p, q)

=
1

x!

(
t

b

)x ∞∑
j=x

(
−t
b

)j−x 1

(j − x)!

B (p+ j, q − j)
B (p, q)

=
1

x!B (p, q)

(
t

b

)x ∞∑
j=x

(
−t
b

)j−x 1

(j − x)!

∫ ∞
0

zp+j−1

(1 + z)p+q
dz

=
1

x!B (p, q)

(
t

b

)x ∫ ∞
0

zx+p−1

(1 + z)p+q

∞∑
j=x

(
− t
bz
)j−x

(j − x)!
dz

=
1

x!B (p, q)

(
t

b

)x ∫ ∞
0

zx+p−1 (1 + z)(x−q)−(x+p) e−
t
b
zdz

=
1

x!B (p, q)

(
t

b

)x ∫ ∞
0

zx+p−1 (1 + z)(x−q+1)−(x+p)−1 e−
t
b
zdz

=
Γ (x+ p)

x!B (p, q)

(
t

b

)x ∫ ∞
0

zx+p−1

Γ (x+ p)
(1 + z)(x−q+1)−(x+p)−1 e−

t
b
zdz

=
Γ (x+ p)

x!B (p, q)

(
t

b

)x
ψ

(
x+ p, x+ 1− q; t

b

)
(5.133)

5.4.7 Pearson Type I Distribution

Consider the Pearson Type I mixing distribution given in (3.29), then its Laplace transform is

LΛ (t) = e−atB (p, q) 1F1 (p, p+ q;− (b− a) t) (5.134)

and the pgf of Poisson-Pearson Type I distribution is

G (s) = e−at(1−s)B (p, q) 1F1 (p, p+ q;− (b− a) t (1− s)) .

The jth moment of Pearson Type I distribution is

E
(
Λj
)

=

∫ b

a
λj

1

B (p, q)

(λ− a)p−1

(b− a)p−1

(b− λ)q−1

(b− a)q−1

1

b− a
dλ
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Let λ−a
b−a = z, therefore λ = a+ (b− a) z and dλ = (b− a) dz

E
(
Λj
)

=

∫ 1

0

[a+ (b− a) z]j

B (p, q)
zp−1 (1− z)q−1 dz

=

∫ 1

0

1

B (p, q)

j∑
k=0

(
j

k

)
aj−k (b− a)k zk+p−1 (1− z)q−1 dz

=

j∑
k=0

(
j

k

)
aj−k (b− a)k

B (k + p, q)

B (p, q)

The jth moment is therefore

E
(
Λj
)

=

j∑
i=0

(
j

i

)
aj−i (b− a)i

B (i+ p, q)

B (p, q)
(5.135)

The Poisson-Pearson Type I distribution by method of moments is

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

j∑
i=0

(
j

i

)
aj−i (b− a)i

B (i+ p, q)

B (p, q)

=
tx

x!B (p, q)

∞∑
j=x

{
(−t)j−x

(j − x)!

j∑
i=0

(
j

i

)
aj−i (b− a)i

∫ 1

0
zi+p−1 (1− z)q−1 dz

}

=
tx

x!B (p, q)

∞∑
j=x

{
(−t)j−x

(j − x)!
aj
∫ 1

0

[
j∑
i=0

(
j

i

)
aj−i

(
b− a
a

z

)i
zi

]
zp−1 (1− z)q−1 dz

}

=
tx

x!B (p, q)

∞∑
j=x

{
(−t)j−x

(j − x)!
aj
∫ 1

0

(
1 +

b− a
a

z

)j
zp−1 (1− z)q−1 dz

}

=
tx

x!B (p, q)

∞∑
j=x

{
(−t)j−x

(j − x)!

∫ 1

0
[a+ (b− a) z]j zp−1 (1− z)q−1 dz

}

=
tx

x!B (p, q)

∫ 1

0


∞∑
j=x

(−t)j−x

(j − x)!
[a+ (b− a) z]j

 zp−1 (1− z)q−1 dz

=
tx

x!B (p, q)

∫ 1

0


∞∑
j=x

[−t (a+ (b− a) z)]j−x

(j − x)!

 [a+ (b− a) z]x zp−1 (1− z)q−1 dz
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Further simplification yields

f (x) =
tx

x!B (p, q)

∫ 1

0
e−t[a+(b−a)z] [a+ (b− a) z]x zp−1 (1− z)q−1 dz

=
tx

x!B (p, q)

∫ 1

0

{
e−ate−(b−a)tz

x∑
k=0

(
x

k

)
ax−k (b− a)k zk+p−1 (1− z)q−1

}
dz

=
tx

x!B (p, q)
e−at

x∑
k=0

(
x

k

)
ax−k (b− a)k

∫ 1

0
zk+p−1 (1− z)q−1 e−(b−a)tzdz

=
tx

x!B (p, q)
e−at

x∑
k=0

(
x

k

)
ax−k (b− a)k B (k + p, q)

∫ 1

0

zk+p−1 (1− z)k+q+p−k−p−1

B (k + p, q)
e−(b−a)tzdz

=
tx

x!B (p, q)
e−at

x∑
k=0

(
x

k

)
ax−k (b− a)k B (k + p, q) 1F1 (k + p; k + p+ q;− (b− a) t)

=
(at)x e−at

x!

Γ (p+ q)

Γ (p)
x∑
k=0

(
x

k

)(
b− a
a

)k Γ (k + q)

Γ (k + p+ q)1

F1 (k + p, k + p+ q;− (b− a) t)

5.4.8 Pearson Type VI Distribution

Consider Pearson Type VI distribution given by (3.32), then its Laplace transform is

LΛ (t) =
e−dt

B (a, b− a)
Γ (b− a)ψ (b− a, 1− a; (d− c) t) (5.136)

and the pgf of Poisson-Pearson Type VI distribution is

G (s) =
e−dt(1−s)

B (a, b− a)
Γ (b− a)ψ (b− a, 1− a; (d− c) t (1− s)) .

The jth moment of Pearson Type VI distribution is

E
(
Λj
)

=

∫ ∞
d

λj
(
λ−d
d−c

)b−a−1
1
d−c

B (a, b− a)
(

1 + λ−d
d−c

)bdλ
Let λ−d

d−c = z implying λ = d+ (d− c) z and dλ = (d− c) dz, therefore

E
(
Λj
)

=

∫ ∞
0

[d+ (d− c) z]j zb−a−1

B (a, b− a) (1 + z)b
dz

=

∫ ∞
0

∑j
i=0

(
j
i

)
dj−i (d− c)i zi+b−a−1

B (a, b− a) (1 + z)b
dz

=

j∑
i=0

{(
j
i

)
dj
(
d−c
d

)i
B (a, b− a)

∫ ∞
0

zi+b−a−1

(1 + z)(i+b−a)+(a−i)dz

}

=

j∑
i=0

(
j
i

)
dj
(
d−c
d

)i
B (a, b− a)

B (i+ b− a, a− i) . (5.137)
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Therefore, by method of moments, Poisson-Pearson Type VI is

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

{
j∑
i=0

(
j
i

)
dj
(
d−c
d

)i
B (a, b− a)

B (i+ b− a, a− i)

}

=
tx

x!B (a, b− a)

∞∑
j=x

(−t)j−x

(j − x)!

{
j∑
i=0

(
j

i

)(
d− c
d

)i
dj
∫ ∞

0

z(i+b−a)−1

(1 + z)b
dz

}

=
tx

x!B (a, b− a)

∞∑
j=x

(−t)j−x

(j − x)!

{∫ ∞
0

[
j∑
i=0

(
j

i

)(
d− c
d

z

)i]
dj
zb−a−1

(1 + z)b
dz

}

=
tx

x!B (a, b− a)

∞∑
j=x

(−t)j−x

(j − x)!

