
UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS
MASTERS OF SCIENCE IN COMPUTER SCIENCE

DYNAMIC LOAD BALANCING MIDDLE-WARE FOR HETEROGENOUS DATABASE
PARTITIONS

CASE STUDY: MYSQL DATABASES

SUBMITTED BY; NDUNGU, K BONIFACE

P58/73285/2009

09 ,h, May, 2012.

declaration
This project as presented in this report is my original work and has not been presented for any other
University Award.

Signed.

Date. R M . l 2 P J . 3 r .

Boniface Kariuki Ndungu.
P58/73285/2009.

The project has been submitted in partial fulfillment of the Requirements for the Degree of Master of
Science in Computer Science at the University of Nairobi with my approval as the University
supervisor.

Date...........
Mr. Tonny K. Omwansa.
(S upend sor)

V

1

Abstract
In the recent past we have seen people and organizations appreciate the use of Information and
Communication Technology (ICT), as this happens massive data has been generated, replicated and
stored for future use. These dataset has grown to unimaginable size the I.T experts 10 years ago
couldn’t have predicted. We have seen institutions like bank and telecommunications industry acquire
millions of customers whose detailed information need to be stored in database system and retrieved
and manipulated at will. In the banks for example the customers will want to access their account any
time of the day regardless of whether there is no power or not, or if there are so many customers that
the customer connected to the servers and each have to wait for their turn in the queue.
Due to these demands computer scientist and expert from various industries have put their heads
together to try and find a solution to make sure that as the information dataset continues to grow the
daily operation of any computer system continues to give the same expected output or better. Hence
these experts have seen the need to continually create the best strategies to ensure total availability of
information in an information system. One of these efforts has been noticed in the area of distributed
database management systems which has initiated the need to have mechanisms like load-balancing to
ensure high availability, fail-over, increased response and much more. This has lead to a more efficient
way of making sure that life move smoothly for those people using information and communication
technology services.

Acknowledgement
First and foremost I thank the almighty God for giving me knowledge and wisdom to tackle my day to
day life and also for the academic knowledge he has bestowed on me. Likewise, I would like to
acknowledge all those people who supported me during my project, especially the members of panel
four who guided me personally on this project. I would also wish to appreciate my classmate Wycliffe
Rono for guidance and support he gave me when writing this report.
I wish everybody who contributed to this project directly or indirect best of luck in their lives an may
God grant them more for their good spirit.
Thanks a lot.

in

Table of Contents
Chapter 1: Introduction... 1

1.1 Background Information... 1
1.2 Problem Statement.. 2
1.3 Problem Justification... 3
1.4 Project Objective... 3
1.5 Research Outcome.. 4
1.6 Scope... 4
1.7 Limitations.. 4

Chapter 2: Literature Review.. 5
2.1 Overview..5
2.2 MySQL Cluster... 5

2.2.1 NDB Storage Engine.. 6
2.2.2 MySQL Cluster Components...7
2.2.3 MySQL Cluster Implementation..7
2.2.4 MySQL Cluster Configuration... 8

2.3 MySQL Proxy... 9
2.3.1 Proxy Scripting Direct Injection.. 10
2.3.2 Proxy Load Balancing.. 10

2.4 Replication... 11
2.4.1 Multi-Master Replication... 12
2.4.2 Master-Slave Replication... 12

2.5 Load Balancing..13
2.5.1 Static Load Balancing...13
2.5.2 Dynamically Load Balancing... 13
2.5.3 Load Balancing Strategies..... ...14

Chapter 3: Methodology and Design...16
3.1 Project Requirement...17

3.1.1 Functional Requirement..17
3.1.2 Non Functional Requirement... 17
3.1.3 Non Functional Requirement... 18

3.2 System Architecture...18
3.2.1 Middle-Ware Architecture...18
3.2.2 Process Flow...20

3.3 Theoretical Analysis of Load Balancing...21
3.4 Description of Load Balancing Algorithm..21

3.4.1 Performance Parameters of Server...21
3.4.2 Performance Parameters Optimization..22
3.4.3 The Load Balancing Algorithm.. 23

3.5 Implementation..25
3.5.1 Development environment... 25
3.5.2 Implementation tools.. 25
3.5.3 Why JAVA and MySQL Databases..26

Chapter 4: Results Analysis..................................*.. 27
iv

4.1 Discussion of Results..27
4.1.1 System Result... 27
4.1.2 Test Results.. 28

4.2 Challenges Facing Database Querying in Federated Database...32
4.3 Evaluation of Available Database Load-balancing Techniques...32

4.3.1 Analysis of different load balancing techniques..34
Chapter 5: Conclusion... 35

5.1 Achievement.. 35
5.2 Challenges..35
5.3 Further Study... 36
5.4 Conclusion...36

V

Figure 1: A basic illustration of MySQL cluster setup...7
Figure 2: Injection of query in to the query queue... 10
Figure 3: Load balancing using MySQL proxy. ... 11
Figure 4: Illustration of a MySQL database replication.. 11
Figure 5: Configuration of MySQL Master in my.cnf file...12
Figure 6: Configuration of MySQL Slave in my.cnf file...12
Figure 7 : Dynamically load balancing in a heterogeneous database partition...............14
Figure 8: Agile software development methodology. ..16
Figure 9 : Load Balancing Middle-ware Architecture..19
Figure 10: Load balancing middle-ware process flow. ..20
Figure 11: Server listener waiting for a client connection.. 27
Figure 12: Server computations on memory usage and CPU usage.. 27
Figure 13: Client computations and results.. 28
F igure 14: Graph showing results for each IP/Server without load introduced........... 29
Figure 15: Graph showing results for each IP/Server with load introduced.................. 30
Figure 16: A graph of trials against response time in millisecond..31
Figure 17: MySQL cluster test environment.. 34

Table 1: Resource usage for all the servers when load is not introduced....................... 29
Table 2: Resource usage for all the servers when load is introduced...............................30
Table 3:Tri als for nodes response time.. 31
Table 4: Evaluation of various load balancing techniques..34

vii

Definition of terms:Partition: A partition is a division of a logical database or its constituting elements into distinct
independent parts.
Heterogeneous Database System is an automated (or semi-automated) system for the integration of
heterogeneous, disparate database management systems to present a user with a single, unified query
interface.
Replication- is the frequent electronic copying data from a database in one computer or server to a
database in another so that all users share the same level of information.
Load Balancing- Distributing processing and communications activity evenly across a computer
network so that no single device is overwhelmed.
Middle-ware-is a general term for any programming that serves to "glue together" or mediate between
two separate and often already existing programs.
CPU-Central Processing Unit.
TCP-Transmission control protocol.
UDP-User datagram protocol.
SCTP-Stream control transmission protocol.
MySQL-It’s an open source relational database management system.

Chapter 1: Introduction
1.1 Background Information
Sharing information among autonomous heterogeneous databases has been researched extensively. In
essence the problem has been to make component databases inter operable despite their different
platforms (software and hardware) [3]. In many large organizations there has been a proliferation of
database systems to handle ever increasing volumes of information. These systems tend to be
developed in isolation, and this result in structural and semantic heterogeneity, and related problems.
The promise of a commercial competitive edge via the logical integration of existing database systems,
has attracted intense interest. A major assumption has been that component databases have a-prior
knowledge of remote schema. However, this is only reasonable provided the number of participating
databases (and global information) is small. Recent advances in communications technology have led
to expectations of large scale, world wide database interoperability. There are various fundamental
difficulties associated with large scale database interoperability. These include scale, autonomy and
heterogeneity.

A Heterogeneous Database System is an automated (or semi-automated) system for the integration of
heterogeneous, disparate database management system to present a user with a single, unified query
interface. Heterogeneous database systems (HDBS) are computational models and software
implementations that provide heterogeneous database integration [1,2]

Load balancing is a computer networking methodology to distribute workload across multiple
computers or a computer cluster, network links, central processing units, disk drives, or other
resources, to achieve optimal resource utilization, maximize throughput, minimize response time, and
avoid overload. Using multiple components with load balancing, instead of a single component, may
increase reliability through redundancy. The load balancing service is usually provided by dedicated
software or hardware, such as a multilayer switch or a Domain Name System server [4].

