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Abstract

Insurance is one of the key sector in ensuring stability and growth in any economy.

Reserving actuaries therefore should do the best they can to ensure that the re-

serves declared are as accurate as possible. In most insurance companies reserves

are calculated using the traditional methods which are based on certain algorithms.

These include Chain ladder method, Average cost method,Bornhuetter-Ferguson

and Standards method among others.

These methods do not take into consideration the actual claim development.

Generalised linear models (GLMs) and Bootstrap technique can be used as an

alternative as they use the various covariates of the claim process in determining

the reserves. In this study I will focus in showing that Bootstrap technique and

Generalized Linear Models gives a realistic and structured method of loss reserv-

ing. This is because they incorporate more information about the claim process

such as Type of claim, Loss, development pattern, Pattern of loss emergence etc.

This makes it possible to determine the predictive distribution of the reserve

model and to calculate various measures of risk such as the Value at Risk(VaR) at

various levels.

Keywords;Generalized Linear Modes,Chain ladder, Bootstrap,Gamma Model,

Over-dispersed Poisson Model

ii





Dedication

This project is dedicated to my mother, Jane Achieng’ Ochola. Thank you for

your great support, loyalty and love. You are the best.

iv



Contents

1 INTRODUCTION 1
1.1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 STATEMENT OF PROBLEM . . . . . . . . . . . . . . . . . . . . 2

1.3 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 GENERAL OBJECTIVE . . . . . . . . . . . . . . . . . . . 2

1.3.2 THE SPECIFIC OBJECTIVES . . . . . . . . . . . . . . . 2

1.4 SIGNIFICANCE OF THE STUDY . . . . . . . . . . . . . . . . . . 2

1.5 THE ORGANIZATION OF THE PROJECT . . . . . . . . . . . . 3

2 LITERATURE REVIEW 4

3 CHAIN LADDER METHOD AND GENERALIZED LINEAR MOD-
ELS 6
3.1 INTRODUCTORY TO CLAIM RESERVING AND RUN OFF TRI-

ANGLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 THE THEORY OF CLAIM RESERVING . . . . . . . . . . 6

3.1.2 TYPE OF RESERVES . . . . . . . . . . . . . . . . . . . . . 7

3.1.3 THE STATISTICAL REPRESENTATION OF RUN OFF TRI-
ANGLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 THE CHAIN LADDER RESERVING METHOD . . . . . . . . . . 9

3.3 GENERALIZED LINEAR MODELS . . . . . . . . . . . . . . . . . 10

3.3.1 THE EXPONENTIAL FAMILY OF DISTRIBUTIONS . . . 10

3.3.2 THE LINEAR PREDICTOR . . . . . . . . . . . . . . . . . . 11

3.3.3 THE LINK FUNCTION . . . . . . . . . . . . . . . . . . . 12

3.4 MODEL FITTING . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 PARAMETER ESTIMATION . . . . . . . . . . . . . . . . 12

3.4.2 ANALYZING THE GOODNESS OF FIT . . . . . . . . . . 13

3.5 RESERVE ANALYSIS WITHIN THE FRAMEWORK OF GENER-
ALIZED LINEAR MODELS (GLM) . . . . . . . . . . . . . . . . . 13

3.5.1 THE GAMMA DISTRIBUTION . . . . . . . . . . . . . . . 14

3.5.2 THE OVER DISPERSED POISSON MODEL (ODP) . . . 15

v



CONTENTS vi

3.6 BOOTSTRAPPING . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 15

3.6.2 THE PREDICTION ERROR . . . . . . . . . . . . . . . . . 17

3.6.3 BOOTSTRAPPING THE ODP MODEL . . . . . . . . . . . 17

3.6.4 BOOTSTRAPPING THE GAMMA MODEL . . . . . . . . 18

4 APPLICATION 19
4.1 THE DATA SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 THE STOCHASTIC ANALYSIS OF THE MODELS . . . . . . . . 23

4.2.1 DETERMINING THE SCALED DEVIANCE STATISTIC
AND THE PEARSON χ2 STATISTIC . . . . . . . . . . . 23

4.2.2 CLAIM RESERVE CALCULATION USING THE BOOT-
STRAPPING TECHNIQUE . . . . . . . . . . . . . . . . . 23

4.3 FITTING A DISTRIBUTION TO THE IBNR . . . . . . . . . . . . 30

5 CONCLUSIONS AND RECOMMENDATIONS 31
5.1 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . 32

6 APPENDIX 34
6.1 R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Importing The Data . . . . . . . . . . . . . . . . . . . . . 34

6.1.2 Chain Ladder Reserving . . . . . . . . . . . . . . . . . . 35

6.1.3 Stochastic Reserving . . . . . . . . . . . . . . . . . . . . 35



List of Figures

4.1 Graph of cumulative claims against development years . . . . . . 21

4.2 The CDF of reserve for the ODP bootstrap model . . . . . . . . 25

4.3 The Histogram of reserve for the ODP bootstrap model . . . . . 26

4.4 The CDF of reserve for the GAMMA bootstrap model . . . . . . 28

4.5 The Histogram of reserve for the GAMMA bootstrap model . . 29

vii



List of Tables

3.1 Table of claim process in general insurance . . . . . . . . . . . . 6

3.2 Claim development triangle . . . . . . . . . . . . . . . . . . . . 8

4.1 Development triangle of incremental claims . . . . . . . . . . . 19

4.2 Development triangle of cumulative claims . . . . . . . . . . . . 20

4.3 Table of development factors . . . . . . . . . . . . . . . . . . . . 22

4.4 The Full Development Triangle of cumulative claims for both the
original claims and projected claims . . . . . . . . . . . . . . . . 22

4.5 The outstanding reserve per origin year . . . . . . . . . . . . . . 22

viii



Acknowledgment

First and foremost I would like to express my sincere gratitude to the almighty
god for the grace to undertake my Masters studies.

My utmost gratitude to my supervisor, Prof Patrick G.O. Weke ,for his con-
tinuous support in my Msc study and project, for his encouragement, support,
patience and invaluable guidance. His advise assisted me throughout my Masters
studies.

My thanks to the University of Nairobi for the great opportunity to do my
Master studies. My gratitude also goes to to my fellow classmates for their
cooperation, feedback, and friendship. their support meant a lot to me.

