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Abstract

It is estimated that Malaria a�ects over 200million people every year, and accounts for about

750,000 deaths during the same period. The adult female Anopheles mosquito accounts

for all transmissions of the human malaria pathogen, Plasmodium. The disease control

measures often include interventions aimed at reducing the survival of the adult female

Anopheles mosquitoes. Various factors such as temperature and age have been found to

be associated with vector mortality. Whereas much e�ort has been paid to evaluate the

e�ects on the vector survival, little research has been done on how temperature and time

a�ect the vector adult life-history parameters.

The objective of the present study is to compare the performance of four parametric models,

namely, Gompertz, gamma, Weibull, and exponential models to determine the best model

for analyzing the survival of the female Anopheles mosquito. Using experimental data

from a mosquito survival experiment, the present study compares the performance of the

models in �tting mosquito mortality.

The results show that temperature and age are signi�cant predictors of vector mortality. In

addition, the Gompertz model �ts the data on the adult A. gambiae and A. stephensi better

than the Weibull, Gamma, and the Exponential model. This implies that the mosquito data

survival in the laboratory is age-dependent. The �ndings of the present study are also

useful in parameterizing reliable mathematical models that examine the potential impact

of temperature as well as global warming on the transmission of malaria.
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1 Introduction

1.1 Background

The adult female adult female Anopheles mosquito (Anopheles gambiae sensu stricto)plays a
significant role in the transmission of vector diseases in Africa (Muriu et al., 2013). They are
the sole vectors for the transmission of the human malaria pathogen, Plasmodium. Malaria
is among the most significant infectious diseases globally, which is estimated to a�ect
over 200 million people annually, and causes about 750,000 deaths annually (World Health
Organization, 2010). The World Health Organization’s 2017 Malaria report shows that in
2016, malaria cases increased to 216 million, while deaths reduced to 445,000. Significant
research a�ention has been focused on how malaria can be reduced or eliminated. In
this regard, the research focus has been on the interventions of the Plasmodium parasite
in humans, as well as those designed to interrupt the transmission of the parasite by
mosquitoes. The vector control measures have included interventions aimed at reducing
the survival of the adult female Anopheles mosquitoes.

The survival of the adult female Anopheles mosquitoes is one of the most significant
components of their ability to transmit vector-borne pathogens such as plasmodium virus
(Patz et al., 2008). A high survival rate of the arthropod vectors allows the vectors to
produce more o�spring, which in turn increase their chances of becoming infected, spread
over greater distances; survive for longer as well as improving their chances of delivering
e�ective bites throughout their lifetime (Brady et al., 2013). According to Brady et al.
(2013), small changes in the survival rates of the vectors o�en results in large pathogen
transmission changes. In addition, the survival rate di�erences o�en influence the vector’s
geographical distribution as well as their seasonality.

An adult female Anopheles gambiae sensu strict (Anopheles gambiae) and Anopheles stephensi
are the principal vector for the transmission of Malaria, a globally important infectious
disease. Research interests in quantifying factors a�ecting the vector’s survival rates and
how the vector a�ects disease transmission have been considerable (Costantini et al.,
1996; Okech et al., 2003). With the emergence of climate change and global warming as
significant human health threats, particularly by increasing vector-borne diseases and
water-borne diseases, it is logical that we observe temperature consistently as a key factor
influencing the vector survival (Christiansen-Jucht et al., 2015). Studies on the survival
of the vector have shown that mosquito survival depends on temperature, rainfall, and
humidity, and other factors such as mosquito density, genetic diversity, as well as its
ability to find blood (Gilles et al., 2011; Christiansen-Jucht et al., 2015; Muriu et al., 2013).
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Brady et al. (2013) also noted other factors such as photoperiod as well as humidity are
important, but the e�ects of temperature is the most rigorously quantified limiting factor
for vector survival.