VlySQL is a widely used open source database. When MySQL is used in a cluster, one node is selected
1

as master. The master’s job is to distribute changes to the data to the other MySQL nodes. These nodes
are named slaves. Changing data on a slave will not distribute the changes to the rest of the cluster.
Therefore, the slaves are only capable of handling read-only queries. Another problem with the
clustering capabilities in MySQL is that it provides no means to distribute the transaction load.
Distributing load is usually handled by a load-balancer. A load-balancer selects on which node a
request is to be executed. The goal for the load-balancer is to equalize the load on all nodes, to avoid
bottlenecks and to achieve maximum throughput. Some load-balancers blindly follow a specific pattern
to reach this goal, others evaluate information obtained from the nodes and base their decision on that.

1.2 Problem Statement
Large volume of data mostly poses the most serious problem for which many organizations have data
warehouses. The amount CPU execution time and resources needed to query data across the networks
is enormous. Key measure of performance for a computing system is speed, response time or execution
time or latency and throughput. Reducing execution time will nearly always improve throughput; the
reverse is not true.
Execution time can mean:

> Elapsed time — includes all I/O, OS and time spent on other jobs
> CPU time -- time spent by processor on your job (no I/O)
> CPU time can mean user CPU time or System CPU time

Example:

Jobl = Total time to complete 250 ms (quantum 100 ms).
1 .First allocation = 100 ms.
2.Second allocation = 100 ms.
3. Third allocation = 100 ms but job l self-terminates after 50 ms.
4. Total CPU time of jobl = 250 ms

The differences in computation speed, architectures, memory speed and other resources affect the
expected system performance. Some of the available load-balancer (middle-ware) blindly follow a
pecific pattern to eradicate these challenges while, others evaluate information obtained from the
odes and base their decision solely on that. Dynamic balancing of load across several heterogeneous

2

database cluster posses even a major problem when the cluster are located in different database servers
geographically or when one database server goes down and the load needs to be distributed to the
remaining server.

1.3 Problem Justification
Prior knowledge of the parameters that are needed to make load balancing more efficient and more
manageable is a solution that will enable database developers and administrators to implement the most
effective load-balancing strategy. MySQL database has adapted MySQL Proxy as the only application
to aid in load balancing, fail over, query analysis, query filtering and modification. However latency,
high availability continues to be a major issue while trying to sort out load balancing using MySQL
proxy. Also MySQL proxy does not have the capability to give feedback in case there is failure in one
of the partition.

Agile software development methodology is the best methodology to be applied when developing the
load balancing middle-ware application since it advocates for iterative development and continuous
testing at the end of every iterative process. This will facilitate continuous upgrade and improvement of
the product during and after development of the load balancing middle-ware and give other researcher
who might want to undertake their research in the same area a framework to base their research on.

1.4 Project Objective
The aim of this research project is to develop a proactive dynamic load balancing middle-ware that
provides a software application developer with an implementation that improves performance of
transactions in a heterogeneous/federated database management system by performing dynamic load
balancing among various connected servers. This will definitely go a long way to contribution of
cnowledge, value and technologies required to improve database management system performance.
The specific objectives of the dynamic load balancing in heterogeneous database partition include:

i. Design a middle-ware capable of dynamic load balancing.
ii. Identify and apply a suitable algorithm in developing dynamic load balancing middle-ware.
iii. Develop a prototype based on the middle-ware.
iv. Simulate and evaluate the middle-ware.

3

1.5 Research Outcome
The outcome of the project undertaking is of major significance because:
We will develop an effective and efficient load balancing middle-ware.

1 The resultant middle-ware will act as a product for further research efforts on database load
balancing.

2. It will help in the retention and dissemination efficient load balancer software application.

1.6 Scope
The study is limited to developing a load balancing middle-ware to be used to balance query load
across several heterogeneous MySQL database partitions.

1.7 Limitations
i. Simulating and ideal environment.
ii. Limited material on the actual development of MySQL load balancing applications.
iii. Availability to various heterogeneous enviroment to test from.

4

Chapter 2: Literature Review
2.1 Overview
Load balancing is to distribute requests to the servers at transport layer, such as TCP, UDP and SCTP
transport protocol. The load balancer distributes network connections from clients who know a single
IP address for a service, to a set of servers that actually perform the work. Since connection must be
established between client and server in connection-oriented transport before sending the request
content, the load balancer usually selects a server without looking at the content of the request. After
the client request is received by the server the server processes the request and sends the message back
to the client acknowledging the client request and the capability to handler the intended job. Load
balancing is realized when the most optimal server is chosen to handle the job at hand by a way of
voting among an array of servers in a grid.

2.2 MySQL Cluster
While introducing a new service or trying to manage an avalanche of data in real time, your database
has to be scalable, fast, and highly available to meet ever-changing market conditions and stringent
service-level agreements (SLAs).
MySQL Cluster is considered to be the industry’s only true real-time database that combines the
flexibility of a high-availability relational database with the low total cost of ownership (TCO) of open
source. It features a shared-nothing distributed architecture with no single point of failure to ensure five
9s availability, allowing one to meet their most demanding mission-critical application requirements.
Its real-time design delivers consistent millisecond response latency with the ability to service tens of
housands of transactions per second. Support for in-memory and disk-based data, automatic data
partitioning with load balancing, and the ability to add nodes to a running cluster with zero downtime
:nables almost unlimited database scalability to handle most unpredictable workloads [7].

dySQL is an open source ACID (Atomicity Consistency Isolation Durability) compliant Relational
)ata Base Management System (RDBMS) aiming towards full SQL standards compliance. It has a
-Putation for ease of use, speed, quality and reliability and consequently is the world's most popular

5

open source database with over eight million installations.

2.2.1 NDB Storage Engine
Storage engines are a unique architectural feature of MySQL. The VFS layer of your operating system
allows applications to access files on different file systems through the one interface; MySQLs' storage
engine architecture allows applications to access data stored in different ways all through the same SQL
interface. Two commonly used storage engines are MylSAM (fast inserts and selects, full text indexes,
GIS) and InnoDB (row-level locking, multi-version concurrency, ACID compliant).
MySQL Cluster provides a new storage engine for MySQL. The NDB (also known as ndbcluster)
storage engine provides high availability in a shared-nothing architecture. Since there is no shared or
special hardware (such as a SAN), MySQL cluster can easily be implemented on affordable commodity
hardware. All data is synchronously replicated between nodes. The No Of Replicas configuration
parameter dictates how many copies of the data are kept in the cluster.

In the 4.1 and 5.0 releases, all data must be held in main memory on the nodes. A rough estimate of the
memory needed in each node is:

(SizeofDatabase * NumberOfReplicas * 1.1) / NumberOfDataNodes

A transaction is committed when it is in memory of more than one node (i.e. it can survive a node
crash). The in-memory architecture has the advantage of being very fast,with a single CPU core able to
managing over 10,000 transactions per second. Basic persistence is provided by periodically writing
checkpoints to disk. The timing between checkpoints (among other things) is configurable. It is also
possible to perform on-line backups of data in the cluster. After a system failure (where enough nodes
have failed that the cluster no longer has a full data set) the system is restored to the last global
checkpoint. When a single node is being restarted (node recovery) it will fetch the latest data from
another node in the cluster. The 5.1 release allows non-indexed fields to be stored on disk. In the future,
it will be configurable if you want a disk or main memory based cluster. In current releases you can
also configure to run in Diskless mode, where no data is ever written to disk (no check-pointing, no
logging) [12].

6

2.2.2 MySQL Cluster Components
A basic MySQl cluster implementation looks like this:

Application ApplicationApplication

N D B C lu s te r
(data nodes)

ManagementClientManagement Server(ndb̂ mgmd) (e.g.

