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Abstract

Within general insurance, pricing of premiums is always a challenging task. Frequency of

claims plays a big part in pricing of premiums. Frequency of claims are determined by the

attributes of a particular policy holder. Count regression analysis allows one to �nd out

which characteristic of a policy holder plays a signi�cant role in determining the frequency

of claim and also in predicting the frequency of claims given the characteristics of a

particular policy holder. The objective of this thesis is to �nd out which among the Poisson,

NB1 and NB2 models is a better �t to the count data under consideration. The count data

is from Kenendia insurance. The best model is chosen based on the log-likelihood method

and the Akaike’s Information Criteria (AIC).
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1 Introduction

1.1 Background of Study

The importance of insurance industry to the world economy cannot be understated.
Insurance o�ers an economic re-mediation thus providing a way of minimizing financial
loss resulting from unusual risks by pooling or spreading risk over a large number of
entities. The main cash out-flow in every insurance industry is the claim payments which
is wholly dependent on frequency of claims launched by the policy holder.

The frequency of claims is o�en referred to as claim count data. It is therefore important
that insurance companies understand the nature and evolution of claims count data at
any given point in time. The six main categories of general insurance are given as home
and contents insurance, motor vehicle insurance, business insurance, mortgage insurance,
workers compensation insurance and travel insurance. In this paper we focus on the
general insurance.

The insurance process is simply summarized as a transfer of risk in exchange for a regular
payment known as premium. To compute premiums actuaries have come up with several
methods. These methods can be simplified in a general way to be the multiplication
of the expected frequency of claims with the expected cost of claim. This implies that
understanding the nature and evolution of count data is very vital.

General insurance plays a significant role in the economy of any country as it provides
means of reducing financial risks. It has been estimated that over 750,000 people are
killed and tens of millions injured on the roads in third world countries each year. Thus,
the most e�icient and preferable means of guarding the risk is by insuring against it.

Actuaries from di�erent insurance firms in di�erent countries, in order to correctly price
the insurance contracts always try to either come up with be�er models, or improve
existing models so as to accurately estimate claims count data. The frequency of claims
do vary from one policy holder to another. It depends on the characteristics of the insured.
Thus finding a model that takes into account the characteristics of the insured is of prime
importance. By finding an appropriate distribution pricing of products not only becomes
easier but it also enables insurance companies to o�er custom made insurance packages
to their clients.
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One of the widely used methods of modelling insurance count data is the classical method
also known as the distributional approach method. Under this method, the assumption is
that the frequency of claims follows a particular discrete distribution.

The Kenya Insurance Industry is governed by the Insurance Act (KIA) which was enacted
in 1985. The Insurance Act of 2006 then established the Insurance Regulatory Authority
(IRA), a body that ensures the e�ective administration, supervision, regulation and control
of insurance and reinsurance business in Kenya. IRA describes the general insurance under
which the motor insurance is classified as non-life insurance. The general insurance has a
variety of products and these products vary between companies. Thus the policyholders are
advised to be well conversant with their product disclosure statements before purchasing
a given cover. Complaints regarding general insurance under which the auto insurance
is categorized are considered three times higher to those of life insurance frequency of
claims. Since the largest source of outflow of money in an insurance company is the
claims payments, modelling of claims count data is very crucial. With good modelling
of claims frequency, the amount of premium to be calculated will be transparent and
this will be an advantage to both the insured and the insurer. According to [Haiss and
Sümegi(2008)], non-life insurance is a the fastest growing areas for actuaries.

Section 4 of the Kenya insurance Act expressly highlights that no one shall use, cause to
use or allow anyone to use a motor vehicle unless there is in force a policy of insurance or
such a security in respect of third party risks.

1.2 Problem Statement

In pricing motor insurance policyholders who have accidents with a small size of loss
are penalized in the same way with policyholders who have accidents with a big size of
loss. To sort out this issue there is a need to develop a model that incorporates both the
frequency and the severity components of a claim.

Actuaries have made significant strides in coming up with models that are suitable to
model count data with di�erent properties.

In this paper we seek to answer the question whether some of the discrete models pro-
posed by various actuaries are good models for modelling count data. The models to
be considered are the Poisson model, the negative binomial 1 model and the negative
binomial 2 model.

1.3 Objectives

1.3.1 General Objectives
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In this study we seek to model frequency of claims data by using both the poisson
distributions and the negative binomial distribution and to show why the negative binomial
distribution is a be�er model.

1.3.2 Specific Objectives

They include:

• To find out which explanatory variables have a significant e�ect on the frequency of
claims.

• To compare both negative binomial model and the poisson model in modelling fre-
quency of claim data.

• To show which is a be�er discrete distribution model to curb the property of overdis-
persion in frequency of claims.

1.4 Significance of Study

It is essential to have auto insurance since The potential costs resulting from the occur-
rence of an accident, whether a replacement or repair costs of the vehicle, other property
or medical costs of the victims, are too huge to exercise the risk of being without suf-
ficient coverage. This prompts individuals to take up risk covers. According to [Murat
et al.(2002)Murat, Tonkin, and Jü�ner] insurance companies especially those o�ering
general insurance products trade under very competitive conditions .

1.5 Scope of Study

The scope of study is the non-life insurance sector basically the automobile insurance.
The claims experience will consist of detailed information on the type of insurance claim,
the risk factors and the corresponding claim amount.

1.6 Organization

The thesis is presented into four main chapters named as chapter one, chapter two, chapter
three and chapter four. Chapter one is the introduction presenting the background to
the study, then the statement of the problem, then the objective of the study, then the
significance of the study, then the scope of the study and then the limitations of the study.
Also in the first chapter we review the applicable literature comprising both the theoretical
framework and the di�erent perspectives of the study problems related to the auto
insurance. Chapter two outlines the methodology to achieving the set objectives. Chapter
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three presents the data analysis, results obtained from the model and the accompanying
discussions. In the final chapter, chapter four we give the summary of the findings and
recommendations. The references are found in the bibliography section.

1.7 Literature Review

Non-life insurance especially the auto-insurance business is not only a fast growing area
that needs actuarial input [Haiss and Sümegi(2008)], it also o�ers an interesting challenge
since it manages a large number of scenarios involving di�erent types of risks.