∫ ∞
0

(
1 +

d− c
d

z

)j
dj
zb−a−1

(1 + z)b
dz

=
tx

x!B (a, b− a)

∫ ∞
0

∞∑
j=x

(−t)j−x

(j − x)!
[d+ (d− c) z]j z

b−a−1

(1 + z)b
dz

=
tx

x!B (a, b− a)

∫ ∞
0

∞∑
j=x

{−t [d+ (d− c) z]}j−x

(j − x)!
[d+ (d− c) z]x zb−a−1

(1 + z)b
dz

=
tx

x!B (a, b− a)

∫ ∞
0

e−t[d+(d−c)z] [d+ (d− c) z]x zb−a−1

(1 + z)b
dz

Further solving yields

f (x) =
tx

x!B (a, b− a)

∫ ∞
0

[d+ (d− c) z]x zb−a−1

(1 + z)b
e−tde−(d−c)tzdz

=
txe−td

x!B (a, b− a)

∫ ∞
0

x∑
k=0

(
x

k

)
dx−k (d− c)k z

k+b−a−1

(1 + z)b
e−(d−c)tzdz

=
txe−td

x!B (a, b− a)

x∑
k=0

(
x

k

)
dx−k (d− c)k

∫ ∞
0

zk+b−a−1 (1 + z)1+k−a−(k+b−a)−1 e−(d−c)tzdz

=
txe−td

x!B (a, b− a)

x∑
k=0

(
x

k

)
dx−k (d− c)k Γ (k + b− a)ψ (k + b− a, k − a+ 1; (d− c) t)

=
(dt)x e−td

x!B (a, b− a)

x∑
k=0

(
x

k

)(
d− c
d

)k
Γ (k + b− a)ψ (k + b− a, k − a+ 1; (d− c) t)

5.4.9 Shifted Gamma Distribution

Consider the Shifted-Gamma distribution given in (2.32), then its Laplace transform is

LΛ (t) =
βa

Γ (α)
e−µtΓ (α)ψ (α, α+ 1; t+ β) (5.138)

and the pgf of Pisson-Shifted Gamma distribution is

G (s) =
βa

Γ (α)
e−µt(1−s)Γ (α)ψ (α;α+ 1; t (1− s) + β) .
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The jth moment of Shifted Gamma distribution is

E
(
Λj
)

=

∫ ∞
µ

λj
βα

Γ (α)
e−β(λ−µ) (λ− µ)α−1 dλ

=
βα

Γ (α)

∫ ∞
µ

(λ− µ+ µ)j e−β(λ−µ) (λ− µ)α−1 dλ

=
βα

Γ (α)

∫ ∞
µ

j∑
i=0

(
j

i

)
µj−i (λ− µ)i e−β(λ−µ) (λ− µ)α−1 dλ

=
βα

Γ (α)

j∑
i=0

∫ ∞
µ

(
j

i

)
µj−ie−β(λ−µ) (λ− µ)i+α−1 dλ

=
βα

Γ (α)

j∑
i=0

{(
j

i

)
µj−i

∫ ∞
µ

e−β(λ−µ) (λ− µ)i+α−1 dλ

}
and making the substitution z = λ− µ⇒ dz = dλ, we have

E
(
Λj
)

=
βα

Γ (α)

j∑
i=0

{(
j

i

)
µj−i

∫ ∞
0

zi+α−1e−βzdz

}

=
βα

Γ (α)

j∑
i=0

(
j

i

)
µj−i

Γ (i+ α)

βi+α

=

j∑
i=0

(
j

i

)
µj−i

Γ (i+ α)

Γ (α)βi
. (5.139)

The Poisson-Shifted Gamma distribution is therefore obtained in terms of moments as

f (x) =
∞∑
j=x

j∑
i=0

tx (−t)j−x

(j − x)!x!

(
j

i

)
µj−i

Γ (i+ α)

Γ (α)βi

=
tx

x!Γ (α)

∞∑
j=x

(−t)j−x

(j − x)!

j∑
i=0

(
j

i

)
µj−i

βi

∫ ∞
0

zi+α−1e−zdz

=
tx

x!Γ (α)

∞∑
j=x

(−t)j−x

(j − x)!

∫ ∞
0

j∑
i=0

(
j

i

)(
z

µβ

)i
µjzα−1e−zdz

=
tx

x!Γ (α)

∞∑
j=x

(−t)j−x

(j − x)!

∫ ∞
0

(
1 +

z

µβ

)j
µjzα−1e−zdz

=
tx

x!Γ (α)

∫ ∞
0

∞∑
j=x

(−t)j−x

(j − x)!

(
µ+

z

β

)j
zα−1e−zdz

=
tx

x!Γ (α)

∫ ∞
0

∞∑
j=x

[
−t
(
µβ+z
β

)]j−x
(j − x)!

(
µβ + z

β

)x
zα−1e−zdz

=
tx

x!Γ (α)

∫ ∞
0

e
−t
(
µβ+z
β

)(
µβ + z

β

)x
zα−1e−zdz
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Let z = µβy then dz = µβdy, therefore

f (x) =
tx

x!Γ (α)

∫ ∞
0

e−µt(1+y)µx (1 + y)x (µβ)α−1 yα−1e−µβyµβdy

=
tx

x!Γ (α)
e−µtµx (µβ)α

∫ ∞
0

yα−1 (1 + y)x e−µ(t+β)ydy

=
(µt)x e−µt (µβ)α

x!

∫ ∞
0

yα−1 (1 + y)x+α+1−α−1

Γ (α)
e−µ(t+β)ydy

=
(µt)x e−µt (µβ)α

x!
ψ (α, x+ α+ 1;µ (t+ β))

5.4.10 Truncated Gamma (from above) Distribution

Consider a Truncated Gamma (from above) distribution whose pdf is given in (3.40), then its Laplace

transform is

LΛ (t) =
1F1 (b; b+ 1;−pt− ap)

b−1 (ap)b 1F1 (b; b+ 1;−ap)
(5.140)

and the pgf of Poisson-Truncated Gamma (from above) distribution is

G (s) =
1F1 (b; b+ 1;−pt (1− s)− ap)
b−1 (ap)b 1F1 (b; b+ 1;−ap)

.

The jth moment of Truncated Gamma (from above) distribution is

E
(
Λj
)

=

∫ p

0

λjab

γ (b, ap)
e−aλλb−1dλ

=
ab

γ (b, ap)

∫ p

0
λj+b−1e−aλdλ

Let z = aλ, then λ = z
a and dλ = dz

a . Therefore

E
(
Λj
)

=
ab

γ (b, ap)

∫ ap

0

(z
a

)j+b−1
e−z

dz

a

=
ab

γ (b, ap)

1

aj+b

∫ ap

0
zj+b−1e−zdz

=
γ (j + b, ap)

ajγ (b, ap)
(5.141)

The Poisson-Gamma (Truncated from above) distribution is therefore obtained by method of mo-
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ments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

γ (j + b, ap)

ajγ (b, ap)

=
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

(ap)j+b

(j + b)
1F1 (j + b, j + b = 1;−ap)
aj(ap)b

b 1F1 (b, b+ 1;−ap)

=
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

b

j + b

pj 1F1 (j + b, j + b+ 1;−ap)
1F1 (b, b+ 1;−ap)

=
tx

x! 1F1 (b, b+ 1;−ap)

∞∑
j=x

(−t)j−x

(j − x)!

b

j + b
pj

(ap)j+b

(ap)j+b
1F1 (j + b, j + b+ 1;−ap)

=
tx

x! 1F1 (b, b+ 1;−ap)

∞∑
j=x

(−t)j−x

(j − x)!
b

pj

(ap)j+b
(ap)j+b

j + b
1F1 (j + b, j + b+ 1;−ap)

=
tx

x! 1F1 (b, b+ 1;−ap)

∞∑
j=x

(−t)j−x

(j − x)!

b

aj+bpb
γ (j + b, ap)

=
tx

x! 1F1 (b, b+ 1;−ap)

∞∑
j=x

(−t)j−x

(j − x)!

b

aj+bpb

∫ ap

0
zj+b−1e−zdz

=
tx

x! 1F1 (b, b+ 1;−ap)

∫ ap

0

 ∞∑
j=x

(−t)j−x

(j − x)!

zj

aj

 b

(ap)b
zb−1e−zdz

Solving further, we have

f (x) =
tx

x! 1F1 (b, b+ 1;−ap)

∫ ap

0

∞∑
j=x

(
− tz

a

)j−x
(j − x)!