Application

Application

~ v __
M v S Q LM y S Q LM y S Q L

S e r v e r
(n t y s c j l d)

S e r v e rS e rs/e r
(nny c i l d)(n.y Qld)

(ncUocl) (ndtod) (n dbd)

Figure 1: A basic illustration of MySQL cluster setup

2.2.3 MySQL Cluster Implementation
Data Nodes (ndbd)
All data is stored by the data nodes. This data is visible to all the MySQL servers connected to the
cluster. Some MySQL special data such as the permissions and stored procedures are not stored in the
cluster and must be updated on each MySQL server attached to the cluster.

7

Management Server Nodes (ndbmgmd)
The management server provides configuration information to nodes joining the cluster.
It is not a critical part of the cluster, only needing to be up for a node to join the cluster.

Management Client (ndbmgm)
This is an end-user tool for administering and checking the status of the cluster. This can be used for
starting and stopping nodes, getting status information and starting backups.

2.2.4 MySQL Cluster Configuration
The first configuration is done by editing the my.cnf file which holds the MySQL configuration. The
connect string tells processes where management servers are so that they can join the cluster. In this
case, we have one management server, so the connect string is just a host name.

my.cnf
example additions to my.cnf for MySQL Cluster
(valid from 4.1.8)
enable ndbcluster storage engine, and provide connectstring
for
management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com
provide connectstring for management server host (default
port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com
provide connectstring for management server host (default
port: 1186)
[ndbmgm]

connect-string=ndb_mgmd.mysql.com
provide location of cluster configuration file

| [ndb mgmd]
config-file=/etc/config.ini

8
'

The Second configuration is done by editing config.ini.config.ini is the cluster configuration file
(example below). In this setup we have two data nodes and two replicas. This means that each node
holds a complete copy of the database. Here we allow up to three MySQL servers to connect to the
cluster.

[NDBD DEFAULT]
NoOfReplicas= 2
DataMemory= 500M
IndexMemory= 100M
DataDir= /var/lib/mysql-cluster
[NDBMGMD]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster
[NDBD]
HostName= ndbd_2.mysql.com
[NDBD]
HostName= ndbd_3.mysql.com
[MYSQLD]
[MYSQLD]
[MYSQLD]

2.3 MySQL Proxy
The MySQL Proxy is an application that communicates over the network using the MySQL network
protocol and provides communication between one or more MySQL servers and one or more MySQL
clients. In the most basic configuration, MySQL Proxy simply interposes itself between the server and
clients, passing queries from the clients to the MySQL Server and returning the responses from the
MySQL Server to the appropriate client. Because MySQL Proxy uses the MySQL network protocol, it
can be used without modification with any MySQL -compatible client that uses the protocol. This
includes the MySQL command-line client, any clients that use the MySQL client libraries, and any
connector that supports the MySQL network protocol [15].

9

Two fairly common usage scenarios for MySQL Proxy are:
i. Load balancing across MySQL slaves.
ii. Splitting reads and writes so that reads go to the slave database servers and writes go to the

master database server.

MySQL Proxy is not necessarily needed to accomplish these goals. For slave load balancing, one can
use a regular load balancer in front of your slaves. For read-write splitting, one can use application that
uses different DB servers for reads and writes, but that may require significant changes to the
application [14].

2.3.1 Proxy Scripting Direct Injection
The figure below gives an example of how the proxy might be used when injecting queries into the
query queue. Because the proxy sits between the client and MySQL server, what the proxy sends to the
server, and the information that the proxy ultimately returns to the client, need not match or correlate.
Once the client has connected to the proxy, the sequence shown in the following diagram occurs for

Figure 2: Injection of query in to the query queue.

2.3.2 Proxy Load Balancing
Load Balancing selects one backend out of a set of backends to be used as MySQL-server. We use SC
(shortest queue first) to distribute the load across the backends equally. Each backend will get the san
number of connections.

10

client mysqld

Figure 3: Load balancing using MySQL proxy.

2.4 Replication
Replication enables data from one MySQL database server (the master) to be replicated to one or more
MySQL database servers (the slaves). Replication is asynchronous - slaves need not be connected
permanently to receive updates from the master. This means that updates can occur over long-distance
connections and even over temporary or intermittent connections such as a dial-up service. Depending
on the configuration, you can replicate all databases, selected databases, or even selected tables within
a database [12].Database replication can be used on many database management systems, usually with
a master/slave relationship between the original and the copies. The master logs the updates, which
then ripple through to the slaves. The slave outputs a message stating that it has received the update
successfully, thus allowing the sending (and potentially re-sending until successfully applied) of
subsequent updates [13].It's very important to make sure that all the tables in the replicas have the same
indexes as the master failure to this some slaves may rejected updates as done from the master node.

11

The first step in setting replication in MySQL is configuring the MySQL master which supplies the
updates to the entire configured slave. Some of these configuration include setting the server id
incrementally to uniquely identify each server in every partition as shown in Figure 1.1

Figure 5: Configuration of MySQL Master in my.cnffile.

The second step is to configuring the entire MySQL slave which will be supplied to the updates by the
configured master as shown in Figure 1.2

2.4.1 Multi-Master Replication
Multi-master replication is a method of database replication which allows data to be stored by a group
of computers, and updated by any member of the group. The multi-master replication system is
responsible for propagating the data modifications made by each member to the rest of the group, and
resolving any conflicts that might arise between concurrent changes made by different members [17].

2.4.2 Master-Slave Replication
Master-slave replication is an implementation where a single member of the group is designated as the
"master" for a given piece of data and is the only node allowed to modify that data item. Other
members wishing to modify the data item must first contact the master node. Allowing only a single

12

master makes it easier to achieve consistency among the members of the group, but is less flexible than
multi-master replication [17].

2.5 Load Balancing
Load balancing is a computer networking methodology to distribute workload across multiple
computers or a computer_cluster, network links, central processing units, disk drives, or other
resources, to achieve optimal resource utilization, maximize throughput, minimize response time, and
avoid overload. Using multiple components with load balancing, instead of a single component, may
increase reliability through redundancy. The load balancing service is usually provided by dedicated
software or hardware, such as a multilayer switch or a Domain Name System server [12].

2.5.1 Static Load Balancing
In static load balancing work is initially partitioned among the processors using some heuristic cost
function, and there is no subsequent data or computation movement to correct load imbalances which
result from the dynamic nature of mining algorithms [8].

to * k*2.5.2 Dynamically Load Balancing
Dynamic load balancing seeks to address this by stealing work from heavily loaded processors and re
assigning it to lightly loaded ones. Computation movement also entails data movement, since the
processor responsible for a computational task needs the data associated with that task as well.
Dynamic load balancing thus incurs additional costs for work/data movement, but it is beneficial if the
load imbalance is large and if load changes with time. Dynamic load balancing is especially important
in multi-user environments with transient loads and in heterogeneous platforms, which have different
processor and network speeds. These kinds of environments include parallel servers, and
heterogeneous, meta-clusters. Dynamic load balancing algorithms make changes to the distribution of
work among workstations at run-time; they use current or recent load information when making
distribution decisions [8].

* 13

M e m o r y

Database
Partition 1
(server 1)

M e m o r y

Data base
Partition 2
(server 2)

M e m o r y

Database
Partition 3
(server 3)

M e m o r y

Database
Partition n
(server n)

Figure 7: Dynamically load balancing in a heterogeneous database partition.

2.5.3 Load Balancing Strategies
There are three major parameters which usually define the strategy a specific load balancing algorithm
will employ, which are important in order to address issues such as who makes the load balancing
decision, what information is used to make the load balancing decision and where the load balancing
decision is made. When concentrating on selecting a policy such that in policy selection, information
gathering policy specifies the strategy for the collection of load information includes the frequency and
method of information gathering. Information policy specifies what workload information to be
collected, from where it is to be collected. The frequency is determined based on a tradeoff between the
accuracy of load information and the overhead of information collection.

Initiation Policy- determines who starts the load balancing process. The process can be initiated by an
overloaded server (sender-initiated) or by an under-loaded server (receiver-initiated). Sender initiated
policies are those where heavily loaded nodes search for lightly loaded nodes while receiver initiated
policies are those where lightly loaded nodes search for suitable senders [9][11].