Lastly, my heart felt gratitude my family and friends for the great support
throughout my studies and my life in general.

ix



Chapter 1

INTRODUCTION

1.1 BACKGROUND

Insurance is one of the key sector in ensuring stability and growth in any econ-
omy. Reserving actuaries therefore should do the best they can to ensure that
the reserves declared are as accurate as possible. The accuracy of the reverse is
a�ected by many factors which need to be taken in to consideration in order
to ensure proper management of insurance companies. Most companies use
the traditional algorithm based methods which leaves out such important fac-
tors that a�ects reserving. Some of the details that need to be factored while
reserving include, but not limited to the type of claim, loss development pa�ern,
pa�ern of loss emergence etc. These can be achieved by doing loss reserving
using bootstrapping technique and Generalized Linear Models (GLM). Stochastic
models have the following significance;

1. Incorporate more details in loss reserving hence the results is more accurate
compared to the other algorithm based methods.

2. E�ects of factors a�ecting loss reserves can be studied separately

3. It makes it easier to deal with changing circumstances as variables are
analyzed continuously.

In Kenya, stochastic reserving is one of the claim receiving method that have
been included in the insurance act. However, most insurance companies still use
the other algorithm bases methods. Considering the random nature of claim
occurrence this thesis is expected to encourage and help in the wide spread us of
stochastic reserving method. With the introduction of risk based capital model
of business in Kenya it is very important for reserves to be determined accurately
so as to add value to the various stake holders in the insurance company.
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CHAPTER 1. INTRODUCTION 2

1.2 STATEMENT OF PROBLEM

Most general insurance companies in Kenya have been using algorithm based
loss reserving technique such as Chain ladder method among others in deter-
mining loss reserves. These methods are quite simple and fast to apply. However
algorithm based loss reserving techniques give a point value of loss reserve which
do not give more information about the claim development pa�erns and the
distribution of the claim reserves. The availability of this information can greatly
help insurance companies to improve their enterprise risk management function
by calculating the various risk measures.

In this thesis we seek to examine how Actuaries in general insurance can
apply Bootstrapping technique and Generalized Linear Models to improve claim
loss reserving.

1.3 OBJECTIVES

1.3.1 GENERAL OBJECTIVE
The general objective of this project is to demonstrate that algorithm based
loss reserving models might be overlooking some key factors that need to be
incorporates in loss reserving and show that the stochastic loss reserving can
provide alternative to the algorithm based methods widely used in loss reserving.

1.3.2 THE SPECIFIC OBJECTIVES
The specific objectives of the project are as below;

1. To show how Bootstrap Technique and Generalized Linear Models (GLMs)
can provide a more elaborate and a comprehensive framework for loss
reserving.

2. To obtain the predictive distribution of the claim reserves.

3. to calculate the Value at Risk of the reserves at various levels.

1.4 SIGNIFICANCE OF THE STUDY

It is very important for insurance companies to ensure that the reserve set aside
is adequate in meeting future claim obligations. This put actuaries in a position
where they need to keep improving the technique they us in loss reserving.
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The significance of the study is to show that the Bootstrapping technique and
Generalized Linear Models can be applied to get the loss reserve distribution.
This can then be used to calculate the various measures of risk like Value at Risk
at a given confidence interval. This can significantly help insurance companies
to improve loss reserving and risk management.

1.5 THE ORGANIZATION OF THE PROJECT

The second chapter is the literature review of the various research that have
been done in the area of chain ladder reserving technique, generalized Loss
Reserving and bootstrapping . Chapter three discusses Chain Ladder reserving
technique, Generalized Linear Models as well as the Bootstrapping technique.
Chapter four looks at data analysis , calculating claim reserves using Chain
Ladder technique, bootstrap Gamma model and the bootstrap Over-dispersed
Poisson Model. Conclusion and recommendations for future research are given
in chapter five. Lastly a list of reference is finally given.



Chapter 2

LITERATURE REVIEW

Various scholars and practising actuaries have done various studies on the area
of loss reserving. In this chapter we will look at some of the studies on loss
reserving.

Schmidt (2006) in his work, Methods and Models of Loss Reserving Based on
Run-O� Triangles: A Unifying Survey, gives detailed discussion of various loss
reserving models that uses the run-o� triangles. He notes that the success of the
various methods that are based on the run o� triangles are greatly assumes that
the loss development of each origin year follows the same pa�ern of development.

S Haberman and A E Renshaw (1999) in their excellent and comprehensive
paper describe the various applications of the Generalized Linear Models (GLM)
in actuarial work. These included the analysis of the various loss distribution in
the general insurance, analysis of the lapse rate with policy characteristics in the
life insurance and analyzing the changes in force of mortality in the underwriting
of life assurance. Various suitable models are used in all these cases. In conclusion
it is noted that there is a great scope if applying GLM in various other actuarial
areas such as group life risk premium and marine insurance risk premium.

Hoedemakers et al. (2005) constructs bound for the discounted loss reserves
within the framework of GLMs. In particular the upper and lower bound are
determined followed by some numerical examples to illustrate the importance of
the constructed bounds. Generalised Linear Models(GLMs) were used to model
the los reserve while considering stochastic discount factors. The Brownian
motion was used in modeling the stochastic discounting factors. it is shown
that GLM o�ers an opportunity to model the claim according to some particular
distribution of exponential family such like Gamma Poisson,independent normal
etc. Due to the di�iculty of presenting the distribution function in explicit form,
the approximations to the distribution are used.

In their paper titled “Practitioner’s Guide to Generalized Linear Models”
Duncan et al(2007) third edition, discuss ways in which practicing actuaries can

4
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use GLMs to analyze insurance date. The paper comprehensively discuses GLM
in three sections. The first section discuss the statistical theory of GLM, giving
various examples. This basically entails how GLMs are formulated and solved. A
comprehensive background,upon which GMLs are built is described including
the linear models and the minimum bias procedures. The various methods of
solving GLMs ie the maximum likelihood estimates and numerical techniques
are well explained. The second part provide the model output for each part of
GLM analysis. These are data preparation,model selection, model refinement
and model interpretation. A plan of undertaking GLM analysis is well set out
as well as how to interpret the various results. The third section deals with
topics that applies GLM such as retention modeling and scoring algorithms. The
paper also describes how GLMs can be used in credit-based insurance scores.
The paper demonstrates that GLM has a lot of advantages and these can be
used by insurance companies to achieve competitive advantage and improve
profitability. GLMs can be used, among many other things, to analyze the e�ect
of various factors on the experience and provide information about certainty
of model results.It is clear,from the paper, that GLM can be applied to areas of
insurance industry including but not limited to pricing, underwriting, marketing
and reserving as well as in other industries.

