UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

MASTER OF SCIENCE IN DISTRIBUTED COMPUTING TECHNOLOGY

APACHE SPARK BASED BIG DATA ANALYTICS FOR SOCIAL NETWORK
CYBERCRIME FORENSICS

BY

SIMON MULWA K110

REG NO: P53/78939/2015

SUPERVISOR: DR. ELISHA O. ABADE

Project report submitted in partial fulfillment of the Master of Science Degree in Distributed

Computing Technology.

NOVEMBER 2017

DECLARATION

The project, as presented in this document, is my original work and has not been presented for any
other university award.

Signature: Date:

Simon Mulwa Kiio

P53/78939/2015

The Project has been submitted in partial fulfillment of the requirements for the Master of Science
Degree in Distributed Computing Technology at the University of Nairobi with my approval as

the University Supervisor.

Signature: Date

Dr. Elisha O. Abade

School of Computing and Informatics

ACKNOWLEDGEMENT

I wish to convey my appreciation and special thanks to my supervisor Dr. Elisha O. Abade for his
dedication and assistance throughout the research process, the members of the panel whose
knowledge and experience in this field has been of great help to my research and the whole School

of Computing and Informatics for their support that made me deliver in this work.

Special thanks to my family for their love, encouragement and support towards delivery. Lastly, |

would like to appreciate my colleagues who supported me to deliver this research project.

ABSTRACT

The anonymity of social networks makes its attractive for cyber criminals to mask their criminal
activities online posing a challenge to law enforcers in tracking and uncovering the perpetrators as
most evidence is hidden within big data. With this ever-increasing volume of data, forensic analyst
faces challenges in investigations involving huge data volumes while at the same time limited by
computer processor, memory and storage resources of a single computer node. With increased
social media data and the high rate of production, it has become difficult to collect, store and
analyze such big data using traditional forensic tools. This study involved the application of apache
spark and big data analytic in forensic analysis of social network cybercrimes such as hate speech,
cyberbullying and demonstrated the application of data analytics in supplementing the challenges
of traditional forensic tools in investigations involving Big Data. The study developed an apache
spark based forensic tool to stream and analysis social media data for hate speech and cyberbully
cybercrimes while diving to investigate relevant artifacts found on Twitter social network and
ways to collect, preserve and ensure authenticity of the evidence. The study employed Naive Bayes
algorithm within Spark ML API to automatically classify and categorize hate speech and
cyberbullying found within Twitter social media. The study showed that by generating SHA-256
Hash key for each tweet item within DStreams and storing tweet data together with corresponding
Hash key in MongoDB can be used in tweet evidence preservation and authentication. Again, by
streaming full tweet Account metadata, the study revealed that such metadata can be used in
authenticating the creator, source, date and time for a given hate speech tweet.

Table of Contents

DECLARATION ...ttt sttt se ettt s bt e st et st e e e bt et et eneebente e ene et s i
ACKNOWLEDGEMENT ...ttt sttt st be s anesaeneeneanas ii
y N S 2 ¥ PSSP iii
LIST OF TABLES ...t e e et e e st e e et e e e rae e e neeeannes vii
TABLE OF FIGURESottt e e e nnae s viil
LIST OF ABBREVIATIONSottt ettt e e e s e e s taaeannae s X
CHAPTER ONE: INTRODUCTIONccoitiiiiiieietiesiee ettt st sse e s 1
1.1 BACKGIOUNGottt e e s e be e e s reesteenneaneenneens 1
1.2 Problem STAtEMENT........oiieeie bbb 4
1.3 ODbjectives Of the STUAYcceiieiiei e nneas 5
1.3.1 GeNeral ODJECHIVES.coiiiiieie et 5
1.3.2 SPECITIC ODJECLIVES ..ot 5

1.4 RESEAICH QUESTIONS......c.viiiie ettt e e e sbe e s eesbeeenraens 6
1.5 Significance 0f the STUAYooeiiii s 7
1.6 SCOPE OF the STUAY ..ot nreas 8
1.7 Assumptions and Limitations of the Study...........ccceoiiiiiiiie e, 8
CHAPTER TWO: LITERATURE REVIEW.cccoiiiiiiiieceeese e 9
2 INEFOTUCTION ..viiei et b bbbttt et bbb bt e bt et e st e e e 9
2.1 DIgITAl FOTBNSICS ...vvivieiieieeie sttt e e e te e esraesaeesaesseenteenaeaneenneens 9
2.1.1 The Digital FOr€NSICS PrOCESS.c.ciieiiiiieiie ittt 10

22 Big Data FOIBNSICS........euiiiiiiieiieiete sttt bbbt 11
2.2.1 Big Data ATDULES ..o 13
2.2.2 Big Data ArCRITECIUIEocveeieiiieciiee ettt 15

2.3 Data Mining and Maching Learning..........ccueceiieiieresiieseeie s sis e se e se e sneas 16
2.3.1 Data Mining TECANIQUES........ccviiieie et 17
2.3.2 Data Mining AlgOrithMScooiiiiie e 18

2.4 Classification AIGOMtNMSccuviiiiicii e 19
2.4.1 Naive Bayes (Multinomial) CIasSITIerccooeiiiiiiiieiiec e 19
2.4.2 Support Vector Machings (SVM)couiiiiiiiiiiisiee e 20

2.5 APACNE HAAOOP. ...ttt ettt nbeeneenreas 21
2.5.1 Hadoop Core COMPONENTS.....ccueitieiiiieiieeiesieesteeiesieesteeee e sreeeesreesbesneesseesbeeneesneas 22

2.6 APACNE SPATKceiiieiiiee ettt a e reeaennes 24

2.6.1 SPArK STrEAMINGveeveieeiieeieetie st ete et e e e e s e e e e e e e e e s e e saeeseesreesteeneeaseesseeneenneas 25
2.6.2 Use Cases of Spark/Spark Streamingccooeoeririienieieenese s 26

2.7 MONQGODB ... e 27
2.7.1 MongoDB DOCUMENT SIFUCLUIEccueiiiieiiieitiesee et 28
2.7.2 MongoDB Connector fOr SPArk..........ccooieuiiieiiiieiie e 30

2.8 SOCIAI NEIWOTKS ...ttt et b bbb nes 30
2.8.1 SOCIal NEIWOIK STIUCLUIEeiviiviiiieiieieie et 31
2.8.2 Social Network AnalysiS (SNA)cuv i 33
2.8.3 Social Network SiteS FOIrENSICSccveieiiiiiieiiesieses s 34
2.8.4 Legal Challenges to Social Media Evidence Authentication...........cccccoovrvververinnnnnn 35
2.8.5 SENtIMENT ANAIYSISoviiiiiiiiiiiiee et 37

2.9 e o] oJoRS{To ISTo] [V 11T o ISR 38
2.10 Proposed Apache Spark Forensic Tool Conceptual Modelcccccooveviiiiiieiiecnnnnnn, 38
2.11 LIterature SUMIMAIYcceoiviiieiieiie sttt et e ta et e s te et e snaeste et e sneentaennesneas 39
CHAPTER THREE: RESEARCH METHODOLOGYcccccoiviiiiieiesenieese e 41
T 1011 0o 1t o] o A TSP P PR PR PR UPRRPPR 41
3.1 RESEAICN DBSIGN...c.vieiieie ettt e e e st e e aesreenteenaesraesaeeneenreas 41
3.1.1 CRISP-DM OVEIVIEWcuviiiiiiiieeitee ettt ettt ettt sae e ve s ae e sraa e sraesraeeteesneeens 42

3.2 Sources of Data and Sample POPUIALION ..ot 44
33 Data Collection and Data Collection to0IS...........cccueiiiriiiiinieee e 44
34 Data PreParation..........coouiiieiieieiie sttt sttt sttt na e beesae e nneas 46
3.5 Data Mining Algorithm and Sentiment Classification.............ccccccoccvviiiiiic i, 48
3.6 DAtA ANAIYSIS ..ottt e ra e reenenres 48
3.7 System IMPIEMENTALIONc.coiuiiiiiice e 49
3.8 F N o g1 T (] = L DT oo USSR 50
3.9 MOl EVAIUALION.oiuiiiiiieieiee bbb 52
T O =1 T o= L £ SRS 53
LT SUMMAIY .ttt b bbbt b e b e n e nbeenn s 54
CHAPTER FOUR: DESIGN AND IMPLEMENTATIONcoooiiiiiiiec e 95
O [011 oo [0 od o] ISR 55
4.1 Modeling Tools and TECANIGUES........cc.iiiiiieicece e 55

4.2 Spark FOrensic Model ANAIYSIS.......ccveiviieiieie e 56

4.3 Forensic TOOI MOdUIE ANAIYSIS.......c.cciiieiieeciese e nneas 57
4.4 Cluster Setup and CoNfIQUIALIONSccuriiieiiiieie e 59
441 Hadoop Yarn CoNfIQUIatioNccooueieieiieienie e 60
4.4.2 Starting Hadoop CIUSEEr MANQETccviiieiiiie e 62
4.4.3 Apache Spark ConfigUIatioN..........cccoviiiiieiiiie e 63
4.4.4 Starting Apache Spark CIUSLET.........ccoviiiiii e 65

4.5 TWItter APT CONNECLIONoiiiiiiiieieieie et bbb 66
4.6 Data COIBCTIONS.....c..iiiiiiitieiieie bbbt 69
4.7 FEATUIE SEIBCTION....c..iitiiticiieiieee bbbt 70
4.8 Data PreprOCESSING.eiuieteeiieiieieie sttt ettt bbbttt sb e bbbt ne e 72
4.9 Training TWeet Labelling ..o 73
4.10 Social Media Evidence 1dentifiCation...........ccoccevieiieniiiie i 75
4.10.1 EVIAENCE REHEVAL.......ociiiiiie et 76
4.11 EVIAENCE PreSEIVALION.cviiiieitiiiesiieiieeeie ettt st 80
4.11.1 SHA-256 Hash Key Verification...........ccccccevveiiiieiiccccc e 82
4.12 Model Design and ClassifiCation...........c.ccceiieiiiiieiiiesr e 85
4,13 Model DePIOYMENTooiicie et e nne e 87
414 MOAel EVAIUBLION.......oiiiiicie et nte e sneenne e 89
4.15 Model Results and ANAIYSIS........cccoiiiiiiiiiieieies e 93
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS.......ccooceiiieeiiee e, 99
ST O] 0 [0d [0 [SRRSO PPRURRTRN 99
5.1 LIMIEALIONS 1.ttt bbbt n et e e 100
5.2 RECOMMENUALIONS.....c.viii ittt ee e 100
53 FULUIE PLAN ..ottt bbbt 101
REFERENGCES ..ottt sttt bt ten ettt e b e s tennenennis 102
APPENDICES ...ttt ettt e s et st e st et et en et e nenre s 105
SAMPIE PrOJECE COUR........eeieieiieiee ettt bbbttt 105

Vi

LIST OF TABLES

Table 1: Forensic design software and TOOISccooiiiiiiiiiiiee s 56
Table 2: Twitter Account Metadata of interest in fOrenSiCsccocvvvveeeiiieiviie e 76
Table 3: Streamed Twitter JSON Sample Dataccccevveieiieiecieseese e 79
Table 4: Tweet SHA-256 VErifiCatiON..........cocvviiiiiiiiiii it erae e aaae e 85
Table 5: Forensic Model Performance MELFICSociviiiiiuiii it 91
Table 6: MUILICIasS LADEI IMEBLIICSccuvieiiriie ittt eba e ebae e bee e 91
Table 7: Sample Hate SPEECH TWEELS.......c.vciiiieie et 98

vii

TABLE OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Traditional Digital FOrensiCS PrOCESSESccveiierieriiriiriesiinieieie e 10
Attributes of Big Data (DAVE 2016).......cccccoeiiiiriiiiinieieiesiese e 13
Big Data Variety (Erl, Khattak & Buhler 2016)cccovveveiieiiieie e 14
Big Data Architectural Overview (Sremack 2015).ccccoeveiiieiiveieiiee e 15
Support Vector Machines sample hyperplane............ccceovvieiieicciese e, 20
Example of Mapreduce Word COuNt PrOCESS.cccveieeieiieeiieieseesiesieseesis e seee e e 23
Spark Components (Nandi 2015)cccueveiiiiieieiiese e 25
Data sources for Apache Streaming (Frampton 2015)........cccccceiveiiiiieieeie e 26
Spark Streaming Data fIOWcccoveiiiiicc 26

Embedded document data mOdel.covoieiiiiicie e 28
Reference DOCUMENT SEIUCTUIE. ...ooivviiiieiie e 29
Reference Document eXample.........covoivoi i 29
A Directed Graph and an Undirected Graph (Zafarani, Abbasi & Liu 2014)............ 32
Sample Key metadata fields for individual Facebook posts (Patzakis 2012) 36
Proposed Apache Spark Forensic Tool Conceptual Model............c.cccoveviiviiiiiieenenn, 38
CRISP-DM Methodology (Ncr et al. 1999)cccoiiiiiiieecie e 42
Forensic Tool ArchiteCtural DESIGNccoviiiiiiiiiie e 50

Figure 18: Forensic TOOI MOdUle ANAIYSISoiiiiiiiiiieiesie e e 57
Figure 19: Core-site.XmIl CONfIQUIatIONScoiiiiiiieierese e 60
Figure 20: Yarn-site.Xml CoNfIQUIAtIONS............couiiiiiiiiiiesic e 60
Figure 21: hdfs-Site.Xml CONFIGUIALIONSc.eiiiiiiiieie e 61
Figure 22: Slaves.Xml CONFIGUIALIONSoiiiiiiiiiiei e 61
Figure 23: Starting Hadoop CIUSTEr IMANGETccuiiiieieiericrieseses e 62
Figure 24: Hadoop/HDFS cluster reSource Manager.........coeevereerueseeseeseeseeseeseesseesseessesseesseens 62
Figure 25: Hadoop HDFS file SYSIEM.......cccuciiiieiiece e 63
Figure 26: Spark-defaults CONfIQUIatioNccvoiveiiic i e 63
Figure 27: Spark-env.sh CONfiQUIatioN..........ccccuiiiiii i 64
Figure 28: Spark log4j.properties ConfiQUrationcccoveveeiereerie s 64
Figure 29: Spark Worker configurations (SIAVES)cccoiueieiiierieie e 64
Figure 30: Starting Apache SPark CIUSLENccoveiiiii i 65
Figure 31: TWItter API Creationcc.viiiiieiie sttt re e re e 66
Figure 32: Twitter CUStOMEr KEY/PAITccuiiieiiecie ettt te e 67
Figure 33: TWItter CUSIOMET KEYScviiieiiecie ettt sttt re et st teeaeanaenre e 68
Figure 34: Scala OAULhULITITIES KBYSvoivieiecie e 68
Figure 35: OAuthULtilities.Scala MOdUIE ..o 69
Figure 36: Twitter ACCOUNT SCBMAoiiiiiiieie e e e 71
Figure 37: Tweet Cleaning MOTUIE ..o e 72
Figure 38: Tweet Sentiment Classifier MOAUIEccooieiiiiiiii e 73
Figure 39: LaDEled TWERLS.cuiiieiee ettt nae e 74
Figure 40: Mongodb SaVe FUNCLIONooiiiiiiiiieieeee e 77
Figure 41: Mongodb Saved Tweet JSON DOCUMENTccviiiiiiiieieiee e 78

viii

Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:

Spark Streaming DSIEAMSccviiiiiieieieie ettt 80
Spark Streaming DStreams RDDSccoiiiiiiiiiiiniesisieeee e 80
SHA-256 Hash Key GENEIALONccuiiriiieieiie et 81
Tweet SHA-256 Hash keys JSON DOCUMENL.........cccvevereereeiieiiesie e seese e 82
SPArK ML PIPEIINE. .. .o sae e nres 85
Spark ML pipeline Naive Bayes ClasSifier..........cccooviiiiierieiieiireie e 86
SBT DU 87
SBT JAR PACKAQGEvveveeuieiiieiieeiesiee ettt ta et sta et e e snaeste s e nteanaesneesneeneennens 88
Apache Spark GUI MONITOTc.coieiiiic e 88
Spark ML Model Cross Validationccceoeiieiiiie i 90
Model CONFUSION IMALFIXvevveieieieiiiesiieeeeee e e 92
Categorized Hate Speech Tweets Pie Chart ... 93
Categorized Hate Speech Tweets Bar Chartcccoceviveiiiieie e 94
Tweet Sentiments Classification Pie Chart ... 95
Hate Speech Classified TWEELSccoiiiiiiie e 96
Preserved TWEET SAMPIEcc.oiiiiiiiie e 97

LIST OF ABBREVIATIONS
API - Application Programming Interface

CRISP-DM - Cross Industry Standard Process for Data Mining
HDFS - Hadoop Distributed File System

HTML - Hyper Text Markup Language

IDS - Intrusion detection systems

10T — Internet of Things

JSON - Javascript Object Notation

KDD - Knowledge Discovery in Databases

ML - Machine learning

NLP - Natural Language Processing

NLTK - Natural Language Tool Kit

POS - Part of Speech

RDD - Resilient Distributed Dataset

SEMMA - Sample Explore Modify Model and Assess
SHA-1 - Secure Hash Algorithm

SNA - Social Network Analysis

SVM - Support vector machine

CHAPTER ONE: INTRODUCTION

1.1 Background

In the past few years, the world has witnessed an exponential growth in volume of data generated by
information systems that has being fueled further by the discovery of smart devices, social networks
sites, and internet of things with many devices connected to the internet. This has also seen an
increase in cyber threats caused by either individuals or organized criminal groups (OCG) with the
intent to break security of information systems. Cybercrime have also increased in frequency and
their degree of sophistication has advanced with advancement in technology. With this increasing
volume of data, forensic analyst faces challenges when dealing with investigation involving large
volumes of forensic data while at the same time constrained by computer processing power in terms
of processor, storage and available memory space. Traditional digital forensic tools focus on
transactional data commonly known as structured data for forensic analysis that is normally in
relational or hierarchical database. Again most widely used traditional forensic tools have not
undergone any major architectural change (Edwards 2011) hence they lack suitable features to handle

big data forensic investigation.

Traditionally, digital forensic methodologies (identification, preservation, extraction, interpretation,
and documentation) would include taking the suspect system offline and removing hard drives from
suspected computer system containing source evidence(Press 2010), making bit copy of the original
hard disk, calculating MD5/SHA-1 checksums, and performing physical collections that capture all
metadata. The forensic analyst would then work from this copy, leaving the original hard disk
unchanged. However, big data system limitations prevent investigators from applying these forensic
methodologies and as such alternative methods for identifying, collecting, storing, analyzing and
documenting such data are required. The discovery of social media sites and its subsequent adoption
by people have rapidly created an enabling environment for connection among people, businesses,
and organizations hence making people to keep in touch and interact with each another. These sites
have enabled an increased content sharing while at the same time building and enhancing
relationships as friends and families stay connected. Individuals and groups can share photos or videos

and provide status updates that one feels are of interest to their friends.

With people, businesses and organization revealing more personal information and business activities
online, social networking sites have often been targeted as a platform for committing crimes,
including gang recruitment, identity theft, or online harassment and cyberbullying. The anonymity of
social network sites makes its attractive for cyber criminals to mask their criminal activities online
posing a challenge to law enforcers in tracking and uncovering the perpetrators. Cyber criminals leave
electronic traces as part of their social networks activities and interactions which are contained within
an enormous big datasets that are difficult to filter, analyze and correlate evidence using traditional
forensic tools (Johnsen 2016). These evidences are not often visible but hidden within large dataset
in the form of patterns and correlations. Forensic analysis of social networks and the associated
metadata can help forensic investigators understand and solve various cybersecurity problems,
including uncovering the online networks of extremists, organized criminal groups, hate speech and
cyberbullying (Gupta & Brooks 2013). However, the huge stream of data generated from online social
networks calls for research and design of new generation of forensics analytics methods and tools that
can effectively process and correlate digital evidence found in big data more often in real-time or near

real-time and within digital forensic standards.

Big Data is defined by the three attributes commonly known as 3V’s i.e. Volume, Velocity and
Variety in which for data to be categorized as Big data, the data must poses the three V’s (Berman
2013). With cybercrime increasingly expanding from structured to unstructured data, forensic
analysts need new tools and methods to get insights of large volume of data and correlate artifacts
from multiples data sources. Forensic data analysis of network traffic, system log files, and financial
transactions can be used to correlate evidence from several data sources into a visual representation
and uncover suspicious activities or which deviates from the normal (Wang & Alexander 2015). For
forensic data analysis, analyst can utilize wide range of data analytical techniques, including network
analysis, social network analysis, graph mining and text mining among others depending on the
cybercrime under investigation.

Intelligent forensics in conjunction with standard investigation procedures can be used in digital
forensics to provide more intelligence of insights on big data and provide evidence correlation (Irons
& Lallie 2014). The forensic analysis for network traffic (packets) and system events logs has

traditionally faced big challenges as traditional forensic technologies fail to provide the toolset to

support forensics involving big data. This was contributed by the fact that storing and retaining a large
log file data was not economically feasible with storage limitations and thus, most event log data and
other recorded system activities were overwritten or deleted after a fixed retention period. In this
study, we developed an apache spark based big data forensics tool for social network cybercrime
detection and systematically analyzed big data from Twitter social network to explore artifacts which
are relevant to Twitter social network site forensics. Apache Spark is a distributed computing
framework which provides in-memory large data processing while at the same time enabling real
times analytics and development of programs that can ran in parallel on different nodes in a cluster
of computers (Pentreath 2015). To achieve this, the framework abstracts the tasks of system resource
scheduling, job submission, job execution, tracking, and communication between cluster nodes.
Again, Apache spark offers excellent large data streaming of live data which makes its suitable for
streaming social network data and support big data analysis that can be distributed across nodes within

a cluster.

Big Data analytic systems utilizes cluster based computing infrastructures that results to systems that
are more reliable, fault tolerant and provide guarantees that queries on the systems are processed to
completion. For digital evidence to be admissible before jury, the data must be properly identified,
collected, preserved, documented, handled and analyzed using processes that should demonstrate that
the data was not changed or altered in any way and adhered to the best practices accepted by a court

of law and backed up by technical standards (Sremack 2015).

1.2 Problem Statement

With the proliferation of digital technology, Internet of Things and smart devices, large data now
stream every day from social networks, mobile phones, credit cards and computers, city infrastructure
and sensors networks among others. This data has grown exponentially resulting to what is commonly
known as “Big Data”. With this ever-increasing volume of data, forensic analyst faces challenges in
investigations involving huge data volumes from social networking sites while at the same time

limited by computer processor speed, memory and storage resources of a single node.

The traditional digital forensic tools focus on transactional data commonly known as structured data
for analysis in a relational or hierarchical database. Most widely used traditional forensic tools have
not undergone any major architectural change (Edwards 2011) hence lacks suitable features to handle
big data forensic investigation. Again, the use of traditional tool to analysis Big Data is time
consuming, resources intensive and correlation of evidence from multiple source is not feasible. The
ability to derive insights and correlate artifacts found is such big data become difficult using the
traditional forensic tools. The range of data from social network sites for forensics increases
considerably and increases further with numerous participants involved in social media resulting into
challenges in carrying forensics investigation involving these large volumes of data. With this
increased social network data, it has become difficult to collect, store and analyze such big data on a

single computer node.

In order to collect, store and analyze such data fast and effectively, Apache Spark a leading distributed
computing framework come in handy with features that can process voluminous amount of data that
can range from terabytes to petabytes of data. Forensic analysis of social networks can help law
enforcers understand and solve various cybersecurity problems, including uncovering the social
media cybercrimes. The large data and the complex structure of social network sites calls for research
and design of new generation of forensics analytics methods and tools that can effectively process
and correlate digital evidence found in big data more often in real-time basis. The study developed
an apache spark based big data forensics tool for social networks cybercrime detection and
systematically analyzed big data from Twitter social network site to identify, collect, preserve and
analysis artifacts that are relevant in Twitter social network forensics to supplement the shortcoming

of traditional forensic tools in carrying out large data forensic investigations.

4

1.3 Objectives of the Study

The research project aims to achieve the following key objectives:
1.3.1 General Objectives
The main objective of this research study is to design and develop an apache spark based big data
forensics tool for Twitter social network cybercrime forensics using big data analytics and data
mining techniques.
1.3.2 Specific Objectives
(i) To investigate and identify data sources (artifacts) of interest for forensic examiners on
Twitter social network and how they can be collected in an automated mode.
(ii) To investigate how social network forensics data can be collected and preserved to ensure it
is authentic before court of law.
(iii)To investigates techniques for social network analytics in the application for digital forensics.
(iv)To investigate how big data analytic solutions can be used for social network forensics and
more specifically application of apache spark.
(v) To test and evaluate apache spark based big data forensics tool on apache spark based
standalone cluster machine and display available circumstantial evidence found on Twitter

social network.

1.4 Research Questions

This thesis provides an automatic spark streaming of Big Data social network forensics for data
generated from online social networks. Identification of the research gaps in traditional forensics tools
and Big Data forensic challenges in social networks has led to the formulation of the following
research questions to help achieve the stated objectives:

(i) How can big data analytic techniques be used on large volume of data to reveal hidden
patterns, correlations and discover other useful forensic information for digital forensics from
social networks sites.

(i) How can forensic analyst identify traces of criminal activity/misuse behavior by using
correlation techniques against data stored on social network like Twitter or Facebook?

(iii) How can link analysis techniques be used on big data to identify correlation of forensic
artifacts on social networks like twitter and Facebook?

(iv) How can social network traces (artifacts) be identified, collected and preserved to enable its
authenticity, validity and admissibility in court of law.

(v) How can apache spark be used for big data streaming to collect voluminous amounts of social
media data and what techniques can be used to analysis and correlate artifacts?

(vi) How can social network analytics be employed to derive insights and correlation on big data

found on online social networks likes Twitter and Facebook.