Job Transfer Policy- determines when job reallocation should be performed and which job(s) should
be reallocated. Job reallocation is activated by a threshold based strategy. In a sender-initiated method,
the job transfer is invoked when the workload on a node exceeds a threshold. In a receiver-initiated
method, a node starts the process to fetch jobs from other nodes when its workload is below a threshold
[9][11], The threshold can be a pre-defm'ed static value or a dynamic value that is assessed at runtime

it
14

based on the load distribution among the nodes. When job reallocation is required, the appropriate
job(s) will be selected from the job queue and transferred to another node.

Resource type policy- classifies a resource as a server or receiver of a task according to its availability
status. Location policy uses the results of resource type policy to find who work co-ordingly with
server or receiver. Selection policy defines the tasks that should be migrated from overloaded resources
to most idle resources [9][11].

15

Chapter 3: Methodology and Design

System design methods are a discipline within the software development industry which seeks to
provide a framework for activity and the capture, storage, transformation and dissemination of
information so as to enable economic development of computer systems that are fit for purpose.
In our study we used the Agile software development methodology based on iterative and incremental
development, where requirements and solutions evolve through collaboration between self-organizing,
cross-functional teams. It promotes adaptive planning, evolutionary development and delivery, a time-
boxed iterative approach, and encourages rapid and flexible response to change. It is a conceptual
framework that promotes foreseen interactions throughout the development cycle [4]

AGILE DEVELOPMENT
at dapta fc>i Mt y

Figure 8: Agile software development methodology.
16

*

3.1 Project Requirement

3.1.1 Functional Requirement
The client part of the middle-ware should be able to:

i. Read from a file and accept an array of IP addresses representing the database nodes.
ii. Send a request to every server node in the list.
iii. Receive a success or failure and server usage parameters message from the server.
iv. Compute the returned values and choose the most optimal server based on parameters returned.
v. Send the database query to the most optimal server.

The Server part of the middle-ware should be able to:
i. Receiver a request from the client.
ii. Compute:

(a) Memory usage.
(b) CPU Usage.
(c) Check if mysqld is running.

iii. Send a success or failure message and parameters computed.

The Middle-ware as a whole should be able to:
i. Facilitate socket connection and communication between client and server.
ii. Output success or failure of the load balancing process.
iii. Distribute and balance workload amongst servers in a federated database setup.

3.1.2 Non Functional Requirement
i. Scalability
ii. Availability
iii. Efficiency

17

3.1.3 Non Functional Requirement
Hardware:

i. Laptop.
ii. Network switch.

Software:
i. Ubuntu operating system.
ii. Eclipse IDE.
iii. MySQL J connector.
iv. MySQL database.

3.2 System Architecture
3.2.1 Middle-Ware Architecture

The process starts with a user request from the client side, the client reads a file storing the possible IP
addresses representing each representing a servers/nodes and loops through each address. As the client
loops through the IP address it creates a socket connection with an intent to connect to the server. The
server accepts or rejects a socket connection from the client and initiates the process of computing
percentages of:

i. CPU usage.
ii. Memory Usage.
iii. Check if mysqld is running.

Once the server is done computing the resources usage,the server sends back an aggregated message of
all computed values and return them in an arraylist.The client on the other side receives feedback
message from each server and get the time difference between the time of socket initiation to the time
the server returned a success message to determine the response time/network throughput. The client
performs a comparison to establish which server has the least/optimal usage of resources. The most
optimal amongst the server is chosen by the client and that's where the client sends the database query.

18
i f

Dynamic Load Balancing Middle-ware

Client Server

y ^
IP Tables

Read IP’s
Initiation of Socket
Connection to Server
IP

Evaluate each Server
Parameter and Choose
the Most Optimal.

Send Message

Receive Message

Pass Optimal Server
Accept the Optimal
Server and Send Query
to Database

TCP/IP
Connection

* / CPU ^
V Nth J

Memory Memorv Nth

Resource
Usage Values

Success/Failure Message

Database
Partition 1

Database
Partition
Nth

f(9: lcLoad Balancing Middle-ware Architecture.

19

3.2.2 Process Flow
The process flow represent the interaction of components and the way information flows from one
component to the other.

j'$ Theoretical Analysis of Load Balancing
Jt will achieve our objectives by using Java socket oriented middle-ware with two Java classes, the
^lientSocket Class and the ServerSocket Class. The ServerSocket Class will run in every node that
w,lds the database partition and it’s responsible for collecting the node resource usage and sending

back to the client. On the other hand the ClientSocket Class will be responsible for initiating the
^quest to the server and aggregating all the server computed parameters and chose the most optimal
^iong the list. The client will also be responsible of sending the MySQL query to the appropriate
r̂ver. The Client must not be present in every node that holds the database but must be in every node
ât sends a request.

consider n jobs in some fixed order.
^ssign job j to machine whose load is smallest so far.

Load_Balancing (m, mi,m2.....mn) {

for i = 1 to m {

Lj // Load on machine i

)
}

if(m(i)<m{

J(i) / / Assign Job to Machine i

3-4 Description of Load Balancing Algorithm
3 ̂ .1 Performance Parameters of Server
ln order to achieve higher system throughput and shorten the client’s feedback time, the algorithm uses
dynamic parameters to reflect the capability of the server. During the processing of the client-server

21

system, each server’s load is changing as time goes on, the system has to estimate the load-balance
according to the real-time server load, and these are called dynamic performance parameters. This
report selected the following dynamic performance parameters:

(1) Processor utilization ratio: it can reflect the busyness degree. The process server monitor inspects
the CPU utilization ratio, so as to confirm the CPU’s load.

(2) Memory utilization ratio: the size of the server memory changes as the system runs. The process of
server monitor inspects the utilization ration of physical memory, so as to confirm the server memory’s
load.

(3) Network Throughput: the network data are mainly transferred through TCP mode in client-server
system, the process of sever monitor inspects the time taken from the time of client request to the time
the server responded.

3.4.2 Performance Parameters Optimization

To estimate the performance parameters .i.e. CPU load, memory usage and network throughput we use
getSystemLoadAverage java function which is derived from OperatingSystemMXBean interface. The
getSystemLoadAverage returns the system load average for the last minute. The system load average is
the sum of the number of runnable entities queued to the available processors and the number of
runnable entities running on the available processors averaged over a period of time. The way in which
the load average is calculated is operating system specific but is typically a damped time-dependent
average. If the load average is not available, a negative value is returned.

Memory usage is estimates by getting the total memory, used memory and free memory using the java
Runtime class. This is achieved by subtracting total memory from free memory to get committed
memory.

Total = total Memory
Free =free Memory
Used = total - free

After that one can get the percentage of memory usage as:
(used/free)*100.

22
S'

Network throughput is estimated by getting the difference in millisecond from the time the request was
initiated by the client to the time the server returns a success message back to the client.i.e
Network Throughput= CurrentSystemTime-Elapsetime.

3.4.3 The Load Balancing Algorithm

Client Algorithm

Client_Connect () {
For each server i in L ist

Ini tial_SystemTime=Get_SystemTime ()
//attempt connection to the server

Server_Messenger[i]
i f request R(i) responses then{

//g e t time fpr the server tp respond
Time_ taken=Get_SystemTime () -Ini tial_SystemTime

/ /S e t load for server i
Server [i] = load[i]+Time_taken

else
//Server not reachable

}
index=0
/ / j is server with load
for each j in server {
//Check i f server returned
i f j is 0 {

23
it

index-server[j] //Load in server
}
//F ind the most optimal server
i f index is less than server [j] {
index= server [j] //server [j] is the most optimal
else
index is the optimal server
}
//Connect to database with the optimal server
database_Connect (index)
Ini tial_SystemTime=Get_SystemTime ()
Fetch_Data() from index
//G et fetch time taken
ElapsedTime=Get_SystemTime () -In i tial_SystemTime

} //end client

Server Algorithm

Server_Connect {
Recei ve_Cl ien tMessage ()
//Get server resource usage
i f message is success{
ge t_ Cpu_ Usage ()
ge t__Memory_ Usage ()
}
//CPU resource usage
get_Cpu_Usage () {
ThreadTime=Create Threads to read multi core processors processing time
get Processor loadQ

24

factor-get Processor loadO+ThreadTime
return factor
}
//Memory resource usage
get_Memory_Usage () {
total_Memory=total server memory
Used_Memory=current memory in use
fac tor=to tal_Memory- to tal_Memory
return factor
}
FeedBack=get_Cpu_Usage (), get_Memory_Usage ()
Send_Cl i en tFeedback (FeedBack)
}

3.5 Implementation
The implementation phase seeks to put into action the discussions in the requirements and the design
phases.