Greg Taylor and Grainne McGuire(2004) in their paper, Loss reserving with
GLMs: a case study, discuses an application of generalized linear models,GLM to
loss reserving. It is noted that although chain ladder method is widely used by
actuaries it is subject to a number of restrictions. It is noted that some loss/claim
data may present some features that may violate the conditions of chain ladder
model. Generalized linear models are presented as an alternative form of data
analysis that can be used in claim reserving. This enables the modeling and
analysis of the various features data that violates the conditions of chain ladder
models.The models are compared using di�erent diagnostics. Greg Taylor and
Grainne McGuire shows that stochastic modeling of claim reserves provides an
opportunity of choosing the form of distribution,assumed to be followed by the
claim data. The paper concludes that there is need to incorporate stochastic
modeling and data analysis in claim reserving.

England and Verrall (2002) in their paper; Stochastic claim reserving in general
insurance, Emphasises the application of GLM framework in the analysis of claim
reserving. Various GLM models including Gamma model, log-normal models etc
are discussed. It is noted predictive distribution claim reserves can be obtained
using bootstraping. The Bornhue�er-Ferguson reserving method and Bayesian
technique are used. This provides a way to incorporate experts’ opinion to give
prior estimate of ultimate claims. England and Verrall concludes that general
insurance companies should incorporate stochastic claim reserving for a full and
more comprehensive analysis of their financial well being.



Chapter 3

CHAIN LADDER METHOD AND
GENERALIZED LINEAR MODELS

3.1 INTRODUCTORYTOCLAIMRESERVINGAND
RUN OFF TRIANGLES

Here we will discus theory of claim reserving in non-life insurance and also give
an introduction to the run o� triangle. We will look at the frame work of runo�
triangles, the statistical models for run o� triangles and also introduce the various
notations used.

3.1.1 THE THEORY OF CLAIM RESERVING
At the end of each financial year, an insurance company would want to calculate
the amount of surplus that it can declare to its shareholders. To do this the
company has to determine that amount money it need to set aside in order
to pay any outstanding claim amount that it received premium during that
particular financial year.Claim se�lement stages in non-life insurance can be
expressed as shown below;

Claim ====> Claim ====> Claim ====> Claim

event occurred reported payment(s) made �le closed

Table 3.1: Table of claim process in general insurance

Normally, it might take some time from the occurrence of loss to the time
where the full the total claim amount which has to be se�led is determined. Some
of the reasons for such delays are;

6
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1. Delay in reporting claim to an insurance company

2. A claim amount payable may need to be determined by a court process
which may take some times

3. An insurance company may need to carry of investigation in to the reported
cases to determine its viability

4. A closed claim can be reopened a�er some years.

Due to the delays an insurance company has to determine the amount of money
it need to set aside, out of the premiums it has received in order to take care of
any future claim.

3.1.2 TYPE OF RESERVES
Typically reserves can be categorized in two depending on the se�lement stage
that claim has reached.

1. Claims reserve required in respect of claims that have been incurred but
not reported these are referred to as the Incurred But Not Reported (IBNR),

2. Claims reserve is needed for claims that have been reported, but not yet
been closed. These are known as to as Reported But Not Se�led reserves.

3.1.3 THE STATISTICAL REPRESENTATION OF RUN OFF
TRIANGLES

The reported claim data is usually represented in triangular form called the run
o� triangles. The vertical axis represents the origin or accident year i of the
claim and the horizontal axis represent the development year j of the claim.
"I" represent the last year of claim occurrence and "J" represent the maximum
number of claim development years.

In most cases, though not always, I=J.Suppose that for accident year i and
development year j, the incremental claim amount is represented by Ci j.

Then, the upper triangle can be denoted as;

DU
I = {Ci j : i+ j ≤ I;0≤ j ≤ J} (3.1)

and the lower triangle can be denoted as;

DL
I = {Ci j : i+ j ≥ I;0≤ j ≤ J} (3.2)
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Each entry, Ci j , in the run-o� triangle represents the incremental claims and
can be expressed in general terms; Each Ci j can be denoted as;

Ci j = r j ∗ si ∗ xi+ j + ei j (3.3)

Where:

1. r j is the development factor for year j, representing the proportion of claim
payments in Development Year j. Each r j is independent of the Origin Year
i.

2. si is a parameter varying by Origin Year, i, representing the exposure, for
example the number of claims (or claim amount) incurred in the Origin
Year i.

3. xi+ j is a parameter varying by calendar year, for example representing
inflation.

4. ei j is an error term.

The general statistical form of runo� triangles can be presented as;

Development Years

Accident years 1 2 ... j ... J-1 J

1 C1,1 C1,2 ... C1, j ... C1,J−1 C1,J
2 C2,1 C2,2 ... C2, j ... C2,J−1 C2,J
... ... ... i+j=<I ... ... ... ...

i Ci,1 Ci,2 ... Ci, j ... Ci,J−1 Ci,J
... ... ... ... ... i+ j >= I ... ...

I-1 CI−1,1 CI−1,2 ... CI−1, j ... CI−1, j−1 CI−1J
I CI,1 CI,2 ... CI, j ... CI,J−1 CI,J

Table 3.2: Claim development triangle

Ci j can represent either the incremental claims numbers or the incremental
claim amount.

The cumulative claim amount or number can be expressed as Di j, where i is
the accident year and j is the development year. Then the can get Di j as;

Di j =
j

∑
k=1

Cik (3.4)
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The value Ci j is only known for i+ j < I these are the observed claims and
represents the upper triangle. The lower triangle represents the claim amounts,Ci j
where i+ j > I, to be predicted. We can define Ri, the claim reserve outstanding
for accident year I as;

Ri = Di j−Di,n−i+1,1≤ j ≤ J (3.5)

The total claim reserve outstanding, R, will therefore be define as;

R =
I

∑
i=1

Ri (3.6)

This is what the insurance company will as reserve. In the next section we
will briefly look at chain ladder reserving. Most of the other claim reserving
techniques are an improvement of chain ladder method.

3.2 THECHAINLADDERRESERVINGMETHOD

The chain ladder method assumes the following;

1. Each accident year has the same pa�ern of claim development

2. Weighted average if inflation in the past years will be experienced in the
future since inflation is one for the factors that is carried on in to the future
by the development factors.