1.5 Significance of the Study

The anonymity of social networks makes its attractive for cyber criminals to mask their criminal
activity online leaving law enforcement agencies ill prepared for new threats from cybercrime. Cyber
criminals leave electronic traces as part of their social networks activities and interactions that are
contained within enormous big datasets that becomes difficult to filter, analyze and correlate artifacts
using traditional forensic tools. Social networks forensics can help law enforcers understand and solve
various cybersecurity problems, including uncovering cyberbullying, hate speech mongers, violent
terrorists and fraudulent activities. The existing traditional forensics tools have architectural
limitations regarding their efficiency and ability to handle increasing big data volumes. In particular,
traditional forensic tools are becoming insufficient in handling big data investigation with mostly
requiring the forensic examiner to manually review artefacts and relate events to come up with
correlation to prove or disapprove commitment of a crime. Again, with increased social network data,

it has become difficult to collect, store and analyze such big data on a standalone computer node.
The research study will contribute the following to the body of knowledge:

a) The study will demonstrate how distributed computing frameworks like Apache Spark can be
used in collecting, storing and analyzing big data from social network sites for digital forensics
which has become difficult to collect, store and analyze on a standalone computer node.

b) This research will increase awareness of application of big data analytic solutions and data
science techniques within the digital forensic investigators and to show how they can be
utilized in solving large data set challenges and supplement traditional forensics tools in
investigations involving big data.

c) The research will also help investigators during Big data forensics to find links between
evidences that is hidden within big datasets and which can be easily be overlooked by a
forensic investigator especially because of the large amount of data involved.

d) The forensic tool will help law enforcers in investigation involving social media to uncover
and correlated evidence found on suspected cyber criminals like cyberbullies and hate speech

mongers.

1.6 Scope of the Study

The research study is intended for developing an apache spark based data streaming forensic tool for
social network cybercrime forensics that will help in forensic investigations involving social network
sites and help supplement traditional forensic tools in solving big data forensics challenges on social
network sites. There are several social networks in existence today including Twitter, WhatsApp,
Myspace, Facebook, LinkedIn and Instagram among others. It will not be possible to carry out the
study on all social network sites due to time and resource constraints, and therefore big data from

Twitter will be used.

1.7 Assumptions and Limitations of the Study

a) The language used in Twitter sometimes consists of words and phrases that are not formal
language (Sheng slang) which makes it difficult to classify sentiments, the study will be
limited to phrases made in English.

b) There exists a lot of cybercrime related to social network sites including spreading hate
speech, cyberbullying, Identity theft, Harassment, terrorist recruitment and organized criminal
groups among others, the study will be limited to forensics involving identification of hate

speech and cyberbullying crimes in Twitter social network.

CHAPTER TWO: LITERATURE REVIEW

2 Introduction

In Chapter one, | introduced the forensic challenges faced by forensic investigators on Big Data
forensics and forensic investigation on online social networks. It was noted that the traditional
forensic tools face challenges while carrying out forensic analysis involving Big Data. This chapter
involves reviewing literature related to the research problem of Big Data analytics, Digital Forensics;
Apache Hadoop/Apache spark framework, sentiment and social network site analysis.

2.1 Digital Forensics

With the rapid advancement in information technology like Internet of Things (1oT), smart devices
and online social networks, the world has witnessed an increase in cyber threats caused by either
individuals or organized criminal groups (OCG) with the intent to break the security of information
systems. Cybercrime have also increased in frequency and their degree of sophistication has advanced
with advancement in technology. To uncover these cybercrimes and to bring the culprit to book,
digital forensic investigation is carried out to extract evidence from seized computer systems. Digital
forensics is defined as “the process of using scientifically derived and proven methods toward the
identification, preservation, collection, validation, analysis, interpretation, documentation and
presentation of digital evidence derived from digital sources for the purpose of facilitating or
furthering the reconstruction of events found to be criminal or which has led to a particular incident”
(Altheide & Carvey 2011).

It seeks to recover data from digital devices like internet, online social networks, network devices,
compulters, file servers, web servers and smart devices so as to reconstruct events to confirm or deny
allegations of commitment of cybercrime or obtain cyber security intelligence information (Beebe et
al. 2011). While the goal of any given forensic investigation is to find facts and through chronology
of events recreate the truth of events, the integrity of the original data should be persevered and
maintained to ensure the evidence is authentic before a jury. The investigator reveals the truth of
events by discovering and exposing the artifacts (remnants) of the events that were left behind on the

compromised system when the cybercrime committed.

2.1.1 The Digital Forensics Process

Traditional digital forensics typically focuses on more common sources of data, which is mostly
unstructured, such as servers, firewall, computers and network. It typically focuses on metadata and
involves the calculation of an MD5 hash or SHA-1 hash checksum for checking the integrity of the
hard disk image. Digital forensics process involves several steps whose main goals are to identify and
locate all relevant data (Identification process), collect the data in a sound manner (collection and
preservation process), analysis of the data so as accurately describes the events (analysis process) and

present the findings (documentation and presentation).

Digital forensics revolves around evidence and such may be presented before a jury to prove or
disprove a claim or issue by logically establishing facts (Sremack 2015). The digital evidence must
be admissible before a jury and for the evidence to be admissible; the data should be correctly
identified, preserved, collected, documented, handled, and analyzed in a manner that adheres to the
established digital forensic standards and procedures. The process by which the forensic data was
identified, collected, and handled is critical to demonstrate that the data was not changed or altered in
any way during the exercise. The whole process should adhere to the best practices accepted by the
court and backed by technical forensic standards.

Finally, documentation (chain of custody) of the entire forensic process should be properly
maintained showing the chronology of events from seizure to the presentation and should readily
available for presentation. This should clearly demonstrate all the steps performed as shown on figure
one below.

Evidence Evidence Evidence

Identification m:qumtlnp i Examination
Preservation

Evidence e e e Evidence
Analysis | Presentation

Figure 1: Traditional Digital Forensics Processes

10

2.2 Big Data Forensics

Over the last few years, the data generated globally has increased exponentially with smart devices,
social media sites, Internet of Things and sensors increasing it further. This has led to the phenomenon
of “Big data” which describes a collection of large datasets that are complex such that it becomes
difficult to collect, store and process using traditional data processing applications and management
systems. Because of the voluminous nature and velocity of data generation, big data systems require
an enabling distributed storage to collect, store and process heterogeneous data collected from
multiple sources. Big data comes from several sources and in a variety of forms including structured

and non-structured data such as social media data, sensor data, network logs and system logs.

As data volumes explode with increased velocity, Big Data solutions should be designed to handle
these voluminous datasets through distributed storage and computing while at the same time capable
of scaling up and down in respond to computational demand of the application. The solutions should
provide methodologies for collecting, storing and analyzing large amount of data that is not possible
to be stored on a standalone computer. To get actionable insights from such large data, data analytics
is normally carried out using analytic software tools to discover crime or anomaly patterns and other
supporting forensic information. Big data analytics has been employed in analyzing system log files,
network traffic, and fraud involving financial transactions to help identify anomalies, suspicious and
fraudulent activities. However, analysis involving big data creates several challenges including
privacy violation, legal and technical issues regarding data collection, storage and analysis that data
scientists/analysts need to handle. In cybersecurity perspective, big data has opened up new
possibilities in terms of analytics and security solutions to protect information systems, data and
prevent future attacks. Big Data has been applied in distributed analytics by (Wang & Alexander
2015) to analyze log files, network traffic and financial transactions. They used distributed analytics
facilitated by Hadoop to correlate information from multiple sources into logical view to identify
anomalies and suspicious activities. In the era of cloud computing, large data volume is generated
which poses security problem with traditional forensic methodologies and tools becoming inefficient
for cloud based system forensics. (Cho, Chin & Chung 2012) developed Hadoop based cloud forensic
tool that supported live evidence collection and analysis that decreased the amount of time taken in
identifying, collecting and analyzing evidence. The growing cyber threats against information

systems has called for deployment of various security monitoring systems to protect the information
11

systems from cyber-attacks. Large datasets of logs and events are generated by security monitoring
systems and intrusion detection systems (IDS) which need an efficient design for collecting,
integrating and processing them at a faster rate to get an insights and correlate security threats. This
calls for storage efficient system to store the large volumes of data like one designed by (Juturu 2015)
which used HBase and Apache Hadoop to collect, stores and retrieve datasets related datasets.

In forensic investigation involving Big Data, terabytes or petabytes of storage data may be involved,
and data may be lost when such Big Data systems are brought offline for taking forensic images. In
such cases, data collections usually require logical or targeted data collection methods by way of
capturing active files and selectively copying specific files. Traditional forensics processes heavily
rely on making bit by bit images of original hard disk and calculating of MD5 hash and SHA-1 hash
S0 as to be able validate the integrity of the digital evidence. While this method works well for small
volume of data, it is not always feasible to take big data systems offline to take bit by bit disk image
and using hashing algorithms to validate the integrity of the forensic data collected. This poses big
challenges to forensics investigators that includes collecting, storing and analyzing of such huge
volume of unstructured data, handling high velocity data streams and analyzing the data so as to
finding out hidden insights and correlations.

The Traditional forensic tools and technologies are incapable of collecting, storing and processing
such a huge amount of diverse data hence the need for alternative methods for collecting, storing and
analyzing such voluminous data are required. This has been worsened by the adaption of cloud
computing which has made computation ubiquitous resulting to challenges in carrying out forensics
analysis using traditional ways. To address cloud and social networking forensic challenges, (Chen
et al. 2015) proposed digital forensic model targeting cloud and network social network forensics.
However, this model did not provide implementation for testing its applicability. (Zawoad & Hasan
2015) developed conceptual model of handling big data for digital forensics based on Hadoop
Distributed File System (HDFS) and cloud for supporting reliable digital forensics involving big data.
The only drawback with this model is that the model was not tested on ideal system to process this
big dataset of spam emails from bounce.io, which could have helped to identify several issues, such
as phishing and spam campaigns and the criminals who are behind the strongest phishing/spam

campaigns.

12

2.2.1 Big Data Attributes

There are several specific attributes that define big data and which a dataset must possess for it to be
categorized as big data. This attributes are also important in the design and architecture of a big data
analytic solution. As shown in figure 2, most of big data solutions these attributes are known as the

four V’s: volume, variety, velocity, and veracity.

Volume

Exabytes
Petabytes
Transactions

Veracity B I g Velocity

Completeness Batch
Trust Near-time
Uncertainty Real-time
l I ; Streams

Variety

Structured
Unstructured
Semi-structured

Figure 2: Attributes of Big Data (DAVE 2016)

Volume is defined as the amount of data. Big Data solutions requires processing of large datasets
such as data harvested from network traffic, twitter data feeds, clicks on a web page, sensor-enabled
equipment’s among other sources. The volume of data has grown drastically and Big Data solutions
should be designed to handle the voluminous data sets through distributed storage and computing
while capable of expending to scale out as computing demand increases. The distributed nature of big
data solutions provides means for collecting, storing and analyzing large volumes of data that could

not be stored on a standalone computer system. Velocity describes the pace at which data arrives that

13

is usually in real-time stream of data like sensor data and social media data. Data normally streams
direct into system memory while as the same time being written to disk. The speed at which the data
are being created can outpace traditional analysis tools. Analyzing real-time data like social media
data requires specialized tools and techniques for quickly retrieving, storing, transforming, and
analyzing the information. Variety is the third V of Big Data that refers to a different type of data
being produced from different sources which constitutes either to structured, semi-structured or
unstructured data. This makes traditional analysis insufficient or unsuitable for analyzing such large

data.

My | e— | e [
a - ==
|+ %) + J 4
structured e Tmmm—
texual image video audio XML JSON sensor
Hie data files data data data i

Figure 3: Big Data Variety (Erl, Khattak & Buhler 2016)

Veracity is the quality of data and indicates whether the informational content of data can be trusted.
To ensure meaningful and trustful information, large data being processed by big data systems might
contain abnormalities and noise hence need to be cleaned through data preprocessing activities to

ensure the minded results are dependable to solve the problem at hand.

14

2.2.2 Big Data Architecture

Big data architecture is a conceptual model which shows how big data will be captured, stored,
managed and accessed by the various user groups and applications. It defines how big data solutions
will be integrated together in a unified manner, all components including hardware, storage, data
sources and how applications are integrated and connected together. The design and deployment of
big data solutions can vary greatly but several core concepts are common to design of most big data

solutions (Sremack 2015).

Data Sources Big Data Architecture

! o JA

' Distributed Data

L
-

— Storage and
Social * Computation
Media |

- Analytics Analytics

| ' _‘_______'_/ Clients

Web Data Data Ingest

Figure 4: Big Data Architectural Overview (Sremack 2015).

In this architecture, data is collected and ingested in Big Data system from a multiple of sources like
social media, system logs, web data e.tc. These data sources come in various types and formats which
big data solutions should be designed to handle and allow the data to be ingested and stored together.
The data ingestion module brings the data in for processing and analysis before the data is passed for
storage or outputted in for of reports. The Big Data solution designers has to make decisions about
what happens to the data ingested, how it is stored across a cluster of computer nodes, how access is

managed internally, data transformation tools and eventually the manner in which applications are

15

granted access to the data. For storage of voluminous datasets involved in big data, the architecture
should adopt distribution of storage across cluster nodes so at to cater for limitation of storage on a
single node. To perform big data analysis, distribution of computation across nodes might be critical
for performing the analysis within timely requirements. Big Data can include structured and
unstructured data hence the solution should be capable of performing the analysis across various types
of files and be able to utilize data from multiples data sources to carry out the analysis (e.g. relational
and non-relational database). Big Data architecture may also contain text analytics (Sremack 2015)
and machine learning component for analyzing unstructured sets of textual data like social media
content and e-mail.

2.3 Data Mining and Machine Learning

The increasing volume of data for digital forensics raises issues, rendering traditional forensics tools
inefficient for big data forensics like social networks. In the era of big data, the growing sizes of data
makes it more difficult and challenging for law enforcers and intelligence agencies to analyze such
large volumes of data involved in online cybercrime activities thus scientific method such as data
mining and machine learning becomes suitable for discovering insightful, interesting, and hidden
patterns within big data. Thus, (Dua & Du 2016) defines data mining as “an interdisciplinary field
that employs the use of analysis tools from statistical models, mathematical algorithms, and machine
learning methods to discover previously unknown, valid patterns and relationships in large data sets,

which are useful for finding hackers and preserving privacy in cybersecurity”.

In digital forensics, data mining can be used in identifying correlations or association in big forensic
data, discovering and sorting forensic data into groups (classification) based on similar features,
discovering insightful patterns (forecasting) in big data that may lead to useful predictions (Kayarkar,
Ricchariaya & Motwani 2014). In business intelligence, data mining has been used widely in making
business decision and lately data mining techniques are being applied in the field of criminal forensics
to discover insightful crime patterns from large data volume. By integrating data mining techniques
with digital forensic science can help improve reliability of investigations especially in Analysis
phase. (Quick & Choo 2014) in his study developed a framework that employed data reduction

methods in data mining for minimizing the storage requirements for digital forensic evidence.

16

Clustering and textual analysis techniques of data mining have been used (Tsochataridou, Arampatzis
& Katos) in digital forensics to extract electronic messages sent by employees in Enron scandal.
Cybercriminals make use of fake email id for attempting many email cybercrimes and which makes
it hard to identify the author of threatening email or other terrorist activities. (Nirkhi & Dharaskar) in
his research developed a machine learning algorithm to identify the authorship of anonymous email

when their identity is forged or hidden using proxy setting for online communication.

2.3.1 Data Mining Techniques

Data mining can be broadly categorized into supervised or unsupervised learning models. Supervised
learning works by inferring relationship based on labeled data training and uses this function to map
new unlabeled data (target variables). Supervised techniques predict the value of the target variables
(output) based on a set of input variables. To do this, data analyst is required to develop a model from
a training data set where the values of input and output variables are known. The model deduces the
relationship between the predictor variables and target variables and uses it to predict for the data set
where only predictor variables are known. For supervised learning, sufficient number of labeled data
is required to train the model from the data. Unlike in supervised learning, there are no output
variables to predict in unsupervised learning. The objectives of this class of data mining technique is
to find patterns in the dataset based on the relationship between data points themselves. There are
numerous types of data mining algorithms that can be used in forensic analysis among them
Descriptive Modeling, Predictive Modeling, Classification, Regression, Combinatory algorithms,
Multi-layer perceptron’s (MLP) and Neural networks.

Predictive Analytics

Predictive analytics are supervised machine learning which aims to build an analytical model for
predicting about unknown future events. By utilizing statistical methods and machine learning
techniques, predictive analytics identifies the likelihood of unknown future events based on historical
data. It makes use of Classification, Probabilistic rules, Markov models and regression techniques to
predict a target variable based on input variables. In regression analysis, one tries to ascertain the
causal relationship between target (dependent) variables and predictor (independent) variable where
by the dependent variable is continuous and can vary along a predefined interval. Predictive analytics

has been used to predict crime mapping and help authorities in investigation of crimes. (Chauhan &

17

Aluvalu) used Big Data Analytics with clustering and Predictive analysis to reduces the investigation
time and helps in retrieving the hidden information through correlation and categorization
Descriptive Analytics

Descriptive analytics are typically unsupervised machine learning that uses data aggregation and data
mining techniques forecast future trends, activity and behavior. Descriptive analytics uses many
analysis techniques such as correlation analysis, Associative rules and clustering techniques to drill
down into data and uncover details such. Clustering is the process of identifying natural groupings in
the dataset with set of data items in a group bearing similar characteristics. The data analyst
investigates why these clusters are formed in the data and generalize the uniqueness of each cluster.
Data mining and correlations methods has been used for digital forensics (Flaglien 2010) to

automatically identify malware traces across multiple computers.

The Association rules or Link Analysis technique are used to discover relationships between item and
item features. It involves finding patterns that occur frequently in a dataset and represents the patterns
in the form of association rules (Fei 2007). Association rules takes the form of if/then statements to
help find out interesting data items associations and correlations in a large set of data items.
Associative rule mining has been employed in Identification of user ownership of files on windows
hard disk (Kumar et al. 2012).

2.3.2 Data Mining Algorithms

Data mining algorithm is a set of well-defined procedures used to implement a specific data mining
technique by taking data as input and creates a data models or patterns as output. To create a model,
the input data provided is first analyzed using the algorithm to look for specific types of trends or
patterns of interest. To find the optimal parameters for creating the mining model, the results of the
analysis are subjected to many iterations until optimal results are attained. The resulting model is then
applied to testing data to prove the model before it is applied to new dataset in order to extract
actionable predictions or patterns.

18

2.4 Classification Algorithms

Classification algorithm is a family of supervised machine learning algorithms that classifies,
categorizes, or labels data points into several pre-defined classes based on what has been observed in
the past. Each classification algorithm requires training data. The training data consists of a set of
data items where each data is a pair made up of an input data point (feature vector), and a
corresponding output outcome for that input data. Classification algorithms involves three process
(Sarkar 2016); Training process where the algorithm analyzes and tries to infer patterns out of training
data such that it can identify which patterns lead to a specific outcome (class labels/class
variables/response variables). The second process is the evaluation phase which involves testing the
prediction performance of the model to see how well it has trained and learned on the training dataset.
Finally, the model tuning process (hyper parameter tuning/optimization) which focus on trying to
optimize a model to maximize its prediction power and reduce errors. There exist various data mining
classification algorithms but for this research, I will focus on Naive Bayes classifier and Support
vector machines (SVM) which recent studies have indicated that they perform well in problems

involving semantic analysis and text mining/classification.

2.4.1 Naive Bayes (Multinomial) Classifier

The Naive Bayes classifier is a supervised learning algorithm that is based on the Bayes theorem that
relates conditional and marginal probabilities by showing how conditional probability (posterior) of
an outcome can be obtained based on its prior probability (marginal) and the inverse conditional
probability (Cichosz 2014). As with supervised algorithms, Naive Bayes classifier builds a model
based on labeled training dataset which is then used to categorize a predefined class label to new
objects. Naive Bayes classifier assumes that the effect of particular feature or attribute in a particular
category is independent or unrelated to the values of the other features (attributes) which is made to
simplify the computations involved hence less computational power in terms of both CPU and
memory requirements; and requires a small amount of training data. This assumption between the
features or attributes is termed as conditional independence. It remains to be one of the most text
classification algorithms in use for various applications such as document categorization, email spam
detection and sentiment detection. In text analytics or document classification using Naive Bayes

classifier, each word position within a text/document is defined as a feature and the value of that

19

feature to be the word found in that position. It assumes that each word in the document has nothing

to do with the next word hence the naive assumption.

2.4.2 Support Vector Machines (SVM)

Support Vector Machine is a type of supervised learning algorithm that uses nonlinear classification
to transform the training data into k-dimensional hyperplane (where k represents the number of
features within the dataset) which separate the dataset into two exact categories with each feature
being the value of a particular plane. Within the hyperplane are support vectors that are data points
that are closest to the hyperplane and are therefore considered critical points of the dataset since if
they are removed, they would alter the position of the dividing hyperplane. SVM trains a model that
assigns new unseen objects into a particular class. This is achieved by creating a linear partition of
the feature space into two categories. Based on the features in the new unseen objects like documents
or emails, it places an object "above" or "below" the separation plane, leading to a categorization of
either an email being a spam or not a spam.

Margin

Support Vectors

Feature 2

Feature 1

Separating Hyperplane

Figure 5: Support Vector Machines sample hyperplane

20

To achieve optimal data classification, the hyperplane that has the greatest possible margin between
the hyperplane and any point within the training data points are considered as having achieved best

classification.
2.5 Apache Hadoop

Apache Hadoop is defined by Apache Foundation as a “framework that allows for the distributed
processing of large data sets across clusters of computers using simple programming models. It is
designed to scale up from single servers to thousands of machines, each offering local computation
and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to
detect and handle failures at the application layer, so delivering a highly available service on top of a
cluster of computers, each of which may be prone to failures”. Apache Hadoop framework has seen
a wide deployment by many companies involved in Big data analytics due to its open source nature
and easy to scale up by adding cheap server nodes in a cluster which makes it used extensively for
data intensive applications such as fraud analysis, network traffic analysis, social network analysis

and machine learning applications among others.

For Big data analytics, Hadoop offers high scalable processing power across distributed cluster of
computer while at the same time offering high availability and fault-tolerance computation with
automatic code parallelization within computer nodes. By removing core data processing functions
from those of distributed computing functions, Hadoop makes writing of distributed application easy

(Guller 2015) by hiding the complexities of programming distributed and parallel applications.

With Facebook hitting billions of users and billion pages views every day globally, Facebook
deployed multiple Hadoop clusters that are distributed across data centers. Apache Hadoop is used to
support several services among them data warehouse which is used for web analytics, distributed
database storage and backups for MySQL database (Borthakur 2010). Using Hadoop and Big data
analytics, Facebook analyzes big data and inform its billion users about friend’s birthdays and
recommends friends based on mutual friends. It has also been used by other big data analytics
organization such as Yahoo, Google, Uber, Linkin, and YouTube to collect and analyze their massive
data volumes. Google the leading web search engine uses Hadoop for indexing web pages and to
provide suggestions of what the user is querying for; thereby providing highly personalized web

search experience for internet users. Big Data analytics with distributed computing using Apache
21

Hadoop have been used in cybersecurity to analysis cybercrimes, detect and stop cyberattacks and
facilitate post event digital forensic analysis (Wang & Alexander 2015). Big data analytic and
Hadoop has been utilized by Uber to builds big data solutions on top of Hadoop and Spark systems
to support its Operations (NATARAJAN 2016). Data analysis drives many functions within Uber
like data science, machine learning, fraud detection with Uber data information including about trips,

billing, and infrastructure health monitoring and services behind their apps.

2.5.1 Hadoop Core Components
The Hadoop software framework mainly includes three core modules namely MapReduce, Hadoop
YARN and Distributed File System (HDFS).

2.5.1.1 Mapreduce

This is a highly scalable module designed to simplify the development of large-scale, distributed,
fault-tolerant big data solutions for processing large datasets that are distributed across cluster of
computer nodes. With the complexities and challenges involved in developing distributed systems,
Mapreduce simplifies programming of distributed processing by abstracting cluster based computing
and constructs for developing distributed applications to support data intensive processing (Guller
2015). For big data sets, MapReduce automatically schedules execution of applications across nodes

within a cluster and manages load balancing, internode communication and node failures.

MapReduce application consists of map () and reduce () functions which are data processing module.
Each of these functions accepts input data in form of key/value pairs and produces output as a set of
key/value for the function with data types chosen by the application developer. Input dataset is usually
split into key-value pair of multiple data items that are processed in parallel manner by the map
function. The data items will be processed by the Map () function by sorting and grouping (mapping)
the key/value and producing the mapped key and value pairs which are feed to reduce () function.
Typically, the intermediate data is normally stored on Local file system while the Map () function

key/pair are stored in HDFS file-system with MapReduce handling scheduling task.

22

The Map function sorts and shuffles out the intermediate data and passes the output as input data to
reduce () function. The reduce () function combines the data values together and produces the
combined data values with the key/values which becomes the results or answer to the large problem

that needed solution. Figure 5 below demonstrate the MapReduce process of word count example.

Input Splitting Mapping Shuffling Reducing Final Result
List(K2,V2) K2,List(V2)
. l l. -!1 .

K1,V1

Bear, 2
List(K3,V3)

Dear Bear River
Car Car River
Deer Car Bear

Figure 6: Example of Mapreduce Word Count Process.

The MapReduce framework is composed of two services which are key to the functioning of the
cluster nodes. This first service JobTracker which is responsible for accepting requests from clients
and scheduling them among cluster nodes. It is also responsible for resource management, monitoring
of jobs and re-submitting failed tasks. The second service is the TaskTracker which is responsible for

accepting from JobTracker, executes the tasks and alerts the Jocktracker upon completion.

