

Role of Fungi in Seed Deterioration Sheila Okoth

Seed Enterprises Mairobi University of Nairobi University of Nairobi

What is seed quality?

What do we want from our seeds?

• Uniform successful germination

What we do not want to see

Weedy crop Uneven maturity

What is seed quality?

- Specific aspects in forgoing sessions (details & how to measure)
- Here focus is on effect of Fungi

Paths of seed infection

- Active infection Systemic infection
- Contamination in the field, during harvesting, threshing, processing and storage
 - The pathogen may then be carried with the seeds in these ways

Routes of active seed infection

A. Penetration through ovary wall

E.g.: *Cladosporium variabile* (spinach), *Botrytis* spp. (onion)

From Maude (1996)

B. Systemic infection via vascular system

E.g.: Vascular wilt fungi, endophytes

C. Penetration through floral parts

E.g.: Ustilago nuda (grains) Cucumber mosaic virus

Pollen tube entry into seed Examples: loose smut of small 1. grains 2. CMV in spinach Certification programs, host resistance, systemic fungicides

Indirect infection via flower or fruit

Fleshy fruits (e.g., Solanaceae) - seed attached to central placenta

 infect via calyx - placenta - funicle - embryo

 Umbelliferae & Liliaceae - flowers exposed in umbels

Seed transmission is typically discontinuous (infection outside embryo)

 affected by intrinsic & environmental conditions

Impact of seed borne fungi on seeds and seedlings - 1

- Seeds carry a wide range of fungal contaminants
- Depending on
 ✓ effectiveness of storage conditions
 ✓ Climatic
 the (a) level and
 (b) type of contamination
 will vary
 University of Nairobi

Impact of seed borne fungi on seeds and seedlings - 2

- Based on in vitro seed inoculation tests, categories of fungi observed are those that are:
 - 1. pathogenic only to seeds and have no obvious impacts on the germlings
 - 2. pathogenic only to the germlings
 - pathogenic both to seeds and the emerging germlings
 - production of harmful mycotoxins
 more or less harmless and
 - 6. germination promoters of Nairobi

Seed deterioration due to fungal invasion - 1

• Seed discoloration

 \checkmark Is not the only symptom of infection

- Reduction in germination and vigor index
- Some produce metabolites which have biochemical effects on seeds:
 - Reduction in seed content (decreased percentage of protein, carbohydrates, fat, fiber, ash content) and seed health.

✓ Fungi use seed content for growth obj

- Fungi produce humidity and raise temp during growth
 - ✓ Heating and mustiness
- Chemical and nutritional changes due to enzymatic activities
- Complete loss of seed Seed Enterprises Management Institute University of Nairobi

Some fungal metabolites - 1

Mycotoxin	Organism
Acetoxyscirpenediol	Fusarium moniliforme, F. equiseti, F. oxysporum, F. culmorum, F. avenaceum, F. roseum, and F. nivale
Acetyldeoxynivalenol	Acetyldeoxynivalenol Fusarium moniliforme, F. equiseti, F. oxysporum, F. culmorum, F. avenaceum, F. roseum, and F. nivale
Acetylneosolaniol	Fusarium moniliforme, F. equiseti, F. oxysporum, F. culmorum, F. avenaceum, F. roseum, and F. nivale
Acetyl T-2 toxin	Fusarium moniliforme, F. equiseti, F. oxysporum, F. culmorum, F. avenaceum, F. roseum, and F. nivale
Aflatoxin	Aspergillus flavus, A. parasiticus
Aflatrem Seed	Aspergillus flavus Management Institute
Altenuic acid	Alternaria alternata
Alternariol	Alternaria alternata
Austdiol	Aspergillus ustus
Austamide	Aspergillus ustus

Some fungal metabolites - 2

Mycotoxin	Organism
Oxalic acid	Aspergillus niger
Patulin	Aspergillus clavatus, Penicillium expansum, Botrytis, P.roquefortii, P. claviforme, P. griseofulvum
Penicillic acid	Aspergillus ochraceus
Penitrem	Penicillium crustosum
Fusaric acid	Fusarium moniliforme
Fusarin	Fusarium moniliforme
Neosolaniol	Fusarium moniliforme, F. solani, F. culmorum, F.avenaceum, and F. roseum
Nivalenol	Fusarium moniliforme, F. equiseti, F. oxysporum, F.culmorum, F. avenaceum, F. roseum, and F. nivale
NT-2 toxin	Fusarium moniliforme, F. equiseti, F. oxysporum, F.culmorum, F. solani, F. avenaceum, F. roseum, and F.nivale
Ochratoxin	Aspergillus ochraceus, Penicillium viridictum

Management of fungal invasion in seeds - 1

- Seed selection protocol
- Thereafter to minimize the risk of fungi invasion, seeds have to be stored at low
 - ✓ Moisture content
 - ✓ Temperature and
 - ✓ Relative humidity
- Use of fungicides ises Management Institute
- Aeration University of Nairobi

Management of fungal invasion in seeds - 2

- Moisture content is the most important factor affecting fungal growth and metabolite production in stored products
- Grain itself and the microbial contaminants respire slowly when stored dry
- However, if the water availability is increased to 15–19% moisture content, spoilage fungi, particularly Eurotium spp., Aspergillus, and Penicillium sp. grow resulting in increase in

 - Respiratory activity
 Temperature Iterprises Management Institute
 - ✓ Metabolite production
 - ✓ Colonization by thermophilic fungi and actinomycetes

Management of fungal invasion in seeds - 3

- Relative humidity
 - ✓ Researches show that all storage fungi are completely inactive below 62% relative humidity and show very little activity,
 - ✓ About 75% relative humidity upwards, the amount of fungi in a seed often shows an exponential relationship with relative humidity
 - ✓ Storage bacteria require at least 90% relative humidity for growth and therefore only become significant under conditions in which fungi are already very active
 - E.g. Peanuts are stable at 70% relative humidity between 7 9% moisture content, at which conditions fungal growth is arrested

Enterprises Management Institute University of Nairobi