The chain ladder reserving is used within run o� triangles’ framework as
introduced in the earlier section. The algorithm of basic chain ladder method is
as follows;

1. The exists development factors, f j,defined as;

f̂ j =
∑

I− j+1
i=1 Ci j

∑
I− j+1
i=1 Ci j−1

(3.7)

2. The factor are then used to forecast the future cumulative claim reserves
by applying them to the cumulative claims on each row as follows;

Ĉi j−i+2 =Ci j−i+1 ∗ f̂ j−i+2 for some 2≤ j ≤ J (3.8)

and for the Kth row we have

Ĉik = Ĉik−i ∗ f̂ j for some 2≤ j ≤ J and 3− i+n≤ k ≤ n. (3.9)
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However this loss reserving technique is usually sensitive to claim variability
and outlying values. In the following chapter we will introduce the concept of
Generalized Linear Models. Then in the section that will follows we will discuss
claim reserving within the frame work of Generalized Linear Models.

3.3 GENERALIZED LINEAR MODELS

In this section we will introduce thestatistical frame work of Generalized Linear
Models, its assumption and characteristics. GLM allow us to assume that the
data does not come from a normal distribution. This assumption is importation
because most actuarial data are usually not normarmally distributed e.g. pois-
son distibustion is used to model claim frequency, while claim severity cam be
modeled using expornential, gamma or lognormal distributons. GLM relate the
relates the response variables to the independent variable, the variable that we
have information about. GLM can be divided into 3 components as described in
McCullagh and Nelder (1989);

1. The distribution of the data, eg. Exponential, Normal Poisson etc.

2. A linear predictor, η .

3. The link function, g(.) .

Below is a brief description of each of these components;

3.3.1 THE EXPONENTIAL FAMILY OF DISTRIBUTIONS
The GLMs assumes that the observed random variable are drawn from the expo-
nential family of distribution. As discussed in McCullagh and Nelder (1989), a
probability distribution function, f (y;θ ,φ), is a member of exponential family if
it can be wri�en as;

f (y;θ ,φ) = exp(
(yθ −b(θ))

a(φ)
− c(y,φ)) (3.10)

Where;
y is the random variable of an observation Y
θ ; the location parameter also referred to as the canonical parameter,
φ ; the dispersion parameter also referred to as the scale parameter.
b(.); the cumulant parameter, which determines the distribution shape.
c(y,φ) produces the total unit ma of the distribution, is the normalizing factor.
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The mean and variance of exponential family of distribution are expressed as
below;

E[Y ] = µ =
d
dt

my(t)|t=0 = b
′
(θ) (3.11)

Var[Y ] =
d2

dt2 my(t))− [
d
dt

my(t)]2|t=0 = a(φ)∗b
′′
(θ) (3.12)

We use prime to express di�erentiation with respect to θ .

From the above,it is clear that the variance of a random variable Y is a product
of b

′′
(θ), referred to as the variance function, dependent only on the canonical

parameter and the function a(φ), which does not depend on θ . The variance
function can be denoted as V (µ) because the dependence on the canonical pa-
rameter implies its dependency on µ . Normal distribution is the only one where
the variance does not depend on the mean since V (µ) = 1.

3.3.2 THE LINEAR PREDICTOR
It is a function of covariates and is linear to the parameter. Suppose we have y, a
vector of observation such that;

y = (y1, . . .yn) (3.13)

Suppose we have a nxp (p≤ n) matrix X , of independent (response) variables
and a vector of un known parameters β , of dimension p, such that

β = (βi. . .βp)
T

(3.14)

Then we can express the mean of vector Y denoted as vector µ as follows;

µ = Xβ (3.15)

The assumption is that the error(random) part of the model are normally and
independently distributed. We can represent the linear predictor as below;

η =
p

∑
i=1

Xiβi (3.16)

where;

1. xi are a vector of the covariate matrix, X .
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2. βi is a vector, of size p, of unknown parameters.

The covariate in can interact in various ways depending on whether they are
dependent or independent.

3.3.3 THE LINK FUNCTION
The linear predictor, η=g(µ) and the response variables are linked together by
the link function. Normally each distribution has an accepted link function that
gives µ which fits that particular distribution. This is known as canonical link
function.

3.4 MODEL FITTING

In the previous sections we introduce the Generalized Linear Models and dis-
cussed its various components. In this section we will look at the various ways
of fi�ing the model ie parameter determination, deviance analysis to test the
suitability of the model and testing the parameter significance.

3.4.1 PARAMETER ESTIMATION

Using the Maximum Likelihood Estimation

The Maximum Likelihood Estimation is applied in the estimation of parame-
ters. The log-likelihood functions are determined depending on the various link
functions. To achieve this the log-likelihood is with respect to the respective
parameters. McCullagh and Nelder (1989) gives more information on this method.

Using quasi-likelihood

In practice, it may not be possible to use the maximum likelihood method in
parameter estimation since the available information on the random variable
may not tell us much about its distribution. We may use the quasi-likelihood in
determining the e�ect of covariates on response variables. The only specification
necessary is the relation between the mean and the variance of the random
variables. McCullagh and Nelder (1989) gives more information on this method.
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3.4.2 ANALYZING THE GOODNESS OF FIT

Analysis of Residuals using scaled deviance

To determine the adequacy of the model in data description we use the scaled
deviance. This is achieved by comparing this model to a saturated model. A
saturated model is one in which the number of observed data points equals the
number of the models’ parameters. The saturated model is considered as the base
line. Suppose we Ls and ls are the likelihood and logg-likelihood of the saturated
model and Lm and lm are the likelihood and log-likelihood of the current model,
then we can define the scaled deviance, SD, as follows; SD=2(ls− lm) The deviance
of the of the current model, Dm, is defined as;

Dm = φ ∗SD (3.17)

Where φ is the scaled parameter.
Normally in deciding which model to pick we compare their scaled deviance.

those with smaller scaled deviance are be�er. Normally, models with more
parameters have smaller scaled deviance.

Analysis of the Residuals using Pearson χ2 statistic

The Pearson χ2 statistic can be defined as

∑rp = ∑(
yi− µ̂√

V (µ̂i
) (3.18)

Where the estimated variance of the distribution is V (µi).
Pearson χ2 statistic follows χ2 distribution for normal linear models and not

for other the distributions. For data which do not have normal distribution,we
get a skewed distribution of the Pearson residuals.