(z
a

)x b

(ap)b
zb−1e−zdz

=
tx

x! 1F1 (b, b+ 1;−ap)

∫ ap

0
e−

tz
a

zxb

ax+bpb
zb−1e−zdz

=
tx

x! 1F1 (b, b+ 1;−ap)
b

ax+bpb

∫ ap

0
zx+b−1e−

(a+t)
a

zdz

Put a+t
a z = y, this implies that z = a

a+ty and dz = a
a+tdy. Therefore,

f (x) =
tx

x! 1F1 (b, b+ 1;−ap)
b

ax+bpb

∫ (a+t)p

0

(
a

a+ t
y

)x+b−1

e−y
a

a+ t
dy

=
tx

x! 1F1 (b, b+ 1;−ap)
b

ax+bpb

(
a

a+ t

)x+b ∫ (a+t)p

0
yx+b−1e−ydy

=
tx

x! 1F1 (b, b+ 1;−ap)
b

pb
1

(a+ t)x+b
γ (x+ b, (a+ t) p)

=
tx

x! 1F1 (b, b+ 1;−ap)
b

pb
1

(a+ t)x+b

[(a+ t) p]x+b

x+ b
1F1 (x+ b, x+ b+ 1;− (a+ t) p)

=
(pt)x

x!

b

x+ b
1F1 (x+ b, x+ b+ 1;− (a+ t) p)

1F1 (b, b+ 1;−ap)
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5.4.11 Truncated Gamma (from below) Distribution

Consider a truncated gamma (from below) distribution given in (3.44), then its Laplace transform

is

LΛ (t) =

(
β

β + t

)α Γ (α)− γ (α, (t+ β)λ0)

Γ (α)− γ (α, βλ0)
(5.142)

and the pgf of Poisson-truncated gamma (from below) distribution is

G (s) =

(
β

β + t (1− s)

)α Γ (α)− γ (α, (t (1− s) + β)λ0)

Γ (α)− γ (α, βλ0)
.

The jth moment of truncated gamma (from below) distribution is obtained as

E
(
Λj
)

=

∫ ∞
λ0

λjβαe−βλλα−1

Γ (α)− γ (α, βλ0)
dλ

=
βα

Γ (α)− γ (α, βλ0)

∫ ∞
λ0

λj+α−1e−βλdλ

=
βα

Γ (α)− γ (α, βλ0)

{∫ ∞
0

λj+α−1e−βλdλ−
∫ λ0

0
λj+α−1e−βλdλ

}
=

βα

Γ (α)− γ (α, βλ0)

{
Γ (j + α)

βj+α
− γ (j + α, βλ0)

βj+α

}
=

Γ (j + α)− γ (j + α, βλ0)

βj [Γ (α)− γ (α, βλ0)]
. (5.143)

The Poisson-Gamma (Truncated from below) distribution is therefore obtained by the method of

moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

Γ (j + α)− γ (j + α, βλ0)

βj (Γ (α)− γ (α, βλ0))

=
tx

x! (Γ (α)− γ (α, βλ0))

∞∑
j=x

(−t)j−x

(j − x)!

{∫ ∞
0

zj+α−1

βj
e−zdz −

∫ βλ0

0

zj+α−1

βj
e−zdz

}

=
tx

x! (Γ (α)− γ (α, βλ0))

∫ ∞
0

∞∑
j=x

(−t)j−x

(j − x)!

zj

βj
zα−1e−zdz

−
∫ βλ0

0

∞∑
j=x

(−t)j−x

(j − x)!

zj

βj
zα−1e−zdz

=
tx

x! (Γ (α)− γ (α, βλ0))

∫ ∞
0

∞∑
j=x

(
− tz
β

)j−x
(j − x)!

zx+α−1

βx
e−zdz

−
∫ βλ0

0

∞∑
j=x

(
− tz
β

)j−x
(j − x)!

zx+α−1

βx
e−zdz

=
tx

x! (Γ (α)− γ (α, βλ0))

1

βx

∫ ∞
0

e
− tz
β zx+α−1e−zdz − 1

βx

∫ βλ0

0
e
− tz
β zx+α−1e−zdz

=
tx

x! (Γ (α)− γ (α, βλ0))

1

βx

{∫ ∞
0

zx+α−1e
−
(
t
β

+1
)
z
dz −

∫ βλ0

0
zx+α−1e

−
(
t
β

+1
)
z
dz

}
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f (x) =
tx

x! (Γ (α)− γ (α, βλ0))

1

βx

 Γ (x+ α)(
t
β + 1

)x+α −
γ (x+ α, (t+ β)λ0)(

t
β + 1

)x+α


=

1

x!

(
β

t+ β

)α( t

t+ β

)x Γ (x+ α)− γ (x+ α, (t+ β)λ0)

Γ (α)− γ (α, βλ0)

5.4.12 Truncated Gamma (from below and above) Distribution

Consider a truncated gamma (from below and above) distribution given in (3.47), then its Laplace

transform is

LΛ (t) =

(
β

β + t

)α γ (α, (β + t) b)− γ (α, (β + t) a)

γ (α, βb)− γ (α, βa)
(5.144)

and the pgf of truncated gamma (from below and above) distribution is

G (s) =

(
β

β + t (1− s)

)α γ (α, (β + t (1− s)) b)− γ (α, (β + t (1− s)) a)

γ (α, βb)− γ (α, βa)
.

The jth moment of truncated gamma (from below and above) is obtained as

E
(
Λj
)

=

∫ b

a

λjβαe−βλλα−1

γ (α, βb)− γ (α, βa)
dλ

=
βα
(∫ b

0 λ
j+α−1e−βλdλ−

∫ a
0 λ

j+α−1e−βλdλ
)

γ (α, βb)− γ (α, βa)

and making the substitution βλ = z implying λ = z
β and dλ = dz

β , we have

E
(
Λj
)

=
βα
(∫ βb

0
zj+α−1e−z

βj+α
dz −

∫ βa
0

zj+α−1e−z

βj+α
dz
)

γ (α, βb)− γ (α, βa)

=
γ (j + α, βb)− γ (j + α, βa)

βj (γ (α, βb)− γ (α, βa))
(5.145)

The Poisson-Truncated Gamma (from below and above) distribution is therefore obtained by method

of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

{
γ (j + α, βb)− γ (j + α, βa)

βj (γ (α, βb)− γ (α, βa))

}

=
tx

x! (γ (α, βb)− γ (α, βa))

∞∑
j=x

(−t)j−x

(j − x)!βj

{∫ βb

0
zj+α−1e−zdz −

∫ βa

0
zj+α−1e−zdz

}

=
tx

x! (γ (α, βb)− γ (α, βa))

1

βx

∞∑
j=x

(
−t
β

)j−x
(j − x)!

{∫ βb

0
zj+α−1e−zdz −

∫ βa

0
zj+α−1e−zdz

}

=
tx

x! (γ (α, βb)− γ (α, βa))

1

βx


∫ βb

0

∞∑
j=x

(
−t
β z
)j−x

(j − x)!
zx+α−1e−zdz −

∫ βa

0

∞∑
j=x

(
−t
β z
)j−x

(j − x)!
zx+α−1e−zdz


=

tx

x! (γ (α, βb)− γ (α, βa))

1

βx

{∫ βb

0
zx+α−1e

−
(
t
β

+1
)
z
dz −

∫ βa

0
zx+α−1e

−
(
t
β

+1
)
z
dz

}
=

tx

x! (γ (α, βb)− γ (α, βa))

1

βx

{∫ βb

0
zx+α−1e

−
(
t+β
β

)
z
dz −

∫ βa

0
zx+α−1e

−
(
t+β
β

)
z
dz

}
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making the substitution
(
t+β
β

)
z = y implying z =

(
β
t+β

)
y and dz =

(
β
t+β

)
dy, we have

f (x) =
tx

x! (γ (α, βb)− γ (α, βa))

1

βx{∫ (t+β)b

0

(
β

t+ β
y

)x+α−1

e−y
β

t+ β
dy −

∫ (t+β)a

0

(
β

t+ β
y

)x+α−1

e−y
β

t+ β
dy

}

=
tx

x! (γ (α, βb)− γ (α, βa))

1

βx

{∫ (t+β)b

0
yx+α−1e−ydy −

∫ (t+β)a

0
yx+α−1e−ydy

}(
β

t+ β

)x+α

=
tx

x!