The major aim of an insurance company is to compute a premium that correctly covers
the type of risk an insured is insured against. The price should factor in a�ributes of
the customer because these a�ributes play a big role in classifying one’s riskiness. The
frequency of claims plays a vital role in calculation of premiums. Therefore, it is of prime
importance to come up with models that correctly describes the evolution of frequency of
claims also referred to as count data. Since no two persons have exactly similar a�ributes,
this implies that to come up with a suitable model that correctly estimates the frequency of
claims, models that incorporates risk factors should be considered. According to [Boucher
et al.(2008)Boucher, Denuit, and Guillén], regression analysis of count data allows the
identification of the explanatory variables and the estimation of expected number of
claims conditional on the individual characteristic of policy holder.

The advent of Generalized Linear Models (GLMs) played a vital role in the development
of count data models, [Cameron and Trivedi(1999)]. The Poisson regression model which
is a GLM model was introduced in the paper [Nelder(1977)] and deeply looked into by
Gourieroux and company in their paper [Gourieroux et al.(1984)Gourieroux, Monfort, and
Trognon]. Within the context of general insurance, [McCullagh and Nelder(1989)] showed
that a Poisson structure is realised a priori when using the GLM method to estimated the
frequency of claims.

[Smyth and Jørgensen(2002)] puts forward the Poisson distribution as the model to
be used in modelling frequency of claims. Although it statistically it is condusive and
favourable , in the paper [Gourieroux and Jasiak(2004)] it is emphasized that the Poisson
distribution has some shortcomings which limits its usage. The Poisson model has the
equidispersion property which is the equality of mean and variance as shown to hold
by [Cameron and Trivedi(1999)]. Absence of equidispersion is unobserved heterogeneity.
In the analysis of count data the hidden heterogeneity leads to overdispersion.

A heterogenopus portfolio implies that all the insured have a constant but unequal under-
lying risk of having an accident. That is, the expected frequency of claims di�ers from an
insured to an insured. Various research papers such as Hausman et.al(1984), Cameron and
Trivedi(1990); Gurmu(1991); Charpenter and Denuit(2005);Hilbe(2014) suggest the use of
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negative binomial distribution as the be�er discrete distribution alternative. The standard
negative binomial is obtained from a mixture of Poisson and gamma distributions. The
alternative to the Poisson distribution that is the negative binomial distribution which is
preferred when there is overdispersion. Negative binomial distribution is a discrete distri-
bution used whose parameters are n and p with mean and variance as Klugman et.al(1998).
According to Denuit.et.al(2007) the satisfactory alternative discrete distribution to the
poisson distribution is the negative binomial distribution.
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2 Methodology

Of interest to actuaries is the estimation of the number of claims in which the Poisson
model is o�en used. Though, the poisson model has enough literature backing, it still has
a limitation of equidispersion. Its popularity is seen from its various theoretical properties
as defined in [Mikosch(2009)] in these ways:

• The process starts at zero N(0) = 0 almost surely.

• The process has independent increments for any ti, i = 0, ...,n and n≥ 1 such that 0 =

t0 < t1 < · · ·< tn the increments N(ti)−N(ti−1), i = 1, ...,n are mutually independent.

• There exists a non-decreasing right continuous function m : [0,∞)→ [0,∞)with m(0)=
0 such that the increments N(t)−N(s) for 0 < s < t < ∞ have a Poisson distribution,
Pois(m(t)−m(s)) where m is denoted as the mean value function of N(t).

• With probability 1, the sample paths of the process N(t) are right-continuous for t ≥ 0
and have limits from the le� for t > 0. This implies that N(t) has cadlag sample paths.

Within the actuarial literature context, the number of claims that occurs conditional on
the characteristics of the policy holders follows approximately, the Poisson distribution.
The poisson distribution is known to model the number of events which may occur in any
of a large of number of trials but the probability of occurrence in any given trial is small.
Given the discrete random variable ki (observed number of claims in rth intervals of period
of time the interval from tr−1 to tr), conditioned by the vector of explanatory variables Xi

(which is the policy holder’s characteristics), is assumed to be Poisson distributed, then
the PDF of ki is given by:

p(ki|xi) =


e−λi λ

ki
i

ki!
, for ki = 0,1,2, . . .and λi > 0

0, otherwise

. (1)

Thus, equation (1) can be described to give the probability that Ki takes the realisation
ki(ki ∈ N), conditional on the di�erent a�ributes of customers.

Despite the poisson distribution being considered as a major reference point in the mod-
eling of count data the property of equidispersion sets it back since it has its mean and
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variance equal.
E(ki|xi) = var(ki|xi) = λi

Under Generalised Linear Models (GLM) the link function relates the expected value of
the explained variable to the linear predictor. From literature it is common knowledge
that the link function associated to the Poisson distribution is the logarithmic function.i.e.

ln(λi) = β0 +
p

∑
j=1

β jxi j (2)

Where the β js are the regression coe�icient which are to be approximated. Equation (2)

implies that

λi = eβ0+∑
p
j=1 β jxi j

= exT
i β

The estimation of parameters is done using the maximum likelihood function, with the
likelihood function of the poisson distribution defined as:

L(β ) =
n

∏
i=1

e−λiλ
ki
i

ki!
(3)

=
n

∏
i=1

e−exT
i β

(exT
i β )ki

ki!
(4)

Taking natural logarithms of both sides of equation (3) we get;

lnL(β ) =
n

∑
i=1

[ki lnλi−λi− lnki!] (5)

=
n

∑
i=1

[kixT
i β − exT

i β − lnki!] (6)