2.5.1.2 Hadoop Distributed File System (HDFS)

This is a distributed file system that is designed on top of Hadoop framework to stores large data
across computer nodes within a cluster in a network. It is designed to handle and store huge volume
of data while at the same time providing fast and quick files access (Guller 2015). It provides high
fault tolerant, scalable and reliable distributed storage across multiples cluster nodes. HDFS stores
large files by partitioning them into fixed sized blocks usually of 64 or 128 MB and replicating the
blocks on multiples cluster nodes. HDFS is designed following master-slave computing model with
two types of nodes known as NameNode and DataNode. The NameNode (Master Node) manages

DataNode and is responsible for managing the MapReduce filesystem namespace. It maintains

23

distributed systems files, directories trees and manages blocks that are present on the DataNodes.
Also within HDFS file system are DataNodes (Slave Node) which are deployed and ran on each
cluster node and manages storage on the nodes including reading and writing data requests from
clients (Prajapati 2013). HDFS also includes a secondary NameNode whose main purpose is to carry
out periodic checkpoints on filesystem and appends logs to Fimage such that when the NameNode

starts up, I can load HDFS state from the imagine file.
2.6 Apache Spark

Developed at University of California, Apache Spark is a distributed and highly scalable in-memory
data analytics framework which provides the ability to develop distributed computing applications
using Java, Python and Scala programming languages (Frampton 2015). It provides clustered in-
memory computing and implements an advanced execution engine leading to increased speed in data
processing over Mapreduce. Spark enables in memory processing and allows applications to cache
data hence minimizing disk I/0 which improve significantly the overall job execution time. Unlike
MapReduce which is suitable for batch processing (Shahrivari 2014), Spark comes handy with
features for batch processing, stream processing, interactive data analysis and machine learning. With
high demands for interactive queries in forensic analysis and big data streams, in-memory computing
stands out as a notable solution that can handle forensic analysis for social media sites in both real-

time or near real-time.

The core of Spark framework is Resilient Distributed Dataset (RDD) which is a logical collection of
items or objects of same type that is distributed or partitioned across many nodes in a cluster
(Ramamonjison 2015). Sparks framework extends MapReduce framework and access Hadoop data
store (HDFS), which makes Spark's Core API analytics jobs easier to write. On top of Spark Core
API is set of integrated API libraries that are required for specialized tasks such as data streaming,
machine learning and graph analysis. Spark Core components forms the foundation for parallel and
distributed processing of big datasets and its responsible for all the basic 1/0 functionalities, job
scheduling and monitoring on spark clusters, dispatching of tasks across nodes, storage systems

networking, failure recovery and ensuring efficient memory utilization.

24

Spark Components

Spark S0L Spark MLLIB Spark Streaming Spark GraphX

Spark Core

Standalone Yarn

Figure 7: Spark Components (Nandi 2015)

As shown in figure 5, Spark comes with several libraries such (1) SparkSQL which provides SQL-
like ability to query structured data while bringing support for native SQL query to spark programs
and stream data processing. (2) Spark Streaming provides high degree of data streams with fault
tolerance of live data stream like social media data. (3) SparkMLIib provides most commonly
machine learning algorithms such as classification, clustering, regression and association algorithms
which are suitable for Big Data Analysis. (4) Spark GraphX provides distributed graph processing for

graph based data while enabling fault tolerant parallel computation.

2.6.1 Spark Streaming

This is a stream based processing module that enables live analysis of data streams and real-time data
with continuous data streams divided into a discrete stream (DStream) or batches which are then
passed to the spark engine for processing to produce final stream of results still in batches. Being an
extension of Spark core APIs, spark streaming module provides high-throughput, scalable and fault-
tolerant stream processing of real time data with data coming from sources like HDFS directories,
TCP sockets, Flume, Kafka, Twitter. As shown in figure 8 below, streams of data can be processed
with Spark’s core APIs, DataFrames SQL, MLIib or GraphX APIs and the results stored to a file

system, HDFS, database or presented on user dashboards.

25

Kafka

Flume . i . i l

HDFS/s3 Spr K . Databases .|
Kinesis stre' a mfng | ~ Dashboards |
Twitter

Figure 8: Data sources for Apache Streaming (Frampton 2015)
Live input data streams are received by spark streaming module that divides the data into discrete

batches then feed into the spark engine for processing to produce the final results in stream batches.

input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Figure 9: Spark Streaming Data flow

2.6.2 Use Cases of Spark/Spark Streaming

Many companies which had earlier used MapReduce applications and libraries as core distributed
computing framework have either switched to spark or are implementing support for apache spark.
Uber Taxi Company uses Spark Streaming in their continuous Streaming ETL pipeline to collect
terabytes of daily event data from drivers smartphones for real-time telemetry analytics. (Nair &
Shetty 2015) on his research study implemented real time analyzing and filtering system using apache
spark to stream millions of twitter job advertisements and classified the jobs into various categories

to enable effective and easy job search.

At Ericsson, a world-leader in communications technology (Koutsoumpakis 2014) designed
Abnormal Log Detection application using spark and machine learning to analysis large log files
produced during automated test loops and the testing process of communication equipment’s. Apache
spark have also been used for distributed real-time anomaly detection from multisource data stream
to monitor VMware performance, stream CPU load and memory usage. The framework collected
data simultaneously from all the VMwares which were connected to the network and notified the

resource manager to reschedule its resources dynamically when it detected anomaly behavior on the
26

data collected (Solaimani et al. 2014). With the discovery of Machine to machine (M2M) and internet
of things (I0T), millions of devices are interconnected together in what is known as machine-to-
machine (M2M) communications with demand for real-time traffic analytics solutions required to
help manage and monitor those devices deployed in the M2M application. In his work (Privitera et
al. 2014) developed a real time GPRS traffic analytics solution based on Apache Spark which
captured GPRS traffic, processed the data, and computed an array of statistics that were presented as

charts and maps on a web based application dashboard.

2.7 MongoDB

The design and implementation of successful big data analytics solution depends entirely on
successful implementation and choice of different computing components that integrates together.
This revolves around choosing key architectural components among them scalable and reliable
storage, data management and parallel computing. It is important to pay close attention on the ways
the different computing components integrate, from the perspective of big data analytics, the
interdependence between the underlying data management and analytic algorithms requires an in-
depth consider big data storage. With big data involved in such analytics, traditional relational
database management becomes insufficient to cope with scaling performance demands. Again, big
data algorithms handling such huge data requires scalable, high-performance, elastic, and distributed
data environment to cater for such high demand, new model of big data databases has been developed

referred as NoSQL databases. this includes mongodb, couchdb, cassandra, and hbase

Developed by Mongodb inc under the banner of NoSQL, mongodb is a schema free cross-platform
open database that is implemented using document-oriented data model instead of using tables and
rows. Unlike relational databases that uses tables and rows, the architecture of mongodb comprises
of collections and documents that are the basic building entities. Mongodb documents are basic
building unit of data that is equivalent to rows in relational databases. Documents are represented
using JSON format and comprises of a sets of key-value pairs and stored in binary JSON documents
(BSON)(Copeland 2013). Similar to relational database table are “collections” that are groups of
documents. Each document within the collection contains a unique identifier (known as “—ID” field)
which identifies that document. This primary key can either be given explicitly by user upon

document creation or generated automatically by the mongodb. Mongodb offers flexible dynamic

27

schema in that documents in the same mongodb collections do not need to have the same structure of
fields and a document can hold different data types. By integrating apache spark applications with
mongodb database can significantly improve performance for big data analytic applications requiring
real-time analysis such as social media data and internet of things data (IoT) among others. For
optimized performance, Mongodb includes document indexes which offers improved query
performance. MongoDB supports advanced text search by incorporating specialized document
indexes that uses advanced language specific linguistic rules for tokenization, stemming, and stop

words removal.

2.7.1 MongoDB Document Structure
This represents how data models are used to reflect objects that applications will handle together with

the relationship between those objects.

a) Embedded documents
While MongoDb is schemaless, Mongodb models data relationships by embedding data within a
document by storing related data items within a single document structure. Like with traditional
RDBMS, embedded documents enables modelling of one to many relations of a document where the
top level (parent) document can have many low level (child) documents and the child documents can
only have one parent document (Copeland 2013). This is known as demoralized data model as shown
in Figure 10 below.

I
L

" _id":0bjectId("52ffc33cdB85242f436000001"),

"contact”: "987654321",
"dob™: "©1-81-1991",
"name™: "Tom Benzamin",
"address": [
"building”: ™22 A, Indiana Apt",
"pincode™: 123456,
"city™: "Los Angeles™,
“state™: "California™
}J
"building™: "17@ A, Acropolis Apt™,
"pincode”: 456789,
“city™: "Chicage”,
“state™: "Illinecis™
1

Figure 10: Embedded document data model.
28

b) References Document Structure
MongoDb document reference creates data relationships by maintaining a separate child document
on its own standalone document but creates relationship between the data item by including references
or links from one document to another (O'higgins 2011). This is known as normalized data models as
shown in Figure 11 below.

contact document

_id: <ObjectId2>,
’/,user_id: <ObjectIdil>,

phone: "123-456-7890",
user document . " "
/ email: "xyz@example.com
{ 3
_id: <ObjectIdi>, |

username: “123}(};2'\ access document

_id: <ObjectId3>,
user_id: <ObjectIdl>,
level: 5,

group: "dev”

}

Figure 11: Reference Document Structure.

f Books

"_id":Jobject1d("500c588c129193b67bassa3"), |
“"publisher”: "0'Reilly Media®™,

“izhn": "978-1-4493-8156-1",

“description”: "How does MongoD8 help you..."™,
"title™: "MongoDB: The Definitive Guide",

“formats™: ["Print”, "Ebook™, "Safari Books Online"],

bijectld|"So0cednelfedld3bETbag8a4"),

' E:I
"description”: “The Authors made an excellent work...",
"title": "One of 0'Reilly excellent books®,

"authors™: [{ "created”: IS00ate("2012-07-94T00:48:171%),
"lastName": “Chodorow”, "book_1d": {
"firstHame": "Kristina" "$ref™: "hooks",

Fa 1

"lastName™: “Dirolf”,

"$id" { ObjectId("eece88c1feq193b67heaga1"

"firstName™: “"Michael™ Ja

"reviewer”: "Glusepps”
“pages™: "218"]

Figure 12: Reference Document example.

29

2.7.2 MongoDB Connector for Spark

Developed by MongoDB Inc. the connector provides integration between Apache spark analytic
application and MongoDb database that enables the development of real time or near real time
analytics applications on live or stream data. The connector exposes several Spark libraries that makes
MongoDB data to be converted into DataFrames and Datasets that can be used for analysis using
machine learning (MLIib), graph (GraphX), streaming and SparkSQL APIs. By utilizing Mongodb
secondary indexes, the Spark connector can filter, extract and process data that is only within the
range of data it needs rather than relying on primary key only.

2.8 Social Networks

The proliferation of online social networks such as Facebook, Twitter and LinkedIn has attracted
billions of users across the world to share information online. It provides a platform for interacting
and sharing information with friends, families and organizations across the globe. Social network is
defined as a social structure usually a website which is composed of a set of social actors normally
individuals, businesses and organizations that allows interaction and sharing of information among
the actors. Just like with messaging/instant messaging systems and email systems, social network
sites have become an excellent platform for organizations and companies to interact and share
information with their customers and the public. With the increased popularity of social networking
sites, many people are willingly publishing a lot of personal information on social sites like status
updates, personal email addresses, location, phone numbers, individual photos and friends which
informs the public there whereabouts and what they are doing. This has raised security concern as

this information can be used by cyber criminals in committing several online cybercrimes.

The large number of social media sites activities and their anonymous nature makes social network
attractive for committing cybercrimes. Currently there is increased number of cybercrime cases
reported which are related to online social sites or the use of online social sites in order to execute
cybercrimes. However, Big Data generated by social networks sites and its anonymous nature make
cybercrime investigation using traditional forensic tools extremely difficult to apply in social network
sites, 10T and other cloud based systems. This calls for design of new tools to supplement the

traditional forensic tools like the use of social network analysis (SNA) and visualization.

30

The application of social network analysis (SNA) and data visualization techniques in social network
forensics can significantly help discover, collect and preserve social media forensic artifacts by
identifying and understanding relationships and data flow between individuals and events within the

social network interactions (Karran et al. 2011).

2.8.1 Social Network Structure

Social networks can be described as a set of connected entities, which are modelled as a collection of
nodes (vertices) and links (edges) connected together. Each individual within the network are
represented as a node (actor) and individuals who are acquainted to one another are connected using
an edge (Zafarani, Abbasi & Liu 2014).

2.8.1.1 Graph

Social networks can easily be modelled using graphs where by a graph is composed of both sets of
objects called nodes (actors, vertices) and links (edges) connecting nodes between each other. In
social media, the nodes represent individuals, organizations, companies and links between nodes
represents friendship among these nodes. Nodes are linked or connected together by edges (links)
and indicates relationships among nodes and are known as relationships or (social) ties representing
social entities such as people. Edges to a node can have directions in which one node is connected to
another node and not vice versa. This is known as directed graph. Again, a node can be connected

on both ways forming undirected graph as shown in figure 8 below.

31

Directed Graph Undirected Graph

Figure 13: A Directed Graph and an Undirected Graph (Zafarani, Abbasi & Liu 2014)

Edges can include other additional features such as labels, which can be used in analysis. The label
gives more information about the relationship between the nodes (people) which could be their

relationship (e.g. sister, brother mother, cousin), or other information relating to their relationship.

2.8.1.2 Node Degree

A node degree within a social network defines the number of links to other nodes, which represents
the number of friends a given actor (person) has. For example, in Facebook social media, node degree
represents that person’s number of friends, while in Twitter social media, in-degree represent the
number of followers one has and out-degree represents the number of people followed by the

person(followees).

2.8.1.3 Degree Distribution

In analysis and study of graphs, the degree of a node is the measure of the number of connections or
edges the node has to other nodes within the large network while the degree distribution (neighbor
distribution) describes the probability distribution of these degrees over the whole network i.e. the

probability that a randomly chosen node has certain connections (or neighbors)

32

2.8.2 Social Network Analysis (SNA)

In social media analysis, measuring different structural properties of a social network can help better
understand individuals and their roles within the large network. For example, in determining which
nodes are most important or influential in the social network, one need to define measures for
quantifying centrality, level of interactions, and similarity, among other qualities. To compute these
measures, a graph representation of a social interaction is taken in as input, such as nodes friendships
(adjacency matrix), from which the measure value is computed. By using graph measures of centrality
we can identify the most prominent actors commonly known as the key players in the network. In
modeling and mining social media several centrality measures are defined among them degree
centrality which describes nodes degree which is the number of edges the node has whereby if a given
node has high degree, the more central the node is. By using these measures, one can identify various
types of central nodes in a network and answer questions like “Who are the influential individuals in
the network?”. The second measure is closeness centrality which indicates how close a node is to all
other nodes in the network whereby rather than considering the neighbors node, all nodes are taken
into consideration (Magnusson 2012). It indicates nodes as more central if they are closer to most of
the nodes in the graph and it has measured as the average distance from the source vertex to any other
vertex within the graph. This metric allows us answers questions like “What interaction patterns are
common in within friends?”. The third metric between-ness centrality indicates how important a node
is to the shortest paths through the network and measures to what degree an actor has to traverse
through a specific node in so as to reach other nodes within the network. The last measure is the
Eigenvector centrality which unlike centrality measures, it tries to generalize degree centrality by
incorporating the importance of the neighbors and the influence an actor has in the social network
(Golbeck 2013).

33

2.8.3 Social Network Sites Forensics

The identification and collection of digital evidence from big data systems has become challenging
for forensic investigators and especially investigation involving cloud based systems and social
networks sites. This have been made difficult by the fact that most forensic artifacts are not stored on
hard disk rather the data shared on social media sites is largely volatile with no guarantee of later
retrieval as it can be deleted or updated. Social network analysis and data visualization techniques
can significantly help in the discovery of social media evidence and collection by identifying and
understanding relationships and data flow between individuals and events within social networks like
Facebook, Twitter. SNA is defined as “a multidisciplinary area involving social, graph theory,
statistical and computer science”. It uses analytical techniques to discover social relationships that are
formed from individuals and groups, the structure of those relationships, and how relationship and

their structure influence (or are influenced by) social behavior, attitudes, beliefs and knowledge.

SNA have been used in a wide range of interdisciplinary studies. For example, this approach has been
used to discover and analysis individuals in organized criminal groups (Johnsen 2016). In his study,
graph based algorithms and methods were used to analyze network structures in identifying
interesting and central individuals within a criminal network. An automatic analysis tool for
(Wijeratne et al. 2015) social media posts was proposed to understand the functions, structure,
operations of gangs within streets of Chicago, IL region. It involved using Twitter as a source of data
to captures tweets posted by gangs and used an automated analysis to discover gang structures,
functions, and operations.

Intelligent social media analysis and other types of media data can help in understanding and solving
various cybersecurity problems including uncovering online terrorist networks and radicalization.
(Agarwal & Sureka 2015) in his study, applied social media analysis and machine learning in
discovering and predicting civil unrest and online radicalization detection. Structural analysis of
social networks sites like Facebook can provide forensic insight about how people relate to one
another and where they fit within the larger social network. The social network sites can be exploited
by criminals to commit several cybercrimes among them identity theft, cyberbullying, sexual

harassment to children and spreading hate speech.

34

These cybercrimes require forensics analysis tools that can effectively be used in identifying the
perpetrators and collect the evidence needed for prosecution. SNA has previously been used to
uncover such cybercrimes for example a study by (Chen et al. 2012) who applied text analysis
methods in detecting offensive social media contents in protecting the safety of adolescent. By using
Lexical and Syntactical Feature he was able to identify content which is offensive in social network
sites, and also predict user’s potential to send out contents that are offensive. Social networks analysis
can also been used for analysis of fraud as more often fraud is committed through illegal set-ups with
many accomplices hence social network analysis might give new insights by investigating how people
influence each other in what is called guilt-by-associations, where it is assumed that fraudulent

influences run through the network (Baesens, Van Vlasselaer & Verbeke 2015).

2.8.4 Legal Challenges to Social Media Evidence Authentication

With the increased use of social networking sites and its target by cybercriminals, social media
evidence is becoming highly relevant in cybercrimes investigations, legal disputes and broadly
discoverable, but challenges lies in evidence authentication as there is lack of best practices,
technology and processes. Social media status updates, posts and photographs on Social networking
sites are increasingly denied admission as evidence in criminal litigation with courts citing issues with
the evidence authentication. An article by (Patzakis 2012) states that “Given the transient and cloud-
based nature of social media data, it generally cannot be collected and preserved by traditional
computer forensics tools and processes. Full disk images of computers in the cloud is effectively
impossible and the industry has lacked tools designed to collect social media items in a scalable
manner while supporting litigation requirements such as the capture and preservation of all key

metadata, read only access, and the generation of hash values and chain of custody.”

With these challenges, social media evidential data must be properly identified, collected and
preserved in a manner that is consistent with digital forensics best practices so at to ensure all available
circumstantial evidences are collected, including account metadata and a proper chain of custody
established through the evidence collection. With this in place and associated account metadata
preserved, it become easier to establish or reveal authenticity of the evidence.

35

For example, metadata fields for individual Facebook account posts such as status updates,

photographs among others can provide important information to reveal the authenticity of the

Facebook posts when collected and preserved using best digital forensic standards.

Metadata Field

Uri
fb_item_type
parent_itemnum
thread_id
recipients
recipients_id
album_id
post_id
application
user_img
user_id
account_id
user_name
created_time
updated_time
To

to_id

Link
comments_num

picture_url

Description

Unified resource identifier of the subject item
Identifies item as Wallitem, Newsitem, Photo, etc.
Parent item number-sub item are tracked to parent
Unique identifier of a message thread

All recipients of a message listed by name

All recipients of a message listed by user id

Unique id number of a photo or video item

Unique id number of a wall post

Application used to post to Facebook (i.e, from an iPhone or social media client)
URL where user profile image is located

Unique id of the poster/author of a Facebook item
Unique id of a user’s account

Display name of poster/author of a Facebook item
When a post or message was created

When a post or message was revised/updated
Name of user whom a wall post is directed to
Unique id of user whom a wall post is directed to
URL of any included links

Number of comments to a post

URL where picture is located

Figure 14: Sample Key metadata fields for individual Facebook posts (Patzakis 2012)

In the evidence authentication process, actor accounts metadata can be examined to establish

authenticity of the content whereby hidden metadata fields that are not visible on the face of a social

media site (including dates, URLSs, IDs, usernames among others) can be used to reveal authenticity

and hence crucial for proper preservation and production of social media evidence.

36

2.8.5 Sentiment Analysis

With the increased use of social media, sentiment analysis has become a popular research area
together with social media analysis particularly in assessing users posts and tweets. It is a special form
of text mining mainly focused on analyzing individual’s opinions, attitudes and emotions and classify
the polarity (i.e. if a document or text expresses a negative, positive, or a neutral sentiment.) of a
given text as either negative sentiments, Positive sentiments or neutral sentiments. Sentiment analysis
involves determining sentence subjectivity, which includes distinguishing factual sentences
(objective sentence) about the word and sentence subjective, which expresses one’s feelings,
attitudes, beliefs or views. Subjectivity classification is described as the process that involves
determining whether a sentence is subjective or objective(Madhavan 2015). Sentiment analysis is
categorized under two tasks, which includes both subjectivity classification and sentiment
classification. The term sentiment classification, is defined as “the task of classifying texts whose
objective is to classify a text according to the sentimental polarities of opinions it contains” (Li et al.
2010). This sentiment classification is also divided into two categories: binary categorization and
multi-class (multinomial) categorization. Binary sentiment categorization classifies sentiments as
either positive or negative while multi-class categorization classifies sentiments into one of three

categories as either positive, negative or neutral.

The most commonly used machine learning classification algorithms for sentiment analysis includes
naive Bayes, maximum entropy, and support vector machine. Digital forensics analysts can use these
machine-learning techniques to uncover social media crime activities by analyzing factors such as
users posts/tweets, time, location, address, physical characteristics and metadata from user
account/wall and extra and correlate evidence. To perform a sentiment analysis on a social media
text, one need to consider the various features of the text that imply its sentiment which involves
identifying terms used in the text such as phrases or words. Sentiment words (opinion words) forms
the basis for text mining that helps determine how positive, neutral and negative a sentiment is e.g.

good, bad, hate among others (Madhavan 2015).

37

2.9 Proposed Solution

Based on forensic challenges identified regarding Big Data forensics on social network sites and
limitation of traditional forensic tools, the research proposed an apache spark based forensic tool to
support forensics investigation involving big data. Using the traditional forensic tools and techniques
of digital forensics, it is not feasible to collect such large volume of evidential data, store and analyze
it using the traditional forensic tools. In order to collect, store and analyze such data fast and
effectively, Apache Spark a leading distributed computing framework come in handy with features
that can process voluminous amount of data ranging from terabytes to petabytes of data. Again,
Apache spark offers excellent large data streaming of live data which makes its suitable for streaming
social network data and support big data analysis which can be distributed across nodes within a

cluster.

2.10 Proposed Apache Spark Forensic Tool Conceptual Model

o Twitter
AP Apache Spark Standalone Cluster

Apache Spark stream data preprocessing and MLLb processing

[Spark Streaming J
Spark Feature Extractor
O‘J MLIib eature Extractor]

- /
- /

)

. L\
Visualization

Spor‘l'(\""

aatl

Figure 15: Proposed Apache Spark Forensic Tool Conceptual Model

38

The figure above shows the conceptual model which depicts the acquisition and processing of forensic
data from Twitter social network. The forensic tool utilized public available REST API to stream data
from the Twitter social media site. Apache Spark Streaming Module connected to the REST API and
extracted streaming data which was saved to MongoDB database for preservation and later used for
training Twitter forensic classification model. Two MongoDB documents was maintained within a
single collection. The forensic data went through tokenization, lamentation and stopword removal
using Apache Spark feature transformers. The resulting dataset was subjected through Spark MLLib
library for feature extraction. The feature vector was classified using Naive Bayes algorithm with
Spark Mllib module to identify and classify tweet/post as either hate speech or cyberbullying. The
evidence was then stored within MongoDB document as evidence which was used for evidence

visualization on web based interface.
2.11 Literature Summary

As shown in the literature, the era of big data has presented a big challenge to the forensic analyst
because of large volume of data be generated in the modem technology like Internet of Things, social
networking sites, smart devices and the cloud. There are many digital forensic tools currently
available in the market like network forensic tools, mobile forensic tools, and computer forensics
tools that could be utilized in conducting forensic investigation, acquiring and analyzing admissible
evidence. However, online social networks forensics tools are still in their infancy and there is need
for development of standardized software tools which will be able to help in digital forensics
involving big data in accepted digital forensic standards and acceptable before a court of law. With
the era of big data, the traditional forensic methodologies which includes taking the suspect system
offline, removing the original hard disk containing the source evidence, making a bit copy of the
original hard disk and calculating MD5/SHA-1 checksum is not possible with Big Data System like

the Internet of things (l1oT), the cloud based systems and social network sites.

A lot of social network analysis has been applied in various cybercrime investigation involving social
network sites using various data mining algorithms but still none has explored big data analytics
solutions offered by Apache spark framework. This research study was made to address the research
gap identified and demonstrate how Big Data Analytics, data science and Apache Spark can be

utilized in Twitter social network cybercrime forensics to supplement traditional forensic tools in big
39

data forensics. The concept undertaken utilized Apache Spark for Big Data processing and Spark
Streaming module to capture on live Twitter updates so as to collect the digital evidence near live.
Mining social network data for forensic Investigations can be complex and provides online evidence
that is different from the conventionally accepted evidence. Digital forensic investigators and law
enforcers can start to consider a new approach for effective ways to bring data from SNSs into
investigations and develop standards to enhance its authenticity before a court of law. Even though
social network investigators can apply and learn much from digital forensics disciplines, investigation
requires different tools and techniques for social network forensics to ensure the evidence (artefacts)

are authentic and the process is forensically sound.

40

CHAPTER THREE: RESEARCH METHODOLOGY

3 Introduction

This chapter describes in detail the strategy that we adopted in carrying out the study. It includes the
following, research Design, Target population, the sampling frame, Sampling techniques, Sample
size, Data collection methods, research procedures and Data analysis methods.