3.5 RESERVE ANALYSIS WITHIN THE FRAME-
WORK OF GENERALIZED LINEAR MODELS
(GLM)

Here we will look at how GLM can be applied to claim reserving by using the
various distribution of the exponential family. Normally claims a particular
distribution can be used to model the claim count(frequency) or claim amount
(severity). Here we will discuss the Gamma and Over Dispersed Poisson models.
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3.5.1 THE GAMMA DISTRIBUTION
The gamma distribution has probability density function as below;

f (y;α,λ ) =
λ α

Γ(α)
yα−1e−λy for some y = i,2,3..., α > 0 and λ > 0

(3.24)

Suppose we take λ = α

µ
, then we have;

f (y;α,µ)=
αα

µαΓ(α)
yα−1e−

α

µ
y for some y= i,2,3..., α > 0 and λ > 0

(3.25)

Expressing this as exponential family of distributions gives;

f (y;λ ,µ) = exp[α(− y
µ
− log µ)+(α−1) logy+α logα− logΓ(α)] (3.26)

for some y = i,2,3..., α > 0 and λ > 0

We can define the various parameters as below;

φ = α (3.30)

θ =− 1
µ

(3.29)

b(θ) =− log(−θ) (3.32)

c(y,φ) = (φ −1) logy+φ logφ − logΓ(φ) (3.33)

a(φ) =
1
α

(3.31)

The mean E[Y ], variance Var[Y ] and variance function V (µ) are given by;

E[Y ] = b
′
(θ) =

−1
θ

= µ (3.34)

Var[Y ] =
µ2

α
(3.36)

V (µ) =
1

θ 2 = µ
2

(3.35)

The linear predictor η can then be expressed as;

η =
1
µ
= η = c+a+b (3.37)
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3.5.2 THE OVER DISPERSED POISSON MODEL (ODP)
Poisson distribution is o�en used to model the counting data. The for a Poisson
distribution with parameter µ the pdf, expected value and the variance are as
below;

f (y,µ) =
µye−µ

y!
for some y = 0,1,2. . . , and µ > 0 (3.19)

E(Y ) =Var(Y ) = µ (3.20)

However when the data is overly disbursed, as is o�en the case with the claim
data, the variance and the expected value are o�en not equal. In such a case the
data follow the Over Disbursed Poisson distribution. The variance is bigger than
the expected value. Usually the Consider a random variable Y which follows the
Over Disbursed Poisson distribution then;

Y ∼ ODP(µ,φ) (3.21)

And the expected value and the variance are given by

E(Y ) = µ (3.22)

Var(Y ) = φ ∗µ (3.23)

If the scale parameter, φ = 1, then we get the Poisson distribution. If φ < 1,
then we get an under-disbursed Poisson distribution.

If φ > 1, then we have an Over-disbursed Poisson distribution.

3.6 BOOTSTRAPPING

3.6.1 INTRODUCTION
Bootstrapping is a sampling method (with replacement), from an observed data
set, that is used to create a pseudo data set which can be used to determine
the distribution of the the parameters. The sampling is done with replacement.
Bootstrap can either be;

1. Paired bootstrap-this is where the observed data are used directly in re-
sampling

2. Residual bootstrap- this is where the residuals of the model are determined
and used in re-sampling.
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The residual bootstrapping is preferred since the bootstrapping method re-
quires data to have the following properties;

1. The data should be identically and independently distributed.

2. To be indi�erent to resembling the data(residue) or the data (residue)
multiplied by a constant.

Scaled Pearson residuals will be used in this project. As stated in McCullagh
and Nelder (1989) the Pearson residue can be defined as;

rp =
(yi−µi)√
(V (µi))

(3.38)

The scaled Pearson residual for a run o� triangle is given by;

rsp
i j =

(Ci j− µ̂i j)√
(a(φ)∗V (Ci j))

=
(Ci j− µ̂i j)√
(a(φ)∗V (µ̂i j))

(3.39)

The dispersal parameter φ can either be a constant or dependant on the
development period j in which case it is denoted as φ j. When bootstrapping the
GLM the following procedure should be followed;

(a) Define the GLM and fit it, obtaining parameters c, αi, β j (i, j = 1,2, . . .n)
and φ and fi�ed values for the observed data, µ̂i j

(b) Calculate the scaled Pearson residuals, rsp
i j of your fi�ed model.

rsp
i j =

(Ci j− µ̂i j)√
(a(Φ)∗V (Ci j))

(3.40)

(c) Sample from the residuals,with replacement,(bootstrapping bit) i.e.construct
a triangle of bootstrapped residuals,

(d) Invert these residues to obtain a set of pseudo-data

Ci j = rsp
i j ∗

√
(a(Φ)∗V (µi j))+ µ̂i j (3.41)

(e) Re-fit the GLM using this pseudo-data set, to obtain another set of forecast
output.

(f) Repeat steps 3,4and 5 many times (e.g. 10,000) to derive a forecast output for
each pseudo dataset incorporating the randomness present in the residuals.
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(g) Apply some method e.g.the Bornhue�er-Ferguson Method, the chain ladder
etc(in this project chain ladder method is applied) in carrying out projections
for each of the sets of forecast output( alternative past data).

(h) Calculate the bootstrap reserves for each of the alternative projections.

(i) Determine the distribution of the possible reserve estimates incorporating
the randomness in the residuals.

3.6.2 THE PREDICTION ERROR
The above procedure of bootstrapping can gives us the prediction error estimates.
We can break prediction error into;

1. The process error; this arises from the the assumption made concerning
the underlying distribution that the claim data follows. This is determined
by the scale parameter in the ODP.

2. The parameter error; this arises from step 5 where we estimate the pa-
rameters for each pseudo data set obtained, giving a distribution of the
parameter.

The prediction variance can then be given as;

Predictionvariance = Estimationvariance+Processvariance (3.42)

3.6.3 BOOTSTRAPPING THE ODP MODEL
This model is a members of the exponential families. We model the claim amount
on the assumption that they follow the ODP distribution. As stated in the earlier
sections the ODP distribution has variance that is proportional to the mean. The
main assumptions on the claim data are as follows;

1. incremental claim data are independent.

2. As stated above, the variance and the mean of the incremental claim data
are proportional.

3. For all the development years the claim data are positive (if negative, this
will lead to negative variance since variance is a proportion of the mean
with the constant of proportionality of φ ).
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4. The same runo� pa�ern for each origin year.

Suppose that we take the incremental claim amount to be represented by the
random variable Ci j , where i and j are as defined before, then;

Ci j = ODP(θi j,φi j) (3.43)

Where;

E(Ci j) = µi j (3.44)

Var(Ci j) = φ j ∗µi j (3.45)

φ , scale parameter, can be a constant for all the development years or can be
defined as φ j for each development year. The linear predictor can be defined as
η=c+ai +b j. The Pearson residual is defined as ;

rsp
i j =

(Ci j− µ̂i j)√
(φ ∗V (µi j))

(3.46)

This is then inverted to compute the pseudo claim data set Ci j, which are
bootstrap cumulative claims given by the form;

Ci j = rsp
i j ∗

√
(φ ∗V (µi j))+ µ̂i j (3.47)

where rsp
i j is the sampled scaled Pearson residue for the origin year i and devel-

opment year j.

