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Abstract

The most important variable or parameter in the markets for �nancial options is the

volatility. In practice, when taking practical measures to determine volatility based on

observed market prices, it turns out to be variable. In particular, its curve is in the form

of U with respect to the strike price. This is called colloquially "The Smile of Volatility."

Many researchers believe that the problem of volatility smile is a complex question which,

together with all its rami�cations, is one of the most important problems of quantitative

approaches. It has also been found that the underlying process seems to be correlated

with the volatility process. In this project, the approach to the problem of the smile of

the volatility is given in a descriptive and mathematical way. Also, the problem that

is encountered when trying to �t the two stochastic processes on a binomial lattice is

addressed by using the change of variable technique.

In this project, a bivariate binomial model for pricing options that take into consideration

the correlation between the underlying process and the stochastic volatility is developed.

The results obtained are then compared against the developed models in the market such

as Binomial Lattice, Monte Carlo Simulation, Hull and White, and the Black-Scholes model

for pricing options.
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1 Chapter one: Introduction

:

1.1 Background of the Study

Prior to the economic crash of the 1987 global market, the evaluation model of
[Black and Scholes, 1973] seemed to describe the option markets reasonably well
[Alexander and Kaeck, 2012]. A�er the crash and ever since much has been done to
improve on the model that assumed that there exists an e�ective state in the market
where the volatility is constant, and the stock price follows the geometric Brownian motion.
There have been several a�empts to approach this assumption of constant volatility by
Black-Scholes model. The stochastic volatility model by [Hull and White, 1987] was the
first contribution in the option valuation literature that incorporated stochastic volatility.
Unfortunately, these models require an estimate of the market price of volatility risk. In
other words, with volatility stochastic, a second factor is introduced since the option is
needed to satisfy a bivariate stochastic di�erential equation. This factor is the market
price of the risk associated with volatility.

The BSM model paved the way for the development of the financial derivative market.
However, the limitation lies in the fact that its strict presumed assumptions and actual
financial markets do not match. This undermines the e�iciency, accuracy and applicability
of its pricing. The theory of option pricing has made a lot of improvements from the BSM
model. One of the ways is relaxing the assumptions to meet the actual conditions and to
promote more complex derivatives pricing.

[Cox et al., 1979] presented the simple method to design an option pricing model called
the Binomial Model. This was primarily used to calculate the value of American options.
The model assumes that there is only upward and downward stock price movement and
that the magnitude of the stock price fluctuating upward (or downward) each time is the
same throughout the study period. The model strictly assumes that volatility is a function
of stock price and that the stock price directly determines the volatility.

The binomial option pricing model and the Black-Scholes option pricing model are two
complementary approaches. The binomial option pricing model is relatively simple to
derive, which is more suitable for explaining the basic concept of option pricing. The
binomial option pricing model is based on the assumption that there are two possible
directions for the price movement of securities in a given time interval: up or down.
Although this assumption can be visible, the binomial option pricing model is suitable for
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dealing with more complex options, since it is possible to subdivide a given time segment
into smaller units of time.

As the number of price changes to be considered increases, the distribution function of the
binomial option pricing model tends more and more towards a normal distribution. The
binomial option pricing model is consistent with the Black-Scholes option pricing model.
The advantage of the binomial option pricing model is that it simplifies the calculation
of the option pricing and adds to its intuitiveness, it has now become one of the major
pricing standards for major stock exchanges around the world.

[Harrison and Kreps, 1979] proposed the martingale method of option pricing, using mar-
tingale measures to describe the non-arbitrage market and the incomplete market. They
prove that the necessary and su�icient condition for the market to have no arbitrage is
the existence of an equivalent martingale measure. The condition is that the equivalent
martingale measure exists and is unique; when the market is complete, any or all of the
required rights and interests are available and may be copied by the arbitrage-free method
from the underlying securities on the market.

With the Black-Scholes theory, the equivalent martingale measure for the underlying
process is constructed using the most direct technique. The change of the probability
measure is promising in the pricing of the option. Tests from various studies conclude that
the implied volatility is stochastic and that it seems to have a U-shaped function of the ratio
between the price of the underlying asset and the option’s strike price [Perelló et al., 2008].
This is known as the moneyness ratio. The fi�ing of the implied volatility against the ratio
between the price of the underlying asset and the strike price of the option uses the terms
“smile” or “smirk” e�ect because the function is usually asymmetric [Lee and Lee, 2010].
This phenomenon shows that the geometric Brownian model is not adequate. However,
the continuous-time assumption provides other alternative models that try to explain this
e�ect comprehensively. One of these alternative models is the Stochastic Volatility (SV)
models that assume two-dimensional di�usion processes. One of the dimensions of the
SV describes the dynamics of the asset price, whereas the other captures the volatility.

Many studies to check whether the SV classes of models can capture the dynamics of
the underlying assets have been done. Many professionals acknowledge the significance
of volatility in determining the dynamism of the financial market. Among the essential
statistical properties of volatility in the financial markets seem to cause the clustering in
the changes of price. That is, large changes tend to be followed by large changes, similar to
the small changes [Bollen and Whaley, 2004]. Another feature is that regarding the prices
changes that show low autocorrelations but there is significant volatility correlation for
considerable time lags longer than twelve months. Also, there exists the leverage e�ect.
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Volatility smile is a common phenomenon in option prices, despite the fact that there
should be no smile in a real Black-Scholes world because the volatility should remain
unchanged across the strike price and time [Lee and Lee, 2010]. The stochastic volatility
models and option pricing are both exciting themes that are as boundless. The entire
financial industry operates from the fair pricing of the financial instruments and modeling
the market behaviors correctly. As such, the knowledge and the ability to evaluate
complex derivatives and understand the underlying processes and concepts, are vital to
the stakeholders of the financial markets. The statistical and mathematical theories that
provide the essential basis of these tools are some of the methods developed in the past
years and still are not e�icient in providing reliable solutions. The e�orts to improve more
e�icient models and concepts build on the establishment of the Black-Scholes-Merton
model in 1970’s.

1.2 Statement of the problem

There are many risks involved in the financial market. As such, a decision to get into
the foreign exchange market makes the investors vulnerable to these risks. One of the
objectives of business is to maximize the profit while minimizing the risks. This makes
the investors prefer to accrue maximum expected return and minimal risk. The success of
an investor is dependable on the ability to mitigate the risks involved. One of the ways of
managing risks in the foreign exchange business is by investing in the currency options.
Although option pricing has not gained popularity in Kenya, the trading of currency
option over-the-counter has been occurring at a considerable rate. It is easy to price the
currency options by considering only the final value. The convenience of this pricing
activity occurs because of the existence of the closed-form formulas. However, there is
a significant question of what happens when a person considers stochastic processes of
both the underlying processes.

The solutions to pricing problems have been provided in the literature review. These
solutions range from analytical methods to la�ice approaches and the Monte-Carlo
simulations. The price of hedging is less subject to the manipulation of the price. As such,
options are useful in hedging. There are advanced closed-form solutions to European
options. However, it is essential to develop a method that illustrates the correlation
between the underlying asset and volatility. As such, this research will explore the la�ice
methods featured in the literature and utilize the binomial la�ices to price the options.
The decision to use the la�ices is because they are more e�icient and direct than the
Monte-Carlo simulations [Li, 1992].

The complexity of option valuation makes it very complicated for mathematicians, even
for researchers to approach the subject. Many of the methods of valuation of options
have been published in magazines and international journals and in them the level of
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explanation is not always to a level at which gives fair price values. That is why I have
decided to investigate the la�ice method.