1.2 Mathematical Modeling

Mathematical modeling has proved to be an important tool for understanding disease
epidemiology as well as the transmission dynamics associated with infectious diseases.
Modeling e�orts o�en help in targeting elimination e�orts as well as predicting the
outcome of the e�orts through allowing an integration of the vector’s complex biological
mechanisms (Christiansen-Jucht et al., 2015). In studies investigating mosquito-borne
diseases, mathematical modeling of the mosquito stages has helped in the researchers’
e�orts to assess the impact of interventions implemented at the vector’s larvae and pupae
stages, or helped in ascertaining the e�ects of external e�ects on the stages of the vector
development.

Given the wide acceptance of climate change and global warming as key component
a�ecting the spread of vector-borne diseases through their influences on the vector
ecology, the most recent studies have sought to define the extent to which the life-history
parameters of the vector, as well as the vectors’ capacity to transmit diseases, depend on
climatic variables. Other studies have even incorporated the role of climatic factors in
modeling vector populations (Christiansen-Jucht et al., 2015).

1.3 Problem Statement

The vector population dynamics are particularly sensitive to the climatic and environ-
mental factors such as temperature. While data exists on the survival and the e�ect of
the larva environmental temperature on the survival of the adult Anopheles mosquitoes,
li�le research has been done on how temperature and time a�ect the adult life-history
parameters (Christiansen-Jucht et al., 2014). Observations from the few studies on age
and temperature-dependent survival modeling have resulted in a range of parametric
functions that are suitable for modeling age and temperature dependent mortality for
various species. For Anopheles gambiae, the functions include the Gompertz and Logistic
functions (Styer et al., 2007). However, there are limited studies comparing the e�icacies of
the parametric models. The study by Christiansen-Jucht et al. (2014) fi�ed the mosquito
survivorship data using the Gompertz, gamma, Weibull, and exponential distribution
functions using a longitudinal dataset of mosquito abundance obtained over a period of
36 months. Whereas Christiansen-Jucht et al. (2014) a�empted to compare the e�icacy
of various parametric models in fi�ing mosquito survival data, the study is limited in
the sense that it focuses on a single species (Anopheles gambiae s.s.). The present study
overcomes this limitation by using data drawn from two species of mosquitoes, namely;
Anopheles gambiae, and Anopheles stephensi.
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1.4 Objectives

1.4.1 Main Objective

To compare the performance of four parametric models, namely, Gompertz, gamma,
Weibull, and exponential models to determine the best model for analyzing the survival of
the female Anopheles mosquito.

1.4.2 Specific Objectives

• To determine the contribution of temperature and age in determining the survival of the
adult female Anopheles mosquito,

• To determine whether age-dependent models be�er fit mosquito survival data than the
age-independent models.

1.5 Significance of the Study

The models investigated incorporated the e�ects of age-dependent mortality in predicting
vector survival under varying temperature regimes. The study contributes to the under-
standing of the adult female Anopheles mosquito mortality by presenting a statistical
solution to studies investigating the vector’s age and temperature dependent survival.
The findings from the current study will enhance the current Malaria vector transmission
models and improve predictions guiding mosquito control, identification of areas prone to
malaria transmission and help in designing early warning systems (Brady et al., 2013).
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2 Literature Review

2.1 Malaria Disease

Malaria is a mosquito-borne infectious disease of humans that is caused by a parasitic
protozoan of the genus Plasmodium (Rayner, 2015). The disease is commonly transmi�ed
through bites of infected female mosquitoes, whereby the organisms are introduced into
a person’s blood circulatory system through the saliva of the infected mosquito. Research
shows that a�er the infected mosquito bites a human, the parasite goes to the liver of the
person, where it matures before beginning to reproduce (Rayner, 2015). A�er maturity,
the parasites emerge from the liver and start infecting the human red blood cells. The
parasites multiply a�er every 2 to 3 days, resulting in the death of the red blood cells and
causing a range of many other complications.

Malaria is among the most significant health global health burdens associated with
multi-organ dysfunction, socio-economic burden, as well as long-term incapacitation.
It is estimated that over 3 billion people live in areas considered to be at high risk for
malaria. With over 200 million malaria cases every year and 750,000 deaths annually
(World Health Organization, 2010), the impact of the disease in Sub-Saharan Africa cannot
be underestimated. The transmission of the disease is largely dependent on the life-history
parameters and population dynamics of the mosquitoes. The survival of adult Anopheles
mosquitoes is among the most significant determinants of malaria transmission.