3.6.4 BOOTSTRAPPING THE GAMMAMODEL
As stated above, the link function of gamma can be considers as the reciprocal
link, which is a canonical link. This leads to;

µi j =
1

c+ai +b j
(3.48)

For Gamma model,the scaled Pearson residue if given by;

rsp
i j =

(Ci j− µ̂i j)√
(V (µ̂i j))

=
(Ci j− µ̂i j)

µ̂i j
√

α̂)
(3.49)

for 0≤ i+ j ≤ I. This is then inverted to compute the pseudo claim data set
Ci j, the same way as in the Over-Dispersed Poison model.
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APPLICATION

In this section we look at how we can apply the over dispersed Poisson model,
using the bootstrapping technique in data analysis. We will use 10,000 loops to
construct the predictive distribution of the ultimate reserve. This distribution
will help in calculating some measures of risk such as the VaR and CVaR of the
reserve. The analysis is achieve in the environment of R statistical so�ware.

4.1 THE DATA SET

We use the incremental claim data as used in Taylor and Ashe(1983). This is
shown in table 4.1 below. The development triangle is in the USD

Development Years

Origin 1 2 3 4 5 6 7 8 9 10

year

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405

4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286

5 443,160 693,190 991,983 769,488 504,851 470,639

6 396,132 937,085 847,498 805,037 705,960

7 440,832 847,631 1,131,398 1,063,269

8 359,480 1,061,648 1,443,370

9 376,686 986,608

10 344,014

Table 4.1: Development triangle of incremental claims

19
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As per the previous chapters the number of origin years and development
years are I=J=10 The cumulative claim triangle for the same data is as shown in
table 4.2 below

Development Years

Origin 1 2 3 4 5 6 7 8 9 10

year

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712

7 440,832 1,288,463 2,419,861 3,483,130

8 359,480 1,421,128 2,864,498

9 376,686 1,363,294

10 344,014

Table 4.2: Development triangle of cumulative claims

From the above it is clear that the value of the cumulative claim amount rises
with the accident year, however the rise is less with le�er development year than
the rise at the beginning.
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The graphical representation of the cumulative claim amounts per each origin
year is as shown in figure 4.1 below; As stated in section 3.2 the development
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Figure 4.1: Graph of cumulative claims against development years

factors f j can be determined as:

f̂ j =
∑

I− j+1
i=1 Ci j

∑
I− j+1
i=1 Ci j−1

When applied on the above data we get the development factors as shown in
table 4.3 below;

The resulting estimated future claim amounts, using the above development
factors is as shown in table 4.4 below;
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Development Year 1 2 3 4 5 6 7 8 9

Development factors 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

Table 4.3: Table of development factors

Development Years

Origin 1 2 3 4 5 6 7 8 9 10

year

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,433,587

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 5,285,369 5,378,920

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 4,835,576 5,205,981 5,298,127

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,207,578 4,434,366 4,774,039 4,858,539

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,074,912 4,426,577 4,665,169 5,022,521 5,111,420

7 440,832 1,288,463 2,419,861 3,483,130 4,088,846 4,513,269 4,902,764 5,167,023 5,562,817 5,661,278

8 359,480 1,421,128 2,864,498 4,174,719 4,900,703 5,409,396 5,876,227 6,192,956 6,667,336 6,785,348

9 376,686 1,363,294 2,382,084 3,471,649 4,075,368 4,498,392 4,886,603 5,149,991 5,544,480 5,642,617

10 344,014 1,200,815 2,098,185 3,057,894 3,589,662 3,962,269 4,304,213 4,536,210 4,883,683 4,970,125

Table 4.4: The Full Development Triangle of cumulative claims for both the

original claims and projected claims

The claim amount can be determined as per the section formulae; The out-
standing reserve per origin year can be calculated using the formula;

Ri =Ci j−Ci,n−i+1 for 1≤ i≤ J

This gives reserves as shown in table 4.5;

Origin 1 2 3 4 5 6 7 8 9 10

Year

Reserve 0 94,634 469,511 709,638 984,889 1,419,459 2,177,641 3,920,301 4,278,972 4,625,811

amount

Table 4.5: The outstanding reserve per origin year

The total claim reserve outstanding, R, define by R=∑
I
i=1 Ri as per section 3.2

gives 18,680,856/=.
In the following sections we will look at the stochastic analysis of the models.

We will compare the results we get to those of chain ladder reserving.
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4.2 THE STOCHASTIC ANALYSIS OF THE MOD-
ELS

Here we will look at the analysis of the fi�ed Over Dispersed Poisson and Gamma
models as stated sections .3.5. We will look at residual analysis,bootstrapping of
both models to determine the reserve distribution and some risk measures from
the distributions of the reserves.

4.2.1 DETERMININGTHESCALEDDEVIANCE STATISTIC
AND THE PEARSON χ2 STATISTIC

We can also compute the scaled deviance and the scaled Pearson χ2 statistic.
This can be achieved as describe d in section These are as summarized in the
table;

ODP MODEL GAMMA MODEL

PEARSON RESIDUAL 1893649 3.606954

DEVIANCE RESIDUAL 1903014 3.986787

The ODP model has very high values of both the Deviance residual and the
Pearson chi square residual compared to the Gamma model. This indicates that
Gamma model fits the data set be�er than ODP model. For the purpose of this
model we will continue with the data analysis for both models.

