

UNIVERSITY OF NAIROBI

Multi Agent Based Traffic Controls

Henry Ndirangu Mungai
P58/70513/2008

Supervisor

Mr. Lawrence Muchemi

Submitted in partial fulfillment of the requirements of the Master of Science in Computer Science

DECLARATION

This project as presented in this report is my original work and has not been presented for any other university award.

This project has been submitted in partial fulfillment of the requirements of the Master of Science in Computer Science of the University of Nairobi with my approval as the university supervisor.

Supervisor: Mir Lawrence Muchemi

Dedication

To my fiancée Anne, son Matthew and parents thank you for your support when I needed it most.

Abstract

The traffic jams are common in the modern world and are mostly attributed to increase in population and the continual expansion of the urban centers. Traffic jams cost the economy a lot of money in wasted time in traffic and fuel consumption and also result to air pollution. Advances in the field of artificial intelligence have made it suitable to use agents in the management and control of traffic due to their ability to control and coordinate their activities.

This research project has implemented a multi agents based traffic control system that is able to manage the traffic flow based on the prevailing conditions on the roads. Multi agent systems are best suited for such environments since they are able to perceive the environment they are located in and make decisions accordingly by negotiating and cooperating to ensure smooth flow of traffic regardless of the traffic densities. The agents negotiate based on the average waiting time and queue lengths such that agents whose junction has a maximum waiting time and queue lengths are given preference.

By use of a simulator comparisons in performance have been done between a pre-timed traffic control system and a multi agent based traffic control system. Results show that the performance of both systems deteriorates with increase in traffic volumes. Regardless of this a multi agent based traffic control system is able to perform better than the pre-timed traffic control system regardless of the traffic situation on the roads by attaining 33% improvement.

ACKNOWLEDGEMENT

To almighty God for His grace, love and providence throughout this course.

To my supervisor Mr. Lawrence Muchemi for his continued support, guidance and availability throughout this project. It would not have been easy without your support.

To the members of the panel: Mr. Elisha Opiyo and Mr. Tony Omwansa for your guidance during my presentations.

TABLE OF CONTENTS

CHAPTER ONE 10
INTRODUCTION 10
1.0 Background 10
1.1 Definitions of important terms 11
1.2 Problem Statement 11
1.3 Objectives 12
1.4 Purpose of Study 12
1.5 Research Question 12
1.6 Justification of the study 13
1.7 Scope of the study 13
1.8 Assumption 13
1.9 Chapter Summary 13
CHAPTER TWO 14
LITERATURE REVIEW 14
Chapter Summary 18
CHAPTER THREE 19
METHODOLOGY 19
3.0 Introduction 19
3.1 Application of Queuing Theory 19
3.2 Data Flow Diagram 22
3.3 Designing Agent Negotiation Protocols 22
3.4 Designing the simulation platform 25
3.5 Evaluation 27
3.6 Chapter Summary 27
CHAPTER FOUR 28
RESULTS 28
Chapter Summary 41
CHAPTER FIVE 42
DISCUSSION, CONCLUSION AND RECOMMENDATIONS 42
5.0 Introduction 42
5.1 Discussion 42
5.2 Conclusions 43
5.2.1 Limitation of pre timed traffic control system 44
5.2.2 Effects of adding queuing theory to reinforcement learning. 44
5.2.3 Performance difference between the systems 44
5.3 Limitations 45
5.4 Recommendation 45
5.5 Chapter Summary 45

List of Figures

Figure I: Location of agents in the junction illustration 20
Figure 2: Illustration of the incoming traffic to the junctions as a queue 21
Figure 3 : Conceptual diagram 22
Figure 4 Decision Flow 25
Figure 5 Illustration of the junction on the simulated platform 26
Figure 6: Average wait time pre timed system, scenario 1 31
Figure 7 : Average wait time proposed system scenario 1 31
Figure 8 : No. of waiting cars pre timed system scenario 1 32
Figure 9 : No. of waiting cars proposed system scenario 1 32
Figure 10 : Avg. speed pre timed system scenario 1 33
Figure 11 : Avg. speed proposed system scenario 1 33
Figure 12: Avg. Wait time pre timed system scenario 2 34
Figure 13 : Avg. wait time proposed system scenario 2 34
Figure 14 : No. of waiting cars pre-timed system scenario 2 36
Figure 15: No of waiting cars proposed system scenario 2 36
Figure 16: Avg. speed pre-timed system scenario 2 37
Figure 17 : Avg. speed proposed system scenario 2 37
Figure 18 : Avg. wait time pre-timed system scenario 3c 38
Figure 19 : Avg. wait time proposed system scenario 3 38
Figure 20 : No. of cars waiting cars pre-timed system scenario 3 39
Figure 21 : No. of waiting cars proposed system scenario 3 39
Figure 22 : Avg. speed pre-timed system scenario 3 41
Figure 23 : Avg. speed proposed system scenario 3 41

List of Tables

Table 1: Observed arrival of vehicles 28
Table 2 Average wait time scenario 1 30
Table 3 Combined average wait time scenario 1 30
Table 4 : Average number of cars Scenario 1 31
Table 5 : Combined Average number of cars Scenario 1 31
Table 6 Average speed Scenario 1 32
Table 7 Combined Average speed 33
Table 8: Average wait time Scenario 2 34
Table 9 Combined average wait time Scenario 2 34
Table 10: Average number of cars Scenario 2. 35
Table 11 Combined Average number of waiting cars 35
Table 12 : Average speed scenario 3 36
Table 13 Combined Average Speed scenario 3 36
Table 14 Average wait time scenario 3 38
Table 15 Combined Average wait time scenario 3 38
Table 16 Average number of cars scenario 3 39
Table 17 Combined average number of cars scenario 3 39
Table 18 Average speed scenario 3 40
Table 19 Combined Average speed scenario 3 40
Table 20 Summary of Performance 42
Table 21 Sample Output, Average Wait Time Scenario 1 48
Table 22 Sample Output, Average number of cars Scenario 1 49
Table 23 Sample Output, Average speed Scenario 1 50
Table 24 Sample Output, Average wait time Scenario 2. 51
Table 25 Sample Output, number of cars Scenario 2 53
Table 26 Sample output Average speed scenario 3 54
Table 27 Sample output average wait time scenario 3 55
Table 28 Sample output Number of cars scenario 3 58
Table 29 Sample Output Average speed scenario 3 58

CHAPTER ONE

INTRODUCTION

1.0 Background

Traffic jams are common in the modern world and are mostly attributed to increase in population and the continual expansion of the urban centers. They cost the economy a lot of money in terms of wasted time in traffic, fuel consumption and also result to air pollution.

As traffic jams become a common occurrence different methods have been put in place to try and tackle the occurrence. Expansion of the current infrastructure is one of the ways put in place to cope with the large number of cars. However in the long run this may not be economically feasible due to the high cost incurred in the expansions.
As the number of vehicles continue to increase there is the need to come up with better automated methods of controlling traffic on our roads that are responsive to the changing conditions which in turn helps in improving traffic flow in the roads. Thus a need arises for the development of a traffic management system that is able to address the changing traffic conditions on our roads.

This problem can be best tackled by using the latest technology in the field of information technology to manage the existing road infrastructure.

Different methods have been used in trying to optimize the traffic flow by means of controlling the traffic lights. For instance pre timed traffic control whereby all control parameters change their status after a given clock cycle, actuated control whereby the traffic signal is adjusted from real time traffic conditions that is observed by detector.

Advances in the field of artificial intelligence have made it suitable to use agents in the management and control of traffic due to their ability to control and coordinate their activities.
This proposes a multi agent based traffic control system that is able to manage the traffic flow based on the prevailing conditions on the roads. Multi agent systems are best suited for such environments since they are able to perceive the environment they are located in and make decisions accordingly by negotiating and cooperating to ensure smooth flow of traffic regardless of the traffic densities.

1.1 Definitions of important terms

i. Agent

This is a system that is that is situated in some environment and is capable of autonomous action in this environment so as to meet its design objectives (Wooldridge, 2002).
ii. Multi agent System

This is a computer system that consists of many agents that interact with each other with the aim of solving a given problem.

iii. Reinforcement Learning

Reinforcement learning assumes that the agent lives in a Markov process and receives a reward in certain states. The goal is to find the right action to take in each state so as to maximize the agent's discounted future reward. (Vida l, 2007).
Reinforcement learning is learning what to do, how to map situations to actions so as to maximize a numerical reward signal (Sutton et al, 2005).

iv. Queuing Theory

This is the mathematical study of queues that enables mathematical analysis of several related processes, including arriving at the (back of the) queue, waiting in the queue and being served at the front of the queue.

1.2 Problem Statement

Commuters in most urban centers can experience long travel times due to inefficient traffic lights. Most traffic lights use time intervals that do not necessarily consider the prevailing traffic conditions. The interval may change at certain durations during peak hours but this does not completely solve the traffic jam problem. In most cases the traffic lights may turn to green even when the lane in which the vehicles are moving to congested such that the vehicles end up blocking the junction. This is as a result of poor or no interaction between the existing traffic control systems.

Pre timed traffic control systems are mainly used in our road systems and in circumstances where the traffic density is high they tend not to respond effectively in the reduction of traffic delays since the traffic lights will always be turned on and off in response to the set cycle regardless of whether a given lane has traffic or not.

This research address this shortfall of pre timed traffic signals by introducing the aspect of multi agents whereby the agents are able to detect traffic densities on lanes that are joining the junction thus they respond effectively by controlling the traffic lights so as to reduce wait times and queue lengths.

1.3 Objectives

This research project aims to achieve the following objectives
i. Design a protocol that will be used by the agents to allow vehicles to use a given intersection.

This project makes use of multi agents that are located at different intersections which interact with each other with the main aim of controlling the traffic flow. From these interactions the agents need to have policies in place that govern the interaction from which agents are able to gain priorities to use the junction.
ii. Develop and test a simulated platform on which the designed protocols can be tested The designed protocol that govern how the agents interact in order to gain access to use a particular junction will need to be put to test on a simulation platform from which different traffic conditions can be put to test.
iii. Evaluate the performance of collaborative agent controlled traffic signal against a pretimed traffic signal.

From the simulation platform the multi agent based traffic control system was put under the same test condition as the pre timed traffic control system from which their performance was compared.

1.4 Purpose of Study

The purpose of this study was to assess the effect of using multi agent systems in the regulation of traffic flow.

1.5 Research Question

i. What are the limitations of the pre timed traffic control systems currently being used?
ii. What will be the effect of adding queuing theory to reinforcement learning in terms of improving traffic flow?
iii. Does a multi agent based traffic control system outperform a pre timed based traffic control system in terms of efficiency?

1.6 Justification of the study

Cases of congestion Kenyan roads are a common occurrence due to inefficient traffic control systems. This research project addresses this shortcoming by effectively using multi agent systems to control traffic flow in the junctions whereby the agents effectively negotiate with each other thus reducing congestion. This in turn is beneficial to road users such that it helps in reducing the costs associated with traffic delays.

1.7 Scope of the study

This study is limited to three specific objectives that focus on determining the effects of using multi agent based traffic control system as opposed to using a pre timed control system. The study will be limited to studying an intersection in the City of Nairobi.

1.8 Assumption

In this project it is assume that
i. The traffic jam is as a result of inefficient traffic lights and not caused by road closure, accidents or any other factor that may cause traffic jams.
ii. All vehicles have the same priority to use the junction.
iii. The vehicles do not change direction.

1.9 Chapter Summary

This chapter gives a brief introduction of the study by giving the problem statement, objectives, research questions that the research seeks to answer, scope and assumptions of the project.

Chapter two provides a detailed literature review of previous work done by other researchers on the same study area of multi agent based control traffic lights.

CHAPTER TWO

LITERATURE REVIEW

To solve congestion in highways many methods have been used to try and solve the problem. In some places the numbers of lanes have been increased or even increasing the speed limits, coming up with better ways of optimizing traffic lights at intersections.

Traffic lights optimization is a complex problem where and several intelligent algorithms such as fuzzy logic, reinforcement learning, evolutionary algorithm have been used to try and solve this problem (Weiring et al 2004).