1.3 Research Objectives

1.3.1 General Objectives

To value options under stochastic volatility when the price of the underlying process has
a negative or positive correlation with the stochastic volatility.

1.3.2 Specific Objectives

1. To apply the bivariate binomial la�ice to determine the value of options.

2. To compare the output values from the model against the already developed models.

3. To estimating the Greeks from the bivariate binomial model.
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2 Chapter Two: Literature Review

:

2.1 Introduction

This chapter is divided into three sections, introducing recent literature related to this
work and briefly describing it. The first part is a brief description of la�ice models and
the Black-Scholes model; the second section will introduce other related work on options
with stochastic volatility.

2.2 Methods of valuation of options

To a large extent, market option prices arise from the laws of supply and demand of the
market. However, this does not prevent it from being evaluated to find pa�erns to extract
current prices.

2.2.1 Binomial la�ice

While it is true that you can find closed-form solutions for the evaluation of options, the
numerical methods have an important role as long as its computational implementation is
simple than the development of analytical solutions. Using a set of fixed input parameters
such as stock price, correlation, variance of volatility, volatility, moneyness ratio, binomial
models have shown to provide accurate approximations of the stochastic volatility price
for both European and American cases.

[Cox et al., 1979] presented the first implementation of the binomial model for the eval-
uation of options assuming the log-normal process. This method of option pricing is
undoubtedly one of the most popular and useful among other things because of its sim-
plicity, which on the other hand makes it not always recommended. It consists of building
what is known as a binomial tree, which is a diagram that represents the possible paths
that could be followed by the asset underlying the option. At every moment or step of
time the price has a probability of going up by a percentage amount and a probability of
going down by a certain percentage amount. This method can help assess options using
the basic principles of non-arbitration and risk-neutral assessment. The binomial model is
based on the possibility of forming a hedge by combining a long position in stock with a
call sold on them. They propose to approach the problem through a simulation strategy
in which the price of the underlying can su�er only one of the following two changes:
increase in a rate x, or reduce in a rate y. This method, however, is not e�ective since
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the aspect of market perfection is not always the case. Another negative aspect of this
technique is that only two changes in prices are taken into account. It is for this reason
that is not the ideal method for valuing an option.

A more realistic approach to determine the price of the options, is presented by [Rubinstein, 1994]
model. It is based on the calculation of the probability distribution used by market agents
to evaluate the options with a common maturity and the same underlying asset. This
results in a multiplicative binomial scheme, where the volatility at each node depends
on the price of the asset. Prices of the options are calculated in the same way as in the
conventional ’binomial trees. This proposal has some drawbacks, as it does not take into
account options with shorter maturities and, also, it is assumed that all trajectories leading
to the same final value have the equal probability of neutral risk.

[Derman et al., 1996] developed the technique presented by [Rubinstein, 1994], by taking
into account options with di�erent maturities and considering a set of options with
exercise prices equal to the prices of the underlying asset in the previous node and with
expiration in the immediate subsequent node. The drawback of this model is that it
presents negative probabilities. Although this failure can be corrected, the method is more
unstable numerically as the number of time steps becomes bigger. Another limitation of
this model is that only options of European type can be assessed, but in [Chriss, 1996]
the possibility of valuing Americans options is introduced.

To improve the stability of the model, [Derman et al., 1996] proposes a realignment of the
central nodes of the tree as a function of term prices instead of the cash prices of the
underlying process. At each stage of the options the exercise price equal to the term price
of the underlying asset instead of its spot price. The la�ice formed represents the di�erent
possible trajectories that can be followed by the price of an asset over the life of the option.
This provides an excellent approximation using relatively simple mathematical results.

Finally, the proposal presented in Hilliard and Schwarz (1996) overcomes the limitations
observed through the implementation of a model in which fits both the volatility and
the underlying process in a binomial la�ice. This scheme can be used to assess European
options with a maturity before the corresponding time to the ’last node’ of the tree, and
can even be adjusted to assess Americans options.
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2.2.2 Black- Scholes

In 1973, American scholars Black and Scholes proposed the Black-Scholes model for
stock options. This model is a major breakthrough in option pricing, therefore, Black
Scholes and Scholes are recognized as outstanding representatives of the theory of option
pricing. This method however can be complicated much depending on the option, given
the complex mathematical and scientific basis of the stochastic models. The main thing
is to understand that it is a method valid for valuing options, but is not commonly used
because of its di�iculty. Admi�edly, Black-Scholes option pricing formula has laid the
groundwork for option pricing. However, a large number of studies later show that the
assumptions of the model tend to be strict. For example, the stock price follows the
log-normal distribution, continuous trading and non-existent trading restrictions, these
are in fact some not very realistic assumptions.

Relaxing the assumptions of the Black-Scholes model and amending them has become
a hot topic in the field of option pricing that has a�racted a large number of scholars
to study it. Throughout the decades of research, we can see a large number of studies
that focus on transaction costs, transaction limits and the distribution of underlying asset
prices. To relax the Black-Scholes option pricing model, more models are derived as briefly
described below.

2.2.3 Stochastic –Volatility Model

Stochastic volatility models have gained popularity over the past years as a way of deriving
the pricing and hedging. The increase in the use of the Stochastic Volatility models has
occurred because of the existence of the non-flat implied volatility surface that has existed
from the 1987 crash. As such, it is vital to look into the factors that have contributed to
the popularity of the stochastic volatility model and its longevity.

There are many supporting views for modeling volatility as a random process. One of
these is that it could represent estimation uncertainty. SV models specify the volatility
algorithm as a linear stochastic process, where volatility is considered an unobservable
component of the modeled series through a linear, self-regressing process.

2.2.4 Hull-White (1987)

In 1987, Hull-White proposed a two-factor model of stock price movements. The change
of price is the process of random di�usion, and the instant standard deviation of the price
change is another random di�usion Process can be expressed by the following formula.

dS = msdt + f (S)h(V )dZs (2.1)

dV = mvdt +bV dZv (2.2)
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Where Ms and Mv are expected returns of the stock price and variance at the moment of
change, f(S)h(V) is the standard deviation of the moment of stock price change. Under
this model, Hull-White assumes that the correlation coe�icient between stock price and
variation is zero use the Monte Carlo Simulation Method to calculate the European option
price, and the calculated result is similar to that of Black-Scholes.

2.2.5 Nelson-Ramaswamy (1990)

In a 1990 study, Nelson-Ramaswamy using the binary tree approach proposed to approxi-
mate the stochastic model described above. In order to simplify the calculation of two
trees, [Nelson and Ramaswamy, 1990] uses some assumptions and transformations on
the variable into a simple binomial tree and then use the inverse function to deduce the
target values. The major mathematical and practical challenge here is the estimation of
parameter and stability of the estimates in time. In some stochastic volatility models,
estimating the risk neutral parameters is not easy especially where there is no formula
for the price of the option. As such, a person has to run simulations on binomial la�ice
at each step in the procedure of the iterative search. Various models aim to enhance a
closed-form solution. This implies assuming the volatility is independent of the Brownian
motion that drives the stock price, whereas the common and empirical evidence suggest a
negative correlation [Fouque et al., 2000].

The above-mentioned e�ects of non-constant volatility would be suggesting that market
participants are implicitly a�ributing a distribution di�erent from that assumed by Black-
Scholes. We will now consider two deviations from the distribution assumed by the Black-
Scholes formula of special importance in practice. Given the overwhelming empirical
evidence existing against the assumptions of the Black-Scholes formula, researchers have
tried to propose alternative models that try to incorporate the smile e�ect of volatility.

