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ABSTRACT 

Early and accurate diagnosis of cancer is important for proper management and treatment of 

the disease. The conventional techniques used for cancer diagnosis are expensive, require 

specialized training and do not carry out prognosis effectively. This necessitates developing 

techniques that are rapid, direct, affordable and accurate for cancer detection especially in the 

early stages. 

 

Biometal analysis in tissue for the purpose of cancer prognosis and diagnosis is important 

since the trace metals can be utilized as disease biomarkers. LIBS analysis uses pulsed laser 

for ablation (simultaneous atomization and excitation). Laser Induced Breakdown 

Spectroscopy (LIBS) has been used to obtain spectral data from the samples under study 

(simulate, breast, liver, abdominal tissues and cultured cell lines) and multivariate 

chemometric tools applied for data preprocessing towards quantification of trace elements in 

human tissues and cancer cell lines. The samples were obtained from Kenyatta National 

Hospital (KNH) then processed and fixed in paraffin wax to make 2 cm thick blocks. These 

blocks were sliced to 2 cm thickness, weight of 2 g ready for study. 

 

Simulate tissue samples prepared by embedding known concentrations of Fe, Cu, Zn, Mn and 

Mg on molten paraffin wax, were used to create a multivariate calibration model by 

exploiting Artificial Neural Network (ANN) for predicting concentrations of the above 

named trace elements in body tissues (  value > 0.95). Multivariate chemometric 

techniques (PCA, ANN and SVM) were used to achieve prognosis and diagnosis of cancer 

using modeled LIBS spectral data, trace biometal concentrations and multivariate alteration 

of the biometals (Cu, Mg, Mn, Fe and Zn). These metals were chosen based on the frequent 
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occurrences of these elements in the tissues. The method was used to identify the trace 

biomarkers in the tissues. The concentration ranges for the tissues obtained are Fe (51.2 - 

137.2 µg/g), Cu (5 - 18.7 µg/g), Zn (36 - 56.8 µg/g), Mg (78.2 - 507.4 µg/g) and Mn (8.8 - 

19.5 µg/g) for liver tissue. Beast tissue had Fe (87.7 - 113.9 µg/g), Cu (10.9 - 12.3 µg/g), Zn 

(49.3 µg/g to 55.7 µg/g), Mg (194.3- 242.3 µg/g) and Mn (14.5 µg/g - 16.1 µg/g). Abdominal 

tissue had Fe (96.7- 125.7 µg/g) Cu (6.7- 7.5 µg/g) Zn (88.3 - 93.9 µg/g) Mg (467.5 - 583.1 

µg/g) Mn (9.5 -10.5 µg/g). 

 

PCA was employed for pattern recognition as it grouped the human tissue samples with 

respect to the part of the body from which it was obtained based on trace biometal signatures. 

Besides, it also characterized them in terms of malignant and benign cancer staging. Support 

Vector Machine (SVM) was used to develop a classification model using simulate samples.  

The developed method is rapid and suitable for early diagnosis of cancer and thus can be 

applied for proper cancer management. The whole process of acquiring data and analyzing to 

give results takes about 15 min as compared to the other methods, which take approximately 

1 hour. This makes the methodology viable for spectral diagnostics of cancer in human tissue 

including at its early stages. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 BACKGROUND INFORMATION 

Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy method 

that is fast, minimally invasive and non-destructive. It is used to analyze the elemental 

composition of solids, liquids or gases (Miziolek et al., 2006). This method uses a pulsed 

laser to excite the elemental constituents of the sample under study leading to the production 

of a micro-plasma. The ablation process generates free atomic species (neutrals and ions). 

The atoms get excited and emit radiation of given intensity that is detected by a set of 

spectrometers. The spectral information obtained is used for qualitative and quantitative 

analysis of the sample under study. The ablation process produces spectra showing different 

intensity values for the various elements in the sample under study. These intensity values are 

used for calibration by relating them to concentration.  

Unlike other spectroscopic techniques such as Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AES), Inductively Coupled Plasma Mass Spectroscopy, ICP-MS and 

Graphite Furnace Atomic Absorption Spectrometry (GFAAS), the principal advantages of 

LIBS over them include its simplicity, rapid and direct analysis (Lee et al., 2004). 

LIBS has vast applications in various fields. These areas include art (Savastenko and 

Tarasenko, 2011) (Colao et al., 2002; Melessanaki et al., 2002), space exploration (Colao et 

al.,2004), geomaterials (Mukhono, 2012; Harmon et al., 2009), detection of hazardous 

materials (Harmon et., al, 2013), (Gottfried et al., 2009; DeLucia et al., 2005) and study of 

cancer tissues (El-Hussein et al., 2010; Kumar et al., 2004). 
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In the biomedical field, LIBS has been used for disease prognosis and diagnosis. LIBS offers 

a simple and real-time technique for disease diagnosis compared to other diagnostic 

techniques basing on its ability to detect and profile trace elements which are disease 

biomarkers. 

Diseases change the biochemical composition of body tissues and fluids in some distinctive 

ways particularly changes in concentrations and structure of proteins, carbohydrates, and 

lipids. These changes when detected, profiled and characterized hold the key towards 

developing diagnostic techniques for those diseases, including the degree of their severity 

even before the commonly used histapathological analysis is able to reveal them. In order for 

the human body to maintain normal physiological functions for growth and development, the 

body requires trace elements.   

The human body needs trace elements, in as little quantities as micrograms per gram, as 

essential components of biological enzyme systems or of structural portions of biologically 

active enzyme constituents. Examples of essential trace elements include Fe, I, Cu, Mn, Zn, 

Co, Cr, Se, Mo, Mg, V, Si and Ni. For this research, Cu, Zn, Mn, Mg, and Fe are under study. 

(Tehrani et al., 2007). 

The physical and chemical properties of the sample can affect the LIBS plasma composition, 

a phenomenon known as matrix effect (Mohamed, 2007). The dependence of intensity of 

spectral lines on laser pulse energy is affected by the nature of the matrix such as thermo-

physical/ chemical matrix composition, surface reflectivity, conductivity and constituents’ 

melting and boiling points of the sample (Mukhono, 2012). 
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Detection of trace elements in biological specimens depends essentially on the specimen 

(blood, urine, tissue, hair or nails), the method for preparation and the detection limit of the 

trace element of interest (Cremers and Radziemski, 2006). Detection limits of 1 gg /  to 

greater than 100 gg /  by mass are common for LIBS (Sarkar, 2010). 

The spectral lines obtained from LIBS suffer from spectral overlaps, matrix effects and self-

absorption that adversely affect the trace element biomarkers of cancer in the tissues lowering 

the detection limit. LIBS combined with multivariate chemometric tools such as ANN, SVM 

and PCA ensures that only the important information is captured from the LIBS spectra. In 

this research, LIBS with chemometric techniques has been exploited towards early detection 

and characterization of cancer in breast, liver and abdominal tissue based on trace elements. 

Scope and Limitations of study 

Study hypothesis 

1.2 Statement of the Problem 

Early cancer diagnosis is a challenging area in the management of the disease. Most of the 

patients are diagnosed at the late stage of development of the disease. The current methods of 

cancer diagnosis are limited by inadequacy in early, direct and rapid detection. This 

necessitates attempts to improve on the diagnostics methods by developing rapid and non- 

invasive techniques. Detection of cancer at an early stage using LIBS based on the 

concentration, multivariate alterations and correlation of trace elements is feasible but is yet 

to be fully explored. 
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1.3 Objectives 

1.3.1 Main Objective 

To develop a LIBS method for rapid and non-invasive detection, quantification and 

characterization of cancer in human body tissue based on the concentration and alterations of 

the following trace elements: Cu, Mn, Mg, Zn and Fe. 

1.3.2 Specific Objectives 

i. To qualitatively identify the trace element biomarkers in liver, breast and abdominal 

human cancerous tissues using LIBS. 

ii. To design and validate a multivariate calibration model for determining concentration 

of the trace elements in the above cancerous tissues using ANNs. 

iii. To utilize the ANN calibration model developed above in the prediction of 

concentration values of the trace elements in liver, abdomen and breast cancerous 

tissues and cancer cell lines. 

iv. To differentiate and characterize cancer type and stage using exploratory analysis of 

the trace elements in human cancer tissue and cancer cell lines using PCA and SVM. 

 

1.4 Justification and Significance of Study 

Traditional diagnostic techniques of cancer such as X-ray radiography, computed 

tomography (CT) scan, angiogram, magnetic resonance imaging (MRI), and mammography 

are complex and are not as effective to establish the occurrence of the disease at hyperplasia 

stages as well as the prognosis of the disease. LIBS is a very powerful and rapid technique 

that has the ability to differentiate malignant growth from normal and benign tissues based on 

trace element levels (and possibly early stage of occurrence) of the disease. 
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The mortality rate of cancer is high despite having techniques such as mammogram, X-ray 

radiography, MRI, CT scan and angiogram. According to World Health Organization, 8.2 

million people worldwide died from cancer in 2012. Of the world’s total new annual cases, 

60 % occur in Africa, Asia, Central and South America. The annual cases are expected to 

increase from 14 million in 2012 to 22 million within the next two hundred years. The burden 

of cancer can be reduced if early detection and identification of the disease is done. This 

leads to proper management of the patients hence minimizing the death rates. (Globocan, 

2012).  

There is a need to establish alternative diagnostic techniques of cancer to enhance early 

detection hence early treatment and proper management. Trace metal bio-analysis is a good 

indicator of early stage of cancer development. This research utilizes innovative 

spectroanalytical approaches based on the combination of LIBS and chemometrics that 

enhances the trace analytical detectability of the biometals in tissues while increasing the 

information gained via multivariate exploratory analysis capability. 
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2 CHAPTER TWO 

 

LITERATURE REVIEW 

2.1 Disease Diagnostics 

Disease diagnosis refers to the process of determining whether there is presence of disease in 

an organism. It involves correlating selected pieces of information, recognizing formed 

patterns and differentiating those patterns.  Disease diagnosis uses several techniques to 

determine the presence of the disease. In this research, laboratory techniques have been used 

to rapidly detect and directly diagnose and characterize cancer. Cancer is a principal cause of 

death universally, resulting in 8.2 million deaths in 2012 (Stewart and Wild, 2014). The most 

common causes of cancer deaths are cancers of the lung (1.59 m), liver (745, 000), stomach 

(723, 000), colorectal (694, 000), breast (521, 000), esophageal (400, 000) (Stewart and Wild, 

2014). Diagnosis of cancer currently is based on various methods for example MRI, CT scan, 

mammography and X-ray radiography. 

Trace elements are chosen for study due to their occurrences in both healthy and cancerous 

tissues in different levels. They can therefore be used as indicators of early stages of cancer 

development, for which the conventional analytical techniques such as computed tomography 

(CT), scintillation scan, ultrasound, biopsy, magnetic resonance imaging (MRI) and 

mammography screening are incapable of detecting their levels. 

2.2  Methods of Cancer Diagnostics 

2.2.1  Magnetic Resonance Imaging (MRI) 

MRI is an imaging tool that develops thorough, cross-sectional images of the inside of the 

body. However, there is generation of noise when the MRI system is in operation. A patient 

is at risk if they have metallic implants that they are not aware of, thus great safety measure is 
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required to avoid occurrence of accidents. During the process, a patient lies on a table top and 

slips into an enormous shaft scanner; this is not suitable for claustrophobic people. Although 

MRI is a very sensitive technique and does not use radiation, undertaking the scan is 

expensive. 

2.2.2  Computed Tomography (CT) Scans 

A CT scan is a radiation technique that produces 3-D, cross-sectional images of the organs. It 

delivers a high dose of radiation, which exposes the patient to carcinogenesis. The dose is 

about the same radiation exposure that an individual would get in a year. A contrast dye is 

necessary before the procedure for some organs. Iodine is mostly used but is a source of 

allergic reaction to most people. 

2.2.3 Mammography 

This is an X-ray examination of the breast tissue and it creates pictures of the tissue. It then 

detects and profiles breast changes. The procedure may be uncomfortable and perhaps may 

hurt depending on a woman’s menstruation cycle. The radiologist gives a diagnosis based on 

the film readings attained. This can create a likelihood of a misdiagnosis. The technique also 

faces a challenge of not being able to detect breast cancers that do not form visible tumors. If 

a mammogram reveals an abnormal area, a biopsy may be performed to determine if it is 

cancer. The disadvantage to this is if the abnormality turns out not to be cancerous. 