Traffic controllers can be classified according to the method in which they allocate green time for each phase and can be roughly classified into the following types of control:

- Fixed-time control: A signal timing plan is selected according to a fixed schedule. The duration and order of all green phases remain fixed and are not adapted to fluctuations in traffic demand.
- Actuated control: In order to adapt the control scheme to fluctuations in traffic demand, traffic detectors are placed that indicate the presence or absence of vehicles. Using this information green phases are extended or terminated depending on the current traffic demands.
- Adaptive control: A traffic control system that continuously optimizes the signal plan according to the actual traffic load. Changes to the active signal plan parameters are automatically implemented in response to the current traffic demand as measured by a vehicle detection system.
(Katwijk, 2008)
When a group of agents engage to solve a problem cooperatively they must have joint commitment to attain the overall goal of the system, as well as their individual commitments to localized goal. The main principle of partial global planning is that cooperating agents exchange information in order to reach common conclusions about the problem solving process. Planning is partial because the system does not generate a plan for the entire problem. Partial global planning involves three iterated stages.

1. Each agent decides what its own goals are, and generates short-term plans in order to achieve them.
2. Agents exchange information to determine where plans and goals interact.
3. Agents alter local plans in order to better coordinate their own activities.
(Wooldridge, 2002 pg 202)

Wolpert etal his research on COllective INtelligences (COINS) elaborates the relationship between the private utility function and the global utility function in a multi agent environment. They propose a relationship between agents whereby as each agent tries to maximize its private utility it does not decrease world utility. If the separate agents have high personal utilities, by luck or by design, then they have not frustrated each other, as far as the world utility is concerned.

The management and optimization of traffic provide an ideal environment to study how multi agent systems promote desired system level behavior. They represent a special class of problems where the individual actions of the agents are neither "good" nor "bad" for the system; instead it's the interaction among agents that leads to desirable or undesirable outcomes. Therefore agents need to learn how to coordinate their actions with those of other agents so as to improve the overall system performances. (Multi agent systems for traffic and transport engineering, pg 248). Cooperative distributed problem solving highlights how agents can work together to solve problems that are beyond their individual capabilities hence without cooperation the agent cannot even archive its own individual goal.

Congestion problems are characterized by having the system performance depend on the number of agents that select a particular action, rather on the intrinsic value of those actions. In those problems, the desirability of lanes, paths or sides depends solely on the number of agents having selected them. Hence, multi-agent approaches that focus on agent coordination are ideally suited for these domains where agent coordination is critical for achieving desirable system behavior. (Bazzan and Klüglv, 2009).

According to Denise et al, to have a configured traffic light, there must be a control that determines the stage, the splits, the cycle time and, the offset time (a time delay between two successive intersections that allows vehicles to pass successive intersections without stopping). Each of these stages must have a relative green duration.
Multi-agent learning algorithms address congestion problems in traffic and transportation domains effectively.

Vicente et al (2005) proposes a multi agent system that works with traffic management strategies to support road managers to manage and control traffic in case of meteorological incidents such as accidents, road constructions by carrying out negotiations with other agents (Tomas and Garcia, 2005).

Lior et al (2008) propose a multi agent system that uses reinforcement learning approach to traffic control by cooperative learning and explicit coordination among agents. They make the assumption that an agent is affected only by those agents with a direct influence on its environment, thus the global coordination problem may be decomposed into a set of local coordination problems and can be solved with the use of coordination graphs. Max-plus which estimates the optimal joint action by sending locally optimized messages among connected agents is used. It also allows the agents to report their current best action at any time.

Visit et al (2009) proposes a multi agent based traffic control system that uses rule based reasoning to control traffic; whereby each agent observes the current traffic condition surrounding its junction and uses this information to reason with condition action rules in its knowledge base. As a result of the rule application, it may result to change in the traffic light or the need for the agent to collaborate with the neighboring agent so as to control the traffic lights more effectively.

Simulations are done using Netlogo to compare performance between collaborative agents and agents that are not collaborating. Results show that the average delay of each car at each traffic light for collaborative agents is better than the agents that are not collaborating.

Duan et al (2010) proposes multi-objective reinforcement learning for traffic signal where data is exchanged between the vehicles and roadside equipment via a vehicle ad hoc wireless network. The multi-objective control algorithm considers 4 types of traffic conditions
i. Free Traffic Condition where they aim in minimizing the number of stops thus the cumulative number of stops is selected as the optimizing objective.
ii. Medium Traffic condition where the focus is on the overall waiting time of each car before a traffic light.
iii. Congested traffic condition where the focus is queue length.
iv. Priority control for buses and emergency vehicles.

A practical road network was modeled using simulation software called Paramics where the control effects of the four types control algorithms were tested under different traffic conditions
by changing the volume of traffic entering the network and comparisons were made against fixed control, actuated control and Wierings method. Results showed that when the traffic volume was low in multi-objective reinforcement learning the number of stops was less than the other methods but with increase in volumes, multi-objective reinforcement learning changes objectives from number of stops to queue length.
In congested conditions multi-objective reinforcement learning can prevent queue spill over that avoid large traffic jams.
Aditya et al (2009) proposes a method for coordinating multirobotic/multi-agent traffic control at intersections. The robotic agents move guided by a potential field along the lanes whereby at the intersections an intersection agent controls the flow of traffic by assigning priorities to the agents that are about to enter the intersection. The priorities are computed based on the density of robotic agents in a lane and the rate of traffic flow in those lanes. The robotic agents integrate these assigned priorities into their potential field computations which help them to move through the intersection avoiding collisions. Simulation results show that time spent at the intersection is less through mixed autonomy where intersection agent and robotic agents share decision making as opposed to leaving the decision making only to the intersection agent.
Dresner et al (2005) proposes a system whereby vehicles request an agent to reserve sometime in the intersection during which they may pass. The proposed system consists of an intersection manager and driver agent where the intersection manager is responsible for directing traffic at the intersection while driver manager is responsible for controlling the vehicles they are assigned. The driver agent request to use the intersection by sending a reservation message to the intersection manager beforehand that determines whether to grant the request or not. To determine if the request will be granted the reservation manager simulates the journey the vehicle will take through the intersection and determines if another vehicle is occupying the path that the vehicle will take, if not it reserves the space for the requester. Results after comparison between the reservation based method and the traffic lights showed reduction in delays when using the reservation based method.
Samah et al (2010) propose a Q-learning based signal control system that uses variable phasing sequence. Three Q - Learning models are developed each considering different possible states. The models are tested and compared with the pre-timed control strategy as the benchmark.

Results show that the Q -learning approach out performs the pre-timed signal plan by reducing delay by 36%.

Chapter Summary

This chapter has focused on similar work done by other researchers on the area of multi agent based control traffic lights. It high lights how other researchers have implemented their research work and their findings that is similar to multi agent based traffic control.
Different methods like Q learning, coordinating multi robotic/multi-agent traffic control, multiobjective reinforcement learning have been used by different researchers showing how to effectively use these methods in the implementation of traffic control systems.

CHAPTER THREE

METHODOLOGY

3.0 Introduction

The project was based on Distributed Artificial intelligence (DAI) whereby agents coordinate and cooperate with the aim of controlling traffic at various intersections. Due to the limitation of the resource (in this case the intersection), certain protocols have to be put in place to regulate which agent is given priority to use the intersection.

Traffic control systems must have the capability of optimizing traffic flow by coordinating their activities with neighboring traffic lights. The proposed system consist of an intelligent agent located at the road intersection that controls the traffic lights based on the current condition of the lanes they are manning by negotiation and cooperation with other agents located at different intersections with the aim of maintaining an acceptable level of traffic saturation.

Sensors are located at strategic locations to gather information that is fed to the agent for the purpose of making an informed decision based on the prevailing traffic condition. These sensors collect information on the saturation levels of the lanes and the arrival rate at of the vehicles at the intersection.

This project has three objectives
i. Design a protocol that will be used by the agents to allow vehicles to use a given intersection.
ii. Develop and test a simulated platform on which the designed protocols can be tested.
iii. Evaluate the performance of collaborative agent controlled traffic signal against a pretimed traffic signal.

To achieve these objectives this section outlines how the listed objectives will be met.

3.1 Application of Queuing Theory

Since traffic flow is greatly affected by performance of neighboring intersection and the rate at which traffic arrive at the intersection; designing the protocols to govern how the agents
negotiate access to the junction will be essential for the working of the model. By using an open queuing network ($\mathrm{M} / \mathrm{M} / 1$) with Poisson arrival rate, exponential service time (average time spent by a vehicle at the junction) and a single server (in this case a single junction); from the calculations, the average waiting time of the vehicles, and mean number of vehicles in the queue, the probability of an arriving vehicle finding the queue full can be estimated. From these computations reinforcement learning can complemented such that the agents can be able to negotiate with neighboring agents on using the intersection from the values they get from the calculations.

Considerations will be made to the lane that the vehicles intend to use after leaving the junction and determine the queue length before more vehicles are released. From these calculations rules that govern how the traffic lights will be regulated based on the results of the agents' negotiation can be formulated.

The road network figure 1 with agents stationed at the junctions can represent as figure 2 whereby consideration is made to only incoming traffic from one roundabout.

Figure 1 : Location of agents in the junction illustration

\square Agent

Figure 2: Illustration of the incoming traffic to the junctions as a queue

On the time based traffic control system where traffic is release to use the junction in a round robin with different arrival rates some queues will grow longer than others. In such a scenario the service time can adjusted i.e. increasing the time allocated to use the junction by lanes with high arrival rates and still at the same time try to maintain the waiting time of other junction to a favorable time.

By using an open queuing network with

- μ as the service time per unit time
- λ as the average arrival rate per unit time

Little's law is a mathematical theory that deals with queuing systems. Little law says that under steady state condition the average number of items in the queuing system equals the average rate at which items arrive multiplied by the average time that the item spends in the system (Chhajed et al 2008)

From Little's law the following values from which the agents will use as their basis for negotiation can be estimated
i. the mean waiting time
$W T=\rho /(\mu(1-\rho))$
where $\rho=\lambda / \mu$
ii. the mean queue length
$q=\rho^{2} /(1-\rho)$
iii. probability of n customers in the system

$$
\rho_{\mathrm{n}}=\rho^{\mathrm{n}} /(1-\rho)
$$

To ensure that the queue does not grow to ∞ we require

$$
\lambda^{*} \mu<1
$$

3.2 Data Flow Diagram

Figure 3 : Conceptual diagram

Agent communication is only restricted to the agents immediate neighbor for instance in the figure 1 above agent 1 can only communicate with 2,3 and 4 , while 3 can communicate with $1,2,4$ and 5 . This way information is propagated from one agent to the next such that when traffic is moving from intersection with agent 1 to 5 , then agent 1 negotiates with agent 3 then agent 3 negotiates with agent 5 .

3.3 Designing Agent Negotiation Protocols

Agent's negotiation to use the junction will be based on the queue length of the lane joining the junction and the waiting time such that agents with a longer queue length and waiting time get
preference to use the junction.
As the value of waiting time and queue length increases an agent gets a + ve score. The agent aims to maximize its score by reducing its queue length and waiting time such that for every reduction it gains a - ve score with the aim of reaching an optimal score of zero that indicates that there is no traffic buildup behind the junction.

To ensure that lanes with shorter queues do not wait for a very long period to use the junction, an agent gets a much higher score for every increase in waiting time as opposed to the increase in the queue length. For instance an agent can score 10 for every increase in waiting time and 1 for every increase in queue length. The agents get their score computed on every change of the cycle whereby after a predefined duration the value of waiting time and queue length is computed.

From these scores agents can negotiate such that the agent with the highest score gets priority to use the junction for a given duration and at the same time taking the following rules into consideration.
i. If the agent has the highest score turn the light to green.
ii. If the lane the agent is manning has no traffic the light remains red
iii. If the lane into which the vehicles are being released to do not have more space to accommodate more vehicles the light turns to red and the priority is assigned to the agent with the next lower score.

