
UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

OPTIMIZATION AND PERFORMANCE EVALUATION OF IP LOOKUP

ALGORITHMS.

BY

OTIENO STEPHEN OBARE

P58/70475/2008

SUPERVISOR: Eric Ayienga.

M A R C H , 2012

Submitted in partial fulfillment of the requirements of the Master of Science in

Computer Science.

i

DECLARATION

This project, as presented in this report, is my original work and has not been presented for

any other University award.

Sign:_____ Date. 1 ^ ' 0 'S ' I _______________________

Otieno Stephen Obare

P58/70475/2008

This project has been submitted as partial fulfillment of the requirements for the Master of

Science degree in Computer Science of the University of Nairobi with my approval as the

University supervisor.

k U
Date: \ $ I 2 / 2 a

Mr. Eric Ayienga,

Lecturer,

School of Computing and Informatics,

University of Nairobi.

ii

ABSTRACT:

The number of people accessing the internet grows exponential and soon half of the

world’s population will have access to internet. New services and application? are also
X

added daily on the popular IP networks and this trend is likely to continue into the future.

More precisely, this development is in three major parameters of the internet activity: the

number of connected nodes and endpoints is increasing, resulting in growth of routing

table sizes, the number of users increases, resulting in larger internet traffic, and the

complexity of the provided services increases, also causing an increase in traffic by

delivering higher amounts of data per transaction. All these translate into a growing

increase in traffic demands, which can only be answered by improvement in the service

given by internet routers.

Due to the rapid growth of traffic in the Internet, backbone links of several gigabits per

second are commonly deployed. To handle gigabit-per-second traffic rates, the backbone

routers must be able to forward millions of packets per second on each of their ports. Fast

IP address lookup in the routers, which uses the packet’s destination address to determine

for each incoming packet the next hop, is therefore crucial to achieve the packet

forwarding rates required. IP address lookup is difficult because it requires a longest

matching prefix search.

In this research work, I consider the problem of organizing the Internet forwarding tables

in such a way as to enable fast routing lookup performance. In the last couple of years,

various algorithms for high performance IP address lookup have been proposed. I present

a brief survey of state-of-the-art IP address lookup algorithms. I concentrate on four

recently proposed methods and try to evaluate their performance. I describe my

implementation of the methods and results of performance measurements on artificially

generated input data. Some conclusions about the general behavior of all methods, based

on the measurements and theoretical reasoning is presented. Finally, I comment on the

results, suggesting preference among the methods.

iii

ACKNOWLEDGEMENT

To my supervisor Mr. Eric Ayienga, for making hard work less hard and without whom

this project wouldn't have been such a great experience.

To Sue: the core router in my network where the forwarding rates varies instantaneously

and over time, and where looping occur. . .

IV

Table of Contents
LIST OF T A B L E S...VII

LIST OF FIG U R ES... VIII

ABBREVIATIO NS... IX

PREFIX... XI

CHAPTER 1 ... 1

INTRODUCTION... 1

1.1 Background...................................... 1

1.2 Problem Statement:...2

1.2 Objectives:... 4

1.3 Research Questions...5

1.4 Significance of the Study .. 5

LITERATURE R E V IE W .. 6

2.1 The Classful Internet Addressing: .. 7

/ 2.2 The CIDR Addressing Scheme.. 10

2.3 IPv6 Address architecture.. 13

2.4 Difficulty of the Longest Matching Prefix Search.................................15

2.5 Classifications of IP Lookup Algorithms..16

2.6 Simulation... 35

CHAPTER 3 ... 40

IM PLEM ENTATIO N... 40

3.1 Introduction... 40

3.2 Observations: ... 41

3.3 Design of Simulator: .*...<.. 45

3.4 Modules: ...46

CHAPTER 4 ... 51

EXPERIM ENTAL R E SU L TS..51

4.1 Introduction..51

v

4.2 The objectives of the experiments:.. 51

4.3 Justification for selected plans..52

4.4 Methodology.. 52

CHAPTER 5 ... 66

C O N C LU SIO N ..66

5.1 Conclusion... 66

5.2 Recommendation and future work... 67

BIBLIOGRAPHY.. '........1 .6 9

vi

LIST OF TABLES PAGE

Table 2.1: Forwarding table. 7

Table 2.2: Address Aggregations 9

Table 2.3: Prefix Table. 17

Table 2.4: Original Forwarding Table Prefixes. 19

Table 2.5: Forwarding Table Prefixes after expansions. 22

vii

LIST OF FIGURES PAGE

Figure2.1: Internet Two Level hierarchy

Figure 2.2: Forwarding table

Figure 2.3: Address Aggregations

Figure 2.4: An exception Prefix

Figure 2.5: Allocation Policy for IPv6

Figure 2.6: Example network with 6-bit IP addresses

Figure 2.7: A Binary Trie

Figure 2.8: Path Compressed Trie

Figure 2.8: Patricia Trie

Figure 2.9: Multibit Node

Figure 2.10: Multibit Node with Pointers

Figure 2.11: Root Unibit Node with Bitmaps

Figure 2.13: Root Tree Bitmap Node with Child Array

Figure 2.14: Optimized Tree Bitmap

Figure 3.1: Distribution of IP Prefixes

Figure 3.2: Projected Forwarding Table Growth

Figure 3.3: Top Level Architecture of the Model

Figure 3.4: User Interfaces Screen Shots

Figure 3.5: Search Module Screen Shot

Figure 3.6: Output Module Screen Shot

Figure 4.1: IP Lookup times under varying IPv4 FIB sizes.

Figure 4.2: IP Lookup times under varying IPv6 FIB sizes.

Figure 4.3 Memory requirements under varying IPv4 FIB sizes.

Figure 4.4: Memory requirements iTtider varying IPv6 FIB sizes.

Figure 4.5: Lookup times various percentages of the FIB

Figure 4.6: Memory required various percentages of the FIB

1

2

4

7

10

11

11

12

14

16

19

23

25

26

28

29

31

32

35

35

37

37

40

40

41

42

ABBREVIATIONS

IETF: Internet Engineering Task Force

CIDR: Classless interdomain routing.

IANA: Internet Assigned Numbers Authority.

RIR: Regional Internet Registries.

ISP: Internet Service Providers.

LIR: Local Internet Registries.

EU: End Users.

IAB: Internet Architecture Board.

IESG: Internet Engineering Steering Group. 1

PATRICIA: Practical Algorithm To Retrieve Information Coded in Alphanumeric

Implementation.

BMP: Best Matching Prefix.

RFC: Request for comments.

IPv4: Internet Protocol version 4.

IPv6: Internet Protocol version 6.

RIPE: Reseaux IP Europeens.

NCC: Network Coordination Centre.

RIS: Routing Information Service .

TCAM: Ternary Content Addressable Memory.

LIR: Local Internet Registry.

TLA: Top Level Aggregation.

NLA: Next Level Aggregation.

SLA: Site Level Aggregation.

V ix

DEFINITION OF TERMS:

Routing

Is the process of running various protocols like BGP, OSPF, LDP, etc to arrive at set of

efficient routes towards various network destinations. Routing is the process by which

forwarding tables are built.

Forwarding

Refers to the process of receiving packets, performing route lookup on the packet and

sending the packet on an output interface. Forwarding involves various other functions

like policing, rate-shaping, QOS, etc. Consists of taking a packet, looking at its

destination address, consulting a table, and sending the packet in a direction determined

by that table

4 ‘ <

A backbone router:

Is different from any other low-end router. It performs forwarding at very high speeds

and does route lookup on large number of routes (~ 120,000). In backbone routers,

routing protocol traffic and data traffic follow different paths through the router. These

are usually called the slow-path and fast-path respectively.

Throughput

Rate at which packets are sent/received without loss.

Latency

Time spend by a packet inside the router.

Longest prefix match:

Refers to an algorithm used by routers in Internet Protocol (IP) networking to select an

entry from a routing table. Because each entry in a routing table may specify a network,

one destination address may match more than one routing table entry. The most specific

table entry — the one with the highest subnet mask — is called the longest prefix match.

x

A stride:

Refers to the number of bits to be inspected per step in multibit trie and it can be constant

or variable. Multibit tries cannot support arbitrary prefix lengths since they allow

traversing the data structure in strides of several bits at a time.

Prefix

The IP prefix identifies the number of significant bits used to identify a network. For

example, 192.9.205.22 /18 means, the first 18 bits are used to represent the network and

the remaining 14 bits are used to identify hosts.

Binary Trie

Represent the prefix space, with each node for a possible prefix. The prefix of a route

table entry defines a path in the trie ending in some node, which is called the Prefix

Nodes. If a node itself is not a prefix node but its descendants include prefix nodes, it is

called it an Internal Node.

Build time

Time necessary to build the forwarding table from the in memory ordered list of routing

table entries. The time to read the values or to perform the sorting is not included.

V XI

CHAPTER 1
INTRODUCTION

1.1 Background

The number of people accessing the internet grows exponential and soon half of the

world’s population will have access to internet. New services, applications, computers,

smart phones and hand held devices are added daily on the popular IP networks and this

trend will continue into the future. These devices overload the world-wide-area networks

consuming lots of IP addresses as shown below.

v

Figure 1: Services, applications and devices

Three key factors that affect a router’s performance and that must keep pace with these

demand if Internet is to continue to provide good service are: link speeds, router data

throughput and packet forwarding rates. Solutions for the first two factors are available:

Backbone links of several gigabits per second such as fiber can provide faster links, and

current switching technology can be used to move packets from the input interface of a

router to the corresponding output interface at gigabit speeds. Packet forwarding is done

by the router in order to decide the destination port of the incoming packet. This is done

by looking up the packet’s destination address in the forwarding database. Therefore if an

improvement in address lookup can be found, especially in relation to the imminent

increase in address lengths and growth of the routing database, then the performance of

packet forwarding in routers will significantly improve hence improve internet services.

Past evaluations by G. Varghese, W. Eatherton, Z. Dittia, 2010, Miguel A. Ruiz-Sanchez

et al, 2001, Jun Wang, Klara Nahrstedt, 2008, Packer Ali, Dhamim, 2000 have studied IP

Lookup problem in routers. However these studies were based on algorithmic analysis,

hardware implementation and some were performed in testbeds with small number of

nodes. When evaluating IP Lookup algorithms it is very important to test its scalability

and 1000 nodes are not usually sufficient.

Simulations offer an alternative that makes easier to test algorithms in large scenarios.

Simulators are especially suitable when we want to evaluate an algorithm by modifying

different parameters or when we want to modify the algorithm (create a new one or

improve an existing one). In this sense, simulations allow us to write a model of an

algorithm, protocol or system and study their behaviour through different experiments

which can include a large number of nodes.

1.2 Problem Statement:

There are 4.3 billion unique Internet Protocol addresses and now they’re running out.

This growth has led to exhaustion of IPv4 addresses and the transition to IPv6 which

offers an ‘infinite’ number of IP addresses is inevitable. The growth will cause a major

increase in the length and number of addresses, and in turn the number of IP address

prefixes which are used to aggregate IP addresses into networks. This stresses the need

for an address lookup solution thatfrs as less dependent as possible on the length of IP

addresses and size of the searched database which is bound to grow significantly.

For every arriving packet, IP routers perforin two steps: look up the next-hop of the

packet from the fowarding database and forward the packet to the outgoing interface

determined by the first step. The first step heavily influences the performance of routers

because the longest prefix matching is complicated after the introduction of CIDR

2

(Classless Inter-Domain Routing). Therefore, an address lookup method easily becomes a

performance bottleneck at high-speed routers.

The problem of identifying the forwarding entry containing the longest prefix among all

the prefixes matching the destination address of an incoming packet is defined as the

longest matching prefix problem. This longest prefix is called the longest matching

prefix. It is also referred to as the best matching prefix.

Figure 1.2: Simple depiction of IP Lookup

Given the tree and a candidate address thought of as a sequence of bits, the lookup

algorithm is as follows:

1. Set node to the top of the tree.

2. If at a leaf node, stop.

3. Extract a bit position to test.

4. If that bit of the candidate address is on, set the node to the right child of the

current node, otherwise set node to the left child.

5. Repeat steps 2 - 4.

Wei, G., Chunhe, X., Nan, L., Haiquan, W., and in, D, in their paper, Research on

simulation framework of structured^Network, IEEE Computer Society, notes that current

evaluations of IP Lookup algorithms are based on algorithmic analysis and experiments

that have only been performed with a small number of nodes. Some well known network

simulators are Opnet, NS-2 and OMNET++. These simulators perform very well when

evaluating network protocols but they do not scale well for IP Lookup algorithm

evaluation with a large number of nodes. For instance Omnet++ can't simulate more dian

3

1000 nodes and Narses can simulate up to 600. This is due to the overhead added by the

network details.