The maximum likelihood estimator (MLE) is the solutions of the equations obtained by
di�erentiating the log-likelihood in terms of regression coe�icients and solving for them
by equating to zero. Although poisson is frequently used in modeling claim data the model
is restrictive in the type of data being used. Count data with overdispersion characteristic
renders the model unsuitable. [Denuit et al.(2007)Denuit, Maréchal, Pitrebois, and Walhin]
states that overdispersion arises because in real life no two drivers are identical. Drivers
have unique a�ributes such as swi�ness of reflexes in case of impending dander, aggres-
siveness when driving, consumption of di�erent types of drugs, etc. Since the insurer
cannot observe these a�ributes overdispersion arrises. Unobserved heterogeneity leads
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to overdispersion. According to [Cameron and Trivedi(1990)] a regression based test for
overdispersion can be conducted. To consider the possibility of presence of extra-Poisson
variation(overdispersion), we extend the Poisson model given in (1) to include random
e�ects. Let y1,y2, . . . ,yn be continuous, positive valued, independent and identically dis-
tributed random variables such that given xi and yi, ki Poisson(yi,λi). The assumption is
that the first and second moments of y′is are finite. Without loss of generality, we take
expectation and variance of the y′is to be 1 and α respectively. According to [Collings and
Margolin(1985)],

var(ki|xi) = λi +αλ
2
i

thus, the poisson model can be tested against the model with extra-poisson variation by
testing the null hypothesis H0 : α = 0 against the alternative hypothesis H1 : α > 0. The
hypothesis of no overdispersion is rejected, when a�er comparing the statistics calculated
value with the theoretical one the test appears to be significant. Thus the other alternatives
are considered.

2.1 Negative Binomial Distribution

Negative binomial distribution is the preferable alternative for the drawbacks identified in
the poisson distribution. Traditionally negative binomial distribution is a mixture of both
the poisson and gamma distribution. Where the number of accidents is Poisson distributed,
but there is gamma- distributed unobserved individual heterogeneity reflecting the fact
that the true mean is not perfectly observed. Following that negative binomial distribution
theoretically has a greater variance than the mean we going to construct the general
negative binomial probability density function and showcase some of its pproperties.

According to the ith individual, consider the number of claims ki, given the parameter λi

has a Poisson(λi) distribution. i.e.

p(ki|xi) =


e−λ λ k

i
ki!

, for ki = 0,1,2, . . .and λ > 0

0, otherwise

(7)

λi denotes the di�erent underlying risk of the ith policyholder to have an accident. Suppose
that λi follows a gamma (αi, τi) distribution, with pdf of the form;

fλi(λi;αi,τi) =


τ

αi
i

Γαi
eτiλiλ

αi−1
i , for λi ≥ 0,αi ≥ 0,τi ≥ 0

0, otherwise

. (8)
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with mean E(Λi) =
αi
τi

and variance var(Λi) =
αi
τ2

i
The unconditional distribution of the

number of claims ki will be:

p(ki) =
∫

∞

0
p(ki|xi) f (λi)dλi

=
∫

∞

0

e−λiλ
ki
i

ki!
τ

αi
i

Γαi
e−τiλiλ

αi−1
i dλi

=
τ

αi
i

Γαi ki!

∫
∞

0
e−(1+τi)λiλ

αi+ki−1
i dλi

By le�ing yi = (1+ τi)λi we have that λi =
yi

1+τi
which implies that dλi =

dyi
1+τi

. Therefore;

p(ki) =
τα

i
Γαi ki!

∫
∞

0
e−yi

(
yi

1+ τi

)αi+ki−1( 1
1+ τi

)
dyi

=
τ

αi
i

Γαi ki!

(
1

1+ τi

)αi+ki ∫ ∞

0
e−yiyαi+ki−1

i dyi

=
τ

αi
i

Γαi ki!

(
1

1+ τi

)αi
(

1
1+ τi

)ki

Γ(αi + ki)

=
Γ(αi + ki)

Γαi ki!

(
τi

1+ τi

)αi
(

1
1+ τi

)ki

=
Γ(αi + ki)

Γαi Γ(ki +1)

(
τi

1+ τi

)αi
(

1
1+ τi

)ki

,αi,τi > 0 and ki = 0,1,2, · · ·

which is a general probability density function of the Negative binomial with parameters
αi and τi

To find the mean and the variance of the negative binomial distribution, we use the
probability generating function.

Re-writing the negative binomial probability generating function we have

p(ki) =
Γ(αi + ki)

Γαi Γ(ki +1)

(
τi

1+ τi

)αi
(

1
1+ τi

)ki

=
(αi + ki−1)!
(αi−1)!ki!

(
τi

1+ τi

)αi
(

1
1+ τi

)ki

=

(
αi + ki−1

ki

)(
τi

1+ τi

)αi
(

1
1+ τi

)ki

,αi,τi > 0 and ki = 0,1,2, · · ·
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If we let τi
1+τi

= pi it implies that 1
1+τi

= 1− pi and the negative binomial distribution is
now given by

p(ki) =

(
αi + ki−1

ki

)
pαi

i (1− pi)
ki ,αi,0≤ pi ≤ 1 and ki = 0,1,2, · · ·

From the definition of a probability generating function, we have

Gki(s) =
∞

∑
ki=0

p(ki)ski

=
∞

∑
ki=0

(
αi + ki−1

ki

)
pαi

i (1− pi)
kiski

which implies that

Gki(s) = pαi
i

∞

∑
ki=0

(
αi + ki−1

ki

)(
s(1− pi)

)ki

(9)

Using the Maclaurin expansion of (1− x)−q we have that

(1−x)−q = 1+(−q)(−x)+
1
2!
(−q)(−q−1)(−x)2+

1
3!
(−q)(−q−1)(−q−2)(−x)3+ . . .

(10)
From equation (10) above we deduce that the coe�icient of xk is given by

1
k!
(−1)k(−q)(−q−1)(−q−2) . . .(−r− k+1) =

(q+ k−1)(q+ k−2) . . .(q+1)q
k!

=

(
k+q−1

k

)
Therefore;

(1− x)−q =
∞

∑
0

(
k+q−1

k

)
xk

If we let x = s(1− pi), equation (9) becomes

Gki(s) = pαi
i

∞

∑
ki=0

(
αi + ki−1

ki

)(
s(1− pi)

)ki

= pαi
i

(
1− s(1− pi)

)−αi

=

(
pi

1− s(1− pi)

)αi
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It can easily be shown that by back substitution of pi the probability generating function
(PGF) of a negative binomial (αi,τi) is given by

Gki(s) =
( τi

1+τi

1−
( 1

1+τi

)
s

)αi

=

(
τi

1+ τi− s

)αi

Using the probability generating function (PGF) both the mean and variance of the
distribution can be easily computed as shown below.