Pseudo code

```
//Declare variable
int wait-time
int queue_length
const x = 10 //multiplying factor to make waiting time have a
high score
if phase cycle reached then
{
    wait_time = (get no. of stopped cars) * x)/ no. of stopped
cars
    queue_length = get no. of stopped cars
```

```
if agent_with_max (wait_time + queue_length) and lane
traffic moving to has capacity then
{
    Set light-green for current lane and lane that won't
    obstruct our traffic in the same junction;
    Set light-red for lane that will obstruct traffic from
    lane with priority;
}
Else get next agent_with_max (wait_time + queue_length) and
lane traffic moving to has capacity then
{
Set light-green for current lane and lane that won't obstruct our traffic in the same junction; Set light-red for lane that will obstruct traffic from current lane in the same junction;

\section*{Agent Negotiation Overview}


\subsection*{3.4 Designing the simulation platform}

The simulated platform has been designed using Netlogo version 4.1.2 which is free and open source software that is best suited for modeling multi agent systems since the modeler can give instructions to hundreds of agents all operating independently. The Netlogo world is made up of agents. In the model we make use of two agents in the Netlogo world
i. Turtles - These are agents that move around in the world. In the model we use the turtles as cars.
ii. Patches - The world is two dimensional and is divided into a grid of patches. Each patch is a square piece on the ground over which the turtles can move on. In the model patches have been used to design the road system and the intersection
The simulation environment is developed by designing a junction with two lanes running from north to south and east to west with two lanes that have traffic moving in opposite directions. At the point where the lanes meet the junction an agent has been setup that acts as the traffic signal.

Figure 5 Illustration of the junction on the simulated platform


The vehicles in each lane can either move north for northbound vehicles, south for south bound vehicles i.e. on reaching the junction the vehicles are not allowed to change direction.
The arrival rate of the vehicles per lane can be varied by adjusting the slider linked to each lane. From this we can be able to test the model using different traffic densities in different lanes.

Each car has been designed such that they can be able to detect if the car in front of it is moving if not it stops to avoid collision, the cars are also able to detect the state of the traffic lights which determines if they can move ahead or stop.
To ensure that vehicles with a short queue length do not stop for long behind the junction we determine the average waiting time of all stationery vehicle behind the queue.

The simulation platform has an on and off switch that we use to test the proposed model and the time based scenario respectively.

\subsection*{3.5 Evaluation}

Three scenarios were simulated and comparisons made between a pre-timed system and the proposed model will be made. The three scenarios include
i. There are no vehicles arriving from north/south but for east bound there is heavy traffic
ii. The arrival rate of traffic from north/south bound vehicles is greater than that for east/west bound vehicles and vice-versa
iii. The arrival rate of traffic from north/south bound vehicles is the same for east/west bound vehicles

Simulation software was used to analyze the proposed system from which results were be collected.

Data was collected by observing a current pre-timed system in the roads at a given junction over a period of time. The data that was collected was the rate of arrival of vehicles at the junction at peak hours and also observations were made on the queue length and the time taken before a vehicle enters the junction and the average speed of the vehicles as they approach the junction. By varying arrival rate of vehicles on the simulation comparisons could be made against the data collected from the pre timed system and the results to be obtained from the simulated system. The results will be presented in charts and graphs. A summary conclusion will also be made based on the findings.

\subsection*{3.6 Chapter Summary}

This chapter has focused on how each clearly explains each object that has been given in Chapter one. It outlines the methods to be used to achieve each objective by giving how the agent negotiating protocols will be designed, how the simulation will be carried out and the results expected to be collected from the simulation.

\section*{CHAPTER FOUR}

\section*{RESULTS}

Observation of the current pre timed system at the Nyayo stadium junction shows that the cycle time in which the lights change was two minutes whereby the green light has a duration of 40 seconds, red light has a duration of 76 seconds and orange light has a duration of 4 seconds that is split into 2 seconds after the green light and 2 seconds after the red light.

Observation was focused on the rate of arrival of vehicles to the Nyayo stadium junction from Mombasa road, Langata Road, Lusaka road and from Uhuru highway during different peak hours. Data was collected on 14/05/2011 by counting the number of vehicles arriving for a period of 5 minutes

Table 1: Observed arrival of vehicles
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{4}{|l|}{ Number of Vehicles per 5 min } \\
\cline { 2 - 5 } & Mombasa Road & Langata Road & Lusaka Road & Uhuru Highway \\
\hline \(9.00 \mathrm{am}-9.30 \mathrm{am}\) & 200 & 115 & 40 & 190 \\
\hline \(9.30 \mathrm{am}-10.00 \mathrm{am}\) & 178 & 90 & 60 & 222 \\
\hline \(10.30 \mathrm{am}-11.00 \mathrm{am}\) & 190 & 97 & 25 & 198 \\
\hline \(11.30 \mathrm{am}-12.00 \mathrm{pm}\) & 164 & 72 & 42 & 204 \\
\hline \(12.00 \mathrm{pm}-1.00 \mathrm{pm}\) & 61 & 13 & 5 & 72 \\
\hline \(1.00 \mathrm{pm}-1.30 \mathrm{pm}\) & 151 & 27 & 13 & 66 \\
\hline \(1.30 \mathrm{pm}-2.00 \mathrm{pm}\) & 193 & 11 & 10 & 47 \\
\hline \(2.00 \mathrm{pm}-2.30 \mathrm{pm}\) & 51 & 5 & 7 & 42 \\
\hline \(3.00 \mathrm{pm}-3.30 \mathrm{pm}\) & 70 & 13 & 3 & 38 \\
\hline \(3.30 \mathrm{pm}-4.00 \mathrm{pm}\) & 62 & 25 & 17 & 48 \\
\hline \(4.00 \mathrm{pm}-4.30 \mathrm{pm}\) & 66 & 21 & 14 & 36 \\
\hline
\end{tabular}

In real life situation where pre timed system is used little's law can be used to estimate the queue length of traffic on a given lane. From the above observations in table 1 Little's laws will be used by taking the average arrival of vehicles for the first 10 minutes from Mombasa road(which has 4 lanes) to compute the following
- \(\mu\) as the service time
- \(\lambda\) as the average arrival rate
- \(\rho\) mean number of vehicles in the system or fraction of time the server is busy
\[
\begin{aligned}
& \mu=(40 / 120)=0.33 \\
& \lambda=\left(378 /\left(4^{*} 600\right)\right)=0.16 \\
& \rho=(0.16 / 0.33)=0.48
\end{aligned}
\]

The mean waiting time
\(\mathrm{WT}=\rho /(\mu(1-\rho))\)
where \(\rho=\lambda / \mu\)
\(\mathrm{WT}=0.48 /(0.33(1-0.48))=2.82 \mathrm{sec}\)

The mean queue length
\[
q=\rho^{2} /(1-\rho)=0.44
\]

From these calculations the agents have information that governs how they negotiate to gain access to the junction.
Three scenarios will be simulated and comparisons between a pre-timed system and the proposed model. These three scenarios are
i. There are no vehicles arriving from north/south but for east/west bound vehicles there is heavy traffic
ii. The arrival rate of traffic from north/south bound vehicles is less than that for east/west bound vehicles
iii. The arrival rate of traffic from north/south bound vehicles is the same for east/west bound vehicles
The reason as why the three scenarios were opted for is that comparisons in the performance of the proposed model against the pre timed system will be effectively evaluated by looking at the
worst case scenario when there is heavy traffic from all lanes joining into the junction, performance in moderate traffic and how the systems performances when there is no traffic from a given lane.

The first 100 seconds of the simulation was used to collect test run data thus the output is not used in the final results. Data was collected from the 900 seconds and the results are used to compare performance of the proposed model and the pre-timed system.

\section*{Scenario one: North/South bound lanes with no vehicles while East/West bound there are} vehicles.

In this scenario the arrival rate of vehicles that are North/South bound is zero while for East/West bound vehicles there is moderate traffic. The reason for this is to validate the performance of the systems.

The arrival rate per tick for the junction North \(=0\), south \(=0\), east \(=50\) and west \(=45\) and green light duration \(=10\) ticks

From the simulation results, the average waiting for the vehicles after 900 ticks was computed after three successive runs as shown in Table 2 below

Table 2 Average wait time scenario I

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{4}{|l|}{ Average Wait Time (Secs) } \\
\hline Run & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0 & 0 & 38.484 & 35.582 \\
\hline 2 & 0 & 0 & 35.699 & 37.223 \\
\hline 3 & 0 & 0 & 34.689 & 35.494 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{4}{|l|}{ Average Wait Time (Secs) } \\
\hline Run & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0 & 0 & 3.28 & 2.77 \\
\hline 2 & 0 & 0 & 3.009 & 2.846 \\
\hline 3 & 0 & 0 & 3.004 & 2.137 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 3 shows the overall wait time for the three successive runs

Table 3 Combined average wait time scenario 1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average Wait Time (Secs) } \\
\hline Pre-timed system & Proposed Model \\
\hline 18.097 & 0.14205 \\
\hline
\end{tabular}

The graphs figure 6 and 7 show the average wait time for the Pre timed system and proposed model respectively

Figure 6: Average wait time pre timed system, scenario 1
Pre-timed system


Figure 7 : Average wait time proposed system scenario I
Proposed Model