2.2.6 Hilliard-Schwartz (1996)

Although Hull-White proposed a stochastic volatility model in 1987 to calculate the
European option where the correlation coe�icient between the stock price and the variation
is zero, the Monte Carlo simulation method used to calculate at that time still could not
solve calculations of American option. The constraints encountered when choosing the
right time to exercise on American option proved to be both complicated and time-
consuming, and there would be situations where convergence would not be possible, so
Hilliard-Schwartz suggested the concept of Nelson-Ramaswamy of variable transformation
to make it possible to fit on a bivariate tree. The underlying asset and standard deviation
have their own di�usion process, and can form two simple trees, then combine the two
simple binomial trees into a binary binomial tree under the binary binomial tree
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Each node has its corresponding transformed price of stock and standard deviation,
calculated by the inverse function. From this you can get the corresponding stock price of
each node, and then use the derived probability formula for option price. In this model,
not only can the price of the American option be calculated, but it can be used to calculate
the option price in the presence of a non-zero correlation coe�icient between stock price
and variance.

2.2.7 Heston’s Stochastic Volatility Process

In 1993 Steve L. Heston in his article "A Closed-Form Solution for Options with Stochastic
Volatility" published in the Review of Financial Studies evaluates an option on an action
with stochastic volatility. A relevant feature in Heston’s article is that it obtains the
characteristic functions of risk-neutral probabilities as solutions of a second order partial
di�erential equation. By means of these risk-neutral probabilities, a formula similar to
that of Black and Scholes is obtained to value a European option of purchase price; the
put option can be obtained with put-call1 parity.

One notable feature of Heston’s (1993) model is that it presents a closed formula for the
price of an option with the assumption of a correlation between the price of the asset and
its volatility. The option price is obtained by calculating the probability that a call option
expires within-the-money, although such a probability cannot be calculated directly, it can
be obtained by reversing the characteristic function of the price logarithm of the sub-asset.
The stochastic dynamics driving volatility in the Heston model is defined below. Assume
that the current price St of a stock is driven by:

dSt

St
= µdt +

√
vtdW1,t (2.3)

Where µ is the trend parameter, and W1,t is a Wiener process. The volatility
√

vt is driven
by the process:

d
√

vt = β
√

vtdt +σdW2,t (2.4)

Where W2,t is a Wiener process correlated with W1,t i.e., Cov(dW1,t ,dW1,t) = ρdt . To
simplify the model, we apply the itô lemma to obtain the process for variance vt which is
expressed as a Cox, Ingersoll and Ross (1985) process:

dvt = k(θ − vt)dt +σ
√

vtdW2,t (2.5)

In the context of stochastic volatility models, the parameters θ , κ and σ are interpreted
as the long-term variance, the long-run variance rate and the volatility of the variance
(o�en referred to as volatility of volatility), respectively.

In the Heston model (1993) the price of the option is driven by a di�usion process analogous
to that of the Black model and Scholes, except that Heston assumes that volatility depends
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on time and is driven by an independent di�usion process. There are two parameters of the
prices of the purchase options obtained with the Heston model (1993) that deserve special
a�ention: the correlation between the Brownians who drive the price of the stock and
the variance denoted by: ρ i.e., Cov(dW1,t ,dW1,t) = ρdt and the volatility of the variance
σ . Regarding the correlation, a negative value of ρ will induce a negative bias in the
distribution of so that negative shocks to the stock price will lead to positive shocks to
the variance.

[Merton, 1973] proposes that volatility is a deterministic function of time, manages to
explain the di�erent levels that are reached in implied volatility, for di�erent periods in
time, but fails to explain the form of smile for di�erent exercise prices. [Dupire, 1994]
and [Rubinstein, 1994], suggest that not only time is indexed in volatility; they propose
dependence with a volatility coe�icient, just as they cannot explain the form of volatility.
Smile for di�erent periods in time.

On the other hand, Heston’s (1993) model is considered one of the most representative,
since the process for volatility is not negative and has a reversion to the average (which is
observed in the markets) and has a closed solution for plain vanilla options. It also explains
the smile of volatility. This pricing measure is seen in traded at-the-money European
options prices, and as a common practice, this smile data is used for calibration.

2.2.8 Longsta�-Schwartz Algorithm

A�er the binomial tree and Black-Scholes methods, [Longsta� and Schwartz, 2001] pro-
posed a method known as Least Square Monte Carlo (LSM). It is used for finding the
optimal exercise strategy with American-style options. They grant freedom when choosing
the moment of exercising the option. This method unlike Black-Scholes can be applied to
exotic instruments as Asian options.

[Stein and Stein, 1991] assume that the volatility and the underlying return on assets has
nothing to do with di�erent volatility path used by the Black-Scholes model to calculate
the option price. Based on the deficiencies of the above model, Heston (1993) uses the
Eigenvalue method to address the problem. In the case of assets related to foreign exchange
options and bond options pricing formula empirical study of Heston (1993) modelshows
that the underlying asset return and volatility process explains the negative bias of the
yield and the BS model period Price bias phenomenon.

Other stochastic volatility options pricing models similar to [Hull and White, 1987] includ-
ing [Andersen et al., 2002] who validated Hull and White (1987) model using the warrants
on the Stock Exchange. Warrants have be�er pricing performance, which means that con-
sidering the stochastic volatility can improve the pricing of warrants results. The empirical
analysis shows that the stochastic volatility model can be�er fit the market data. However,
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there is an important flaw in the stochastic volatility model where the parameters cannot
be directly observed, which gives the actual estimation great di�iculties.

[Bollerslev, 1986] proposed GARCH model based on the ARCH class model, [Engle, 1982].
GARCH model can well explain the volatility of financial time series clustering and fat
tail phenomenon. The volatility of the yield of a bond obeys the GARCH model, and
[Duan, 1995] gives the options in physical measure and risk transition between the mea-
sures, and thus establish the basis of the European option pricing. In numerical calculation,
[Duan and Simonato, 2001] presented a Markov chain technique to approximate the price
of options. [Lehar et al., 2002] and other empirical analysis also shows that compared
with the Black-Scholes model, the GARCH model the pricing of the option is more in line
with the market price.

Li (1992) constructed a Possion Jumping Option Pricing Model unlike the other volatility
models, the Possion jump process does not have the components of continuous martingales
it is purely a jump process. There are other models that use implied volatility for pricing,
but much of this literature focuses on how to explain the "implied volatility smile" e�ect,
such as [Canina and Figlewski, 1993].
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3 Chapter Three: Methodology

:

3.1 Introduction

This chapter introduces the algorithm presented by Hilliard and Schwarz (1996) and
explains the various aspects of the model.

Definition of Options
An option is a non biding contract where the holder has the right but not the obligation
to exercise it. In an option contract, five elements are specified:

(i) Option type: call or put option (American or European),

(ii) Underlying asset: assets (stocks, currencies, interest rates, oil, gold, etc.),

(iii) Amount of traded asset: is the amount, in units, of the underlying asset that is
stipulated that can be bought or sold for each option contract,

(iv) Expiration date: is the date on which the contract expires,

(v) Exercise price: is the price at which the contract can be exercised, that is, the price
at which the underlying asset may be bought or sold, according to the option to be
bought or sold.

Options are of two types, the call and the put option. A call option gives the buyer the
right to buy a particular asset at a certain future date and at a particular price whereas a
put option gives the right to trade a particular asset by a certain date and at a particular
price [MacKenzie, 2006].