βα

(t+ β)x+α

γ (x+ α, (t+ β) b)− γ (x+ α, (t+ β) a)

(γ (α, βb)− γ (α, βa))

=
1

x!

(
t

t+ β

)x( β

t+ β

)α γ (x+ α, (t+ β) b)− γ (x+ α, (t+ β) a)

γ (α, βb)− γ (α, βa)

5.4.13 Truncated Pearson Type III Distribution

Consider the Truncated Pearson Type III distribution given by equation (3.53), then its Laplace

transform is

LΛ (t) =
1F1 (1, β;α− t)

1F1 (1, β;α)
(5.146)

and the pgf of Poisson-Truncated Pearson Type III is

G (s) =
1F1 (1, β;α− t+ ts)

1F1 (1, β;α)

The jth moment of Truncated Pearson Type III is obtained as

E
(
Λj
)

=

∫ 1

0

λj (1− λ)β−2 eαλ

B (1, β − 1) 1F1 (1;β;α)
dλ

=

∫ 1

0

λ(j+1)−1 (1− λ)(j+β)−(j+1)−1 eαλ

B (1, β − 1) 1F1 (1;β;α)
dλ

=
B (j + 1, β − 1)

B (1, β − 1)
1F1 (j + 1; j + β;α)

1F1 (1;β;α)
(5.147)

The Poisson-Truncated Pearson Type III distribution is therefore obtained by the method of mo-
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ments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

B (j + 1, β − 1)

B (1, β − 1)
1F1 (j + 1; j + β;α)

1F1 (1;β;α)

=
tx

x!B (1, β − 1) 1F1 (1;β;α)

∞∑
j=x

(−t)j−x

(j − x)!
B (j + 1, β − 1)

∫ 1

0

z(j+1)−1 (1− z)(j+β)−(j+1)−1 eαz

B (j + 1, β − 1)
dz

=
tx

x!B (1, β − 1) 1F1 (1;β;α)

∞∑
j=x

(−t)j−x

(j − x)!

∫ 1

0
zj (1− z)β−2 eαzdz

=
tx

x!B (1, β − 1) 1F1 (1;β;α)

∫ 1

0

∞∑
j=x

(−tz)j−x

(j − x)!
zx (1− z)β−2 eαzdz

=
tx

x!B (1, β − 1) 1F1 (1;β;α)

∫ 1

0
z(x+1)−1 (1− z)(x+β−(x+1)−1)−1 e(α−t)zdz

=
txB (x+ 1, β − 1)

x!B (1, β − 1) 1F1 (1;β;α)
1F1 (x+ 1;x+ β;α− t)

= tx
Γ (β)

Γ (x+ β)
1F1 (x+ 1, x+ β;α− t)

1F1 (1, β;α)

5.4.14 Pareto I Distribution

Consider the pdf of Pareto I distribution given in (3.56), then its Laplace transform is

LΛ (t) = αe−βtψ (1, 1− α;βt) (5.148)

and the pgf of Poisson-Pareto I distribution is

G (s) = αe−βt(1−s)ψ (1, 1− α;βt (1− s)) .

The jth moment of Pareto I distribution is obtained as

E
(
Λj
)

= αβα
∫ ∞
β

λj−α−1dλ

=
αβj

α− j
(5.149)

The Poisson-Pareto I distribution is therefore obtained by method of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

αβj

α− j

=
αtx

x!

∞∑
j=x

(−t)j−x

(j − x)!
βj−xβx

∫ 1

0
zα−j−1dz

=
αtx

x!
βx
∫ 1

0

∞∑
j=x

(−βt)j−x

(j − x)!

(
1

z

)j
zα−1dz

=
αtx

x!
βx
∫ 1

0

∞∑
j=x

(
−β
z t
)j−x

(j − x)!
zα−x−1dz

=
αtx

x!
βx
∫ 1

0
e−

β
z
tzα−x−1dz
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and making the substitution z = 1
y implying dz = −dy

y2
, we have

f (x) =
αtx

x!
βx
∫ 1

∞
e−βty

1

yα−x−1

(
−dy
y2

)
=

αtx

x!
βx
∫ ∞

1
yx−α−1e−βtydy

Making the substitution ω = y − 1, implying y = 1 + ω, we have

f (x) =
αtx

x!
βx
∫ ∞

0
(1 + ω)x−α−1 e−βt(1+ω)dω

=
αtxe−βt

x!
βx
∫ 1

0
ω1−1 (1 + ω)(x−α+1)−1−1 e−βtωdω

=
α (tβ)x e−βt

x!
ψ (1, x− α+ 1;βt)

5.4.15 Pareto II Distribution

Consider Pareto II distribution given by (3.59), its Laplace transform is

LΛ (t) = αψ (1, 1− α;βt) (5.150)

and the pgf of Poisson-Pareto II distribution is

G (s) = αψ (1, 1− α;βt (1− s)) .

The jth moment of Pareto II distribution is

E
(
Λj
)

= αβα
∫ ∞

0

λj

(λ+ β)α+1dλ

Making the substitution λ = βz implying dλ = βdz, we have

E
(
Λj
)

= αβα
∫ ∞

0

βjzj

βα+1 (1 + z)α+1βdz

= αβj
∫ ∞

0

z(j+1)−1

(1 + z)(j+1)+(α−j)dz

= αβjB (j + 1, α− j) (5.151)
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Poisson-Pareto II distribution is therefore obtained by method of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!
αβjB (j + 1, α− j)

=
αtx

x!

∞∑
j=x

(−t)j−x

(j − x)!
βj
∫ ∞

0

z(j+1)−1

(1 + z)(j+1)+(α−j)dz

=
αtx

x!

∫ ∞
0

∞∑
j=x

(−t)j−x

(j − x)!
(βz)j

1

(1 + z)α+1dz

=
αtx

x!

∫ ∞
0

∞∑
j=x

(−βtz)j−x

(j − x)!

(βz)x

(1 + z)α+1dz

=
αtx

x!
βx
∫ ∞

0
z(x+1)−1 (1 + z)x+1−α−(x+1)−1 e−βtzdz

= α (βt)x ψ (x+ 1, x− α+ 1;βt)

5.4.16 Generalized Pareto Distribution

Consider the Generalized Pareto pdf given in (3.62), then its Laplace transform is

LΛ (t) =
Γ (α+ β)

Γ (α)
ψ (β, 1− α;µt) (5.152)

and the pgf of Poisson-Generalized Pareto distribution is

G (s) =
Γ (α+ β)

Γ (α)
ψ (β, 1− α;µt (1− s)) .

The jth moment of generalized Pareto distribution is

E
(
Λj
)

=
µα

B (α, β)

∫ ∞
0

λj+β−1

(λ+ µ)α+β
dλ

Let λ = µz then dλ = µdz

E
(
Λj
)

=
µα

B (α, β)

∫ ∞
0

µj+βzj+β−1

µα+β (1 + z)α+β
dz

=
µj

B (α, β)

∫ ∞
0

zj+β−1

(1 + z)(j+β)+(α−j)dz

= µj
B (j + β, α− j)

B (α, β)
(5.153)
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Poisson-Generalized Pareto distribution is therefore obtained by method of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

µjB (j + β, α− j)
B (α, β)

=
tx

x!B (α, β)

∞∑
j=x

(−t)j−x

(j − x)!
µj
∫ ∞

0

zj+β−1

(1 + z)j+β+α−j dz

=
tx

x!B (α, β)

∫ ∞
0

∞∑
j=x

(−µtz)j−x

(j − x)!

(µz)x zβ−1

(1 + z)α+β
dz

=
(µt)x

x!B (α, β)

∫ ∞
0

zx+β−1 (1 + z)x−α+1−x−β−1 e−µtzdz

=
(µt)x

x!B (α, β)
Γ (x+ β)ψ (x+ β, x− α+ 1;µt)

5.4.17 Pearson Type V Distribution

Consider Pearson Type V distribution given by equation (3.75),its Laplace transform is

LΛ (t) = 2
βα

Γ (α)

(√
β

t

)−α
e−tcK−α

(
2
√
βt
)

(5.154)

and pgf of the mixed Poisson distribution is

G (s) = 2
βα

Γ (α)

(√
β

t (1− s)

)−α
e−t(1−s)cK−α

(
2
√
βt (1− s)

)
.