\section*{Number of Cars}

From the simulation results, the average number of the vehicles after 900 ticks was computed after three successive runs as shown in Table 4 below.

Table 4 : Average number of cars Scenario 1

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average number of cars } \\
\hline Run & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0 & 0 & 10.99 & 10.218 \\
\hline 2 & 0 & 0 & 10.9 & 10.25 \\
\hline 3 & 0 & 0 & 10.58 & 10.35 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average number of cars } \\
\hline Run & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0 & 0 & 0.382 & 0.289 \\
\hline 2 & 0 & 0 & 0.351 & 0.32 \\
\hline 3 & 0 & 0 & 0.392 & 0.296 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 5 shows the overall number of waiting vehicles for the three successive runs

Table 5 : Combined Average number of cars Scenario 1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average number of cars } \\
\hline Pre-timed system & Proposed Model \\
\hline 5.302 & 0.1691 \\
\hline
\end{tabular}

The graphs figure 8 and 9 shows the number of waiting vehicles for the Pre timed system and proposed model respectively

Figure 8 : No. of waiting cars pre timed system scenario 1
Pre-timed system


Figure 9 : No. of waiting cars proposed system scenario 1
Proposed Model


\section*{Average Speed}

From the simulation results, the average speed the vehicles are able to attain after 900 ticks was computed after three successive runs as shown in Table 6 below

Table 6 Average speed Scenario 1

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average speed } \\
\hline Run & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0 & 0 & 0.329 & 0.355 \\
\hline 2 & 0 & 0 & 0.335 & 0.352 \\
\hline 3 & 0 & 0 & 0.345 & 0.35 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average speed } \\
\hline Run & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0 & 0 & 0.960 & 0.964 \\
\hline 2 & 0 & 0 & 0.962 & 0.964 \\
\hline 3 & 0 & 0 & 0.958 & 0.966 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 7 shows the overall speed the vehicles are able to attain for the three successive runs

Table 7 Combined Average speed
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average speed } \\
\hline Pre-timed system & Proposed Model \\
\hline 0.171 & 0.481 \\
\hline
\end{tabular}

The graphs figure 10 and 11 shows the number of waiting vehicles for the Pre timed system and proposed model respectively

Figure 10 : Avg. speed pre timed system scenario 1
Pre-timed system


Figure 11 : Avg. speed proposed system scenario 1
Proposed Model


Scenario two: Arrival rate of North/South bound vehicles is much lower than that of East/West bound vehicles.
In this scenario the arrival rate of vehicles that are North/South bound is lower than that of East/West bound vehicles. The reason for this is to validate performance of the proposed system
against the performance of the pre timed systems under such conditions.
The arrival rate per tick North \(=13\), south \(=22\), east \(=50\) and west \(=45\) and green light duration \(=10\) ticks
From the simulation results, the average waiting for the vehicles after 900 ticks was computed after three successive runs as shown in Table 8 below

Table 8: Average wait time Scenario 2

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average wait time (Secs) } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 12.038 & 41.252 & 37.314 & 41.252 \\
\hline 2 & 12.6831 & 35.425 & 37.811 & 39.202 \\
\hline 3 & 12.563 & 36.233 & 37.545 & 40.233 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average wait time (Secs) } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 15.355 & 33.822 & 38.618 & 40.937 \\
\hline 2 & 15.762 & 41.0732 & 38.9178 & 42.268 \\
\hline 3 & 15.031 & 38.660 & 38.9459 & 43.839 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 9 shows the overall wait time for the three successive runs

Table 9 Combined average wait time Scenario 2
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average wait time (Secs) } \\
\hline Pre-timed system & Proposed Model \\
\hline 31.9625 & 33.6024 \\
\hline
\end{tabular}

The graphs figure 12 and 13 shows the average waiting vehicles for the Pre timed system and proposed model respectively

Figure 12: Avg. Wait time pre timed system scenario 2
Pre-timed system


Figure 13 : Avg. wait time proposed system scenario 2

\section*{Proposed Model}


\section*{Number of Cars}

From the simulation results, the average number of waiting vehicles after 900 ticks was computed after three successive runs as shown in Table 10 below

Table 10: Average number of cars Scenario 2

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average number of cars } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0.619 & 9.1 & 11.06 & 12.356 \\
\hline 2 & 0.809 & 8.054 & 11.048 & 12.153 \\
\hline 3 & 0.578 & 6.528 & 11.42 & 11.881 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average number of cars } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0.766 & 5.245 & 11.163 & 11.986 \\
\hline 2 & 0.6404 & 6.214 & 11.227 & 11.652 \\
\hline 3 & 0.721 & 5.671 & 11.345 & 12.357 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 9 shows the number of waiting vehicles for the three successive runs.

Table 11 Combined Average number of waiting cars
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average number of cars } \\
\hline Pre-timed system & Proposed Model \\
\hline 7.9671 & 7.4156 \\
\hline
\end{tabular}

The graphs figure 14 and 15 shows the number of waiting vehicles for the Pre timed system and proposed model respectively

Figure 14 : No. of waiting cars pre-timed system scenario 2
Pre-timed system


Figure 15: No of waiting cars proposed system scenario 2


\section*{Average Speed}

From the simulation results, the average speed attained by the vehicles after 900 ticks was computed after three successive runs as shown in Table 12 below.

Table 12 : Average speed scenario 3

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average Speed } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0.788 & 0.325 & 0.325 & 0.269 \\
\hline 2 & 0.803 & 0.539 & 0.311 & 0.286 \\
\hline 3 & 0.774 & 0.389 & 0.323 & 0.278 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average Speed } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 0.759 & 0.505 & 0.321 & 0.284 \\
\hline 2 & 0.8123 & 0.4436 & 0.321 & 0.298 \\
\hline 3 & 0.813 & 0.465 & 0.315 & 0.271 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 13 shows the number of waiting vehicles for the three successive runs.

Thble 13 Combined Average Speed scenario 3
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l} 
Average Speed \\
\hline Pre-timed system \\
\hline 4508
\end{tabular} Proposed Model } \\
\hline
\end{tabular}

The graphs figure 16 and 17 shows the average speed attained by the vehicles for the Pre timed system and proposed model respectively

Figure 16: Avg. speed pre-timed system scenario 2


Figure 17 : Avg. speed proposed system scenario 2
Proposed Model


Scenario three: Arrival rate of North/South bound vehicles is the same as that of East/West bound vehicles.

In this scenario the arrival rate of vehicles that are North/South bound is the same as that of East/West bound vehicles. From this performance between the proposed system and that of the pre timed system can be validated when put under the same traffic densities from all lanes The arrival rate per tick North \(=50\), south \(=43\), east \(=50\) and west \(=46\) and green light duration \(=10\) ticks

\section*{Average Wait Time}

From the simulation results, the average waiting for the vehicles after 900 ticks was computed after three successive runs as shown in Table 14 below

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average Wait Time (Sec) } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 41.06 & 44.759 & 38.515 & 42.16 \\
\hline 2 & 37.664 & 42.181 & 38.21 & 45.21 \\
\hline 3 & 38.612 & 42.551 & 37.928 & 44.819 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Average Wait Time (Sec) } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 43.67 & 47.406 & 57.703 & 64.57 \\
\hline 2 & 38.305 & 45.543 & 55.862 & 60.511 \\
\hline 3 & 36.406 & 43.232 & 58.671 & 62.063 \\
\hline
\end{tabular}

The combined Average for all junctions in Table 15 shows the average wait time of the vehicles for the three successive runs

Table 15 Combined Average wait time scenario 3
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average Wait Time (Sec) } \\
\hline Pre-timed system & Proposed Model \\
\hline 41.1391 & 51.162 \\
\hline
\end{tabular}

The graphs figure 18 and 19 shows the average speed attained by the vehicles for the Pre timed lystem and proposed model respectively

Figure 18 : Avg. wait time pre-timed system scenario 3
Pe-timed system


Figure 19 : Avg. wait time proposed system scenario 3

\section*{Proposed Model}
luber of waiting Cars
Iorl the simulation results, the average number of waiting vehicles after 900 ticks was Mputed after three successive runs as shown in Table 16 below

Table 16 Average number of cars scenario 3

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Number of waiting Cars } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 12.231 & 12.919 & 12.395 & 12.558 \\
\hline 2 & 11.978 & 13.124 & 12.502 & 12.163 \\
\hline 3 & 11.882 & 12.546 & 12.755 & 12.165 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Number of waiting Cars } \\
\hline Runs & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 1 & 10.65 & 11.254 & 12.722 & 12.562 \\
\hline 2 & 10.319 & 10.778 & 13.304 & 13.117 \\
\hline 3 & 10.381 & 11.09 & 13.595 & 13.216 \\
\hline
\end{tabular}

The combined average for all junctions in Table 17 shows the average number waiting vehicles for the three successive runs

Table 17 Combined average number of cars scenario 3
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Number of waiting Cars } \\
\hline Pre-timed system & Proposed Model \\
\hline 12.435 & 11.916 \\
\hline
\end{tabular}