There are various styles of options in today’s stock market. However, the major options
are the European and American options. These two types of option di�er in date at which
they are exercised. The European options can only be exercised at the maturity date
whereas the American options can be exercised at any time before the expiration date
[Chance et al., 2000].
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3.2 Price an of option

The option price is the premium that the buyer/seller of an option pay/receive for an
option. Later on we will go deeper into some of their most important valuation methods.
However, there are a number of relationships between the premium and the di�erent
components of the options that allow us to know the behavior of this one. We will also
see how each one of us influences of these in the option price assuming that the other
factors remain constant.

The price of the underlying asset is one of the factors influencing the price. For call options,
the premium is what you must pay for having the right to buy. For this reason, if the price
of the asset we intend to buy (at a price fixed through the option) increases, it has to cost
us more money to acquire this right. Conversely, the right to sell (put option) has a lower
cost in the event of an increase in the price of the underlying asset, as the higher the put
option comes, the more di�icult it will be to exercise the put option.

The strike price is the price agreed today to buy or sell a product. Sell the underlying asset
in the call or put options at maturity. It has a negative relationship with the premium for
purchase options. The higher the strike price, the lower the premium. For put options, a
positive relationship is given, i. e. it will cost more money that which allows you to sell
more expensive.

Time to maturity is another element that influences the premium of directly, this means
that the longer term the higher the premium. As the time to maturity progresses, options
lose their temporary value.

When working with stock options, you should consider the treatment of dividends em-
bodying the underlying shares of the option. These dividends are paid to the owners of
the shares and not to the option holder. When the payment of the dividend is made, the
share price is reduced since it deducts this last flow, so when the price is reduced, the
price of the call option premium is also reduced, on the contrary, it goes with the put
option, if the option price decreases due to the payment of a dividend, the premium for
buying the put option will increase in value.

Interest rates have a double e�ect on the price of the option. In the case of call, an increase
in the interest rate causes the strike to be discounted to a higher premium. In addition to
this relationship, it should also be noted which e�ect is more predominant in view of the
rise in the interest rate, since if it has greater influence on the share price (raises in interest
rates lead to falls in the price of a share), the price of the call option may decrease. For
the PUT option, we see that interest rate rises decrease the premium, although a strong
impact on the decline in share price could o�set this drop in the premium, causing a rise.
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Volatility is a measure of uncertainty about changes in the future price of shares in the
future. It is the most influential factor in the price of options. When volatility increases,
the likelihood of stock prices rising or falling is much greater. Greater volatility leads to
higher premiums for both call options and put options, as the buyer of the option can
earn very high or unlimited profits with losses always limited to the premium.

Knowledge of the future volatility of a share allows strategies to be carried out, regardless
of the direction of possible declines or rises in the price of the underlying.

3.3 The basic Pricing of options

As a derivative security, the value of an option is determined by the value of the underlying
asset. The element of risk in the underlying asset causes its random changes in price. An
example of risk involved in the underlying asset is the uncertainty of the future price. Simi-
lar to the fluctuations in the price of the underlying asset, the value of then corresponding
option is not constant. Formulating the option could lead to easy comprehension of the
fundamental of option pricing. This thesis will use notions to formulate the options for
be�er understanding.

We denote Vt as option value at a predetermined time t and St as the underlying asset
value at a particular time t. Using the notations Vt and St ,and denoting the underlying
asset volatility by σ , the interest rate by r, the date of maturity of the option by T and the
underlying asset’s exercise price by K, then the payo� of the option is:

Payo f f =

{
(ST −K)+, (Call option)

(K−ST )
+, (Put option)

The fluctuations of the underlying asset price and the uncertainty in such changes make it
significant to find the underlying asset properties. The properties of the underlying asset
are significant in modeling its price process. The variable whose price changes frequently
in an unpredictable way is said to follow a stochastic process. We will assume that the
price process of the underlying asset will satisfy the Markov Property. A stochastic process
is said to have the Markov Property only if the future conditional probability depends on
the present state and not the sequence of events that preceded it. A process that has this
property is referred to as a Markov process. In a Markov process, predicting the future
value depends on only the present value of the variable [Gamerman and Lopes, 2006]. To
model this process, a person has to find the process that satisfies the property.
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3.4 Concepts of Volatility

Volatility is the level of uncertainty a�ached to the size of changes in the value of a security.
As such, volatility is the key to understanding the cause of fluctuation of the option prices
and why they act the way they do. Volatility is one of the most significant concepts
applied when valuing options. In addition to valuation of options, volatility is a key factor
that a�ects the pricing of option. For example, the probability that the option will be
exercised for a profit is a�ected by the level of volatility while considering the changes
of the price of the underlying instruments [Angeletos et al., 2001]. The anticipation of
high profit from an option increases its value. High volatility means that the value of
the particular security can be potentially be distributed over a wide range of values. This
implies that there is a probability of dramatic change of the security price over a short
time in either direction.

A lower volatility implies that the value of a security does not change at a significant rate
but fluctuates steadily over a span of time [Angeletos et al., 2001]. In the case of options,
volatility is good because the price of volatility generates greater value for a particular
option. The explanation for the increase in the value of an option is that the higher the
underlying asset volatility, the higher the option value. However, volatility is not good.
The purchases of options enjoy only the upside potential and not the downside risk, unlike
in the case of other financial assets that have both risks. Volatility a�ects binomial model
in that volatility level determine the value of binomial model.

The two related, but distinct concepts of volatility that one should distinguish include the
volatility of a financial instrument and the implied volatility of an option that is wri�en
on such an instrument.

Underlying Volatility and Implied Volatility
One of the key determinants when calculating the price of an option is the assessment of
implied volatility. The magnitude of the expected fluctuations has a direct impact on the
high cost of an option. Unlike other determinants such as the risk-free interest rate or the
current price of the underlying, implied volatility is not directly observable.

To evaluate the implied volatility of an asset, operators rely primarily on past prices,
ie on historical volatility while underlying volatility is estimated from asset returns
[Satchell and Knight, 2011]. Implied volatility is o�en considered the best forecast of
future volatility, regardless of the underlying asset. This assertion is generally tested on
the basis of the joint assumption of informational e�iciency of the options market - the
forecasts must be unbiased and the forecasting errors must be orthogonal to the set of
available information - and the validity of the model option used to infer implied volatility.
Indeed, when empirical studies use options traded on organized markets, the use of an



16

option valuation formula is necessary to extract the expected volatility from quoted option
prices.

Foreign exchange options on the over-the-counter market are quoted in implied volatility.
This is in particular a function of the exercise price and the maturity chosen by the client.
The operators introduce this anticipated volatility in the formula of Black and Scholes
(1987) for exchange options - in order to calculate the price of the corresponding option.

3.4.1 Brownian motion

Brownian motion, also called Brownian movement is used to describe the physical phe-
nomena in which molecules undergo small, random fluctuations or movement. When
using the Brownian motion, if a number of particles are present in a given medium and
there is no preferred direction for the random movement, the particles will tend to spread
evenly throughout the medium over a period of time. A process W that occurs in Brownian
motion has two significant properties:

The first property is that for a small time change ∆t , the change of ∆W is given by N
√

∆t
Where N ∼N(0,1). The second property is that the values of ∆W for any di�erent intervals,
are independent and have stationary increments. This leads to the following:

E(∆W ) = 0

Var(∆W ) = ∆t

Consider W (T )−W (0) and n = T
∆t then

W (T )−W (0) =
n

∑
i=1

Ni
√

σt

, Ni ∼ N(0,1) where i =1,2,3 . . . n
The distribution of W (T )−W (0) is normal with mean 0 and variance n∆t = T

3.5 Modeling stochastic volatility

As mentioned in the previous section, the volatility of an asset is not constant, nor is it
observable. Therefore, an adequate treatment is required in the valuation of options. The
alternative is to model it as a stochastic process.