The mean is obtained from the following relationship.

E(Ki) = G′(s)
∣∣
s=1

Since,

G′(s) =
αiτ

αi
i

(1+ τi− s)(αi+1)

This implies that;

E(Ki) = G′(s)
∣∣
s=1

=
αiτ

αi
i

(1+ τi−1)(αi+1)

=
αiτ

αi
i

τ
(αi+1)
i

=
αi

τi

To compute the variance, we use the following relationship.

Var(Ki) =

[
G′′(s)+G′(s)−

(
G′(s)

)2
]

s=1

Computing G′′(s) we have;

G′′(s) =
d
ds

G′

=
d
ds

[
αiτ

αi
i

(1+ τi− s)(αi+1)

]
=

αi(αi +1)ταi
i

(1+ τi− s)(αi+2)
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Substituting for s in the above equation we get

G′′(1) =
αi(α +1)ταi

i

(1+ τi−1)(αi+2)

=
αi(αi +1)

τ2
i

=

(
αi

τi

)2

+
αi

τ2
i

Therefore variance is given by;

Var(Ki) =

[
G′′(s)+G′(s)−

(
G′(s)

)2
]

s=1

=

(
αi

τi

)2

+
αi

τ2
i
+

αi

τi
−
(

αi

τi

)2

=
αi

τ2
i
+

αi

τi

=
αi

τi

(
1+

1
τi

)

Comparing the variance and the mean obtained of the negative binomial distribution
we see that the variance exceeds the mean. This is the overdispersion property. This
suggests that negative binomial distribution can be used to model count data containing
unobserved heterogeneity components. The term αi plays the role of a dispersion factor
and it is a constant.

To improve the Poisson model so that it can be robust and be used in modelling count
data containing the property of overdispersion, [Boucher et al.(2008)Boucher, Denuit,
and Guillén] argues that the more intuitive approach is the introduction of a random
heterogeneity term θi of mean 1 and variance αi in the mean parameter of the Poisson
distribution. If the θi parameter follows a gamma distribution then it is known that this
mixed model will result in a negative binomial distribution. [Greenwood and Yule(1920),
Lawless(1987), Dionne and Vanasse(1989)] states that to ensure that the heterogeneity
mean is equal to 1, both parameters of the gamma distribution are chosen to be equal to
1
θi

. Thus, from this the mean and variance are given by E(ki) = λi and var(ki) = λi +αiλ
2
i

respectively.

[Cameron and Trivedi(1986)] considers a more general class of negative binomial distri-
bution (NBp) having the same mean λi, but a variance of the form λi +αλ

p
i . To come up

with a ditribution of this type we use a heterogeneity factor that has a Gamma distribution
with whose mean is 1 and variance given by αλ p−2. Di�erent values of p yields di�erent
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forms of negative binomial distribution. If p = 2 the NB2 model coincides with the normal
negative binomial distribution. To obtain the NB1 model from the general model p takes
the value 1. The probability mass function of NB1 is given by:

f (ki,λi,αi) =
Γ(ki +

λi
αi
)

Γ(ki +1)Γ( λi
αi
)
(1+αi)

λi
αi (1+

1
αi
)−ki (11)

The mean and the variance of NB1 model is thus given by E(ki)= λi and var(ki)= λi(1+αi)

respectively. The log likelihood function is given below

lnL(αi,β ) =
n

∑
i=1

{(
ki−1

∑
j=0

( j+
λi

αi
)

)
− lnki− (ki +

λi

αi
) ln(1+αi)+ ki lnαi

}
(12)

The probability mass function of the NB2 model is similar to the general probability mass
function of a negative binomial distribution. The mean and the variance of the NB2 is
E(ki) = λi and var(ki) = λi(1+αiλi).The log-likelihood function corresponding to NB2 is
as shown below;

lnL(αi,β ) =
n

∑
j=1

{
− ln(ki)+

ki

∑
j=1

ln(αiki− jαi +1)− (ki +
1
αi
) ln(1+αiλi)+ ki ln(ki)

}
(13)

In the paper [Cameron and Trivedi(1999)] it is argued that there is less interest in the
estimation of αi, major a�ention is given to the estimation of β . Boucher and Guillen in
their paper [Boucher et al.(2008)Boucher, Denuit, and Guillén] they argue that the process
of estimating parameters is approximately the same for the three models.

To estimate the values of the β
′s we use numerical methods. The most widely used method

is the Newton-Raphson technique. It is explained in the assessment of goodness of fit
section below.

2.2 Assessment of goodness of fit

To assess the goodness of fit of various models residual deviance is used. In this study
we shall in general terms refer to residual deviance as just deviance denoted by D. i.e.
D = 2(ln(Ls)− ln(Lm)) where ln is the natural logarithm function, Ls is the maximized
likelihood of the saturated model and Lm is the maximized likelihood under the fi�ed
model. The smaller the value of the deviance implies a be�er fit. To estimate the value of
the regression coe�icients, the Newton-Raphson numerical method technique is used.
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2.2.1 Newton-Raphson numerical method for estimating β ′s

Newton-Raphson method is among the most widely used methods in numerical analysis.
It is used to estimate the roots of functions. The method is explained below.

Let l(g) be a function whose root we want to estimate. Suppose gr is the true root that is
unknown and g0 is the first initial estimate. Expanding l(g) about g0 by taylor series we
get;

l(g) = l(g0)+(g−g0)l′(g0)+
1
2!
(g−g0)

2l′′(g0)+ · · ·

Equating the first two terms to zero and solvin for g we get

l(g)≈ l(g0)+(g−g0)l′(g0) = 0 (14)

=⇒ g = g1 = g0−
l(g0)

l′(g0)
(15)

g1 is then used in place of g0 to compute g2 the new approximation of gr. The process is
repeated over and over until the newly approximated value is not significantly di�erent
from the previous approximation. Generalizing, we get the following iteration formula;

g j = g j−1−
l(g j−1)

l′(g j−1)
, j = 1,2, . . . (16)

The iteration is said to converge if

lim
j→∞

g j→ gr.