3.5.1 Development environment
i. Ubuntu 11.10 (Oneiric Ocelot).
ii. Eclipse Indigo.
iii. JAVA Programming Language
iv. MySQL database.
v. Mysql-connector-java-5.1.18-bin.jar.

3.5.2 Implementation tools
Java language was used as the programming language of choice and MySQL database as the database
of choice.

25
it

3.5.3 Why JAVA and MySQL Databases
The load balancing middle-ware was developed using Java programming language. The rationale for
selecting Java as the development language is that;

a) Java Sockets-A socket is a software endpoint that establishes bidirectional communication
between a server program and one or more client programs. The socket associates the server
program with a specific hardware port on the machine where it runs so any client program
anywhere in the network with a socket associated with that same port can communicate with the
server program [5].Thus the Java socket will facilitate connection and communications between
the partitions, middle-ware and the requesting application.

b) JDBC (Java Database Connectivity)-a Java API that enables Java programs to execute SQL
statements. This allows Java programs to interact with any SQL-compliant database. Since
nearly all relational database management systems (DBMSs) support SQL, and because Java
itself runs on most platforms, JDBC makes it possible to write a single database application that
can run on different platforms and interact with different DBMS s [6].

MySQL database was selected since load balancing has not been extensively studied for MySQL
databases compared to other proprietary databases like oracle and MS-SQL server thus making MySQL
the most viable choice.

V

26

Chapter 4: Results Analysis
4.1 Discussion of Results
4.1.1 System Result
The dynamic load balancing system for heterogeneous database system is able to balance loads among
several federated databases partitions located on different servers. It computes the most optimal server
among an array of servers and sends the database query to the most optimal amongst them. This show
that the load-balancer can be able to scale up and down, ensure availability of data and increase the
response time. The diagrams below show the outputs of the client and the server.

Server Listener

;b@xb:~$ cd /home/xb/server/
;b@xb:~/server$ java ServerSocketConnect
Jaiting for client request...........

Figure 11: Server listener waiting for a client connection.

Server Computation.

Figure 12: Server computations on memory usage and CPU usage.

27

Client Computations
Server/src/c lient/c itentSoclie tConncct.java - Eclipse P la tform

le fcd.t Refactor Hun Source Soiree Refactor rtavcjote Search
t S U *») 5 21PM l b s O

W indow Heip

B j? B !»’ 0 'v |® * a 1 < I i t"
a CUentSockrtConnect jjva « \ _______________________________________

e mug

& Cellulant
li$ Cues Alumni

CucaPHP

1ĉ DroidWeb
liyl iMabCyber

► f ill iMabCyberCafe
" ^ m Server * febin

► & client
► & server *̂ src
* & client

B BankAccount.java

<0 ClusterTestjava
0 ClusterTestReslts java
B LoadCreator.java
B Me2.java
B MyBankAccount.java
B OverDraftAccount.java

► & server
context.xml

' MyOroid

Systea.oof.prlntln (■ ’);Systea.out.println ("Atteapting 06 Connection,
t r y
(

ctermmated> CUentSocketConnect [Java Application)/usr/Ub/jvm/jdva-6opcnjdk-i386/birVjava (Jul11, 2012 5:20:14 PM)

-196.166.1.189..........................Confirmation: 196.168.1.189 Server returned the aessage with lteas
1 : 0 .57
2 : 6.8 6 3 : 6.04
Resources usage for 196.168.1.189 is 1.47
xxxxxxxxx 196.168.1.187 is unreachable xxxxxxxx

1 9 6 .1 6 8 .1 .1 7 6Coaflraation: 196.168.1.176 Server returned the aessage with iteas1 : 0.542 : 0.63 : 1.61
4 : 6 .05

Resources usage for 196.166.1.176 is 1.6
XXXXXXXXX 196.168.1.190 is unreachable XXXXXXXX
The best sever is : 196.168.1.189 1.47
Atteapting DB Connection.

CUentSocketConnectjava - mServer/sre/cllent

Figure 13: Client computations and results.

4.1.2 Test Results
The program was tested using trial test case of the actual happening where several laptop were setup
connected via a TCP-IP environment. There was one laptop (but not limited to one) acting as the client
and other acting as the server. The cable was unplugged on one machine to test if fail-over was
implemented. The program was also tested without load and load introduced,for testing purposes the
load that was introduced was a non ending continuous for loop that affects computer resources usage
like memory,CPU usage and hence affecting response time.

p
28

Testing while no load introduced to any server.

C P U U sa ge (%) C P U Load (%) M em ory U sa ge (%) R esp on se Tim e (%) Total (%)
19 6 .16 8 .1. 189 1.19 2.34 0.27 0.07 2.69
19 6 .16 8 .1. 187 1.03 l.O 0.28 1.43 2.71
1 9 6 .1 6 8 .1 .1 7 6 1.06 1.04 0.22 1.44 2.71
19 6 .16 8 .1. 190 0 0 0

Table 1: Resource usage for all the servers when load is not introduced.

Figure 14 shows a graph of servers against resource usage when there is not load introduced.

■ CPU Usage
■ CPU Load
■ Memory Usage
■ Response Time
■ Total

Figure 14: Graph showing results for each IP/Server without load introduced.

In figure 14 the analysis of total resource usage when no load is introduced in any of the server shows
that the total load for all the server falls well below 3 this is and indicator that the middle-ware is able
to monitor all the resources in each server and communicate the right values of each resource. The
similarity in deviation of total load for each server creates a clear image that every server is monitored1'without bias.

29

Test while load is introduced on all servers.

CPU Usage (%) CPU Load (%) Memory Usage (%) Response Time (%) Total (%)
196.168.1.189 1.19 2.34 0.27 0.07 2.69
196.168.1.187 1.85 2.24 0.24 2.5 5.07
196.168.1.176 2.05 2.25 0.22 2.81 5.29
196.168.1.190 0 0 0 0 0

Table 2: Resource usage for all the servers when load is introduced.

Figure 15 shows a graph of database partitions against resource usage when a load is introduced.

Analysis With Load Introduced

■ CPU Usage
■ CPU Load
■ Memory Usage
■ Response Time
■ Total

Figure IS: Graph showing results for each IP/Server with load introduced.

Figure 15 shows the analysis of the same database partitions servers but this time loads are introduce
on server 196.168.1.187 and 196.168.1.176 only leaving out server 196.168.1.189.The experiment
again shows very clearly that the total resource usage for the two servers (196.168.1.187 and
196.168.1.176) goes beyond 3 while server 196.168.1.189 remains almost the same. This is a clear

30

indication that the middle-ware is capable of detecting any slightest change in resource usage and
communicates the results without bias.

MySQL cluster vs Dynamic Load balancer.

The tables below shows a comparison test carried out to test the query response time, between queryi
from a MySQL cluster setup and querying direct from a normal MySQL setup as it would be done by
the Dynamic Load-balancing middle-ware. This was achieved by querying the database severally am
capturing the response time for each attempt.

ndbd(NBD) id=l
Response Time(M/s)

ndbd(NBD) id=2
Response Time(M/s)

NormalMySQLSetu
Response Time(M/s)

Trial 1 0.5510 0.5665 0.5530
Trial 2 0.5535 0.5723 0.5551
Trial 3 0.5590 0.5632 0.550
Table 3.'Trials for nodes response time.