3.1 Research Design

To help achieve the objectives of the research, the study used both quantitative and Exploratory
research design to collect, store and analyze Twitter stream data. There are few research studies
regarding the application of Big data and Apache spark in social network sites forensics hence these
research design was useful in exploring the application of big data solutions and distributed
computing frameworks in the field of digital forensics to collect, store and analyze big data. The study
employed data mining methodologies to get insightful information regarding cybercrime from big
data collected from Twitter social network site. As in software development methodologies, there are
various data mining methodologies applied in projects involving data mining. The most popular
methodology used in data mining is Cross Industry Standard Process for Data Mining(Ncr et al. 1999).
CRISP-DM methodology describes step by step approaches that can be used in tackling projects
involving data mining. In this methodology, the data mining process are broken into six major phases
where by the phases do not strictly follow the sequence but allows for back and forth movement

between the project phases (Ncr et al. 1999).

The main objectives of this methodology include ensuring big data is of quality and dependable so
that data mining results can be relied upon in solving problems, reducing skills required for data
mining, capturing experience for reuse, general purpose. For projects involving data mining, CRISP-
DM remains to be the most commonly used methodology. This methodology was an excellent fit to
this project because it is robust and well-proven methodology in which data mining tasks can be
carried out in a different order while allowing one to return to previous phases and rerun certain tasks.
The problem which was being handled in this study involved understanding the problem space and
through this building a forensic tool which required several iterations to understand big data forensic
issues and social network crimes and build a forensic tool with the ability to extract, preserve evidence

and correlate crime evidence from big data from Twitter social network.

41

Business Data
Understanding Understanding

Data
Preparation
T
Deployment E —
Dat;ﬂ Modeling

Figure 16: CRISP-DM Methodology (Ncr et al. 1999)

3.1.1 CRISP-DM Overview
a) Business understanding (Understanding Case)
This involved understanding the case or investigation requirements and objectives from the digital
forensics perspective that helped in transforming this information into a big data analysis and
evidence mining problem definition and a preliminary project plan designed to achieve the objectives.
b) Data Understanding
Data understanding was concerned with initial evidence gathering and proceeded with activities to
familiarize with social media evidences; to identify evidence quality problems with might affects its
authenticity, to discover initial insights into evidence data or to uncover interesting patterns hidden
within the large datasets.
c) Data Preparation
Data preparation involved data preprocessing activities to convert the final evidence dataset from the
initial unstructured social media raw data which was fed into the spark based forensic tool model.
Several tasks were performed on evidence data in multiple times to prepare the data for classification

using classifier algorithms.

42

d) Modelling
This is the phase in which different evidence extraction modeling tools and social media event
reconstruction methods were identified, selected and their parameters of interest fine-tuned to get
optimal values. Typically, there are several methods for the same evidence mining problem type.

e) Evaluation
Before proceeding to final reporting of the forensic evidence, it was important to more thoroughly
evaluate the scenarios/event lines and review the steps executed to construct and extract the relevant
ones to be certain it properly achieves the case objectives. A key objective was to determine if there
was some important case aspect that has not been sufficiently considered.

f) Deployment (Evidence Presentation)
This was the final phase in which the evidence gained was organized and presented in a way that the
forensic investigator can use it for litigation process. It involved subjecting the model into live or real-
time Twitter streaming to detect and extract circumstantial evidence. Depending on the forensic
requirements, the deployment phase can be as simple as generating evidential report or presenting the
evidence before a jury in support of cybercrime committed.

43

3.2 Sources of Data and Sample Population

Primary data was used to get forensic data for evidence retrieval and data received from social
networking sites Twitter, Facebook, Linkln, Myspace would have been appropriate sample
population for the study. However, because of the limited resources and time, the study targeted one
of popular social network site, Twitter. Primary data included data collected from actual Twitter pages
including tweets/retweets and metadata using Twitter APl which enabled us to pull data in real time
using Spark Stream module and saving the data into MongoDB for evidence preservation and later
text mining/classification using Naive Bayes classifier algorithm and sentimental analysis. In order
to have full representation of the entire population, data streaming was carried out using spark stream
module to collect real-time tweets and was repeated several times to ensure relatively large volume
dataset (3,138,367 million tweets) of tweets and posts are fetched on various cybercrime topics. These
data was used to extract features for training and modeling the forensic tool which then was used to

carry out real time sentiment analysis on Twitter social network site.
3.3 Data Collection and Data Collection tools

With the data sources identified in section 3.2 above, an Apache spark tool for data collection, mining,
and cleaning was implemented using Scala programming languages in Apache Spark. The study
focused on social media data and metadata from social network site Twitter. Harvesting of social
networking forensic data was facilitated through the use of Twitter APl which are specific and
available to individual social network sites. The study utilized Streaming API by Twitter API to
collect datum from all the data sources to ensure complete data was collected for the research.
Integration of the forensic tool with Twitter APl ensured that key metadata unique to individual
account and which is only available through the publisher’s API were captured. Scala programming

languages together with Spark Stream were used to perform web crawling and scraping.

The harnessed data collected was stored in Mongodb before text preprocessing was applied and
hashed to ensure its authenticity. The use of Python, Scala in spark and Spark stream module was
chosen due to its versatility, agility and previous studies have shown it to be a viable solution for web

crawling, indexing and scraping with wider support from data science and development communities.

44

For streaming of data from Twitter, keywords were used particularly the ones oriented to hate speech

crimes, bullying like “gun”, “kill”, “murder”, “rape”, “assault”, “kidnap”, “shot”, "gun,

crime,”
"sinister”, “bitch among others. The web crawled data and metadata were stored in the MongoDB
database before data preprocessing and transformation was applied using Spark Mlib library.
MongoDB was ideal for storing social media API responses since they are designed to efficiently
store JSON data while providing powerful query operators and indexing capabilities (Russell 2013).
Digital forensics standards dictate that forensic data to be collected in forensically sound manner and
to enforce these standards, key information such as SHA-256 hash keys of individual items and logs
were maintained to ensure integrity of the evidence collected is verifiable before a jury.

Individual item SHA-256 hash values were calculated upon capture and before storage to database
and maintained through to analysis. Social media Account metadata unique to individual account and
tweets were harvested through integration with REST API's provided by Twitter. The social media
account metadata in forensic analysis plays very important role in proofing the authenticity of the

evidence collected and help in establishing chain of custody.

45

3.4 Data Preparation
The collected data from social media is usually unstructured and contains unwanted characters such
as html tags, xml markups, links, exclamation marks, question marks and other irrelevant characters
thus required to be prepared, processed and transformed for data evaluation and validation before it
can be ingested into spark classification module. Thus, for this study, data collected from Twitter
social network site underwent preprocessing with the intent to reduce some noises, incomplete and
inconsistent data. The preprocessing included the following tasks:

a) Text Preprocessing
The collected social media data is usually not only unstructured but also contains other irrelevant and
non-textual characters. Text preparation involved cleaning before analysis is performed. The
preprocessing is broken down into the following steps:

(i) Tokenization.
Tokenization involves the process of splitting a text into its desired smaller parts (tokens) seeking to
isolate as much sentiment information as possible. Tokenization helps in keeping the vocabulary
small as possible. Common with social media, emoticons and abbreviations are identified through the
process and treated as individual tokens. This was carried out using Apache Spark machine learning
Tokenizer and regex pattern matching. Apache Spark ML come packaged with word tokenization
feature (spark.ml.fature. Tokenizer) that was used in tokenizing.

(if) Text Normalization.
One challenge involving social media data is the abbreviation (e.g. think’s, r, u) of texts hence requires
text normalization which will involve replacing abbreviated word by the meaning they represent (e.g.
thnks > thanks, u>you). This involved text case conversion form caps to lower case and character
repetitions are reduced using the Apache spark Normalizer feature transformer to normalize each

vector.

46

(iii) Stop Word Removal

The data harnessed from Twitter contains words which occurs very frequently but are not useful as
they are used to structure words together in a sentence (e.g. the, at, and, etc.) and they don’t contribute
to the context or content of textual documents. In text analytics, their high frequency occurrence
presents an obstacle in understanding the content of the documents. For this research
“StopWordsRemover transformers” built-in module in Spark ML feature package was used for stop

word removal.
(iv)Part-of-speech (POS) tagging.

Part-of-Speech tagging which is also referred to as grammatical tagging involves assigning words
within a sentence their respective part of speech to (such as a verb, noun, conjunctions or adjective)
understand its role within the sentence. POS helps to determine what are important keywords within
a document or to assist in searching for specific usages of a word in a text document. This involves
marking and classification of words in a text sentence based on definition, context, its adjacent
relationship with related words in a sentence, or paragraph. Apache Spark includes most popular
libraries for NLP in Python among them NLTK, OpenNLP, CoreNLP, WordNet which can be used

for text Stemming, lemmatization and POS-tagging.
b) Bag of Words (Space Vector) Model

Bag of words approach is the process of classifying documents where by each word occurrence within
the document is used as feature for model training and developing text classifier. A text is represented
as a bag of words without paying attention to grammar and even words order but keeping its
multiplicity. For document classification, space vector remains the commonly used in method where
the frequency or occurrence of each word is used as a feature for training a classifier. This forms part
of the text classifiers by taking individual words into account and giving them a specific subjectivity
score. Keywords such as “gun”, “kill”, “murder”, “rape”, “assault”, “fuck”, “shot”, "nigga,” "crime,"

"sinister”, “bitch among others were used to identify crime-related on Twitter posts by matching the

word in the tweets/posts in the Bag of word dictionary.

47

3.5 Data Mining Algorithm and Sentiment Classification

The study employed the use of supervised machine learning approach and specifically Naive Bayes
classifier algorithm. Naive Bayes classifier algorithm is simple yet very efficient a kind of classifier
which from previous studies has shown to perform well particularly for text classification and
sentiment analysis. After the text in Tweet dataset has been segmented into words, the words have
been tokenized and normalized, a bag-of-words was modeled by taking individual words and
assigning each word a specific subjectivity score whereby if the total score is negative the text was
classified as negative and if it’s positive the text was classified as positive. This bag-of-words formed
a dictionary of words and the training dataset for sentiment analysis/text classification. Sentiment
analysis was used to determine an author's attitude with respect to either a particular topic or a

document's overall contextual polarity.

3.6 Data Analysis

Twitter streamed data was stored in MongoDB database which formed raw data. The data underwent
filtering by using the keywords as search tools which were ran as queries on the database. The filtered
data collected was mapped against different crime categories as either cyberbullying, violence based,
ethnic based and Sexual based language together with the total counts of each occurrence and exact
phrase of crime. Data was analyzed using both Scala and Python libraries and was presented using of
graphs and in tabular format. Python was chosen for data analysis because is one of the most popular
languages for data analysis and data mining which includes a broad range of libraries suitable for data
analysis problems and visualization. It is also an open source software and enjoys a wide support from

the data science community.

Scala forms one of the mostly used language for programming distributed computing systems because
of its scalability and was one of the languages supported by Spark framework. For this study
quantitative methods were used for analysis of the data. Quantitative analysis was used to graph social
media crime incidences categories (e.g. sexual, ethnic, religious, and violence, bullying hate speech)

against total tweets.

48

3.7 System Implementation

To achieve the objectives of the study, an Apache Spark Standalone cluster was setup and a web
based forensic tool was implemented using Apache Spark which offered a high scalable data intensive
processing which is suitable for big data processing like Twitter data. In addition, Spark offers
scalable real live streaming module (Spark Streaming) for data, making it suitable for use with Twitter
API. Python and Scala programming language was used for both development of logic applications
and interfacing. Python and Scala were chosen because of its versatility and mature package libraries
around. MongoDB was used as the back end for storing stream data and the data fetched. MongoDB
is ideal for storing social media API responses since they are designed to efficiently store JSON data

while providing powerful query operators and indexing capabilities.

The implementation comprised of a forensics web search engine, MongoDb database and apache
spark classifier. The forensic tool was designed using a dictionary of words and highlighted the crime
words together with the full text of the information. It also provided additional information of Twitter
account metadata and location where the crime was committed or uttered. The dictionary of words
was mainly a dataset of potential crime feature words such as “kill”, “murder”, “rape”, “kidnap”,

“shot”, "gun,"” "crime,"” "sinister, “bitch” and others which were used as the baseline for assessing the

crime forensic data collected.

49

3.8 Architectural Design

The apache spark forensic system was implemented as a three-tier application using apache spark,
MongoDB, Scala, Python programming languages. The Figure 17 below shows an overview of the
system components and the interconnections between them that enable it to perform Extract, store,

transform and carry forensic analysis of tweets and posts.

Apache Spark Standalone Cluster

Feal time Streaming and Classdfier Module : . - g
Data Sources £ Crime Evidence Visualization Report

S T

Spaik’

Streaming

TlEﬂl. Medal with stored data

Twitter API Spork’
SparkSQL ALIb l/““

Data S0+ DataFrame Mlzchins Leaming
- w |

Uza Trainad mods]

JS0H Drata

MosOL Backend Module

Figure 17: Forensic Tool Architectural Design

a) Spark Streaming Module
Implemented using Spark Streaming module of Apache Spark, this module captures live streams from
Twitter API, parses the data in JSON format to the desired format and stores the data in MongoDB
database. The data contains all the information about the original tweets, time it was streamed,

Analyzer collecting the data and metadata required for authenticity of evidence.

50

b) Apache Classifier Module
This module was implemented using apache spark using Scala programming languages. The module
incorporated classification algorithms specifically Naive Bayes Classifier that is available in Spark
ML. Spark ML pipeline was used in providing a set of tokenization, stemming, tagging and stop
words removal. Spark ML is used for sentiment analysis and classification of data streams before they
are stored on MongoDb and based on the analysis, each tweet is classified as positive (crime) or
negative (not crime) sentiment and the result is then persisted into MongoDb as crime evidence which
is used later by Report Module.

c) MongoDb Backend Module
This was implemented using MongoDb and it was responsible for storing data streamed from
Twitter social network site. It stores raw data from Twitter in the form of JSON document format.
MongoDb also stores twitter data which has been classified as of criminal in nature which was later
used by reporting module. Bag of words which contains hate/bully words which are used for feature
extraction and tweet classification was also stored in MongoDb database.

d) Report Module

This is reporting module which provides visualizations of data classification results as forensic
report showing Tweets which were identified as of criminal nature in form of percentages and

Charts. It also shows the account user, Tweets and account metadata pertaining the user.

51

3.9 Model Evaluation

The developed model needed to be evaluated for performance and correctness with test dataset before
it is deployed for use on live data stream. To evaluate the performance of the forensic model in terms
of quality or predictive effectiveness, different metrics can be used. F-measure (F1-score) is a
statistical measure of model’s test accuracy which is the weighted harmonic mean of precision and
recall of the test where recall is the fraction of all samples classified correctly as positive by the model
and Precision describes the ratio of all positives samples classified as true positives by the model.
Apache Spark comes with spark.ml.evaluation which provides a suite of metrics that are suitable for
evaluating the performance of data mining models. For problems involving application of supervised
classification like one in this study, there are two outputs which are a true output and output predicted
by the model for every data point and therefore the following categorization was used to measure the
accuracy and effectiveness of the forensic tool in classifying social media cybercrime. These
categories will include
(i) True Positive (TP) which indicates that the outcome is positive and the model prediction is
also positive.
(i) True Negative (TN) which indicates that the outcome is negative and the model prediction is
also negative.
(iii) False Positive (FP) which occurs that the outcome is negative (yes) but the model incorrectly
predicts the outcome as positive.
(iv) False Negative (FN) which indicates that the outcome expected is positive but the model
incorrectly predicts the outcome as negative.

This is summarized in the following table

TN FP

I P

For this study, F-measure which is provided in spark.ml.evaluation was used to evaluate the model
performance. F-measure was chosen because it includes metrics like precision and recall which are

used in order to take into account errors which might occur if dataset is highly unbalanced.

52

I+
Acc|uracy= P ’_I -
ipt+in+t p+ fn
.. I
Precision = L
Ip+ fp
! o1
Recall = L
ip+ fn

F o2 precision- recall

precision+ recall

The overall model should have the capacity to:

a) Collect posts, user account metadata from Twitter social media site and pipeline them
appropriately into a MongoDB repository.

b) Identify, collect and preserve relevant circumstantial evidence (i.e. indirect evidence that
relies on an inference to link events to a conclusion of commitment of crime) features and
train the forensic model to classify post as either of criminal nature e.g. cyberbullying or hate
speech.

c) Carry out sentiment analysis in terms of Positive or Negative comment regarding social media
cybercrime among them cyberbullying and hate speech.

d) Provide visualization interface for various cybercrime and related account metadata.

3.10 Ethical Issues

The study adhered to privacy of individuals and accounts within the social media and information
obtained was only used for this research study. Where necessary the data streamed was anonymized
to hide individual account names. Data gathered was secured against use or disclosure beyond the

research study.

53

3.11 Summary

This research study was targeted to investigate the application of Big Data Analytics and data science
in Big Data to supplement traditional forensic tools in countering big data forensic challenges. The
research was to help in uncovering cybercrimes in social media by extracting and preserving evidence
and help bring the culprits into book. Social networking site twitter was used as source of Big Data

for analysis to uncover hidden correlation and anomalies hidden within Big Data.

Additionally, the study showed the application of Apache Spark in Digital Forensics involving Big
Data such as Twitter. The study was intended to collect social networking sites data/metadata and
from it show how big data analytics can be used to analysis large volume of data, uncover hidden
correlation and show forensic artifacts which are important in social media forensics. The results from
the inputs would pave the way for the development of apache spark big data forensic tool for

collecting and analyzing Big Data found on social networks.

54

CHAPTER FOUR: DESIGN AND IMPLEMENTATION

4 Introduction

This chapter introduces the core instruments which were used to design, implement and test the
proposed forensic tool. It included setting up apache spark standalone cluster, configuration of
programming environment and apache spark twitter streaming to collect forensic data which was
subjected to sentimental analysis to identify hate speech and cyberbullying using Spark ML Module
to generate forensic model. The model was trained using 3,138,367 million tweets and used to
correctly classify twitter data according to the three categories namely positive, neutral, negative (hate
speech/cyberbullying). The chapter concludes with the evaluation of the model and analysis of the

forensic tool results for this study.

4.1 Modeling Tools and Techniques
We used Scala and Python which are leading powerful tool used in data mining, machine learning
due to its productive user interface. The following table shows a list of system development tools
which were used in the development of the forensic tool.
TOOL DESCRIPTION

VMware Workstation 12 Pro | The Apache Spark cluster for the project was setup in virtualized

environment, to achieve this, VMware Workstation was used as the

virtualization environment.

Ubuntu 14.04 LTS This formed the operating system upon which Apache spark cluster

was setup and web server for front-end reporting interface.

MongoDB 3.4.2 To store tweet data and classified tweets, the project utilized open

source NOSQL database MongoDB for easy storage and retrieval.

Apache Spark 2.1.0 This was used to setup big data distributed computing cluster

Framework which was used to stream Twitter data and Big data analysis.

Apache Server This was used to setup webserver to serve front end reporting
module.

Flask 0.12 Framework Flask framework was used to design the front-end reporting web
interface.

55

PyCharm 2017.1 IDE

This formed the IDE for developing the front-end reporting website
in python.

IntelliJ IDEA 2017.1 IDE

To develop the back end big data program, the project adopted
IntelliJ IDEA 2017.1 as Scala IDE.

SCALA Scala formed the core language for developing distributed
computing program which were executed on the apache cluster.
PYTHON To develop the front-end reporting module, the project utilized

python language.

Bootstrap v3.3.7

To apply styling on the front-end reporting module, the project

made use of Bootstrap v3.3.7.

PyMongo 3.4.0 This was used to connect python scripts to Mongodb and retrieve
data.
Chart.js Chart.js was used for visualization of project reports and analysis

graphs.

Table 1: Forensic design software and Tools

4.2 Spark Forensic Model Analysis

Functional Requirements

a) Stream Twitter JSON data via Twitter API.

b) Store the Twitter on Local Hard disk for Model training and Testing.

c) Train and Create Naive Bayes model to classify tweets as either Hate speech or bullying.

d) Stream Live tweets using the trained model and classify the tweets.

e) Store streamed tweets in Mongodb for evidence preservation.

f) Store Twitter data stream and date for Evidence preservation and authentication.

g) Generate SHA-256 Hash key for each tweet post and store the key in Mongodb.

h) Categorize classified tweets as either Ethnicity, Religious, Violence, Bully and Others.

Reporting Front End Module

a) Connect to Mongodb and retrieve classified tweets with Account Metadata.

b) Connect to Mongodb and retrieve Raw Tweets with Stream data and Hash Keys.

c) Provide Search and filter capabilities.

56

4.3 Forensic Tool Module Analysis

The forensic tool was designed and programmed using both Scala and Python programming

languages and is composed of mainly nine main components:

TwitterJsonFiles _i;ll TrainingTwitterStreaming.Scala g] Twitter API @
SparkNaiveBayesModelCreator.Scala @ NaiveBayes _i;l
Classifier Model

Tweetstreamingmodel.Scala @

!

MongoScalaltil.Scala @ GenerateSHAZSﬁHashKey.Scala@

Mongodb @ forensicwebapp.py g] FlaskReport @
Viewer

Figure 18: Forensic Tool Module Analysis

a) Training TwitterStreaming.Scala
This was Scala based module implemented Spark Streaming API and was responsible for streaming
live tweets and storing them on local hard disk under Twitter Json files. This tweets were used for
training Naive Bayes model.

57

b) SparkNaiveBayesModelCreator.Scala
This was Scala based module which implemented Spark ML APl and Naive Bayes classifier
pipelines. The module worked by loading locally stored JSON tweets and training Naive Bayes
classifier model which was saved on local disk as “NaiveBayes Classifier Model”.

c) Tweetstreamingmodel.Scala
This was live tweet streaming module which was implemented using Spark ML API and utilized
earlier saved trained model to stream live tweets and classifying them as hate speech or bullying. It
was also responsible for categorizing the tweets in different categories as either bully, ethnicity,
sexual, religious and others for tweets which didn’t fall under the defined categories.

d) MongoScalaUtil.Scala
This module implemented Mongodb connector for spark and utilized MongoDB Scala Driver for
storing of live classified tweets in forensicdb database within Mongodb. It was also responsible to
persisting raw tweets to Mongodb database for evidence preservation and authenticity.

e) Mongodb
This module formed the backend storage for preservation of evidence and classified tweets. The study
utilized Mongodb 3.4 version for tweet storage and preservation.

f) Forensicwebapp.Py
This is a Flask based web application which gets data which connects to MongoDB using PyMongo
module to retrieve classified tweets for presentation. The module was also used for tweet analysis
using graphs and charts.

g) FlaskReport Viewer
Implemented using flask, HTML and JavaScript, this module was responsible for presenting forensic

hate speech reports and analysis graphs.

58

4.4 Cluster Setup and Configurations

To achieve the objectives of the project as stated in chapter one, the project implemented Apache
Spark cluster as the backend for tweet streaming and data processing. The cluster was implemented
on Ubuntu 14.4 operating system. Apache Spark can be deployed in three ways depending on
individual needs i.e. Standalone, YARN, and Apache Mesos.

Standalone deployment: With the standalone deployment, one can statically allocate resources on
all or a subset of machines in a Hadoop cluster and run Spark side by side with Hadoop. The user can
then run arbitrary Spark jobs on her HDFS data.

Hadoop Yarn deployment: Hadoop users who have already deployed or are planning to deploy
Hadoop Yarn can simply run Spark on YARN without any pre-installation or administrative access
required. This allows users to easily integrate Spark in their Hadoop stack and take advantage of the

full power of Spark, as well as of other components running on top of Spark.

59

4.4.1 Hadoop Yarn Configuration

The following shows the configuration for Hadoop yarn configuration which was used by Apache
spark for resource allocation and management.

Core-site.xml

<configuration=

<property=
<name>fs.default.name</name>
<value>hdfs://KENBDO-SPK@88.forensics.net:54310</value=

</property=

=property=
<name>hadoop.tmp.dir</name=>
<value=/usr/local/hadoop/tmp</value=

</property=

</configuration=

Figure 19: Core-site.xml Configurations

YARN configuration properties (yarn-site.xml)

<property=
<name>yarn.resourcemanager.hostname</name=>
<value>=KENBO-SPK88.forensics.net</value=>

</property=

<property=
<name>yarn.nodemanager.local-dirs</name>
<value>/usr/local/hadoop/yarn/data</value>

</property>

<property>
<name>yarn.nodemanager.logs-dirs</name>
=value>fusr/local/hadoop/logs</value=

</property=

</configuration=

Figure 20: Yarn-site.xml Configurations

60

HDFS node configuration (hdfs-site.xml)

<configuration=
<property=
<name>dfs.replication</name=
=value=1</value=
</property=
<property=
<name>dfs.namenode.name.dir</name=
<value>file: fusr/local/hadoop_store/hdfs/namenode</value=
</property=
<property=
<name>dfs.datanode.data.dir</name=
<value>file: fusr/local/hadoop_store/hdfs/datanode</value=
</property=
<fconfiguration=

Figure 21: hdfs-site.xml Configurations

Slaves.xml

|] slaves x

#localhost
KENBO-SPK®O8. forensics.net]|

Figure 22: Slaves.xml Configurations

61

4.4.2 Starting Hadoop Cluster Manger

Running Apache Spark on Hadoop requires both HDFS file system and Hadoop resource manager to
be up and running. The Hadoop cluster manager comes with scripts which are used for starting and
stopping the cluster. These scripts are stored under bin folder on Hadoop home folder. The scripts are
start-dfs.sh and start-yarn.sh which are used for starting the HDFS/Namenode and ResourceManager

and NodeManager daemon respectively.
smulwa@KENBO-SPKO08:/usr/local/hadoop/sbin$./start-dfs.sh

smulwa@KENBO-SPKO08:/usr/local/hadoop/shin$./start-yarn.sh

smulwa@KENBO-SPKB8:~$ cd fusr/local/hadoop/sbin

smulwa@KENBO-SPKO8: fusr/local/hadoop/sbin$./start-dfs.sh

Starting namenodes on [KENBO-SPKO8.forensics.net]

KENBO-SPK@88.forensics.net: starting namenode, logging to /usr/local/hadoop/logs/hadoop-smulwa-namenode-KENBO-SPK@8.forensics.net.out
KENBO-SPK®8. forensics.net: starting datanode, logging to /usr/local/hadoop/logs/hadoop-smulwa-datanode-KENBO-SPK@8.forensics.net.out
Starting secondary namenodes [account.jetbrains.com]

account. jetbrains.com: starting secondarynamenode, logging to /usr/local/hadeop/legs/hadoop-smulwa-secondarynamenode-KENBO-SPK@8. forensics.net.out
smulwa@KENBO-SPKO8: fusrflocal/hadoop/sbin$./start-yarn.sh

starting yarn daemons

starting resourcemanager, logging to fusr/local/hadoop/logs/yarn-smulwa-resourcemanager-KENBO-SPK@8. forensics.net.out
KENBO-SPK@88.forensics.net: starting nodemanager, logging to [usr/lecal/hadoop/logs/yarn-smulwa-nodemanager-KENBO-SPK@8.forensics.net.out
smulwa@KENBO-SPKO8: fusr/local/hadoop/sbin$ jps

3585 SecondaryNameNode

3761 ResourceManager

3926 NodeManager

3160 NameNode

3323 DataNode

4238 Ips

Figure 23: Starting Hadoop Cluster Manger

After starting the Hadoop/HDFS cluster resource manager through the URL
http://forensics.net:8088/cluster/nodes, the following page is opened.