1.2 Objectives:

1.2.1 General Objective:

This project aims at investigating IP Lookup algorithms and data structures for the

longest prefix match operation required for routing IP packets. Specifically, this project

aims at investigating and comparing the performance of the widely used Patricia-tree

based approaches found in the BSD kernels and the proposed Tree Bitmap algorithm for

Cisco routers for IPv6 that appeared in the paper “Tree bitmap: hardware/software TP

lookups with incremental updates” by George Varghese, Will Eatherton and Zubin Dittia.

Their performance differences are also investigated and an optimized Tree Bitmap

Algorithm for efficient Lookup in IPv6 routers is investigated through the following

activities.

This project will also aim to create a simulator that will study and evaluate the IP Lookup

Algorithms. The simulator will allow testing the algorithms scalability and searching

performance in different scenarios.

1.2.2 Specific Objectives:

a) To design and implement an IP Lookup simulator through the following activities:

i) The first goal of this project is to do a thorough study of IP lookup algorithms.

At the moment algorithms such as Tree Bitmap Algorithm and BSD Trie are

implemented in router hardware.

ii) Optimise IP Lookup Algorithm.

iii) Design a simulator for testing IP Lookup Algorithms based on predefined

parameters.

iv) Implement a simulator for testing the Lookup Algorithms.

b) To test the IP Lookup algorithms through simulations involving experimenting,

studying and analyzing the algorithms using the following activities:

i) To test memory consumption of IP Lookup Algorithms.

ii) To test speed of IP Lookup algorthms.

iii) To test scalability of IP Lookup Algorithms.

1.3 Research Questions

The basic research questions regarding this study are:

a. What are the different kinds IP Lookup Algorithms?

b. Which factors influence the IP Lookup in a router and why?

c. What are the challenges posed by Longest Matching Prefixes in IP address lookup

and how are the challenges compounded by the transition to IPv6?

d. Can a solution to the challenges be developed found for the Longest Matching Prefix

problem?

e. Is the proposed solution a good enough solution for the IPv6 address lookup

problem?

1.4 Significance of the Study

The purpose of this research work will address the scientific society about the LMP

problem, the impact of IPv6 on IP Address Lookup Algorithms and the implementation

of a proposed solution to the problem. It will contribute through the use of large numbers

of IP prefixes to analyze the performance of IP Lookup Algorithms; it should,reveal thei
idea, by comparing performances of the selected algorithms, to developing high

performance routers for IPv6.

The second purpose of this research work is to come up with a model simulator that can

be used in IP Lookup algorithm**'research. Past studies have shown that network

simulators such as OMNET++, NS2 perform very well when evaluating network

protocols but they do not scale well for TP Lookup algorithm evaluation with a large

number of nodes. For instance Omnet++ can't simulate more than 1000 nodes and Narses

can simulate up to 600. This is due to the overhead added by the network details.

Creating a simulator for IP lookup algorithm will not just help algorithm developers to

improve their algorithms but also researchers in the field of next generation routers.

5

CHAPTER 2

LITERATURE REVIEW

The primary role of routers is to forward packets toward their final destinations. To this

end, a router must decide for each incoming packet where to send it next. More exactly,

the forwarding decision consists of finding the address of the next-hop router as well as

the egress port through which the packet should be sent. This forwarding information is

stored in a forwarding table that the router computes based on the information gathered

by routing protocols. To consult the forwarding table, the router uses the packet’s

destination address as a key; this operation is called address lookup. Once the forwarding

information is retrieved, the router can transfer the packet from the incoming link to the

appropriate outgoing link, in a process called switching.

The exponential growth of the Internet has stressed its routing system. While the data

rates of links have kept pace with the increasing traffic, it has been difficult for the packet

processing capacity of routers to keep up with these increased data rates. Specifically, the

address lookup operation is a major bottleneck in the forwarding performance of today’s

routers. This project presents a survey of the latest algorithms for efficient IP address

lookup and the optimization. I start by tracing the evolution of the IP addressing

architecture. The addressing architecture is of fundamental importance to the routingt «
architecture, and reviewing it will helps in understanding the address lookup problem:

Routing Processor

When a packet arrives at a line card, its header is removed and passed to the routing

processor. The remainder of the packet remains on the inbound line card. Once the header

reaches the routing processor, it is placed in a request first-in first-out (FIFO) queue for

processing. The processor reads the header and looks up a routing table to determine how

to forward the packet, then makes one or more writes to inform the inbound line card

6

how to handle the packet. Hence, the routing processor is also called forwarding engine

or network processor in the literature.

The main function of a router is to perforin route lookup: that is, given a packet with an

IP destination address, the router must determine the appropriate output port for this

packet. The process of table look-up involves a longest prefix match of the variable

destination network address contained in the packet header against multiple entries in the

routing table. The one selected contains the most bits that match up with the destination

address.

Figure 2.1: Routing Process

2.1 The Classful Internet Addressing:

In IPv4, IP addresses are 32 bits long and when broken up into 4 groups of 8 bits, are

normally represented as four decimal numbers separated by dots. For example, the

V 1

Address 10000010 010]0110 00010000 01000010

Corresponds to 130.86.16.66.

The fundamental objective of Internet Protocol is to interconnect networks, so routing on

a network basis was a natural choice rather than routing on a host basis. Thus, the IP

address scheme initially used a simple two-level hierarchy, with networks at the top level

and hosts at the bottom level.

Network-Number Host-Number

or

Network-Prefix Host-Number j
Figure2.2: Internet Two Level hierarchy

This hierarchy is reflected in the fact that an IP address consists of two parts, a network

part and a host part. The network part identifies the network to which a host is attached,

and thus all hosts attached to the same network agree in the network part of their IP

addresses.

Since the network part corresponds to the first bits of the IP address, it is called the

address prefix. Prefixes will be written as bit strings of up to 32 bits in IPv4 followed by

a *. For example, the prefix 1000001001010110* represents all the addresses that begin

with the bit pattern 1000001001010110. Prefixes can also be indicated using the dotted-

decimal notation, so the same prefix can be written as 130.86/16, where the number after

the slash indicates the length of the prefix.

With a two-level hierarchy, IP routers forwarded packets based only on the network part,

until packets reached the destination network. As a result, a forwarding table only needed

to store a single entry to forward packets to all the hosts attached to the same network.

This technique is called address aggregation and allows using prefixes to represent a

group of addresses. Each entry in a forwarding table contains a prefix, as can be seen in

Table 2.1.

8

Destination Address Prefix Next-hop Output interface

24.40.32/20 192.41.177.148 2

130.86/16 192.41.177.181 6

208.12.16/20 192.41.177.241 4

208.12.21/24 192.41.177.196 1

167.24.103/24 192.41.177.3 1

Table 2.1: Forwarding table.

Finding the forwarding information now requires searching for the prefix in the

forwarding table that matches the corresponding bits of the destination address.

The addressing architecture specifies how the allocation of addresses is performed; that

is, it defines how to partition the total IP address space of 2n for IPv4 and 2 I2X for IPv6

addresses - specifically, how many network addresses will be allowed and what size each

of them should be. When Internet addressing was initially designed, a rather simple

address allocation scheme was defined, which is known as classful addressing scheme.

Basically, three different sizes of networks were defined in this scheme, identified by a

class name: A, B, or C.

Network Host

Class C
i**---------------------21----------------------------------8

1 1 0

__ f ____________________ /

Network Host

Figure 2.3 Classful addresses.

9

Network size was determined by the number of bits used to represent the network and

host parts. Thus, networks of class A, B, or C consisted of an 8, 16, or 24-bit network part

and a corresponding 24, 16, or 8-bit host part.

With this scheme there were very few class A networks and their addressing space

represented 50 percent of the total IPv4 address space (211 addresses out of a total o f2 32).

There were 16,384 (214) class B networks with a maximum of 65,534 hosts/network and

2,097,152 (2) class C networks with up to 256 hosts. This allocation scheme worked

well in the early days of the Internet. However, the continuous growth of the number of

hosts and networks has made apparent three problems with the classlid addressing

architecture. First, with only three different network sizes from which to choose the

address space was not used efficiently and the IP address space was getting exhausted

very rapidly even though only a small fraction of the addresses allocated were actually in

use. Attempts to reduce the inefficient address space allocation leads to even more router

table entries.

Second the lack of internal address tlexibility ensured that big organizations are assigned

large, “monolithic” blocks of addresses that don't match well the structure of their

underlying internal networks.

Third, although the information stored in the forwarding tables did not grow in proportion

to the number of hosts it still grew in proportion to the number of networks. This was

especially important in the backbone routers, which must maintain an entry in the

forwarding table for every allocated network address. As a result, the forwarding tables in

the backbone routers grew very rapidly. The growth of the forwarding tables resulted in

higher lookup times and higher menapry requirements in the routers and thereby impacted

their forwarding rates.
4 i

i

2.2 The CIDR Addressing Scheme

To allow more efficient use of the IP address space and to slow down the growth of the

backbone forwarding tables, a new scheme called classless interdomain routing (CIDR)

10

was introduced. Remember that in the classful address scheme, only three different prefix
/ -1

lengths are allowed: 8, 16, and 24, corresponding to classes A, B and C, respectively.

CIDR uses the IP address space more efficiently by allowing finer granularity in the

prefix lengths. With CIDR, prefixes can be of arbitrary length rather than constraining

them to be 8,16, or 24 bits long.

To address the problem of forwarding table explosion, CIDR allows address aggregation

at several levels. The idea is that since the allocation of addresses has a topological

significance, then addresses can be recursively aggregated at various points within the

hierarchy of the Internet’s topology. As a result, backbone routers maintain forwarding

information not at the network level, but at the level of arbitrary aggregates of networks.

Thus, recursive address aggregation reduces the number of entries in the forwarding table

of backbone routers.

208 .12 .16 /24

208 .12 .21 /24

208 .12 .31 /24

208 .12 .16 /20

Table 2.2: Address Aggregations:
t \

As an example on how address aggregation works, the networks represented by the

network numbers from 208.12.16/24 through 208.12.31/24 are considered. Suppose that

in a router all these network addresses are reachable through the same service provider.

110100000000110000010000*

110100000000110000010101 *

110100000000110000011111*

W 11010000000011000001 *

From the binary representation we can see that the leftmost 20 bits of all the addresses in

this range are the same (11010000 00001100 0001). Thus, we can aggregate these 16

networks into one “supemetwork” represented by the 20-bit prefix, which in decimal

notation gives 208.12.16/20. Indicating the prefix length is necessary in decimal notation,

because the same value may be associated with prefixes of different lengths; for instance,

208.12.16/20 (11010000 00001100 0001 *) is different from

208.12.16/22 (11010000 00001100 000100*).

While a great deal of aggregation can be achieved if addresses are carefully assigned, in

some situations a few networks can interfere with the process of aggregation. For

example, if a customer who owns the network 192.2.3/24changes his service provider

and does not want to renumber his network.

Backbone routing table

Figure 2.4: Address Aggregations:

Now, all the networks from 192.2.1/24 through 192.2.2/24 can be reached through the

same service provider, except for the network 192.2.3/24. Aggregation can now not be

performed as before and instead of only one entr y, additional entries need to be stored in

the forwarding table. One solution that can be used in this situation is aggregating in spite

of the exception networks and additionally storing entries for the exception networks. In

this example, this will result in only two entries in the forwarding table: 192.2.0/22 and

192.2.3/24.

12

Some addresses will match both entries because prefixes overlap. In order to always

make the correct forwarding decision, routers need to do more than to search for a prefix

that matches. Since exceptions in the aggregations may exist, a router must find the,most

specific match, which is the longest matching prefix.

208.12.21/24

\ 208.12.16/20

__________^ ____________
i--- —-- -
0 Total IPv4 address space \ 232 - 1

'X
These addresses match both prefixes

Figure 2.5: An exception Prefix.

In summary, the address lookup problem in routers requires searching the forwarding

table for the longest prefix that matches the destination address of a packet.

2.3 IPv6 Address architecture

IPv6 addresses are 128 bits in length and as such IPv6 addresses are very long. The

address includes 3 parts: 45-bit global routing prefix (the first three bits should always be

‘001’), 16-bit subnet ID, and 64-bit interface ID. The global routing prefix identifies a

site, the subnet ID identifies a subnet in a specific site, and the interface ID specifies a

network interface in a subnet. Usually, only the global routing prefix and the subnet ID,

accounting for 64 bits, are used fdr routing. Thus, routing entries with prefix lengths

longer than 64 bits are seldom in the IPv6 backbone BGP routing tables.