2.2 Mosquito Survival Factors

Many environmental factors interact to influence the organismal development and survival
of adult mosquitoes. These include temperature, larval diet and mosquito density (Couret,
Dotson, and Benedict, 2014), rainfall and humidity (Rydzanicz, Kącki, and Jawień, 2011),
the genetic diversity of the mosquitoes (Ho�man and Sgro, 2011), and their age (Dawes et
al., 2009).

2.3 Factors Considered in Models Used in Research

The factors a�ecting the development and survival of adult mosquitoes have been exam-
ined using various statistical analysis methods. Some of the methods considered include
simple random models (Costantini et al., 1996), ordinary di�erential equation models
(Abiodun et al., 2016), generalized linear models (Gilles et al., 2011), generalized additive
models (Brady et al., 2013), Cox regression model (Dawes et al., 2009).
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2.3.1 Costantini et al. (1996)

the study by Costantini et al. (1996) focused on the survival, dispersal and density of the
Anopheles gambiae species of mosquitoes found in a West African Sudan savanna village
(Costantini et al., 1996). Simple random models of dispersal were applied to estimate
the vectors’ absolute population densities, dispersal parameters and daily survival rates.
The models were simulated and the parameters of the models determined through the
least squared fit between simulated and observed distributions (Costantini et al., 1996).
The study established that the models are oversimplified and include rough guesses and
estimates. As such, there was a need for detailed di�erences as well as the role of the
factors in the vector survival.

2.3.2 Yang et al. (2008)

This study used a generalized additive model to examine the e�ect of temperature on
the incidence rates of Aedes aegypti mosquito in temperature-controlled experiments
(Yang et al., 2008). The model yielded a basic o�spring number by obtaining the mortality,
transition, and oviposition rates for the vector at di�erent stages of the life cycle (Yang et
al., 2008). The o�spring number obtained increased up to 29°C and then decreases quickly.
However, the model was not compared with other existing models, and it would not be
possible to establish how the model compares with other models in modeling the fi�ing
mosquito data.

2.3.3 Dawes et al. (2009)

This study examined the factors of age and Plasmodium density and argued that the
survival of mosquitoes is dependent on both age and infection intensity dependent (Dawes
et al., 2009). Using a Cox regression model, and the authors demonstrated that mosquitoes
initially experience high mortality rates, which is associated with feeding. However, the
mortality rate declines to a minimum before increasing with the mosquitoes’ age. The
mosquito survivorship was explored using the Weibull function, Gompertz function, and
the constant death rate (Exponential function). Dawes et al. (2009) determined that each
of the models applied singly were not adequate to describe the mortality rates experienced
by mosquitoes in the experiments presented (Dawes et al., 2009).

2.3.4 Gilles et al. (2011)

Gilles et al. (2011) examined the e�ect of mosquito density, and diet e�ects on mosquito
survival. The authors analyzed the di�erences in developmental time and survival using a
generalized linear model (GLM), with diet and larval density as the fixed factors and the
experiment as the random factor (Gilles et al., 2011). The findings of the study indicated a
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negative density dependence of survival as a function of increased larval density (Gilles et
al., 2011).

2.3.5 Abiodun et al. (2016)

The study examined how temperature and rainfall a�ected the population dynamics
of mosquitoes (Abiodun et al., 2016). The authors developed a climate-based ordinary
di�erential equation model, which they used to analyze how temperature and water
availability influence the mosquito population size (Abiodun et al., 2016). The model
produced a curve similar to the observed larvae populations. However, the authors
indicated that the model needed further development to incorporate other processes,
among them, malaria infection.