A AT
€ C {0 O forensicanet

i Apps Forqulck access, place your beokmarks here on the bookmarks bar. Impart beckmarks now..

@hﬂdﬂﬂp Nodes of the cluster SRR

= Cluster Cluster Matrics
About Apps Apps Apps Apps Memo Memaory Memory VCores Vores clive Decommissioned Losl Unhealthy
Nodes Submitted Pending Running Completed Running Used Total Reserved Used Total Nedes Nodes Nodes Nedes
Nede Labels '] o [t} a a 0B B GB 0B 0 8 1 (1] 1] o
Applications Scheduler Melrics
Scheduler Type Scheduling Rescurce Type Minimum Alocation Maximum Aliocation
Capacity Schaduler [MEMORY] =mamony- 1024, vCores: 1> <memory:8182, vCores:32>
Show 20 v enfries Search:
Mode) L | Mem | Mem | e il
= Labels Rack = S’:ar: 5 Mode Address ¢ Mode HTTP Address Last health-update Health-report Son O Used Aval L-;‘édn'l :._\:Jr o
Scheduler Idefault- RUNNING KENBO- KENBO- Sat Aug 26 07:29:25 0 0B 4GB 0 8 273
rack SPKO8 lorensics nel: 33838 SPKOB forensics neLB042 0400 2017

» Tools Showing 1 to 1 of 1 entries

Figure 24: Hadoop/HDFS cluster resource manager

62

http://forensics.net:8088/cluster/nodes

The following screen shot shows Hadoop HDFS file system showing browser directory.

& C 1Y | @ forensics.net:50070/explorer.hemls/
i Apps For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now..

HadDDp Overview Datanodes Snapshot Startup Progress Utilities

Browse Directory

/ B3

Permission Owner Group Size Last Modified Replication Block Size Name

drwxr-xr-x smulwa supergroup 0B 5/30/2017, 4:43:57 AM 0 0B sparktweetStreaming-1496133835000
drwxr-xr-x smulwa supergroup 0B 5/30/2017, 4:44:03 AM 0 0B sparktweetStreaming-1496133840000
drwxr-xr-x smulwa supergroup 0B 5/30/2017, 4:44:07 AM 0 0B sparktweetStreaming-1496133845000
drwxr-xr-x smulwa supergroup 0B 7/20/2017, 8:38:00 AM 0 0B checkpoint

drwxr-xr-x smulwa supergroup 0B 7/26/2017, 12:09:17 PM 0 0B eventLogging

drwxr-xr-x smulwa supergroup 0B 7/20/2017, 8:14:06 AM 0 0B home

drwxr-xr-x smulwa supergroup 0B 71312017, 10:26:31 AM 0 0B sparktweetStreaming

drwx-wix-wx smulwa supergroup 0B 4/14/2017, 4:37:54 PM 0 0B tmp

drwxr-xr-x smulwa supergroup 0B 4/22/2017, 7:37:49 AM 0 0B user

Figure 25: Hadoop HDFS file system

4.4.3 Apache Spark Configuration
The following show the configuration for the Apache Spark which were implemented. This involved

downloading the precompiled version from https://spark.apache.org site.

spark-defaults.config

spark.master spark://forensics.net:7077
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.eventLog.enabled true

spark.history.kerberos.enabled false

spark.history.ui.port 18080

spark.eventLog.dir hdfs://forensics.net:54310/eventLogging
spark.history.fs.logDirectory hdfs://forensics.net:54310/eventLogging
spark.history.kerberos.keytab none

spark.history.kerberos.principal none

spark.yarn.historyServer.address forensics.net:18080

spark.yarn.queue default

Figure 26: Spark-defaults configuration

63

Spark-env.sh

export HADOOP_CONF_DIR=fusrflocal/hadoopfetcfhadoop
export YARM_CONF_DIR=fusr/localfhadoopfetc/fhadoop
SCALA _HOME=fusrfsharefscala
SPARK_MASTER_HOST=forensics.net
SPARK_CONF_DIR=fusrflocal/sparkfconf
SPARK_WORKER_DIR=jfusrflocalfspark/data
#SPARK_WORKER_INSTANCES=/4
#S5PARK_EXECUTOR_INSTANCES=4
#5PARK_WORKER_MEMORY=4

#S5PARK_WORKER_CORES=4

#SPARK_EXECUTOR_CORES=4

#5PARK_EXECUTOR_MEMORY=4

Figure 27: Spark-env.sh Configuration

log4j.properties

Set everything to be logged to the console

log4j.rootCategory=WARN, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:s5} %p %c{1}: %m%n

Set the default spark-shell log level to WARN. When running the spark-shell, the
log level for this class is used to overwrite the root logger's log level, so that
the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=WARN

Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project. jetty=WARN

log4j.logger.org.spark_project. jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMainSexprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoopSSparkILoopInterpreter=INFO
log4j.logger.org.apache.parquet=ERROR

log4j.logger.parquet=ERROR

SPARK-9183: Settings to avoild annoying messages when looking up nonexistent UDFs in SparksQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

Figure 28: Spark log4j.properties Configuration

Spark Worker configurations (slaves)

A Spark Worker will be started on each of the machines listed below.
#localhost
forensics.net

Figure 29: Spark Worker configurations (slaves)

64

4.4.4 Starting Apache Spark Cluster

Like with Hadoop resource manager, Apache Spark comes with scripts which automates the process
of starting and stopping of cluster. Among the scripts are start-master.sh and start-slave.sh which are
used for starting spark master node and slave node respectively. The following shows how to start the
forensic spark cluster. These scripts are found in the shin folder with the Spark home folder/

smulwa@KENBO-SPKO08:/usr/local/spark/sbin$./start-master.sh

smulwa@KENBO-SPKO08:/usr/local/spark/sbin$./start-slave.sh spark://forensics.net:7077

forensics.net.out

.forensics.net.out

Hely rg.apache.spa y.his o fusr/local/sparkflogs/spark-smulwa-org.apache. spark.deploy. history. HistoryServer-1-KENBO-SPKBS. forensics.net.out

Figure 30: Starting Apache Spark Cluster

65

4.5 Twitter APl Connection
Data for the project was collected from Twitter using Twitter APl and Scala custom codes. To stream
data from twitter, the application was required to have OAuth authentication with a Twitter account.

To do this, we had to setup a consumer key/secret pair and an access token/secret pair using a Twitter

account.
0y & Secure | https//appstwittercom/app/13526856/settings w B a
XE: (GBP/KES) British & Standard Chartered DCata Science Data Visualization Spark MessageLabs Djange Data Mining MongoDB » Other bo:
W Application Management L -

mscdctspark

Details Setlings Keys and Access Tokens Permissions

Application Details
Name *

msecdetspark

Description *

mscdct spark streaming

Website *

https:/imscdctsparking.com

Callback URL
hitps:/imscdctsparking.com

QAuth 1.0a appitcations sk

Figure 31.: 'i.'wi.t.telr:.A.PI C“re'a.tibn

66

This allowed us to get twitter account metadata, which is not publicly available on twitter page but
can be retrieved upon authentication. The Twitter consumer key/pair allows the forensic application

to authenticate with twitter before it can stream data.

t | @ Secure | https://apps.twitter.com/app/13526855/keys *d
E: (GBP/KES) British & Standard Chartered Data Science Data Visualization Spark Messagelabs Django Data Mining MangoDB
W Application Management 4

mscdctspark

Details Settings Keys and Access Tokens Permissions

Application Settings

key should never be human-readable in your application
Consumer Key (APl Key) tPVxkzRkNjXw30QO0P2YOTHHR7
Consumer Secret (AP| Secret) ejW7905RNOLScOnRpdank20UtHdrMJX0v7 chtubSg3uBXFNxJe

Access Level Read, write, and direct messages (modify app
permissions)

Owner simonsonmk

Owner ID 284452666

Application Actions

Regenerate Consumer Key and Secret Change App Permissions

Figure 32: Twitter Customer Key/Pair

67

Below screenshot shows part of the key/pairs which were used by the application to get tweet data
and account metadata

Bl

O © @ Secure | https//apps.twitter.com/app/13526856/keys
xe XE: (GBP/KES) Britis! § Standard Chartered Data Science Data Visualization Spark MessageLabs Djange Data Mining MongoDB »
Regenerate Consumer Key and Secret Change App Permissions
Your Access Token
Access Token 284452666-

HpOKDaHBEEOCTEZ0s9s0T48MIhayb2JiLyiYYBg

Access Token Secret ATADBOOxRTCXDYrIWdljmLGaMvphRZAGdIrgHNBCFWTA
Access Level Read and write

Owner simonsonmk

Owner ID 2844526606

Token Actions

Regenerate My Access Token and Token Secret Revoke Token Access

Figure 33: Twitter Customer Keys

These key pairs were used to authenticate and allowed us get data streaming using spark streaming
API. These customer authentication key/pair code were stored within the application.conf file with

the spark application project and were referenced by the OAuthUtilities.Scala module.

o TwitterforensicAnalysis.scala | o LogUtils.scala ‘ @ mongo_utilities.scala | o MongoScalaUtil.scala | 8 QAuthutilities.scala | u application.conf

2 # Configuration for Apache Spark Big Data Analytics for Social Media Forensics project. #
Twitter App OAuth Credentials and Text file for Sentimental Analysis.#

Twitter App OAuth Credentials.

7 CONSUMER_KEY = "tPVxkzRkNjXw30Q0P2YOfHHh7"

8 CONSUMER_SECRET = "ejW7905RNOL5cOnRpdank98UtHdrMIXev7chtubSg3u6XFNxJe"
ACCESS TOKEN KEY = "284452666-HpOKDaHB66OCT76Z0s9s0T48Mhayb9]tLyiYYBg"
10 ACCESS_TOKEN_SECRET = "ATAbBOOxjRTCXDYrIWdIjmLGaMvphRZA6d9rqHNSCFWTA"

Fﬁiﬁgure 34: Scala OAuthUtilities Keys

68

The following Scala code (OAuthUtilities.Scala module) shows how the key/pair were used in the
application.

import iwitter4j.auth.OAuthAuthorization
import twitter4j.conf.ConfigurationBuilder

object QAuthUtilities {
def getTwitterOAuth(): Some[OAuthAuthorization] = {

val twitterconfigbuilder = new ConfigurationBuilder

twitterconfigbuilder.setDebugEnabled(true)
.set0AuthConsumerkey (loadconfigProperties.consumefKey) //Load Authentication credentials from application config
.setOAuthConsumerSecret (loadconfigProperties.consumerSecret)
.setODAuthAccessToken(loadconfigProperties.accessToken)
.setDAuthAccessTokenSecret(loadconfigProperties.accessTokenSecret)
.setIncludeEmailEnabled(true)
.setTweetModeExtended(true)

val twitteroAuth = Some(new QAuthAuthorization(twitterconfigbuilder.build()))

Twitter Au

thentlcation detalls

twittercAuth //Return
b

}

Figure 35: OAuthUtilities.Scala Module

4.6 Data Collections

Data for the project was streamed from Twitter social network site and we utilized publicly accessible
Twitter API with Spark streaming API. We streamed 3,138,367 tweets which were stored locally on
local hard disk. The tweets were filtered using a set of keywords that are viewed as offending,
insulting, and intimidating to people or of inflammatory in nature or bullying. For this study, several
keywords were used among them- hate you, nigga, stupid, idiot, fuck you, faggot, kill, bitch, dyke,
gay, black nigger, white people, black people, ugly, terrorists. These keywords were also categorized
into different groups based on their biasness i.e. ethnicity, religious, sexual, violence, bully. The
collected Tweets formed our tweets dataset which were later used to train Naive Bayes Model to
analyze and classify tweets as either positive sentiments, hate (negative) sentiments, and neutral

sentiments.

69

4.7 Feature Selection

This involved selecting a subset of relevant features that would help in identifying inflammatory or
offensive tweets and can be used in the modeling of the classification problems using Naive Bayes
model. We did stream the whole Twitter profile account and retrieved all the properties or features
making a Twitter Account. This was presented in JSON. The study focused more on Twitter status
update which is represented as text. The text field formed the main feature of interest for the study as
its Twitter’s status update for users. For Twitter, forensic analysis we grouped the feature set into two
categories i.e. comment based features and metadata based features. Comment based features
involved Twitter comments and replies to the comments and metadata based features involve Account
features such as created_at, tweet id, account id, name, screenname, coordinates among others. The
Account metadata can be used for account authentication of forensic data and was also focus of the
study for forensic evidence preservation and authentication. The figure 36 below shows part of
Twitter Account Structure and data types.

70

root

accesslevel: long (nullable = true)
contributors: array (nullable = true)

| -- element: string (containsNull = true)
createdAt: long (nullable = true)
currentUserRetweetId: long (nullable = true)
displayTextRangeEnd: long (nullable = true)
displayTextRangeStart: long (nullable = true)
TavoriteCount: long (nullable = true)
favorited: boolean (nullable = true)
geolLocation: struct (nullable = true)

|BF latitude: double (nullable = true)

| -- longitude: double (nullable = true)
hashtagEntities: array (nullable = true)

| -- element: struct (containsNull = true)
|-- end: long (nullable = true)
|-- start: long (nullable = true)
| -- text: string (nullable = true)

id: long (nullable = true)
inReplyToScreenName: string (nullable = true)
inReplyToStatusId: long (nullable = true)
inReplyToUserId: long (nullable = true)

mediaEntities: array (nullable = true)
| -- element: struct (containsNull = true)

-- displayURL: string (nullable = true)

sizes:
|-- ©

|

|

|

[-- 1
|

|

|

|-- 2:
|

|

|

[-- 3
|

|

end: long (nullable = true)
expandedURL: string (nullable = true)
id: long (nullable = true)

medialURL: string (nullable = true)
mediaURLHttps: string (nullable = true)

struct (nullable = true)

. struct (nullable = true)

| -- height: long (nullable = true)

|-- resize: long (nullable = true)

| -- width: long (nullable = true)

: struct (nullable = true)

| -- height: long (nullable = true)

|-- resize: long (nullable = true)

| -- width: long (nullable = true)
struct (nullable = true)

| -- height: long (nullable = true)

|-- resize: long (nullable = true)

| -- width: long (nullable = true)

: struct (nullable = true)

| -- height: long (nullable = true)

|-- resize: long (nullable = true)

| -- width: long (nullable = true)

-- start: long (nullable = true)
-- text: string (nullable true)

|__
|
|__
|__
|__
|__
|__
|__
|__
|

|
|__
|

|

|

|
|__
|__
I__
|-- lang: string (nullable = true)
|__
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

| -- tvpe: strina (nullable true)

Figure 36: Twitter Account Schema

71

4.8 Data Preprocessing

The collected data from Twitter is usually unstructured and contained a lot of unwanted characters
such as html tags, xml markups, links, exclamation marks, question marks and other irrelevant
characters thus the data required to be prepared, processed and transformed for data evaluation and
validation before it can be ingested into spark classification module. This preprocessing involved
removal of special symbols from text features, stop words, and text tokenization. Tokenization
involved breaking down a sentence into meaningful words/elements called tokens. This was followed
by removal of words which are very common within a text but that do not contribute significantly to
the relevant content. To remove unnecessary special characters/symbols within the tweets, we used
pattern matching regular expression to capture special symbols to be eliminated from the tweets. The
following figure shows the code scripts in Scala programming language which we utilized for tweet
text cleaning and stop-word removal. We used a corpus dictionary of words to remove words which

don’t contribute much to the structure of the tweet.

def getTweetTextcleaner(tweetText: String, stopWordsList: List[String]l): Seq[String] = {
//Clean tweet text by removing URLs, RT and other redundant chars / strings
tweetText.tolLowerCase()

.replaceALL("\n", "")|

.replaceAl1("rt\\s+", "")

.replaceAL1{"\\s+@\\w+", "")

.replaceALL("@\\w+", "")

.replaceALL("\\s+#\\w+", "")

.replaceAl1("#\\w+", "")

.replaceAll("(?:https? |http?)://[\\W/%.-]+", "")

.replaceALL("(?:https? |[http?)://[\\Ww/%. -]+\\s+", "")

.replaceALl(" (?:https? |http?)//[\\w/%.-]+\\s+", "")

.replaceALl("(?:https? |http?)//[\\w/%.-]1+", "")

LSpLIt("\\W+")

.filter(.matches(""[a-zA-Z]+5"))

filter(!stopWordsList.contains(})

Figure 37: Tweet Cleaning Module

The above function code receives twitter text, stop word list as arguments and returns plain tweet text
which is subjected to labeling to classify the tweet as either negative (hate speech in nature), positive

or of neutral sentiment.

72

4.9 Training Tweet Labelling

Naive Bayes machine learning classifier requires that training dataset to be labeled as either positive,
negative (hate) or neutral. This labeling can be done manually by going through each tweet and
labeling it as positive, negative or neutral. Although this will creates a highly reliable corpus lexicon,
it can be very tedious exercise for large volumes of tweets. For this study, we adopted an automatic
labeling approach by collecting 3,138,367 of tweets and running a Scala function through those tweets
which compares each individual tweet word with a list of positive words and a dictionary of hate

speech words. The figure below shows Scala function which we adopted for tweet labeling.

def CalculateTweetSentiment(tweet: String): Double= {
var sentimentscore = 0
for (tword <- tweet.split("™ ")) {
for (positiveWord <- positiveWordsArr) {

if (tword != "" && positiveWord.toString.tolLowerCase() == tword) {
sentimentscore = sentimentscore + 1
}
}
for (negativeword <- negativeWordsArr) {
if (tword != "" && negativeword.toString.tolLowerCase() == tword) {
sentimentscore = sentimentscore - 1
}
}

}

if (sentimentscore > 0) {
ffreturn 1 for positive sentiment

return 1;

else if (sentimentscore < 0) {
/freturn 0 negative/hate sentiment

return @

}

else
//return 2 for neutral sentiment

return 2
I3

Figure 38: Tweet Sentiment Classifier Module

73

The labeled tweets were later fade into Spark ML Pipeline to generate Naive Bayes Classifier model
to automatically classify the tweet as either hate speech, bullying in nature are positive/neutral. The

following figure shows sample of labeled tweets.

Frm e - +----- +
| text|label |
i +----- +
|stop texting firs...| ©0.0]
|you not toys but ...| ©0.0]
|me right now to a...| 2.0|
| trump is an| 1.0]
|sexual jokes ands...| 1.0
| next tt rr| 2.0|
|have you booked y...| ©0.0]
a best friend is ...	1.0]
order was repeal ...	2.0
woman holding phd...	©0.0]
Inigga must have b...	0.0]
so shut ur fuckin...	©0.0]
farms and its not...	©.0]
anybody else seen...	2.0
also me on judgem...	2.0]
made fresh bids o...	2.0]
gorakhpur is our ...	2.0]
police police vis...	©0.0]
lok what song is ...	©0.0]
discuss	2.0]
e e +

only showing top 20 rows

Figure 39: Labeled Tweets

74

4.10 Social Media Evidence Identification

Social media users create massive amounts of data which becomes challenging when trying to extract
evidence as it’s hidden with enormous big data. In this study, 3,138,367 tweets were streamed and
analyzed to identify hate speech and bullying tweets. This involved identifying which attributes might
be used as evidence for commitment of cybercrime in Twitter Social Network. The study went ahead
to identify also attributes which might be used to supporting the evidence and whether such tweet
account was used to commit the said cybercrime or hate speech. In this study, it was noted that user
status updates what is commonly referred as tweets are used to express hate speech or bully
comments. The status updates (tweet) are represented as text field in twitter account structure as
shown in table below. Twitter evidence can also include photographs which might carry out
inflammatory messages or contents which might be of hate speech or bullying in nature. With the
development of GPS smartphones and location-based services, Twitter enables user to tag or provide
location information which might be used during search warrant of a culprits in case of cybercrime

commitment on Twitter.

75

Twitter Field Name

Evidence/Comments

Twitter Status Update (Twitter
Text field)

Tweet updates which indicate user’s/Account status updates

or posts.

originalProfilelmageURL

This shows users profile picture as uploaded by the user.

created_at

This can be used to show when such tweet was created and
can be used to authenticate when tweet which has be

categorized as hate speech/bullying was created or posted.

This is unique identifier for the tweet in question and can be

used to uniquely identify each individual tweet.

Users

created_at

The time when the account in question was opened with

twitter.

id

A unique identifier which represents twitter user account.

location

This defines the user location for this account’s profile and
might be used to identify the location of the user or where
user might have created the account in.

Name

The name of the user, as they’ve defined it.

profile_image_url

The account user’s profile image which can be used to
identify the user physically.

screen_name

An alias which the user identifies himself with.

Table 2: Twitter Account Metadata of interest in forensics

4.10.1 Evidence Retrieval

Social media users create massive amounts of data which becomes challenging when trying to extract

evidence as it’s hidden with enormous big data. As highlighted in the above table, Twitter Account

profile encompasses many fields which are not possible to be retrieved by snapshotting or printing

Twitter web pages. This invalidates such evidence collected by screen shots or web page printouts as
it lacks the supporting metadata. To improve on evidence validity, this study focused on an automatic

retrieval of Tweet user status updates together with the Account metadata as supporting evidence

which might be relevant in proofing authenticity before a court of law. To achieve this, we designed

the forensic tool to retrieve Twitter status updates together with account metadata.

76

The above table shows Twitter schema attributes which were automatically retrieved and which we
felt can be used to authenticate the evidence received. The Forensic tool streams live tweets using
Twitter API together with Spark Stream APIl. SHA-256 hash key for each individual tweet was
generated and stored in MongoDb together with each individual user tweet both accompanied by
Twitter Account unique identifier. The following figure shows the Scala Code used for saving the
tweet to Mongodb.

object MongoScalaltil {

1, twitter account_id:long , tweet id:Long,cTime:Siring):Unit={

.ﬂef SaveRawtweetstoMongodb (| tweet :Strir
try {
val mongoClient: MongoClient = MongoClient()
val database: MongoDatabase = mongoClient.getDatabase(”forensicdb™)
val collection: MongoCollection[Document] = database.getCollection("Tweets")

val tweethashkey = SentUtilities.generateSHA256HashKey(tweet)
val doc: Document = Document(”_id” .» tweet id, “twitter_account_id” -> twitter account_id,“cTime” .» cTime, "usertweets” .» tweet, "tweethashkey” .» tweethashkey)

val observable: Observable[Completed] = collection.insertOne(doc)
observable.subscribeinew Observer[Completed] {
override def onNext(result: Completed): Unit = printin("Inserted”)
override def onError{e: Throwable): Unit = println{e.toString)

override def onComplete(): Unit = println{"Completed")
!

}
catch |
case e: Exception == printin("Error Saving tweets to Mongodb: ", e)

def'SaveRawTweetsToMongcﬂB(rdd: RDD[Status]i: Unit = {

try{
val sqlContext = spark SparkSession.sqlContext
val tweet = rdd.map(status => jacksonObjectMapper.writeValueAsString(status))

val rawTweetsDF = sqlContext.read.json(tweet)

val readConfig: ReadConfig = ReadConfig(Map("uri" -> "mongodb://127.0.08.1:27017/forensicdb.RAWTweets?readPreference=primaryPreferred"))
val writeConfig: WriteConfig = WriteConfig(Map("uri" -> "mongodb://127.0.0.1:27017/forensicdb.RAWTweets"))
MongoSpark.save(rawTweetsDF.coalesce(l).write.format("org.apache.spark.sql.json").option("forensicdb”, "RAWTweets").mode("append"), writeConfig)

}
catch {
case e: Exception => printin("Error Saving tweets to Mongodb:", e)
}
}

Figure 40: Mongodb Save Function

77

The following figures shows a sample tweets which has been labeled and stored within the MongoDb
together with SHA-256 hash key for full tweet and also SHA-256 hash key for the tweet status update
(text).

db.getCollection{'LiveclassifledTweets

UveclassifiedTweets (1) 0.018 sac

Figure 41: Mongodb Saved Tweet JSON Document

The following figure shows a sample of a full user tweet together with the Twitter unique account Id,
tweet unique id, date and time of tweet capture and the SHA-256 hash key which is used for evidence
preservation and authenticity.