The graphs figure 20 and 21 shows the number of vehicles for the Pre timed system and proposed model respectively

Figure 20 : No. of cars waiting cars pre-timed system scenario 3
Pre-timed system


Figure 21 : No. of waiting cars proposed system scenario 3

Proposed Model


\section*{Average Speed}

From the simulation results, the average speed attained by the vehicles after 900 ticks was computed after three successive runs as shown in Table 18 below

Table 18 Average speed scenario 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Pre-timed system} & \multicolumn{5}{|l|}{Proposed Model} \\
\hline \multicolumn{5}{|l|}{Average Speed} & \multicolumn{5}{|l|}{Average Speed} \\
\hline Runs & North bound & South bound & East bound & West bound & Runs & North bound & South bound & \begin{tabular}{l}
East \\
bound
\end{tabular} & West bound \\
\hline 1 & 0.284 & 0.237 & 0.260 & 0.272 & 1 & 0.344 & 0.312 & 0.269 & 0.272 \\
\hline 2 & 0.277 & 0.228 & 0.269 & 0.276 & 2 & 0.353 & 0.325 & 0.243 & 0.247 \\
\hline 3 & 0.28 & 0.251 & 0.26 & 0.277 & 3 & 0.353 & 0.317 & 0.230 & 0.240 \\
\hline
\end{tabular}

The combined average for all junctions in Table 19 shows the average speed attained by the vehicles for the three successive runs.

Table 19 Combined Average speed scenario 3
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Average Speed } \\
\hline Pre-timed system & Proposed Model \\
\hline 0.26425 & 0.2921 \\
\hline
\end{tabular}

The graphs figure 22 and 23 shows the average speed attained by the vehicles for the Pre timed system and proposed model respectively

Pre-timed system


Figure 23 : Avg. speed proposed system scenario 3
Proposed Model


\section*{Chapter Summary}

This chapter has focused on the results obtained from the simulation by comparing the performance of the proposed traffic control system against a pre timed traffic control system. The results obtained include the average waiting time of vehicles, number of waiting vehicles and the average speed that the vehicles are able to attain. These results have been clearly presented in tables and graphs for easier interpretation.

\section*{CHAPTER FIVE DISCUSSION, CONCLUSION AND RECOMMENDATIONS}

\subsection*{5.0 Introduction}

The purpose of this study was to investigate the effectiveness of multi agent systems in the control of traffic. Comparisons were made between the proposed multi agent traffic control systems against a pre timed system.

\subsection*{5.1 Discussion}

The results have been collected after running three separate runs in each scenario to ensure the accuracy of the data such that the results obtained are averaged so that a more accurate figure is obtained. In each scenario the simulation is run for 1000 seconds but the results obtained from the first 100 seconds is considered as test run data thus it's not included in the final computation of the simulation' results.

From the results obtained in the three scenarios, as the number of vehicles increases there is a drastic increase in the average wait time and the number of cars waiting behind the junction.

Table 20 Summary of Performance
\begin{tabular}{|l|l|l|l|l|}
\cline { 2 - 5 } \multicolumn{2}{c|}{} & Pre-timed System & Proposed Model & \% Improvement \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Average \\
Time
\end{tabular}} & Waiting & Scenario 1 & 18.097 & 0.14205 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Number of waiting \\
vehicles
\end{tabular}} & Scenario 1 & 5.302 & 33.6024 & \(-5 \%\) \\
\cline { 2 - 5 } & Scenario 2 & 31.9625 & 51.162 & \(-24 \%\) \\
\cline { 2 - 5 } & Scenario 3 & 41.1391 & 0.1691 & \(97 \%\) \\
\cline { 2 - 5 } & Scenario 2 & 7.9671 & 7.4156 & \(7 \%\) \\
\cline { 2 - 5 } & Scenario 3 & 12.435 & 11.916 & \(4 \%\) \\
\hline Average Speed & Scenario 1 & 0.171 & 0.481 & \(64 \%\) \\
\cline { 2 - 5 } & Scenario 2 & 0.4508 & 0.4673 & \(4 \%\) \\
\cline { 2 - 5 } & Scenario 3 & 0.26425 & 0.2921 & \(10 \%\) \\
\hline
\end{tabular}

Scenario 1 where North/South bound lanes with no vehicles while East/West bound there are vehicles shows that the proposed model outperforms the pre-timed system in terms to higher iverage speed attained, lower number of waiting vehicles and lower waiting time. This is
attributed to the fact that the pre-timed system does not consider the lanes that do not have traffic thus it turns the traffic lights to green on the North/south bound lanes thus the peaks in the graph as traffic moving from east/west has to wait. This translates to \(87 \%\) improvement in terms of waiting time, average speed and number of waiting vehicles that the proposed model is able to achieve against the pre-times system

Scenario 2 shows that the proposed model attains slightly better performance than the pre-timed system since the vehicles tend to attain slightly higher average speeds, fewer number of waiting cars and slightly lower waiting time. This translates to \(8 \%\) improvement in terms of waiting time, average speed and number of waiting vehicles that our proposed model is able to achieve against the pre-times system.

Scenario 3 shows that the proposed model shows better performance than the pre-timed system in terms of higher average speed attained by the vehicles and fewer waiting vehicles. The average waiting time in the proposed models is slightly higher that the pre-timed system thus it can be concluded that the vehicles have to wait slightly longer but when given access to use the junction they use the junction for a longer period such the lights are able to release almost all stationery vehicles behind the junction such that arriving are able to attain higher speeds. This translates to \(6 \%\) improvement in terms of waiting time, average speed and number of waiting vehicles that the proposed model is able to achieve against the pre-times system.

\subsection*{5.2 Conclusions}

This project aimed to address the inefficiency of pre timed traffic signals by introducing the aspect of multi agents whereby the agents are able to detect traffic densities and respond effectively by controlling the traffic lights so as to reduce wait times and queue lengths.

The research was guided by the following research questions
i. What are the limitations of the pre timed traffic control systems currently being used?
ii. What will be the effect of adding queuing theory to reinforcement learning in terms of improving traffic flow?
iii. Does a multi agent based traffic control system outperform a pre timed based traffic control system in terms of efficiency?

From the results obtained, the multi agent traffic control system is able to effectively control traffic regardless of the traffic densities as opposed to the pre timed traffic control system whose performance deteriorates with increase in traffic.

\subsection*{5.2.1 Limitation of pre timed traffic control system}

In a pre timed traffic control system there is poor or no interaction between the existing traffic control systems such that the traffic lights may turn to green even when the lane in which the vehicles are moving to congested hence the vehicles end up blocking the junction.

On the other hand the pre timed traffic control systems used in the road systems tend not to respond effectively in circumstances where the traffic density is high since the traffic lights will always be turned on and off in response to the set cycle regardless of whether a given lane has traffic or not thus this results to traffic build up at the intersection.

This has been clearly highlighted in scenario one where the agent based system is able to attain an improvement of \(87 \%\) as opposed to the pre timed system due to this limitation.

\subsection*{5.2.2 Effects of adding queuing theory to reinforcement learning.}

In all the three scenarios the agent based traffic control that makes use of reinforcement learning, and queuing theory to estimate the queue length from which the agent are able to make informed decision shows improved performances. By using the arrival rate the agents can estimate the queue length from which they will base their negotiations to gain preference to use the junction.

\subsection*{5.2.3 Performance difference between the systems}

The results in table 20 show that the performance of both systems deteriorates with increase in traffic volumes. Regardless of this a multi agent based traffic control system can perform better than the pre-timed traffic control system regardless of the traffic situation on the roads. From the results this is about \(33 \%\) improvement of the whole system in the three scenarios that the proposed system is able to attain as opposed to the pre-timed system.

These findings are in agreement with El-Tantawy etal (2010) whose acyclic Q-learning approach outperforms the pre-timed signal plan by reducing total delay by \(36 \%\).

Comparisons in performance between the research and that done using fuzzy logic (Adunya 2011) show that fuzzy logic is able to attain \(22 \%\) improvement in overall waiting time as
opposed to the pre-timed system while the research shows an improvement of \(23 \%\) in the waiting time.

This is attributed to the fact that multi agent systems are able to observe the prevailing traffic conditions, negotiate amongst themselves and adjust accordingly to ensure that the traffic is moving effectively.
It can be concluded that multi-agent based systems traffic controls can be effectively implemented and this will result to drastic improvement in traffic flow.

\subsection*{5.3 Limitations}

In this research vehicles are not allowed to change direction thus the results we obtain may be limiting in the sense that the time a vehicle may take to change direction.
Presently the research focuses on a single junction; this could be extended by increasing the number of junctions in the system and observing how the agents will interact with each other and in return the effect this will have on the overall performance of the road network.

\subsection*{5.4 Recommendation}