2.2.4  X-Ray Radiography 

X-ray is a type of great energy radiation, used for cancer diagnostics and management by 

producing images and recording them on a film known as radiograph or digital images. Since 

different tissues absorb the radiation at varying rates, the images produced appear light or 

dark; dense materials, such as bone, appear white while muscles show a varying shade of  
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gray. The ionization radiation used by the X-ray equipment can cause cell damage. Exposure 

to significant amounts of radiation from X-ray scans may in fact increase a patient’s risk of 

developing more cancer. 

2.3 Biomedical Applications of LIBS 

Application of LIBS in the study of various tissues to determine their health status of the 

tissues is widespread. LIBS is a rapid method that gives information instantly. The rapidness 

of this technique makes it essential in disease diagnostics to obtain relevant information in the 

medical field (Musazzi and Perini, 2014). 

Trace element biomarkers are useful in detecting the presence of certain types of cancer in 

the body as well as the staging of the disease. LIBS has been utilized in detection of trace 

biomarkers in the medical field by various researchers. In a study done to characterize 

malignant tissue cells using LIBS, the spectra of malignant and healthy tissue at different 

spectral regions indicated a clear distinction of the two tissues. The research showed the 

intensity of the following elements: Na, Cu, Ca, Al, Fe, K and Mg, associated with 

concentration of trace elements in these tissues, was dissimilar (Kumar et al., 2004). In this 

study, several Fe lines were detected in these tissue spectra whose intensities varied in both 

malignant and benign cells. From this study, comparison of normal and malignant tissues 

qualitatively and quantitatively using LIBS spectra is feasible. It has been demonstrated that 

LIBS is feasible for differentiating malignant and benign tissues. 

Quantitative LIBS analysis of concentration values of trace element in solidified tissue has 

been performed and it showed the ability to differentiate between infected and healthy teeth. 

LIBS can be implemented and utilized in dental boring using laser (Samek et al., 2001). The 

trace elements were quantified and the difference noted between healthy and calcified teeth. 
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This also indicates that LIBS can quantify the trace elements from the intensity values of the 

spectral lines. This study does not consider the nonlinear aspects of the data and hence the 

need for multivariate techniques. 

Calibration- Free LIBS (CF-LIBS) has been employed in the analysis of Hair Tissue Mineral 

Analysis (HTMA) to determine the concentration levels of major minerals found in the 

human hair and the results likened with those obtained through Inductively Coupled Plasma 

Mass Spectroscopy (ICP-MS) (Corsi et al., 2003). It was observed that there was a variation 

in the concentration of Mg, K, Ca, Na and Al in the eleven people of different age, gender 

and hair colour under study. These trace elements occur in very low concentrations of 16 

ppm-100 ppm for K, 50-200 ppm Ca, 20-580 pm Mg, 60-156 ppm Na and 0.4-14 ppm Al. 

The ratio of Na/K was found to be 1.3- 4 while that of Na/Mg 0.03-1.6. 

The presence of Zn in human skin and evaluation of the efficiency of creams preventing 

absorption of Zn ions has been explored using LIBS. The investigational results designated 

an exponential decrease of the concentration levels with skin depth (Sun et.al., 2000). In this 

research, it is evident that LIBS is suitable for study of amount of trace elements in the 

human body. 

In a study to determine the distribution of elements in different parts of kidney stones using 

LIBS, the elements detected were, Cl, S, Sr, Zn, Fe, Ca, O, K, Mg, Mn, Cu, Na, H, N, P and 

C. This shows the ability of LIBS to do elemental analysis by spectral analysis. The 

researchers did optimization of the LIBS spectra by changing the laser energy from 10 mJ to 

40 mJ to get the best signal-to-background and signal-to-noise ratios. The calibration curves 

showed that concentrations of trace elements in the kidney stones decreased from the center 

to shell and surface. Moreover, the element concentrations in the stones increased as the age 
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of the patients increased (Singh et al., 2009). Spectral analysis using LIBS is possible as 

already explored in this study. 

LIBS has been used to explore elemental components of urinary calculi. Here, seven stone 

samples: pale-off white 70 mm, pale cream 22 mm, grey smooth 30 mm, brown crystalline 10 

mm, dark brown crystalline 8-10 mm, most small cream calculi of 5 mm and dark brown 

large calculus 50 mm were analyzed. The absolute concentrations of Ca, K, Na, Se, Mg and 

Pb obtained before calibration of the system for individual elements were found to be 

extensively different in separate samples. The conclusion is that LIBS technique has the 

potential for predictable clinical applications in urological disorder diagnosis (Fang et al., 

2005). 

The intensity of the spectral lines detected is a function of concentrations of the elements and 

thermo-chemical properties of the matrix. The composition of plasma does not only rely on 

the component of the sample but also on the characteristics of the laser, condition of the 

sample surface and on the optical properties of the sample (Quentmeier et al., 1990). 

The spectra obtained give the constituent atoms of the sample and the relative concentrations 

that can be obtained from the intensities by univariate or multivariate methods (Miziolek et 

al., 2006) 

Due to the nature of vast information involved, combining LIBS with multivariate 

chemometric techniques such as PCA, ANN, and SVM can help to obtain the information 

required regardless of the multivariate nature of the spectral data. 
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2.4 Multivariate Chemometrics Analysis of LIBS Data 

Chemometrics comprises of statistical methods that are used to mine information from a large 

set of variables in a given dataset. Chemometrics is useful for classification of known 

samples and grouping an unknown sample to either of the distinct groups. SVM classification 

model is utilized to predict the class of a sample based on closest examples by drawing a 

hyper plane that divides the groups. Chemometrics helps in normalizing data. The 

classification models are more consistent and include the aptitude to reveal rare samples in 

the data. Classification of samples can also be done using unsupervised technique whereby 

the method reveals any similarities and differences in the dataset. PCA is an example of 

unsupervised chemometric technique for exploratory analysis (Camo, 2017) 

Chemometrics is also useful in regression to predict related variables that are easier to 

measure.  The goal of chemometric regression analysis is to train, validate and test a model, 

which compares the information in the assortment of known measurements to the target. 

Artificial neuron networks (ANNs) and support vector regressions are among the techniques 

for regression. Chemometric regression is used in prediction of concentration values of trace 

elements in this study. 

Exploratory analysis to retrieve existing patterns or trends in the data is done using PCA 

Besides, it reduces data dimensionality and provides a solid representation of all the variables 

in the data set. PCA algorithm reduces the complexity of the data making it deduce the 

meaning of the patterns from the scores and loadings plot. The scores plot shows the group 

patterns while the loadings plot show the variables responsible for the group patterns. 

The above chemometric techniques are used together with LIBS to extract qualitative and 

quantitative information. SVM has been explored in prediction of prostate cancer based on  

http://www.camo.com/rt/Resources/statistical-regression-analysis.html
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Cr, Ca, P, Cu, K, Mn, Mg, Zn Fe, and Se using ICPMS (Guo et al., 2007). The model 

developed was found to have a prediction ability of 95.8%. LIBS and chemometric 

techniques namely PCA, PLS, ANNs and SIMCA have been utilized by (Mukhono et al, 

2012) to quantify trace elements in High Background Radiation Areas (HBRA) geothermal 

field matrices. PCA and SIMCA were used to classify soil from HBRA and non-HBRA into 

two distinct classes. While PLS and ANN were used to develop a calibration model used for 

prediction of the concentration of elements under study in these areas. Given the multivariate 

nature of most data sets, ANN is therefore a better regression method as it is able to look into 

all the variables in a given data set simultaneously besides looking into non-linearity of the 

data as well. 

Artificial neural network has proven to be a very useful technique in cases where the problem 

is ill defined and development of an algorithmic answer is not clear. Data from cancerous 

tissues has non-linear information necessitating the use of a brain-like technique to sift 

through the web of available information (Naguib and Sherbet, 2000). ANN has been 

explored for rapid and direct analysis of soil quality indicators, using EDXRFS. A 

multivariate calibration curve which was well suited for the analysis of Mg, Fe and Cu with 

R2 >0.9 and SEP of 0.08%, 4.02µg/g and 0.88µg/g (Kaniu et al., 2012), has indicated the 

importance of ANN as a multivariate chemometric calibration technique in elemental 

analysis. In this research, ANN has also been used to develop a calibration model for 

prediction of concentration of trace elements in tissues. 

Saberkari et al., (2014) used Spatial Independent Component Analysis (SICA) and SVM 

algorithm on three cancer datasets (leukemia, breast cancer and lung cancer), and compared 

the results with other existing methods. It demonstrated that there was a higher accuracy and 

validity in the classification accuracy. A number of researches that have been done on 
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classification and differentiation of cancerous tissues are based on concentration of trace 

elements and not on speciation of trace elements though speciation has become important for 

biomedical studies (Kawakami et al., 2003). Study of trace elements in various types of 

cancer using LIBS has been successfully applied in detection of malignancy in colorectal and 

breast cancers (El-Hussein et al., 2010) from which the LIBS spectra showed an obvious 

increase of the intensity of the spectral lines for calcium in the tumourous samples compared 

to normal tissues for both breast and colorectal tissues. Thus El Hussein et al., (2010)’s study 

was based on univariate analysis and this ignores the non-linearity of biological samples 

which can be addressed by multivariate analysis. 

Most studies using LIBS relate intensities with concentration of the trace elements, which is a 

linear relationship. The complexities of biological samples make them to be non-linear thus 

multivariate correlation study in this research has looked into the non-linearity of the samples 

under study. 

In summary little progress has been made in the use of LIBS as a cancer diagnosis method 

though the studies using LIBS have shown progress, the studies have not been done using 

multivariate analysis which takes into consideration the complexity of biological samples. 
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3 CHAPTER THREE 

THEORETICAL BACKGROUND 

 

3.1 Laser Induced Breakdown Spectroscopy 

Laser induced breakdown spectroscopy is an atomic emission spectroscopy method for 

elemental analysis. It employs a laser pulse to excite the sample. The excited sample 

produces a micro- plasma plume that consists of excited atoms and ions (Cremers et al., 

2006). This method works through production of spectral lines of the radiation emitted after 

firing a laser onto a sample.  

LIBS is the most preferred spectroscopic method for elemental analysis of solids, liquids and 

gases as opposed to other spectroscopic techniques such as GFAAS, ICP-AES and ICP-MS. 

This is due to the fact that it is a fast and non-destructive technique as exciting the sample 

takes microseconds and only a small sample is removed forming a small crater upon ablation. 

Besides, with LIBS, both high and low Z elements can be studied since all elements emit 

radiation when excited to an adequately high-energy state unlike other methods such as 

EDXRF. 

The laser is focused on to a particular part of a sample and this does not affect the 

surrounding region as opposed to X-ray radiation which is not unidirectional and affects the 

cells surrounding the one under study despite being focused at a particular one. Therefore 

LIBS qualifies as a non-invasive technique and stands a chance to be in use in the medical 

field for diagnostics purposes. However, this method has its shortcomings like matrix effects 

that affect the spectral lines. The spectral lines of biological samples are affected by noise, 

which needs to be eliminated. Pre-processing of the spectral data is thus necessary to 

eliminate the noise, remove spectral overlaps and self-absorbed lines. 
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3.1.1 Principles of LIBS 

LIBS, a high energy pulsed laser is used to ablate a solid, liquid or gaseous sample to create a 

micro-plasma. This happens by focusing the laser onto the sample causing a small amount of 

the sample to create super-heated plasma ionizing the elements inside the plasma. This 

process of plasma formation is known as ‘breakdown’. The excited atoms eventually de-

excite and give off light (photons) as they decay to the ground state. 

Plasma is a general group of atoms, ions, molecules, and free electrons wherein the charged 

species regularly act together. Plasmas are embodied by a variety of factors such as the 

degree of ionization, the plasma temperature and the electron density.  

Weakly ionized plasma is one whose ratio of electrons to other species is below 10%. 

Conversely, highly ionized plasmas could have atoms without most of their electrons, leading 

to extremely high electron to atom or ion ratios. During electron-ion recombination, neutral 

atoms and then molecules form. All through there is background continuum that decays with 

time faster than the spectral lines. The continuum is principally due to Bremsstrahlung and 

recombination events. In the former process, electrons accelerated or decelerated in collisions 

emit photons. The latter takes place when a free electron is attracted into an ionic or atomic 

energy level and surrenders its excess kinetic energy in the form of a photon. Resolution time 

of LIBS therefore allows for identification of the lines in the region of interest. 

Identification of spectral lines can be done using the software OOILIBS. It is even easier if 

understandings of the elements in the sample of concern are well-known. Knowledge of the 

existing elements allows for selective study of those elements in the sample. NIST database 

gives relative intensities of neutrals and ions of various elements. These act as a guide to 

classifying lines while comparing with NIST. 
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Spectral line identification can be guided by the following; presence of one strong line of a 

specific element means that all the other strong lines identified by NIST should be present. 