The jth moment of Pearson Type V distribution is

E
(
Λj
)

=
βα

Γ (α)

∫ ∞
c

λj (λ− c)−α−1 e−
β
λ−cdλ

and making the substitution z = λ− c, implying λ = z + c and dλ = dz we have

E
(
Λj
)

=
βα

Γ (α)

∫ ∞
0

(z + c)j
1

zα+1
e−

β
z dz
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Let y = 1
z implying z = 1

y and dz = −dy
y2
, therefore

E
(
Λj
)

=
βα

Γ (α)

∫ ∞
0

(
1

y
+ c

)j
yα+1e−βy

dy

y2

=
βα

Γ (α)

∫ ∞
0

(1 + cy)j yα−j−1e−βydy

=
βα

Γ (α)

∫ ∞
0

j∑
i=0

(
j

i

)
(cy)i yα−j−1e−βydy

=
βα

Γ (α)

∫ ∞
0

j∑
i=0

(
j

i

)
ciyα−(j−i)−1e−βydy

=
βα

Γ (α)

j∑
i=0

(
j

i

)
ci
∫ ∞

0
yα−(j−i)−1e−βydy

=
βα

Γ (α)

j∑
i=0

(
j

i

)
ci

Γ (α− (j − i))
βα−(j−i)

=
1

Γ (α)

j∑
i=0

(
j

i

)
ciβj−iΓ (α− (j − i)) (5.155)

Poisson-Pearson Type V is therefore obtained by method of moments as

f (x) =
tx

x!

∞∑
j=x

(−t)j−x

(j − x)!

1

Γ (α)

{
j∑
i=0

(
j

i

)
ciβj−iΓ (α− (j − i))

}

=
tx

Γ (α)x!

∞∑
j=x

(−t)j−x

(j − x)!

{
j∑
i=0

(
j

i

)(
c

β

)i
βj
∫ ∞

0
zα−j+i−1e−zdz

}

=
tx

Γ (α)x!

∞∑
j=x

(−t)j−x

(j − x)!

{∫ ∞
0

[
j∑
i=0

(
j

i

)(
cz

β

)i]
βjzα−j−1e−zdz

}

=
tx

Γ (α)x!

∞∑
j=x

(−t)j−x

(j − x)!

{∫ ∞
0

(
1 +

cz

β

)j
βjzα−j−1e−zdz

}

=
tx

Γ (α)x!

∞∑
j=x

(−t)j−x

(j − x)!

∫ ∞
0

(
β + cz

z

)j
zα−1e−zdz

=
tx

Γ (α)x!

∫ ∞
0

∞∑
j=x

(−t)j−x

(j − x)!

(
β + cz

z

)j
zα−1e−zdz

=
tx

Γ (α)x!

∫ ∞
0

∞∑
j=x

[
−t
(
c+ β

z

)]j−x
(j − x)!

(
c+

β

z

)x
zα−1e−zdz
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Solving further,

f (x) =
tx

Γ (α)x!

∫ ∞
0

e−t(c+
β
z )
(
c+

β

z

)x
zα−1e−zdz

=
tx

Γ (α)x!
e−ct

∫ ∞
0

x∑
k=0

(
x

k

)
cx−k

(
β

z

)k
zα−1e−z−

βt
z dz

=
tx

Γ (α)x!
cxe−ct

∫ ∞
0

x∑
k=0

(
x

k

)
βk

ck
z−k+α−1e−z−

βt
z dz

=
tx

Γ (α)x!
cxe−ct

x∑
k=0

(
x

k

)
βk

ck

∫ ∞
0

z−(k−α)−1e−z−
βt
z dz

Let z =
√
βty, implying dz =

√
βtdy then

f (x) =
tx

Γ (α)x!
cxe−ct

x∑
k=0

(
x

k

)
βk

ck

∫ ∞
0

(√
βty
)−(k−α)−1

e
−
√
βt
(
y+ 1

y

)√
βtdy

=
tx

Γ (α)x!
cxe−ct

x∑
k=0

(
x

k

)
βk
(√
βt
)−(k−α)

ck

∫ ∞
0

y−(k−α)−1e
− 2
√
βt
2

(
y+ 1

y

)
dy

=
2tx

Γ (α)x!
cxe−ct

x∑
k=0

(
x

k

)(√
β
)2k

ck

(√
β
)−k+α (√

t
)−k+α

K−(k−α)

(
2
√
βt
)

=
2tx

Γ (α)x!
cxe−ct

x∑
k=0

(
x

k

)(√
β
)k−α+2α

ck
1(√
t
)k−αK−(k−α)

(
2
√
βt
)

=
2tx

Γ (α)x!
cx
(√

β
)2α

e−ct
x∑
k=0

(
x

k

) (√
β
)k−α

ck
(√
t
)k−αK−(k−α)

(
2
√
βt
)

=
2βα (ct)x e−ct

Γ (α)x!

x∑
k=0

(
x

k

)
1

ck

(√
β

t

)k−α
Kk−α

(
2
√
βt
)

5.4.18 Inverse Gaussian Distribution

Consider inverse Gaussian distribution given by (3.78), its Laplace transform is

LΛ (t) = E
(
e−tΛ

)
=

∫ ∞
0

e−tλ
(

φ

2πλ3

) 1
2

exp

{
−φ (λ− µ)2

2λµ2

}
dλ

=

(
φ

2π

) 1
2
∫ ∞

0
λ−

3
2 exp

{
−tλ−

[
φλ2 − 2φλµ+ φµ2

]
2λµ2

}
dλ

=

(
φ

2π

) 1
2

e
φ
µ

∫ ∞
0

λ−
3
2 exp

{
−tλ− φ

2µ2
λ− φ

2λ

}
dλ

=

(
φ

2π

) 1
2

e
φ
µ

∫ ∞
0

λ−
3
2 exp

{
−
(

2µ2t+ φ

2µ2

)
λ− φ

2

1

λ

}
dλ

=

(
φ

2π

) 1
2

e
φ
µ

∫ ∞
0

λ−
3
2 exp

{
−1

2

(
2µ2t+ φ

µ2

)[
λ+

φµ2

2µ2t+ φ

1

λ

]}
dλ
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and making the substitution λ =
√

φµ2

2µ2t+φ
z, implying that dλ =

√
φµ2

2µ2t+φ
dz we have

LΛ (t) =

(
φ

2π

) 1
2

e
φ
µ

(√
φµ2

2µ2t+ φ

)− 1
2 ∫ ∞

0
z−

1
2
−1 exp

{
−1

2

2µ2t+ φ

µ2

√
φµ2

2µ2t+ φ

[
z +

1

z

]}
dz

=

[
φ

2π

√
2µ2t+ φ

φµ2

] 1
2

e
φ
µ

∫ ∞
0

z−
1
2
−1 exp

{
−1

2

√
φ (2µ2t+ φ)

µ2

(
z +

1

z

)}
dz

=

[√
φ (2µ2t+ φ)

(2πµ)2

] 1
2

e
φ
µ 2K− 1

2

(√
φ (2µ2t+ φ)

µ2

)

=

[√
φ (2µ2t+ φ)

2πµ

] 1
2

e
φ
µ 2K− 1

2

(√
φ (2µ2t+ φ)

µ2

)

=

[
2

πµ

√
φ (2µ2t+ φ)

] 1
2

e
φ
µK− 1

2

(√
φ (2µ2t+ φ)

µ2

)
. (5.156)

Using Willmot’s (1986) notations, let φ = µ2

β therefore the Laplace transform for the inverse Gaussian

distribution is

LΛ (t) =

[
2

πµ

√
µ2

β

(
2µ2t+

µ2

β

)] 1
2

e
µ2

βµK− 1
2


√√√√µ2

β

(
2µ2t+ µ2

β

µ2

)
=

[
2

πµ

√
µ2

β2
(2µ2βt+ µ2)

] 1
2

e
µ
βK− 1

2

(√
µ2

β2

(
2µ2t+ µ2

µ2

))

=

[
2

πµ

µ

β

√
2µ2βt+ µ2

] 1
2

e
µ
βK− 1

2

(
µ

β

√
2βt+ 1

)
=

[
2µ

πβ

√
2βt+ 1

] 1
2

e
µ
βK− 1

2

(
µ

β

√
2βt+ 1

)
.