2.3.6 Brady et al. (2013)

Brady et al. (2013) also modeled the survival of the adult Aedes albopiticus and Aedes
aegypti mosquitoes at di�erent temperature in both field and laboratory se�ings. They
applied generalized additive models to data from 351 published adult Aedes aegypti and
Aedes albopiticus experiments in laboratory se�ings to create models, which were adjusted
to estimate mosquito survival at di�erent temperatures in the field (Brady et al., 2013).
Additionally, the study tested the suitability of four parametric models, namely the log-
logistic model, Gompertz model, Exponential model, and Weibull model, and established
that no single model was consistently most suitable across a range of temperatures tested
((Brady et al., 2013). The study indicated that the GAM captured the survival variation
between various experiments be�er than the conventional parametric models (Brady et
al., 2013).

2.3.7 Christiansen-Jucht et al. (2014)

The study by Christiansen-Jucht et al. (2014) examined the impact of the constantly
fluctuating temperature on the survival of the adult Anopheles gambiae s.s. mosquito.
The mosquito larvae and adult experimental data were analyzed using exponential, gamma,
Weibull, and Gompertz models. The Gompertz model emerged as a be�er model since
it fi�ed the data be�er than the other parametric models in 10 of the 16 scenarios of
temperature considered, and was not significantly worse compared to the model of best
fit in two other cases (Christiansen-Jucht et al., 2014).

2.3.8 Brand, Rock, and Keeling (2016)

Brand et al. (2016) successfully used the exponential model to examine the relationship
between the vector life history and its survival in vector-borne disease transmission and
control. The study is based on the classical McDonald theory, which assumes that times
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between vector blood meals are exponentially distributed. Based on the predictions of
the model, the study established a strong dependence between the variations in vector
per-capita mortality and details of vector life-cycle.

2.3.9 Styer et al. (2007)

Styer et al. (2007) examined the e�ect of age on the survivorship of vectors. The ac-
ceptance of the operational assumption o�en perpetuated that the vector mortality is
independent of age may result in erroneous conclusions that the age of the mosquitoes is
not important, which may result in misleading predictions about disease reductions a�er
the implementation of control measures, as well as repress the study of other aspects
of the mosquito biology. The ability to accurately predict vectorial capacity based on
the large-scale mortality study was assessed for the exponential model, the Gompertz
model, and the logistic model. The findings indicated that the three models di�ered as
the exponential model caused the total vectorial capacity to be overestimated by 29-44
percent. The Gompertz model performed be�er than the exponential model with possible
vectorial capacity overestimation of between 5 and 7 percent, while the logistic model
performed the best, producing an error rate of less than 1 percent.

2.3.10 Summary

From the literature above, it emerges that prior studies on the factors influencing mosquito
population dynamics have largely relied on non-parametric methods and semi-parametric
regression models. While data exists on parametric survival models, li�le research has
been done on how temperature and age a�ect the adult life-history parameters. Whereas
Christiansen-Jucht et al. (2014) a�empted to compare the e�icacy of various parametric
models in fi�ing mosquito survival data, the study is limited in the sense that it focuses
on a single species (Anopheles gambiae s.s.). The present study overcomes this limitation
by using data drawn from two species of mosquitoes, namely; Anopheles gambiae, and
Anopheles stephensi.

Table 1. Summary of Literature

Source Factors Considered Models Used

Costantini et al. (1996) Survival rates, Population densities and Dispersal simple random models of dispersal

Yang et al. (2008) Temperature, and Mosquito mortality rates Generalized additive model

Dawes et al. (2009) Age, Plasmodium density and mosquito mortality rates Weibull, Gompertz, and Exponential

Gilles et al. (2011) Mosquito density, diet, and survival rates Generalized linear model

Abiodun et al. (2016) Temperature, rainfall and mosquito mortality Ordinary di�erential equation model

Brady et al. (2013) Temperature and mosquito survival GAM, log-logistic, Gompertz, exponential, and Weibull

Christiansen-Jucht et al. (2014) Temperature, age and mosquito mortality Gompertz, exponential, gamma, and the Weibull models

Brand et al. (2016) Vector life history and its survival Exponential model

Styer et al. (2007) Age and mosquito survivorship The exponential, Gompertz, and logistic model
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2.3.11 Survival Analysis and Data

Cox (2003) defines survival analysis is as a set of methods applied to data analysis where
the response variable is the time until an event of interest occurs. Here, the time taken
until an event of interest occurs is o�en referred to as survival time. Survival data o�en
includes survival time, vector characteristics related to the response as well as response
to a given intervention, and survival. Studies using survival data o�en seek to predict
the probability of the response variable, the survival of animals or organisms of interest,
or their mean lifetime, compare survival distributions of various experimental subjects,
and identifying the risk factors related to response variable, survival chances or disease
development (Lee and Wang, 2003).