4.2.2 CLAIMRESERVE CALCULATION USING THE BOOT-
STRAPPING TECHNIQUE

We will calculate the bootstrap reserve and the reserve distribution for both
the ODP and the Gamma models. The analysis is done in the environment of
R statistical package. The R codes used are as presented in the appendix. As
described in chapter 4, the bootstrap technique is used with 10,000 repetitions
of loops. For each origin year, we will calculate the claim reserves as well as
the total reserve, by applying bootstrapping technique to both the ODP and the
Gamma models, and compare them with the claim reserves we got using basic
chain ladder technique. This will be done for both the ODP and the Gamma
models. We will also calculate the various values of Value at Risk (VaR) as one of
the quantitative measures of risks.
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For the ODP model the table below shows the ODP Bootstrap mean ultimate
claim, the ODP bootstrap mean IBNR, the SD IBNR ,the IBNR VaR(99%) and
the IBNR VaR(99.5%)

Chain Chain ODP ODP ODP VaR(99) VaR(99.5)

ladder ladder Bootstrap Bootstrap Bootstrap

Accident Ultimate IBNR Ultimate IBNR SD IBNR IBNR IBNR

year claim Claim 99 99.5

1 3,901,463 0 3,901,463 0 0 0 0

2 5,433,719 94,634 5,434,272 95,187 114,147 460,238.10 539,786.40

3 5,378,826 469,511 5,386,116 476,801 219,570 1,084,274.70 1,168,452.80

4 5,297,906 709,638 5,302,154 713,886 260,733 1,442,143.20 1,551,285.30

5 4,858,200 984,889 4,866,294 992,983 307,996 1,859,272.90 1,967,047.90

6 5,111,171 1,419,459 5,124,104 1,432,392 380,347 2,464,676.20 2,594,727.70

7 5,660,771 2,177,641 5,675,610 2,192,480 497,252 3,527,018.40 3,685,942

8 6,784,799 3,920,301 6,800,769 3,936,271 798,480 6,027,880.50 6,324,337.50

9 5,642,266 4,278,972 5,671,828 4,308,534 1,056,522 7,137,294.60 7,614,843.60

10 4,969,825 4,625,811 5,075,308 4,731,294 2,038,800 10,907,262 11,624,802.40

Total 53,038,946 18,680,856 53,237,918 18,879,828 5,673,847 34,910,061 37,071,226
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The empirical cumulative distribution function for the total bootstrap reserve
for the ODP bootstrap model is as shown below in figure 4.2.
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Figure 4.2: The CDF of reserve for the ODP bootstrap model
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The histogram of the total bootstrap reserve for the bootstrap ODP model is
as shown in figure 4.3 below.

Histogram of ODP.BOOT$IBNR.Totals
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Figure 4.3: The Histogram of reserve for the ODP bootstrap model



CHAPTER 4. APPLICATION 27

For the Gamma model the table below shows the Gamma Bootstrap mean
ultimate claim, the Gamma bootstrap mean IBNR, the SD IBNR ,the IBNR
VaR(99%) and the IBNR VaR(99.5%)

Chain Chain GAMMA GAMMA GAMMA VaR(99) VaR(99)

ladder ladder Bootstrap Bootstrap Bootstrap

Accident Ultimate IBNR Ultimate IBNR SD IBNR IBNR IBNR

year claim Claim 99 99.5

1 3,901,463 0 3,901,463 0 0 0 0

2 5,433,719 94,634 5,437,585 98,500 115,865 481,297.20 538,662.6

3 5,378,826 469,511 5,382,686 473,371 217,196 1,100,210.10 1,203,454.3

4 5,297,906 709,638 5,307,142 718,874 266,834 1,454,054.0 1,527,939.0

5 4,858,200 984,889 4,864,456 991,145 306,831 1,816,066.7 1,910,242.7

6 5,111,171 1,419,459 5,119,415 1,427,703 378,857 2,443,722.2 2,552,053.5

7 5,660,771 2,177,641 5,671,678 2,188,548 500,764 3,533,452.6 3,695,441

8 6,784,799 3,920,301 6,799,116 3,934,618 797,320 6,047,578.4 6,324,309.5

9 5,642,266 4,278,972 5,671,116 4,307,822 1,062,967 7,155,475.1 7,551,060.1

10 4,969,825 4,625,811 5,039,623 4,695,609 2,004,311 10,692,659 11,352,051.8

Total 53,038,946 18,680,856 53,194,280 18,836,190 5,650,945 34,724,515 36,655,215

The values of the ultimate claim and the IBNR are also close to the values
of the chain ladder. However for the gamma model these values of closer to
the ones of chain ladder model compared to the values of obtained by the ODP
model. Just like the ODP model, Bootstrapping technique helps us to calculate
the IBNR standard deviation and the VaR(75%) and VaR((99.5%), i.e. the 75%
and 99.5% quantiles.
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The empirical cumulative distribution function for the total bootstrap reserve
for the Gamma bootstrap model is as shown in figure 4.4 below.
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Figure 4.4: The CDF of reserve for the GAMMA bootstrap model
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The histogram of the total bootstrap reserve for the bootstrap ODP model is
as shown in figure 4.5 below.
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Figure 4.5: The Histogram of reserve for the GAMMA bootstrap model

From the values given for VaR(99.5%),the loss of the insurance company
would excess the amount of 18,191,398 with low probability of 0.5From this anal-
ysis it is clear that stochastic reserving techniques are a great tool in determining
loss reserves, the predictive distributions of the reserves and to the quantitative
measures of risks live Value at Risk when analyzing reserves.
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4.3 FITTING A DISTRIBUTION TO THE IBNR

The distribution for both the ODP and the Gamma models can be fi�ed to a
known distribution. In this case the reserve distribution seems to be fi�ing well
to the log normal distribution. The Maximum likelihood technique is applied to
calculate parameters of the chosen distribution.
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CONCLUSIONS AND
RECOMMENDATIONS

5.1 CONCLUSIONS

It has been shown that the algorithm based loss reserving models overlooks
some key factors that need to be incorporates in loss reserving. It has also been
demonstrated that that the stochastic loss reserving can provide an improved
alternative to the algorithm based methods..

The concept of loss reserving was introduced. The algorithm based claim
reserving method was discussed. However it was clear that Chain ladder loss
reserving method does not allow us to calculate the various risk measure quanti-
ties. This makes it necessary to introduce other loss reserving techniques that
would take care of this.

Stochastic loss reserving is introduced as an alternative to chain ladder. Claim
reserving is done within the frame work the Generalized Linear Model. The
various components of GLM are introduced as well as the exponential family of
distribution.

Over dispersed Poisson model and gamma are used as the underlying distri-
butions that the claim amounts follow. Any other distributions both discrete and
continuous could be used. The models are validate by comparing their deviance
residuals and the Pearson chi square statistics. For purpose of this thesis ,both
the Over dispersed Poisson model and gamma were used in data analysis.

The bootstrapping technique is applied on the Pearson residuals of the runo�
triangles for both the Over dispersed Poisson model and Gamma distributions.
This helped in ge�ing the predictive distributions of the loss reserve. From here
it is possible to get risk measures such as the VaR, as may be required by the
company management, or for further analysis.