Stochastic volatility models for valuing options are characterized by describing the dy-
namics of the underlying price by the following stochastic process.

dSt = µStdt +σtStdWt (3.1)
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Wt is a geometric Brownian motion and σt is a process of volatility. This process must
meet certain conditions for St to have a solution. For example, the volatility process
must remain positive all the time, for this to happen σt is changed by a positive function
f (Yt), where Yt is a specific stochastic process. The most common stochastic di�erential
equations for Yt are:

1. Log-Normal (LN) which is given by dYt = µYtdt +σtYtdUt

2. Ornstein-Uhlenbeck which is given by dYt = α(m−Yt)dt +βdUt

3. Cox-Ingersoll-Ross which is given by dYt = k(θ −Yt)dt +η
√

YtdUt

Ut is a geometric Brownian motion; which in general is correlated with the Brownian
motion Wt ; that is, Cov(Wt ,Ut) = ρdt , ρ ∈ [−1,1].

3.5.1 Hull-White Model

The model proposed by Hull and White in 1987 for valuing options was based on the fact
that the volatility of the underlying asset is guided by a geometric Brownian movement.
The resulting formula is an approximation that considers a series of Taylor terms to be
third order.

In this model the underlying asset price follows a Log-Normal distribution, and is given
by the following equation,

dSt = rStdt +
√

VtStdWt (3.2)

Where the parameter r represents the risk-free interest rate and we add the assumption
that the underlying asset variance follows a Brownian motion, similar to a Log-Normal

dVt = µVtdt +σtVtdUt (3.3)

The value of a European option is given by the Black-Scholes valuation formula, when it is
integrated over the probability distribution of the average stochastic variance. One of the
disadvantages of this model is that the dynamics of volatility do not represent a reversion
to the mean. This means that volatility does not tend to take the value of the average over
time. One of the models that solve this problem is the Hilliard and Schwarz (1996) model.

3.5.2 Bivariate Binomial Model

A stochastic volatility model is a model that allows the volatility and any involved variables
involved to randomly fluctuate over time rather than remaining constant [Barndor�-Nielsen and Shephard, 2002].
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In the Hilliard-Schwartz(1996) model , a continuous-time risk-neutral di�usion is consid-
ered. This process is in the form:

dS = msdt + f (S)h(V )dZs (3.3)

dV = mvdt +bV dZv (3.3)

Where S represents the underlying asset value, dZv and dZs are Wiener processes that have
a correlation Corr(dZs,dZv) = ρsv,V denotes the stochastic volatility (SV ), and f (S)h(V )

have the form SθV α . Θ is the constant elasticity of variation.

3.6 Constructing the La�ice

Hilliard and Schwarz (1996) developed stochastic di�erential equations using a transforma-
tion of the S and V variables to recombine in a two-dimensional tree. Since the variation
of the di�usion equation of the asset price is itself a di�usion process, the resulting la�ice
does not recombine resulting in an exponential explosive tree. In order to construct a path
independent of the two trees, we must use the change of variable method to come up
with a constant volatility. To fit this in a tree method, we consider the transformation of
both processes. To transform Equation 3.3 we use,

Y =
ln(V )

b
(3.4)

Using to Itô’s lemma, we can get the di�usion process of Y, and the variation becomes
constant: Itô’s lemma states that for a dri�-di�usion process of the form

dXt = µtdt +σtdBt (3.5)

and for any twice di�erentiable scalar function f (t,x) of two real variables t and x, one
has

d f (t,Xt) =

(
∂ f
∂ t

+µt
∂ f
∂x

+
σ2

t
2

∂ 2 f
∂x2

)
dt +σt

∂ f
∂x

dBt (3.6)

Therefor we have
dY = YvdV +

1
2

YvvdV 2 (3.7)

Where Yv =
1

bV and Yvv =− 1
bV 2 From the equation dV = mvdt +bV dZv so we can get

dV 2 = b2V 2dt (3.8)

Therefore
dY =

1
bV

(mvdt +bV dZv)+
1
2
(− 1

bV 2 )(b
2V 2dt) (3.9)
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This yields a process with unit volatility

dY = (
mv

bV
− b

2
)dt +dZv (3.10)

dY = mydt +dZv (3.11)

Where the coe�icient of dt , my is the dri� term for Y .
The la�ice in Y recombines as required because the coe�icient dZv does not change, that
is, it is a constant. The transformation of S, however, to constant volatility is not obvious
due to the fact that the volatility of S from the equation has both the random variables V
and S. In this case, a two-step transformation is used by first considering a transformation
H(S,V ) of the form

H(S,V ) = h−1(V )
∫ dS

f (S)
(3.12)

Taking h(V ) =V α we can derive it as follows

Hs =
∂H
∂ s

=
1

f (S)V α

Hss =
∂ 2H
∂ s2 =− fs

f 2V α

Hv =
∂H
∂v

=
αH
V

Hvv =
∂ 2H
∂v2 =

αH(1+α)

V 2

Hsv =
∂H2

∂ s∂v
=− α

f (S)V (α +1)

From this the di�usion process dH is given by

dH = HsdS+HvdV +
1
2
[HssdS2 +2HsvdSdV +HvvdV 2]

= Hs f (S)h(V )dZs +HvbV dZv +mhdt
(3.13)

Where dri� term of H is mh is and which depends on ms, mV and second-order partials.
We then transform H to Q where

Q = (αb)−1ln(αbH−ρsv +σh) (3.14)

Where
σh =

√
1−2αbHρsv +α2b2H2 (3.15)
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The di�usion in this case is in the form

dQ = mqdt +dZh (3.16)

At this point, the di�usion for Q has a constant volatility which is 1 as required. Using
Ito’s formula, the dri� terms for H and Q can be derived as follows:

mh =
ms

f (S)V α
− mvαH

V
− 1

2
fsV α +

1
2

αH(1+α)b2−αbρsv (3.17)

And

mq =
mh

σh
+

1
2

αbρsv−α2b2H
ρh

(3.18)

Both Y and Q have unit volatility, which makes it easy to construct the bivariate binomial
grid on the Y×Q space. Inverse transformation is used to give the values of the variables
V and S. From Equation 3.4 we can get V as follows:

V = exp(bY ) (3.19)

We can also get S using the inverse transforming from the two processes H and Q
Define Q = Q(H)

Q = (αb)−1ln(αbH−ρsv +σh)

= (αb)−1ln(αbH−ρsv +
√

1−2αbHρsv +α2b2H2)
(3.20)

We can simplify the expression to solve for H and S

αbQ = ln(αbH−ρsv +
√

1−2αbHρsv +α2b2H2)

exp(αbQ) = αbH−ρsv +
√

1−2αbHρsv +α2b2H2

exp(αbQ)+ρsv−αbH =
√

1−2αbHρsv +α2b2H2

[exp(αbQ)+ρsv−αbH]2 = 1−2αbHρsv +α
2b2H2

[exp(αbQ)+ρsv]
2−2[exp(αbQ)+ρsv]αbH = 1−2αbHρsv

[exp(αbQ)+ρsv]
2−1 = 2αbH exp(αbQ)