The data used in the present study includes the daily mortality for the associated infection
experiments. The number of mosquitoes alive is recorded against those that have died or
censored. Also, the blood-fed group and the uninfected control group were followed to
determine if the diurnal temperature ranges had a di�erent impact on the daily probability
of mosquito survival for Plasmodium falciparum-infected mosquitoes. The midguts and
salivary glands were dissected on the 7th day, and the 15th-day post-infection for each
Plasmodium falciparum exposed to the treatment group. This was aimed at quantifing
the e�ects of mean temmperature variation, diurnal temperature ranges, as well as the
treatment measures of the competence of the mosquitoes (Murdock, Sternberg, and
Thomas, 2016). The censored mosquitoes were those that were dissected midgets and
salivary glands to assess parasite infections (Murdock et al., 2016).

2.3.12 Survival Models

The survival analysis strategies have found wide applications in various fields, including
medicine, epidemiology, and biology. Regression models are commonly applied when
testing the relationship between an outcome variable with one or more predictor variables.
More specifically, the parametric methods for regression models have become popular in
the modeling of survival data for various vectors (Christiansen-Jucht, 2014). For instance,
parametric models have been used to analyze the Anopheles gambiae mosquito species
survival (Christiansen-Jucht, 2014). Brand et al. (2016) successfully used the exponential
model to examine the relationship between the vector life history and its survival in
vector-borne disease transmission and control, and Styer et al. (2007) assessed the ability
to accurately predict vectorial capacity based on the large-scale mortality study for the
exponential model, Gompertz model, and the logistic model.
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3 Materials and Methods

This section focuses on the description of data, the parametric methods for regression
model used to analyze the data, and the criterion used to select the best-fit model for the
vector survivorship.

3.1 Data Sources

The current investigation uses data from the Malaria transmission experiment, which
was collected from the Dryad Digital Repository. The data consists of 2279 mosquitoes
with 8 variables (Murdock et al., 2016). The data was collected from a lab experiment
where Anopheles gambiae and Anopheles stephensi were reared under standard insectary
conditions at 27 ± 0.5°C, 80 percent humidity, 12 hours light:12-hour dark photoperiod,
and on a 10 percent glucose diet. A�er emerging, three-day-old female adult mosquitoes
were randomly distributed into the 18 x 18 x 18 cm cages. There were a total of 150 cages
representing one of the 18 treatment groups consisting of three mean temperatures (27°C,
30°C, and 33°C), two infection treatments (P. falciparum-infected, and blood-fed controls),
and three Diurnal Temperature Ranges (DTR 0°C ± 0°C; DTR 6°C ± 3°C, and DTR 9°C ±
4.5°C) (Murdock et al., 2016).

There were two replicates of Anopheles gambiae, and 3 replicates of Anopheles stephensi
experiments and the mosquitoes in each experiment were deprived of sugar solution for
12 hours prior to being introduced to either the uninfected blood meal or Plasmodium
falciparum culture to minimize inter-culture variations and ensure similar dosages (Mur-
dock et al., 2016). Directly a�er the blood feeds, the mosquitoes were introduced into the
appropriate temperature treatments and maintained on a 10 percent sugar solution daily.
The average temperatures and the diurnal temperature ranges were selected based on the
microclimate data collected from the various housing types throughout the transmission
season in Tanzania, India, and Chennai.