For instance, if the conspicuous Cu (I) lines at 324.754 nm and 327.396 nm appear, the strong 

Cu (I) lines at 766.465 and 780.7659 nm should also be detected. The experimental 

environment whether done in air or vacuum can define the species detected. For example, in 

air, emissions due to Fe I and Fe II are detected with the ionization potential of Fe I being 

7.87 eV (Cremers and Radziemski, 2013).  

In addition, in case of spectral overlap of a neutral and an ionized line, it is certain that the 

line observed is for the neutral element. Singly ionized elements are frequently observed in 

LIBS plasma, though the observation of higher ionization states in air hardly occurs. 

(Gaftetal, 2011). 

 

3.2 Multivariate Chemometric Techniques 

Multivariate chemometric techniques are statistical, computational and symbolic techniques 

that are used for classification, pattern recognition, reduction of data sets and recovery of 

weak signals from high background and overlapped peaks (Micklander, 2002). 

These techniques involve statistical analysis of data that arise from more than one variable 

measurement such as LIBS spectra. The techniques take into account nearly all variables in 

the entire spectra, remove the unnecessary and correlated information and extract the most 

relevant information from the original LIBS spectra. This therefore makes LIBS more 

feasible in determining trace elemental composition and differentiation of samples (Labbé et 

al., 2008). Information such as speciation, correlation, and classification of   trace elements is 

also possible using multivariate analysis. 
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3.2.1 Principal Component Analysis (PCA) 

PCA classifies data into similar groups from which it retrieves important information. This 

technique allows prediction of similarity in various sets of data. It looks for a few linear 

combinations of the variables to summarize the data without losing too much information in 

the process. PCA is based on a linear transformation represented by equation below 

                                                                                                                            (1) 

The multivariate data matrix X, with n rows and p columns represents objects and variables 

respectively. PCA reduces the matrix to a lower dimension T×P (PCs) and a residual matrix 

E where T is a matrix score that summarizes the x-variables (sample spectra), P is the loading 

matrix showing the influence of the variables on each score (intensities or concentrations) 

and E is the residual matrix due to outliers (Virendra et.al., 2011). 

According to (Samek et.al., 2001), in PCA analysis, training sets of spectra are decomposed 

into a series of mathematical spectra called factors which, when added together, reconstruct 

the original spectrum. A scaling coefficient or score represents the contribution any factor 

makes to each spectrum, which is calculated for all factors identified from the training set. 

Therefore, by knowing the set of factors for the whole training set, the scores will represent 

the spectra as accurately as the original responses at all wavelengths. 

PCA extracts the most important information from the data table, reduces data set and keeps 

only this important information, simplifies the data set, and finally analyzes the structure of 

the observations and the variables and classifies the data set according to similarities within it 

(Abdi and Williams, 2010). 
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3.2.2 Support Vector Machines 

Known samples are trained and classified into groups by an SVM model which separates 

them by a hyper plane. Two different sets of data are classified into two groups which 

become the basis of grouping other samples. The model then tests its performance using a 

percentage of the training data set. 

 In this study, SVM was used to classify data by mapping training set onto the two classes. 

This is done onto a hyper plane and a separation margin is such that minimal distance 

between the planes and the training examples is achieved. Unknown data set is then put into 

the model and it classifies them into the groups of the training data. The support vector 

machine-training algorithm builds a model that assigns new data into one category or the 

other (Vance et al., 2010). 

SVM algorithm classifies vectors according to the equation below: 

         (2) 

where - si represents the support vectors, -ai the weights, b- bias and k- the kernel function. 

This kernel function is the mathematical function with which the original input data is 

projected onto a higher space. The kernel was used to map the input data onto two categories; 

with higher and lower oxidation states of the trace elements. 

3.2.3 Artificial Neural Networks 

Artificial neural networks (ANN)s are “intelligent” systems that have the capacity to learn, 

memorize, and create relationships among data. It is able to learn significant information 

patterns within a multidimensional information realm (Kalogirou, 2001). This technique  
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impersonates the learning process of a human brain and therefore does not need characteristic 

information about the system; instead, it learns the relationship between the input parameters 

and the output variables by studying previously recorded data (Kalogirou, 2000). 

ANNs consist of a group of interconnected nodes imitating the network of neurons in a brain. 

In Figure 3.1, each circular node represents an artificial neuron and an arrow represents a 

connection from the output of one neuron to the input of another.  

A neuron is a computational device that calculates the weighted sum of its inputs and 

calculates the output signal from this using a nonlinear function. The weights are estimated 

using an appropriate algorithm based on a calibration set using cross validation (Kim et al., 

2000). ANNs can be used to build empirical multivariate calibration models of the form 

           (3) 

where y is the vector matrix containing sample response (concentration), f is the network 

function x is the input (intensities/ counts) of LIBS spectra and  is the error of calibration 

(Marini et al., 2008). 

The neural network consists of an input layer of neurons, one, two, or three hidden layers of 

neurons and a final layer of output neurons. The lines each connect these neurons and they 

have a numeric number known as a weight. The output, hi of neuron i in the hidden layer is 

given as: 

         (4) 

Where ( ) is called the activation (or transfer) function and is defined as: 
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           (5) 

N is the number of input neurons, vij the weights, xj inputs to the input neurons and Ti
hid the 

threshold terms of the hidden neurons (Wang et al., 2003). The activation key introduces 

non-linearity onto the network and bounds the neurons so that the network is not affected by 

contrary neurons. The values given to the input neurons are independent variables whereas 

those produced by the output neurons are dependent variables to the back propagation 

algorithm being approximated by the network. 

 The network consists of three layers of units: the input layer, the hidden layer and the output 

layer.  The input values corresponding to the spectral intensities that characterize a sample 

are fed into the first layer, which processes the information. The outputs of the first layer feed 

the neurons of the next layers. The hidden layer then extracts the main prominent features of 

the input data to obtain a discrete characterization of each sample (Boueri et al., 2011). 

Back propagation is the training function that was used in this research to train the feed 

forward networks whose performance was examined using the performance function, MSE. 
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Figure 3.1 below illustrates the feed forward back- propagation network model. 
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Figure  3.1: Multi-layer Artificial Neural Network model showing feed forward back- 

propagation 3-layer network model. 
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4 CHAPTER FOUR 

 

MATERIALS AND METHODS 

 

4.1 Sample Preparation 

The samples under study were human liver, breast and abdominal tissues. Tissue biopsies of 

the above were obtained from Kenyatta National Hospital and placed in formalin. The tissues 

were prepared into tissue blocks with paraffin wax as the base matrix. Simulate samples were 

also prepared to mimic normal and cancerous tissues using the concentration levels reported 

in literature. These were also made into blocks of paraffin wax embedded with Cu, Mn, Mg, 

Zn and Fe ions. Twenty samples were prepared; 10 for lower speciation Cu+, Fe2+, Mn2+, 

Mg2+ and the other 10 for higher speciation Zn2+ Cu2+, Fe3+, Mn4+, Mg2+ and Zn2+. Hep 

(Hela) stages 1-5 and Lewis lung stages 1-5 cultured cancer cell lines were grown in 

Dulbecco’s Modified Eagle growth Medium (DMEM (1x), Gibco®, by Life Technologies). 

These stages mimic the different stages cancer tissue undergoes as the disease progresses. 

Oyster tissue powder was compressed using a hydraulic press to produce pellets of 2 g mass. 

These were for validation of the predictive model. 

4.1.1 Preparation of Simulate Samples 

The salts shown in Table 4.1 were used to prepare standard solutions of Cu, Zn, Fe, Mn and 

Mg by dissolving some amounts of analytical grade salts containing these ions in ethanol. 

The masses were obtained by first calculating the molar mass of the given salt. Using 

08. 23 HFeCl  for example, the molar mass is 270.32 g and the molar mass of Fe is 55.848 g. 

If 55.848 g is in 270.32g of the salt then to find the mass of salt that contains 1g of Fe, we 

took the molar mass of the salt divided by the molar mass of Fe. Since the purity of the salt is 
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99%, the value obtained is thus equivalent to this percentage. The value for 100 % is then 

calculated. To prepare the stock solution, we dissolved 1g of Fe into 1000 ml of ethanol to 

make 1000 ppm. Since 1 g of Fe is in 4.8892 g of the salt the mass of salt needed to make a 

solution of 2000 ppm, from 10 ml volume of the stock solution was calculated. This yielded 

the mass of the salt to be used. 

The concentration ranges shown in Table 4.2 were distributed using research randomizer. The 

volume selected was determined using the formula: 

           (6) 

Where C 1   concentration of the stock solution 

V1 -Volume of stock solution needed to make the new solution 

C2 -Final concentration of new solution 

V2 -Final volume of new solution 

About 2 ml of molten paraffin wax was poured into a mold onto which 5 ml of the mixture 

was added. The mixture was then stirred to ensure homogeneity. Stirring was done while the 

mixture was being heated at 78°C to ensure that ethanol and acetone boils off. The mold was 

covered with an embedding cassette and put in a freezer to cool and form a block. This block 

was sliced to 2 cm thickness, weight of 2 g ready for study. 
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Table 4.1 : Mass in grams of the compounds used for making stock solutions 

Salt Chemical formula Mass in grams 

Cupric nitrate Cu(NO3)2.3H2O 0.038 

Ferric chloride( Hexahydrate) FeCl3.8H2O 0.073 

Ammonium ferrous sulphate NH4Fe(SO4)2.6H2O 0.106 

Zinc nitrate purified (Hydrate) Zn(NO3)2.6H2O 0.091 

Magnesium chloride hexahydrate  MgCl2.6H2O 0.213 

Manganese II chloride MnCl2.4H2O 0.037 

Potassium permanganate KMnO4 0.029 

 

The concentration ranges were selected in the ranges they occur in the soft tissues. The 

general concentration levels in cancerous tissues are as follows: Fe is 30- 170 µg/g, Mg 62- 

502 µg/g, Zn 20- 200 µg/g, Cu 1-10 µg/g and Mn 1-30 µg/g. The distribution ranges was 

done randomly and the values were combined to produce each of the samples. The samples 

are divided into two sets; 10 for higher speciation and 10 for lower speciation, a total of 20 

samples. One set contains the ions of elements with higher energy states while the other has 

ions of lower energy states.  
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Table   4.2 Concentration levels µg/g in Mg2+, Fe3+, Zn2+, Mn7+ and Cu2+ in the stock solution 

used for preparing higher speciation simulate samples 

 

 

Table  4.3:  Concentration levels in µg/g of Mg2+, Fe2+, Zn2+, Mn2+, and Cu+ in the stock 

solution used for preparing lower speciation simulate samples 

SALT S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 

Mg2+ 108 153 65 140 247 169 297 378 318 153 

Fe2+ 53 81 50 45 38 40 51 89 60 37 

Zn2+ 26 55 48 101 58 47 45 153 49 79 

Mn2+ 3 5 4 12 6 18 11 9 10 28 

Cu+ 3 7 6 9 8 5 1 2 4 10 

 

 

 

 

 

Salt S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Mg
2+ 298 501 346 429 354 421 351 474 494 328

Fe
3+ 105 170 128 163 143 157 139 166 167 127

Zn
2+ 75 178 113 145 133 141 124 161 173 90

Mn
7+ 6 30 12 23 18 20 16 25 29 10

Cu
2+ 1 7 2 9 10 6 5 3 8 4
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4.1.2  Preparation of Oyster tissue 

Oyster tissue powder was placed in a hydraulic press to form pellets of 2g mass each. These 

pellets were then ablated upon using LIBS.  

4.1.3  Preparation of Human Cancer Tissue Samples 

Breast, liver and abdominal tissue needle biopsies were taken from the Kenyatta National 

Hospital from various patients. The tissues were trimmed to about 2 mm, and put in 10% 

formalin in labeled bottles. Dehydration process was done by soaking the tissues successively 

in 70%, 80%, 90% and 95% alcohol consecutively for an hour in each solution followed by 

absolute alcohol, (alcohol that contains 99% pure alcohol and not more than 1% water) at 

three different stages; I, II and III consecutively for an hour each. The tissue samples were 

then cleared of alcohol by soaking them in 50:50 alcohols for an hour followed by toluene for 

another 1 hour and finally toluene in two stages I and II each for 30 minutes. 

The tissues were then dipped into molds filled with molten paraffin wax of temperature 58°C. 

The molds were then placed in the oven overnight for infiltration of wax to fill up the spaces 

left in the tissue after clearing of alcohol. 

The following day the tissues were embedded in fresh molten wax at 58°C in molds. It was 

left to cool at room temperature. The blocks formed were labeled and stored in a cool place. 