78

" _id" : NumberLong(896812261679005697),

"twitter_account_id" : NumberLong(893358895875452928),

"cTime" : "2017-08-13T15:13:49.529-04:00",

"usertweets' : "StatusJSONImpl{createdAt=Sun Aug 13 15:14:39 EDT 2017,
1d=896812261679005697, text="Big Fat Slut Lets Her Man Open And Explore Her Pink Hole
https://t.co/lkD3vkRIebM', source="'Twitter Web
Client', isTruncated=false, inReplyToStatusld=-1, inReplyToUserld=-1, isFavorited=false,
isRetweeted=false, favoriteCount=0, inReplyToScreenName="null', geoLocation=null, place=null,
retweetCount=0, isPossiblySensitive=false, lang="en’, contributorsIDs=[], retweetedStatus=null,
userMentionEntities=[], urlEntities=[URLEntityJSONImpl{url="https://t.co/kD3vkRIebM',
expandedURL="http://bit.ly/2wFIA1n’, displayURL="bit.ly/2wFIA1n'}], hashtagEntities=[],
mediaEntities=[], symbolEntities=[], currentUserRetweetld=-1,
user=UserJSONImpl{id=893358895875452928, name="'Athena Ellerson', email="null',
screenName='GuboninGleb', location="null', description="null’, isContributorsEnabled=false,
profilelmageUrl="http://pbs.twimg.com/profile_images/894557199254638594/ncwnoqH3_normal.jpg’,
profilelmageUrlIHttps="https://pbs.twimg.com/profile_images/894557199254638594/ncwnogH3_normal.j
pg', isDefaultProfilelmage=false, url="null', isProtected=false, followersCount=0, status=null,
profileBackgroundColor="F5F8FA", profileTextColor="'333333', profileLinkColor="1DA1F2',
profileSidebarFillColor="DDEEF®&', profileSidebarBorderColor="CODEED',
profileUseBackgroundimage=true, isDefaultProfile=true, showAllInlineMedia=false, friendsCount=0,
createdAt=Fri Aug 04 02:32:13 EDT 2017, favouritesCount=0, utcOffset=-1, timeZone="null’,
profileBackgroundimageUrl=", profileBackgroundimageUrlIHttps=", profileBackgroundTiled=false,
lang="ru’, statusesCount=256, isGeoEnabled=false, isVerified=false, translator=false, listedCount=0,
isFollowRequestSent=false, withheldInCountries=null}, withHeldInCountries=null, quotedStatusld=-1,
quotedStatus=null}",

""tweethashkey" : "'567722fd56cbe27dd830ceef29f0907f9ce22e706da20f44b1ad249f5803b 737"

}

Table 3: Streamed Twitter JSON Sample Data

79

4.11 Evidence Preservation

Spark Framework provides Streaming APl which divides data in stream of batches in every
predefined time internal normally in seconds called Discretized Stream (DStream). In Spark, this are
sequence of data which represents RDDs. In this study, we utilized stream interval of five seconds
and in every batch, an SHA-256 hash key for the tweet update status was calculated and each tweet
post (text) hash key was also generated. The Spark forensic application processes the received RDDs
using Spark APIs, and the processed results of the RDD operations are returned in batches. Figure 42

and figure 43 below shows stream batches arriving in time interval.

Ebbbal Data From WM DataFrom WM Data From Data From
Time 0 to 1 Time 1to 2 Time2to 3 Time 3to 4

I
I
I
flatMap |
|
|
|
I

Operation
Words o

D%t:e_a-m’ Words From | Words From [l Words From Words From
Time 0 to 1 Time 1to 2 Time2to 3 Time 3to 4

Figure 42: Spark Streaming Dstreams

Discretized Stream (DStream) forms the basic abstraction provided by Spark Streaming and
represents a continuous stream of data which is received from a data source or a processed data stream

generated by transforming the input stream.

DStream RDD batches

input data ROD@timet ROD@time2 ROD@ time3 batches of
stream Spark Spark processed data
. b= | datafrom |emd datafrom |ee datafrom | _} i
Streaming time 0to 1 time1to2 time 210 5 Engine -

Figure 43: Spark Streaming Dstreams RDDs

To enable repeatability and reproducibility of the captured data and evidence preservation, the system
utilized spark streaming Dstreams (RDD) which are generated in batches at time interval as indicated
in figure 42 and figure 43 above. The system generates SHA-256 hash key for each batch and tweet
item before it is stored to Mongodb database. This ensures repeatability and reproducibility whereby
data gathered can be used to reproduce the same results when using the same method on identical test
algorithms or different algorithm on different labs and by different forensic analyst. This can also

ensure evidence authentication before court of law to proof that captured data haven’t modified after
80

capture. Below Scala code was used to generate SHA-256 Hash key for both tweet text and tweet

batches as they are received through spark streaming API.

//Generate MD5 Hash key for each tweet text

val forensicsmdShashkey = SentUtilities.generateMD5Hashing(getTweetTextcleaner(status.getText))
//Generate MD5 Hash key for earch batch of tweets received

val usertweetmd5hash = SentUtilities.generateMD5Hashing(status.toString)

object forensicsHashGeneratorUtils {
def generateMD5(message: String): String = hashString(message, "MD5")

def generateSHAl(message: String): String = hashString(message, "SHA-1")
def generateSHA256(message: String): String = hashString(message, "SHA-256")

private def hashString(message: String, algorithm: String): String = {
val digest: MessageDigest = MessageDigest.getInstance(algorithm)
val hashedBytes: Array[Byte] = digest.digest(message.getBytes("UTF-8"))
convertByteArrayToHexS5tring(hashedBytes)

H

private def convertByteArrayToHexString(arrayBytes: Array[Bytel): String = {
val stringBuffer: StringBuffer = new StringBuffer()
for (i <- 0 until arrayBytes.length) {
stringBuffer.append/(
java.lang.Integer
toString((arrayBytes(i) & Oxff) + O0x100, 16)
.substring(1l}))

}
stringBuffer.toString

}
}

Figure 44: SHA-256 Hash Key Generator

The generated SHA-256 hash key is stored in Mongodb with the corresponding tweet as shown
figure below.

n

81

Figure 45: Tweet SHA-256 Hash keys JSON Document

4.11.1 SHA-256 Hash Key Verification

To ensure that the Hash key generated during the tweet streaming and saved in Mongodb is valid and
can be used to verify the preservation of the streamed evidence, detect any changes on the streamed
data, we used third party online website MD5 & SHAL Hash Generator http://onlinemd5.com/. We

copied sample tweet text from Mongodb and generated SHA-256 Hash Key on the
http://onlinemd5.com/ web site which we compared with already generated hash key for that tweet

stored in Mongodb. The result indicated that the two generated Hash key matched and were the same.

Table 4 below shows our comparison.

82

http://onlinemd5.com/
http://onlinemd5.com/

Tweet Sample Stored In Mongodb:
But i hear Kalenjins warn Kikuyus of unspecified consequences if they will not vote for you in
2022 https://t.coli7vxf4fOkZ

A MD5 & SHA1 Hash Generator For Text

Generate the hash of the string you input.

But i hear Kalenjins warn Kikuyus of unspecified consequences if they will not vote for you in 2022 hitps://t.co/iTvxf4f0kZ

Checksum type: MD5 SHA1 ® SHA-256

String hash: 78A506A204DD2D00ACS753A1177D52DA40E9A0532DC4B223AD97655572133016

Calculate

Mongodb Stored Tweet SHA-256 Hash Key
78a506a904dd2d00ac5753a1177d52da40e9a0532dc4b223ad97655572133016

83

Sample Raw JSON Tweet Stored In Mongodb

StatusJSONImpl{createdAt=Sun Sep 17 16:05:24 EAT 2017, id=909402911666577408,
text="Independent of the international election observers is in doubt for legitimizing recent
electoral fraud in Kenya.', source='Twitter Web
Client', isTruncated=false, inReplyToStatusld=-1, inReplyToUserld=-1, isFavorited=false,
isRetweeted=false, favoriteCount=0, inReplyToScreenName="null’, geoLocation=null,
place=null, retweetCount=0, isPossiblySensitive=false, lang="en’, contributorsIDs=[],
retweetedStatus=null, userMentionEntities=[], urlEntities=[], hashtagEntities=[],
mediaEntities=[], symbolEntities=[], currentUserRetweetld=-1,
user=UserJSONImpl{id=1894715149, name="'Samwel Orwa', email="null’,
screenName="OrwaSamwel’, location="Switzerland', description="null’,
isContributorsEnabled=false,
profilelmageUrl="http://pbs.twimg.com/profile_images/695151844729950209/TV_jmsn2_normal
Jprg’,
profilelmageUrlHttps="https://pbs.twimg.com/profile_images/695151844729950209/TV_jmsn2_
normal.jpg’, isDefaultProfilelmage=false, url="null’, isProtected=false, followersCount=23,
status=null, profileBackgroundColor="CODEED', profileTextColor='333333’,
profileLinkColor="1DA1F2', profileSidebarFillColor="DDEEF#&',
profileSidebarBorderColor="CODEED', profileUseBackgroundimage=true, isDefaultProfile=true,
showAllInlineMedia=false, friendsCount=68, createdAt=Sun Sep 22 21:39:42 EAT 2013,
favouritesCount=2, utcOffset=-25200, timeZone="Pacific Time (US & Canada),
profileBackgroundimageUrl="http://abs.twimg.com/images/themes/themel/bg.png’,
profileBackgroundimageUrlHttps="https://abs.twimg.com/images/themes/themel/bg.png’,
profileBackgroundTiled=false, lang="en’, statusesCount=17, isGeoEnabled=false,
isVerified=false, translator=false, listedCount=1, isFollowRequestSent=false,
withheldInCountries=null}, withHeldInCountries=null, quotedStatusld=-1, quotedStatus=null}

"‘, MD5 & SHA1 Hash Generator For Text

Generate the hash of the string you input.

StatusJSONImpl{createdAt=Sun Sep 17 16:05:24 EAT 2017, id=909402911666577408, text="Independent of the international election observers
is in doubt for legitimizing recent electoral fraud in Kenya.', source="Twitter Web Client",
isTruncated=false, inReplyToStatusld=-1, inReplyToUserld=-1, isFavorited=false, isRetweeted=false, favoriteCount=0,
inReplyToScreenName="null', geoLocation=null, place=null, retweetCount=0, isPossiblySensitive=false, lang="en’, contributorsIDs=[],
retweetedStatus=null, userMentionEntities=[], urlEntities=[], hashtagEntities=[], mediaEntities=[], symbolEntities=[], currentUserRetweetld=-1,
user=UserJSONImpl{id=1894715149, name="Samwel Orwa', email="null', screenMame='"OrwaSamwel', location="Switzerland', description="null’,
isContributorsEnabled=false, profilelmageUrl="http://pbs.twimg.com/profile_images/695151844729950209/TV_jmsn2_normal.jpg',
profilelmageUrlHttps="https://pbs.twimg.com/profile_images/695151844729950209/TV_jmsn2_normal.jpg’, isDefaultProfilelmage=false, url="null’,
isProtected=false, followersCount=23, status=null, profileBackgroundColor="CODEED", profileTextColor="'333333', profileLinkColor="1DA1F2',
profileSidebarFillColor="DDEEFE', profileSidebarBorderColor="CODEED', profileUseBackgroundimage=true, jsDefaultProfile=true,
showAllInlineMedia=false, friendsCount=68, createdAt=Sun Sep 22 21:39:42 EAT 2013, favouritesCount=2, utcOffset=-25200, timeZone="'Pacific
Time (US & Canada)', profileBackgroundimageUr|="http://abs.twimg.com/images/themes/theme1/bg.png’,
profileBackgroundimageUriHttps="https://abs.twimg.com/images/themes/theme1/bg.png’, profileBackgroundTiled=false, lang="en',
statusesCount=17, isGeoEnabled=false, isVerified=false, translator=false, listedCount=1, isFollowRequestSent=false, withheldinCountries=null},
withHeldInCountries=null, quotedStatusld=-1, quotedStatus=null}

Checksum type: MD5 SHA1 '® SHA-256

String hash: 21678920068FEOAFECEBY2F1EDA21873751698DA42BECO7A31C9352D1ED43C12

Calculate

84

Mongodb Stored Tweet SHA-256 Hash Key
21678920068fe0afec8h92f1eda21873751698dad42h6c07a31c9352d1ed43c12
Table 4: Tweet SHA-256 Verification

4.12 Model Design and Classification

We collected 3,138,367 tweets (24.2GB) which were used for training the Naive Bayes classifier. The
tweets were used to train Naive Bayes classifier model which was saved on the Spark cluster and later
used for streaming live tweets and classify them for hate speech and cyberbullying. To design the
model, we utilized Spark ML API (spark.ml) which provides ML pipelines (workflow) for creating,
tuning, and evaluating of machine learning model. In Spark ML, a pipeline is defined as a sequence
of stages, and each stage is either a Transformer or an Estimator. These stages are run in order, and
the input DataFrame is transformed as it passes through each stage. Below figure shows the Spark

ML Pipeline stages we adopted for the model design.

Pipeline Tokenizer | MBS | HashingTF > Naive Bayes

(Estimator)

Naive Bayes
Pipeline.Fit() i —> i) i) | Mode

Raw Tweet Words Feature vectors
text

Figure 46: Spark ML Pipeline

For this study, training raw tweets were read from local disk, cleaned by passing through Scala
function which removed unnecessary characters. The cleaned tweets were ingested into Spark ML
Tokenizer were the tweet text were broken down into their constituent words. The tokenized tweets
were again passed through Spark ML StopWordsRemover with a dictionary of stop words. This
removed commonly appearing words which does not contribute to the structure of the tweets. We
split the tweet data into two datasets, 70% (2,197,498, tweets) as training dataset and 30% (940,869,
tweets) as testing dataset. The training dataset was used to train Naive Bayes model, and test dataset

was used to evaluate the model accuracy.

85

For accuracy of the model, we used cross validation using Spark evaluation tool namely
MulticlassClassificationEvaluator within the spark.ml.evaluation.MulticlassClassificationEvaluator
and apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} packages. After the model was
trained, evaluated and tested with training dataset, the model was saved on local disk within the
Apache Spark Cluster. The model was later reloaded for live tweet streaming and tweet hate speech
classification and categorization. The following figure show the Spark ML pipeline as used in this

study.

label éllil‘we.el‘ sDF. Eréa t F:ﬂ.rltepl .;céTenpUi ew("cleanedtweatTable")

val splits = labeledtweetsDF. randomSplit{Array(8.6, 8.4), seed = 12345L)
val trainingdata = splits(@).cache()
val testingdata = splits(l)

J.irurrini \nTota}. tweet Count = “ + labeledtweetsDF. LuuritH] * \li
printin{"\nTraining tweet Count = * + trainingdata.count{) + ", * + trainingdata.count * 186 / (labeledtweetsDF.count()}).toDouble + ": + "\n"
println("ynTest tweet Count = “ + testingdata.count() + “, " + testingdata.count * IBB)’ {1ahelndlunersDF i:uilnl:} lul}nub\z} + "%") & "\n*

i.lal.iﬂm:liikeriif:er - liéu Tt‘:keiil‘zei"{] L
LsetInputCol{“text”)
setOutputCol {“words")

val stopwords: Array[Siring] = SentUtilities.getsropwords(loadconfigProperties.nltkStopkords) . toArray

val stopwordsremover = new StopWordsRemover()
.setStopWords | stopwords)
.setInputCol {doctokenizer.getOutputCol}
.setOutputCol|"filtered”)
sEIEu?SPnslletfalse]

val hashingTF = new Hash lngIFt]
.setNumFeatures (20808)
.setInputCol ([doctokenizer.getOutputCol)
<setOutputlol|“rawFeatures")

val idf = new IDF(}
.setInputCol (hashingTF.getOutputlol)
.setOutputCol(”features™)
.setMinDocFreq(B)

val normalizer = new Ni:rmal.\zer(i
.setInputCol[idf.getOutputCol)
setuutputcoli rreatures J

val NaweBay@sHodeL new Nalveaayesil

ual pipeune = new Pl.pcu.ncti setstagesurray[uocmkenizer. stopwordsremover, hasningTF, 1df, normalizer. NaiveBayesModel))

val model = p.ipeunc I‘Ltitralnlnguatal

val. prcuu:tions = muacl transrermt(c:tinqnata:
-muel wrnc nucrwri.tc:r 5avel .fnou!5nuwaar.i'\tamaiveaayesﬁouﬂ)

ua‘l. predxctionDF DataFrame = prcdicnen select({"tweet_id", "name”, "screenName”, "originalProfilelmageURL", "source”, "useraccount_id”, "location", "AccountcreatedAt",
orlglna\tweets ' te:t". "tweetCreatedAt”, "label”, "prediction™).toDF{)

Figure 47: Spark ML pipeline Naive Bayes Classifier

86

4.13 Model Deployment

To submit the spark forensic model to Spark, we needed to compile, package it into jar file and submit
it to Spark. Since our forensic tool depended on other several libraries to run, we had to package our
code with these dependencies into one package (jar) that can be submitted to Spark cluster. To do this
we used Scala dependency manager called SBT, which we installed to our cluster. With SBT installed,

we added our code dependencies with SBT build.sbt file as shown in figure below.

phame := "SocialNetworkForensics"

version := "1.0"
scalaVersion := "2.11.8"

// Repositories

resolvers += "Maven Central" at "https://repol.maven.org/maven2/"

// https://mvnrepository.com/artifact/org.
libraryDependencies += "org.scala-lang" %

// https://mvnrepository.com/artifact/org.
libraryDependencies += "org.apache.spark”

// https://mvnrepository.com/artifact/org.
libraryDependencies += "org.apache.spark"

// https://mvnrepository.com/artifact/org.
libraryDependencies += "org.apache.spark"

// https://mvnrepository.com/artifact/org.
libraryDependencies += "org.apache.spark"

// https://mvnrepository.com/artifact/org.
libraryDependencies += "org.apache.bahir"”

// https://mvnrepository.com/artifact/com.

scala-lang/scala-library
"scala-library" % "2.11.8"

apache.spark/spark-core 2.11
% "spark-core_2.11" % "2.1.0"

apache.spark/spark-streaming 2.11
% "spark-streaming_2.11" % "2.1.0"

apache.spark/spark-sql 2.11
% "spark-sql_2.11" % "2.1.0"

apache.spark/spark-mllib 2.11
% "spark-mllib_2.11" % "2.1.0"

apache.bahir/spark-streaming-twitter 2.11
% "spark-streaming-twitter_2.11" % "2.1.0"

typesafe/config

libraryDependencies += "com.typesafe" % "config" % "1.3.1"

// https://mvnrepository.com/artifact/log4j/logd]

libraryDependencies += "log4j" % "log4j" %

// https://mvnrepository.com/artifact/org.

"1.2.17"

twitterdj/twitterdj-core

libraryDependencies += "org.twitter4j" % "twitter4j-core" % "4.0.6"

// https://mvnrepository.com/artifact/org.

twitterdj/twitterdj-stream

libraryDependencies += "org.twitter4j"” % "twitter4j-stream" % "4.0.6"

//1ibraryDependencies += "org.mongodb" % "

Figure 48: SBT build.sbt

mongodb-driver" % "3.4.2"

87

Once we installed SBT, we packaged our project and dependencies into a single jar using the

command package as shown in figure below.

Terminal

+ smulwa@KENBO-SPK@8:~/IdeaProjects/SocialNetworkForensics$ sbt

.. [info] Loading project definition from /home/smulwa/IdeaProjects/SocialNetworkForensics/project

“ | linfo] Set current project to SocialNetworkForensics (in build file:/home/smulwa/IdeaProjects/SocialNetworkForensics/)
> packagel

Figure 49: SBT JAR Package

This will create a single jar file inside the target folder which we copied to the jar folder within Spark
home folder in our Spark Standalone cluster. Once we copied the spark forensic jar to the cluster, we
used spark-submit command which is bundled with spark to deploy the jar to Spark cluster. The

following code shows the command we used to submit our forensic tool job to our cluster.

smulwa@KENBO-SPKO08:~$ spark-submit \
--class TwitterforensicAnalysis\
--master spark://KENBO-SPKO08.forensics.net:7077 \
--executor-memory 6G \
--total-executor-cores 2 \
/usr/local/spark/jars/socialnetworkforensics 2.11-1.0.jar
Once the job has been submitted to the Spark cluster, it can be monitored through the spark GUI on

the browser. The following figure shows Spark GUI showing currently executing job.

ook .

Spark Jobs 7

EEERREERR

ERE

|

Figure 50: Apache Spark GUI Monitor

88

4.14 Model Evaluation

The forensic model needed to be evaluated for performance and correctness with test dataset before
it is deployed for use on live data stream. To evaluate the performance of the forensic model in terms
of quality or predictive effectiveness, different metrics were used. F-measure (F1-score) is a statistical
measure of model’s test accuracy that is the weighted harmonic mean of precision and recall of the
test where recall is the fraction of all samples classified correctly as positive by the model and
Precision describes the ratio of all positives samples classified as true positives by the model. For
evaluating our model, we used spark.ml.evaluation packages which provides a suite of metrics that
are suitable for evaluating the performance of spark data mining models.

For this study, F-measure which is provided in spark.ml.evaluation was used to evaluate the
model performance. F-measure was chosen because it includes metrics like precision and recall that

are used in order to take into account of errors that might occur if dataset is highly unbalanced.

Accuracy ACC = s = x 50 (3~)
Precision by label TP SN S (3,—0)-8 (y,—0)
PPV({) = —=— = -
(O) = 7o7Fp Yo' 6(3i-0)
Recall by label TPR(f) — T§ _ i i()'i;?f)-a(y;—f)
iio 0(y;i—1)
F-measure by label _ 2\ . [_PPV(£)-TPR(¢))
F(pB,£) = (1 +8) (ﬁQ-PPV(€)+TPR(£)
Weighted precision PPV, = % > iep PPV (2) - Zi\;l 8()’«; —)
Weighted recall TPR, = % > yer TPR(C) - Zi\;l 3(y% —)

Weighted F-measure F,(B) = % Ser F(B,) - Zi\;—ol 3(% — /)

89

The accuracy, precision by label, recall by label, and F-measure by label of the model was used to
evaluate the performance of the model. Recall metric measures the overall classification correctness,
which represents the percent of tweet posts that were correctly identified as hate speech. The false
positive (FP) rate represents the percent of tweet posts that are not truly offensive but classified as
offensive. The false negative (FN) rate represents the percent of tweets which are offensive but
classified as positive tweets. Precision presents the percent of identified tweets that are truly offensive

messages, and f-score represents the weighted harmonic mean of precision and recall.

For estimating the performance of classification model, we used Cross-validation (CV) which is a
method for evaluating the performance of a model classifier for unseen data. Cross-validation (CV)
works by randomly splitting the whole labeled data set K (K-folds) equal partitions. For each data
partition, the classifier is trained on the remaining K-1 partitions and is tested on data from that
partition and the final accuracy of the model is calculated as the average of all K accuracies. Below

figure shows the cross validation codes which we used for validation.

val modelevaluator = new MulticlassClassificationEvaluator()
.setlabelCol("Label"™)
.setPredictionCol("prediction”)
.setMetricName("weightedPrecision")

//Evaluate the model for accuracy

val modelaccuracy = modelevaluator.evaluate(predictions)

println("Prediction Model Accuracy: " + modelaccuracy)

println(modelevaluator.islargerBetter)

// Tune hyperparameters

ual paramGrld = new ParamGr1dBu11der{) addGrid(hashingTF.numFeatures, Array(1000, 10000, 100000))
.addGrid(idf.minDocFreq, Array(0, 10, 100))
bu11d{]

'/ Cross validatior
Lross v idation

val cv = new CrossValidator()
setEstlmator{plpellne]
.setEvaluator(modelevaluator)
.setEstimatorParamMaps(paramGrid).setNumFolds(16)

// cross-evaluate
ual cvModel = cv flt{tralnlngdata)

+ [

Figure 51: Spark ML Model Cross Validation

90

The following table outlines the model performance as evaluated using spark.ml.evaluation library

and upon cross validation against 10 folds (K-folds).

Multiclass Metrics Fraction

Model Accuracy 0.7706885868277092
Weighted precision 0.7776074500404562
Weighted recall 0.7705571409937038
Weighted F1 score 0.770139251942318
Weighted false positive rate 0.11993472033775189

Table 5: Forensic Model Performance Metrics

This study involved Multilabel classification problem which involves mapping each sample in a
dataset to a set of class labels. In this type of classification problem, the labels are not mutually
exclusive hence the predictions and true labels are now vectors of label sets, rather than vectors of
labels. Multilabel metrics, therefore, extend the fundamental ideas of precision, recall to operations

on sets. The following table shows individual Multilabel metrics.

Multiclass Label Measure

Class 0.0 precision 0.77933239509749
Class 1.0 precision 0.6818904322661206
Class 2.0 precision 0.82054164908874
Class 0.0 recall 0.8380440691745968
Class 1.0 recall 0.8213156784958556
Class 2.0 recall 0.6997099653163271
Class 0.0 F1-score 0.8076225987633927
Class 1.0 F1-score 0.7451370760495283
Class 2.0 F1-score 0.755323873211827

Table 6: Multiclass Label Metrics

91

The study also employed use of confusion matrix which is a matrix where rows represent actual
classes and columns represent predicted classes to see the classifier effectiveness. The following table

show confusion matrix which was generated using Spark ML API.

Predicted
Hate Speech Sentiments Positive Sentiments Neutral Sentiments
Hate Speech Sentiments 256,050 11,511 38,328
Actual Positive Sentiments 71,75 164,693 28,334
Neutral Sentiments 65,268 65,136 304,374

Figure 52: Model Confusion Matrix

This formed 940,869 (30%) of the testing tweets and as per the above table, 256,050 Tweets were
correctly classified as containing words which are offending, insulting, intimidating, inflammatory or
bullying in nature while 164,693 Tweets were correctly classified as Positive Sentiments and 304,374
Tweets were classified as of Neutral Sentiments. Out of 940,869 Testing Tweets, 215,752 Tweets
were wrongly classified as either hate speech Sentiments, Positive sentiments or Neutral Sentiments
which formed 23%.