But by (Jorgensen, 1982), K− 1
2

(ω) = K 1
2

(ω) =
√

π
2ωe
−ω therefore,

LΛ (t) =

[
2µ

πβ

√
2βt+ 1

] 1
2

e
µ
β

[
π

2µ
β

√
2βt+ 1

] 1
2

e
−µ
β

√
2βt+1

=

[
2µ

πβ

√
2βt+ 1

πβ

2µ

1√
2βt+ 1

] 1
2

e
µ
β e
−µ
β

√
2βt+1

= exp

{
µ

β

[
1−

√
2βt+ 1

]}
= exp

{
−µ
β

[√
1 + 2βt− 1

]}
(5.157)

as obtained by Willmot (1986). The pgf of the Poisson mixture is

G (s) = exp

{
−µ
β

[√
1 + 2β (1− s) t− 1

]}
(5.158)
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The jth moment of inverse Gaussian distribution is

E
(
Λj
)

=

(
φ

2π

) 1
2

e
√
ϕφ

∫ ∞
0

λ(j− 1
2)−1 exp

{
−1

2

(
ϕλ+

φ

λ

)}
and making the substitution λ =

√
φ
ϕz, implying that dλ =

√
φ
ϕdz, we have

E
(
Λj
)

=

(
φ

2π

) 1
2

e
√
ϕφ

∫ ∞
0

(√
φ

ϕ

)j− 1
2

z(j−
1
2)−1 exp

{
−ϕ

2

√
φ

ϕ

(
z +

1

z

)}
dz

=

(
φ

2π

) 1
2

e
√
ϕφ

(√
φ

ϕ

)j− 1
2 ∫ ∞

0
z(j−

1
2)−1 exp

{
−
√
ϕφ

2

(
z +

1

z

)}
dz

=

(
2φ

π

) 1
2

e
√
ϕφ

(√
φ

ϕ

)j− 1
2

Kj− 1
2

(√
ϕφ
)

(5.159)

The Poisson-Inverse Gaussian distribution is obtained by the method of moments as

f (x) =

∞∑
j=x

(−t)j−x tx

(j − x)!x!

(
2φ

π

) 1
2

e
√
ϕφ

(√
φ

ϕ

)j− 1
2

Kj− 1
2

(√
ϕφ
)

=

(
2φ

π

) 1
2

(√
φ

ϕ

)− 1
2

e
√
ϕφ
∞∑
j=x

(−1)j−x

(j − x)!x!

(
t

√
φ

ϕ

)j
Kj− 1

2

(√
ϕφ
)

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2
∞∑
j=x

(−t)j−x

(j − x)!

(√
φ

ϕ

)j− 1
2

Kj− 1
2

(√
ϕφ
)

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

∞∑
j=x

(−t)j−x

(j − x)!

(√
φ

ϕ

)j− 1
2 ∫ ∞

0
zj−

1
2
−1e−

√
ϕφ
2 (z+ 1

z )dz

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

∫ ∞
0

∞∑
j=x

(−t)j−x

(j − x)!

(√
φ

ϕ

)j (√
φ

ϕ

)− 1
2

zjz−
1
2
−1e−

√
ϕφ
2 (z+ 1

z )dz

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

∫ ∞
0

∞∑
j=x

[
−t
√

φ
ϕz
]j−x

(j − x)!

(√
φ

ϕ

)x− 1
2

zx−
1
2
−1e−

√
ϕφ
2 (z+ 1

z )dz

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

(√
φ

ϕ

)x− 1
2 ∫ ∞

0
z(x−

1
2)−1e

− 1
2

{[
2t
√
φ√
ϕ

+
√
ϕφ
]
z+
√
ϕφ
z

}
dz

On solving further, we have

f (x) =
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

(√
φ

ϕ

)x− 1
2 ∫ ∞

0
z(x−

1
2)−1 exp

{
−1

2

{[
2t
√
φ+

√
ϕ2φ

√
ϕ

]
z +

√
ϕφ

z

}}
dz

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

(√
φ

ϕ

)x− 1
2 ∫ ∞

0
z(x−

1
2)−1 exp

{
−1

2

[√
φ (2t+ ϕ)
√
ϕ

z +

√
ϕφ

z

]}
dz

=
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

(√
φ

ϕ

)x− 1
2 ∫ ∞

0
z(x−

1
2)−1 exp

{
−1

2

√
φ (2t+ ϕ)
√
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Let z =
√

ϕ
2t+ϕy implying dz =

√
ϕ

2t+ϕdy, therefore

f (x) =
tx

x!
e
√
ϕφ

(
2φ

π

) 1
2 1

2

(√
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2 (√

ϕ
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2
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(
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1
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=
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√
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(
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(√
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√
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(
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(√
φ

2t+ ϕ
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(√
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)
5.4.19 Reciprocal Inverse Gaussian Distribution

Consider the pdf of reciprocal inverse Gaussian distribtuion given by equation (3.84), its Laplace

transform is

LΛ (t) = E
(
e−tΛ

)
=

∫ ∞
0

(
φ

2π

) 1
2

eφ/µλ−
1
2 exp

{
−tλ− φ

2
λ− φ

2µ2λ

}
dλ

=

(
φ

2π

) 1
2

eφ/µ
∫ ∞

0
λ−

1
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{
−2t+ φ

2

[
λ+

φ

(2t+ φ)µ2

1

λ

]}
dλ

and making the substitution λ =
√

φ
µ2(2t+φ)

z implying that dλ =
√

φ
µ2(2t+φ)

dz, we have

LΛ (t) = 2

(
φ

2π

) 1
2

e
φ
µ

(√
φ

µ2 (2t+ φ)

) 1
2

1

2

∫ ∞
0

z
1
2
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{
−

√
φ

µ2
(2t+ φ)

(
z +

1

z

)}
dz

=
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2φ

π

)√
φ

µ2 (2t+ φ)

] 1
2

e
φ
µK 1

2

(√
φ

µ2
(2t+ φ)

)

But K 1
2

(ω) =
√

π
2ωe
−ω, then

LΛ (t) =

[(
2φ

π

)√
φ

µ2 (2t+ φ)

] 1
2

e
φ
µ
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2
√

φ
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(2t+ φ)

 1
2

e
−
√

φ
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=

(2φ

π

)√
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π

2
√

φ
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(2t+ φ)

 1
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e
φ
µ e
−
√

φ
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=

[
φ

√
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µ2 (2t+ φ) φ
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] 1
2

e
φ
µ e
−
√

φ
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(2t+φ)

=

[
φ
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e
φ
µ e
−
√

φ

µ2
(2t+φ)
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Therefore

LΛ (t) =

(
φ

φ+ 2t

) 1
2

exp

{
−

[√
φ

µ2
(2t+ φ)− φ

µ

]}

=

(
φ

φ+ 2t

) 1
2

exp

{
−φ
µ

[√
2t+ φ

φ
− 1

]}
(5.160)

Parameterization 1: Let µ =
√

φ
ϕ implying µ2 = φ

ϕ , then

LΛ (t) =

(
φ

φ+ 2t

) 1
2

exp

{
−
√
φϕ

[√
2t+ φ

φ
− 1

]}
(5.161)

Parameterization 2: (Willmot’s, 1986). Let φ = µ2

β , then

LΛ (t) =

 µ2

β
(
µ2

β + 2t
)
 1

2

exp

−
µ

β


√√√√β

(
2t+ µ2

β

)
µ2

− 1




=

(
µ2

µ2 + 2βt

) 1
2

exp

{
−µ
β

[√
2βt

µ2
+ 1− 1

]}
(5.162)

The pgf of the mixture is

G (s) =

(
φ

φ+ 2 (1− s) t

) 1
2

exp

{
−
√
φϕ

[√
2 (1− s) t+ φ

φ
− 1

]}
(5.163)

Remark: The Laplace transform of a reciprocal inverse Gaussian distribution is a product of

the Laplace transform of a Gamma distribution and the Laplace transform of an inverse Gaussian

distribution.