13

2.3.1 Allocation policies for IPv6 address

Responsibility for management of IPv6 address spaces is distributed globally in

accordance with the hierarchical structure shown below. The top level of the hierarchy is

Internet Assigned Numbers Authority (IANA), which allocates global unicast IPv6

addresses of /23 to Regional Internet Registries (RIRs). RIRs in turn allocate addresses of

/32 to subordinate address agencies, ISPs (Internet Service Providers) or LIRs (Local

Internet Registries). EUs (End Users) will generally be given /48, sometimes /64 or /128

assignments according to their requirements and scales.

Regional Internet Reg tunej
l A K IN , A P N I C R»PF N C C .
p lu s pos s ib le K itu ie KIR s)

N d llu ita l In te r n e t R e ylvw .c*
(A P N lC le g io n)

L o c a l In te rn e t R egistries
(IS P s)

fcnd

Figure 2.6: Allocation Policy for IPv6.

Moreover, some authorities have established the regulations to guide IPv6 address

allocation, such as IAB/IESG recommendations on IPv6 address allocation and the IPv6

address allocation and assignment policy issued jointly by RIRs. This makes IPv6 routing

tables to present clear hierarchies. Different hierarchies have different characteristics and

thus are suitable for different data structures on which my optimized tree bitmap

algorithm is rooted.

14

2.4 Difficulty of the Longest Matching Prefix Search

In the classful addressing architecture, the length of the prefixes was coded in the most

significant bits of an IP address and the address lookup was a relatively simple operation:

Prefixes in the forwarding table were organized in three separate tables, one for each of

the three allowed lengths. The IP lookup operation amounted to finding an exact prefix

match in the appropriate table. The search for an exact match could be performed using

standard algorithms based on hashing or binary search.

While CIDR allows the size of the forwarding tables to be reduced, the address lookup

problem now becomes more complex. With CIDR, the destination prefixes in the

forwarding tables have arbitrary lengths and no longer correspond to the network part

since they are the result of an arbitrary number of network aggregations. Therefore, when

using CIDR, the search in a forwarding table can no longer be performed by exact

matching because the length of the prefix cannot be derived from the address itself. As a

result, determining the longest matching prefix involves not only comparing the bit

pattern itself, but also finding the appropriate length. Therefore, searching is done in two

dimensions: value and length.

The IP address lookup problem can be defined formally as follows:

Let P = {Pi, P2, ‘ > Pn} be a set of routing prefixes, where N is the

number of prefixes.

Let A be an incoming IP address and S {A, k) be a sub-string of the most

significant k bits of A.

Let n(Pj) be the length of a prefix Pi.

A is defined to match P, if S(A, n(Pi)) = Pi.

Let M(A) be the set of prefixes in P that A matches, then M(A) - {Pi □ P :

S(A, n(Pi)) 1 P I

The longest prefix matching problem is to find the prefix Pj in M(A), such that n(Pj) >

n(Pi) for all Pi □ M(A), i = j. Once the longest matching prefix Pj is determined, the input

packet is forwarded to an output port directed by the prefix Pj .

15

r o u t i n g a l f j o r i l f > m

routine; talkie*
prolix output poit

OO lo IO 11 3IIOIOI 31101 2111 t11111 2 E f O

d e s t i n a t i o n I P a d d r e s s i n a i r i v i n g
p a c k e t ' s h e a d e r

Figure 2.7: Example network with 6-bit IP addresses

Figure shows an example network that has a 6-bit address space (IP address in IPv4 is 32

bits) as an example. Each router obtains a routing table composed of a set of prefixes and

the corresponding output port by running routing algorithms. For the example set of

prefixes as shown, by searching the routing table for an arbitrary input address, 110100,

we obtain M(A) = f l *, 1101 *}. Of those two matching prefixes, prefix 1101 * is identified

as the longest matching prefix or the best matching prefix (BMP); it represents the most

specific network that the input has to be forwarded. Hence, the input packet is forwarded

toward the network though output port 2.

Since IP Lookup is performed in two dimensions, the search methods I review try to

reduce the search space at each step in both of these dimensions.

2.5 Classifications of IP Lookup Algorithms

In this project, I describe various.- IP address lookup algorithms and compare the

characteristics. Miguel A. Ruiz-Sanchez et al, in their paper, Survey and Taxonomy of IP

Address Lookup Algorithms, published a survey on IP address lookup algorithms.

However, several algorithms that are more interesting have been proposed since their

publication. My approach differs from the approach that was used in that I use a

consistent example set to describe the data structure and the search procedure of each

algorithm so that each algorithm can be easily understood, compared, and practically

16

implemented. The evaluation method also differs. While algorithms were evaluated based

on Ipv4 addresses only, this project includes both Ipv4 and the projected Ipv6 addresses.

The design of a “good” algorithm requires an algorithm designer to understand the

requirements of the problem and how these requirements are expected to evolve. Below

listed are the basic requirements for the longest prefix matching:

• Lookup Speed: Internet traffic measurements show that roughly 50% of the packets

that arrive at a router are TCP-acknowledgment packets, which are typically 40-byte

packets. As a result, a router can be expected to receive a steady stream of such

minimum size packets. Thus, the prefix lookup has to happen in the time it takes to

forward a minimum-size packet (40 bytes), known as wire speed forwarding.

• Similarly, the lookup cannot exceed the budget time of 32 nanosec at 10 Gbps and 8

nanosec at 40 Gbps. The main bottleneck in achieving such high lookup speed is the

cost of memory access. Thus, the lookup speed is measured in terms of the number of

memory accesses.

• Memory Usage: The amount of memory consumed by the data structures of the

algorithm is also important. Ideally, it should occupy as little memory as possible. A

memory-efficient algorithm can effectively use the fast but small cache memory if

implemented in software.

• Scalability: The algorithms are expected to scale both in speed and memory as the size

of the IP address length and forwarding table increases. While core routers presently

contain hundrends of thousands prefixes, it is expected to increase. When routers are

deployed in the real network, the service providers expect them to provide consistent

and predictable performance despite the increase address lengths and fowarding table

size. This is expected since a router needs to have a useful lifetime of at least five years

to recuperate the return on investment.

• Updatability: It has been observed in practice that the route changes occur fairly

frequently. Studies show that core routers may receive bursts of these changes at rates

varying from a few prefixes per second to a few hundred prefixes per second. Thus, the

route changes require updating the forwarding table data structure, in the order of

17

milliseconds or less. These requirements are still several orders of magnitude less than

the lookup speed requirements. Nonetheless, it is important for an algorithm to support

incremental updates.

To summarize, the important requirements of a lookup algorithm are speed, storage,

update time, and scalability. Ideally, algorithms are required to perform well in the worst

case.

Following is an analysis of the different approaches with respect to lookup time, memory

utilization and scalability. The existing approaches have been classified into Trie based

approaches. Trie is a general-purpose data structure for storing strings. Each prefix in the

routing table is represented by a leaf node in the trie. A trie is has labeled branches that is

traversed during a search operation using individual bits of the search key. The left

branch of a node is labeled 0 and the right-branch is labeled 1. The longest prefix search

operation on a given destination address starts from the root node of the trie. The

remaining bits of the address determine the path of traversal in a similar manner.

2.5.1 Binary Tries

A binary trie is a tree-based data structure allowing the organization of prefixes on a

digital basis using the bits of prefixes to direct the branching. Each node has at most two

children in a binary trie. Each prefix maps to a node in the binary trie of which the path

and the level are determined by the prefix value and the length, respectively.

P 9

Figure 2.8: A Binary Trie

18

Figure shows the binary trie for the example set of prefixes, P = {Pi(0*), P2(I*),

^3(100*), P4(1000*), P5(l00000*), P6(101*), P7(110*), P„(l 1001*), P9(l 11*)}. From the

root node, the left edge corresponds to a bit value of 0 and the right edge corresponds to a

bit value of 1. The depth of the trie is determined by the longest prefix existing in the

routing data. As shown, empty nodes that are not associated with any prefix are included

in the paths going to prefix nodes (red nodes).

N e x t H o p P re f ix P o r t N u m b e r

P , 0* 1

P j 1" 2

P 3 1 00“ 1

P i 1 0 0 0 “ t

P> 100000* 4

P 4 1 01“ 3

P 7 110* 2

P» 11001* 1

P» 111“ 4

Table 2.3: Prefix Table

Table 2.3 shows the routing table implementing the data structure of the binary trie.

Entries in the routing table have one-to-one correspondence to a node in the binary trie,

and the entry address is represented by a red-colored number in each node. The first entry

is the root node. Fields of the routing table include a valid bit to distinguish prefix nodes

from empty nodes and two memory^addresses pointing to its children. It also has a field

for an output port used in the case of a match. It is not necessary to store the value and

the length in the routing table entries in the trie structure since the value and the length of

each prefix are known by the path and the level of the prefix node from the root node.

Search in the binary trie proceeds to a lower level, by examining a bit of the input address

at a time. If it is 0, the search proceeds to a left child and otherwise proceeds to a right

19

child, until it reaches where there is no pointer to follow. While going down the trie, the

search process keeps track of the current best matching prefix (BMP), whenever a prefix

node is encountered. When the search is over, the currently remembered BMP is

returned. Assuming that a 6-bit input IP address 1100000001 is given, the search passes

through entries various entries. The current BMP was the prefix P2 at entry 1. It is

replaced with prefix P7 at entry 4 and the output port of prefix P7 is returned when the

search is complete.

The search space is reduced by half in a binary trie by accessing a memory entry. Hence,

the binary trie provides better search performance than the linear search, which reduces

the search space by a single entry every time a memory entry is accessed. However, for

the migration to IPv6 that has 128-bit address space, the depth of the binary trie becomes

excessive and the search speed will become a major issue.

2.5,2 Patricia Trie

This is the most commonly available IP lookup implementation found in the BSD

kernels. The PATRICIA stores the prefix entries in a Trie data structure that is optimized

for storage and retrieval. Since the IP addresses are binary, the trie data structure has a

alphabet size of 2 with the alphabet set as {0, I }. The IP address is then processed bit by

bit to produce the best match.

Assume the objective is to reduce the search time and reduce the memory space; what

can we do about it? One possibility is not to involve any of the bits corresponding to one

child nodes during inspection. If they do not need to be inspected, then we can eliminate

them as well. By collapsing the one-way branch nodes, path compression improves

search time and consumes less mentory space. However, additional information needs to

be maintained in other nodes so that a search operation can be performed correctly.

While binary tries allow the representation of arbitrary length prefixes they have the

characteristic that long sequences of one-child nodes may exist. For example, P5 contains

a long sequence of child nodes. Since these bits need to be inspected, even though no

20

actual brandling decision is made, search time can be longer than necessary for some

cases.

Figure 2.9: Path Compressed Trie

Also, one-child nodes consume additional memory. In an attempt to improve time and

space performance, a technique called path-compression was used. Path-compression
4 \

consists in collapsing one-way branch nodes. When one-way branch nodes are removed

from a trie, additional information must be kept in remaining nodes, so that search

operation can be performed correctly.

There are many ways to exploit the path-compression technique; perhaps the simplest to

explain is illustrated below corresponding to the binary trie in figure above.

Figure 2.10: Patricia Trie

21

The two nodes preceding P5 now have been removed and since prefix P5 was located at a

one-child node, it is moved to the nearest descendant not being a one-child node. Since in

a path to be compressed several one-child nodes may contain prefixes, in general, a list of

prefixes must be maintained in some of the nodes. Because one-way branch nodes are

now removed, it is possible to jump directly to the bit where a significant decision is to be

made, bypassing the bit inspection of some bits. As a result, a bit number field must be

kept now to indicate which bit is the next bit to inspect.

A search in this kind of path-compressed tries is as follows: The algorithm performs, as

usual, a descent in the trie under the guidance of the address bits; but this time, only

inspecting bit positions indicated by the bit-number field in the nodes traversed. When a

node marked as prefix is encountered, a comparison with the actual prefix value is

performed. This is necessary since during the descent in the trie some bits may be

skipped. If a match is found, the trie is traversed while the prefix found as the BMP is
/■<

kept as the BMP so far. Search ends when a leaf is encountered or a mismatch is found.

As usual the BMP will be the last matching prefix encountered.

For instance, a search for the BMP of an address beginning with the bit pattern 010110 in

the path compressed trie shown above proceeds as follows:

Step 1

Start at the root node and since its bit number is 1 inspect the first bit of the address. The

first bit is 0 so we go to the left.

Step 2 w

Since the node is marked as prefix compare the prefix PI with the corresponding part of

the address 0.

Since they match proceed and keep P I as the BMP so far. Since there are no more nodes

to traverse, search stops and the last remembered BMP (prefix a) is the correct BMP.

22

Path-compression makes much sense when the binary trie is sparsely populated. But

when the number of prefixes increases and the trie gets denser, using path compression

has little benefit. Moreover, the principal disadvantage of path-compressed tries, as well

as binary tries in general, is that a search needs to do many memory accesses, in the worst

case 32 for IPv4 addresses.