The blocks were trimmed on the surface until the tissue was exposed. They were then made 

into blocks of 2 cm thickness and 2g in mass ready for study. A few sections of 3𝜇𝑚 were 

also prepared and placed on Mylar film. 
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Figure   4.1: A block diagram illustrating the systematic stages carried out while processing 

breast, abdominal and liver cancer tissues. 
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4.1.4 Preparation of Cultured Cancer Cell Lines 

Human epithelial type 2 cells from the human cervical carcinoma Hela (HEp-2) and Lewis 

lung carcinoma (LL) cells were acquired from Kenya Medical Research Institute (KEMRI), 

Nairobi. Sterilized T-25 culture flasks (Fischer Scientific), containing a chemical inside to 

facilitate adhering of the cells onto the surface, were used to culture the cells in growth media 

prepared using Dulbecco’s Modified Eagle Medium (DMEM (1x), Gibco®, by Life 

Technologies). The growth medium contains complemented amino acids, carbohydrates, 

vitamins, minerals and salts that provide a favorable medium for growth of the cells. This 

basal medium lacks protein and growth providing agents. It is therefore complemented with 

10%, by volume, fetal bovine serum (FBS, ATCC), to provide the growth factor and 

hormones as well as proteins, vitamins, lipids, minerals and gases. 

 All these procedures were undertaken inside a biosafety cabinet. 1% Fungizone 

Amphotericin B 250µg/ml (Gibco®, by Life Technologies), 1% penicillin-streptomycin, 1% 

L-glutamine, and 0.1% Gentamycin (all from Sigma Life Science) were added to prevent 

contamination by probable growth of fungi and bacteria. The cells were then incubated for 24 

hours under a 35% relative humidified atmosphere of 5% CO2 and at a temperature of 37 o C. 

All cells were within 7-8 passages of the primary cell line; divided into subcultures of up to a 

maximum of 8 sub- cultures. 

Preceding spectroscopic measurements, the cultured cells were rinsed using 3 ml of Hanks 

Balanced Salt Solution 0.25% trypsin - EDTA (1mM) (Gibco®, by Life Technologies), they 

were rinsed again using 2 ml of the same solution, incubated for 3-5 minutes at 37 o C until 

cells separated completely, then followed by adding 8 ml of prepared growth media to 

deactivate trypsinization process. The obtained cell suspension was centrifuged at 1200 rpm 
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for 5 min (eppendorf – centrifuge 5810R), supernatant removed, and vortexed (Vortex Genie 

2, Scientific Industries) to ensure uniform cell distribution. The resultant cells were then 

washed twice in 1.5 ml phosphate-buffered saline solution - PBS (Sigma-Aldrich), and 

centrifuged at 1200 rpm for 5 min after each wash. After removing remaining supernatant, 

cells were vortexed again, and 25 µl suspension drops plated on 12 well – 6 mm diameter- 

autoclavable well plate (Thermo Scientific Cel-Line ® Brand). The cell pellets were then 

allowed to dry at room temperature (approximately 25oC) for not less than 48 hours in a 

chamber. After preparation of the samples, LIBS was used to obtain the spectra of the 

simulate samples, breast tissues, liver tissues, abdominal tissues and the cell lines. 

4.2 LIBS Set Up 

The set up involves a pulsed Nd-YAG laser of maximum energy 50 mJ operating at a 

fundamental wavelength of 1064 nm and  8 ns pulse width .The laser is fired onto a sample, 

directed by  the focusing lens of focal length 10.16 cm, exciting it to produce a micro-plasma 

that is a characteristic of the sample. The optical to sample distance was maintained at 30 mm 

as the optimal distance. The micro-plasma is then collected through a lens by the fiber optic 

cable LIBS 2500 PLUS (Ocean Optics, Inc) of 0.22 Numerical aperture and 101 mm focal 

length into a set of seven HR 2000 atomic emission spectrometers of resolution 0.1 nm (in 

the range 200 nm to 980 nm), which spectrally disperses the radiation. 

 A CCD camera in each spectrometer acquires data simultaneously and displays the spectrum 

in the computer with the help of OOILIBS software. The camera has 2048 pixels and an 

optical resolution of 0.065 nm. Spec line software package by Ocean Optics analyses the 

emitted light to reveal the elemental composition of the sample by automatically identifying 

the peaks, comparing the corresponding wavelengths with a data base of atomic and 
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molecular lines and availing a list of possible elements present in a sample at particular 

wavelengths. The data is encoded into a chip of each spectrometer plus the wavelength 

calibration coefficients (LIBS 2500 PLUS Operation Manual, 2008). Simulate samples, real 

samples and cell lines were ablated upon in the sample chamber by the laser under the 

conditions mentioned above. Q-switch delay of 0.42 µs was used for data collection. 

  

Figure   4.2: Schematic diagram of LIBS (Liu et. al., 2014). This figure shows the major 

components of LIBS; ND-YAG laser, CCD camera, computer, spectrometers, focusing/ 

collecting lens, optical fiber, mirror and the stage. 
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Table 4.4 below shows the specifications of the seven spectrometers used in the LIBS set up.  

Table   4.4: LIBS 2500 PLUS spectrometer specifications of the seven spectrometers working 

in unison from wavelength 200 nm to 980 nm; UV, visible and near infra-red regions 

Model Region Gratings (lines/mm) 

 

λ Range (nm) 

 

HR + C0463 Ultraviolet 

 

2400 200- 305 

 

HR + C0464 Ultraviolet 2400 295- 400 

 

HR + C0465 

 

Visible 

 

1800 390- 525 

 

HR + C0466 

 

Visible 

 

1800 520- 635 

 

HR + C0467 

 

Visible-Near 1800 625- 735 

 

HR + C0468 

 

Near infra-Red 

 

1800 725- 820 

 

HR + C0469 

 

Infra-Red 1800 800- 980 
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Figure   4.3: Photograph of the LIBS 2500 PLUS (Ocean Optics) used while carrying out the 

research.  

4.3 Spectral Calibration of the Seven Spectrometers 

Calibration was done using HG-1 Mercury- Argon lamp, prior to using LIBS set up to take 

data, as a source of light and an optical fiber cable for transmitting the light to the 

spectrometers. The following equation, which shows the relationship between the pixel 

number and wavelength as a third order polynomial, was used to do regression. 

Lambda= I+ C1p + C2p
2 + C3p

3        (7) 

In equation 7, I is the wavelength of pixel 0, C1= the first coefficient, C2= second coefficient 

and C3 the third coefficient. These values were obtained for the seven spectrometers. The 

calibration yielded spectrometer resolution of 0.1nm. 



33 
  

4.4 Optimization of LIBS Parameters 

After calibration of the system, it was necessary to optimize the parameters before taking 

data. Optimization was done by taking spectra at different energy values while keeping 

integration time, delay time and optical to sample distance constant. This was done by 

varying one parameter, as the others remained constant.  The values with the highest SNR 

were selected as the optimal values achieved for each of the parameters were used for data 

acquisition as shown in Appendix IV. The optimized LIBS conditions are shown in Table 

4.5. They are further discussed below. 

4.4.1  Energy of the Laser 

Laser energy provides the excitation energy which aids the ablation process. This in turn 

affects the features of the spectra achieved from the sample. Different samples have different 

ionization energy of the elements. Very low laser energy may not be sufficient to ionize the 

elements. The Nd-Yag laser produces energy of up to 50 mJ. Spectral data was collected for 

different sets of energy and SNR values compared.   

4.4.2 Q-Switch Delay Time 

Q- switching is a method for obtaining pulses of high energy by storing energy in the optical 

cavity leading to a buildup of population inversion until the Q-switch is turned on. Once the 

Q-switch is turned on, the stored energy is released in a single pulse of high energy and peak 

power. The terminology comes from the Q factor of the laser resonator, which is given as 

                   (8) 
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Adjusting the pulse duration is necessary since the laser peak power depends on the duration 

as well as the energy of the pulse. The shorter the duration of the pulse, the higher its peak 

power. 

In this research, the Q-Switch value was varied between 0.83 µs, 0.42 µs and 1.67 µs upon 

which 0.42 µs was chosen as the best as it gave spectra with less interference (self-absorption 

and overlapping) from matrix effects. This was selected after observing the effect of these 

other time values on the spectra. 

4.4.3 Fiber to Sample Distance 

The distance of the sample to the optic fiber cable through which the laser is fired is of great 

importance since beam divergence takes place leading to different amounts of the laser pulse 

being used for sample ablation. An appropriate distance should therefore be determined while 

observing the profile of the spectral lines. Upon optimization, a distance of 0.3 cm was 

preferred since it is at this point that interference free emission lines with a greater SNR were 

generated despite having low concentration values. At this distance, more emission lines were 

seen over and above, most light was emitted by the sample plasma and collected by the 

optical fiber cable. 

4.4.4  Number of Ablations per Scan 

Increasing the number of ablations per laser shot results in a substantial decrease in intensities 

of emission lines due to increase in the crater depth that inhibits amount of plasma viewed by 

the optical fiber (Tognoni et.al., 2002; Sneddon, 2002) hence reduction in line intensities. 

Moreover, it enables the study of the entire sample and not just the surface. Sample 

homogeneity can be studied by comparing the results from the surface and depth. Single 
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ablation shots were compared to 5 ablations and 10 ablations. Table 4.5 below shows a 

summary of the optimized LIBS conditions. 

Table   4.5:  Optimized LIBS conditions showing laser energy, fiber to sample distance, Q-

switch delay and number of ablations per second. 

Number of ablations per scan 1scan 

Optical to sample distance 3 mm 

Q- Switch delay time 0.4 us 

Energy of the laser 50mJ 

 

4.5 LIBS Spectral Data Acquisition 

A pulsed Nd-YAG laser of 50 mJ energy, at a Q-switch delay time of 0.42 µs was used to 

ablate the simulate samples, liver, breast, abdominal samples, oyster tissue and cell lines. The 

spectrum of oyster tissue was used for validation of the ANN concentration prediction model. 

The optical to sample distance used was 30 mm. The samples were placed in the sample 

chamber on the stage and then the laser was fired at 50 mJ. Data was taken at 50 different 

points for simulate samples to ensure homogeneity by getting the average of several data 

points. 

The liver, breast, renal and abdominal tissues were ablated upon in the sample chamber at the 

same parameters and the spectra obtained were analyzed for the elements present in the 

sample. Data was taken at 20 different points to average out errors due to homogeneity. The 

results are shown in Chapter 5. Oyster tissue was also ablated and the results used to validate  
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ANN model. Finally, the stage 1-5 of Hep-2 and lung cell lines were ablated upon and twenty 

sets of data were acquired from each stage and average values obtained. 

4.6  Spectral Preprocessing 

Preprocessing of spectra is essential to eliminate matrix effects. To overcome these, 

denoising, smoothing, baseline correction and mean centering preprocessing techniques are 

employed. The intensity of the emission lines observed is a function of both concentrations of 

the elements of interest as well as the thermo-chemical properties of the matrix that contains 

them. LIBS suffers from the matrix effects and therefore the spectra require preprocessing 

(Quentmeier et al., 1990). The LIBS spectral data was subjected to these techniques to 

remain with the essential information. Smoothing was done using Savisky Golay technique to 

get clear spectral line profiles from which information can be retrieved while wavelet 

transforms were used for denoising. This was done to eliminate noises that do not otherwise 

behold any significant information from the sample Trace metal identification was then done 

for the spectra of the samples. LIBS spectra have a background which needs to be eliminated 

by carrying out baseline correction which ensures that the lines emanate from the same level. 

Mean centering is a preprocessing technique that enables all the data across the spectral 

region to be involved in all processes. The data acquired from LIBS runs from 200 nm to 980 

nm and the counts can be as low as below 1 and as high as in value of thousands.  

This was then followed by multivariate chemometrics analysis, which involved predictive 

model development using ANN, exploratory analysis using PCA and classification using 

SVM.  
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Figure  4.4: Flow chart of methodology and analysis. The methods include preparation of 

samples, preprocessing techniques, regression supervised classification and non-supervised 

classification.   
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4.7 LIBS spectral emission lines 

LIBS system was used to acquire spectral emission lines under the optimized conditions. This 

was done by firing a laser onto a sample placed on the stage in the sample chamber and 

saving the spectrum for further analysis. 

4.8 Spectral Analysis (Identification of Cu, Mn Zn, Mg and Fe lines) 

OOILIBS software enables identification of lines. These are then counterchecked from NIST 

data base. 