92

4.15 Model Results and Analysis

From the Model reports that we presented in bar charts and pie charts, it was evident that bullying
and sexual related offensive language/hate speech was rampant within Twitter social network with
32.8% and 19.2% respectively. They were followed by violence related hate speech that formed
10.7%. Ethnicity and Religious related hate speech formed the lowest with ethnicity representing
7.51% and 0.467% respectively. At the same time, we had tweets that did not fall with the range of
buying, sexual, ethnicity, religious or violence and they were categorized as others and formed 29.4%
of the tweets streamed. The following two charts shows sample of the forensic report represented
using pie chart and a bar chart.

Categorized hate speech tweets

Bullying
Others
Sexual
Violence
Ethnicity
Religion

Figure 53: Categorized Hate Speech Tweets Pie Chart

93

Categorized hate speech tweets

120k

100k

80k

60k

40k

20k

Violence Sexual Religion Ethnicity Bullying Others

Figure 54: Categorized Hate Speech Tweets Bar Chart

The following pie chart shows the overall classification of the tweets streaming using the forensics

models classified as either hate speech (Negative), Positive and Neutral tweet statement.

94

Tweet Sentimental Classification

B HNeutral Speech
B negative Speech
B Fositive Speech

@© Copyright 2017 forensic.net
Figure 55: Tweet Sentiments Classification Pie Chart

Again, the chart shows that 32.3% of the tweets formed Negative statements, 41% tweets were

Neutral and 26.7% tweets were Positive statements.

95

For reporting, we designed web based front end interface which allowed investigators to view classified tweets with account metadata,

stream date and time which can be used to authenticate each tweet post. The following shows sample of hate speech classified tweets.

3 bar. Ipart bookmarks now

Filar hate spaech by categeny

— oo
S, =

Tt Azeourd Accoust Account

[Entry Creation Creaion Creation Stream

L] Taiter Account i Uner hame Screenbame Date. Time. location erigraProfieimagelRL source Tweet id Time. Twest item SHASE Hash Koy Lwer Twoet SHAZ5S Hash Key
Ty Kbt Lampartiita IRUTMIDTES Ky of inspectied OSOTE THIS0Eas04sd a0tacs Th1a Nt T A Do e T S 6 SeTedSE 14 el

-

ol o o 1

RO Kanoh
m Eargon

WATH Ham 2 DMNZUCMGEG 1745 s 5 Etvicty Neurd Hae TS DSSA0E ZSGARMMTATRNOANTIT cHetsTis TSR] EMaS b oM EI0 e a1 bbb 0N Teed T
W '* - 217 s et Kaberien weeth ek At
= Tisted b Ltsens looiees.

2 Lra] e VybeParnar B Marsbi 0 1STISHTBOCSEG Etwicty i Hae 050817 | SdedMadIIN Qe Sace Madaldba 1 B312e25:30) ot 71608 T MalAd iET3-b 290005 13 T0 TR 3: 139300 T a0 %35
Krystal Vs au Koy gt &
¥
1 1847538 AFsGamma MmGanma {8 BiIn .‘ Etricty Neurdl Hae 5 0R20SE BTI2664081 Mo peTodtlhiad 15 s Tde5% e T84 120502451 1 2 Jencsifind
L] r sprech speech u
4 TS Voice Of Fraridrkiots a1 %30 | OMBAOTISTROET | fricty Neurl Haln O5E245 E0cR2ERMIG hedaTad T4otie] Baded 24RO ST 2o TS0 T & 5 12878 R Taaad 7 S0eeiSA00 4!
Diaspora 21 au e gpeeh A
§ 53720666 NCM n_muyse

L] 1rs2Ee3 Anglsdiock AmcicD g BO68 Mairehs, dopos | SOSNITITION0ND OQE0F3T There Wil Ba Mo Elecion With Ethricty 50925 608eITOMENTT a6 1 5abE TS TIn30 5% e BAbbE T | ac 8085 | B80! 25eThr 583, 5 N
2 ™~ Kenya b, 1] E3C AFA NEBC OR U3 -
i
STSREEATEITS Agoga Inforera Moot WHTUBHUEN 1705 Eteicty BT b S0 StECoet 66811203 STORASHSIRSOTI | BT e 224 G812kt cad S TaciSes!
Mreh 7 -
. oW you behase,
L] ANEreE (Tharrges WaaDant b 2L 1naxn Mairets, WHISTIEITNHSE 115 062108 Efwicty Neural Hawm TOe 052N EMOBARANC2IIadb T coeBECOHSE UGN EMIEAGE8LIL TRCaE 15 CHRIDONGSS TS5 1 Tedlan] o 38157 31l
Pt ™ Lo Fb ™ oD e i)
L oo Yoo murg_vocoe 25552 Weepa 06236 Ericky Hate DRMI6 EIOBObECl0 adb ek ZBMAEBAITROCIE1S 114 RieTBHITSK 00 5t TEcck S6310cdaadis
Mg . P spoech a
ROIZIERHH Goge GeplaMENG niR Tt CGMGA T posecoty Jibles i asaforalpaty, EMeicty Meunl Ha & N 8 eSS T SOca1 E96304CDI BT oSO SaNn T | ead0 4l e acSacectHS IS
e [] i Nasa s trbal pat for e kos backed by spoech speech 2
. iuhylas and curandy womshipped by kartas
T
3083618 S _Rawirgs Sr_Rwwlrgs WXL Fongal SO4IATRIILIRELDS CEITEE AT Soeosecoly Jubles s a saloral party, Eibeicly Neursl Hale 0BITEE & 2a584 adbTcBelEE R 1GE IIREN LA 3 abbiCle 1880 19602 167001 A 2R0dS 30
Al Karia 2] Nasa i @ trisal party for e los Dacked by wpeeth speed o
ubyas ane cemedy worshoged by tambas.

Figure 56: Hate Speech Classified Tweets

96

For preservation and authentication of tweet hate speech evidence, raw tweets were saved in Mongodb and SHA-256 Hash key generated

for Tweet update status and whole tweet Account metadata. The following figure shows sample of Twitter fully Account metadata.

3

C) O Rereniietret)s +

Apga For quick dccess, ¥

Tweet I Twitter hecosnt ©

ORDEIIBERETIADE ABATIEISS

OA0NEI0ETT N MOANE

WIOIIEIAETIE0G AISNIITEINGI L6

VNI NATRTE

Streamed Tweets with Corresponding SHA-256 Hash Key
Tweat Tweet Sh-39 Hash Sry

SiahasSONITERTeatedAn5un Sep 17 10524 EAT 217, Gro00400611BEEETT408, s Indepasdent of e interaliona Chert’ s Trurwcatocktalsn, inftighTaStatavion.1, rPeplyTollseridn.1, 67

190, iRiephToSe o, g Bacesrul retmeetCaurts0, e e,] , serVertrrt ..u-erwn-:l { 1 4. ar

el iser 250 Nimp e 34 £) uﬂfhvadﬁ'ﬂ eonade'rul’ soreorbarme OreaSamwel bulw’i.\mwd iphior b W_mand_noemal jpg’
s bt T COTINol T _jrard_romaljpg, g, url\‘ lb’ﬂmﬂ'il!—mﬁlhl [I')MMGCJU"CWE:D' rofie TetCrior 332037 problelirkColore'| DAYFT, peofieSidearF I ior DIDEEFE
T, profiel i y cmatedie &r&v??z 3347 EAT 201), fmvourtesContZ, o0 5200 Srefore<Pachic Time US & Caradal,

age B g o pog Sackroundimage e Kabe i condr g pag’ , Freeslator=iaise, latedCounee
it lowiguestSent atthadCoortrisssnad], 1
Staha SONITplicrmatedAteSun Sep 17 16.05:31 EAT 2017, ceQOG4(50G006T77952. teaiv'Xemya Slection » M pars: brpes s, hog i code Thes: L Top News' 1, rReply’ T340
Favorioceiase, sRetwreled=abe, vorteGomi=. Aoy ToSaveshame il prolocaten=nul, place=redl. retweeCoundl isPussbiySenstvertase, lng~en, conistutoniDsfl mbﬂsm.s'vu isrhndonE ntibes=(), Enwbes {URLEsSON mplart~ Tios oo wd i VTR,
exparcedUR. =Hig: e Tamioksyps comiagel 2621, deplyURL ” 3}, URLE: o Mz Lo/ TACEEWPPRLL, pxpanceclUAL < Hip: buww. sambioisch combeyalsectiors rerun dsplarURL #rarrhckook comfksryaelecter.]| basbiagintiinns
[rashtagEnny JSON Mo st~ Kerya). HashiagE ety JEON roifest~Eecton] mecliE: NISEESELE, LM £ mecalFLTNEp s ting comvinsdaTL T FATATITE W g, radl RLIEAS o 70 neing com e DTLIWONNR Wiy
topancecURL “Hipss phoalt. displayURL KIWENORT {0e5e] | haght y] resizpa107), 1Sarnhwidha 595, beight« 200, e 00), 2eSizn{activeS6, hagh=10, reskies100) Sitatwidha50S, beigis300. rezes 104},
[re— e i estAlTeaterull] syraboErttessf] I 58, rareKeryn Top News' saib'rul’, scrisriNarmss MeryaTapewr’, locatioeHoays' descrphon="Top risws,
0pETCNS b Dends o Tecia st 1 r #Kam 8 aour T m L= protbeimagelini= Ty i magesT (P ., petisiragelHIDSS E . Wmg covcfie_magesTHTZSATTSASSO8TERLin0N rorsa

agestute, i hip 35, sl 0EED, 7, pelieLinn Sl O0MBH oo DN, —
. tenduCour T 2015, tvaurtesCounteT, ‘.

Gl ety b iy Sackiprnd_mages? 4,

profieRackraund nings iHEps* htps Vte vmg.oripriie tackgrtend, nms"I?N?HIJ?R TRy o, Thed=tise, lang o, 1t -‘3‘!-\8?
witHecinCountres=nl, quotedSuataicn. |, qurecSaiureTul)

SatnSONITpRoealenti=5un Sep 17 F605:36 EAT 2017, o-S084(206 1585356096, 1ea=RT @samswey. St Lous oouce offcens convcted D hops it ool I LheQUN, source T BPuncated=talse. inFepy ToStatusid=-t, infegl olsend=1, L o
nRephyToSormriiame <, peolocationsnul placa=nul retweetCountl. nPassiblySensiivestalse, lang=er, cortibaton Dve] nstwastecSiruys S SONInpHcreastdhl*F Sop 15 17:38 54 EAT 2017 o*R0BTC1066E0B57H630, teate St Lous polce oficers comvacied. Q"u'\oo‘\l.KIUhOUN

s “torel, Truncatedeioise, n‘uu,w,smnm' InRlaglyTolhheridn. |, sFaverteduisie, mArtwestedniaing, tvormeCourt=STi5 rRepl ToSmeertianesnul’, peslocatormeul placesrill rewestCourt=3153 i angeen’
erllentorEsttess]] us J pacit . expandedUFL=WEps: " duplayURL= netier sormis w7] | mm[mn'f.uneﬂ)wﬁmld--l
aresar 5o Hingi =TI TTAIT names Samyed Sinpungur, e, scseneHamee vy, caioe=How 1, MY Acihvst, Dt Soertst & Poicy Ansyst, Saskrd tlum. CoFourdes, & !
pha.wing sormiceudle e g, roialmagsL e g o rks img comvprofle ﬂmﬁ.nm TISTES 4588 184, rermal o, ADetn ot mge=is, Ut oursale g, sPclclelne, biownCeurts35068. vt
prfieBachiraundColor CIOEED, probisFentColor- X100, profls, kol JATFY, clor=TOEERY, profi g , FiendaCoures 1557, craatecht=The Asg 36 104808 EAT 2012,
twourtesCoustei 4206, Tire (L% & Caradal), ¥ rageli=t o g T ,' e rHEps: o e, lang='or, stasenCourinddTes
ecEratiedsisiue, isishedeTun ramintortase, ivecCounte1320. o i SCHImgi g 23264 02 587 207, st Elack e e
.mwylmma;qmap«'wmmm ‘\eusmmmmm'r{m wourmee Ternr ey Fhone’, s Tosncated=atse, n—-q'csu..u..u meprm:s F 3 : o, geod ocat 1. placesrut
4, Enites * 1 {7 , reme ¢, srunle . screecNressney,
e 11l "wing Corm protie e g5 1B _armal
et . b g oot 14888 S ik,coml g, s raetage e, 1 1ep- s o, o , satar, p ok SIS, e b= DAY,
3 “CODEEDY, prafielseBachy 9 5 aumm T g 30 1043106 EAT 2312 mumcm-mﬁs w.-o»- 250, tiraZere«Pacdi: Tive [US & Canata]
e 9 5 g, o s \lwu:"l_' i pogf lang=es’ ntdCountr 1320
d 3 1 1 it e Xz eSarus Sy serblames e, 9T TSI mimm-l.::x:-wmurvlm it 1 oMK W OUN,
eparcecRLFigs) 2, deplaylFL = T, hastagEvises])) He KOLY, emalenuf, sreeshiares Tvinkieli
e Cears, L, descnghon T few 521 Chagor of i Sovsin fts fresst Swoceses, SCorbetrsEnablgetase. fleageurietes, nmmm eSS SO e .
g ke g okl FoRs_nemal oy, D sgelabe, i1y - TolowersCourd=2010, sistunsnal, profieBachoroundCoior=F 55BN, profisTanColors" 1130, proflelrhColor= \DATF.
CIDEED, proftiel e 2 3 et MC«A’?“A!. A 38 025400 EAT 2017, favourtesCount=4542, uicOfisets. 18000, trneZane=Cerdral Time (US & Caraca]
" g oy g, 5, alue 3 A 5 5
SECE 204102 EAT 2017, o9 3 Lous police at o rase of per 100,000 population. The US musder rane 5 par 100,000, source=Twi: “rore, IS Trrcated ~talse,
ey TeStabelde-1, nfleply Teklseride-1, dstalse, tarestleCourts 1670 i ¥, geol i, placenrull ¥ g, 1 , usertfetorEriten] rErites=] hubiscEnttess]]
rdaEattess]. sybotirtisens]) unerel 2T, rree St Sy, bl erwcaes sammney, s New York, Y t Pokcy dealpt CoFourder, Campai 7 & Policn Violern
| e, r OPISTA5 1SS magS 18am,_nomalssy, Titon ks, g comiprotic_meg L remapy isDetauFrotimage=tatss, ut= g ourslalen o,
iPrmleciedslase, ‘Satrout,prot G THRF, “DATFY. Sk DOEEFS £ ! , nDastauProfie=te, showhlinine Vedi=lise, FHesdsCaurt=1 552,
eremstArTho Aug 30 104805 EAT 2082, faveumesCount=1 4208, 1icOfset=- 22500, J*’Maak Time (US & Canada?, g hitp) oy, by,

profieBackgraandThed laing, lig='er’, saioesCour (MHTE, eGeobrabiodetabe. sverfedsie, tarsatretae, it 320, nFolowRtepestianttaba witiheidnCourtingsml] ﬂl‘Mvam-ml quoiedSiaside-1, cmeoa:m’ L]

St SON TrRoreatedAt«Sun Sep 17 160543 EAT 27, 0-00Sel28652 1HIT2ET. nu-mgsenn-; pale Duse and Washisl sy Ty defend b thssmen at EBC Would you ever Feel e need 1o b mare ioyal Lo your bide 1" sounce Tutier for Ao, mTaurcated=talse, inReagy ToStanald X

ety ToUsedde. 1, hFaertateialie tavemeCouets] £, placemnet, raweeCourt= sFossbi e’ iR Seo 18 21T EAT 017, Wr08TSIZIEE
imceDuse il Wasial sy ey deferd e besen t IEBC Wk you s s e s i be e ity o i s o™ sowne co#’ nTuncaisd=alse 7 1 i +
n%ﬁ' 3 pacasFlac VCoteHE' d=T18d156b7 136031 e, placeType='cay J—"'\'-\l’lollm‘llrcen |mmm|sm"3s-1 oo, Mo Nacb, Koy, bureingBen e Pt
[ltafers 450toe. georenyTy ; e, e Enttesef rEotend] eshiagfles:]
] 1, e i Ben.mm' e'ul-'ud‘ luu'M!Eu'wK.\ih’ ccstir Ky dmerghons W Fassirate Jumala CE0 MPmmsm: % -
inContibuiorsEnablsdetaie. proflemageliiHip.ipbatwieg comiproti_mages v A 7-CZpHIAY. o 5, SOBAPRA BagATa e, U hep. e sl A,

Figure 57: Preserved Tweet Sample

97

Again, the following shows same of tweets classified as hate speech

Stream Stream
Status Update Categery label prediction Date Time: Tweet item SHA25E Hash Key User Tweet SHA25E Hash Key
But | hear Kalenjine wam Kiryus of unspecified Ethnicty Neutrai Hate 1700- 0502:20 17 13316 & 27
consequences if they will not vote for you in speech spesch 2017 PM
2022 hitpsitcoliT vid kT
RT @harriseamurnia: Thes Ngunjil pelisan Ethnicty Meutral Hate 1708 050817 309 ecdcT140847 7 7
against Maraga has definitaly deapaned the spaech speach 2007 PM
{eeling amongst other tribes that Kikuyus are
RT @CPATRUs: @Asamoh_ @Kamanja_Jnr My Ethnicity Newral Hate 1709 05:20:58 b7 1 3d1BuSO8TT,
apinion: ios and kikuyus will never fight Fight speech spesch 2017 PM
‘will alwnys biwn kiayus and lales This ¢
Transgender student shol, killed by police on Georgia Sexual Neutral Hale 1700 O7:00:32 Sea34 130017 1aeelc He Tedcnd 0T T4balB24 34506060 145406 2e 1d51 2a 16
Tach campus hitps:iL coDgbGEOWLUN speach speech 2017 M
@WilkamsRulo Plan A violencs tailed. Mass killngs n -~ Violence Neutral - Harle: 1708 052525 Tj:h
Hisumu. Kibea, Mathare + burming of schs. Loading speech speech 2017 PM
rourd 2, We are alart! MoReformsMoElectons.
RT @Hommonsensa T @WikamsRuto Plan A Violence Neulral Hale 17408- 052632 7 73 18cdd 1 A2cellST 7 TeT4edd
wichorce faded. Mass killngs in Kisum, Kabra, sprech speech 2007 PM
Mathare buming of sche. Loading round 2. W,

Table 7: Sample Hate Speech Tweets

98

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5 Conclusions
In our study, we designed a forensic tool that analyzes tweets sentiments for hate speech and

cyberbullying using spark machine learning techniques. The classification algorithm was
implemented in Apache Spark cluster using the Apache Spark’s Machine Learning library, namely
Spark ML API. The study relied on distributed contributing framework Apache Spark and made use
of Spark streaming API to stream Twitter data and Spark ML API for tweet analysis and classification.
We designed Naive Bayes model by utilizing a dataset of 2,197,498 tweets to train the model and
940,869 tweets for testing. The model was used to stream and classify hate speech and detect
cyberbullying for Kenyan based hate speech during 2017 general election and following the
nullification of presidential election. Data mining techniques namely text analysis (sentimental

analysis) proved effective in detecting hate speech and cyberbullying in Twitter Social network.

The model was able to successfully detect and classify hate speech which mostly were ethnic based.
The study has demonstrated how twitter social network data can be collected and preserved within
Mongodb database for forensic analysis to ensure its authenticity before court of law and ensure
forensic reproducibly. The study has shown that by generating SHA-256 hash key for each twitter
item within DStreams and saving the hash key with each individual tweet item in database can be
used to detect changes to the data stream during analysis or different forensic analyst can verify the
twitter data and thus repeatability/reproducibility of the forensic data can be done. This feature can
be used for forensic evidence preservation and ensure changes to the streamed evidence data can be
detected by regenerating the SHA-256 Hash key and comparing it with already stored tweet item key
in Mongodb database. The study also has shown that by preserving each tweet stream date and time
can be used to document the acquisition of the evidence hence improving the chain of custody. The
forensic tool was able to ensure chain of custody by maintaining “When” the evidence was captured
(Date/Time), when each tweet was created/posted, “Where” the evidence was posted from (source)

and tweet ID.

99

Twitter page printouts and screenshot may not be authenticated or allowed as evidence before a court
of law because they lack indication or proof of its creator, source, or custodian. The study has
demonstrated which twitter account metadata might be relevant in forensic analysis of twitter posts
and how it can be captured. It was evident that a lot of cyberbullying and hate speech is rampant in
twitter social media and when the data is well retrieved and preserved, it can form basis for forensic
investigation. However, the issue of the dynamic nature of the updates makes it a challenge which
calls for real live streaming of social media data which might demand large storage space. The
research has shown that Apache Spark Streaming API can utilized to supplement traditional forensic
tools in solving challenges involved in handling big data volumes, velocity of data generation, storage

and processing of big forensic tweet data.

5.1 Limitations

The study was restricted to English tweets and was not able to analysis and classify tweets posted on
other languages like native or Sheng languages which is commonly used on most social networking
sites. In addition to tweet text updates, Twitter social network also makes use emotions and Symbols
to express one’s feelings. The study was not able to analysis and classify this emoji and symbols to
determine if they are of hate speech or cyberbullying in nature.

5.2 Recommendations

The spark forensic tool is recommended for use in forensics involving twitter social network site in
detecting hate speech and cyberbullying related crimes. In order to improve the performance and

classification accuracy, the study recommends the following:

a) The study didn’t exhaustively utilize all hate and bully related words hence more research
should be carried out to boost the hate dictionary.

b) Social networking sites forensics tools are still in their infancy and more research is required
to improve on the preservation and authentication of evidence obtained from such sites.

c) The tool can be extended to cover forensics on other social media and also handle emotion
(emaoji) and symbol classification and categorization.

d) Out of 940,869 Testing Tweets, 215,752 Tweets were wrongly classified hence we
recommend incorporating others classification algorithms so as to improve the accuracy to
near 100%.

100

5.3 Future Plan

As future work, we plan to extend the forensic tool to include all other social media with capability
to provide hot maps which indicates the specific region where such hate speech was posted on social
media. It will also involve using other machine learning algorithms to try and increase the
effectiveness of the tool in identifying and categorizing hate speech and cyber bullying on social

network sites.

101

REFERENCES

Agarwal, S. & Sureka, A. 2015, 'Applying social media intelligence for predicting and identifying
on-line radicalization and civil unrest oriented threats', arXiv preprint arXiv:1511.06858.

Altheide, C. & Carvey, H. 2011, Digital forensics with open source tools, Elsevier.

Baesens, B., Van Vlasselaer, V. & Verbeke, W. 2015, Fraud Analytics Using Descriptive,
Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection,
John Wiley & Sons.

Beebe, N.L., Clark, J.G., Dietrich, G.B., Ko, M.S. & Ko, D. 2011, 'Post-retrieval search hit
clustering to improve information retrieval effectiveness: Two digital forensics case studies’,
Decision Support Systems, vol. 51, no. 4, pp. 732-44.

Berman, J.J. 2013, Principles of big data: preparing, sharing, and analyzing complex information,
Newnes.

Borthakur, D. 2010, Looking at the code behind our three uses of Apache Hadoop,
<https://web.facebook.com/notes/facebook-engineering/looking-at-the-code-behind-our-
three-uses-of-apache-hadoop/468211193919/? rdr>.

Chauhan, T. & Aluvalu, R., 'Using Big Data Analytics for developing Crime Predictive Model'.

Chen, L., Xu, L., Yuan, X. & Shashidhar, N. 2015, 'Digital forensics in social networks and the
cloud: Process, approaches, methods, tools, and challenges', Computing, Networking and
Communications (ICNC), 2015 International Conference on, pp. 1132-6.

Chen, Y., Zhou, Y., Zhu, S. & Xu, H. 2012, 'Detecting offensive language in social media to protect
adolescent online safety', Privacy, Security, Risk and Trust (PASSAT), 2012 International
Conference on and 2012 International Confernece on Social Computing (SocialCom), IEEE,
pp. 71-80.

Cho, C., Chin, S. & Chung, K.S. 2012, 'Cyber forensic for hadoop based cloud system’,
International Journal of Security and its Applications, vol. 6, no. 3, pp. 83-90.

Cichosz, P. 2014, Data Mining Algorithms: Explained Using R, John Wiley & Sons.

Copeland, R. 2013, MongoDB applied design patterns, " O'Reilly Media, Inc.".

Dua, S. & Du, X. 2016, Data mining and machine learning in cybersecurity, CRC press.

Edwards, D. 2011, '‘Computer Forensic Timeline Analysis with Tapestry', SANS Gold Paper
accepted November.

Fei, B.K.L. 2007, 'Data visualisation in digtial forensics', Citeseer.

Flaglien, A.O. 2010, 'Cross-computer malware detection in digital forensics'.

Frampton, M. 2015, Mastering Apache Spark, Packt Publishing Ltd.

Golbeck, J. 2013, Analyzing the social web, Newnes.

Guller, M. 2015, Big Data Analytics with Spark, Springer.

Gupta, R. & Brooks, H. 2013, Using Social Media for Global Security, John Wiley & Sons.

Irons, A. & Lallie, H.S. 2014, 'Digital forensics to intelligent forensics', Future Internet, vol. 6, no.
3, pp. 584-96.

Johnsen, J.W. 2016, 'Algorithms and Methods for Organised Cybercrime Analysis'.

Juturu, L.S. 2015, 'Applying big data analytics on integrated cybersecurity datasets', Texas Tech
University.

Karran, A.J., Haggerty, J., Lamb, D.J., Taylor, M.J. & Llewellyn-Jones, D. 2011, 'A Social Network
Discovery Model for Digital Forensics Investigations', WDFIA, pp. 160-70.

102

Kayarkar, P.V., Ricchariaya, P. & Motwani, A. 2014, 'Mining Frequent Sequences for Emails in
Cyber Forensics Investigation', International Journal of Computer Applications, vol. 85, no.
17.

Koutsoumpakis, G. 2014, 'Spark-based Application for Abnormal Log Detection'.

Kumar, K., Sofat, S., Aggarwal, N. & Jain, S. 2012, 'ldentification of User Ownership in Digital
Forensic using Data Mining Technique’, International Journal of Computer Applications,
vol. 50, no. 4.