2.5.3 Multibit Trie

While binary tries can handle prefixes of arbitrary length easily, the search can be very

slow since bits are examined one at a time. In the worst case, it requires 32 memory

accesses for the 32-bit IPv4 address. If the cost of a memory access is 10 nanosecond, the

lookup will consume 320 nanosecond. This translates to a maximum forwarding speed of

3.125 million packets per second (1/320 nanosecond). At 40 bytes per packet, this can

support an aggregate link speed of at most 1 Gbps. However, the increase in Internet

traffic requires supporting aggregate link speeds as high as 40 Gbps. Clearly, sustaining

such a high rate is not feasible with binary trie-based structures.
/

After closely examining the binary trie, we can ask: why restrict ourselves to only one bit

at a time? Instead, examine multiple bits so that we can speed up the search by reducing

the number of memory access. For instance, if we inspect 4 bits at a time, the search will

finish in 8 memory accesses as compared to 32 memory accesses in a binary trie. This is

the basic idea behind the multibit trie. The number of bits to be inspected per step is

called a stride. Strides can be either fixed-size or variable-size. A multibit trie is a trie

structure that allows the inspection of bits in strides of several bits. Each node in the

multibit trie has 2k children where k is the stride. If all the nodes at the same level have

the same stride size, it is called a fixed stride; otherwise, it is a variable stride.

Since multibit tries allow the data structure to be traversed in strides of several bits at a

time, they cannot support prefixes of arbitrary lengths. To use a given multibit trie, a

prefix must be transformed into an equivalent prefix of longer length to conform with the

prefix lengths allowed by the structure.

23

An IP prefix associated with the next-hop information can be expressed as an equivalent

set ot prefixes with the same next-hop information after a series of transformations. One

of the most common prefix transformation techniques is prefix expansion. A prefix is

said to be expanded if it is converted into several longer and more specific prefixes that

cover the same range of addresses. For instance, the range of addresses covered by prefix

0* can be also specified with the two prefixes 00* and 01*, or with the four prefixes

000*, 001*, 010*, and Oil*. An appropriate prefix expansion transforms varied prefix

lengths into a set of prefixes that have fewer different lengths.

PI 0*

P2 1*

P3 100*

P4 1000*

P5 100000*

P6 101*

P7 110*

P8 11001*

P9 111*

PIO 1001*

Table 2 .4 : Original Forwarding Table Prefixes

Routing tabl

P i 0*
P2 1*
P3 100*
PA 1000* "-.e r -
P 5 100000-*- ^ -5*
P6 101*
P7 110*
pa 11001*
P9 111*

' o
V

P1 ooo-
p i 001*
P1 010-
p i 0 1 1 *
P2 lOO-
PS 101*
P2 110*
P2 111*
PJ 100-
P I 100000,
PA IOOOOI
PA 100010
PA 100011
P5 100000
P6 101*
P7 110*
P6 110010*

PI 0 0 0 *
P I 0 0 1 *

P I O I O *

P I O l I *

P3 100*
P4 1 00001♦
I M 1 0 0 0 10 *

P4 1 00011♦

P5 1 0 0 0 0 0 *
P 6 | 0 | *

P7 1 10*

P8 1 1001-0*

P 8 110011♦
PO I I I *

Table 2.5: Forwarding Table Prefixes after expansions

24

A fixed stride trie is typically implemented using arrays for each trie node and linking

those using pointers. The trie nodes at different levels will have different array sizes as

determined by the stride at that level. If the stride at a level is k, then the size of the array

required will be 2k. Each entry in the array consists of two fields: the field nhop contains

the next-hop information and the field plr contains the pointer to the subtrie, if any. The

presence of prefix information in an element indicates that the field nhop is not empty

and stores the next-hop information associated with that prefix. The arrows indicate that

the field ptr is not empty and point to the subtrie.

o o o ro o i ro i o o i l ”i o o '1 0 1 1 1 0 1 1 1

Figure 2.11: Multibit Node

The search proceeds by breaking up the destination address into chunks that correspond

to the strides at each level. Then these chunks are used to follow a path through the trie

until there are no more branches to take. Each time a prefix is found at a node, it is

remembered as the new best matching prefix seen so far. At the end, the last best

matching prefix found is the correct one for the given address.

Consider searching for the best matching prefix for the address 1000110 in the fixed

stride trie shown in Figure 2.9.'First, the address is divided into multiple chunks: a chunk

made of the first 3 bits, 100, corresponds to level 1 of the trie; another chunk made of the

next three bits, 111, corresponds to level 2 of the trie, and the last incomplete chunk

consists of the remaining bits. Using the first chunk 100 at the root node leads to the

prefix P3 that is noted as the best matching prefix. Next, using the second chunk of 111

leads to the prefix P4, which is updated to be the best matching prefix so far. Since the

25

search cannot proceed further, the final answer is P4. The number of memory accesses

required is 2 instead of 6 when using a binary trie for the same search.

2.5.4 Tree Bitmap

Tree Bitmap is a multibit trie algorithm that allows fast searches and allows taster update

and fewer memory storage requirements. A multibit node has two functions: to point at

children multibit nodes, and to produce the next-hop pointer for searches in which the

longest matching prefix exists within the multibit node.

A closer look at figure 2.9 reveals that some space is wasted in the leftmost array in the

second level that contains only prefix P5 and P4; the rest of the four elements do not

contain any information. This presents an opportunity for improvement of the algorithm.

Some form of compression may be employed to minimize the wastage on storage. Using

large strides in fixed stride multibit tries results in a greater number of contiguous nodes

with the same best matching prefix and next-hop information. The tree bitmap algorithm

takes advantage of this fact and compresses the redundant information using bitmaps,

thereby reducing storage and still not incurring a high penalty in the search time.

Tree Bitmap algorithm is based on four key ideas. The first idea in the algorithm is that

all child nodes of a given trie node are stored contiguously. This allows the use of just

one pointer for all children (the pointer points to the start of the child node block) because

each child node can be calculated as an offset from the single pointer. This can reduce the

number of required pointers by a factor of two compared with standard multibit tries.

More importantly it cuts down the size of trie nodes. Using this idea, the same 3-bit stride

trie of Figure 2.9 is redrawn as Figure .2.10.

26

Figure 2.12: Multibit Node with Pointers

The second idea is that there are two bit maps per tr ie node, one for all the internally

stored prefixes and one for the external pointers. Unlike in other schemes such as Lulea

that implements leaf pushing, two ^it maps are used to avoid leaf pushing. The internal

bit map has a 1 bit set for every prefixes stored within this node. Thus for an r bit trie

node, there are 2{'"1' possible prefixes of lengths < r and thus a 2M bit map is used. For

the root trie node of Figure 2.10, there are six internally stored prefixes: PI, P2, P3, P6,

P7 and P9. Suppose our internal bit map has one bit for prefixes of length 0, two

following bits for prefixes of length 1, 4 following bits for prefixes of length 2 etc. Then

27

for 3 bits the root internal bit map becomes 1011000. The first 1 corresponds to PI, the second

to P2, the third to P3. This is shown in Figure

Root unibit node =

o

Internal Tree Bitmap = x

o o o o

o o | o 0 1 1 1 1

Extending Paths Bitmap = 00001010

Root unibit node = 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1

Figure 2.13: Root Unibit Node with Bitmaps

28

The external bit map contains a bit for all possible 2r child pointers. Thus in Figure 2.10,

we have 8 possible leaves of the 3 bit sub trie. Only the fifth and seventh leaves have

pointers to children. Thus the extending paths (or external) bit map shown in Figure 2.11

is 00011001.

The third idea is to keep the trie nodes as small as possible to reduce the required

memory access size for a given stride. Thus a trie node is of fixed size and only contains

an external pointer bit map, an internal next hop information bit map, and a single pointer

to the block of child nodes. The next hops information associated with the internal

prefixes is stored within each trie node in a separate array associated with this trie node.

Putting next hop pointers in a separate result array potentially requires two memory

accesses per trie node (one for the trie node and one to fetch the result node for stored

prefixes). The result of a search is not accessed till the search terminates. After the search

terminates, the residt node corresponding to the last trie node encountered in the path that

contained a valid prefix is accessed. This way only a single memory reference at the end

is added besides the one memory reference required per trie node.

The tree bitmap algorithm achieves fast search and update by storing two bitmaps: one

for pointers to the child and the other for prefixes. The tree bitmap algorithm design

considers that a multibit trie node is intended to serve two purposes—one to direct the

search to its child nodes and the other to retrieve the forwarding information

corresponding to the best matching prefix that exists in the node. It further emphasizes

that these functions are distinct from each other. Furthermore, the tree bitmap attempts to

reduce the number of child node pointers by storing all the child nodes of a given trie

node contiguously. As a result, only one pointer that points to the beginning of this child

node block needs to be stored in the trie node. Such an optimization potentially reduces

the number of required pointers by a factor of two compared to standard multibit tries. An

additional advantage is that it reduces the size of the trie nodes. In such a scheme, the

address for any child node can be computed efficiently using simple arithmetic, assuming

a fixed size for each child node. The tree bitmap algorithm attempts to keep the trie nodes

as small as possible to reduce the size of a memory access for a given stride.

29

A tree bitmap trie node contains the pointer bitmap, the prefix bitmap, the base pointer to

the child block, and the next-hop information associated with the prefixes in the node. If

the next-hop information is stored along with the trie node, it would make the size of the

trie node much larger. Instead, the next-hop information is stored separately in an array

associated with this node and a pointer to the first element is stored in the trie node. The

algorithm does not fetch the resulting next-hop information until the search is terminated.

Once the search ends, the desired node is fetched. This node carries the next-hop

information corresponding to a valid prefix present in the last trie node encountered in the

path.

A sample tree bitmap node is shown below. The node consists of two bitmaps.

o ' i* oo* 01* to* i i * poo* ooi* o io * o i l* 10 0 * 1 0 1* 110* 111*
1 | 11 0 | 0 | 0 1 0 | 0 | 0 1 0 [0 | 1 1 1 1 1 | 1 ~]pfxbitarr(R)

0 0 0 0 P o i n t e r t o C h i ld B lo c k P o i n t e r t o N e x t - H o p s

0 0 1 0

0 1 0 0 C h ild T r i e N o d e o f 10 0

O i l 0 ------------------------------------ > C h ild T r i e N o d e o f 1 0 1

'1 0 0 1

1 0 1 0

1 1 0 1 ------------------------ * N e x t - H o p f o r A

1 1 1 0 N e x t - H o p f o r B

p trb ita rr(R)

Figure 2.14: Tree Bitmap Node

The first bitmap shown vertically is the pointer bitmap, which indicates the position

where child pointers exist; this bitmap is referred to as ptrbitarr. It shows that pointers

exist for entries 100 and 110. These pointers correspond to the two subtries rooted at the

entries 100 and 110. Now instead of storing explicit child pointers in a separate array, the

tree bitmap node stores a pointer to the first child trie node as one of the fields in ptrblk.

The second bitmap shown horizontally is the prefix bitmap. It stores a list of all the

30

prefixes within the first 3 bits that belong to the node. The bitmap positions are assigned

to the prefixes in the order of 1-bit prefixes followed by 2-bit prefixes and so on. A bit in

the prefix bitmap is set if that prefix occurs within the trie node.

The search starts from the root trie node and using the same number of bits as the stride

for the first level indexes into the pointer bitmap. If the bit in position P is set, it implies

that there is a valid child pointer that points to a subtrie. To obtain the value of the child

pointer, the number of 1 bits in the pointer bitmap is counted up to the indexed position

P. Assuming the count is C and the base address to the child block in root trie node is A,

the expression A+(C -1) *S gives the value of the child pointer, where S refers to the

size of each child trie node.

Before following the child pointer to the next level, the search examines the prefix

bitmap to determine if one or more prefixes match. The bits used to match these prefixes

are the same set of bits used to index the pointer bitmap.

Figure 2.15: Full Tree Bitmap

31

A search for the address beginning with 10011 in the tree bitmap data structure'shown in

Figure 2.13 would start by examining the pointer bitmap ptrbitarr(R) of the root node

using the first three bits 100. Since the bit is set, the search needs to examine the child

subtrie. In the pointer bitmap, as it is the second bit set, the child pointer is computed as

ptr + (2 - l) x S = ptr + S where ptr is the base address and S is the size of the trie node.

Before continuing the search to the child subtrie, the prefix bitmap pjxbitarr(R) is

examined for matching prefixes. First, the entry corresponding to the first three bits of the

address 100 is examined. Since the bit is not set, there is no matching prefix, the search

then drops the last bit and examines the entry 10. This indicates there is no match and the

search continues to the entry 1. Since the bit is set, a prefix match has been found, the

pointer to the nexthop information is computed (similar to the computation of child

pointer). This next-hop information is not fetched and instead remembered as the best

matching prefix so far. Now the computed child pointer is used to fetch the child node Y.