The midguts and salivary glands were dissected on the 7th-day, and the 15th-day post-
infection for each P. falciparum exposed to the treatment group to quantify the e�ects
of variation in mean temperature, diurnal temperature ranges, and treatment measures
of the vector competence. The number of dead mosquitoes was counted in each cage
throughout the experiment to quantify the e�ects of temperature fluctuation on the daily
mortality (Murdock et al., 2016). Figure 1 below gives the head of the dataset used in the
study.
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Figure 1. Screenshot of the dataset used in the study (Source: Murdock et al., 2016)

3.2 Parametric Methods of Regression

The parametric methods for regression modeling considered in the present study were
the exponential, Weibull, gamma, and the Gompertz models.

3.2.1 Exponential Distribution

The exponential distribution is an important distribution in survival studies, which re-
searchers o�en choose to describe life pa�erns. It is o�en referred to as a purely random
failure pa�ern, and famous for its lack of memory, which requires that the age of a person,
animal, or organism does not a�ect failure survival (Lee, and Wang, 2003). Whereas the
distribution does not adequately describe many survival data, its understanding facilitates
the treatment of more general situations. The distribution is characterized by a constant
hazard rate, whereby a high hazard rate value is an indication of high risk and short
survival, and a low hazard rate value is an indication of low risk and long survival.

The exponential distribution can be parameterized by its mean α with the probability
density function

f (t) =
1
α

e−t/α t > 0,

for α > 0.

The variable T can also be parameterized using its rate λ with the following probability
density function

f (t) = λe−λ t t > 0,

for λ > 0.

Using the mean parameterization, the cumulative distribution function of the variable T
would be given as follows:

F(t) = P(T ≤ t) = 1− e−t/α t > 0.
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The survivor function of T would be given by:

S(t) = P(t ≥ t) = e−t/α t > 0.

The hazard function of T would be given by:

h(t) =
f (t)
S(t)

=
1
α

t > 0.

The cumulative hazard function of T would be given by:

H(t) =− lnS(t) =
t
α

t > 0.

The exponential distribution has been successfully used by researchers to model the
mosquito vector mortality rates accounting for the e�ects of seasonal variations in the
vector recruitment recruitment (Briet, 2002). A recent study by Brand, Rock, and Keeling
(2016) successfully used the model for the survival in vector-borne disease transmission
and control.

3.2.2 Weibull Distribution

The Weibull distribution, which was developed by Weibull (1951), is a generalized expo-
nential distribution with a shape distribution equal to one. It has found wide application
in studies examining the reliability as well as the human disease mortality since it allows
the survival distribution for populations whose risk is either decreasing, increasing, or
constant (Cowles, 2004). The main contrast between the Weibull and the Exponential
distribution is that the Weibull distribution is not based on the assumption of a constant
hazard rate, hence has a wider application as compared to the exponential distribution.

The shorthand T ∼ Weibull(α, β ) indicates that the random variable T is Weibully with
scale parameter α > 0 and shape parameter β > 0. The variable T has probability density
function

f (t) =
β

α
tβ−1e−(1/α)t β

t > 0.

The cumulative distribution function of T is given by:

F(t) = P(T ≤ t) = 1− e−(1/α)t β

t > 0.

The survivor function of T is given by:

S(t) = P(T ≥ t) = e−(1/α)t β

t > 0.
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The hazard function of T is given by:

h(t) =
f (t)
S(t)

=
β

α
tβ−1 t > 0.

The cumulative hazard function of T is given by:

H(t) =− lnS(t) =
1
α

tβ t > 0.

The Weibull distribution has been successfully used to model for survival time in various
vector development and survival studies. For instance, Degallier et al. (2012) successfully
applied the model in examining how the local environment a�ected the aging and mortality
of mosquitoes in Fortaleza, Brazil (Degallier et al., 2012). In comparison with other
parametric models, the Weibull model provided a be�er fit for mosquito survival data as
compared to other models. Stone et al. (2012) also applied the Weibull model to assess
how plant community composition influenced the vectorial capacity and fitness of the
Anopheles gambiae mosquito.

3.2.3 Gamma Distribution

The gamma distribution encompasses two distributions: the exponential distribution and
the chi-square distribution. The distribution was used by Phelan and Roitberg (2013) to as-
sess how food, temperature, and water depth influenced the diving activity of mosquitoes.