4.8.1 Multivariate Calibration 

Interference free lines of Cu, Mn, Mg, Zn and Fe of 20 simulate samples were used to train 

the ANN model. The training process involved mapping the intensity values onto their known 

corresponding concentration values. While training the model, different number of neurons 

and functions were used to achieve the best training parameters. The best conditions achieved 

were 3 neurons and feed forward back propagation algorithm using matlab software. Out of 

20 samples, the model was trained using 60% of the data, 20% was used for validation while 

the remaining 20% for testing. The model was trained a number of times until one with the 

least RMSEP and R2 value closest to 1 was achieved.  

Validation of the model was done after it was properly trained using spectral data of oyster 

tissue. The model was used to predict the concentration values of Cu, Fe, Zn, Mn and Mg 

elements in oyster tissue. The predicted values were compared against the standard reference 

values. The breast, liver, abdominal tissues and cell lines were then tested using the model 

that was trained and validated. Correlations and ratios were calculated so as to study the 

trends and alterations of these elements in the tissues. 
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Exploratory analysis using PCA was done on simulate samples. Although there was prior 

knowledge of the nature of these samples; higher speciation and lower speciation, PCA was 

done to find out any possible clustering. Pattern recognition was also done on liver, breast 

and abdominal tissues. Clustering was also observed as shown in Chapter Five. PCA was 

carried out on the Hela (hep-2) and Lewis lung cell lines separately using all spectra from 200 

nm to 980 nm and using feature selected lines of the five elements only. The scores plots and 

the loadings plots were studied to observe the patterns formed and the lines of elements 

responsible for the clusters respectively 

4.8.2  Classification using SVM 

A classification model was developed using simulate samples; higher speciation and lower 

speciation into two groups separated by a hyper plane. Three models were developed using 

the three elements that exist in different oxidation states; Cu, Mn and Fe. The liver, 

abdominal and breast tissues were each classified by the three models. The model produced 

an output for the given tissue and grouped to either one of the two groups.  

This was done using the package e1071 in R studio developed by (David et., al, 2017)
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5 CHAPTER FIVE 

 

RESULTS AND DISCUSSION 

5.1 Spectral Analysis of Human Tissue Samples 

Samples under study were breast, liver and abdominal tissues. The samples were prepared 

and studied using LIBS. The spectral data were used to do spectral analysis of the unique and 

viable biomarkers of cancer. The focus was on five trace elements; Cu, Fe, Mg, Mn and Zn. 

The role of these trace elements in cancer diagnostics was explored in this study by checking 

for their occurrences and the quantity levels. 

The trace biomarkers in the samples under study were identified as shown in spectra of 

intensity versus wavelength listed below. The wavelength lines at which the elements were 

identified are tabulated as well. Figure 5.3 shows a spectrum of a breast tissue for 200 nm to 

980 nm spectral region. Most of the trace elements of concern are in the ultraviolet and 

visible regions. The Infra- red region mostly has the macro elements. The intensity values for 

these elements are in arbitrary units, they are not therefore the true values in the tissue. 

However, these values signify the ratios in which the elements occur. A prediction model was 

therefore used to calculate the true concentration values based on a well-trained and validated 

ANN prediction model.  

There are several lines with very low intensity values which are of great importance in the 

study. Most of them are Fe lines as will be observed in the zoomed out regions of the 

spectrum. Fe is a very essential element in the growth of a tissue. It is therefore present in a 

tissue that has replication of its cells which require constant supply of nutrients by the blood 

and its components. PCA was done on the simulate samples together with the breast, liver 
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and abdominal tissues. Two clusters were formed: one with all the human tissues and higher 

speciation simulate samples and the other with simulate samples of lower speciation. These 

are clusters of cancerous and non-cancerous respectively as shown in Figure 5.1 scores plot.  

The figure is able to illustrate the essence and role of trace elements in the development of 

tissues. 

 

Figure 5.1: PCA clustering of cancerous and non-cancerous tissues. The diagram shows the 

two clusters formed using real sample tissues as well as simulate samples of both higher 

speciation and lower speciation. 

 

 



42 
  

Fig 5.1 shows a cluster of all the cancerous tissues together with higher speciation simulate 

samples while lower speciation samples are clustered on their own. The lines responsible for 

the grouping are shown in the loadings plot in figure 5.2. 

 

Figure 5.2: A figure showing loadings plot of the clusters of cancerous and non -cancerous 

tissues. These are the lines that are responsible for the clusters. PC 1 contributed 89 %. 

 

The loadings plot of this score plot shows the elements responsible for this grouping as 

shown in figure 5.2. These elements, which are also identified in the spectra of liver, breast 

and abdominal tissues, are identified as trace element biomarkers. Table 5.1 shows the 
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elements identified in the breast, liver and abdominal tissues. Table 5.2 on the other hand 

shows the trace element biomarkers identified.  

 

Figure 5.3: LIBS spectrum of breast cancer tissue showing wavelength values of trace 

element lines observed for the entire spectral range from 200 nm to 980 nm. The figure 

shows  

 

The lines that were observed in the breast tissue within the ultra violet region are shown in 

Fig 5.4. It is evident from the spectrum that the majority of the biomarkers are in this region. 

The lines observed are quite a number of Fe, Cu and Mn lines. These elements appear in 

higher speciation as the multiplying cells change form. Ca lines were also identified in this 

tissue. This can be attributed to the role it plays in a breast tissue. Presence of Zn element 
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signifies the important role it plays of being a co-factor of enzymes. The comparison of the 

normal tissue and cancerous tissue is usually the occurrence of these elements in higher 

oxidation states. The biomarkers present in a cancerous tissue and absent in the healthy tissue 

are viable biomarkers and give a great lead towards the diagnostics process. The magnitude 

of the role an element plays in the proliferating tissue is eminent in it being observed in the 

spectrum as well as the number of lines from the same element. 

 

Figure 5.4: LIBS spectrum of breast tissue for the spectral region 250 nm to 400 nm showing 

lines of Fe, Mn, Cu, Zn and Ca observed in this region. 

 

The visible spectral region of the breast tissue has very little information as compared to the 

UV region as shown in Figure 5.5. There are few Fe lines and the macro elements. The 

presence of the latter elements shows the entire composition of a cell is not only made up of 
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the trace elements. Few but important lines are found within this region. The lines are listed 

in Table 5.1. 

 

Figure 5.5: LIBS spectrum of breast cancer tissue showing lines of Fe, C-N and O in the 

visible spectral region from 400 nm to700 nm. 

 

The IR region of the spectrum of the breast tissue is prominently filled with lines of N, O and 

the C-N bands. Only one Fe line at 786.48 nm was visible. These lines have relatively high 

intensity values as opposed to the trace elements, which are the elements of interest.  
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Figure 5.6: LIBS spectrum of breast cancer tissue from 700 nm to 980 nm showing majority 

of lines as bands and trace elements. 
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Table  5.1: Spectral lines of Fe, Cu, Mn, Zn and Mg identified in breast, liver and abdominal 

tissue using LIBS 

Element Breast  tissue Liver  tissue Abdominal 

Cu I 324.96 nm 324.96 nm  

 327.36 nm 327.36 nm  

Cu II 317.93 nm 317.93 nm 317.93 nm 

Fe I 373.93 nm 373.93 nm  

  372.16 nm  

  327.45 nm  

Fe II 238.23 nm 238.23 nm  

  241.07 nm  

 239.61 nm 239.61 nm  

 279.57 nm 279.57 nm 279.57 nm 

 288.18 nm 288.18nm 288.18nm 

 308.13 nm   

 309.12 nm 309.18 nm  

 373.93 nm   

 374.84 nm   

Mn I 375.25 nm 375.25  

Mn II 280.32 nm 280.32 nm 280.32 nm 
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 285.23 nm 285.23 nm 285.23 nm 

 315.43 nm 315.43 nm 315.43 nm 

  315.92 nm  

  302.10 nm  

  271.99 nm  

  263.20 nm  

  257.61 nm  

    

Zn 

 

 

 

Mg II 

 

Mg I                     

334.501 nm 

213.857 nm 

 

 

 

 

 

 

213.857 nm 

 

255.795 nm 

 

481.053 nm 

 

279.773 nm 

280. 271 nm 

 

 

285.215 nm 

  

213.857 nm 

 

 

 

 

 

 

 

 

 

285.21 nm 

 

The spectra obtained are listed in Table 5.1. The spectral regions were subdivided into 

visible, ultraviolet and the entire spectral region as was the case with the breast tissue. Fig. 

5.7 shows the spectrum of the entire wavelength region. The spectrum shows the presence of 

the trace biomarkers as well as the macro elements. The intensity values of the trace elements 

are lower than those of the latter elements. The lines observed are for Fe, Cu, Zn, Mn and 

Mg, the majority of which were those that belong to elements occurring in more than one 



49 
  

oxidation state. In comparison to the breast tissue, the liver tissue has more of Fe lines in the 

visible region. This is attributed to the activities that take place in the liver tissue. The liver 

has a task of detoxification in the body. It therefore is more likely to feature more of the 

heavy metals as it tries to clear the blood of any contaminant. It also synthesizes proteins and 

carries out metabolism. It therefore requires a lot of oxygen supply by blood whose major 

component is Fe. 

 

Figure 5.7: LIBS spectrum of liver cancer tissue showing Fe, Mn, Ca and major elements in 

the entire spectral region from 200 nm to 980 nm. 

 

The bulk of the lines identified in the UV region of the liver tissue belong to Mn and Fe lines. 

The presence of elements that occur in more than one oxidation state shows the importance of 
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these elements in cancer diagnostics. Regardless of the type of the soft tissue, LIBS is 

capable of mining important information through the ablation process. 

 

Figure 5.8: LIBS spectrum of liver cancer tissue showing few lines of Cu, Mn and Fe 

identified in the UV region from 275 nm to 330 nm 

The spectrum in the visible region shows a number of Fe and Cu lines. This region does not 

have a lot of information as compared to the UV. The role of these elements in the liver tissue 

is similar to the tasks they do in a breast tissue.  

The IR region of the liver tissue has very little information with regards to determining the 

presence of the biomarkers. It however shows the other components of the liver tissue. These 

elements are present due to the structural difference of a tissue. 
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Spectral analysis of abdominal tissue was also done using LIBS as shown in the results of the 

lines identified tabulated in Table 5.1. This tissue had uniquely featuring elements as 

compared to the ones identified prior in the liver and breast tissues. Besides, the tissue has 

fewer lines as compared to the two tissues discussed above. Notable are the Fe and Mn lines 

identified across the spectral region, Fig 5.9 shows the spectrum for the entire spectral region; 

200 nm to 980 nm. The lines are listed down in Table 5.1. The occurrence of these lines 

signifies that a reproducing cell requires vital nutrients supplied by blood which has Fe as a 

bulk component.  

 

Figure 5.9: LIBS spectrum of abdominal tissue from 200 nm to 980 nm. This figure shows 

Mn, Mg, Fe, Cu, Ca and macro element lines present in the tissue. 
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The spectrum in the UV region has the following lines of interest: Fe II at 279.57 nm, 288.18 

nm, Mn II at 280.32 nm, 285.23 nm and 315.93 nm and Cu at 317.94 nm. The elements 

observed in this region are Fe, Cu and Mn. They have very few lines.   

 

Figure 5.10: LIBS spectrum of abdominal tissue showing Fe, Mn and Cu lines at respective 

wavelength values from 200 nm to 400 nm. 

 

The VIS region of the spectrum had a few Fe lines, Mn lines Cu lines and nearly no Mg and 

Zn lines. This region does not have as much information as the UV. 

The spectrum of this abdominal tissue within the IR region has C-N bands and the other 

macro elements. The C-N bands show a possibility of molecular analysis using LIBS. This is 
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an area being explored and can be used to find important information especially the 

components of proteins which are important in disease diagnostics. 

Table  5.2: Table showing the trace element biomarkers responsible for development of 

cancer in breast, liver and abdominal tissues. 

Lines Wavelength (nm) 

 

Fe II  

Fe II  

Fe II  

 

248.256 nm 

373.935 nm 

374.837 nm 

Mg II  

 

279.559 nm 

Mn II  

Mn II  

Mn II  

 

280.325 nm 

285.231 nm 

375.25 nm 

Cu II  

 

662.537 nm 

777.874 nm 

Zn 334.501 nm 

213.857 nm 

 



The following lines were common to the four tissues; Cu lines at 324.96 nm, 327.36 nm and 

317.93 nm in breast and liver tissues. Cu 317.93 was present in abdominal tissue. The Fe 

lines identified in the breast and the liver tissues that are similar are 373.93 nm, 238 nm, 

239.61 nm, 279.57 nm, 288.18 nm and 309.12 nm. These two tissues have several Fe lines. 
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The presence of Fe lines signifies its importance in these tissues that are replicating. Fe is 

found in blood and since these tissues require nutrients for their growth, blood readily 

supplies them. Fe is a major component of blood and thus explains its abundance in these 

tissues. Mn lines observed in the tissues are at 375.25 nm, 280.32 nm 285 nm and 315.43 nm 

in both liver and breast tissue. These tissues share the last three lines with the abdominal 

tissue. The abdominal tissue generally has fewer lines. Some of these lines were present in 

the simulate samples and were used to develop the ANN predictive model; Fe II 279.88 nm, 

Mn II 280.32 nm and Mn II 285.37 nm. This is an indication that these lines are biomarkers 

of cancer. They were chosen as the biomarkers from literacy study and upon study of the 

tissues using LIBS for spectral identification, it was proven that they are present thus making 

them biomarkers of cancer. 