The Newton-Raphson iteration function given in (16) is generalized to solve a system of
linear equations with multiple variables by using matrices and vectors. The equation to
solve this type of system of equations is given by

w(j) = w(j−1)− J−1(w(j−1))G(w(j−1)) j = 1,2, . . . (17)

where ;

w is a n× 1 vector given by wT = (w1,w2, . . . ,wn) , wi ∈ R, i = 1,2, . . . ,n, G is a vector
function such that G : Rn→ Rn, that is

G(w1,w2, . . . ,wn) =


g1(w1,w2, . . . ,wn)

g2(w1,w2, . . . ,wn)
...

gn(w1,w2, . . . ,wn)
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where gi maps Rn to R for i = 1,2, . . . ,n.

J(w) is a Jacobian matrix. The inverse on the Jacobian matrix is the one in use in (17).
This inverse is given by

J−1(w) =


∂g1(w)

∂w1

∂g1(w)
∂w2

. . . ∂g1(w)
∂wn

∂g2(w)
∂w1

∂g2(v)
∂w2

. . . ∂g2(w)
∂wn

...
...

. . .
...

∂gn(w)
∂w1

∂gn(w)
∂w2

. . . ∂gn(w)
∂wn
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To use the Newton-Raphson method, we follow the steps outlined below

Step 1: Obtain the initial vector w(0) given by w(0)T = (w(0)
1 ,w(0)

2 , . . . ,w(0)
n ).

Step 2: Calculate the Jacobian matrix J(w) and the vector function G(w) when w = w(0)

to get J(w(0)) and G(w(0)) respectively.

Step 3: By Gaussian elimination solve for e(0) in the linear system J(w(0))e(0) =−G(w(0))

to get e(0) =−J−1(w(0))G(w(0)).

step 4: solve for w(1) = w(0)+ e(0) = w(0)− J−1(w(0))G(w(0)) .

step 5: w(1) is then used to compute w(2) which is then used to compute w(3) and so on.
The iteration is stopped a�er say j iterations if the di�erence between w(j−1) and w(j)

is negligible. w(j) is the estimate of the roots of the system of equations.

To apply the Newton-Raphson method in the estimation of the coe�icients of the ex-
planatory variables we need to define the following terms appropriately to fit equation
(17).

Let G(β ) be a q×1 vector function of the first derivatives of the log-likelihood. It is called
the e�icient scores function and is given by;

G(β ) =

(
∂ logL(β )

∂β1
, . . . ,

∂ logL(β )
∂βq

)
.

The maximum likelihood estimate, β̂ is obtained by solving G(β̂ ) = 0.
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The Jacobian matrix J(β ) is a q× q matrix of negative second order derivatives of the
natural logarithm of the likelihood, such that the entry in the kth row and lth column is
given by

J(β )kl =−
∂ 2logL(β )

∂βk∂βl
.

J(β ) is called the observed information matrix. The modification of equation (17) to be
used to estimate the β ′s is thus given by;

β
( j) = β

( j−1)− J−1(β ( j−1))G(β ( j−1))

Suppose that a�er k iterations it is observed that there is no significant change in the
log-likelihood function, this will mean that the iteration has converged and the estimates
of the β ′s is given by the entries of vector β

(k).

To calculate the variance covariance matrix C we compute the negative inverse of the
observed information matrix at β̂ , the estimate of β obtained by the maximum likelihood
method. This is given by

C =−J−1(β̄ ) =−



∂ 2logL(β )
∂β 2

1

∣∣∣∣
β=β̂

∂ 2logL(β )
∂β1∂β2

∣∣∣∣
β=β̂

. . . ∂ 2logL(β )
∂β1∂βq

∣∣∣∣
β=β̂

∂ 2logL(β )
∂β2∂β1

∣∣∣∣
β=β̂

∂ 2logL(β )
∂β 2

2

∣∣∣∣
β=β̂

. . . ∂ 2logL(β )
∂β2∂βq

∣∣∣∣
β=β̂

...
... . . .

...

∂ 2logL(β )
∂βq∂β1

∣∣∣∣
β=β̂

∂ 2logL(β )
∂βq∂β2

∣∣∣∣
β=β̂

. . . ∂ 2logL(β )
∂β 2

q

∣∣∣∣
β=β̂
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The main diagonal entries of this matrix gives the variance of the maximum likelihood
estimates β̂1, β̂2, . . . , β̂q whose square-root is the standard error of the corresponding
estimates.

The estimates represented by vector β̂ are asymptotically unbiased. The (1−α)100%
confidence interval of the β ′s is given by the formula [β̂ j± zα/2se(β̂ j)] for j = 1,2, . . . ,q.
Where se(β j) is the standard error of β j for j = 1,2, . . . ,q and zα/2 gives the upper α/2-
point of the standard normal distribution. In the event that the computed confidence
interval of a particular parameter β contains zero, then there is a chance that the true
value of parameter β takes the value zero in the presence of the other parameters. In
this regard, it will be prudent to conduct a hypothesis test to test the significance of the
parameter to the model in the presence of the other parameters.

To test the null hypothesis that β j = 0, j = 1,2, . . . ,q in the presence of all the other terms ,

we use the test statistic W 2 =

(
β̂ j

se(β j)

)2

. This statistic is then compared to the percentage
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points of a chi-squared distribution on one degree of freedom. If the test statistic is big
we will reject the null hypothesis and concluded that the covariate whose coe�icient is β j

is not significant in the presence of the other covariates in the model. Its e�ect will have
be analysed by fi�ing it alone.

2.2.2 Using deviance to compare nested models

Since several values of explanatory variables are recorded. The modeling process dictates
that we determine the explanatory variables by means of their statistical significance that
should be included in the model or le� out. To achieve this, there is need to come up with
a method to assess each explanatory variable’s contribution to the model.

Suppose we need to compare the goodness of fit of two models A and B. Suppose further
model A is nested within model B. That is model A has u covariates and model B has
u+ v covariates. To assess whether the additional v covariates improves the model or
not, we need to do the log-likelihood ratio test which tests the null hypothesis that the
additional v covariates takes the value zero in the presence of u covariates that is to say the
simpler model is a be�er model or in other words the additional covariates are statistically
insignificant in the presence of the other u covariates.