Multi agent based traffic controls can be effectively implemented in the control of traffic. From the results it shows tremendous benefits can be achieved from using the agent based traffic control system as opposed to the pre timed system in terms of reduced waiting time and queue lengths.
Future research could be conducted on how multi agent systems can be used in offering alternative routes to drivers since the agents located at the junctions have enough information about the traffic density in that section thus by sharing information with neighboring agents they can give a road user an idea of what to expect before they reach a given junction and also offer alternative routes to the users destination.

\subsection*{5.5 Chapter Summary}

This chapter has focused on the results obtained from the simulation by comparing the performance of the proposed traffic control system against a pre timed traffic control system in a more summarized form, it also highlights the how the research questions have been answered from the results obtained and recommendations for future work.

\section*{REFERENCES}
- Ana L. Bazzan and Franziska Klüglv 2009,USA,Multi-Agent Systems for Traffic and Transportation Engineering
- D. Chhajed and TJ. Lowe 2008, Building Intution: Insight from Basic Operation Management Models and Principles, Springer Science + Business Media, New York
- D. H. Wolpert, K. R. Wheeler and K. Tumer 1999, Collective Intelligence for Control of Distributed Dynamical Systems NASA Ames Research Center, Mo ett Field, CA 94035 Tech Report: NASA-ARC-IC-99-44
- Denise de Oliveira and Ana L. C. Bazzan 2009, Multi agent Learning on Traffic Lights Control: Effects of Using Shared Information
- Dresner, K. \& Stone, P. 2004, Multi agent traffic management: A protocol for defining intersection control policies UT-AI-TR-04-315, The University of Texas at Austin, Department of Computer Sciences, AI Laboratory.
- Dresner, K. \& Stone, P. 2005, Multi agent traffic management: An improved intersection control mechanism. In The Fourth International Joint Conference on Autonomous Agents and Multi agent Systems, (pp. 471-477), Utrecht, The Netherlands.
- Duan Houli, Li Zhiheng and Zhang Yi 2010, Multiobjective reinforcement learning for Traffic Signal Control using Vehicular Ad hoc Network
- Gunter Bolch, Stefan Greiner, Hermann de Meer, Kishor Shridharbhai Trivedi 2006, Queueing Networks and Markov Chains, John Wiley \& Sons Inc, New Jersey
- Ivo Adan and Jacques Resing 2002, Queuing Theory, Department of Mathematics and Computing Science Eindhoven University of Technology
- Jos'e M. Vidal 2007, Fundamentals of Multiagent Systems
- Joseph Adunya 2011, An Intelligent Traffic light Algorithm System
- Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis 2008, Multi agent Reinforcement Learning for Urban Traffic Control using Coordination Graphs
- Marco Wiering, Jelle van Veenen, Jilles Vreeken, and Arne Koopmanc 2009, Intelligent traffic lights control
- Micheal Wooldridge 2002, An Introduction to Multi-agent Systems, England, John Wiley \& Sons Ltd
- Richard S. Sutton and Andrew G. Barto 2005, Reinforcement Learning: An Introduction, The MIT Press Cambridge, Massachusetts London, England
- Samah El-Tantawy and Baher Abdulhai (2010) An Agent Based Learning Towards Decentralized and Coordinated Traffic Signal Control
- Vicente R. Tomas and Luis A. Garcia (2005), A Cooperative Multi agent System for Traffic Management and Control
- Visit Hirankitti, Jaturapith Krohkaew and Chris Hogger (2007) A multi Agent Approach for Intelligent Traffic Lights Control

\section*{Appendix 1 Sample of collected simulation Data}

\section*{Scenario one}

\section*{Average Wait Time}

Table 21 Sample Output, Average Wait Time Scenario 1

Pre-timed system
\begin{tabular}{|c|c|c|c|c|}
\hline Time & East bound & \begin{tabular}{l}
West \\
Bound
\end{tabular} & \begin{tabular}{l}
North \\
Bound
\end{tabular} & South Bound \\
\hline 100 & 55 & 14.44444 & 0 & 0 \\
\hline 101 & 50 & 18.88889 & 0 & 0 \\
\hline 102 & 51.66667 & 20 & 0 & 0 \\
\hline 103 & 37.5 & 22 & 0 & 0 \\
\hline 104 & 16 & 27.77778 & 0 & 0 \\
\hline 105 & 17.5 & 28.18182 & 0 & 0 \\
\hline 106 & 22 & 32.22222 & 0 & 0 \\
\hline 107 & 30 & 30 & 0 & 0 \\
\hline 108 & 35.55556 & 34.16667 & 0 & 0 \\
\hline 109 & 42 & 45.55556 & 0 & 0 \\
\hline 110 & 48.18182 & 44.16667 & 0 & 0 \\
\hline 111 & 50.76923 & 53.33333 & 0 & 0 \\
\hline 112 & 55.83333 & 47.5 & 0 & 0 \\
\hline 113 & 50 & 46.92308 & 0 & 0 \\
\hline 114 & 46.42857 & 45 & 0 & 0 \\
\hline 115 & 43.63636 & 50 & 0 & 0 \\
\hline 116 & 36.66667 & 48.33333 & 0 & 0 \\
\hline 117 & 40.90909 & 43 & 0 & 0 \\
\hline 118 & 50 & 46.66667 & 0 & 0 \\
\hline 119 & 41.11111 & 39.09091 & 0 & 0 \\
\hline 120 & 36.25 & 42.85714 & 0 . & 0 \\
\hline 121 & 27.5 & 20 & 0 & 0 \\
\hline 122 & 15 & 11.42857 & 0 & 0 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
Bound
\end{tabular} & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} \\
\hline 100 & 1 & 0 & 0 & 0 \\
\hline 101 & 2 & 0 & 0 & 0 \\
\hline 102 & 0 & 0 & 0 & 0 \\
\hline 103 & 0 & 2 & 0 & 0 \\
\hline 104 & 2 & 1 & 0 & 0 \\
\hline 105 & 1 & 0 & 0 & 0 \\
\hline 106 & 0 & 0 & 0 & 0 \\
\hline 107 & 1 & 2 & 0 & 0 \\
\hline 108 & 0 & 1 & 0 & 0 \\
\hline 109 & 0 & 0 & 0 & 0 \\
\hline 110 & 0 & 0 & 0 & 0 \\
\hline 111 & 1 & 0 & 0 & 0 \\
\hline 112 & 1 & 0 & 0 & 0 \\
\hline 113 & 1 & 0 & 0 & 0 \\
\hline 114 & 2 & 0 & 0 & 0 \\
\hline 115 & 1 & 0 & 0 & 0 \\
\hline 116 & 0 & 0 & 0 & 0 \\
\hline 117 & 1 & 0 & 0 & 0 \\
\hline 118 & 0 & 1 & 0 & 0 \\
\hline 119 & 0 & 0 & 0 & 0 \\
\hline 120 & 0 & 0 & 0 & 0 \\
\hline 121 & 1 & 0 & 0 & 0 \\
\hline 122 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline 123 & 12.5 & 12.85714 & 0 & 0 \\
\hline 124 & 12.5 & 14.44444 & 0 & 0 \\
\hline 125 & 18.57143 & 18.88889 & 0 & 0 \\
\hline 126 & 19 & 20.76923 & 0 & 0 \\
\hline 127 & 23.3333 & 27.5 & 0 & 0 \\
\hline 128 & 31.81818 & 33.63636 & 0 & 0 \\
\hline 129 & 33.57143 & 34 & 0 & 0 \\
\hline 130 & 40.76923 & 42 & 0 & 0 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|l|l|l|l|}
\hline 123 & 0 & 0 & 0 & 0 \\
\hline 124 & 0 & 0 & 0 & 0 \\
\hline 125 & 0 & 0 & 0 & 0 \\
\hline 126 & 0 & 1 & 0 & 0 \\
\hline 127 & 0 & 0 & 0 & 0 \\
\hline 128 & 0 & 0 & 0 & 0 \\
\hline 129 & 0 & 1 & 0 & 0 \\
\hline 130 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Number of Cars}

Table 22 Sample Output, Average number of cars Scenario 1
Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 0 & 0 & 8 & 9 \\
\hline 101 & 0 & 0 & 7 & 9 \\
\hline 102 & 0 & 0 & 6 & 9 \\
\hline 103 & 0 & 0 & 8 & 10 \\
\hline 104 & 0 & 0 & 5 & 9 \\
\hline 105 & 0 & 0 & 8 & 11 \\
\hline 106 & 0 & 0 & 10 & 9 \\
\hline 107 & 0 & 0 & 9 & 12 \\
\hline 108 & 0 & 0 & 9 & 12 \\
\hline 109 & 0 & 0 & 10 & 9 \\
\hline 110 & 0 & 0 & 11 & 12 \\
\hline 111 & 0 & 0 & 13 & 12 \\
\hline 112 & 0 & 0 & 12 & 12 \\
\hline 113 & 0 & 0 & 12 & 13 \\
\hline 114 & 0 & 0 & 14 & 12 \\
\hline 115 & 0 & 0 & 11 & 11 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 0 & 0 & 1 & 0 \\
\hline 101 & 0 & 0 & 0 & 1 \\
\hline 102 & 0 & 0 & 0 & 0 \\
\hline 103 & 0 & 0 & 0 & 0 \\
\hline 104 & 0 & 0 & 0 & 0 \\
\hline 105 & 0 & 0 & 1 & 0 \\
\hline 106 & 0 & 0 & 0 & 0 \\
\hline 107 & 0 & 0 & 0 & 0 \\
\hline 108 & 0 & 0 & 0 & 0 \\
\hline 109 & 0 & 0 & 0 & 1 \\
\hline 110 & 0 & 0 & 1 & 0 \\
\hline 111 & 0 & 0 & 0 & 0 \\
\hline 112 & 0 & 0 & 0 & 1 \\
\hline 113 & 0 & 0 & 3 & 0 \\
\hline 114 & 0 & 0 & 2 & 0 \\
\hline 115 & 0 & 0 & 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 116 & 0 & 0 & 12 & 12 & 116 & 0 & 0 & 1 & 1 \\
\hline 117 & 0 & 0 & 11 & 10 & 117 & 0 & 0 & 0 & 0 \\
\hline 118 & 0 & 0 & 7 & 9 & 118 & 0 & 0 & 0 & 0 \\
\hline 119 & 0 & 0 & 9 & 11 & 119 & 0 & 0 & 0 & 0 \\
\hline 120 & 0 & 0 & 8 & 7 & 120 & 0 & 0 & 1 & 0 \\
\hline 121 & 0 & 0 & 4 & 7 & 121 & 0 & 0 & 1 & 2 \\
\hline 122 & 0 & 0 & 6 & 7 & 122 & 0 & 0 & 0 & 1 \\
\hline 123 & 0 & 0 & 4 & 7 & 123 & 0 & 0 & 0 & 0 \\
\hline 124 & 0 & 0 & 8 & 9 & 124 & 0 & 0 & 0 & 0 \\
\hline 125 & 0 & 0 & 7 & 9 & 125 & 0 & 0 & 0 & 1 \\
\hline 126 & 0 & 0 & 10 & 13 & 126 & 0 & 0 & 0 & 0 \\
\hline 127 & 0 & 0 & 12 & 12 & 127 & 0 & 0 & 0 & 2 \\
\hline 128 & 0 & 0 & 11 & 11 & 128 & 0 & 0 & 0 & 1 \\
\hline 129 & 0 & 0 & 14 & 15 & 129 & 0 & 0 & 0 & 2 \\
\hline 130 & 0 & 0 & 13 & 15 & 130 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

Table 23 Sample Output, Average speed Scenario I

\section*{Average Speed}

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} & \begin{tabular}{l} 
East \\
Bound
\end{tabular} & \begin{tabular}{l} 
West \\
Bound
\end{tabular} \\
\hline 100 & 0.0000 & 0.0000 & 0.4660 & 0.3973 \\
\hline 101 & 0.0000 & 0.0000 & 0.5313 & 0.4356 \\
\hline 102 & 0.0000 & 0.0000 & 0.5700 & 0.3980 \\
\hline 103 & 0.0000 & 0.0000 & 0.4271 & 0.3313 \\
\hline 104 & 0.0000 & 0.0000 & 0.6386 & 0.3980 \\
\hline 105 & 0.0000 & 0.0000 & 0.4653 & 0.2660 \\
\hline 106 & 0.0000 & 0.0000 & 0.3320 & 0.3980 \\
\hline 107 & 0.0000 & 0.0000 & 0.3980 & 0.2494 \\
\hline 108 & 0.0000 & 0.0000 & 0.3987 & 0.2481 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} & \begin{tabular}{l} 
East \\
Bound
\end{tabular} & \begin{tabular}{l} 
West \\
Bound
\end{tabular} \\
\hline 100 & 0.0000 & 0.0000 & 0.9091 & 1.0000 \\
\hline 101 & 0.0000 & 0.0000 & 0.8173 & 1.0000 \\
\hline 102 & 0.0000 & 0.0000 & 0.9982 & 1.0000 \\
\hline 103 & 0.0000 & 0.0000 & 1.0000 & 0.8000 \\
\hline 104 & 0.0000 & 0.0000 & 0.8000 & 0.8878 \\
\hline 105 & 0.0000 & 0.0000 & 0.8980 & 0.9989 \\
\hline 106 & 0.0000 & 0.0000 & 0.9990 & 1.0000 \\
\hline 107 & 0.0000 & 0.0000 & 0.9000 & 0.8000 \\
\hline 108 & 0.0000 & 0.0000 & 0.9990 & 0.8878 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 109 & 0.0000 & 0.0000 & 0.3333 & 0.4350 & 109 & 0.0000 & 0.0000 & 1.0000 & 0.9989 \\
\hline 110 & 0.0000 & 0.0000 & 0.3125 & 0.2500 & 110 & 0.0000 & 0.0000 & 1.0000 & 1.0000 \\
\hline 111 & 0.0000 & 0.0000 & 0.1875 & 0.2494 & 111 & 0.0000 & 0.0000 & 0.9091 & 1.0000 \\
\hline 112 & 0.0000 & 0.0000 & 0.2929 & 0.2929 & 112 & 0.0000 & 0.0000 & 0.9082 & 1.0000 \\
\hline 113 & 0.0000 & 0.0000 & 0.2929 & 0.1869 & 113 & 0.0000 & 0.0000 & 0.9082 & 1.0000 \\
\hline 114 & 0.0000 & 0.0000 & 0.2217 & 0.2481 & 114 & 0.0000 & 0.0000 & 0.8173 & 1.0000 \\