Therefore

H =
2ρ− (1−ρ2

sv)exp(−αbQ)+ exp(αbQ)

2αb
(3.21)

S =

{
[V α(1−q)H]

1
1−q , when q 6= 1

exp(h(V )H), when q = 1
(3.22)
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The increments dZv and dZh under these transformations have correlation

(dZv,dZh) =
ρsv−αbH

σh
(3.23)

And
Corr(dY,dQ) =Corr(dZV ,dZH)

3.6.1 Joint Probabilities and Binomial Jumps

Just as in the case of the standard univariate model that has unit volatility, the process
for deriving the binomial jumps for the two transformation processes Q and Y are:

Y±1 = Y0±
√

∆t and Q±1 = Q0±
√

∆t

Where ∆t is the size of the time step and
√

∆t is the magnitude of the binomial jumps. In
this case the Y and Q probabilities for the upward jumps are:

p = 0.5(1+my
√

∆t) and q = 0.5(1+mq
√

∆t) respectively

The joint probabilities are given by:

P11 = Prob(Q+
1 ,Y

−
1 ) P12 = Prob(Q+

1 ,Y
+
1 )

P21 = Prob(Q−1 ,Y
−
1 ) P22 = Prob(Q−1 ,Y

+
1 )

It is easy to derive the joint probabilities when dZV and dZh are independent. For example,

P11 = q(1− p) P12 = pq

P21 = (1−q)(1− p) P22 = p(1−q)

But in our case dZV and dZh are dependent. According to the di�usion process of Y and
Q, Corr(dY,dQ) =Corr(dZV ,dZH).These correlations will be taken into account in the
joint probability of constructing a bivariate tree change, so we need to set up marginal
probabilities constraints and a cross-product moment constraints so that we can have the
desired joint probabilities.

1. ∆Q = Q1−Q0 will have a constraint on its Marginal probability of

P11 +P12 = q (3.24)

2. ∆Y = Y1−Y0 will have a constraint on its Marginal probability of

P11 +P21 = 1− p (3.25)
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3. E(∆Y ∆Q) will have a constraint on its cross product moments of

∆t(2P12 +2P21−1) (3.26)

From Equation 3.30 we can make the necessary adjustments for non zero correlation on
the joint probabilities. We can then denote the covariance between ∆Y and ∆Q together
with their correlation as follows:

Cov(∆Y,∆Q) = 2δ t(P12 +P21 + p+q−2pq−1)

Corr(∆Y,∆Q) =
Cov(∆Y,∆Q)

4∆t
√

p(1− p)q(1−q)
(3.27)

Solving the 4 Equations 3.24 to 3.27 we will obtain the following joint probabilities:

P11 = q(1− p)−Corr(dY,dQ)
√

p(1− p)q(1−q)

P12 = pq+Corr(dY,dQ)
√

p(1− p)q(1−q)

P21 = (1−q)(1− p)+Corr(dY,dQ)
√

p(1− p)q(1−q)

P22 = p(1−q)−Corr(dY,dQ)
√

p(1− p)q(1−q)

3.7 Tree Presentation

Considering the transformations derived it is now possible to construct an additive bino-
mial tree for the transformed process S and V where the two trees recombines. They can
be be diagrammatically represented as:

Figure 1: The recombined Tree for Q

Q

Q−
√

∆t

Q+
√

∆t

Q− 2
√

∆t

Q

Q+ 2
√

∆t
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Figure 2: The recombined Tree for Y

Y

Y −
√

∆t

Y +
√

∆t

Y − 2
√

∆t

Y

Y + 2
√

∆t

To arrive at the original process S the inverse transformations are performed. Since the
above trees recombine now we can construct the bivariate binomial tree in the Y ×Q
space. This results in a path-independent tree that has (n+1)2 nodes. The binomial tree
for S is shown in the figure below
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Figure 3: The Tree for S under Transformation

S(Q00,Y00)

S(Q−,Y−)

S(Q+,Y−)

S(Q−,Y+)

S(Q+,Y+)

S(Q−−,Y−−)

S(Q++,Y−−)

S(Q+−,Y−−)

S(Q−−,Y++)

S(Q−−,Y+−)

S(Q+−,Y+−)

S(Q++,Y+−)

S(Q+−,Y++)

S(Q++,Y++)
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3.8 Monte-Carlo Simulation

A Monte-Carlo simulation method simulates di�erent paths for the price of the underlying
asset under Q. This method also sets the value of the option equal to the mean of the payo�
generated by each path and discounted to time zero. Although Monte-Carlo simulation
method is time consuming, it is easy to apply it in di�erent options including those whose
price depends on the entire path of the underlying asset. In addition, this method is
applicable for the options that involve more than one stochastic process.

This section shows an example of Monte-Carlo simulation whereby this method is applied
to the Black-Scholes model that has time-dependent interest rate. The function for this
di�erential equation is:

dSt = r(t)Stdt +σStdWt , S0 = s (3.27)

The simulation of a path of S under this model can be done by using the discrete time
evolution to approximate the SDE

St+∆t = St + r(t)St∆t +σStZ(t)
√

∆tS(0) = s (3.28)

With Z(t)∼ N(0,1)

When Monte-Carlo method is applied to this model, it yields n random values with
standard normal distribution. The values have a period of time (i∆t,(i+1)∆t] to obtain
one value of ST . The max payo� given by a call option is (ST −K,0) = (ST −K)+ and
the payo� of a put option is (K−ST )

+. These payo�s occur at the end of the European
option’s life time. The final step of the Monte-Carlo method involves taking the mean
of these discounted payo�s to obtain the approximate price of the option. The fair value
of an option in the Black-Scholes world is given by the present value of the anticipated
payo� at expiry date. This payo� occurs under a risk-neutral random walk for underlying.

The following simple steps are used in Monte-Carlo simulation:

• A random walk model in risk-neutral world is used to generate the path of stock

• Obtains payo�

• Perform similar realizations over time horizon

• Get the expected payo� by calculating the average payo� for all realization

• The approximation of the option price is the present value of this average payo�
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3.9 Estimating the Greeks from the Tree Model

The Greeks also known as hedge ratios measures the sensitivity of the option price to the
underlying risk factor. The Black-Scholes model provides an easy way to estimate the
price sensitivity to various parameters in the model. This is because the price is a function
of the time to maturity T , the spot price S, the volatility σ , the strike price X and the
risk free rate r. Using Taylor series expansion any sensitivity of price to changes in these
parameters can easily be estimated.

From a binomial tree the Greeks can only be estimated using finite di�erence. The key
function to help us estimate these sensitivities are:

d f
dx

(x)≈ f (x+∆x)− f (x)
∆x

(3.29)

d2 f
dx2 (x)≈

f (x+∆x)− f (x)
∆x − f (x)− f (x−∆x)

∆x
∆X

≈ f (x+∆x)−2 f (x)+ f (x−∆x)
(∆x)2

(3.30)

Delta ∆

This is the change in call (put) prices for a given change in the spot asset S. An estimation
of the delta can be computed directly from the tree at any node as shown. This parameter
is specified in underlying or premium asset units depending on the position we hold in
options (bought or sold). As they are changing parameters, the delta is only significant in
a certain period of time, having to be updated periodically.

∆0,0 =
C1,1−C1,0

S1,1−S1,0

For purchase options, this parameter is positive, since a increase in the price of the
underlying asset increases the call price. Conversely, an increase in the underlying asset
leads to a reduction in the put price, which means that the call option maintains a negative
delta position. The underlying asset, by definition, has a positive delta.