Using results from likelihood theory, the bigger the sample size implies that the di�erence
in value of the deviances follows a chi-squared distribution under the null hypothesis that
the additional covariates are not statistically significant. The di�erence in the number
of parameters between the two model gives the degree of freedom of the Chi-square
distribution. In this case it will be v.

2.2.3 Deviance goodness of fit

Deviance measures the closeness of the predicted values to the observed. Deviance can be
used to test for the models goodness of fit. Though we anticipate the predicted values to
be close to those observed in reality they will not be a perfect match even if the model has
been specified correctly. To employ use of deviance in the assessment of goodness of fit,
under the assumption that the model is well specified, we need to find out the expected
variation in the observed frequency of claims around those predicted by the model, under
the Poisson assumption. As we have seen above from the likelihood theory under the
assumption that the model is well specified the di�erence in deviance between the model
being proposed and the saturated model follows approximately a Chi-square distribution
whereby the degrees of freedom is obtained by finding the di�erence between the number
of parameters in the two models. The saturated model has n parameters since it employs
a parameter for each frequency of claim observed. Suppose the model being proposed
has q parameters, therefore the residual deviance will be tested by use of a Chi-squared
distribution with n−q degrees of freedom.
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2.2.4 Model selection strategy

The first step in model selection involves identifying the set of explanatory variables that
have a significant e�ect on the frequency of claims.

It is from this set that we will obtain the combination of covariates to be added in the model.
If interaction is to be included in the model by the hierarchic principle [Nelder(1977)] the
main e�ects have to be included as well. If the number of covariates is not too large we
can fit all possible models and compare the values of their respective deviance statistic and
then pick the model(s) that give the least value of these statistic. However in most cases
the number of explanatory variables is huge thus fi�ing all the models is computationally
costly. Several procedures have been developed to assist in selecting variables to be
included in the model. They include forward selection procedure, backward selection
procedure and step wise procedure. Under forward selection procedure, the null model is
fi�ed first, then variables are added one by one. At each step, variables that lead to the
largest decrease in the value of deviance on their addition are the ones included in the
model. The process stops when the next variable to be added does not reduce the value of
the deviance by more than a predetermined amount called the stopping rule [Colle�(1994)].
Under backward selection, all variables are first fi�ed then the variables are eliminated
one by one. At each step, variables that lead to the smallest increase in the deviance
are the ones to be removed. The procedure goes on and on until the next variable to be
eliminated leads to an increase in the deviance that exceeds the amount determined by
the stopping rule. The step wise procedure is a combination of both the forward and
the backward procedures. In this procedure, the variables already included will still be
subjected to removal test at later steps. So a�er a variable has been added, the procedure
checks if any of the variables already in the model can be omi�ed.

The above model selection procedures is simplified in the following steps

Step 1: Determine which variables significantly reduce the value of the deviance statistic.
This is achieved by fi�ing models that contain the explanatory variables on their own
then comparing them with the null model.

Step 2: All the variables that were viewed as significant in step 1 are fi�ed together then
the variables are omi�ed one at a time just as is the case in the backward procedure.
The ones that do not significantly decrease the value of the deviance are omi�ed.

Step 3: The variables that were le� out in step 1 are added in this step one by one as was
the case in the forward procedure. The ones that significantly reduce the size of the
deviance are retained.

Step 4: The variables that finally make to the model in step 3 are tested once more
to ensure that each will significantly increase the value of the deviance if they are



19

removed. Also the variables le� out are checked to ensure that none can significantly
reduce the value of the deviance if included in the model.

To successfully carry out the above procedures the choice of the significant level is made
flexible.

The standard measure of goodness of fit that is used to assess the adequacy of various mod-
els is the likelihood ratio that follows a χ2

α,p distribution(chi-square), level of significance
α = 0.05 and with p degrees of freedom, where p represents the number of explanatory
variables included in the regression model as discussed in [Denuit and Lang(2004)]. This
test is derived by finding the di�erence between the deviance of the regression model
without explanatory variables and the deviance of the model with independent variables.
With the deviance being twice the di�erence between the maximum log-likelihood and
the log-likelihood of the fi�ed model. When the log-likelihood ratio is higher than the
statistical theoretical value it means that the suggested regression model fits a well ana-
lyzed data. The standard method used to compare the two distribution is the likelihood
ratio with the given expression:

LR =−2(LLp−LLNB),

where LLp and LLNB are the log-likelihood values under the Poisson and negative binomial
models respectively. The resultant statistic has a chi-square distribution with a d.f equal
to one. If calculated value is higher than the theoretical value then the NB models are
chosen against Poisson,more-so the convient method used to chose between the NB1
and the NB2 is the log-likelihood function. The NB2 model is preferred to NB1 as it has
higher log- likelihood, [Cameron and Trivedi(1999)].

2.2.5 Testing for over dispersion

In fi�ing a Poisson regression model to count data one of the assumptions is that the
mean is equal to the variance a property called equidispersion. If this property is violated
such that the conditional variance is greater than the conditional mean of the count data
then the predictions made by the Poisson regression model will be inaccurate and will
lead to wrong premium computations which will adversely a�ect the insurance business.

Therefore, a�er fi�ing a Poisson regression model we immediately test for overdispersion
to check whether we are fi�ing the correct model. A quick test is to compute the ratio of
the residual deviance generated by the model to the given degrees of freedom. If this ratio
exceeds 1 it implies that there is overdispersion and Poisson regression model is not the
appropriate model. However, what happens when the ratio slightly exceeds 1 do we just
throw away the Poisson regression model? What value of the ratio is deemed significant?
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To answer the above questions we use the test designed in [Cameron and Trivedi(1990)]
which tests for overdispersion. The idea is very simple. Under a Poisson regression model
the mean and the variance are equal. i.e. Suppose Y is the response variable in our case is
the random variable representing the frequency of claims. If λ is the Poisson parameter
then E(Y ) = var(Y ) = λ . The equality of mean and variance assumption is tested under
the null hypothesis against the alternative hypothesis where var(Y ) = λ + kg(λ ). The
constant k < 0 implies underdispersion and k > 0 implies overdispersion. Funtion g(·) is
o�en either a linear or a quadratic monotonic function. The equivalence of the above test
is a test where we test H0 : K = 0 against H1 : K 6= 0. The t statistic which asymptotically
follows a normal distribution if the null hypothesis holds is used as the test statistic.
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3 Data Analysis

3.1 Data Description

Analyzing this we will use data from Kenendia insurance. From the data, the frequency of
claims is represented by the number of open complains. There are 12 explanatory variables.
They include ;

Customer lifetime value which is the financial value the insurance company gets from
a lifetime relationship with a particular customer. It gives the net present value of all the
future cash flows a�ributed to the policyholder during the entire relationship with the
insurance company. It gives the di�erence of all the projected premiums the customer
will pay and the cost the company will incur with respect to a particular customer. This
variable is a quantitative variable and it varies from customer to customer.