31
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Data analysis was done in the environment of R statistical package. This was
done to help compare the results of chain ladder loss reserving and stochastic
loss reserving using Over dispersed Poisson distribution and Gamma distribution
as the underlying GLM distributions. Residual analysis was done on the data
set and both the Pearson chi square and the Deviance residuals were calculated
for both the Over dispersed Poisson distribution and Gamma distribution were
done. The results of the analysis was summarized using graphically and using
tabular form.

Solvency II requires distribution of the expected value of the liability a�er
year 1 for the 1 year ahead balance sheet. This can be achieved using stochastic
loss reserving methods. The traditional techniques like chain ladder don’t give
the distribution properties of the reserves. Bootstrapped distribution gives a
technique of ge�ing the unknown distribution of the reserves. This can be fi�ed
to get the exact distribution that it represents.

5.2 RECOMMENDATIONS

From the thisis it is clear that stochastic loss reserving gives quite a satisfactory
results and details that can help improve risk management in general insurance
reserving. However, there are several ways in which stochastic loss reserving can
be improved. One area that need further research is on the other risk analysis
measure and various ways that stochastic loss reserving can help improve enter-
prise risk management.Another area of further research is how stochastic loss
reserving can be incorporated in the the International Accounting Standards for
be�er reporting of the financial positions of insurance companies.
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Chapter 6

APPENDIX

6.1 R Code

6.1.1 Importing The Data
## Importing the date setwd("C:/Users/edmond ochieng/Desktop/UON/loss anal-
ysis using GLM/data analysis")
data<-read.csv("Book1.csv",header=F)
data.incremental<-as.triangle(data)
data.incremental

## Transforming triangles from incremental to cumulative
data.cumulative <- incr2cum(data.incremental)
data.cumulative

# # Plo�ing cummulative claims against development years
plot(data.cumulative,ylab="Cummulative claim",xlab="Development year",main="Graph
of cummulative claims against development years")

## Creating a data frame
claims <- as.vector(data.incremental)
number.origin.years <- nrow(data.incremental)
number.development.years <- ncol(data.incremental)
origin <- factor(row <- rep(1:number.origin.years, number.development.years))
dev <- factor(col <- rep(1:number.development.years, number.origin.years))
data.frame <-data.frame(claims.amount=claims, origin.years=origin, develop-
ment.years=dev)
data.frame

34



CHAPTER 6. APPENDIX 35

6.1.2 Chain Ladder Reserving
# Chain Ladder Reserving
# Development factors
n <- 10
development.factors <- sapply(1:(n-1),
function(i)
sum(data.cumulative[c(1:(n-i)),i+1])/sum(data.cumulative[c(1:(n-i)),i])

)
development.factors

## Ge�ing the full cumulative triangle
fulldata.cumulative <- cbind(data.cumulative)
for(k in 1:n)
fulldata.cumulative[(n+1-k):n, 1+k] <- fulldata.cumulative[(n+1-k):n,k]*development.factors[k]

round(fulldata.cumulative)

## Ultimate claims per origin year
fulldata.cumulative[ ,10]
cbind(fulldata.cumulative[ ,10])

## calculating the yearly reserves(per origin year)and the total reserves
fulldata.cumulative[ ,10] - getLatestCumulative(data.cumulative,na.values = 0)

sum(fulldata.cumulative[ ,10] - getLatestCumulative(data))

6.1.3 Stochastic Reserving
# Stochastic Reserving
# Residual analysis and Checking the goodness of fit of the data

# Fiting the gamma model
glm
gamma.model<- glm(claims origin + dev, family = Gamma,subset=is.na(claims),
data=data.frame)
gamma.model
summary(gamma.model)
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# pearson and deviance residuals for Gamma model
gamma.model.pearson.residuals<-residuals(gamma.model,’pearson’)
gamma.model.deviance.residuals<-residuals(gamma.model,’deviance’)

# Fit over-dispersed poison model (ODP)
ODP.model <- glm(claims origin + dev, family = quasipoisson(),subset=!is.na(claims),
data=data.frame)

summary(ODP.model)

# pearson and deviance residuals for over-dispersed poison model
ODP.model.pearson.residuals<-residuals(ODP.model,’pearson’)
ODP.model.deviance.residuals<-residuals(ODP.model,’deviance’)

# Goodness of fit tests Gamma Model
# Model deviance
gamma.model.deviance <- sum(residuals(gamma.model,”deviance”)2)
gamma.modeldeviance
# Scaled Pearson Chisq statistic
gamma.modelPearson<−sum(residuals(gamma.model,”pearson”)2) gamma.modelPearson
# Goodness of fit tests Over dispersed poisson Model
# Model deviance statistic
ODP.model.deviance<-sum(residuals(ODP.model,”deviance”)2)
ODP.model.deviance
# Scaled Pearson Chi square statistic
ODP.model.Pearson<- sum(ODP.model.pearson.residuals2)
ODP.model.Pearson

# Ge�ing The IBNR Distribution Using Bootstrap Technique

# Assuming gamma distribution
GAMMA.BOOT <- BootChainLadder(data.cumulative, R=10000, process.distr="gamma")
GAMMA.BOOT

# Gamma Model graphs
# The CDF of reserve for the GAMMA bootstrap model
plot(ecdf(GAMMA.BOOT$IBNR.Totals),xlab="Total bootstrap IBNR(x)", main="The
CDF of reserve for the GAMMA bootstrap model")

# Histogram of GAMMA bootstrap model
plot(hist(GAMMA.BOOT$IBNR.Totals),xlab="Total bootstrap IBNR(x)",ylab="Frequency",
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main="The Histogram of reserve for the GAMMA bootstrap model")

# Assuming ODP MODEL distribution
ODP.BOOT <- BootChainLadder(data.cumulative, R=10000, process.distr="od.pois")
ODP.BOOT

# ODP model graphs
# The CDF of reserve for the ODP bootstrap model
plot(ecdf(ODP.BOOT$IBNR.Totals),xlab="Total bootstrap IBNR(x)", main="The
CDF of reserve for the ODP bootstrap model")
# Histogram of ODP bootstrap model
plot(hist(ODP.BOOT$IBNR.Totals),xlab="Total bootstrap IBNR(x)",ylab="Frequency",
main="The Histogram of reserve for the ODP bootstrap model")
summary(ODP.BOOT)

# Analysis Of Reserves
# Calculating Value at Risk of the bootstrap IBNR for both Gamma and ODP
models
quantile(GAMMA.BOOT, c(0.75,0.95,0.99, 0.995))
quantile(ODP.BOOT, c(0.75,0.95,0.99, 0.995))
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