Using the last two bits of the address 1 1, the child bitmap ptrbitarr(Y) is examined. Since

the bit corresponding to entry 11 is not set, there is no more child subtrie to examine. The

prefix bitmap pfxbitarr(Y) is examined for the entry 11. As the bit is not set, there is no

matching prefix and the search continues to entry 1. The bit is set indicating the presence

of matching prefix P6. This prefix is updated as the best matching prefix; the pointer to

its next-hop information is computed and fetched, terminating the search.

The pseudo code for Tree Bitmap search below assumes 3 arrays set up prior to execution

of the search code. The first array is called stride [] contains the search address broken

into the stride length. So with a stride of 4 bits, and a search address length of 8 bits, the

array stride [] will have 8 entries each 4 bits in length. The designation stridefi] indicates

the ith entry of the array. The sSfcond array that is required is node array [] which

contains all of the trie nodes. The third array is result array which contains all the results

(next hop pointers). In practice the next hop pointers and node data structures would
j t

probably all be in the same memory space with a common memory management tool

32

1. node:= node_array[0];
/* node is the current trie node being examined; so we start with
root as the first trie node which is assumed to be at location 0
of node array */

2. i:= 1;
/* i is the index into the stride array; so we start with the first stride */

3. do forever
4. if (treeFunction(node.intemal_bitmap,stride[i]) is not equal to null) then

5. /* there is a longest matching prefix, update pointer */
6. LongestMatch:= node.resultsaddress + CountOnes(node.internal_bitmap,

7. treeFunction(node.internalBitmap, stridefi]));
8. if (extending_bitmap[stride[i]] = 0) then

/* no extending path through this trie node for this search */
9. NextHop:= resultarrayfLongestMatch];

/* lazy access of longest match pointer to get next hop pointer */
10. break;

/* terminate search)

11. else
/* there is an extending path, move to child node */

12. node:= node_array[node.child_address + CountOnes
(node.extendingbitmap, stridefi])];

13. i=i+l; /* move on to next stride */

14. end do;

Figure 2.16: Pseudocode for Tree Bitmap Algorithm

There are two functions assumed to be predefined by the pseudocode. The first function

‘treeFunction’ can find the position of the longest matching prefix, if any, within a given

node by consulting the internal bitmap. The function treeFunction takes in an internal

bitmap and the value of stridefi] were i is for the current multi-bit node. The second

function CountOnes simply takes in a bit vector and an index into the bit vector and

returns the number of ‘1’ bits to the left of the index. There are several variables

assumed. The first is “LongestMatch” which keeps track of an address into the

result_array of the longest match found so far. Another variable is ‘i’ which indicates

what level of the search we are on. A final variable is the node which maintains the

current trie node data structure under investigation.

33

The loop terminates when there is no child pointer (i.e., no bit set in extending bitmap of

a node) upon which we still have to do our lazy access of the result node pointed to by

LongestMatch to get the final next hop.

4- \

Refinement to Basic Scheme:

There is an irritating feature of the basic Tree Bitmap algorithm as shown in the Figure

2.10. Prefixes like P10 will require a separate trie node to be created with bitmaps that are

almost completely unused. While this cannot be avoided in general, it can be mitigated by

picking strides carefully, probably by using dynamic programming. Suppose we have a

trie node that only has external pointers that point to prefixes such as P10.

Figure 2.17: Root Tree Bitmap Node with Child Array

Then a special type of trie node can be made in which the external bit map is eliminated

and substituted with an internal bit map of twice the length. The new node now has room

in its internal bit map to indicate prefixes that were previously stored in such nodes. The

nodes can then be eliminated and the corresponding prefixes stored in the final node

34

itself. Thus P8 is moved up to be stored in the upper trie node which has been modified

with a larger bit map.

Figure 2.18: Optimized Tree Bitmap

2.6 Simulation

The Internet is greatly heterogeneous and the rate of change makes it a deeply

uncontrolled environment. Experiments are difficult to replicate, verify, or even

understand without the stability and relative transparency provided by simulators such as

Opnet, NS2 and emulator or self-contained experimental test bed. Simulators provide full

35

control over the network model, meaning the full range of experimental parameters—

network topology, end-node protocol behavior, queue drop policies, congestion levels,

and so forth.

With simulators, researchers can model unusual situations, or extrapolate current Internet

trends to evaluate likely future behavior. Networks can also be modeled with little

relationship to Internet reality or with an unknown relationship to Internet reality. .This

isn’t necessarily a problem. Some divergences between models and reality are

unimportant, in that they don’t affect the validity of simulation results, or useful, in that

they clarify behavior in simple cases. Furthermore, some divergence is necessary in order

to investigate the Internet of the future instead of the Internet of the past or present.

However, the research community has not yet determined which divergences are

acceptable and which are not.

This basic question has led to difficulties in this project and in the evaluation of other

work. There is a continuing frustration with poor quality of models in general in Internet

research, and a need for a critical approach in evaluating the models that are used in

simulations and experiments. It is important to know when a model might lead to bad

results, and what those results might be. This work needs to be grounded in Internet

measurement.

2.6.1 Desirable characteristics of simulator

IP lookup is becoming popular due to their interesting properties such as decentralisation,

scalability, self-organization and robustness. Those properties impose some important

requirements on the simulator. The following list shows some of the desirable

characteristics of an IP Lookup algorithm simulator:

• Scalability: simulators need to be scalable to thousands even millions of nodes. An IP

Lookup algorithm simulator should be able to run simulations with a large number of

peers while making an efficient use of computing resources.

• Flexibility: The simulator should be able to run simulations of both structured and

unstructured overlay networks. The user of the simulator should also be able to

36

specify the parameters which relevant for a specific simulation such as the number of

nodes, the mobility of the nodes or the churn rate.

• Usability and Documentation Usability is related to how easy to learn and use the

simulator is. A simulator should have a clear and understandable API that allows to

implement protocols in an easy way. A good documentation explaining how to use

the simulator is also very important. Some simulators have very poor documentation

and the code is difficult to understand which makes these simulators very hard to use.

• Underlying Network Simulation Some simulators do not model the underlying

network or they offer a limited simulation of the network layer. This makes

simulations of peer to peer protocols not as realistic as with simulators with a better

modeling of the network layer. In some cases researches prefer to focus on the

algorithm verification without worrying much about some parameters of the network

layer such as latency costs. In other cases, a proper simulation of the network layer is

necessary. In those cases, an exchangeable network model would be desirable.

• Statistics: The simulator should be able to collect significant results which are easy to

understand and manipulate.

• Repeatability: Mechanisms should exist to allow the repeatability of simulations.

Repeatability is important to reproduce experiments, compare different proposals and

evaluate the influence of a parameter by changing it in different simulations. Some

papers present results that are not reproducible and therefore, comparisons between

different proposals are difficult to do.

It is very difficult to build a simulator that satisfies all the requirements. To fill some

requirements some simulators need to sacrifice other requirements. For instance, if a

simulator wants to offer high scalability probably the network layer will need to be

represented by a simple model, \yjthout considering the low-level details such as the

overhead associated to the communication stack. Sometimes, an accurate level of detail is

not necessary to evaluate some protocols.

The difficulties found in satisfying all the requirements have led to different research

groups to develop their own simulator to evaluate their protocols.

37

2.6.2 Study of existing simulators

Although there is a wide range of simulators, most of them are "'home-made'" solutions

built to simulate a specific protocol or systems. Within simulators there are network

simulators and overlay simulators. Network simulators provide a framework for accurate

simulation of network protocols such as TCP, UDP, IP, AODV etc. These simulators

model the network at the packet level, considering parameters such as delay, bandwidth

and other lower-level concerns. Some well known network simulators are Opnet, NS-2

and OMNET++. These simulators perform very well when evaluating network protocols

but they do not scale well for overlay networks with a large number of nodes. For

instance Omnet++ can't simulate more than 1000 nodes and Narses can simulate up to

600. This is due to the overhead added by the network details. On the other hand, overlay

simulators are less focused on the lower level and more focused on evaluating the overlay

algorithms.

Simulator Max Nodes

Narses 600

Omnet++ 1,000

Opnet++

NS2 (10,000)

Table 2.6: Maximum number of nodes simulated by each simulator.

2.6.3 The Simulation Model

In order to develop a high performance and suitable route lookup algorithm for next

generation high speed routers, it is jarudent to first inspect the route databases and make

use of the characteristics of the distribution to generate more routes for evaluating the

corresponding performance.

The model represents the physical network where nodes communicate with each other by

sending route messages. The model is quite simple and it does not introduce details such

as latencies or node mobility. However, it can be extended to simulate more complex

38

scenarios. Considerations have been made on the possibility of integrating the simulator

with existing simulator such as NS2 or OMNET++ to simulate more realistic networks.

The model simulator tries to satisfy three requisites:

• Scalability. One of the most important characteristics in a lookup algorithm is its

scalability. The Simulator should allow studying the lookup algorithm

performance in scenarios with a large number of IP prefixes.

• Extensibility. The design of the simulator is simple and easy to extend.

• Usability. The simulator is easy to use and allows the researcher to configure all

the parameters necessary for their tests. Moreover, the simulator provides results

which are easy to understand and significant for the evaluation of the'simulated

algorithm.

The model devised and used in this project tries to meet the above requirements. Due to

time constraint imposed on this project work, the model may miss some critical

requirements for testing forwarding functions of routers. The model strives to accurately

reflect IP lookup functions in routers under a broad range of workloads and in special

cases in order to be computationally inexpensive may miss certain requirements. The

integration of the components into a single system was done and the model used for

testing different IP lookup algorithms.

39

CHAPTER 3

IMPLEMENTATION

3.1 Introduction

Before I actually show the results of this study and the conclusions derived from them, I

sum up the assumptions that were used in this project:

• The entire forwarding table is placed in cache so lookups are performed with an

undisturbed cache. That would emulate the cache behavior of a dedicated forwarding

engine. However, having access to conventional general-purpose laptop makes it

difficult to control the cache contents on such systems. The cache is disturbed

whenever input/output is performed, an interrupt occurs, or another process gets to

run. It is not even possible to print out measurement data or read a new IP address

from a file without disturbing the cache.

• All traffic from the nodes in the network gets through without any loss or delay.

• I assume that the buffer size of a router is large enough to accommodate all the

generated prefixes. This probably would not be the case since the router buffer size

is not unlimited in size.

• There is no memory management overhead and it is not correlated with database

size. The results for traditional IP address lookup schemes traditionally do not

contain any memory management overhead.

Various IP lookup algorithms are implemented in this project. In the lack of a wide

deployment of IPv6, 1 generate IPv6 prefixes based on IAB/ RIPE/ IANA allocation

recommendations. This distribution captures the expected behavior that majority of the

organizations will use the shortest allocated prefix possible. It is my belief that by using

these recommendations, I am not compromising the accuracy of the algorithm.

To calculate the time taken for IP lookup using all the algorithms, I have used the inbuilt

java time function. I chose to use the inbuilt java function to get an accurate result. Every

40

time this tinier generates an interrupt a counter is incremented. I measure the time taken

for each task based on this counter. Output of this program shows the time taken for each

algorithm and the memory consumed.

Several parameters are defined for the simulations, which correspond with the main

features of the algorithm to be tested. In each simulation, some of the parameters were

held fixed in all tests, while others were varied. The measured quantity varied between

tests too, depending on the issue I was looking at.

The test stresses the algorithm in incremental steps and measure its ability to perform

under load conditions. The effect of the following parameters are investigated: number of

prefixes, length of prefixes and composition of the fowarding table. The metrics of

performance include packet lookup time, memory consumption and scalability. '

3.2 Observations:

Algorithms are ideally expected to perform well in the worst case. However, exploiting

some of the following practical observations to improve the expected case is desirable.

Usually, the performance of general algorithms can be improved by tailoring them to the

particular datasets they will be applied to. Figure 3.1 shows the prefix length distribution

extracted from RIPE NCC Routing Information Service (RIS) peers on 1st August 2011

and MAE-East peering point. As can be seen, the entries are distributed over the different

prefix lengths in an extremely uneven fashion. This distribution is representative of a

large forwarding table used near the core of an IP network.

• For IPv4, most of the prefixes are 24 bits or less in core routers, while more than half

are 24 bits. About half of all prefixes have length 24 with most of the remainder

distributed between 16 and 23 bits.

• There are not very many prefixes that are prefixes of other prefixes. Practical

observations show that the number of prefixes of a given prefix is at most seven.

• It is obvious but important that there is no prefix with length between 64bit and

128bit (excluding 64bit and 128bit).