Coverage, this gives the level of coverage. It is a qualitative variable with three levels
namely, basic, extended and premium.

Level of education, this qualitative variable captures the highest level of education f the
policy holder. It has four levels namely, high school and below, college level, bachelors
degree level and masters degree level.

Employment status, this categorical variable captures the nature of employment of the
customer. The categories are employed, unemployed, medical leave and disabled.

Gender as an explanatory variable is divided into two categories male and female.

Income, this explanatory variable captures the amount a particular customer earns per
month.

Marital status, this is a categorical variable with three categories, married, single and
divorced.

Months since policy inception, this gives the number of months that have elapsed
since taking of cover. It captures the number of months since policy inception to the day
of data collection.
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Policy type, as a categorical variables it captures the di�erent types of policies available
to the customers. They include; corporate auto, personal auto and special auto.

Total claim amount, this quantitative variable captures the total amount of money the
policy holder can claim in the event of an accident.

Vehicle class captures the di�erent classes of vehicles being covered. There are six classes,
two-door car, four-door car, suv, luxury suv, luxury car and sports car.

Vehicle size, this explanatory variable captures the physical size of the vehicle. It is a
categorical variable with three categories namely, medsize, small size and large size

The table below gives a the frequency distribution of the observed claim frequency

Table 1. Table showing observed claim frequency

Frequency of claims Number of policyholders

0 225

1 39

2 18

3 12

4 3

5 3

6 and above 0

Analyzing the distribution of claims frequency we observe that the maximum number of
complains by a customer is 5. On close scrutiny we observe that throughout the period of
analysis 225 out of 300 policyholders did not launch any claim complain. This translates
to a 75% of the total policyholders under investigation. 39(13%) of policyholders declared
a single claim, 18(6%) of policyholders declared two claims, 12(4%) of customers declared
to the insurer three claims and 3(1%) of policyholders informed the insurance company
about the occurrence of four accidents and a similar percentage of policyholders declared
the occurrence of five accidents.

The above distribution of claim frequency can easily be summarized in a histogram as
shown below.

From the histogram above we observe that the frequency of claims is highly skewed to
the right and the number of zero counts is big. Though the conditional distribution of
the number of claims frequency given the covariates could be di�erent from the marginal
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Figure 1. Histogram showing distribution of claims frequency

distribution, the big departure from symmetry spells doom for least-squares regression
methods.

Table 2. Table showing the summary of count data

Variable Mean Median Standard deviation Variance Minimum Maximum

Frequency of claims 0.46 0.00 0.9651 0.9315 0 5

With a mean of 0.46 and a variance of 0.9315, it implies that the variance exceeds the
mean. This together with the earlier observation of skewness to the right it indicates
presence of heterogeneity in the data. Which implies that the policyholders have di�erent
and unique a�ributes which play apart in their proneness to accidents. On the positive
side a huge number of 0 claims implies that majority of the policy holders are low risk
hence good for business.

3.2 The Models

3.2.1 The poisson model

The table below give the results obtained a�er fi�ing the Poisson regression model. To
check for significance of the explanatory variables on determining the frequency of claims
we first fi�ed a model containing all the explanatory variables then fi�ed other models
without one explanatory variable. Since the models containing all but one explanatory
variables are nested within the model containing the all the explanatory variable, to assess
the significance of the explanatory variable not fi�ed we employ the backward procedure
technique discussed in the previous section above. To test the null hypothesis that a
particular explanatory variable is not significant in the presence of the other explanatory
variables we use the likelihood ratio statistic. The likelihood ratio statistic is obtained
by subtracting the value of deviance from the model with all explanatory variables from
the one with all but the explanatory variable in question. This likelihood ratio statistic
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has a chi-square distribution with degrees of freedom equivalent to the di�erence in the
number of parameters in the two models.

Table 3. Table showing the summary of di�erent poisson models

Covariates Deviance Degrees of freedom LRS χ2
tabulated at 10% DoF

All Variables 386.51 273 - -

All except Customer lifetime value 386.68 274 0.17 1.642(1)

All except Coverage 387.99 275 1.48 3.219(2)

All except Coverage 387.99 275 1.48 3.219(2)

All except Education 390.61 277 4.10 5.989(4)

All except employment status 395.08 277 8.57 5.989(4)∗

All except Gender 386.51 274 0.001 1.642(1)

All except Income 387.01 274 0.50 1.642(1)

All except Marital status 388.74 275 2.23 3.219(2)

All except Months since policy inception 387.34 274 0.83 1.642(1)

All except Policy type 386.89 275 0.38 3.219(2)

All except Total claim amount 386.74 274 0.23 1.642(1)

All except Vehicle class 396.80 278 10.29 7.289(5)∗

All except vehicle size 390.89 275 4.38 3.219(2)∗

From the table above, we see that at 10% level of significance all but three explanatory
variables are not significant. The significant explanatory variables are employment status,
vehicle class and vehicle size. This implies that these three covariates have an e�ect on
the frequency of claims. They contribute to the process of explaining the variation in
the frequency of claims among di�erent policyholders.We therefore go ahead and fit a
Poisson regression model using only the three explanatory variable. The table below gives
a summary of the resulting coe�icients and their standard errors.
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Table 4. Table showing the summary of coe�icients and their standard errors

Coe�cients Estimate Standard error

Intercept −1.53420 0.56313

EmploymentStatus-Employed 0.45749 0.46403

EmploymentStatus-Medical Leave −0.39103 0.73139

EmploymentStatus-Retired 1.29511 0.54150

EmploymentStatus-Unemployed 0.75189 0.47540

Vehicle.Class-Luxury Car 0.85091 0.59316

Vehicle.Class-Luxury SUV −14.64683 635.44420

Vehicle.Class-Sports Car −1.42298 0.71830

Vehicle.Class-SUV −0.07216 0.23892

Vehicle.Class-Two-Door Car 0.21082 0.20961

Vehicle.Size-Medsize 0.34647 0.35197

Vehicle.Size-Small −0.07062 0.39003

Nevertheless, if the equality of the mean and variance assumption of the Poisson model is
not met the model won’t accurately give us the information on the relationship between
the explanatory variables and the response variable which is the frequency of claims.
Therefore, it is prudent for us to test for overdispersion. The method proposed by Cameron
and Trivedi is used.