The jth moment of reciprocal inverse Gaussian distribution is obtained as

E
(
Λj
)

=

∫ ∞
0

λj
(
φ

2π

) 1
2

e
√
ϕφλ−

1
2 exp

{
−φ

2
λ− ϕ

2

1

λ

}
=

(
φ

2π

) 1
2

e
√
ϕφ

∫ ∞
0

λj−
1
2 exp

{
−φ

2
λ− ϕ

2

1

λ

}
and making the substitution λ =

√
ϕ
φz implying dλ =

√
ϕ
φdz, we have

E
(
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)

=

(
φ

2π

) 1
2

e
√
ϕφ

(√
ϕ

φ
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2
∫ ∞
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(√
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(√
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(
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2

e
√
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(√
ϕ

φ

)j+ 1
2
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2

(√
ϕφ
)

(5.164)
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Poisson-Reciprocal Inverse Gaussian distribution is therefore obtained by method of moments as

f (x) =
tx

x!

(
2φ

π

) 1
2

e
√
ϕφ
∞∑
j=x

(−t)j−x
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(√
ϕ

φ

)j+ 1
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(√
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(
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e
√
ϕφ
∞∑
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(√
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(
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π
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(√
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∞∑
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√

ϕ
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2

∫ ∞
0

z(j+
1
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{
−
√
ϕφ

2

(
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1
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(
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(√
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√
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{
−
√
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2

(
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(
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(√
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√
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√
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√
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Solving further, we obtain

f (x) =
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(
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e
√
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(√
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√
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(√
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]}
dz

Let z =
√

φ
2t+φy implying that dz =

√
φ

2t+φdy, therefore
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(
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)
5.4.20 Generalized Inverse Gaussian Distribution

Consider the generalized inverse Gaussian (GIG) distribution given by equation (3.87), its Laplace

transform is

LΛ (t) =

∫ ∞
0

e−tλ

(
ϕ
φ

) v
2

2Kv

(√
ϕφ
)λv−1 exp

{
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2

(
ϕλ+
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(
ϕ
φ
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(

2t+ ϕ

2
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1

λ
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and making the substitution λ =
√

φ
2t+ϕz implying dλ =

√
φ

2t+ϕdz we have

LΛ (t) =
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ϕ
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2t+ ϕ

)v
zv−1 exp

{
−
√
φ (2t+ ϕ)

2

(
z +

1

z

)}
dz

=

(
ϕ
φ ·

φ
2t+ϕ

) v
2

2Kv

(√
ϕφ
) ∫ ∞

0
zv−1 exp

{
−
√
φ (2t+ ϕ)

2

(
z +

1

z

)}
dz

=

(
ϕ

2t+ ϕ

) v
2 Kv

(√
φ (2t+ ϕ)
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(√
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)

Using Willmot’s (1986) notations, let φ = µ2

β and ϕ = 1
β , therefore

LΛ (t) =

(
1

2βt+ 1

) v
2
Kv

(√
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(
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β

))
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(√
1
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=
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√
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1
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]
Kv (µβ−1)

(5.165)

and

G (s) = (1 + 2β (1− s) t)−
v
2

Kv

[
µβ−1 (1 + 2β (1− s) t)

1
2

]
Kv (µβ−1)

(5.166)

as given by Willmot (1986).

The jth moment of generalized inverse Gaussian distribution is

E
(
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)

=
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v
2

2Kv
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√
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(5.167)

Therefore, Poisson-generalized inverse Gaussian distribution is obtained by the method of moments
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as
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Solving further, we obtain
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5.4.21 Special Cases of Generalized Inverse Gaussian Distribution

Case (i): When v = −1
2

Using the formula (5.165), then

LΛ (t) =
(√

1 + 2βt
) 1

2
K− 1

2

[
µβ−1 (1 + 2βt)

1
2

]
K− 1

2
(µβ−1)
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But K− 1
2

(ω) = K 1
2

(ω) =
√

π
2ωe
−ω, therefore
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(√
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2

√
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]}
(5.168)

as given in (5.157).

The pgf is

G (s) = (1 + 2β (1− s) t)
1
4

K− 1
2

[
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1
2

]
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2
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(5.169)

From (5.167),
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√
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(5.170)

as given in (5.159).
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(5.171)

Thus when v = −1
2 , we get similar results as those for Inverse Gaussian and Poisson-Inverse Gaussian

distributions.
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Case (ii): When v = 1
2

From (5.165),
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(√
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√
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(5.172)

which is a product of Laplace Transform of a Gamma distribution and Inverse gamma distribution.

The pgf is

G (s) = (1 + 2β (1− s) t)−
1
4

K 1
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[
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(5.173)

From (5.167),
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(5.174)

and therefore,

f (x) =
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(√
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(5.175)

This is the case of Reciprocal Inverse Gaussian and Poisson-Reciprocal-Inverse Gaussian distribu-

tions.

5.5 Identities based on Poisson mixtures and by method of moments

As a consequence of identifying the routes to mixed Poisson distributions, in this section we deduce

mathematical identities based on Poisson mixtures. Specifically, we equate the result of a mixture
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obtained in explicit form with that obtained by method of moments. We also equate the result

obtained in terms of a special function with that obtained by method of moments.

5.5.1 Explicit form Identities

Poisson-Gamma Distribution
∞∑
j=x

tx (−t)j−x
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Γ (j + α)

Γ (α)βj
=
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(5.176)

Poisson-Shifted Gamma Distribution
∞∑
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(
β

β + t

)α( t

β + t

)k
(5.177)

Poisson-Lindley Distribution

1

θ + 1

∞∑
j=x

(
−t
θ

)j
(j + 1 + θ) (−1)x

(
j

x

)
=
txθ2 (x+ t+ θ + 1)

(t+ θ)x+2 (1 + θ)
(5.178)

Poisson-3-parameter Generalized Lindley Distribution
∞∑
j=x

(−1)j−x
(
j

x

)(
α+ j − 1

j

)(
1 +

γj

α (θ + γ)

)(
t

θ

)j
=

Γ (x+ α)

x!Γ (α+ 1)

(
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αt+ γx

θ + γ

)(
t

t+ θ

)x( θ

t+ θ

)α+1

(5.179)

Poisson-Transmuted Exponential Distribution
∞∑
j=x

(−1)j−x
(
j

x

)(
α+

α

2j

)( t
θ

)j
=

θtxα

(t+ θ)x+1 +
θtx2α

(t+ 2θ)x+1 (5.180)

5.5.2 Confluent hypergeometric function Identities

Poisson-Beta I Distribution
∞∑
j=x

(−t)j−x

(j − x)!
B (j + α, β) = B (x+ α, β) 1F1 (x+ α;x+ α+ β;−t) (5.181)

Poisson-Rectangular Distribution
∞∑
j=x

(−t)j−x

(j − x)!

[
bj+1 − aj+1

j + 1

]
=

1

(x+ 1)

{
bx+1

1F1 (x+ 1;x+ 2;−bt)− ax+1
1F1 (x+ 1;x+ 2;−at)

}
(5.182)
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Poisson-Beta II Distribution
∞∑
j=x

(−t)j−x

(j − x)!
B (p+ j, q − j) = Γ (x+ p)ψ (x+ p, x− q + 1; t) (5.183)

Poisson-Scaled Beta Distribution
∞∑
j=x

(−µt)j−x

(j − x)!
B (j + α, β) = B (x+ α, β) 1F1 (x+ α;x+ α+ β;−µt) (5.184)

Poisson-Full Beta Distribution
∞∑
j=x

(
−t
b

)j−x 1

(j − x)!
B (p+ j, q − j) = Γ (x+ p)ψ

(
x+ p, x+ 1− q; t

b

)
(5.185)

Poisson-Pearson Type I Distribution

∞∑
j=x

(−t)j−x

(j − x)!

j∑
i=0

(
j

i

)
aj−i (b− a)iB (i+ p, q)

= e−at
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k=0

{(
x

k

)
ax−k (b− a)k B (k + p, q) 1F1 (k + p; k + p+ q;− (b− a) t)

}
(5.186)

Poisson-Pearson Type VI Distribution

∞∑
j=x

(−t)j−x

(j − x)!