Granh of Trails vs Resnonse Time <M/sl
0.58

0.54

0.54
Trial 1 Trial 2 Trial 3

— ndbd(NBD) id=1
—•— ndbd(NBD) id=2
— Normal_MySQL_Setup

Trials

Figure 16: A graph of trials against response time in millisecond.

Figure 16 show a graph of response time against several trials and from the results we can see that d,
31

node ndbd(NBD) id=2 takes more time to respond since it's a slave to node ndbd(NBD) id=l while
node ndbd(NBD) id=l and NormalM ySQLSetup takes a relatively faster time than node
ndbd(NBD) id=2.This is because the MySQL cluster management node (ndn mgmd) has to vote which
node will respond to the request which means more response before the best node is chosen.

4.2 Challenges Facing Database Querying in Federated Database.
Database querying involves fetching hundreds of millions rows of data stored in a database
management system. The amount of time taken by the DBMS to query the data is even complicated by
the hardware limitations to handle the execution load. In federated database environment the problem is
further complicated considering that now you have to deal with not only the computation capability if
the server but also the network interconnecting different federated databases.

Most database management systems have tried to come up with applications that try to distribute the
load among several database partitions to reduce the amount of time taken between querying
transactions. However these solutions are still limited in their quest to balance between scalability,
availability, and response time and network throughput. Some of the existing systems have great
response time but low availability while others have great scalability and availability but low response
time thus making database load balancing as the preferred approach to solve these problems effectively.

4.3 Evaluation of Available Database Load-balancing Techniques.
Several load balancing tools and techniques have been developed over times as summarized below.

MySQL Cluster MySQL Proxy Dynamic Load-
balancer

Fail-Over Multiple network addresses
per data node are not
supported. Use of these is
liable to cause problems: In
the event of a data node
failure, an SQL node waits

There is not intelligent
mechanism of handling fail
over in MySQL proxy such
as telling if one server is
down go to the next one [22]
what is called fail-over in
MySQL proxy is the
capability of giving a
notification message that the

In dynamic load
balancing middle-ware
the emphasis is put the
server as a unit of
computation hence the
only thing the middle
ware needs to concern
its self with is the
resource usage of that

32

for confirmation that the data
node went down but never
receives it because another
route to that data node
remains open. This can
effectively make the cluster
inoperable [19].

server chosen is down. particular server and
return it as either the
most optimal server or
not. This was fail-over
reduced drastically.

Machine
architecture

All machines used in the
cluster must have the same
architecture. For example,
you cannot have a
management node running
on a PowerPC which directs
a data node that is running on
an x86 machine [19].

Just like the dynamic load-
balancer middle-ware
MySQL proxy is not
dependent on any machine
architecture as long as
MySQL database is running
in that machine [15].

The machine
architecture is not of
importance in dynamic
load-balancer as long as
MySQL is running in
any particular server the
load balancer will
choose any of the server
as long as it's the most
optimal

Scalability MySQL cluster is very
efficient in scalability but it's
limited to 1 -63 nodes
maximum [21].

MySQL proxy achieves
scalability by using LUA
scripting with is a query
injecting mechanism where a
single request is issued by
data is queried from different
servers and merged together
as if the data was queried
from a single database
server[14].

Dynamic load-balancer
middle-ware doesn't
restrict the number of
server that can be added
to the queue but the
limitations can come
due to client's
computation
capabilities.

Response
Time

Response time is quite
commonly worse in MySQL
cluster than with the
traditional since management
has to be done by the cluster
manager (NDB) which uses
sequential access to NDB
storage engine [20].

There is no emphasis of
response time in MySQL
proxy since querying is done
on all the existing server and
hence response time is
pegged on the network
throughput if it's high the
response time will be high
and vice versa[15].

In dynamic load-
balancer middle-ware
emphasis is put on both
scalability and response
time. This is achieved
by choosing the most
optimal server with
response time as one of
the parameter.

Database
architecture

MySQL cluster is limited to Just like MySQL cluster the
MySQL proxy is limited to

Although the case study
of this report was

33

MySQL databases only. operate on MySQL databases limited to MySQL
Other database has their own only. databases the dynamic

load-balancer middle-
way of load balancing thus ware can be easily
making MySQL clustering as applied to any other

database architecture.
a narrow solution.

Table 4: Evaluation o f various load balancing techniques.

4.3.1 Analysis of different load balancing techniques.
Based on the above sampled evaluations one can make a conclusion that there is no specific approach
that can be used to solve all aspects of load balancing single handily but some implementation are
better suited to offer a wide range of solution that others. In this case the Dynamic Load-balancer
Middle-ware fairs well in the way it handles fail-over, response time, compatibility to different
machine architectures and appreciation of different database architectures. Although scalability is better
handled by MySQL cluster its limitation of maximum of 63 nodes [21] makes the Dynamic Load-
balancer Middle-ware an idea choice when it comes a federated databases environment that may
require more partitions to use. In a MySQL cluster setup response time can be delayed if the
management node(ndb mgmd) is also acting as the SQL node as well as a data node further more total
unavailability can occur if management node goes down. The figure below shows a MySQL cluster
setup.

All rights reserved.Copyright <c> 2009 Microsoft Corporation.
|C:\Users\bx>cd S
C:\>cd mysql\cluster
C:\nysql\cluster>ndb_ngn 1— NDB Cluster — Management Client — ndb_mgn> show
Connected to Management Server at: localhost:1186 Cluster Configuration
fndbd<NDB>] 2 node<s)
id=2 0127.0.0.1 <mysql-5.5.19 ndb-7.2.4, Nodegroup: 0. Master)id=3 0127.0.0.1 <mysql—5.5.19 ndb-7.2.4. Nodegroup: 0)
fndb_mgmd<MGM>1 1 node<s)
id=l 0127.0.0.1 <mysql-5.5.19 ndb-7.2.4>
tnysqldCAPI) I 3 node<s>id=4 0127.0.0.1 <mysql-5.5.19 ndb-?.2.4>id=5 0127.0.0.1 <mysql-5.5.19 ndb-7.2.4>id=6 0127.0.0.1 <mysql-5.5.19 ndb-7.2.4>
ndh_mgn> Ea_
Figure 17: MySQL cluster test environment.

V

Chapter 5: Conclusion
5.1 Achievement
In this study we were able to:

i. Develop a middle-ware that balances database query load among several federated database
partitions located in a heterogeneous environment.

ii. Discuss several strategies of database load balancing their weakness and strength.

iii. Develop a client-server implementation that facilitates interactions between distributed database
servers and clients.

iv. Testing and evaluation of the middle-ware effectiveness.

5.2 Challenges
This study was faced with several challenges which among them include:

i. The testing environment was a mimic of a real environment, testing with a real environment
meant asking for companies that have large distributed database environment setup which was
not possible due to data security.

ii. Database load balancing is not extensively studies especially in MySQL databases which makes
documentation and literatures scarce.

35
V

5.3 Further Study
The result of this study was very promising and it's an indicter that more research need to be carried on
this area due to the inherent growth of more complex database architectures. This shows there is need
to keep a breast with those complexities otherwise they may delay service delivery by the information
technology industry.

Some of the areas that were identified for further development include:

i. Develop a load-balancer middle-ware that takes in account the disk read-write speed.

ii. Develop a middle-ware that can balance load between different database e.g Oracle,
MySQL,MS-SQL e.t.c.s

5.4 Conclusion
This report points out a load balancing strategy to be adopted to balance load in federated database
environment. It thus focuses on the emphasis of improved performance, speed and data availability
even in conditions that would seem challenging to achieve the same. The dynamic load balancer
developed during this research project will be of great benefit especially to developers who wish to
develop an application that connects to a database management system. This is because they will be
able to implement the load balancer in their application development as an add-on to tweak their
system performance. This study will also add more knowledge to future developer's who wish to
engage in the area of database development

Also having the best load balancing techniques implemented from the point of view of a user translates
to improved effectiveness and efficiency on ways of conducting business. For big companies it can be
seen as a way of gaining a competitive edge over a competitor who is yet to adopt the strategy.