\hline 115 & 0.0000 & 0.0000 & 0.3500 & 0.3113 & 115 & 0.0000 & 0.0000 & 0.9082 & 1.0000 \\
\hline 116 & 0.0000 & 0.0000 & 0.2929 & 0.2494 & 116 & 0.0000 & 0.0000 & 0.9990 & 1.0000 \\
\hline 117 & 0.0000 & 0.0000 & 0.3106 & 0.3307 & 117 & 0.0000 & 0.0000 & 0.9091 & 1.0000 \\
\hline 118 & 0.0000 & 0.0000 & 0.5600 & 0.4363 & 118 & 0.0000 & 0.0000 & 0.9990 & 0.8750 \\
\hline 119 & 0.0000 & 0.0000 & 0.4369 & 0.2653 & 119 & 0.0000 & 0.0000 & 1.0000 & 0.9986 \\
\hline 120 & 0.0000 & 0.0000 & 0.4640 & 0.5300 & 120 & 0.0000 & 0.0000 & 1.0000 & 1.0000 \\
\hline 121 & 0.0000 & 0.0000 & 0.7293 & 0.4971 & 121 & 0.0000 & 0.0000 & 0.9091 & 1.0000 \\
\hline 122 & 0.0000 & 0.0000 & 0.5693 & 0.5293 & 122 & 0.0000 & 0.0000 & 0.9990 & 1.0000 \\
\hline 123 & 0.0000 & 0.0000 & 0.7107 & 0.5300 & 123 & 0.0000 & 0.0000 & 1.0000 & 1.0000 \\
\hline 124 & 0.0000 & 0.0000 & 0.4271 & 0.3973 & 124 & 0.0000 & 0.0000 & 1.0000 & 1.0000 \\
\hline 125 & 0.0000 & 0.0000 & 0.5313 & 0.4350 & 125 & 0.0000 & 0.0000 & 1.0000 & 1.0000 \\
\hline 126 & 0.0000 & 0.0000 & 0.3738 & 0.2341 & 126 & 0.0000 & 0.0000 & 1.0000 & 0.8750 \\
\hline 127 & 0.0000 & 0.0000 & 0.2929 & 0.2918 & 127 & 0.0000 & 0.0000 & 1.0000 & 0.9986 \\
\hline 128 & 0.0000 & 0.0000 & 0.3518 & 0.3506 & 128 & 0.0000 & 0.0000 & 1.0000 & 1.0000 \\
\hline 129 & 0.0000 & 0.0000 & 0.1759 & 0.1661 & 129 & 0.0000 & 0.0000 & 1.0000 & 0.8571 \\
\hline 130 & 0.0000 & 0.0000 & 0.2335 & 0.1656 & 130 & 0.0000 & 0.0000 & 1.0000 & 0.9986 \\
\hline
\end{tabular}

\section*{Scenario two}

\section*{Average Wait Time}

Table 24 Sample Output, Average wait time Scenario 2

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} \\
\hline 100 & 47.7778 & 73.3333 & 30.0000 & 61.6667 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} \\
\hline 100 & 17.1429 & 11.6667 & 46.6667 & 80.0000 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
101 & 44.0000 & 48.3333 & 40.0000 & 62.8571 \\
\hline 102 & 18.5714 & 28.8889 & 0.0000 & 58.5714 \\
\hline 103 & 15.7143 & 24.4444 & 0.0000 & 61.6667 \\
\hline 104 & 17.5000 & 22.5000 & 0.0000 & 55.0000 \\
\hline 105 & 23.7500 & 17.5000 & 0.0000 & 40.0000 \\
\hline 106 & 27.7778 & 21.0000 & 0.0000 & 32.5000 \\
\hline 107 & 32.2222 & 25.8333 & 0.0000 & 12.5000 \\
\hline 108 & 38.0000 & 33.3333 & 0.0000 & 10.0000 \\
\hline 109 & 35.7143 & 37.1429 & 0.0000 & 10.0000 \\
\hline 110 & 45.3846 & 47.6923 & 0.0000 & 16.0000 \\
\hline 111 & 49.2857 & 52.8571 & 0.0000 & 20.0000 \\
\hline 112 & 46.1538 & 55.6250 & 0.0000 & 10.0000 \\
\hline 113 & 47.5000 & 60.7692 & 10.0000 & 10.0000 \\
\hline 114 & 40.6667 & 59.2857 & 20.0000 & 17.5000 \\
\hline 115 & 46.9231 & 48.5714 & 30.0000 & 24.0000 \\
\hline 116 & 42.5000 & 42.9412 & 40.0000 & 34.0000 \\
\hline 117 & 36.0000 & 50.0000 & 50.0000 & 44.0000 \\
\hline 118 & 28.8889 & 47.1429 & 35.0000 & 41.4286 \\
\hline 119 & 26.2500 & 51.6667 & 45.0000 & 50.0000 \\
\hline 120 & 33.3333 & 44.1667 & 55.0000 & 53.7500 \\
\hline 121 & 23.3333 & 51.1111 & 65.0000 & 49.0909 \\
\hline 122 & 11.6667 & 30.0000 & 50.0000 & 63.0000 \\
\hline 123 & 13.3333 & 25.8333 & 0.0000 & 73.7500 \\
\hline 124 & 15.0000 & 27.0000 & 10.0000 & 78.5714 \\
\hline 125 & 17.7778 & 20.8333 & 0.0000 & 71.4286 \\
\hline 126 & 20.0000 & 25.0000 & 0.0000 & 64.2857 \\
\hline 127 & 21.0000 & 30.9091 & 0.0000 & 51.2500 \\
\hline 128 & 27.0000 & 28.7500 & 0.0000 & 37.5000 \\
\hline 129 & 34.0000 & 36.2500 & 0.0000 & 21.2500 \\
\hline 130 & 33.5714 & 44.6667 & 0.0000 & 14.0000 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline 101 & 20.0000 & 12.0000 & 56.6667 & 90.0000 \\
\hline 102 & 10.0000 & 12.5000 & 26.6667 & 40.0000 \\
\hline 103 & 11.6667 & 12.8571 & 30.0000 & 10.0000 \\
\hline 104 & 17.5000 & 16.6667 & 20.0000 & 15.0000 \\
\hline 105 & 18.5714 & 15.5556 & 20.0000 & 20.0000 \\
\hline 106 & 22.5000 & 22.5000 & 10.0000 & 10.0000 \\
\hline 107 & 31.4286 & 25.5556 & 0.0000 & 10.0000 \\
\hline 108 & 31.0000 & 30.0000 & 0.0000 & 0.0000 \\
\hline 109 & 39.0000 & 35.4545 & 0.0000 & 0.0000 \\
\hline 110 & 42.7273 & 39.2308 & 0.0000 & 0.0000 \\
\hline 111 & 48.3333 & 45.0000 & 0.0000 & 0.0000 \\
\hline 112 & 44.5455 & 40.7143 & 10.0000 & 0.0000 \\
\hline 113 & 38.1818 & 42.3077 & 15.0000 & 0.0000 \\
\hline 114 & 43.0000 & 35.7143 & 25.0000 & 0.0000 \\
\hline 115 & 28.3333 & 36.4286 & 35.0000 & 0.0000 \\
\hline 116 & 20.0000 & 37.2727 & 45.0000 & 0.0000 \\
\hline 117 & 16.6667 & 24.0000 & 55.0000 & 0.0000 \\
\hline 118 & 14.2857 & 22.1429 & 65.0000 & 10.0000 \\
\hline 119 & 18.0000 & 21.0000 & 75.0000 & 10.0000 \\
\hline 120 & 20.0000 & 19.0909 & 85.0000 & 20.0000 \\
\hline 121 & 22.2222 & 17.7778 & 95.0000 & 30.0000 \\
\hline 122 & 12.8571 & 19.0000 & 100.0000 & 25.0000 \\
\hline 123 & 14.1667 & 21.6667 & 0.0000 & 0.0000 \\
\hline 124 & 20.0000 & 25.8333 & 10.0000 & 10.0000 \\
\hline 125 & 24.6667 & 25.5556 & 0.0000 & 0.0000 \\
\hline 126 & 32.5000 & 20.0000 & 10.0000 & 0.0000 \\
\hline 127 & 36.1538 & 24.1667 & 0.0000 & 0.0000 \\
\hline 128 & 40.0000 & 29.2857 & 0.0000 & 0.0000 \\
\hline 129 & 46.2500 & 36.1538 & 0.0000 & 0.0000 \\
\hline 130 & 50.5556 & 40.0000 & 0.0000 & 0.0000 \\
\hline
\end{tabular}

\section*{Number of Cars}

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 1 & 6 & 9 & 9 \\
\hline 101 & 1 & 7 & 5 & 6 \\
\hline 102 & 0 & 7 & 7 & 9 \\
\hline 103 & 0 & 6 & 7 & 9 \\
\hline 104 & 0 & 6 & 8 & 8 \\
\hline 105 & 0 & 4 & 8 & 8 \\
\hline 106 & 0 & 4 & 9 & 10 \\
\hline 107 & 0 & 4 & 9 & 12 \\
\hline 108 & 0 & 1 & 10 & 12 \\
\hline 109 & 0 & 4 & 14 & 14 \\
\hline 110 & 0 & 5 & 13 & 13 \\
\hline 111 & 0 & 3 & 14 & 14 \\
\hline 112 & 0 & 1 & 13 & 16 \\
\hline 113 & 1 & 3 & 12 & 13 \\
\hline 114 & 1 & 4 & 15 & 14 \\
\hline 115 & 1 & 5 & 13 & 14 \\
\hline 116 & 1 & 5 & 12 & 17 \\
\hline 117 & 1 & 5 & 10 & 15 \\
\hline 118 & 2 & 7 & 9 & 14 \\
\hline 119 & 2 & 7 & 8 & 12 \\
\hline 120 & 2 & 8 & 3 & 12 \\
\hline 121 & 2 & 11 & 3 & 9 \\
\hline 122 & 1 & 10 & 6 & 10 \\
\hline 123 & 0 & 8 & 6 & 12 \\
\hline 124 & 1 & 7 & 8 & 10 \\
\hline & 12 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 3 & 4 & 7 & 6 \\
\hline 101 & 3 & 4 & 6 & 5 \\
\hline 102 & 3 & 1 & 3 & 4 \\
\hline 103 & 2 & 2 & 6 & 7 \\
\hline 104 & 2 & 2 & 4 & 3 \\
\hline 105 & 1 & 1 & 7 & 9 \\
\hline 106 & 1 & 1 & 8 & 8 \\
\hline 107 & 0 & 1 & 7 & 9 \\
\hline 108 & 0 & 0 & 10 & 10 \\
\hline 109 & 0 & 0 & 10 & 11 \\
\hline 110 & 0 & 0 & 11 & 13 \\
\hline 111 & 0 & 0 & 12 & 14 \\
\hline 112 & 1 & 0 & 11 & 14 \\
\hline 113 & 2 & 0 & 11 & 13 \\
\hline 114 & 2 & 0 & 10 & 14 \\
\hline 115 & 2 & 0 & 6 & 14 \\
\hline 116 & 2 & 0 & 11 & 11 \\
\hline 117 & 2 & 0 & 6 & 10 \\
\hline 118 & 2 & 1 & 14 & 14 \\
\hline 119 & 2 & 1 & 10 & 10 \\
\hline 120 & 2 & 1 & 9 & 11 \\
\hline 121 & 2 & 1 & 9 & 9 \\
\hline 122 & 1 & 2 & 7 & 10 \\
\hline 123 & 0 & 0 & 12 & 12 \\
\hline 124 & 2 & 1 & 13 & 12 \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
125 & 0 & 7 & 9 & 12 \\
\hline 126 & 0 & 7 & 8 & 12 \\
\hline 127 & 0 & 8 & 10 & 11 \\
\hline 128 & 0 & 8 & 10 & 16 \\
\hline 129 & 0 & 8 & 10 & 16 \\
\hline 130 & 0 & 5 & 14 & 15 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
125 & 0 & 0 & 15 & 9 \\
\hline 126 & 1 & 0 & 12 & 10 \\
\hline 127 & 0 & 0 & 13 & 12 \\
\hline 128 & 0 & 0 & 15 & 14 \\
\hline 129 & 0 & 0 & 16 & 13 \\
\hline 130 & 0 & 0 & 18 & 14 \\
\hline
\end{tabular}

\section*{Average Speed}

Table 26 Sample output Average speed scenario 2

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
Bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 0.7500 & 0.3333 & 0.3987 & 0.4363 \\
\hline 101 & 0.7500 & 0.2222 & 0.6633 & 0.5967 \\
\hline 102 & 1.0000 & 0.1250 & 0.5307 & 0.3980 \\
\hline 103 & 1.0000 & 0.2488 & 0.4986 & 0.3973 \\
\hline 104 & 1.0000 & 0.3322 & 0.4647 & 0.4633 \\
\hline 105 & 1.0000 & 0.5533 & 0.4653 & 0.4633 \\
\hline 106 & 1.0000 & 0.5980 & 0.3987 & 0.3313 \\
\hline 107 & 1.0000 & 0.5970 & 0.3980 & 0.2488 \\
\hline 108 & 1.0000 & 0.8856 & 0.3744 & 0.2488 \\
\hline 109 & 1.0000 & 0.5990 & 0.1759 & 0.1759 \\
\hline 110 & 1.0000 & 0.4990 & 0.2335 & 0.2341 \\
\hline 111 & 1.0000 & 0.6644 & 0.1753 & 0.1759 \\
\hline 112 & 1.0000 & 0.8856 & 0.2761 & 0.1106 \\
\hline 113 & 0.5000 & 0.6656 & 0.2918 & 0.2756 \\
\hline 114 & 0.5000 & 0.5556 & 0.1656 & 0.1759 \\
\hline 115 & 0.5000 & 0.4444 & 0.2329 & 0.2206 \\
\hline 116 & 0.5000 & 0.4444 & 0.2918 & 0.1042 \\
\hline 117 & 0.5000 & 0.5000 & 0.3725 & 0.1650 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
Bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 0.5714 & 0.2000 & 0.4979 & 0.5686 \\
\hline 101 & 0.5714 & 0.2000 & 0.5362 & 0.6393 \\
\hline 102 & 0.5000 & 0.7450 & 0.7646 & 0.6892 \\
\hline 103 & 0.6650 & 0.4975 & 0.5369 & 0.4600 \\
\hline 104 & 0.5980 & 0.3333 & 0.6892 & 0.7821 \\
\hline 105 & 0.7980 & 0.6633 & 0.4993 & 0.4000 \\
\hline 106 & 0.8317 & 0.6633 & 0.4264 & 0.4640 \\
\hline 107 & 1.0000 & 0.5000 & 0.4979 & 0.3980 \\
\hline 108 & 1.0000 & 0.9950 & 0.2850 & 0.3313 \\
\hline 109 & 1.0000 & 1.0000 & 0.2843 & 0.3113 \\
\hline 110 & 1.0000 & 1.0000 & 0.2129 & 0.1869 \\
\hline 111 & 1.0000 & 1.0000 & 0.1993 & 0.1759 \\
\hline 112 & 0.6667 & 1.0000 & 0.3106 & 0.2206 \\
\hline 113 & 0.3333 & 1.0000 & 0.2647 & 0.2329 \\
\hline 114 & 0.3333 & 1.0000 & 0.3320 & 0.1747 \\
\hline 115 & 0.3333 & 1.0000 & 0.5960 & 0.2200 \\
\hline 116 & 0.3333 & 1.0000 & 0.2660 & 0.3494 \\
\hline 117 & 0.3333 & 1.0000 & 0.6206 & 0.4417 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 118 & 0.0000 & 0.3636 & 0.4350 & 0.2206 & 118 & 0.3333 & 0.7500 & 0.1753 & 0.1747 \\
\hline 119 & 0.0000 & 0.3627 & 0.4640 & 0.2918 & 119 & 0.3333 & 0.7475 & 0.3719 & 0.4076 \\
\hline 120 & 0.3333 & 0.3333 & 0.7960 & 0.2924 & 120 & 0.3333 & 0.8000 & 0.4344 & 0.3094 \\
\hline 121 & 0.3333 & 0.1538 & 0.7843 & 0.4338 & 121 & 0.3333 & 0.8000 & 0.4350 & 0.4344 \\
\hline 122 & 0.5000 & 0.2300 & 0.5369 & 0.3719 & 122 & 0.5000 & 0.6667 & 0.5581 & 0.3731 \\
\hline 123 & 0.9950 & 0.3325 & 0.5686 & 0.2481 & 123 & 0.9950 & 0.9980 & 0.2924 & 0.2488 \\
\hline 124 & 0.5000 & 0.4158 & 0.4647 & 0.3719 & 124 & 0.0000 & 0.8000 & 0.2329 & 0.2488 \\
\hline 125 & 1.0000 & 0.4158 & 0.3980 & 0.2481 & 125 & 0.9900 & 0.9980 & 0.1165 & 0.4344 \\