5.2 Design and Validation of ANN Multivariate Calibration Model 

5.2.1 Artificial Neural Network Model Development 

Simulate samples were used to develop the ANN model using the matlab script [see 

Appendix II]. Out of 20 samples 60% were used for training, 20 % for prediction and 20% 

for validation. The spectra signatures of selected biomarkers of Cu, Zn, Fe, Mn and Mg were 

used as the input data. Fig 5.11 shows an overlay of the spectra to compare the choice of lines 

as per their sensitivity to change in concentration levels. The lines show an increase in 

intensity with an increase in the concentration values. This indicates a good choice of lines 

used in development of the ANN prediction model. The spectra of the lines were obtained 

using optimal LIBS parameters. 
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Paraffin wax was used as the base matrix for embedding the elements. A spectrum of the 

matrix was taken and overlaid against the simulate sample spectrum to compare the presence 

of the elements. In the spectral region 228 nm to 248 nm, the base matrix does not have most 

of the elements identified in this region. The ones available are in very low concentration 

values. Figure 5.12 shows an overlay of the spectra with the blank matrix; paraffin wax. The 

base matrix clearly has no trace of the elements present in the samples. This shows the 

percentage purity of the base matrix that was used in the research as well as the sensitivity of 

the lines chosen as seen in the curve. 
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 The known concentration that was spiked in the simulate samples was fed into the neural 

network as the target. The network was then trained with 60 % of the data, 20 % for 

validation and the remaining 20 % used for testing. 

The network mapped the values of intensity on to the corresponding concentration value after  

which it validated its training then tested the performance of the model. The model was 

trained several times to minimize the error in prediction. The standard reference material, 

oyster tissue, was used to validate the calibration model. The concentration values of these 

trace elements in oyster tissue are known. LIBS was used to obtain the spectral data then the 

model was used to predict their concentration values then a comparison made against the 

known values.  

The ANN model trained for prediction of concentration of the trace biomarkers and validated 

using oyster tissue, as the standard reference material gave the best validation performance of 

MSE of 13.63 as shown in Figure 5.13. The figure shows the value of MSE reducing with as 

training, validation and testing was being done. 
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Figure 5.13: ANN performance plot of simulate samples showing the best validation of 

RMSE 13.6306 at epoch 2. 

 

The model developed had regression curves for training, validation, testing and overall curve 

as shown in Figure 5.14. The model trained very well showing R2 values of 0.9999 for 

training, validation 0.948, testing 0.950 and overall 0.985. These values signify the square of 

the error in the difference between the measured concentration and the predicted 

concentration. Since the value of this error is close to one, it means that the measured 

concentration value was mapped onto a value close to itself. 
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Figure  5.14: Regression curves of the ANN prediction model showing training curve of R2 

value of 0.9999, validation curve of R2 value of 0.9475, testing curve of R2 value of 0.9502 

and overall regression curve of R2 value of 0.985. 

 

The model was well trained and used for prediction of concentration values in the simulate 

samples. The model predicted the concentration values of the elements of interest giving R2 

values closer to 1 as possible as shown in Appendix III Table I, II and III. The ANN 

prediction model was then used to predict the concentration values in the human tissue 

samples and the cell lines (Hep- 2 and Lewis Lung) then compared with the values obtained 
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in the literature. These values were also used to find the ratios between the elements as well 

as the correlations between them. 

The regression curves for Cu, Fe, Mg, Zn, Mn and Mg, showing the relationship between 

predicted concentration and known concentration were plotted as shown below in figures 

5.15 to 5.19. 

Regression curve for Fe has R2 value of 0.993 and an MSE of 13.418. R2 correlation 

coefficient is an indicator of a very close relationship between the known concentration and 

the predicted concentration of the 50 % of the samples used for prediction. Figure 5.15 shows 

the regression curve of predicted concentration against known concentration of Fe.   

 

 

Figure 5.15: ANN regression curve of predicted concentration versus known concentration of 

Fe of R2 value of 0.993. 

R2=0.993 Fe 
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The regression curve of predicted concentration against known concentration for Mn has R2 

value of 0.918 and MSE of 5.118 (Figure 5.16). The latter is a good indicator of minimal 

error in the developed prediction model. The results imply that ANN model can be used to 

predict the concentrations of Mn in unknown samples with an accuracy of 92 % as indicated 

by the R2 and MSE values. 

 

 

Figure  5.16: ANN regression curve of predicted versus known concentration of Mn with R2 

value of 0.918 

The regression curve of predicted against known concentration of Mg shows R2 value of 

0.999 and a mean square error of 11.326 (Figure 5.17). The model predicted the 

Mn R2=0.918 
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concentration values of Mg well. The correlation coefficients show a close relationship 

between the known and predicted concentration values while the MSE error shows the error 

in relating the two variables. The R2 value is an indicator of close relationship between 

predicted and known concentration. This proves the effectiveness of the model that has been 

developed. 

 

 

 

 

 



64 
  

 

Figure  5.17: ANN regression curve of predicted concentration versus known concentration 

of Mg of R2 value of 0.999. 

The regression curve for Cu had R2 0.94742, MSE of 5.887. These values are summarized in 

table 5.3.  The model was also utilized in producing the regression curve of Cu and the results 

show R2 value of 0.94742. The MSE achieved with the model is 5.887.   

R2=0.918 
Mg 
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Figure 5.18: ANN regression curve of predicted concentration against known concentration 

of Cu with R2 value of 0.94742 using simulate samples 

 

The regression curve of Zn is shown in Figure 5.19. The MSE was 9.082, the Pearson’s 

correlation 0.989 and 0.971 R2 value.  Furthermore, the model when used to produce a 

regression curve for Zn, the R2 value achieved was 0.971 and an MSE of 9.082. This is very 

positive of the model developed. It can therefore be relied on to predict with more than 80 % 

confidence the concentration levels of trace elements in a tissue.  

Cu         R2=0.94742 
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Figure  5.19: ANN Regression curve of predicted concentration against known concentration 

of Zn with R2 value of 0.989 using simulate sample. 

  

Table 5.3 below shows a summary of the RMSE, Pearson’s correlation coefficient and the R2 

values for the five elements as per the model developed. 

 

Zn                             R2=0.989 
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Table  5.3: ANN model performance of Mn, Mg, Fe, Cu and Zn regression curves in terms of 

RMSE and R2 values. 

Element RMSE % R2 

Fe 13.418 0.993 

Mn 5.118 0.918 

Mg 11.326 0.999 

Cu 5.887 0.871 

Zn 9.082 0.971 

 

A summary of the performance of the ANN regression curves for Cu, Fe, Mn, Mg and Zn 

showing the respective values for MSE and R2 in Table 5.3. The model is suitable for 

prediction of concentration values of these elements in tissues as evident in the good 

performance it portrays. 

5.2.2 Validation of ANN model 

The model, once developed, was validated using a standard reference material, NIST 1566B, 

oyster tissue. This was done by making pellets from the oyster tissue powder using a 

hydraulic machine and ablating it using LIBS. The spectral values were then fed into the 

network for prediction of the concentration values of Cu, Mn, Mg, Zn and Fe. These values 

were fed into the network as input and simulated by the network to predict the concentration 

values that were compared against the standard values as shown in Table 5.4. The model 

predicted the concentrations of Fe, Mn, Cu, Zn and Mg. The percentage error is less than 5% 

for all the elements under study as shown in table 5.4. 
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Figure  5.20: Spectrum of oyster tissue showing the respective lines of Cu, Fe, Mn and Mg 

lines. Oyster tissue is the standard reference material used for validation of the ANN 

prediction model created. It has known concentration values of the trace elements. 

 

Figure 5.21 shows the occurrence of the trace elements whose concentration values were 

predicted using the ANN prediction model developed. The prediction was accurate since all 

the values were within the range of prediction error given from NIST. 
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Table  5.4: ANN calibration model showing certified and predicted concentration values of 

Fe, Mn, Mg, Zn and Cu in oyster tissue (NIST 1566B). 

Element  Oyster Tissue Standard 

Concentration (µg/g) 

Predicted 

Concentration (µg/g) 

Percentage deviation 

Fe   -3,89 

Mn   2.16 

Mg   1.57 

Cu   2.15 

Zn     0.42 

 

Oyster tissue was used to validate the ANN prediction model by studying the concentration 

levels of the elements using this ANN predictive model. 

5.3 Prediction of Concentration Values of Cu, Zn, Mn, Mg and Fe using the ANN 

Model 

The ANN model developed was used to predict the concentration values of the trace elements 

under study. Prediction of concentration values of Cu, Fe, Mn, Mg and Zn using the model in 

breast, liver and abdominal tissues was done. The results are tabulated in Table 5.5 below.  
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Table  5.5:  Predicted concentration values of Cu, Mn, Mg, Fe and Zn in breast, liver and 

abdominal tissues using ANN 

Tissue Mg Mn Fe Cu Zn 

Liver 1 87.9 ±9.7 18.6 ± 0.9 58.9 ± 7.7 17.6 ±1.1 39.6 ± 3.6 

Liver 2 457.1 ±50.3 9.3 ± 0.5 121.4 ±15.8 5.3 ± 0.3 52.1 ±4.7 

Abdominal 525.3±57.8 10.0 ± 0.5  111.2±14.5 7.1 ± 0.4 88.6 ± 5.3 

Breast 218.3 ±24.0 15.3 ± 0.8 100.8 ±13.1 11.6 ± 0.7 52.5 ± 3.2 

 

Liver 2 and abdominal samples, which were classified under malignant tissues, have higher 

concentrations of Fe and relatively low concentrations of Cu as compared to the other liver 

tissue, which is benign. Moreover, they have a lower concentration of Mn as compared to 

their counterparts. These alterations in the concentration values can explain the increased 

need of Fe in a highly proliferating tissue due to the constant demand of supply of the 

nutrients. 

5.3.1 Elemental Ratios Analysis  

Ratios of these trace elements were calculated to determine the relationship between the five 

elements for all the tissues. The results are presented in Table 5.6. 
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Table  5.6: Ratios of concentration levels of Cu, Mn, Mg, Fe, and Zn in liver, breast and 

abdominal tissues 

 

 

From the ratios the concentration of Cu: Mn is 1:1 this shows that they are in equal amounts 

in liver, breast and abdominal tissues whereas Fe is more than Cu, Mn and Zn in all the 

tissues showing the significance of Fe in a proliferating tissue as compared to the other 

elements. The ratio of Cu to Fe indicates presence of large amounts of Fe in the tissues. Iron 

has vital functions in tissues. It enables the function of vital iron- and hemoglobin -containing 

enzymes, including mitochondrial enzymes that are involved in respiratory complexes, 

enzymes involved in DNA synthesis and the cell cycle, detoxifying enzymes such as 

peroxidase and catalase, and many more. Therefore, iron is essential for cell replication, 

metabolism and growth. However, the ability to gain and lose electrons - the very attribute 

Ratio Liver 1 Liver 2 abdominal Breast 

Mg/Mn 4.717749 49.29347 52.55037 14.29169 

Mn/Fe 0.316397 0.076372 0.089912 0.151533 

Fe/Mg 0.669935 0.265629 0.211645 0.461751 

Mg/Cu 4.980876 86.90273 74.34809 18.77795 

Mg/Zn 2.216026 8.771981 5.926272 4.157763 

Mn/Cu 1.055774 1.762966 1.414797 1.313907 

Mn/Zn 0.469721 0.177954 0.112773 0.290922 

Cu/Fe 0.299683 0.04332 0.063551 0.11533 

Zn/Fe 0.673586 0.429167 0.797278 0.520873 

Cu/Zn 0.444907 0.10094 0.07971 0.221417 
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that makes iron useful enzymatically- also enables iron to participate in potentially 

detrimental free radical-generating reactions.  