36

References
[1] Journal of Biomedical Informatics, 2001.Heterogeneous database integration in biomedicine. 34(4):
p. 285-98.
[2] Sheth AP, L.J., Federated database systems for managing distributed, heterogeneous, and
autonomous databases. ACM Comput Surv, 1990. 22(3): p. 183-236.

3] A. Bouguettaya and R. King. Large multidatabases: Issues and directions. In IFIP DS-5
Interoperable Database Systems (Editors: D. K. Hsiao, E. J. Neuhold, and R. Sacks-Davis).Elsevier
Publishers, Lome, Victoria, Australia, 1993.

[4] Beck, Kent; et al. (2001)."Manifesto for Agile Software Development". Agile Alliance. Retrieved
2011-10-18.

[5] Socke Connection.http://www.oracle.com/technetwork/java/socket-140484.html .Retrieved 2011-
10- 20.

[6] Art Taylor (Paperback - January 15, 1999).JDBC Developer's Resource (2nd Edition).

[7] MySQl Cluster CGE. http://MySQL .com/products/cluster/.Retrieved 2011-09-02.

[8] Xiao Qin ,Dynamic Load Balancing for IO-Intensive Tasks on Heterogeneous Clusters, Proceeding
of the 2003 International Conference on High Performance Computing(HiPC03)

9] Chengzhong Xu, Francis C. M. Lau.Load balancing in parallel computers: theory and practice.
10] Xiao Qin, (2006). Performance comparisons of load balancing algorithms for IO intensive
workloads on clusters, Journal of Network and computer applications.
1] Kai Lu, Riky Subrata, Albert Zomaya, “An Efficient Load Balancing Algorithm for Heterogeneous
rid Systems Considering Desirability of Grids Sites” IEEE, pp. 311-319(2006).
2] Replication: http://dev.mysql.eom/doc/refman/5.0/en/replication.html .Retrieved 2012-01-20.

V

37

http://www.oracle.com/technetwork/java/socket-140484.html
http://MySQL
http://dev.mysql.eom/doc/refman/5.0/en/replication.html

[13] Replication (Computing).http://en.wikipedia.org/wiki/Replication_(computer_science) .Retrieved
2012- 01- 22.

[14] Grig Gheorghiu.Agile Testing.http://agiletesting.blogspot.com/2009/04/mysql-load-balancing-and-
read-write.html.Retrieved 2012-01-19.
[15] Oracle and affiliate. MySQL Reference Manual,MySQL Proxy Guide, Document generated on:
2012-02-20 (revision: 29125)
[16] Chandra Kopparapu: Load Balancing Servers, Firewalls & Caches, Wiley, ISBN 0-471-41550-2
[17] Brian Keating.Database Specialists, Inc. Challenges Involved in Multimaster Replication
.http://www.dbspecialists.com/files/presentations/mm_replication.html,Retrieved 2012-02-15.

[18] MySQL Cluster Performance .http://www.cherry.world.edoors.com/CMta_qxLOVfg,Retrieved
2012-03-02.

[19] Oracle and affiliate. Limitations Relating to Multiple MySQL Cluster Nodes
.http://dev.mysql.eom/doc/refman/5.0/en/mysql-cluster-limitations-multiple-nodes.html .Retrieved
2012-03-02.

[20] Oracle and affiliate. Limitations Relating to Performance in MySQL Cluster.
http://dev.mysql.eom/doc/refman/5.0/en/mysql-cluster-limitations-performance.html .Retrieved 2012-
03-02.

[21] Oracle and affiliate. Limits and Differences of MySQL Cluster from Standard MySQL Limits
http://dev.mysql.eom/doc/refman/5.0/en/mysql-cluster-limitations-limits.html .Retrieved 2012-03-02.

[22] Database Expertise.http://pythian.com/news/896/simple-mysql-proxy-failover .Retrieved 2012-03-
05.
[23] Selecting a Platform for your MySQL server http://dev.mysql.com/tech
resources/articles/mysql_platform_selection.html .Retrieved 2012-03-05.

38
V

1

http://en.wikipedia.org/wiki/Replication_(computer_science
http://agiletesting.blogspot.com/2009/04/mysql-load-balancing-and-read-write.html.Retrieved
http://agiletesting.blogspot.com/2009/04/mysql-load-balancing-and-read-write.html.Retrieved
http://www.dbspecialists.com/files/presentations/mm_replication.html,Retrieved
http://www.cherry.world.edoors.com/CMta_qxLOVfg,Retrieved
http://dev.mysql.eom/doc/refman/5.0/en/mysql-cluster-limitations-multiple-nodes.html
http://dev.mysql.eom/doc/refman/5.0/en/mysql-cluster-limitations-performance.html
http://dev.mysql.eom/doc/refman/5.0/en/mysql-cluster-limitations-limits.html
http://pythian.com/news/896/simple-mysql-proxy-failover
http://dev.mysql.com/tech

Appendix 1: Sample CPU Usage Code
package server;

import java.lang.management. *;import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicLong;
public class MultiCoreTester {

private static final int THREADS = 5;
private static CountDownLatch cl = new CountDownLatch(7y//J£/l£>S);
private static AtomicLong total = new AtomicLongQ;

public double PrintExecutionTime() throws InterruptedException{
System.ou/.println("*************CPU RESOURCES*****************************");

long elapsedTime = System.nanoTime()\
for (int i = 0; i < THREADS', i++) {

Thread thread = new Thread() {
public void run() {

total. addAndGct(measureThreadCpu71me());
cf.countDownQ;

}};thread. start();
}c/.await();
elapsedTime = Sy stem.nanoTimeQ - elapsedTime;

System.o«/.println("Total elapsed time " + elapsedTime);
System.ow/.println("Total thread CPU time " + total.get());
double factor = total.get();
factor /= elapsedTime;

//System.out.println("CPU time to elapsed time factor is " + factor);
System.ow/.println("Factor: %.2f%n " + factor);
System.on/.println("--- ");
return factor;

private static long measureThreadCpuTime() {
ThreadMXBean tm = ManagementFactory.ger77jrearfAiVBea«();
long cpuTime = tm.getCurrentThreadCpuTime();
long total=0;
for (int i = 0; i < 1000 * 1000 *100 ; i++) {
// Keep the loop busy for a while to collect information
total += i;

39

total *= 10;
}

cpuTime = tm.getCurrentThreadCpuTime() - cpuTime;
System.ow/.println(total + " ... " + Thread.currentThreadQ +

cpuTime = " + cpuTime);

return cpuTime;
}
public double PrintCPULoad() throws InterruptedException{

OperatingSystemMXBean mxbean_= ManagementFactory.getOperatingSystemMXBeanQ',

System.ou/.println("My processors " + mxbean_.getAvailableProcessors());
System.o«t.println("My Load " +mxbean_.getSystemLoadAverage());
return mxbean_.getSystemLoadAverage();

}}

Appendix 2: Sample Memory Usage Code
package server;

public class MemoryUsage {
public double printUsage(Runtime runtime) {

long total, free, used;

byte[] bytes:
// Print initial memory usage,
runtime = Runtim e.getRuntimeQ-,

//Allocate a 1 Megabyte and print memory usage
bytes = new byte[1024*1024];

bytes = null;
// Invoke garbage collector to reclaim the allocated memory.
runtime.gc();
// Wait 5 seconds to give garbage collector a chance to run

//try {
//Thread.sleep(5000);

/ / } catch(InterruptedException e) {
// e.printStackTraceQ;

40

//}

total = runtime.totalMemoryO;
free = runtime.freeMemoryO;
used = total - free;
System.ow/.println("*************MEMORYRESOURCES*****************************")
System.o«/.println("\nTotal Memory: " + total);
System.ou/.println(" Used: " + used);
System.oi//.println(" Free: " + free);
System.ou/.println("Percent Used: " + ((double)used/(double)total)*100);
System.ou/.println("Percent Free: " + ((double)free/(double)total)*100);
System.ou/.println("--- ");
System.ow/.println(" ");
return ((double)used/(double)total)* 100;

}

}
Appendix 3: Sample Server Code

package server;
import client.*;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.lang.ClassNotFoundException;
import java.lang.Runnable;
import java.lang.Thread;
import java.net.ServerSocket;
import java.net.Socket;
import java.util. ArrayList;

import org.omg.CORBA.PRIVATE MEMBER;

public class ServerSocketConnect {

private ServerSocket server;

private int port = 7777;

public ServerSocketConnect() {

try {

server = new ServerSocket(port);

} catch (IOException e) {

e.printStackTraceO;

v

41

}
}

public static void main(String[] args) {

ServerSocketConnect example = new ServerSocketConnect();

example.handleConnectionO;

}

public void handleConnection() {

System.out.println("Waiting for client request...........");

// The server do a loop here to accept all connection initiated by the

// client application.