Li, S., Lee, S.Y.M., Chen, Y., Huang, C.-R. & Zhou, G. 2010, 'Sentiment classification and polarity
shifting’, Proceedings of the 23rd International Conference on Computational Linguistics,
Association for Computational Linguistics, pp. 635-43.

Madhavan, S. 2015, Mastering Python for Data Science, Packt Publishing Ltd.

Magnusson, J. 2012, 'Social Network Analysis Utilizing Big Data Technology'.

Nair, L.R. & Shetty, S.D. 2015, 'STREAMING TWITTER DATA ANALYSIS USING SPARK
FOR EFFECTIVE JOB SEARCH?', Journal of Theoretical and Applied Information
Technology, vol. 80, no. 2, p. 349.

Nandi, A. 2015, Spark for Python Developers, Packt Publishing Ltd.

NATARAJAN, M. 2016, STREAMIFIC, THE INGESTION SERVICE FOR HADOOP BIG DATA
AT UBER ENGINEERING, <https://eng.uber.com/streamific/>.

Ncr, P.C., Clinton, J., Ncr, R.K., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R. 1999, 'CRISP-
DM 1.0

Nirkhi, S. & Dharaskar, R., '‘Authorship Identification in Digital Forensics using Machine Learning
Approach'.

O'higgins, N. 2011, MongoDB and Python: Patterns and processes for the popular document-
oriented database, " O'Reilly Media, Inc.".

Patzakis, J. 2012, Overcoming Potential Legal Challenges to the Authentication of Social Media
Evidence, viewed 17/12/2016 2016,
<https://articles.forensicfocus.com/2012/04/02/overcoming-potential-legal-challenges-to-
the-authentication-of-social-media-evidence/>.

Pentreath, N. 2015, Machine Learning with Spark, Packt Publishing Ltd.

Prajapati, V. 2013, Big data analytics with R and Hadoop, Packt Publishing Ltd.

Press, E.-C. 2010, '‘Computer Forensics: Investigation procedures and response’, Course Technology
Cengage learning, USA.

Privitera, G., Ghidini, G., Emmons, S.P., Levine, D., Bellavista, P. & Smith, J.O. 2014, 'Soft real-
time GPRS traffic analytics for commercial M2M communications using spark’, Smart
Computing (SMARTCOMP), 2014 International Conference on, IEEE, pp. 13-20.

Quick, D. & Choo, K.-K.R. 2014, 'Data reduction and data mining framework for digital forensic
evidence: storage, intelligence, review and archive’, Trends & Issues in Crime and Criminal
Justice, vol. 480, pp. 1-11.

Ramamonjison, R. 2015, Apache Spark Graph Processing, Packt Publishing Ltd.

Russell, M.A. 2013, Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+,
GitHub, and More, " O'Reilly Media, Inc.".

Sarkar, D. 2016, Text Analytics with Python: A Practical Real-World Approach to Gaining
Actionable Insights from your Data, Apress.

Shahrivari, S. 2014, 'Beyond batch processing: towards real-time and streaming big data’,
Computers, vol. 3, no. 4, pp. 117-29.

103

Solaimani, M., Iftekhar, M., Khan, L., Thuraisingham, B. & Ingram, J.B. 2014, 'Spark-based
anomaly detection over multi-source VMware performance data in real-time’,
Computational Intelligence in Cyber Security (CICS), 2014 IEEE Symposium on, IEEE, pp.
1-8.

Sremack, J. 2015, Big Data Forensics-Learning Hadoop Investigations, Packt Publishing Ltd.

Tsochataridou, C., Arampatzis, A. & Katos, V., 'Improving Digital Forensics Through Data
Mining'.

Wang, L. & Alexander, C.A. 2015, 'Big Data in Distributed Analytics, Cybersecurity, Cyber
Warfare and Digital Forensics', Digital Technologies, vol. 1, no. 1, pp. 22-7.

Wijeratne, S., Doran, D., Sheth, A. & Dustin, J.L. 2015, 'Analyzing the social media footprint of
street gangs', Intelligence and Security Informatics (I1S1), 2015 IEEE International
Conference on, IEEE, pp. 91-6.

Zafarani, R., Abbasi, M.A. & Liu, H. 2014, Social media mining: an introduction, Cambridge
University Press.

Zawoad, S. & Hasan, R. 2015, 'Digital Forensics in the Age of Big Data: Challenges, Approaches,
and Opportunities', High Performance Computing and Communications (HPCC), 2015
IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE
12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th
International Conference on, IEEE, pp. 1320-5.

104

APPENDICES

Sample Project Code
Twitter Steaming Module

import com.fasterxml.jackson.databind.ObjectMapper
import com.mongodb.spark._

import com.mongodb.spark.config.{ReadConfig, WriteConfig}
import org.apache.spark.ml.PipelineModel

import org.apache.spark.rdd.RDD

import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.twitter. TwitterUtils
import twitter4j.Status

import twitter4j.auth.OAuthAuthorization

import scala.io.Source

object tweetstreamingmodel {

/ KKK AAAAIAEAAAKRAKRKAA AR A AR A AR A AAAAAAAA A A A AR AAAAAAAAAAAAAAAAAAAA AR A AR A A A A AAAAAhhhhhhhhhxixkx
@transient

@uvolatile private var spark_SparkSession: SparkSession = _ //Equivalent of SQLContext

val naivemodelpth="/home/smulwa/data/naiveBayesModel"

case class SummaryStats(Recall: Double, Precision: Double, Flmeasure: Double,Accuracy:Double)

var tweetcategory:String= _

P
//7(7(7(*Kkk *kk *kk *kk *kk *kk *kk *kk *kk *kk *kk *kk *kk

def main(args: Array[String]) {

try{
var totalTweets: Long =0

if (spark_SparkSession == null) {
spark_SparkSession = SentUtilities.getSparkSession() //Get Spark Session Object
}
val spark_streamcontext = SentUtilities.getSparkStreamingContext(spark_SparkSession.sparkContext)
spark_streamcontext.checkpoint("hdfs://KENBO-SPKO08.forensics.net:54310/checkpoint/™)
/I Load Naive Bayes Model from local drive.
val naiveBayesModel = PipelineModel.load(naivemodelpth)
val sglcontext = spark_SparkSession.sglContext //Create SQLContext from SparkSession Object
import sqlcontext.implicits._
val twitteroAuth: Some[OAuthAuthorization] = OAuthUTtilities.getTwitterOAuth()
val tweetfilters=MongoScalaUtil.getTweetFilters(spark_SparkSession)

val Twitterstream: DStream[Status] = TwitterUtils.createStream(spark_streamcontext, twitteroAuth, tweetfilters,
StorageLevel. MEMORY_AND_DISK_SER).filter(_.getLang() == "en")

Twitterstream.foreachRDD { rdd =>
if (rdd != null && 'rdd.isEmpty() && !rdd.partitions.isEmpty) {
saveRawTweetsToMongoDB(rdd)
rdd.foreachPartition { partitionOfRecords =>
if (!partitionOfRecords.isEmpty) {
partitionOfRecords.foreach(record =>

MongoScalaUtil.SaveRawtweetstoMongodb(record.toString,record.getUser.getld,record.getld,SentUtilities.getStrea
mDate(),SentUTtilities.getStreamTime()))//mongo_utilities.save(record.toString,spark_SparkSession.sparkContext))

105

}
}

}

”**

//Get sentiments and tweet text
val data = Twitterstream.map { status =>
/lclean tweets for use on saved model.
val cleanedTweettext=getTweetTextcleaner(status.getText)
/IGenerate SHA-256 Hash key for each tweet text
val originaltextHashkey = SentUtilities.computeSHA256HashKey(status.getText.toString)
/IGenerate MD5 Hash key for earch batch of tweets received
val usertweetSHA256hash = SentUtilities.computeSHA256HashKey(status.toString)
/IGenerate tweets schema to be saved later to mongodb
var latitude:Double=0.0
var longitude:Double=0.0
if(status.getGeoLocation != null) {
latitude = status.getGeoLocation.getLatitude().toDouble
longitude = status.getGeoL ocation.getLongitude().toDouble
}
(status.getld,
status.getUser().getName(),
status.getUser.getScreenName,
status.getUser.getOriginalProfilelmageURL,
status.getSource,
status.getUser.getld,
status.getUser.getLocation,
latitude.toString + ", "+longitude.toString ,//Tweet longitude
status.getText.split(" ").filter(_.startsWith("#'")).mkString(" "),
SentUtilities.getDateformat(status.getUser.getCreatedAt),//Account Creation Date
SentUtilities.getTimeformat(status.getUser.getCreatedAt.getTime),//Account Creation Time
status.getText,
SentUtilities.getDateformat(status.getCreatedAt),//Tweet Creation Date
SentUtilities.getTimeformat(status.getCreated At.getTime),//Tweet Creation Time
cleanedTweettext,
SentUtilities.getStreamDate(),
SentUTtilities.getStreamTime(),
status.toString,
originaltextHashkey,
usertweetSHA256hash)
}

data.cache()

/**

data.foreachRDD { rdd =>
if (rdd != null && Irdd.isEmpty() && Irdd.partitions.isEmpty) {

/l convert RDD into DataFrame
val tweetdf = rdd.toDF("tweet_id", "Name", "ScreenName", "originalProfilelmageURL",
"source”,"useraccount_id","location™,"geoLocation","Hashtag"," Accountcreationdate™," Accountcreationtim
e","originaltext”,"tweetCreationdate"”, "tweetCreationtime™,"text", cDate","
"originaltextHashkey", "usertweetmd5hash™).dropDuplicates()

/lusing earlied loaded model, pass the tweetdf dataframe for classification.

val predictions = naiveBayesModel.transform(tweetdf)

cTime", "userStatusUpdate”,

106

val predictionDF: DataFrame = predictions.select("tweet_id", "Name", "ScreenName", "originalProfilelmageURL",

"source","useraccount_id", "location","geoLocation","Hashtag"," Accountcreationdate",

"Accountcreationtime”, "originaltext”,"tweetCreationdate”, "tweetCreationtime","text", "prediction”,
"cDate","cTime","userStatusUpdate","originaltextHashkey", "usertweetmdShash™).toDF()
/[Categorize the classified tweets into either sexual, enthnicity, bully,religious etc.
val categorizedDF = predictionDF.map { status =>
if (status.getAs[Double]("prediction™) == 0.0) {
tweetcategory = Classify_Util.Categorize Tweets(status.getAs[String]("text™))
}
else {
tweetcategory = "Neutral/Positive"
}

(status.getAs[Long]("tweet_id"), status.getAs[String](""Name"), status.getAs[String]("ScreenName"),
status.getAs[String]("originalProfilelmageURL"),status.getAs[String]("source"),
status.getAs[Long]("useraccount_id"),status.getAs[String]("location™),status.getAs[String]("geoLocation"),status.get
As[String]("Hashtag"),status.getAs[String](""Accountcreationdate™),
status.getAs[String](""Accountcreationtime"),status.getAs[String] ("originaltext™),status.getAs[String] ("tweetCreation
date"),status.getAs[String]("tweetCreationtime™),status.getAs[String] ("text"), status.getAs[Double]("prediction™),
status.getAs[String]("cDate"),status.getAs[String] ("cTime"),status.getAs[String]("userStatusUpdate"),status.getAs[St
ring]("originaltextHashkey"),status.getAs[String]("usertweetmd5hash™),tweetcategory)

}.toDF("tweet_id", "Name", "ScreenName", "originalProfilelmageURL", "source","useraccount_id",

"location","geoLocation","Hashtag", "Accountcreationdate","Accountcreationtime”,

"originaltext","tweetCreationdate","tweetCreationtime","text","prediction”, "cDate","cTime",

"userStatusUpdate","originaltextHashkey", "usertweetmd5hash","category")

categorizedDF.cache().dropDuplicates()

//Save classified tweets to mongodb.
val writeConfig: WriteConfig = WriteConfig(Map("uri" ->
"mongodh://10.0.10.100:27017/forensicdb.LiveclassifiedTweets™))
MongoSpark.save(categorizedDF.write.option("forensicdb”, "LiveclassifiedTweets™).mode("append™), writeConfig)

¥

/Ixxx *kk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk *kxk

data.foreachRDD((rdd, time) => {

/I lgnore empty Rdd batches

if (rdd.count() > 0) {
/I Combine each partition's results into a single RDD:
val repartitionedRDD = rdd.repartition(1).cache()
total Tweets += repartitionedRDD.count()
if (total Tweets >500000) {

System.exit(0)

¥
)

spark_streamcontext.start()
spark_streamcontext.awaitTermination()

}
catch {

case e: Exception => printIn("Error has occurred on main forensic module :", €)

107

R
def getTweetTextcleaner(tweetText: String): String = {
//Remove URLs, RT, MT and other redundant chars / strings from the tweets.
tweetText.toLowerCase()
replaceAll("\n", ")
replaceAll("rt\s+", ")
replaceAll("\\s+@\\w+", ")
replaceAll("@\w+", ™)
replaceAll("\\s+HA\\w+", ")
replaceAll("#\w+", ™)
replaceAll("(?:https?|http?)://[\w/%.-]+", ")
replaceAll("(?:https?|http?)://[\Ww/%.-]+\\s+", ™)
replaceAll("(?:https?|http?)//[\w/%.-]+\\s+", ")
replace All("(?:https? |http?)//[\w/%.-]+", ")
split(" ™)
filter(_.matches(""[a-zA-Z]+$"))
fold("((a, b) => a.trim + " " + b.trim).trim

}

S R R R R R R T R
/lJackson Object Mapper for mapping twitter4j.Status object to a String for saving raw tweet.
val jacksonObjectMapper: ObjectMapper = new ObjectMapper()

/I @param rdd -- RDD of Status objects to save.
def saveRaw TweetsToMongoDB(rdd: RDD[Status]): Unit = {
try{

val sqlContext = spark_SparkSession.sqlContext
val tweet = rdd.map(status => jacksonObjectMapper.writeValueAsString(status))

val rawTweetsDF = sqlContext.read.json(tweet)

val readConfig: ReadConfig = ReadConfig(Map("uri" ->
"mongodb://10.0.10.100:27017/forensicdb.LiveRaw Tweets?readPreference=primaryPreferred™))
val writeConfig: WriteConfig = WriteConfig(Map("uri" ->
"mongodb://10.0.10.100:27017/forensicdb.LiveRawTweets"))
MongoSpark.save(rawTweetsDF.coalesce(1).write.format("org.apache.spark.sql.json").option("forensicdb",
"LiveRawTweets").mode("append"), writeConfig)
}
catch {
case e: Exception => printIn("Error Saving tweets to Mongodb:", €)
}
}
}

108

MongoDB Save Module

import com.mongodb.async.client.{MongoClient => JMongoClient}

import com.mongodb.spark.MongoSpark

import com.mongodb.spark.config.{ReadConfig, WriteConfig}

import org.apache.spark.sgl.{DataFrame, SparkSession}

import org.mongodb.scala.bson.collection.mutable.Document

import org.mongodb.scala.{MongoClient, MongoCollection, MongoDatabase, }

object MongoScalaUtil {
I
def SaveRawtweetstoMongodb(tweet:String, twitter_account_id:Long , tweet_id:Long, cDate:String,
cTime:String):Unit={
try {

/Ival mongoClient: MongoClient = MongoClient(*mongodb://10.0.10.100:27017")

val mongoClient: MongoClient = MongoClient()

val database: MongoDatabase = mongoClient.getDatabase("forensicdb™)

val collection: MongoCollection[Document] = database.getCollection("LiveTweets")

val tweethashkey = SentUtilities.generateSHA256HashKey/(tweet)
val doc: Document = Document("_id" -> tweet _id, "twitter_account_id" -> twitter_account_id,"cDate" ->
cDate,"cTime" -> cTime, "usertweets" -> tweet, "tweethashkey" -> tweethashkey)

val observable: Observable[Completed] = collection.insertOne(doc)
observable.subscribe(new Observer[Completed] {
override def onNext(result: Completed): Unit = printIn("Inserted™)

override def onError(e: Throwable): Unit = printin(e.toString)

override def onComplete(): Unit = printin("Completed")
)

/I mongoClient.close()

}
catch {
case e: Exception => printin("Error Saving tweets to Mongodb: ", e)
, }
I R T
def SaveLabeledTweets(LabeledtweetDF:DataFrame):Unit={

try {
val writeConfig: WriteConfig = WriteConfig(Map("uri" ->

"mongodb://10.0.10.100:27017/forensicdb.Livelabeled Tweets"))

MongoSpark.save(LabeledtweetDF.coalesce(1).write.format("org.apache.spark.sqgl.json").option("forensicdb",
"LivelabeledTweets").mode("append"), writeConfig)
}
catch {
case e: Exception => printIn("Error Saving tweets to Mongodb:", €)
}
}

109

IR R R R R T
var tweetfilters:List[String]=_

def getTweetFilters(sparksession :SparkSession):List[String]={
try {
val sglcontext = sparksession.sqlContext //Create SQLContext from SparkSession Object
import sqlcontext.implicits._
val readConfig = ReadConfig(Map("uri" ->
"mongodb://10.0.10.100:27017/forensicdb. Tweetfilters?readPreference=primaryPreferred"))
/I retrieve twitter streaming filters
val tweetfiltersDF = MongoSpark.load(sparksession.sparkContext, readConfig).toDF()

tweetfilters = tweetfiltersDF.select("tweetfilters').map(r => r.getString(0)).collect.toList

}
catch {

case e: Exception => printIn("Error reading tweets from Mongodb: ",)

}
tweetfilters

I
var hatebasedict:List[String]=_
def gethatebase_dict(sparksession :SparkSession):List[String]={
try {
val sglcontext = sparksession.sqlContext //Create SQLContext from SparkSession Object
import sqlcontext.implicits.
val readConfig = ReadConfig(Map("uri" ->

"mongodh://10.0.10.100:27017/forensicdb.Hatebase_dict?readPreference=primaryPreferred"))
Il retrieve twitter streaming filters

val tweetfiltersDF = MongoSpark.load(sparksession.sparkContext, readConfig).toDF()

hatebasedict = tweetfiltersDF.select("hatebasedict™).map(r => r.getString(0)).collect.toList

}
catch {

case e: Exception => printIn("Error reading tweets from Mongodb: ", €)

}

hatebasedict

by
}

110

Front End Flask(Python) Module

from flask import Flask, render_template,request,redirect,url_for, g, current_app
from pymongo import MongoClient

import click

from flask_paginate import Pagination, get_page_args

MONGODB_HOST = '10.0.10.100'

MONGODB_PORT = 27017

DBS_NAME = 'forensicdb'

clientConn = MongoClient(MONGODB_HOST, MONGODB_PORT)

app = Flask(__name_)
app.config.from_object('settings’)
app.config.from_pyfile(‘app.cfg’)

@app.route(‘/tweetclassifier' , methods=['GET", 'POST"])

def getclassifiedtweets():
COLLECTION_NAME="LiveclassifiedTweets'
collection = clientConn[DBS_NAME][COLLECTION_NAME]

page, per_page, offset = get_page_args(page_parameter="page’, per_page_parameter="per_page’)
total =0
tweets =]
if request.method == "POST":
if request.form.get('btnsubmit’,None)=="bycategory":
hatecategory = request.form.get(‘hatecategory’)
total=collection.find({"category":hatecategory}).count()
tweets = collection.find({"category":hatecategory}).skip(offset).limit(per_page)
elif request.form.get('btnsubmit’,None)=="searchbydate":#Search tweets by capture/stream date
tweetbydate = request.form.get('searchbydate’)
total=collection.find({"cDate":tweetbydate}).count()
tweets = collection.find({"cDate": tweetbydate}).skip(offset).limit(per_page)
else: #Tweet keyword search
tweetwordsearch = request.form.get(‘tweetwordsearch’)
total=collection.find({"originaltext": {'$regex":tweetwordsearch}}).count()
tweets = collection.find({"originaltext": {'$regex':tweetwordsearch}}).skip(offset).limit(per_page)
else:
total = collection.find().count()
tweets = collection.find().skip(offset).limit(per_page)

pagination = get_pagination(page=page, per_page=per_page, total=total, record_name="Tweets',
format_total=True,format_number=True)

return render_template(‘tweetclassifier.html', tweets=tweets, page=page, per_page=per_page, pagination=pagination)

@app.route('/categorizedtweetchart")

def getcategorizedtweets():
COLLECTION_NAME-='LiveclassifiedTweets'
collection = clientConn[DBS_NAME][COLLECTION_NAME]
tweets=collection.find({"prediction™:0.0})
categorizedtweetsArr=[]

violence =0

111

Sexual =0
Religion=0
ethnicity =0
bully =0
others =0
labels = ["Violence", "Sexual”, "Religion","Ethnicity”,"Bullying","Others"]
for tweet in tweets:
if tweet["category"]=="Violence":
violence +=1
elif tweet["category"]=="Sexual":
Sexual +=1
elif tweet["category']=="Religion":
Religion +=1
elif tweet["category"]=="Ethnicity":
ethnicity +=1
elif tweet["category"]=="Bullying":
bully +=1
else: #0thers
others+=1

categorizedtweetsArr = [violence, Sexual, Religion,ethnicity,bully,others]
return render_template(‘categorizedtweetchart.html', labels=labels, categorizedtweetsArr=categorizedtweetsArr)

@app.route(‘/index")
def getindex():
COLLECTION_NAME="LiveTweets'
collection = clientConn[DBS_NAME][COLLECTION_NAME]
page, per_page, offset = get_page_args(page_parameter="page',per_page_parameter="'per_page')
total=collection.find().count()

tweets = collection.find().skip(offset).limit(per_page).sort(‘cDate’,1)

pagination = get_pagination(page=page,per_page=per_page,total=total,
record_name="Tweets',format_total=True,format_number=True)

return render_template('viewtweets.html', tweets=tweets, page=page, per_page=per_page, pagination=pagination)

def get_page_items():
page = int(request.args.get('page’, 1))
per_page = request.args.get('per_page’)
if not per_page:
per_page = 12
else:
per_page = int(per_page)
offset = (page - 1) * per_page
return page, per_page, offset

def get_css_framework():
return current_app.config.get('CSS_FRAMEWORK', 'bootstrap3’)

def get_link_size():
return current_app.config.get('LINK_SIZE', 'sm")

112

def show_single_page or_not():
return current_app.config.get('SHOW_SINGLE_PAGE', False)

def get_pagination(**kwargs):

kwargs.setdefault('record_name', 'records’)

return
Pagination(css_framework=get_css_framework(),link_size=get_link_size(),show_single_page=show_single_page o
r_not(), **kwargs)

@click.command()
@click.option('--port', '-p', default=5000, help="listening port’)
def run(port):

app.run(debug=True, port=port)

#***

if _name_ ==' main__":
app.run(host="forensics.net', port=5000)

113

	DECLARATION
	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	TABLE OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Objectives of the Study
	1.1
	1.3.1 General Objectives
	1.3.2 Specific Objectives

	1.4 Research Questions
	1.5 Significance of the Study
	1.6 Scope of the Study
	1.7 Assumptions and Limitations of the Study

	CHAPTER TWO: LITERATURE REVIEW
	2 Introduction
	2.1 Digital Forensics
	2.1.1 The Digital Forensics Process

	2.2 Big Data Forensics

	2
	2.2.1 Big Data Attributes
	2.2.2 Big Data Architecture
	2.3 Data Mining and Machine Learning
	2.3.1 Data Mining Techniques
	2.3.2 Data Mining Algorithms

	2.4 Classification Algorithms
	2.4.1 Naive Bayes (Multinomial) Classifier
	2.4.2 Support Vector Machines (SVM)

	2.5 Apache Hadoop
	2.5.1 Hadoop Core Components
	2.5.1.1 Mapreduce
	2.5.1.2 Hadoop Distributed File System (HDFS)

	2.6 Apache Spark
	2.6.1 Spark Streaming
	2.6.2 Use Cases of Spark/Spark Streaming

	2.7 MongoDB
	2.7.1 MongoDB Document Structure
	2.7.2 MongoDB Connector for Spark

	2.8 Social Networks
	2.8.1 Social Network Structure
	2.8.1.1 Graph
	2.8.1.2 Node Degree
	2.8.1.3 Degree Distribution

	2.8.2 Social Network Analysis (SNA)
	2.8.3 Social Network Sites Forensics
	2.8.4 Legal Challenges to Social Media Evidence Authentication
	2.8.5 Sentiment Analysis

	2.9 Proposed Solution
	2.10 Proposed Apache Spark Forensic Tool Conceptual Model
	2.11 Literature Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3 Introduction
	3.1 Research Design
	3.1.1 CRISP-DM Overview

	3.2 Sources of Data and Sample Population
	3.3 Data Collection and Data Collection tools
	3.4 Data Preparation
	3.5 Data Mining Algorithm and Sentiment Classification
	3.6 Data Analysis
	3.7 System Implementation
	3.8 Architectural Design
	3.9 Model Evaluation
	3.10 Ethical Issues
	3.11 Summary

	CHAPTER FOUR: DESIGN AND IMPLEMENTATION
	4 Introduction
	4.1 Modeling Tools and Techniques
	4.2 Spark Forensic Model Analysis
	4.3 Forensic Tool Module Analysis
	4.4 Cluster Setup and Configurations
	4.4.1 Hadoop Yarn Configuration
	4.4.2 Starting Hadoop Cluster Manger
	4.4.3 Apache Spark Configuration
	4.4.4 Starting Apache Spark Cluster

	4.5 Twitter API Connection
	4.6 Data Collections
	4.7 Feature Selection
	4.8 Data Preprocessing
	4.9 Training Tweet Labelling
	4.10 Social Media Evidence Identification
	4.10.1 Evidence Retrieval

	4.11 Evidence Preservation
	4.11.1 SHA-256 Hash Key Verification

	4.12 Model Design and Classification
	4.13 Model Deployment
	4.14 Model Evaluation
	4.15 Model Results and Analysis

	CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS
	5 Conclusions
	5.1 Limitations
	5.2 Recommendations
	5.3 Future Plan

	REFERENCES
	APPENDICES
	Sample Project Code