A delta hedging means obtaining a neutral delta in our portfolio of assets. Then, the
combination of both call and put options (both bought and sold) and the position in the
underlying (both bought and sold) must provide us with a neutral delta position.

Gamma (Γ)

This measures the rate of change in Delta with respect to the rate of change in the price



27

of the underlying asset. We could say that gamma is a protection against large changes in
the price of the underlying asset, while delta is a protection against small changes.

Γ =
∂ 2C
∂S2 ≈

[
C2,2−C2,1
S2,2−S2,1

]− [
C2,1−C2,0
S2,1−S2,0

]

1
2(S2,2−S2,0)

Theta (Θ)

This is the change in option pricing with respect to time. Since the bivariate binomial tree
recombines we can approximate Theta as follows.

Θ =
C2,1−C0,0

2∆t

Vega (ν)

This is the rate of change of the price of an option with respect to the changes in the
volatility of the underlying asset. Vega try to measure portfolio price developments in
terms of volatility. Like gamma, it then tries to protect the portfolio against major changes
in the price of the underlying asset.

ν ≈ C(σ +∆σ)−C(σ −∆σ)

2∆σ

Rho (ρ)

Rho is the derivative with respect to the rate of risk-free interest.

ρ ≈ C(r+∆r)−C(r−∆r)
2∆r
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4 Chapter Four: Data Analysis and Results

:

4.1 Introduction

In this chapter I present the results obtained a�er fi�ing the bivariate binomial tree model.
On the basis of the assumption that there is a non-changing probability over time and a
discrete time frame the results are compared against the Black-Scholes model, Hull and
White model and the Monte Carlo Simulation.

4.2 Binomial Solution

To ensure that the price converges to a fair price value, the numbers of time steps are
increased. The main steps to follow in this method is

i Transform the initial processes S and V to the required form Q and Y respectively.

ii Generate the trees from the transformed processes.

iii At each node transform back to S and V using the inverse transformation

iv Evaluate the payo� and get the highest at each node and then discount using backward
induction to get the present value of the option.

4.3 Numeric example

To fit the model I have considered the parameters used in the Hilliard-Schwartz model.
For various money-ness ratio the price is computed assuming a risk free rate of 5%, 0.5
years time to maturity, 15% stock volatility and 25% volatility parameter of the volatility
di�usion process.

The bivariate binomial tree method is used in this thesis to obtain the values of European
puts. If are fully observed, a person could realize that the values arrived at are close to
the values of Hull-White, Monte Carlo simulation, and those of Black-Scholes. From the
values, bivariate binomial tree method di�ers from other binomial methods in a value less
than 0.1. The Monte Carlo simulation values match the above values and there is a li�le
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Table 1. European Put Prices

S/X

X=100

Black-Scholes

Model

Hull-White

Model

Bivariate

Binomial

Monte-Carlo

N=10^5

Monte-Carlo

N=10^6

Monte-Carlo

N=10^7

0.8 17.6431 17.6451 17.6783 17.6432 17.6476 17.6475

0.84 13.8763 13.8783 13.9315 13.8945 13.8799 13.8786

0.88 10.3983 10.3971 10.4591 10.3862 10.4004 10.3993

0.92 7.3656 7.3623 7.4092 7.3654 7.3524 7.3570

0.96 4.9036 4.8985 4.9049 4.8937 4.8864 4.8898

1 3.0585 3.0531 3.0153 3.0529 3.0409 3.0401

1.04 1.7841 1.7825 1.7404 1.7698 1.7754 1.7746

1.08 0.9753 0.9757 0.9504 0.9753 0.9726 0.9743

1.12 0.5341 0.5012 0.4775 0.5008 0.5044 0.5038

1.16 0.2411 0.2443 0.229 0.2485 0.2484 0.2488

1.2 0.1112 0.1123 0.1091 0.1182 0.1172 0.1168

di�erence between Monte Carlo simulation, Hull- White, and Black-Scholes values. This
di�erence is less than ±0.01.

The values are obtained with 300 time steps. The volatility di�usion parameter (b) is 25%.
The correlation between price and volatility is zero. The parameters used in pricing of the
puts prices are: risk-free is 5% rate, 0.5 year maturity time, 15% stock volatility, and the
value of exercise price is $100.

4.4 E�ects of changes in correlation

European put options with long maturity can be a�ected by stochastic volatility as
illustrated in the table that follows. Here the volatility is correlated with the underlying
price of asset. The value of the European put option shown has a constant stochastic
volatility parameter. At various correlation levels the put values are calculated which
is compared against various models. The values obtained at various correlations have
slight deviation from the values obtained by the Black-Scholes model. This shows that
correlation has an e�ect on the obtained prices. The values from the Black-Scholes model
when the correlation is negative show that the model overprices in-the-money puts options.
Also when the correlation is positive there is overpricing in the out-of-money.
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Table 2. ρsv =−0.50

S/X

Black Scholes

Model

Correlation = -0.50

X=100 Hilliard and Schwartz Bivariate Binomial Model

0.8 15.7161 14.267 15.7476

0.85 12.8482 11.465 12.5868

0.9 10.3933 9.2173 9.955

0.95 8.3253 7.4512 7.9368

1 6.6112 6.0734 6.3011

1.05 5.2083 4.9993 4.9053

1.1 4.0744 4.1594 3.8004

1.15 3.1673 3.4956 2.987

1.2 2.449 2.965 2.376

Table 3. ρsv =−0.25

S/X

Black- Scholes

Model

Correlation = -0.25

X=100 Hilliard and Schwartz Bivariate Binomial Model

0.8 15.716 14.734 15.9532

0.85 12.848 11.815 13.1263

0.9 10.393 9.423 10.4334

0.95 8.325 7.511 8.0619

1 6.611 6.013 6.4324

1.05 5.208 4.848 5.1443

1.1 4.074 3.944 3.9978

1.15 3.167 3.241 2.9661

1.2 2.449 2.688 2.2605
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Table 4. ρsv = 0

S/X

Black-Scholes

Model

Correlation = 0

X=100 Hilliard and Schwartz Bivariate Binomial Model

0.8 15.716 15.1452 15.8232

0.85 12.848 12.114 13.0572

0.9 10.393 9.581 10.6938

0.95 8.325 7.518 8.319

1 6.611 5.893 6.056

1.05 5.208 4.626 5.0036

1.1 4.074 3.655 4.0464

1.15 3.167 2.914 3.1141

1.2 2.449 2.341 2.1989

Table 5. ρsv = 0.25

S/X

Black-Scholes

Model

Correlation = 0.25

X=100 Hilliard and Schwartz Bivariate Binomial Model

0.8 15.716 15.4991 15.897

0.85 12.848 12.3512 12.7746

0.9 10.393 9.6835 10.4087

0.95 8.325 7.4646 8.2785

1 6.611 5.6943 6.2736

1.05 5.208 4.3191 4.6571

1.1 4.074 3.2748 3.7123

1.15 3.167 2.4925 2.9328

1.2 2.449 1.9122 2.2014
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Table 6. ρsv = 0.50

S/X

Black-Scholes

Model

Correlation = 0.50

X=100 Hilliard and Schwartz Bivariate Binomial Model

0.8 15.716 15.796 15.7668

0.85 12.848 12.538 12.7522

0.9 10.393 9.721 10.0662

0.95 8.325 7.338 7.8827

1 6.611 5.409 6.1161

1.05 5.208 3.905 4.5511

1.1 4.074 2.775 3.2651

1.15 3.167 1.961 2.3614

1.2 2.449 1.385 1.8019
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4.5 American put option

Among the factors that generalizes the bivariate binomial model as compared to other
methods is it can evaluate American options when considering a stochastic volatility. It
is possible to price the American put options when the underlying asset and volatility
correlate. Since it is not possible to evaluate American options using the Black –Scholes
formula, and the Monte-Carlo method has di�iculty as a result of the embedded forward
simulation algorithm to capture the early exercise premium that is exhibited by the
American options, then we consider using CRR binomial tree as a benchmark for our
model. In this case, a comparison of the early exercise value and the end value of the
option at maturity is made at each node and then picking the highest value from the two.