//
while (true) {

try {

Socket socket = server.accept();
new ConnectionHandler(socket);

} catch (IOException e) {

e.printStackTrace();

}
}
}
}'

class ConnectionHandler implements Runnable<{

v

42

private Socket socket;
public ConnectionHandler(Socket socket) {

this.socket = socket;

Thread t = new Thread(this);

t.start();

}
public void run() {

try

{
//
// Read a message sent by client application

ObjectlnputStream ois = new ObjectInputStream(socket.getInputStream());

String message = (String) ois.readObjectO;
System.out.println("Clients Message:" + message);
System.out.println(" ");

// Send a response information to the client application

ObjectOutputStream oos = new ObjectOutputStream(socket.getOutputStream());

oos.writeObject(ArrayParam());
oos.flush();

ois.close();

oos.close();
socket.close();

System.out.println("Waiting for client message,..");

} catch (lOException e) {
i '

43
v

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTraceO;

e.printStackTrace();

}
public ArrayList<Double> ArrayParam() throws InterruptedException {

ArrayList<Double> al=new ArrayList<Double>();
MemoryUsage mu=new MemoryUsage();
Runtime runtime;
byte[] bytes;

// Print initial memory usage,
runtime = Runtime.getRuntime();
double MemUsage=mu.printUsage(runtime);
//--------------CPU usage
double CpuUsage=0;
MultiCoreTester mct=new MultiCoreTester();
CpuUsage = mct.PrintExecutionTime();

al ,add(MemU sage);
al.add(CpuUsage);

al.add(mct.PrintCPULoad());
return al;

}
Appendix 2: Sample Client Code
package client;

import java.io.BufferedReader;
import java.io.DatalnputStream;
import java.io.FilelnputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Objectlnput;

44

import java.io.ObjectlnputStream;
import java.io.ObjectOutputStream;
import java.lang.ClassNotFoundException;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.UnknownHostException;
import java.util. ArrayList;
import java.sql.*;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;
import java.io.*;

public class ClientSocketConnect {
static double LargestResource=0;

public static double ClientConnect(String host) {
double avgResults=0;

try {
//
// Create a connection to the server socket on the server application
//

// String host = "196.168.1.189";
Socket socket = new Socket(host, 7777);

//GFG
// Send a message to the client application

\//
long InitialTime=System.nanoTime();

double AvgTime=0.0;
45

v

System.out.printlnC
System.out.println('

■ "+ host +

ObjectOutputStream oos = new ObjectOutputStream(socket.getOutputStream());
oos.writeObject("Comfirmation : Client Sent a request");

//
// Read and display the response message sent by server application
//
ObjectlnputStream ois = new ObjectInputStream(socket.getInputStream());
//String message = (String) ois.readO'oject();
ArrayList<Double> al= (ArrayList<Double>) ois.readObject();

System.out.println("Comfirmation: "+ host +" Server returned the message with items");

double elapsedTime=(System.nanoTime() -InitialTimej/l 000000000.0;

//
AvgTime=((InitialTime/elapsedTime) % 100);

al.add(elapsedTime);

Object[] ia=al.toArray();

for (int i = 0; i < ia.length; i++) {
System.out.println(i+l + " : " + ia[i]);
avgResults+= Double.valueOf(ia[i].toString0).doubleValue();

}

ois.close();
oos.close();

} catch (UnknownHostException e) {
e.printStackTrace();

46

I

} calch (lOException e) {
//e.printStackTrace();

System.out println(" ");

System.out.println("XXXXXXXXX " + host + " is unreachable XXXXXXXX");
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

return avgResults;
}

public static void main(String[] args){

int sCounter=l;
String[] ipArray = null;
ip Array = new StringfO];

try{
FilelnputStream fstream = new FileInputStream("/home/xb/ips");/// Get the object of DatalnputStream
DatalnputStream in = new DatalnputStream(fstream);
BufferedReader br = new BufferedReader(new InputStreamReader(in));
String strLine;
//Read File Line By Line
while ((strLine = br.readLine()) != null) {

ipArray=(String[]) resizeArray(ipArray,sCounter);
ipArray [sCounter-1]=strLine;

sCounter+=l;

} ■ •
//Close the input stream
in.close(); «'
} catch (Exception e) {//Catch exception if any

47

//e.printStackTrace();
}

boolean isReachable=false;
String LargestlP=null;

double[] ServerArray=new double[ipArray.length];
double clients=0;

double largest=0;

for (int i = 0; i < ipArray.length; i++) {
clients= ClientConnect(ipArray[i]);

//System.out.println (ipArray[i]);

ServerArray[i]=clients;

if(i= 0){
largest=clients;
LargestIP=ipArray[i];

}

if((largest > clients) && (clients !=0))
{
largest = clients;
LargestIP=ipArray[i];
}

if (clients>0) {
System.out.piintln(" ");
System.out.priiitln("Resources usage for " + ipArray[i] + " is " + clients)

}

}
48

V

System.out.println(" ");
System out println("****************** ********* ***************** *************«yt

if (largest<=0) {
System.out.println("All the servers are down");
System.exit(-l);

}else{
System.out.println("The best sever is : " + LargestIP + " " + largest);

dbConnect(LargestlP);
}

}

private static void dbConnect(String host){
Connection conn = null;
long DBstartQueryTime=System.nanoTime();

System.out.println (" ");
System.out.println ("Attempting DB Connection......................");
try

{
String userName = "root";
String password = "root";
String url = "jdbc:mysql://"+ host +"/meo";
Class.forName ("com.mysql.jdbc.Driver").newInstance ();
conn = DriverManager.getConnection (url, userName, password);
System.out.println ("Database connection established");

Statement s = conn.createStatement ();
s.executeQuery ("SELECT * FROM v memberstateinent");
ResultSet rs = s.getResultSet ();
int count = 0;

49

//. System.out.println ("Payroll No | Activity Ref');
while (rs.next ())
{

String sName = rs.getString (2);
String sTown = rs.getString (3);

//System.out.println (sName + " | " + sTown);

++count;
}

double DbElapsedTime= (System.nanoTime()-DBstartQueryTime)/1000000000.0;

System.out.println("DB Query Time was : " + DbElapsedTime + " Sec's");

rs.close ();
s.close ();
System.out.println (count + " rows were retrieved");
}
catch (Exception e)
{
e.printStackTrace();
System.err.println ("Cannot connect to database server");
}
finally
{
if (conn != null)
{
try
{
conn.close ();
System.out.println ("Database connection terminated");
}
catch (Exception e) {/* ignore close errors *1}
}
}

50

private static Object resize Array (Object old Array, int newSize) {
int oldSize = java.lang.reflect.Array.getLength(oldArray);
Class elementType = oldArray.getClass().getComponentType();
Object newArray = java.lang.reflect.Array.newInstance(
elementType,newSize);
int preserveLength = Math.min(oldSize, newSize);
if (preserveLength > 0)
System .arraycopy (oldArray,0,ne w Array, 0, preserveLength);
return newArray;
}