41

• The majority of the prefixes should be the ‘/48s’, and 764s’ the secondary majority.

Other prefixes would be distinctly fewer than the 748s’ and 764s’.

• Future (or the near future) IPv6 address blocks will be allocated to common

subscribers mainly from the current assigned LIRs. This is essential for IPv6 prefix

generating.

• Though the address length is bound to increase, the levels of subnet/prefix would not

be distinctively scaled (e.g. only 4-5 levels), due to consistent width subnet field.

These practical observations can be further exploited to come up with efficient lookup

schemes.

3.2,1 Prefix Length Distribution:

Table below provides a realistic distribution of prefix lengths that have been modeled

after real internet measurements.

Visibility of IPv4 prefixes
Sou

J 150hT
&g
V :
i 100k

SOU

i e r iQ ih

Source: RIPE NCC Routing Information Service (RIS) peers on 1st August 2011

Figure 3.1: Distribution of IP Prefixes

42

Visibility of IPv6 prefixes

i h 10 ?i)} ?i ?i —— MMMMN
?•> 3A 3 1 1? 11 14 H >6 17 3g

wifiw iM M MMO.
•Ill 41 4 ? 43 44 4S 46

Source: RIPE NCC Routing Information Service (RIS) peers on 1st August 201

Figure 3.2: Distribution of lP Prefixes

Figure 3.2 depicts the IPv6 prefix distribution on prefix length of a real-world IPv6

global route table (Route-View IPv6 route table, Data: 2012-10-3, Size: 680 Prefixes).

The majority are 732’ prefixes, which is referred to as the initial IPv6 allocation blocks.

This kind of IPv6 address blocks are allocated to the LIRs. Some shorter prefixes were

assigned to high-level subscribers according to RFC 2374 before it was replaced by RFC

3587. In RFC 2374 and RFC 2928, IPv6 address blocks were organized in a complex

aggregatable hierarchy which includes the TLA (Top Level Aggregation) 716’ blocks,

sub-TLA blocks, NLA (Next Level Aggregation) 748’ blocks, SLA (Site Level

Aggregation) 764’ blocks and the Interface Level address (7128'). There are only four

prefix levels (i.e., subnet levels). This information is useful for IP prefix generation.

3.2.2 Forwarding Table Growth: w

The main area of growth that is considered here is in database size. To project future

database sizes a history of total BGP prefixes from January 1, 2004 to November l, 2011

was studied. The growth in an eight year time period was approximately linear. In

January 2004, the report shows approximately 150,000 prefixes in existence. If a lookup

engine was required to hold all the network prefixes, and if the prefix growth rate

43

continues to be linear then the current IP lookup schemes would slow down internet

speeds. Lookup engines with a capacity of 200,000 entries could potentially be large

enough until the year 2008. With the projected growth, several reasons would result in

not using the same lookup engines and algorithms; reasons includes: database change in

distribution causing worse prefix to memory ratio, increase in line rates causing OC-192c

rate to become obsolete, change in Internet standards (like increase of IP address length).

lable below provides a realistic growth on the number of prefixes as projected up to

2016.

Figure 3.3; Projected Forwarding Table Growth

Source: Asia Pacific Network Information BGP Routing Growth in 2011

I have implemented the Binary Trie, Patricia Trie, MultiBit and Tree Bitmap Algorithms.

I have implemented this project on an AMD Ethlon processor using Windows Operating

system. Through the research, analysis and design of the key components required for the

testing the algorithms were developed in a Java environment. Java is chosen because of

its simplicity and the quick ramp-up it enables A logical diagram of the development

environment used is given below.

44

3.3 Design of Simulator:

The top level view of the simulator through its main modules is described below.

Figure 3.4: Top Level Architecture of the Model

I compare lookup algorithms using a software platform. Software platforms are more

flexible and have smaller initial design costs than hardware design. To investigate

scalability aspects of IP packet forwarding, I consider the time and memory required to

lookup IP prefixes during packet forwarding. The performance comparison is conducted

under a common platform using^the similar IP prefix database, development and

hardware platforms. The platform consists of a Pentium IV 2.1 GHz processor machine

with 2 Giga Bytes of RAM. Java language was used for developing the simulation tool

and for coding the algorithms because of the ease with which new requirements can be

integrated in the tool and familiarity with the development environment. The codes are

executed under the windows operating system.

45

A combination of IPv4 and IPv6 prefixes stream is generated from an IP Prefix generator

based on the above observations. The test starts with a specified initial ratio of IPv6/IPv4

traffic at 100% offered load. The lengths and composition of IPv6/IPv4 addresses used

are varied based on the RFC recommendations. The load is then increased and the test

repeated. The ratio of IPv6 to IPv4 is then changed by a specified increment and the

entire test repeated again for the new ratios. Traffic generator advertise a series of

different prefix lengths based on the recommended IPv6 and IPv4 distribution in the real

internet traffic. Lookup time, memory consumption and scalability for each of the

algorithms is measured for every test scenerios.

3.4 Modules:
3.4.1 User Interfaces:

t j d IP Lookup Simulator trad

| File Truffle Simulator Analysis

{ j Now Projoci

O u t p u t D e t a i l s
T r a f f i c O u t p u t

(O O O O O l * *1 1 1 1 l i » 1 m I O i i ' i i o 1 0 1 0 0 0 1 0 1 1 0 0 i i i O O i i O O i 1 0 0 0 4 •
|ci 1 O O O ' I 0 1 1 0 1 O O 1 0 1 1 1 1 1 1 O O O 1 0 1 0 1 0 1 - 1 1 0 0 1 1 1 1 1 O 1 O O 1 4 0 1
1 1 1 0 1 O O O 1 O O 1 u 1 U 1 1 1 0 1 1 O O 1 O 1 I 1 1 I O O 1 0 1 1 0 1 0 0 0 1 1 O O 1 O O

i O O O O O 1 0 1 0 0 1 1 O 1 1 0 0 0 0 4 1 1 0 1 1 0 1 O O 1 1 O O O 1 1 1 1 O O O 1 0 1 1 1 O O
j1 1 O O O O 1 O 1 1 1 1 O O O 1 1 0 1 O O 1 1 l O O O 1 1 0 1 0 1 1 0 1 1 1 O O 1 1 O 1 1 O 1 1
I1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0
! 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
' 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1
i i o o i 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
O O u I O I O I O O O O l l 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1
0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 O O O O O 1 1 0 0 1 0 0
1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0
0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0
1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1
1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0

i i o o i 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1
0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1

Figure 3.5: Top User Interface Model

This module handles requests for a specific simulation

• Distribution of prefix lengths to be added to the database.

46

Size of each address distribution to be added to the database.

Input

E n t e r T h e S i z e O f 1 A d d r e s s B i t

O K C a n c e l

Number of prefixes in the database.

I n p u t

Enter The No Of Addresses For 3 Bit Address

OK Cancel

IP Lookup algorithm to be used for simulation. Performs lookups in the database

according to the chosen algorithm. Performs all memory management required for the

database.

Figure 3.6: User Interfaces Screen Shots

47

3.4.2 Packet Generator:

This function generates a specific number of prefixes according to the given distribution

on prefix length; all the generated prefixes should have a same prefix, i.e., the seed

prefix. Then the function randomly assigns forwarding information to each prefix

generated. Such information includes the forwarding output port, next hop IP addresses,

and so on.

This module creates all the necessary data for the simulation flow:

• Generates based on recommendations from IAB/IPMAP and practical observations of

IP address distributions, the required number of prefixes.

• Creates a mirror database of the prefixes - to be used by the model for testing other

IP Lookup algorithms.

• Stores the generated prefixes in memory - in case the simulation doesn’t immediately

follow the pre-simulation phase, and we want to keep the prefix list.

3.4.3 Build Basic:

For all the methods, I take as a source for building the lookup structures a list of routing

table entries. Although in the case of real implementation in a router, the tables would be

built from some dynamic structure at the central processor, for each method the structure

would be different, so as to enable the fastest possible build procedure. It remains to be

seen which would be the most convenient one for each method. However to make a fair

comparison of the build time, I chose a random list of the entries as the input data to the

build process of all methods.

Each of the entries consists of a ne'xt hop address, port number, length of the IP prefix.

The entries were kept in an array consisting of tuples of IP prefix, port number.

3.4.4 Model (Simulator):

This module handles all simulation tasks and events:

• Creates random IP addresses based on the prefixes stored in the database padded with

random data ‘forwarding ports’.

48

• Injects the incoming IP address to the search engine.

• Keeps simulation’s statistics - average number of memory accesses, lookup rate, and

use of markers and of BMPs etc. and prints runtime simulation information to the

screen.

lid r ^ i r s i s a a

Algorithm Output

Search Time (Ns) I17

Port Found I4

Memory Consumed (KB) |2648

Choose Algorithm

Figure 3.7: Output Module Screen Shot

It displays the port number and the lookup time respectively. The output of the search

module displays the port number, lookup time and the memory consumed. This shows

the memory used by the system to search for the IP address specified to the system.

3.4.5 General functions:

Not precisely an active module, more a collection of help functions for handling files and

manipulation of IP addresses.

3.4.6 Correctness checking:

To enable check the correctness of lookups, it would have been ideal to assign each

prefix with a unique number. This unique number would then reside both in the main

database and in the simulation database.

When the model creates a new IP address to perform lookup upon, it chooses a random

prefix from the simulation database and pads it with random bits. It also stores the

49

prefix’s unique number. When a lookup is completed, the search engine returns the found

prefix and its unique number, also called port number, so that all that is to be checked is

check whether it is the expected unique number. This process is automated.

This project implements a manual process where each prefix can be manually confirmed

to be correct by checking the returned prefix against the input.

50

CHAPTER 4

EXPERIMENTAL RESULTS
4.1 Introduction

By using synthetically generated data based on recommendations of RFC/IPMA3/RFC

and IAB, I study and report some o f the numerical results carried out to evaluate the

performance of IP lookup algorithms. I propose two different types of tests sessions: one

for evaluating the impact of growth of routing and the impact of partial deployment of

IPv6. For each type of test, i show results in the form of a graph and a discussion for the

same results.

In the lack of a wide deployment of IPv6, i used randomly generated routing entries

based on IAB allocation recommendations.

4.2 The objectives of the experiments:

(a) To test if the simulation model is functional and effective.

(b) To compare the performances of different lookup algorithms based on the following

parameters:

i. Lookup speed.

ii. Memory consumption,

iii. Scalability.

(c) Based on the results obtained above, propose the best lookup algorithm for high speed

Internet routers.

•f \
The general objective of these experiments is to characterize the performance and the

scalability of the IP lookup algorithms. The IP lookup algorithms such as Binary Trie,

Patricia Trie, Tree Bitmap algorithms will be tested and characterized.

51

4.3 Justification for selected plans

Some of the algorithms suggested which are either software based or hardware based

were not chosen, either because they didn’t show much significant improvement from

the current implementations in terms of time, space complexity or they would require

more time for analysis and implementation. Also with the implementations of the four

algorithms including the proposed optimised tree bitmap algorithm, i have choosen to use

my own implementation due to the very same reason of lack of time for analysis and

implementation.

Additionally, there has not been a single simulator singled out for testing IP Lookup

algorithms largely due to the fact that simulating IP lookup algorithms for the future

internet requires using large prefix databases. Simulating hundreds of thousand or even

millions of nodes in a conventional simulator is computationally expensive.

4.4 Methodology
1. Specify the number of IP prefixes to be generated based on the recommended

distributions.

2. Specify the lengths of the prefixes based on visibility of the prefixes on the network.

3. Specify the number of prefixes to be generated for each distribution level. IP prefix

database will be created based on the above three parameters input by the user.

4. Select the algorithm to use for looking up the incoming IP address.

5. Input the incoming IP address to search.

6. Record the output that consists of lookup time and memory consumed

Input Data Si/e ,

i. Due to system limitations, the maximum number of entries used was restricted.

Prefix Length Distribution ’

ii. Constant length.

iii. Length distribution as in existing tables. The prefix length distribution in existing

tables was modeled according to values found at RIPE NCC Routing Information

Service (RIS) peers on 1st August 201.

52

iv. Random length.

For generating the random values a random generator is proposed. The prefix length

distribution was modeled using the random generator and a random-variate technique.

4.5.1 Case 1: Projecting Prefix Growth

The impact of growth in forwarding table sizes due to new prefix allocations is projected

as this is likely to affect forwarding rates of routers. The focus is on lookup times and

memory requirements. The first simulation is a straightforward test of the algorithm’s

performance in a simple environment, checking how the speed of the search varies as the

number of address prefixes increases.