The figures below illustrate the value of an American put option that has a parameter
of stochastic volatility of 1. In addition, the correlation between the volatility and price
at various points is considered. 500 time steps are used as an estimate of the bivariate
binomial values. In this exhibit, it is seen that there is a close relation between the values
calculated by the bivariate binomial tree and those given by Hilliard and Schwartz (1996).
When these values are compared with those obtained by CRR model, it is seen that the
CRR model has a higher price than in-the-money puts. This case happens when the
correlation is negative and the out-of-money when the correlation is positive.

Table 7. ρsv =−0.50

S/X CRR Binomial Tree correlation = -0.50

X=100 Bivariate Model

0.80 20.000 20.0000

0.85 15.020 15.0000

0.90 10.668 10.3857

0.95 7.2260 6.8253

1.00 4.649 4.3683

1.05 2.864 2.7325

1.10 1.675 1.6576

1.15 0.927 0.9961

1.20 0.500 0.6010
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Table 8. ρsv =−0.25

S/X CRR Binomial Tree Correlation = -0.25

X=100 Bivariate Model

0.80 20.000 20.0000

0.85 15.020 15.0000

0.90 10.668 10.4973

0.95 7.226 6.8686

1.00 4.649 4.2006

1.05 2.864 2.6736

1.10 1.675 1.6107

1.15 0.927 0.8882

1.20 0.500 0.5251

Table 9. ρsv = 0

S/X

CRR Binomial

Tree

Correlation = 0

X=100 Bivariate Model

0.80 20.000 20.0000

0.85 15.020 15.0000

0.90 10.668 10.4443

0.95 7.226 7.1015

1.00 4.649 3.8561

1.05 2.864 2.6229

1.10 1.675 1.6896

1.15 0.927 0.7824

1.20 0.501 0.4713
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Table 10. ρsv = 0.25

S/X

CRR Binomial

Tree

Correlation = 0.25

X=100 Bivariate Model

0.80 20.000 20.0000

0.85 15.021 15.0000

0.90 10.658 10.4751

0.95 7.236 7.0674

1.00 4.648 4.1368

1.05 2.863 2.4744

1.10 1.678 1.5925

1.15 0.928 0.8502

1.20 0.501 0.4234

Table 11. ρsv = 0.50

S/X

CRR Binomial

Tree

Correlation = 0.50

X=100 Bivariate Model

0.80 20.000 20.0000

0.85 15.021 15.0244

0.90 10.668 10.6129

0.95 7.226 7.0567

1.00 4.649 4.3218

1.05 2.864 2.4137

1.10 1.675 1.3549

1.15 0.927 0.7844

1.20 0.501 0.4078
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4.6 Sensitivities on European Options

A comparison on the bivariate binomial calculation of delta, Vega, and gamma with
Black-Scholes calculations is shown below.

The computations of the three sensitivities are done using the volatilities of 15%, 20%, and
25%. In addition, the option has an interest rate of 5%, moneyness ratio of the range 0.8 to
1.2, and a small volatility parameter value of volatility di�usion of 0.0001. The reason for
choosing a small volatility parameter is to enable a comparison of the results with the
corresponding parameters from the Black-Scholes model. As shown in the table, bivariate
binomial estimates correspond with the Black-Scholes parameters to the second or third
decimal place.

Table 12. Delta

Moneyness

Ratio

Volatility

Volatility = 0.15 Volatility = 0.20 Volatility = 0.25

Black-

Scholes

Bivariate-

Model

Black-

Scholes

Bivariate-

Model

Black-

Scholes

Bivariate-

Model

0.8 0.035 0.034 0.092 0.091 0.151 0.151

0.9 0.241 0.24 0.309 0.309 0.357 0.357

1.0 0.614 0.613 0.598 0.598 0.591 0.591

1.1 0.883 0.882 0.822 0.822 0.779 0.779

1.2 0.978 0.978 0.938 0.938 0.896 0.896
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Table 13. Gamma

Moneyness

Ratio

Volatility

Volatility = 0.15 Volatility = 0.20 Volatility = 0.25

Black-

Scholes

Bivariate-

Model

Black-

Scholes

Bivariate-

Model

Black-

Scholes

Bivariate-

Model

0.8 0.00905 0.00896 0.01455 0.0145 0.01655 0.01655

0.9 0.03261 0.03261 0.0277 0.02772 0.02345 0.02348

1.0 0.03608 0.03612 0.02736 0.02739 0.02198 0.02201

1.1 0.01691 0.01693 0.01677 0.01681 0.01527 0.01529

1.2 0.00418 0.00416 0.00722 0.00723 0.00849 0.00850

Table 14. Vega

Moneyness

Ratio

Volatility

Volatility = 0.15 Volatility = 0.20 Volatility = 0.25

Black-

Scholes

Bivariate-

Model

Black-

Scholes

Bivariate-

Model

Black-

Scholes

Bivariate-

Model

0.8 0.044 0.043 0.093 0.093 0.132 0.133

0.9 0.198 0.198 0.224 0.225 0.237 0.238

1.0 0.271 0.272 0.274 0.274 0.275 0.279

1.1 0.153 0.148 0.203 0.193 0.231 0.225

1.2 0.045 0.048 0.104 0.105 0.153 0.153
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Regular problems arise when the price of the asset is high (above 100), the volatility process
has a large volatility (b greater than 50%), or when the maturity time of the options is
long. However, it is possible to avoid these problems through scaling the underlying asset
price appropriately. The asset and is adjusted and the price stricken to a new value while
maintaining a well-behaved values in the tree. The option price obtained from the tree is
rescaled in order to obtain the values of the option.
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5 Chapter Five: Summary conclusion and
recommendation

The bivariate binomial model presented has shown flexible possibility, compared to the
Black-Scholes and Simulation approaches. This is because input parameters, such as
exercise price and volatility, can be adjusted easily throughout the life of the option.
Jumps can also be adjusted without major complexities.

In the proposed model, a generalized additive recombination and variable transition
probabilities are obtained that determine the dynamic behavior of stochastic processes
associated to the two processes, subject to appropriate constraints for the parameters. In
addition, the generalized binomial tree scheme is presented as an alternative numerical
method to evaluate asset options that can be modeled using the general linear stochastic
di�erential equation with constant parameters or by any of its derivative processes. The
rapid convergence of the the method with its absolute error rates and the results of the
valuation of European put options for di�erent processes with di�erent expiration times
in the "real world" and in a world of neutral risk are graphically illustrated.

A later work will allow us to study the convergence speed of the method for American
put options. Likewise, this procedure can be extended to more general processes in which
stochastic deterministic parameters are considered, for systems of two or three factors
and even more complex stochastic models that include jumps.

I recommend more work to be done on American options to find a fair price for the put
options and also investigation on sensitivities.
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