Zinc is known to be an essential component of proteins that bind DNA, is an enzyme co-

factor and is an antioxidant and is involve in DNA repair. Lack of enough zinc can contribute 

to single- and double-strand DNA breakage and oxidative alterations to DNA that elevate the 

risk for cancer development. (Emily, 2004) 

5.3.2 Correlations of the Concentration of Elements 

The correlation values in Table 5.8 show the relationship of the trace elements with regards to 

their contribution to development of cancer in tissues. There is a very strong negative 

correlation between Cu and Fe which means that a large amount of Fe leads may result in a 

decrease in Mn and vice versa. The positive correlation between Mn and Fe and Mg and Fe is 

very weak.  

The ANN model developed was used to predict the concentration values of these elements   

in the cell lines and the results are shown in Table 5.8. The concentration of Fe is required 

more by a cell line in advanced stage as compared to one in the early stages. This is evident 

in the increasing amount of Fe as the cancer progresses.  

Magnesium concentrations do not show any particular trends along the stages of 

development. On the other hand, concentration values of Fe increase from stage one to five 

non- significantly. Manganese on the other hand has the same value for stage 1 and 2. This 

shows that the model could not distinguish between the two. The variation in the 

concentration is very minimal such that the two stages are almost a replica of one another.  
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Concentration levels of Cu are generally dropping from stage 1 to the last stage. Finally, the 

concentration values of Zn do not show any significant trends.  

Table  5.7:  Predicted concentration values of Cu, Fe, Mg, Mn and Zn in Hep-2 cell lines 

using the ANN prediction model 

Element hep stage 1 hep stage 2 hep stage  3 hep stage  4 hep stage 5 

Mg 365.0 ± 40.2 364.6 ± 40.1  372.0 ± 40.9 300.6 ± 33.1 360.0 ± 39.6 

Fe 63.1 ± 8.6 64.6 ± 8.4 70.3 ±9.1 71.9 ± 9.3 73.2 ± 9.5 

Mn 18.7 ± 09 18.7 ± 09  20.8 ± 1.0 18.1 ± 0.9 29.3 ± 1.5 

Cu  18.3 ± 1.1 19.6 ± 1.2 7.0  ± 0.4 4.0 ± 0.2 7.4 ± 0.4 

Zn                   33.6  ± 3.0    83.2 ±  7.5         49.8 ± 4.5            50.2 ± 4.5       49.8 ± 4.5 

 

 

Table  5.8: Pearson’s correlation coefficient in Hep 2 Cell Lines 

element Mg Mn Cu Fe Zn 

Mg 1 0.277 0.541 -0.481 0.0856 

Mn  1 -0.339 0.593 -0.126 

Cu   1 -0.938 0.311 

Fe    1 -0.133 

Zn     1 

 
 

5.4 Prediction of Concentration Levels of the Trace Elements in Lewis Lung Cell Line 

The Lewis lung cell line was also subjected to the ANN predictive model. Prediction of Fe 

seems to be increasing from stage 1 to stage 5. Cu and Zn on the other hand have   relatively 

the same amount. Since concentrations of Cu are very low, the model detected and displayed  
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the small differences in the concentration values. Manganese levels increase during the first 

three stages and then decrease in the last two stages. The levels of magnesium increase from 

stage 1 to stage 4 and then drops in the last stage. The results are shown in Table 5.9 below. 

 

Table  5.9: Predicted Concentration values of Cu, Fe, Mg, Mn and Zn in Lewis Lung cell 

lines using ANN prediction model 

 lung stage 1  Lung  stage 

2 

lung stage 3 lung stage  4 lung stage 5 

Mg 332.3 ± 36.6 358.7 ± 39.5 39 1.4 ± 43.1 427.9  ± 47.1 346.2  ± 38.1 

Fe 74.6 ± 9.7 77.9  ± 10.1 80.2 ± 8.8 78.9  ± 10.3 78.4 ± 10.2 

Mn 36.8 ± 1.8 42.3  ± 2.1 47.6  ± 2.4 34.0  ± 1.7 31.8  ± 1.6 

Cu 7.4 ± 0.4 7.4  ± 0.4 7.4  ± 0.4 7.4  ± 0.4 7.4  ± 0.4 

Zn                    49.8 ± 19.4           49.8 ± 19.4          49.8 ± 19.4             49.8 ± 19.4         49.8 

± 19.4                                              

 

Table  5.10: Pearson’s correlation coefficient in Lewis Lung Cell Lines 

element Mg Mn Cu Fe Zn 

Mg 1 0.116  0.683  

Mn  1  0.349 -0.126 

Cu   1 -0.938 0.000 

Fe    1  

Zn     1 

 

The relationship between Cu and Iron shows a strong negative correlation while that of Mg 

and Fe is a weak positive correlation. 
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5.5 Multivariate Chemometric Exploratory Analysis 

Exploratory data analysis was done on the simulate samples [see Appendix III], liver, 

abdominal, breast tissues and the cell lines. Characterization and differentiation of cancer in 

liver, breast, abdominal and cancer cell lines was performed using PCA and SVM. This 

analysis is essential in determining the relationship if any between respective samples. PCA 

was used for unsupervised grouping of the tissues and the cell lines and it produced results 

clusters which are discussed below. 

5.5.1 Classification of Liver, Breast and Abdominal Cancer Tissues Using PCA 

In this research, PCA was done on the different clusters between the breast, liver and 

abdominal tissue and analysis of the clusters done. The tissues consisted of breast, abdominal 

and liver tissues from different patients. The tissues B1, B2 and L2 in Figure 5.23 are leaning 

more towards PC1 which contributes 97 % and the lines responsible are shown in the 

loadings plot. The numerical values of the loadings plot were thus plotted and the lines 

influencing the classification identified as Mg, Fe, Mn, Cu and Zn as illustrated in Figure 

5.24. The lines observed from the loadings plot are Fe lines at 386.55 nm, 386.55 nm, 387.29, 

Cu 388.42 and Mn 247.89 and 389.76 nm. The lines identified are of those elements that 

occur in higher speciation states. This implies that speciation has a role to play in the 

classification of these tissues as evident in the presence of these lines in the loadings plot. 

These elements can thus be identified as biomarkers of cancer. 

Classification of liver, breast and abdominal cancer tissues shows a liver tissue, breast tissue 

and abdominal tissue clustered together while the other two breast tissues and a liver tissue in 

one group. Some of the tissues are benign while others malignant. 
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Breast, liver and abdominal samples from different patients were distinguished using 

principal component score values, and coefficient loadings plot allowed chemical 

interpretation of the score clusters. These results were compared with the histopathological 

results which agree that the group with abdominal tissues is malignant while the other group 

benign. The clustering of the tissues was influenced by PC1 which contributed 92 %. There 

was one breast tissue and it was divided into three (i.e. tissue from the same patient).  A 

section of the breast tissue that was tarnished was labelled as B3. In the clusters, B1 and B2 

have clustered while B3 is on the other end. B3 was had tarnish in colour and was reported to 

be malignant by the histopathological report.  

The PCA was able to distinguish the tissues and classify the replicates of each of the liver, 

abdominal and breast tissues. The breast, liver and abdominal tissues were clustered 

separately based on the part of the body from which it is obtained. When the technique is 

carried out on concentration values of the trace elements, it yields results similar to these. 
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Figure 5.21: Classification of liver, breast and abdominal tissues using PCA. The figure 

shows the scores plot displaying clustering of breast, liver and abdominal tissues into two 

groups that can be identified as benign and malignant 

 

This figure 5.21 shows unsupervised learning carried out using exploratory analysis. It shows 

the existing patterns; the ability of PCA to differentiate the tissues with regards to the part of 

the body it was obtained as well as differentiating the health status. 
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Figure  5.22: (a): PCA loadings plot for breast, liver and abdominal tissues displaying the 

spectral lines responsible for clustering and (b) zoomed out region indicating the lines at a 

closer look. 
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This figures 5.22 (a) and (b) show the chemical interpretation of the scores plot identifying 

the lines responsible for the clustering. PC1 shows Fe, Cu and Mn lines at various 

wavelength values. The lines identified are Fe at 386.15nm, 386.55 nm and 387.29 nm, Cu 

388.41 nm and Mn line at 389.76 nm and 247.89 nm. 

Unsupervised classification using PCA is able to classify different types of tissues depending 

on the part of the body it is obtained. The tissues are grouped according to the part of the 

body from which it was obtained. This concludes that PCA can be used for exploratory 

analysis to characterize types of tissues regarding the region it is obtained as well as the 

health status of the tissue. The lines identified above can be used as biomarkers. 

5.5.2 Differentiation of Cancer Cell Lines Using PCA 

Staging of cancer was done by studying Hep- 2 and Lewis lung cell lines were to compare the 

stages in terms of growth of cancer, concentration levels of the trace elements and the ratios 

and the correlations between the trace elements. The PCA score plot, Figure 5.23, for the Hep 

2 cell lines shows the three stages; stage 1 and stage 2 classified into one group which we 

could say represent early stage of cancer, stage 3 and stage 4 as the benign stages while stage 

5 as the malignant stage. The loadings plot gives the lines responsible for the classification. 

PC 1 contributes 97 % which consists mostly of Fe, Mn and Cu lines while PC2 contributes 

3%.  
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Figure 5.23: PCA scores plot of cultured Hep-2 cancer cell line. The stages have been 

clustered into early, benign and malignant stages 

 The scores plot is showing the clusters formed between stages 1 to 5. Stages 1 and 2 are 

grouped together, stage 3 and 4 as well while stage 5 is on its own. The first cluster can be 

identified as early stage, stage 3 and 4 benign stage while stage 5 as malignant stage of cancer 

development. 

The study of the loadings plot for the PCA scores plot of the Hep-2 cell lines, figure 5.24, 

reveals that the lines responsible for the grouping are Fe, Cu and Mn lines. They are lines of 

elements of higher oxidation states. This suggests that speciation has a great role to play in 

cancer development. There are several Fe and Cu lines as opposed to Mn lines. The score plot 
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is showing the clusters formed between stages 1 to 5. Stage 1 and 2 can be identified as early 

stage, stage 3 and 4 are classified as benign stage and stage 5 as the malignant stage.  

 

Figure 5.24: PCA loadings plot showing Fe, Cu and Cu lines identified at different 

wavelength regions to be responsible for the clustering of Hep-2 cell lines. PC1 contributed 

97 % while PC2 3 % 

PCA was also carried out for Lewis Lung tissue for the whole spectral region as shown in 

Figure 5.25. It is evident that the stages of development have clustered into three distinct 

groups. Stage 1 and 2 could be said to belong to the same group of early stage of cancer 

development, while stage 3 and 4 in the benign and stage 5 malignant. Stage 1, stage 2 and 

stage 5 are clustered where they are due to these lines. Stages 3 and 4 are influenced more by 

PC2 which show the presence of the Fe, Mn and Cu as observed in Figure 5.26. 
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Figure  5.25: PCA scores plot of cultured Lewis Lung cancer cell line. The stages 1 and 2 

have been clustered into early, 3 and 4 into benign and 5 as malignant stage 
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Figure  5.26: PCA loadings plot for Hep 2 cancer cell line using feature selected spectral lines 

 

PCA was carried out on the real samples using the concentration values predicted using the 

ANN prediction model. The results do not agree with the ones obtained using the intensity 

values obtained from the spectra. Stages 1, 3 and 5 are clustered together unlike while using 

intensity values; stages 4 and 5 are clustered together and identified as malignant. This shows 

that concentration alone cannot be used to determine the classification of cancer cell lines. 
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Figure 5.27:  PCA scores plot for Hep 2 cancer cell line using predicted concentration values. 

 

Figure 5.28 on the other hand shows the grouping of Lewis Lung tissues using PCA. The 

concentration values were used and the groupings are diverse when compared to the ones 

obtained using intensity values. The malignant stage is grouped with stages 1 and 5 together, 

unlike in the one with intensity where stages 4 and 5 are grouped together. Concentration 
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values alone cannot be depended on for cancer staging. Other variables such as correlations 

and ratios are also important.  

 

 

Figure  5.28: PCA scores plot for Lewis lung cancer cell line using predicted concentration 

values 
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Figure  5.29: Differentiation of cancer cell lines based on speciation. The figure shows the 

Lewis Lung tissue and lower speciation simulate samples. 
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In figure 5.29, the cell lines are classified aside from the simulate samples. This shows that 

the stages of cancer cell lines do not have lower speciation of the trace elements present. 

Speciation is a key aspect of cancer differentiation as can be seen by this scores plot. 