Internet traffic measurements show that roughly 50% of the packets that arrive at a router

are TCP-acknowledgment packets, which are typically 40-byte packets. As a result, a

router can be expected to receive a steady stream of such minimum size packets. Thus,

the prefix lookup has to happen in the time it takes to forward a minimum-size packet (40

bytes), known as wire speed forwarding. At wire speed forwarding, the amount of time

that it takes for a lookup should not exceed 320 nanoseconds at 1 Gbps (= 1 O'* bps), which

is computed as follows:

40 bytes x !5 bits/byte
1 x 109 bps

= 320 nanosec.

Similarly, the lookup cannot exceed the budget time of 32 nanoseconds at 10 Gbps and 8

nanoseconds at 40 Gbps. The main bottleneck in achieving such high lookup speed is the

cost of memory access. Thus, the lookup speed is sometimes measured in terms of the

number of memory accesses.

I generated prefixes with lengths ranging from 16 bits to 24 bits so as the distribution of

the length is equal to the distribution of prefix length in major routing tables. That is, I
i

simulate the same distribution as in Mae East database. The information about the prefix

length distribution was obtained through IPMA. The results of simulation are displayed

in Table 4.1.

53

500 1500 4500 9500 19500 39500
Binary Trie 132 210 218 352 451 814
Patricia Trie 150 165 175 210 296 731
Tree Bitmap 75 90 125 170 300 650
Optimized Tree Bitmap 51 62 76 110 210 236

Table 4.1. Lookup parameters for IPv4 length distribution as in existing tables.

900

500 1500 4500 9500 19500 39500
No. of IP Prefixes

-----Binary Trie

-----Patricia Trie

Tree Bitmap

---- Optimized Tree
Bitmap

Figure 4.1: IP Lookup times under varying IPv4 FIB sizes.

Observing Figure 4.1 above 1 note how the increase in routing table impacts the speed of

IP lookup. At each simulation, the traffic load is doubled and lookup time measured. The
V'

algorithms achieve less than 100 ns in lookup time when the total offered load is less than

5000 routes. When the offered load in the network increases, lookup time also increases

at the router, this degrades the performance of the router. This happens after offered load

of about 1000 packets. Even at loads of more than 4500 prefixes, Optimized Tree Bitmap

still performs lookups at less than 100ns.

54

500 1500 4500 9500 19500 39500
Binary Trie 17 41 59 67 120 198
Patricia Trie 34 54 60 76 112 154
Tree Bitmap 8 40 53 62 74 94
Optimized Tree Bitmap 8 16 22 32 48 56

Table 4.2: Lookup parameters for IPv6 uniform length distribution and fixed step.

Figure 4.2: IP Lookup times under varying IPv6 FIB sizes.

The amount of memory consumed by the data structures of the algorithm is also

important. Ideally, it should occupy as little memory as possible. A memory-efficient

algorithm can effectively use the fast but small cache memory if implemented in

software. w '

500 1500 4500 9500 19500 39500
Optimized Tree Bitmap 1429 8241 10053 23512 14748 12866
Tree Bitmap 982 8364 10863 23734 15065 13484
Patricia Trie 1126 8639 11055 23886 15204 13645
Binary Tree 1270 8761 11213 24020 15349 13790

Table 4.3: Lookup parameters for IPv6 uniform length distribution and fixed step.

55

In this case, prefixes are generated with random length of uniform distribution between

32 bits and 64 bits and the step between numbers generated remains fixed. Again with

small steps we obtain many duplicates but we can observe in Table 4.3 that with the

rising number of generated prefixes, Optimized Tree Bitmap algorithm space

requirements grow much slower than those of Tree Bitmap algorithm.

100000
90000

g 80000

§- 70000

§ 60000
O 50000

| 40000
S 30000

20000

10000
0

No. of IP Prefixes

Figure 4.3: Memory requirements under varying IPv4 FIB sizes.

500 1500 4500 9500 19500 39500
Optimized Tree Bitmap 20787 58965 104096 153430 175483 200175
Tree Bitmap 19020 56442 102588 151950 173704 198722
Patricia Trie 17576 56442 101144 150502 172267 197360
Binary Trie 11647 54398 98777 143807 167855 194224

fable 4.4: Lookup parameters for*4Pv6 uniform length distribution and fixed step.

56

o
Q_
£
wcoO
o
£
<D

9 0 0 0 0 0

8 0 0 0 0 0

7 0 0 0 0 0

6 0 0 0 0 0 j
5 0 0 0 0 0 j

4 0 0 0 0 0

3 0 0 0 0 0

2 0 0 0 0 0

100000 [
0 ;

5 0 0 1 5 0 0 4 5 0 0 9 5 0 0 1 9 5 0 0 3 9 5 0 0
No. of IP Prefixes

B i n a r y T r i o

P a t r i c i a T r i e

T r e e B i t m a p

O p t i m i z e d T r e e B i t m a p

Figure 4.4: Memory requirements under varying IPv6 FIB sizes.

Figure 4.3 and 4.4 given above shows the simulation results using offered load of

between 500 and 20000 IP addresses. The result is the average memory requirement of

each algorithm to lookup a particular IP address. The initial low memory requirement can

be attributed to the fact that the amount of memory required for a data structure of a few

addresses is always small. As the number of addresses is increased, the memory

consumed by the data structure also increases.

To compare memory consumption by the algorithms based on the different lengths of IP

prefixes, memory utilization was plotted using the same offered load as shown in figures

4.3 and 4.4. For each of the offered loads, all the algorithms perform better with IPv4

addresses as compared to IPv6 addresses.

Initially at the start of the experiment, Binary Trie performed better than Patricia Trie and

Optimized Tree Bitmap Algorithms. Optimized Tree Bitmap Algorithm should perform

better than Binary Trie Algorithm. This could be attributed to the choice of incoming IP

address in which case I choose incoming IP addresses of less than 5 bits. As the number

of prefixes increases, Optimized Tree Bitmap performs better than the other algorithms

because unlike the other algorithms, apart from using multibit nodes to reduce memory

consumed, all child nodes of a given trie node are stored contiguously. Only one pointer

57

that points to the beginning of the child node block needs to be stored in the trie node.

Such an optimization reduces the size of the trie nodes hence memory consumed

resulting into faster memory access. Patricia Trie performs better than Binary Trie

because in Patricia one way branch nodes are compressed while in Binary Trie, one way

branch nodes are inspected hence increasing the cost of memory access as the lengths of

IP addresses increases.

Studies have shown that in general lookup time and memory consumed-are very

important factors in the design of next generation routers. In general, lookup time is a

function of the depth of the tree and memory depends on the size of the tree. An

algorithm that is able to compact data to the size that can be stored in cache memory and

is able to reduce the size of the tree drastically will be favorable for next generation

routers as the size of the forwarding database continues growing exponentially.

4.5.2 Case 2: Partial Deployment of IPv6 Addresses.

In this experiment, I test the behavior of IP lookup mechanisms based on partial

deployment of IPv6 addresses. Since a co-existence of IPv4 and IPv6 is inevitable, 1

examined the lookup times and memory requirements for IPv4 and IPv6. To achieve this

purpose, in all the tests reported in this Section, l use a traffic flow composed by a

variable range of random IP prefix addresses of IPv4 and IPv6. Thus, I have performed a

test with the aim of analyzing the performance of the discussed IP lookup mechanisms in

partial deployment environment. The tests are based on the percentages shown in figure

75% IPv4 60% IPv4 50% IPv4 40% IPv4 25% IPv4 5% IPv4

25% IPv6 40% IPv6 50$> IPv6 60% IPv6 75% IPv6 95% IPv6

Table 4.5: Percentages of Prefixes

58

500 1500 4500 9500 19500 39500
IPv4 375 900 2250 5700 4875 1975
IPv6 125 600 2250 3800 14625 37525
Binary Trie 95 63 43 125 237 352
Patricia Trie 49 72 52 145 136 260
Tree Bitmap 16 25 32 36 54 95
Optimized Tree Bitmap 2 5 9 19 22 32

Table 4.6: Partial Deployment Table Data for IP Lookup

a>
e
Q -3
O
O

4 0 0

3 5 0

3 0 0

2 5 0

200

1 5 0

100

5 0

0

- B i n a r y T r i e

■ P a t r i c i a T r i e

T r e e B i t m a p

• O p t i m i z e d T r e e B i t m a p

5 2 5 2 0 2 5 6 5 2 5 1 6 0 2 5

No. of IP Prefixes

3 5 5 3 5 7 5 0 3 5

Figure 4.5: Lookup times when IPv4 and IPv6 contribute various percentages of the

FIB.

An increasing number of IP addresses cause an enlargement of the trie data structure, and

a consequent increase in searching times. This is clearly observable in Figures 4.5 and

where the lookup values show a very similar behavior to those in Figure 4.2. The

performance decay is not only caused by the increasing entries in the routing database,

but also substantially due to the searching time increase in the cache memory since as the

forwarding table size increase, there are very high likelihood of part of the data residing

in a slow memory within the router.

59

500 1500 4500 9500 19500 39500
Optimized Tree Bitmap 47828 39397 100401 161091 210877 144438
Tree Bitmap 13376 45997 101986 164662 213381 154608
Patricia Trie 14739 47393 103631 165900 214670 155846
Binary Trie 16104 48652 103691 167186 216033 157180

Table 4.7: Partial Deployment Table Data for Memory Consumption.

C

9 0 0 0 0 0

8 0 0 0 0 0

7 0 0 0 0 0O
‘43
a .
E 6 0 0 0 0 0
13l/>
c 5 0 0 0 0 0
o

O 4 0 0 0 0 0

o
£ 3 0 0 0 0 0
<D

5 2 0 0 0 0 0

1 0 0 0 0 0

- B i n a r y T r i e

P a t r i c i a T r i e

- T r e e B i t m a p

- O p t i m i z e d T r e e

B i t m a p

5 0 0 1 5 0 0 4 5 0 0 0 5 0 0 1 0 5 0 0

No. of IP Prefixes
3 0 5 0 0

Figure 4.6: Memory required when IPv4 and IPv6 contribute various percentages of

the FIB.

Figure 4.6 illustrates the differences in memory requirements for IP lookup mechanisms

for variable routing table size and^.composition. While the memory requirements for

Optimized Tree Bitmap algorithm is comparable to that of Tree Bitmap Algorithm, given

the cost and availability of memory, the difference is again not extremely significant, e.g.,

about a factor of for the average case. This difference was to be expected since both

schemes employ data structure compression mechanisms and reduced pointer usage for

all the destinations. It is these techniques that lacks in Binary Tree and Patricia Trie

schemes that corresponds to the differences shown in Figure 4.6.

60

The transition from IPv4 to IPv6 will cause a major increase in the lengths of addresses,

and in the number of address prefixes which are used to aggregate IP addresses into

networks. From Figure 4.5 and Figure 4.6, Binary Trie and Patricia Trie perform

relatively well when the FIB is composed of shorter prefixes IPv4. As we move to IPv6

addresses, Binary Trie and Patricia Trie performance largely degrades because they are

largely dependent on the lengths and size of the searched database, which is projected to

grow significantly, and on the length of the address.

4.5.3 Scalability test

When talking about the scalability of an IP address lookup implementation, two different

views can be considered. First it is the scaling to more prefixes in the routing table and

second the scaling to longer addresses, 128 bit IPv6 addresses.

To investigate the scalability of the routing table, I ran simulations with duplicate

scenarios (adding more traffic load, both IPv4 and IPv6 traffic) in order to derive some

statistics about lookup time versus load and memory consumed versus load. To be more

specific, I used the parameters as stated in Table 4.8, without changing the ratio of IPv4

to IPv6 but by constantly incrementing the scaling factor in each simulation scenario.

Table 4.8 presents the composition of the prefix database that was used in the simulation.

The first row presents the number of prefixes in the database which ranges from about

five hundred over forty thousand. Rows two through six present the search times for the

three algorithms.

The key measurement goal is to, determine the capability to forward incoming IP

addresses under heavy loading. Consequently, as traffic in the router increases the

behavior of both lookup time and memory consumption for the different schemes are

depicted below.

500 2000 6500 15800 34300 59500
Binary Tree 28 79 83 59 109 296
Patricia Trie 73 39 58 82 166 212
Multibit 7 25 26 39 56 92
Tree Bitmap 2 6 8 9 17 22

Figure 4.7: Variation of lookup times as num ber of Prefixes increases.

Looking at the results of the simulation in figure 4.7, one simple observation is that as the

number of prefixes increases, the lookup time also increases. The time take to lookup a

destination IP address increases sharply after the number of prefix when the number of

prefixes is greater than 15800. The ratio of lookup time seems to increase as the database

gets larger. For future databases which are expected to grow exponentially, it could be

extrapolated that the Optimized Tree Bitmap is likely to perform better than all the other

algorithms. Binary Trie performance better in lookup time than Patricia Trie. This

difference is attributed to the fact that one way branch nodes were eliminated making the

lookup faster.