Table 5. Table showing the summary of Cameron and Trimedi test

Function Parameter,k Degree of freedom Parameter Estimate Standard Error t-Value Pr>|t|

g(λ ) = λi k0 1 0.0253 0.00467 2.65 < 0.0012

g(λ ) = λ 2
i k1 1 0.2356 0.04322 4.34 < 0.0001

The table above gives the value of the test statistic which enable us test the null hypothesis
that there is no overdispersion against an alternative of overdispersion. Using 0.05 as the
level of significance we reject the null hypothesis . This implies there exists overdispersion
in the count data. We therefore fit the NB1 and NB2 models which takes into account the
presence of overdispersion. A�er fi�ing the two models we need to assess the best model.

3.3 Assessing goodness of fit of the models

To assess the goodness of fit of the models we use the Akaike’s Information Criteria(AIC).
In addition to the log-likelihood, the AIC adds term that penalizes depending on the
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number of explanatory variables. The addition of this penalizing term makes AIC a be�er
criterion since it balances the goodness-of-fit with respect to inclusion of additional
explanatory variables.

To calculate the value of AIC we use the following formula;

AIC =−2lnL+2p

Where ln is the natural logarithm function and p is the number of explanatory variables
and other interaction terms included in the model.

A model with a smaller AIC terms implies a be�er fit.

A�er fi�ing the two models we get the following values of AIC

Table 6. Table showing values of AIC

Criterion Poisson NB1 NB2

AIC 602.21 593.18 542.43

From the table we observe that the AIC corresponding to NB2 model is smaller than the
one corresponding to NB1 and Poisson models. This implies that NB2 model is a be�er
model and gives the best fit.

3.4 Results and Analysis

The table below gives the estimate of values of the coe�icients and their standard errors
under the negative binomial NB2 regression model.
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Table 7. Table showing values of esimates of coe�icients under NB2 model

Coe�cients Estimate Standard error

Intercept −1.601 0.7592

EmploymentStatus-Employed 0.5188 0.6132

EmploymentStatus-Medical Leave −0.3135 0.9139

EmploymentStatus-Retired 1.330 0.8169

EmploymentStatus-Unemployed 0.8049 0.6377

Vehicle.Class-Luxury Car 0.9038 0.59316

Vehicle.Class-Luxury SUV −28.62 69680

Vehicle.Class-Sports Car −1.410 0.8487

Vehicle.Class-SUV 0.06717 0.3495

Vehicle.Class-Two-Door Car 0.2403 0.3193

Vehicle.Size-Medsize 0.3243 0.4970

Vehicle.Size-Small −0.09029 0.5434

From 7 above it can be observed that the estimated values of the coe�icients is not very
di�erent from the one obtained under the poisson model. Though the standard errors
of the estimated coe�icients are slightly higher than the output from the fi�ed poisson
model, it does not a�ect the significance of the estimated parameter.

By observing the regression coe�icient we can establish the profile of policy holders who
pose the highest risk to the insurance company. These type of policyholders are the ones
who have the highest chance of launching more claims. A foreknowledge of these type
of class of policy holders will enable the insurance company to di�erentiate the amount
of premiums they charge their clients. In this regards, customers are charged premiums
depending on their risk groups.

To compute premiums, insurance companies uses di�erent components. Estimated fre-
quency of claims is a significant component in the computation of premiums. The esti-
mated frequency of claims for a new customer is computed by matching the characteristics
of the customer in question to one category of the policyholders. To obtain the estimated
frequency of policyholders in one of these categories the link function is used. As described
in the methodology, for the negative binomial model, the link function is the logarithmic
function.
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Taking into consideration the estimates of parameters for the NB2 model, we can easily
compute the estimated value of frequency of claims for the policyholders considered the
most risky in the calculation shown below.

λriskiest group = e−1.601+0.8040+0.9038+0.3243+150∗0.0081 = 5.1914 (18)

Which gives the expected frequency of claims from customers who have a similar charac-
teristic to those who fall in the riskiest category for the insurer.
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4 Conclusion

Correct computation of premiums allows an insurance company to meet its payment
of claims obligation when they arise, to meet the daily operational costs and of course
to make a profit. We have seen that to accurately price a premium, accurate estimation
of frequency of claims is required. In this paper, we considered discrete distributions
namely; the Poisson, the NB1 and the NB2 distributions to model count data. The models
incorporated risk factors which play a crucial role in explaining the risk being insured.
Upon testing the assumption of equality and mean of the Poisson model, the test technique
employed in this paper reached the conclusion of existence of over dispersion within the
insurance portfolio being analysed. In an a�empt to find a be�er model that will take care
of the over dispersion property the negative binomial models were fi�ed. Upon fi�ing
the negative binomial models to the data, the results obtained showed that indeed the
negative binomial models correct the shortcoming of the Poisson model since they give a
be�er fit to the data. Comparing further NB1 model to NB2 model, we found out that
NB2 model gives a be�er fit. Thus, based on the results obtained in this paper we can
conclusively suggest that NB2 model is a be�er model to use to estimate and predict
frequecy of claims.

4.1 Future Research

To look at other models that incorporate the problem of zero counts. To mention a few of
these models we have zero-truncated models and Hurdle model.

To research on machine learning algorithms and techniques that give be�er fit.
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