\hline 126 & 1.0000 & 0.4158 & 0.4640 & 0.2481 & 126 & 0.0000 & 1.0000 & 0.2912 & 0.3725 \\
\hline 127 & 1.0000 & 0.3325 & 0.3731 & 0.3506 & 127 & 0.0000 & 1.0000 & 0.2335 & 0.2929 \\
\hline 128 & 1.0000 & 0.3317 & 0.3725 & 0.1100 & 128 & 0.0000 & 1.0000 & 0.1656 & 0.1759 \\
\hline 129 & 1.0000 & 0.3317 & 0.4100 & 0.1100 & 129 & 0.0000 & 1.0000 & 0.1568 & 0.2335 \\
\hline 130 & 1.0000 & 0.6108 & 0.1759 & 0.1650 & 130 & 0.0000 & 1.0000 & 0.0521 & 0.1753 \\
\hline
\end{tabular}

\section*{Scenario three}

\section*{Average Wait Time}

Table 27 Sample output average wait time scenario 3

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} \\
\hline 100 & 50.7692 & 26 & 42.1429 & 53.8889 \\
\hline 101 & 34.4444 & 27.5 & 46.1538 & 63.5294 \\
\hline 102 & 26.3636 & 14.2857 & 50 & 64 \\
\hline 103 & 21.8182 & 14 & 45.7143 & 68.3333 \\
\hline 104 & 24.1667 & 18.75 & 41.4286 & 68.8235 \\
\hline 105 & 26.4286 & 19.2857 & 48.3333 & 68.3333 \\
\hline 106 & 32.1429 & 27.6923 & 46.1538 & 74.1176 \\
\hline 107 & 38.3333 & 33.5714 & 48.1818 & 80 \\
\hline 108 & 34.1667 & 42.3077 & 46.6667 & 80.7143 \\
\hline 109 & 34.2857 & 46.1538 & 47.5 & 78.3333 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} \\
\hline 100 & 134.0000 & 128.0000 & 12.5000 & 12.8571 \\
\hline 101 & 144.0000 & 138.0000 & 12.5000 & 12.0000 \\
\hline 102 & 151.0526 & 141.6667 & 12.5000 & 12.2222 \\
\hline 103 & 150.0000 & 140.5556 & 12.0000 & 15.0000 \\
\hline 104 & 161.8750 & 143.1250 & 16.0000 & 16.2500 \\
\hline 105 & 165.7143 & 148.6667 & 20.0000 & 21.1111 \\
\hline 106 & 150.6667 & 150.7692 & 22.5000 & 24.5455 \\
\hline 107 & 166.1538 & 149.0000 & 27.7778 & 30.8333 \\
\hline 108 & 144.0000 & 117.5000 & 30.9091 & 36.1538 \\
\hline 109 & 117.5000 & 117.2727 & 39.0909 & 41.5385 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 110 & 40 & 52.3077 & 39 & 76 & 110 & 88.8889 & 86.6667 & 48.1818 & 45.0000 \\
\hline 111 & 46.9231 & 53.0769 & 36.25 & 60 & 111 & 73.3333 & 65.0000 & 50.7692 & 55.3846 \\
\hline 112 & 36.875 & 58.5714 & 31.6667 & 44 & 112 & 30.9091 & 65.7143 & 56.4286 & 57.3333 \\
\hline 113 & 36.6667 & 55.3846 & 22.5 & 34.5455 & 113 & 12.0000 & 44.2857 & 65.7143 & 63.1250 \\
\hline 114 & 37.1429 & 52.8571 & 15.5556 & 18.8889 & 114 & 11.0000 & 14.0000 & 67.5000 & 69.4118 \\
\hline 115 & 32.6316 & 49.375 & 18.1818 & 20 & 115 & 14.4444 & 10.0000 & 77.5000 & 75.5556 \\
\hline 116 & 37.6471 & 56.4286 & 25.4545 & 26.9231 & 116 & 15.0000 & 12.0000 & 82.9412 & 85.5556 \\
\hline 117 & 40.5882 & 54.6667 & 29.0909 & 31.4286 & 117 & 11.6667 & 12.0000 & 87.7778 & 95.5556 \\
\hline 118 & 44.1667 & 55.4545 & 30.7143 & 37.8571 & 118 & 12.0000 & 13.3333 & 93.1579 & 105.5556 \\
\hline 119 & 37.2727 & 48.4615 & 38.4615 & 48.1818 & 119 & 12.5000 & 15.0000 & 98.5000 & 105.0000 \\
\hline 120 & 35.3846 & 52.5 & 44.6154 & 44.2857 & 120 & 10.0000 & 13.3333 & 108.5000 & 115.0000 \\
\hline 121 & 38.3333 & 51.6667 & 46.6667 & 50.6667 & 121 & 12.8571 & 12.5000 & 118.5000 & 125.0000 \\
\hline 122 & 46.6667 & 47 & 48 & 56.4286 & 122 & 12.8571 & 13.3333 & 124.2105 & 126.6667 \\
\hline 123 & 25 & 44 & 56.6667 & 48.4615 & 123 & 15.0000 & 13.3333 & 125.8824 & 128.1250 \\
\hline 124 & 17.2727 & 42 & 46.25 & 43.75 & 124 & 19.0000 & 15.0000 & 118.3333 & 130.0000 \\
\hline 125 & 21.5385 & 21 & 55.3846 & 46.25 & 125 & 23.3333 & 20.0000 & 114.0000 & 118.6667 \\
\hline 126 & 27.6923 & 22.2222 & 45.7143 & 43.8462 & 126 & 27.0000 & 30.0000 & 110.0000 & 130.7692 \\
\hline 127 & 31.4286 & 24.1667 & 48.5714 & 40.7692 & 127 & 36.6667 & 30.0000 & 101.6667 & 120.0000 \\
\hline 128 & 34.6154 & 30.8333 & 50.7143 & 40.7143 & 128 & 34.6154 & 37.7778 & 94.1667 & 117.0000 \\
\hline 129 & 37.8571 & 36.1538 & 52.5 & 44 & 129 & 41.4286 & 43.0000 & 95.5556 & 100.0000 \\
\hline 130 & 42.6667 & 38.125 & 49.0909 & 38.1818 & 130 & 52.3077 & 42.3077 & 92.5000 & 64.0000 \\
\hline
\end{tabular}

\section*{Number of waiting Cars}

Table 28 Sample output Number of cars scenario 3

Pre-timed system
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
North \\
bound
\end{tabular} & \begin{tabular}{l} 
South \\
bound
\end{tabular} & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} \\
\hline 100 & 14 & 18 & 13 & 10 \\
\hline 101 & 13 & 17 & 9 & 8 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|l|l|l|l|l|}
\hline Time & \begin{tabular}{l} 
East \\
bound
\end{tabular} & \begin{tabular}{l} 
West \\
bound
\end{tabular} & \begin{tabular}{l} 
North \\
Bound
\end{tabular} & \begin{tabular}{l} 
South \\
Bound
\end{tabular} \\
\hline 100 & 4 & 7 & 20 & 20 \\
\hline 101 & 4 & 5 & 20 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 102 & 12 & 20 & 11 & 7 \\
\hline 103 & 14 & 18 & 11 & 10 \\
\hline 104 & 14 & 17 & 12 & 8 \\
\hline 105 & 12 & 18 & 14 & 14 \\
\hline 106 & 13 & 17 & 14 & 13 \\
\hline 107 & 11 & 16 & 12 & 14 \\
\hline 108 & 12 & 14 & 12 & 13 \\
\hline 109 & 8 & 12 & 14 & 13 \\
\hline 110 & 10 & 10 & 13 & 13 \\
\hline 111 & 8 & 10 & 13 & 13 \\
\hline 112 & 6 & 10 & 16 & 14 \\
\hline 113 & 8 & 11 & 15 & 13 \\
\hline 114 & 9 & 9 & 14 & 14 \\
\hline 115 & 11 & 13 & 19 & 16 \\
\hline 116 & 11 & 13 & 17 & 14 \\
\hline 117 & 11 & 14 & 17 & 15 \\
\hline 118 & 14 & 14 & 12 & 11 \\
\hline 119 & 13 & 11 & 11 & 13 \\
\hline 120 & 13 & 14 & 13 & 12 \\
\hline 121 & 15 & 15 & 12 & 12 \\
\hline 122 & 15 & 14 & 6 & 10 \\
\hline 123 & 12 & 13 & 12 & 10 \\
\hline 124 & 16 & 16 & 11 & 10 \\
\hline 125 & 13 & 16 & 13 & 10 \\
\hline 126 & 14 & 13 & 13 & 9 \\
\hline 127 & 14 & 13 & 14 & 12 \\
\hline 128 & 14 & 14 & 13 & 12 \\
\hline 129 & 12 & 10 & 14 & 13 \\
\hline 130 & 11 & 11 & 15 & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 102 & 4 & 9 & 19 & 18 \\
\hline 103 & 5 & 8 & 19 & 18 \\
\hline 104 & 5 & 8 & 16 & 16 \\
\hline 105 & 6 & 9 & 14 & 15 \\
\hline 106 & 8 & 11 & 15 & 13 \\
\hline 107 & 9 & 12 & 13 & 10 \\
\hline 108 & 11 & 13 & 10 & 12 \\
\hline 109 & 11 & 13 & 8 & 11 \\
\hline 110 & 11 & 14 & 9 & 9 \\
\hline 111 & 13 & 13 & 6 & 10 \\
\hline 112 & 14 & 15 & 11 & 7 \\
\hline 113 & 14 & 16 & 5 & 7 \\
\hline 114 & 16 & 17 & 10 & 5 \\
\hline 115 & 16 & 18 & 9 & 5 \\
\hline 116 & 17 & 18 & 4 & 5 \\
\hline 117 & 18 & 18 & 6 & 5 \\
\hline 118 & 19 & 18 & 5 & 6 \\
\hline 119 & 20 & 20 & 4 & 4 \\
\hline 120 & 20 & 20 & 5 & 3 \\
\hline 121 & 20 & 20 & 7 & 4 \\
\hline 122 & 19 & 18 & 7 & 3 \\
\hline 123 & 17 & 16 & 8 & 3 \\
\hline 124 & 18 & 14 & 10 & 6 \\
\hline 125 & 15 & 15 & 9 & 8 \\
\hline 126 & 15 & 13 & 10 & 6 \\
\hline 127 & 12 & 12 & 9 & 9 \\
\hline 128 & 12 & 10 & 13 & 9 \\
\hline 129 & 9 & 9 & 14 & 10 \\
\hline 130 & 8 & 10 & 13 & 13 \\
\hline
\end{tabular}

\section*{Average Speed}

Table 29 Sample Output Average speed scenario 3

Pre-timed system
\begin{tabular}{|c|c|c|c|c|}
\hline Time & \begin{tabular}{l}
North \\
bound
\end{tabular} & South bound & East bound & West bound \\
\hline 100 & 0.0521 & 0.1863 & 0.596 & 0.4676 \\
\hline 101 & 0.0521 & 0.1759 & 0.6627 & 0.3113 \\
\hline 102 & 0 & 0.1667 & 0.4981 & 0.31 \\
\hline 103 & 0.1042 & 0.1656 & 0.5307 & 0.3725 \\
\hline 104 & 0.0521 & 0.2912 & 0.4633 & 0.4969 \\
\hline 105 & 0.2206 & 0.4088 & 0.3725 & 0.2488 \\
\hline 106 & 0.1106 & 0.22 & 0.4356 & 0.1863 \\
\hline 107 & 0.1747 & 0.275 & 0.3119 & 0.2481 \\
\hline 108 & 0.1747 & 0.2912 & 0.3113 & 0.1863 \\
\hline 109 & 0.3106 & 0.2912 & 0.2494 & 0.2341 \\
\hline 110 & 0.5967 & 0.2912 & 0.2494 & 0.1661 \\
\hline 111 & 0.466 & 0.1856 & 0.1875 & 0.1656 \\
\hline 112 & 0.3987 & 0.4331 & 0.2929 & 0.2616 \\
\hline 113 & 0.332 & 0.4956 & 0.1661 & 0.165 \\
\hline 114 & 0.3313 & 0.2924 & 0.2206 & 0.3306 \\
\hline 115 & 0.3973 & 0.1747 & 0.1106 & 0.165 \\
\hline 116 & 0.398 & 0.165 & 0.1568 & 0.385 \\
\hline 117 & 0.3313 & 0.275 & 0.055 & 0.2918 \\
\hline 118 & 0.2653 & 0.11 & 0.275 & 0.2335 \\
\hline 119 & 0.2494 & 0.055 & 0.1747 & 0.31 \\
\hline 120 & 0.2929 & 0.11 & 0.275 & 0.4344 \\
\hline 121 & 0.2935 & 0.0526 & 0.3494 & 0.6613 \\
\hline 122 & 0.1875 & 0 & 0.3494 & 0.435 \\
\hline 123 & 0.31 & 0 & 0.3494 & 0.31 \\
\hline
\end{tabular}

Proposed Model
\begin{tabular}{|c|c|c|c|c|}
\hline Time & North bound & South bound & East bound & West bound \\
\hline 100 & 0.6658 & 0.4979 & 0.0000 & 0.0000 \\
\hline 101 & 0.6900 & 0.6386 & 0.0000 & 0.0000 \\
\hline 102 & 0.6900 & 0.3980 & 0.0495 & 0.0990 \\
\hline 103 & 0.6131 & 0.4633 & 0.0495 & 0.0521 \\
\hline 104 & 0.6407 & 0.4633 & 0.1568 & 0.1563 \\
\hline 105 & 0.5700 & 0.3980 & 0.2211 & 0.1656 \\
\hline 106 & 0.4653 & 0.2653 & 0.1661 & 0.2761 \\
\hline 107 & 0.3987 & 0.2494 & 0.2335 & 0.4094 \\
\hline 108 & 0.2653 & 0.1869 & 0.4088 & 0.2929 \\
\hline 109 & 0.2653 & 0.2341 & 0.4975 & 0.3100 \\
\hline 110 & 0.3119 & 0.1753 & 0.4350 & 0.4344 \\
\hline 111 & 0.1875 & 0.2335 & 0.6219 & 0.3313 \\
\hline 112 & 0.1244 & 0.1171 & 0.3113 & 0.5300 \\
\hline 113 & 0.1244 & 0.1106 & 0.6607 & 0.4979 \\
\hline 114 & 0.0588 & 0.0556 & 0.3725 & 0.6393 \\
\hline 115 & 0.1111 & 0.0000 & 0.3960 & 0.6393 \\
\hline 116 & 0.1053 & 0.0000 & 0.7287 & 0.6400 \\
\hline 117 & 0.0521 & 0.0000 & 0.5980 & 0.6123 \\
\hline 118 & 0.0000 & 0.0526 & 0.6633 & 0.5362 \\
\hline 119 & 0.0000 & 0.0000 & 0.7114 & 0.6885 \\
\hline 120 & 0.0000 & 0.0000 & 0.6400 & 0.7669 \\
\hline 121 & 0.0000 & 0.0000 & 0.4592 & 0.6650 \\
\hline 122 & 0.0000 & 0.0521 & 0.4964 & 0.7475 \\
\hline 123 & 0.1042 & 0.1100 & 0.4257 & 0.7677 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
124 & 0.1171 & 0 & 0.2912 & 0.2475 \\
\hline 125 & 0.1244 & 0 & 0.1747 & 0.2329 \\
\hline 126 & 0.2475 & 0.1042 & 0.165 & 0.1747 \\
\hline 127 & 0.198 & 0.1106 & 0.165 & 0.2918 \\
\hline 128 & 0.4344 & 0.1106 & 0.055 & 0.2918 \\
\hline 129 & 0.3307 & 0.2341 & 0.0521 & 0.3322 \\
\hline 130 & 0.31 & 0.3113 & 0.1042 & 0.1042 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
124 & 0.0521 & 0.2211 & 0.3320 & 0.5377 \\
\hline 125 & 0.1650 & 0.1171 & 0.3973 & 0.4279 \\
\hline 126 & 0.1650 & 0.2335 & 0.3313 & 0.5693 \\
\hline 127 & 0.2918 & 0.2481 & 0.3980 & 0.4000 \\
\hline 128 & 0.2481 & 0.3725 & 0.1869 & 0.3987 \\
\hline 129 & 0.4350 & 0.4350 & 0.1244 & 0.3327 \\
\hline 130 & 0.4647 & 0.3313 & 0.1863 & 0.1869 \\
\hline
\end{tabular}```