The second scalability issue is harder to investigate, since there is a lack of differentiation

between the memory consumed during data structure construction and the memory

consumed during lookup. Over 34000 distinct prefixes are generated and the simulation

62

gives the results of table 4.9. This factor makes it hard to tell how well this

implementation will handle very large IPv6 tables. What is clear, however, is that the

optimized algorithm performs well even with IPv6. How the memory consumption is

affected is dependent on the number of prefixes.

500 2000 6500 15800 34300
Binary Tree 1585 6342 12590 20408 27895
Patricia Trie 700 4623 8071 14264 24562
Multibit 367 650 2563 6782 11864
Tree Bitmap 250 285 736 1325 5620
Path Compression Savings 24% 35% 16% 23% 21%

Table 4.9: Scalability ratios for Memory Consumption.

The first row of Table 8 presents the number of prefixes in the database which ranges

from about five hundred over thirty thousand. Rows two through five present the memory

occupied by the data structure as organized by the four algorithms. Memory consumed by
\

binary tree is relatively large since there is no compression mechanism and a lot of space

is also wasted by empty nodes.

30000

25000
c
o
4=
CL
E3
10
c
o
O
o
E
<D
2

20000

15000

10000

5000

0
500 2000 6500 15800 34300

No. of IP Prefixes

- - 4 — Binary Tree

—■— Patricio Trie

Tree Bitmap

-----Optimized
Tree Bitmap

Figure 4.8: Variation of memoiy requirement as IP Prefixes increases.

63

From the graph above, it is observed that though there is a rapid increase in memory

consumed as the number of IP prefixes increases. Optimized Tree Bitmap algorithm

performs better than the other algorithms since the size of the next hop pointer is smaller

than lor other schemes. Notice that for Optimized Tree Bitmap algorithm, increase is not

as rapid as the other algorithms. This implies that the algorithm is more efficient with

larger databases with optimization that reduces wastage of unused nodes.

In general, algorithms are expected to scale both in speed and memory as the size of the

forwarding table increases. While core routers presently contain as many as 200,000

prefixes, it is expected to increase to 500,000 to 1 million prefixes with the possible use

of host routes and multicast routes. When routers are deployed in the real network, the

service providers expect them to provide consistent and predictable performance despite

the increase in routing table size. This is expected since a router needs to have a useful

lifetime of at least five years to recuperate the return on investment. Optimized Tree

Bitmap algorithm is a good bet for investment.

4.6 Discussions
When designing the data structure used in the forwarding table, the primary goal was to

minimize lookup time. To reach that goal, an attempt was made to simultaneously

minimize two parameters;

1. the number of memory required during lookup, and

2. the size of the data structure.

Reducing the number of memory accesses required during a lookup is important because

memory accesses are relatively slow and usually the bottleneck of lookup procedures. Jf

the data structure can be made ’small enough, it can fit entirely in the cache of a

conventional microprocessor. This means that memory accesses will be orders of

magnitude faster than if the data structure needs to reside in slow memory. If the

forwarding table does not fit entirely in the cache, it is still beneficial if a large fraction of

the table can reside in cache, Locality in traffic patterns will keep the most frequently

used pieces of the data structure in cache, so that most lookups will be fast.

64

Starting with the memory requirements, I observe that among the various trie structures

the Optimized Tree Bitmap generally consumes the least amount of memory for all kinds

of input. No other algorithm organizes a data structure to use less space than the Tree

Bitmap algorithm.

The IP prefixes in real routers have the same distribution as the distribution used in these

experiments and hence the results for this input are very similar to the results for real

data. In all the experiments, the average depth in a Optimized Tree Bitmap is

considerably smaller than in any of the other tries. This is the single most one reason why

the lookup speeds are averagely faster in Optimized Tree Bitmap than other data

structure. For large data, the time measurements were greatly affected by the virtual

memory assignment policy of the Java virtual machine.

The algorithms spend some time in building the structures. Each time a set of IP prefixes

is generated, a reconstruction of the trie takes place. This time is also is taken care of

since it is not included in the final computation for lookup though it would have been

nice to measure the buildup time. As shown above, the performance of the lookup is

highly dependent on the memory access time. So it is crucial to keep the size of the

memory as small as possible and definitely below the limit for embedded SRAMs which

is some hundred kilobytes.

In summary, with respect to lookup time, memory requirements and scalability of

algorithms, the Tree Bitmap algorithm is a clear winner among the various trie structures.

65

CHAPTER 5

CONCLUSION

5.1 Conclusion

The rapid growth of Internet Traffic causes increase in size of routing table. The current

day routers are expected to perform longest prefix matching algorithm to forward

millions of datagram each second, and this demand on router is increasing even while the

prefix search database is expanding in both the dimensions, i.e., IP address length (128

bits for IPv6) and number of prefixes. When there is migration from IPv4 to IPv6, the

routing table size increases exponentially. So this project has modified the Tree Bitmap

Algorithm implemented in Cisco-CRSl routers to reduce lookup latency. This provides

an efficient way of searching through forwarding tables.

The goal of this project is to detail a new algorithm for IP Lookups called Optimzed Tree

Bitmap and then illustrate its capability using a simulation model. The simulation model is

very understandable and easily adaptable to different JP Lookup algorithms. The model

provides a very easy and fast tool to perform various simulations and analyze the results

providing a good analysis and understanding of the search schemes.

A new algorithm for IP lookup is presented. This algorithm is optimized for software

implementation and it balances fast lookups and small memory. It contains both

intellectual and practical contributions. On the intellectual side, after the basic notion of

Tree Bitmap Algorithm, I found that I had to push single prefixes that required separate

trie node to be created with bitmaps that are almost completely unused. I singled out that

pushing the prefix to the parent has an aesthetically pleasing idea that leverages off the

extra structure inherent in the particular form of tree bitmap.

On the practical side, I have a fast, scalable solution for IP lookups that can be

implemented in software reducing the number of expensive memory accesses required

66

considerably. I expect most of the characteristics of address structure to strengthen in the

future especially with the imminent transition to IPv6. Even if my predictions based on

the little evidence available today should prove to be wrong the overall performance can

easily be restricted to that of the optimized algorithm which will perform well.

I his research work therefore contributes a solution towards alleviating the problem of

longest matching prefix as identified in the research problem in section 1.2.

Lookup time measured for the lookup schemes reflects the dependence on the prefix

length distribution. A large variance between time for short prefixes and time for long

prefixes is observed because of the height of the data structure constructed by each

scheme. For Binary trie and Patricia trie, the height is high. On the contrary, the full

expansion/compression scheme employed by tree bitmap and optimized tree bitmap

reduces the height considerably always needs fewer memory accesses. Optimized tree

bitmap scheme has the best performance for the lookup operation in this experiment.

Small variations should be due to cache misses as well as background operating system

tasks.
/

We believe that trie-based schemes will continue to dominate in lPv4-based products.

However, the slow, but ongoing, trend towards IPv6 will give a strong edge to schemes

scalable in terms of prefix lengths. Optimized Tree Bitmap will be a strong candidate for

the transition. Except for tables where path compression is very effective, I believe that

this algorithm will be better than trie-based algorithms for IPv6 routers. Tree Bitmap was

adopted in the Cisco router in anticipation of such a trend. Optimized tree bitmap will do

even better.

5.2 Recommendation and future work.

For future work, I will be attempting to fine tune the algorithm to separate build up time

from search time apart from modification processes. I will also be looking for other

applications of the algorithm. Thus I will also be studying the effects of caching in

lookup based on the optimized algorithm. Besides packet classification, I believe that this

algorithm and its improvements may be applicable in other domains besides Internet

67

packet forwarding. Potential applications that are worth investigating include memory

management using variable size pages, access protection in object-oriented operating

systems, and access permission management for web servers and distributed file systems.

BIBLIOGRAPHY

APNIC and Routing Registries 2002. IPv6 address allocation and assignment policy.

[Online], available at: ljttp://ww\v.arin.net/policv/archive/ipv6 policv.html [Accessed

January 2012],

D. Medhi and K, Ramasamy, 2007. Network Routing: Algorithms, Protocols and

Architectures. Morgan Kaufmann Publishers, Part 5.

George Varghese, 2012. Recent Research Directions in IP Lookup Algorithms, [Online]

available at: <http:/Avww-cse.ucsd.edu/u the :/research.html> [Accessed

February 2012],

Internet Performance Measurement and Analysis Statistics, [Online] available at: <

hltp://nie.merit.edu/ipma> [Accessed February 2012],

IPv6 information page, [Online] available at: < http://www.ipv6.org> [Accessed

December 2011],

H. Jonathan Chao, Sept 2002. Factors to consider in Building Next Generation Routers

in: Technical Report Next Generation Routers, Proc. IEEE, vol.90, no.9, pp. 1518-1588.

M. A. Ruiz-Sanchez, E. W. Biersack, W. Dabbous, 2001. Survey and Taxonomy of IP

Address Lookup Algorithms. Journal of IEEE Network, Vol.15, Issue 2, PP.8-23.

Methodology for Modelling Wireless Routing Protocols Using Opnet Modeller. Rowan

University 201 Mullica Hill Rd. Glassboro, NJ 08062 USA, PP2.

Michigan University and Merit Network. Internet performance and analysis (iprna)

project, http://www.merit.edu.

69

http://www.ipv6.org
http://www.merit.edu

M. Waldvogel. Fast Longest Prefix Matching: Algorithms, Analysis, and Applications.

PhD thesis, Swiss federal Institute of Technology - Zurich, 2000.

M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high-speed ip routing

lookups. In Proceedings of ACM Sigcomm, pages 25-36, October 1997.

N. McKeown, “Fast Switched Backplane for a Gigabit Switched Router”,

http.7Avvvw.cisco.coin/vvarp/public/733/12000/technic ahs litml.

M. Degermark, A. Brodnik, S. Carlsson, S. Pink, “Small Forwarding Tables for Fast

Routing Lookups” Proc. ACM SIGCOMM ‘97,, Cannes (14 - 18 September 1997).

M. Waldvogel, G. Varghese, J. Turner, and B. Plattner 1997. Scalable high speed IP

routing lookups. In Proc.SIGCOMM’97, Cannes, France. PP

Niall Murphy, Google, and David Wilson, “The End of Eternity: IPv4 Address

Exhaustion and Consequences”, The Internet Protocol Journal, Volume 11, No. 4,

[Online] available at <http://www.cisco.com/web/about/ac 123/ac 147/archived/ipj 1D

4/114_eternity.html> [Accessed December 2011],

OPNET Modeler ver. 14.5 OPNET Technologies, Inc®, [online] available at

<www.opnet.com> [accessed February 2012],

{ %
S. Keshav and Rosen Sharma 2008. Issues and Trends In Router Design, Cornell

University. Journal of IEEE Communications Magazine. PP.1-5.

S. Nilsson and G. Karlsson, 1998. Fast Address Look-Up for Internet Routers In: pro.

IEEE Broadband Communication, PP 2-5.

University of Oregon Advanced Network Technology Center, Route views project,

[Online] available at: <http://www.routeviews.org/> [Accessed December 2011],

70

http://www.cisco.com/web/about/ac_123/ac_147/archived/ipj_1D4/114_eternity.html
http://www.cisco.com/web/about/ac_123/ac_147/archived/ipj_1D4/114_eternity.html
http://www.opnet.com
http://www.routeviews.org/

Vasil Hnatyshin, Hristo Asenov, and John Robinson 2011. Challenges in performance

measurements of routers forwarding functions using Opnet Modeller in: Practical

V. fuller et al 1993. Classless Inter-Domain Routing (C1DR): an address assignment and

aggregation strategy. RFC1519.

V. Srinivasan and G. Varghese, 1998. Faster IP Lookups Using Controlled Prefix

Expansion, Measurement and Modeling of Computer Systems, 1998, vol. 17. PP.

V. Srinivasan, S. Suri, and G. Varghese, 2009. Packet Classification and Lookup models

in: Packet classification using tuple space search, ACM S1GCOMM Computer

Communication Review, vol.29, no. 4, pp. 135-146.

V. Srinivasan and G. Varghese. Faster ip lookups using controlled prefix expansion.

ACM Transactions on Computer Systems, 17(1): 1—40, February 1999.

W. Wu, Packet Fowarding Technologies 2009: Auerbach Publications, Taylor and

Fransis Group. Clip 1-4.

Wei, G., Chunhe, X., Nan, L., Haiquan, W., and in, D. (2007). Research on simulation

framework of structured Network. In FGCN '07: Proceedings of the Future Generation

Communication and Networking, Washington, DC, USA. IEEE Computer Society.

Y. K. Li and D Rao, 2006. Address Lookup algorithms for IPv6”, IEEE Communications

Magazine, Vol 153, No.6. **'

71