{
j∑
i=0

(
j

i

)(
d− c
d

)i
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}

= dxe−dt
x∑
k=0

(
x

k

)(
d− c
d

)k
Γ (k + b− a)ψ (k + b− a, k − a+ 1; (d− c) t) (5.187)

Poisson-Shifted Gamma Distribution
∞∑
j=x

(−t)j−x

(j − x)!

j∑
i=0

(
j

i

)
µj−iΓ (i+ α)

βi
= µx (µβ)α e−µtΓ (α)ψ (α, α+ x+ 1; (t+ β)µ) (5.188)

Poisson-Truncated Gamma (from above) Distribution
∞∑
j=x

(−t)j−x

(j − x)!

b

j + b
pj 1F1 (j + b; j + b+ 1;−ap) =

b

x+ b
px 1F1 (x+ b;x+ b+ 1;− (a+ t) p) (5.189)

Poisson-Truncated Gamma (from below) Distribution
∞∑
j=x

(−t)j−x

(j − x)!

[Γ (j + α)− γ (j + α, βλ0)]

βj
=

βα

(t+ β)x+α [Γ (x+ α)− γ (x+ α, (t+ β)λ0)] (5.190)
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Poisson-Truncated Gamma (from below and above) Distribution
∞∑
j=x

(−t)j−x

(j − x)!

{
γ (j + α, βb)− γ (j + α, βa)

βj

}
=

βα

(t+ β)x+α {γ (x+ α, (t+ β) b)− γ (x+ α, (t+ β) a)}

(5.191)

Poisson-Truncated Pearson Type III Distribution
∞∑
j=x

(−t)j−x

(j − x)!
B (j + 1, β − 1) 1F1 (j + 1; j + β;α) = B (x+ 1, β − 1) 1F1 (x+ 1;x+ β;α− t)

(5.192)

Poisson-Pareto I Distribution
∞∑
j=x

(−t)j−x

(j − x)!

βj

α− j
= βxe−βtψ (1, x− α+ 1;βt) (5.193)

Poisson-Pareto II Distribution
∞∑
j=x

(−t)j−x

(j − x)!
βjB (j + 1, α− j) = βxΓ (x+ 1)ψ (x+ 1, x− α+ 1;βt) (5.194)

Poisson-Generalized Pareto Distribution
∞∑
j=x

(−t)j−x

(j − x)!
µjB (j + β, α− j) = µxΓ (x+ β)ψ (x+ β, x− α+ 1;µt) (5.195)

5.5.3 Bessel function of third kind Identities

Poisson-Inverse Gamma Distribution
∞∑
j=x

tx (−t)j−x βjΓ (α− j)
(j − x)!

= 2 (βt)
x+α
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(
2
√
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)

(5.196)

Poisson-Pearson Type V Distribution

∞∑
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(5.197)

Poisson-Inverse Gaussian Distribution

∞∑
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(5.198)

Poisson-Reciprocal Inverse Gaussian Distribution
∞∑
j=x

(−t)j−x

(j − x)!
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(5.199)
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Poisson-Generalized Inverse Gaussian Distribution

∞∑
j=x

(−t)j−x

(j − x)!

(√
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(5.200)
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Chapter 6

CONCLUSIONS AND

RECOMMENDATIONS

6.1 Summary of Results and Challenges

The objective of this research was to construct mixed Poisson distributions via four routes, namely,

explicit, special functions, recursive and transform routes.

Explicit Route

By explicit route, mixed Poisson distributions were obtained using the following mixing distributions:

Gamma, Shifted Gamma, Transmuted Exponential, Lindley and 3-parameter Generalized Lindley

distributions.

Moments about the origin and moments about the mean of the Poisson mixtures were obtained

in terms of moments of the mixing distributions. Posterior distributions, posterior rth moments and

posterior means were also obtained.

Remark 7.1: Explicit route was achieved by direct integration. Very few cases however follow

this route.

Remark 7.2: Transmuted Exponential and 3-parameter generalized Lindley distributions are

finite mixtures used as mixing distributions. The 3-parameter generalized Lindley distribution nests

one parameter Lindley distribution and two types of 2-parameter generalized Lindley distributions.

Special Functions Route

The mixing distributions leading to Poisson mixtures expressed in terms of Kummer’s and Tricomi’s

confluent hypergeometric functions are: Beta I, Rectangular, Beta II, Scaled Beta, Full Beta, Pear-

son Type I, Pearson Type VI, Shifted Gamma (Pearson Type III), Gamma truncated from above,
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Gamma truncated from below, Gamma truncated from above and below, truncated Pearson Type

III, Pareto I, Pareto II (Lomax) and generalized Pareto distributions. The corresponding pgfs of the

mixtures were also expressed in terms of confluent hypergeometric functions.

For Poisson mixtures in terms of modified Bessel function of the third kind, the following mixing

distributions were used: Inverse Gamma, Inverse Gaussian, Reciprocal Inverse Gaussian, Pearson

Type V and Generalized Inverse Gaussian distributions. The pgfs were also obtained in terms of

modified Bessel function of the third kind.

Recursive Route

The following mixing distributions were used to obtain mixed Poisson distributions using integration

by parts: Beta I, Rectangular, Beta II, Scaled Beta, Full Beta, transformed Beta, Inverse Gamma,

Shifted Gamma, Gamma truncated from below, Generalized Gamma, transformed (Generalized)

Gamma, Pareto I, Pareto II (Lomax), Generalized Pareto, Generalized Pareto Type II, Inverse

Gaussian, Reciprocal Inverse Gaussian, Generalized Inverse Gaussian, Confluent hypergeometric

and Half-Normal distributions.

Remark 7.3: Recursive models obtained were similar to those obtained by other methods. The

disadvantage of the integration by parts technique is that it does not have a general formula for

differential equation in pgf. For each case, a differential equation has to be derived.

Transform Route

Some Poisson mixtures can be determined through xth derivatives of Laplace transforms of mixing

distributions such as Gamma, 3-parameter generalized Lindley, Transmuted Exponential, Inverse

Gamma and Hougaard.

In particular, it is tedious to find the xth derivative of Laplace transform of Hougaard distribu-

tion.

In the Mellin transform approach, the rth moment of mixing distribution was used to determine

Poisson mixture.

The pgf technique was used to determine factorial moments of the mixtures. The pgf is expressible

in terms of Laplace transform.

Identities based on Poisson Mixtures

By comparing results obtained by explicit and by method of moments, we were able to deduce

mathematical identities. Also by comparing results obtained by special function and by method of

moments, other identities were deduced.
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6.2 Recommendations

The following recommendations are suggested.

Explicit Form

More mixing distributions leading to mixed Poisson distributions in explicit forms could be iden-

tified. In particular, Generalized Lindley and Transmuted Exponential distributions are mixing

distributions of finite mixtures. More finite mixtures of this nature could be identified to obtain

Poisson mixtures in Explicit form.

Special Functions

Confluent hypergeometric and Bessel functions have been used to construct mixing distributions.

There are other special functions such as Laguerre Polynomials which could be explored.

Recursive Models

Recursion is one way of numerical or approximation methods. Other techniques, such as Taylor’s

series could be explored. In this research, we have used integration by parts technique to obtain

recursive models. In obtaining the corresponding differential equations in probability generating

functions, we have made use of Wang’s (1994) recursive model. Other existing differential equations

could be used and compared.

Expectation Forms

Mathematical identities based on Poisson mixtures have been derived by equating results obtained

in explicit forms and those in terms of special functions with those results obtained by method of

moments. More identities could be derived.

Using Laplace transform technique, mixed Poisson distributions have been obtained. However for

Poisson mixtures in terms of special functions, obtaining many differentiations of the Laplace trans-

forms is quite involving. Patterns of differentiations need to be identified. Further work therefore

needs to be done in this area.

Other routes

Further work could be on identifying other routes to obtaining mixed Poisson distributions, such as

numerical integration given by Bulmer (1974).
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Properties

In this research, we have concentrated on constructing posterior distributions from Poisson mixtures

and hence obtained posterior moments. We have also obtained the general formula for factorial

moments, moments about the origin and about the mean in terms of derivatives of probability

generating functions. However, other properties have not been looked at, such as identifiability,

infinite divisibility, compound distributions, etc. Extensive works in this area would be worthwhile.

Inference on Parameters and Applications

The focus in this research is on constructions and properties of mixed Poisson distributions. Esti-

mations, testing of hypotheses and applications of Poisson mixtures are definitely major areas for

further research.
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