5.5.3  Classification of Breast, Liver and Abdominal Tissues Using SVM 

 SVM was used to classify the liver, breast and abdominal tissues by first training the model 

using the simulate samples into two classes. The simulate samples were classified into higher 

speciation and lower speciation separated by a hyperplane. The hyper plane shows the 

boundary of the two. Separate models of Cu, Mn and Fe were developed in to which each 

tissue was tested to have either lower speciation or higher speciation of these elements. The 

real tissue intensity values were then fed into the model and classified into either of the 

groups on the side of higher speciation and lower speciation. The models therefore 

represented as 1 and 0 for higher and lower speciation levels respectively. The breast, liver 

and abdominal tissues were classified as either belonging to 0 or 1. 

 Figure 5.30 shows the SVM plot for Fe. The breast tissue tested using this model produced 

an output as 1. The model’s class performance achieved is 0.7125. The tissues were exposed 

to a model developed by SVM for classifying them based on the speciation of the elements. 

The tissue was classified as having Fe element of a higher speciation. This demonstrates the 

success of SVM classification of tissues based on speciation.  

Classification was done using support vector machine to develop a model for classifying sim

ulate samples based on speciation. Radial basis function was used for classification.  

 The best model had a cost of 0.25 and gamma of 10. The miscalculation error for radial basis  
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function for the copper model obtained was: 0.235434. Manganese had a miscalculation error 

of 0.1973684 for radial basis function and cost of 1 gamma of 100.  

  

Table  5.11: Table summarizing the cost, gamma and miscalculation errors of the SVM 

classification model developed using radial basis function. The model was based on 

speciation of trace elements 

 Mn Cu Fe 

Cost 1 1 0.25 

gamma 100 10 10 

Miscalculation error 0.1973684 0.2354347 0.2875 

 

Radial basis function was preferred to linear model since the miscalculation error achieved by 

the linear models was quite high as opposed to the one for radial basis function.   

The miscalculation error for the best Fe classification model was 0.4372883, which is quite 

 high. This gave a model with a cost function of 0.03125 and gamma of 0.001.  

Moreover, the miscalculation error achieved using the best Mn linear model yielded 0.412359

3, cost function of 0.5 and a gamma of 0.001.  The best Cu linear model had a cost function 

 of 1, gamma of 0.001 and miscalculation error of 0.3250304. 
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Figure  5.30: SVM classification model based on speciation for Cu. The model shows the 

simulate samples classified into either having higher speciation and lower speciation of Cu., 

Cu I or Cu I ions. 

 



90 
  

 

Figure  5.31: SVM classification performance model based on speciation for Cu. The model 

shows the best cost and gamma at 1 and 10 respectively of the classification model 

developed. 
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Figure  5.32: SVM classification model based on speciation for Mn. The model shows the 

simulate samples classified into either having higher speciation and lower speciation of Mn II 

or M IV ions 
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Figure  5.33: SVM classification performance model based on speciation for Mn. The model 

shows the best cost and gamma of 1 and 100 respectively of the classification model 

developed 

 

Table 5.12 below illustrates the prediction of the speciation of Cu, Mn and Fe trace elements 

in the liver, breast and abdominal tissues. This is an indication of how important speciation is 

in classification of cancer tissues. Aside from concentration values, speciation is also an 

important aspect in classification.  
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Table  5.12: Table representing the predictions of the speciation of Mn, Cu and Fe using the 

SVM classification models. 

 Liver 1 

tissue 

Liver 2 

tissue 

Abdominal  

tissue 

Breast 1 

tissue 

Breast 2 

tissue 

Breast 3 

tissue 

Cu Lower Higher Higher Lower Lower Higher 

Fe Higher Higher Higher Higher Higher Higher 

Mn Lower Higher Higher Lower Lower Higher 
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Figure  5.34: SVM classification model based on speciation for Mn. The model shows the 

simulate samples classified into either having higher speciation and lower speciation of Fe II 

or Fe III ions 
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Figure  5.35: SVM classification performance model based on speciation for Fe. The model 

shows the best cost and gamma of 0.25 and 10 respectively of the classification model 

developed 

  

All the tissues were classified using SVM by training a model to classify the higher 

speciation and lower speciation into two classes. These were separated by the hyper plane 

using radial basis function. The breast tissue was then fed into the model to predict the 

classification. The three modes predicted the tissue as belonging to the higher speciation side 

of the hyperplane. 

Table 5.12 shows the classification of liver, breast and abdominal tissues using the SVM 

model developed. It can be concluded that speciation has an important role to play in 

development of cancer. 
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6 CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

This work involved development of a rapid technique for cancer detection at early stage 

utilizing LIBS and Chemometric techniques. This was done by identifying the trace element 

biomarkers in liver, breast and abdominal tissues using LIBS. This objective was achieved by 

identifying these biomarkers from the spectra obtained when these tissues were ablated upon 

using LIBS. The possible biomarkers associated with the disease were obtained in these 

spectra. The following trace elements were under study: Cu, Mn, Fe, Mg and Zn and specific 

lines were present different quantities in these tissues. Quantification of these trace elements 

was also be used in determining other aspects of the disease. A calibration model was 

designed using ANN, a chemometrics tool, for determination of the quantities of these trace 

elements. 

 The model was successfully validated using oyster tissue as the standard reference material 

by using it to predict the concentration values of these elements in the tissue using the 

designed model. The predicted values obtained were within the range with less than 5% 

prediction error. The validated model was used to predict the concentration values of the 

biomarkers. These are tabulated in chapter 5. The ratios of the concentration values are useful 

in disease diagnostics as their occurrence indicate the health status of the tissue as well as the 

stage of development of the tissue as seen in the quantity values of the cell lines. The 

predictive model was used to get the quantities of the trace elements in both tissues and 

cancer cell lines.  

Exploratory analysis, to differentiate and characterize the cancer tissues, was done 

successfully using PCA as seen in chapter 5. This technique created patterns of the spectral 
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data obtained using LIBS. The tissues were separated into cancerous and non-cancerous. 

PCA was able to identify existing similarities and differences between the variables as seen in 

the scores plot of figure 5.1. The loadings plot on the other hand indicates the information 

regarding the trace element biomarkers responsible for the classification of the tissues as 

shown in figure 5.2. PCA was further applied to Hep 2 and Lewis Lung cell lines and it 

yielded scores plots showing the existing patterns in the stages of the cell lines. Stages 1 and 

2 for Hep 2 in figure 5.23 can be identified as early stage, stages 3 and 4 as benign while 

stage 5 as malignant stages. The same analogy is applied to the score plot of Lewis Lung 

tissue in figure 5.25. The corresponding loadings plot thus identifies the trace element lines 

responsible for the grouping. The lines identified are Mn, Fe and Cu lines. These are 

speciation elements. This indicates that when tissues replicate the elements exist in higher 

order speciation state. This makes speciation a useful aspect of cancer diagnostics based on 

trace elements. It was used as a basis of classification using SVM as supervised method for 

grouping tissues to either higher speciation or lower speciation elements. Cu, Mn, and Fe 

were used to create models that was used to classify the tissues belonging to either the lower 

or higher speciation states of these elements.  

This research shows a LIBS method developed for rapid and non-invasive detection, 

quantification and characterization of cancer in human body tissue based on the concentration 

levels and alterations of these elements. The model gives good results if well and validated 

using a standard reference, as was the case in this study. Exploratory analysis is very useful in 

determining the existing similarities and differences in the dataset. The research could be 

carried forward to examine the performance of the prediction model on other reference 

standard values to evaluate the robustness of the model. Subjecting more tissue samples 

under study leads to having a more conclusive method for early detection and staging.  
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8 APPENDICES 

APPENDIX I:  Pictograms of Samples 

 

Figure A 1.1: Microscopic image of an oyster tissue X 50 
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Figure A.1.2: Microscopic image of simulate sample X50 
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Figure A.1.3: Pictogram of Hep-2 cell line X 50 
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Figure A.1.4: Pictograph of a simulate sample 
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Figure A.1.5: Microscopic image of Lewis Lung cell line X 100 
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Figure A.1.6: Pictograph of standard reference material; oyster tissue 
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APPENDIX II: ANN and SVM Scripts 

The ANN script used 

net= newff (Intensities,Concentrations,3); (creating a new feed forward back propagation 

network of 3 neurons) 

net.divideParam.trainRatio=.5; (Dividing the input into 60% for training set) 

net.divideParam.valRatio=.3; (Dividing the input into 20% for validation set) 

net.divideParam.testRatio=.2; (Dividing the input into 20% for test set) 

[net,tr]=train(net, Intensities, Concentrations); (Applying the network on the Intensities and 

Concentrations values). 

Output=net(Prediction Sample); (Predicting concentrations of an unknown sample) 

 

The SVM script used 

#Data 

library(readxl) 

TrainFe <- read_excel("R/TrainFe.xlsx") 

View(TrainFe) 

str(TrainFe) 

library(ggplot2) 

qplot(Wavelength.nm,Intensity.au,data=TrainFe, 

      color=speciation) 

#Support Vector  

library(e1071) 
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mymodel<-svm(speciation~ .,data=TrainFe,type="C", 

             kernel="radial") 

summary(mymodel) 

plot(mymodel,data=TrainFe, 

     Intensity.au~Wavelength.nm) 

#Confusion Matrix and Miscalculation Error 

pred<-predict(mymodel,TrainFe) 

plot(pred) 

tab<-table(Predicted=pred,Actual=TrainFe$speciation) 

tab 

1-sum(diag(tab))/sum(tab) 

#Tuning 

set.seed(123) 

tmodel<-tune(svm,speciation~.,data=TrainFe,kernel="radial", 

             ranges=list(cost=2^(-5:0),gamma=c(0.001,0.01,.1,1,10,100))) 

plot(tmodel) 

summary(tmodel) 

#best Model 

mymodel<-tmodel$best.model 

mymodel<-svm(formula=speciation~.,data=TrainFe,type="C", 

kernel="radial",cost=0.25,gamma=10) 
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plot(mymodel,data=TrainFe, 

     Wavelength.nm~Intensity.au) 

Summary(mymodel) 

Output=svm(RealFe) 

plot(output) 

Output<- svm(mymodel~ ., data=RealFe, type="C", 

                          Kernel="radial") 

plot(output,data=RealFe, type="C", kernel="radial", cost=0.03125,gamma=0.001) 
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APPENDIX III: Predicted Concentration Value of Trace Elements in Simulate Samples 

Table A.3.1: Predicted versus Known concentration values of Fe and Mg 

Predicted 

Concentration 

for Fe (ppm) 

Known concentration 

for Fe (ppm) 

Predicted 

Concentration 

for Mg (ppm) 

Known 

Concentration 

for Mg (ppm) 

100.9972 105 323.7996 328 

125.2261 127 342.0571 346 

128.7567 128 428.6617 429 

142.6931 143 501.85 501 

165.9006 166 108.7174 108 

167.5066 170 158.1268 153 

86.42138 81 69.70388 65 

39.1122 40 248.6395 247 

94.89202 89 371.2531 378 

66.98382 60 152.6011 153 

 

       Table A.3.2: Predicted and known concentrations for Mn 

Predicted Concentration Known Concentration 

9.222801 6 

8.120721 10 

18.47042 12 

19.05044 16 

18.75164 18 
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20.5412 20 

22.6503 23 

27.51827 25 

 

 

Table A.3.3: Predicted and known 

concentrations for Cu 

 

 

4.472516 3 

4.711671 5 

6.968894 4 

13.81117 12 

18.09768 18 

13.0204 11 

8.993601 9 

15.31567 10 

32.1976 28 



115 
  

APPENDIX IV: SNR for getting optimized LIBS features  

Table A.4.1: Table showing the optimized conditions for LIBS apparatus. The SNR increases 

with energy, Q- switch delay optical to sample distance and number of ablations per scan 

 Mg II 279.55 nm Cu I 324.396 nm Cu I 766.483 nm 

Energy 30 mJ 45 mJ 50 mJ 30 mJ 45 mJ 50 mJ 30 mJ 45 mJ 50 mJ 

SNR 0.435 2.67 3.89 0.44 1.87 2.57 1.54 1.90 2.65 

          

Q-

switch 

delay 

0.29 μs 0.33μs 0.49 

μs 

0.29 

μs 

0.33 

μs 

0.49 

μs 

 0.29 

μs 

0.33 

μs 

0.49 

μs 

SNR 0.65 1.98  2.13 0.45 1.98 3.03 0.34 1.99 3.45 

          

Optical 

to 

sample 

distance 

 

10 mm 

 

20 mm 

 

33 mm 

 

10 mm 

 

20 mm 

 

33 mm 

 

10 mm 

 

20 mm 

 

33 mm 

SNR 0.98 1.55 2.87 2.67 4.87 6.90 3.01 3.98 4.90 

          

Number 

of 

ablations 

per scan 

1 2 5 1 2 5 1 2 5 

SNR 3.51 2.32 0.56 4.43 4.67 0.34 2.90 1.00 0.12 

 