The shorthand T ∼ gamma(α,β ) indicates that the random variable T has a gamma
distribution. A gamma random variable T with positive scale parameter α and positive
shape parameter β has probability density function

f (t) =
t β−1e−t/α

αβ Γ(β )
t > 0.

The cumulative distribution function of T is given by:

F(t) = P(T ≤ t) =
Γ(β , t/α)

Γ(β )
x > 0,

where

Γ(s, t) =
∫ t

0
ts−1e−tdt

for s > 0 and t > 0 is an incomplete gamma function and

Γ(s) =
∫

∞

0
ts−1e−tdt
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for s > 0 is the gamma function. The survivor function of T is given by:

S(t) = P(T ≥ t) = 1− Γ(β , t/α)

Γ(β )
t > 0.

The hazard function of T is given by:

h(t) =
f (t)
S(t)

=
tβ−1e−t/α

(Γ(β )−Γ (β , t/α))αβ Γ(β )
t > 0.

The cumulative hazard function of T is given by:

H(t) =− lnS(t) =− ln
(

1− Γ(β , t/α)

Γ(β )

)
t > 0.

The hazard function of the distribution gives rise to a variety of forms depending on the
value of the gamma parameter.

3.2.4 Gompertz Distribution

The Gompertz distribution is derived from the Gompertz Makeham family of distributions.
The model is very closely related to the Weibull distribution in the sense that it represents
the log of a Weibull distribution. The model provides a very close fit to adult mortality in
contemporary developed nations (Bongaarts, 2005). The Gompertz distribution is based
on the assumption that there is a law of mortality that explains the existence of common
age pa�erns of death (Olshansky, 2010).

The shorthand T ∼ Gompertz(δ ,κ) indicates that the random variable T has the Gom-
pertz distribution with parameters δ and κ . A Gompertz random variable T with shape
parameters δ and κ has probability density function

f (t) = δ κ
te−δ (κ t−1)/ ln(κ) t > 0,

for all δ > 0 and κ > 1.

The cumulative distribution function of T is given by:

F(t) = P(T ≤ t) = 1− e−δ (κ t−1)/ ln(κ) t > 0.

The survivor function of T is given by:

S(t) = P(T ≥ t) = e−δ (κ t−1)/ ln(κ) t > 0.
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The hazard function of T is given by:

h(t) = δκ
t t > 0.

The cumulative hazard function of t is given by:

H(t) =
δ (κ t −1)

ln(κ)
t > 0.

The model has been widely used in actuarial and biological applications as well as in
demography. Clements and Peterson (1981) used the model to analyze the mortality
and survival rates in wild mosquito populations. The model has also been applied in the
analysis of the e�ects of larval food quantities on the capacity of adult mosquitoes to
transmit human malaria. Therefore, it would be interesting to see how the model performs
in analyzing the e�ect of temperature and age-dependent survival in mosquitoes.

3.3 Model Selection Criteria

The present study sought to compare the e�icacy of the exponential model, the gamma
model, the Weibull model, and the Gompertz model in fi�ing the temperature and age-
dependent mosquito survival data. It involves comparing the goodness of fit of the four
parametric models in regard to fi�ing of the observed data. In the context of model
selection, the assumptions are that the statistical inference is model-based and that there
is only one correct model or best fit model that su�ices as the best model for making
inferences (Burnham, and Anderson, 2004). The objective of model selection can be
achieved by use of Akaike’s Information Criterion (AIC), Log-likelihood (-2LL) or the
Bayesian Information Criterion (BIC) (Burnham, and Anderson, 2004).

3.3.1 AIC

The AIC is a powerful, multimodal inference that can be used to determine the model that
the model that best describes the factors that influence the variable of interest (Snipes and
Taylor, 2014). The method was first described by Akaike (1973) as a strategy for comparing
various models on a given outcome. For instance, the researcher in the present paper is
interested in what variables influence the survival of mosquitoes, and how the variables
may influence the survival of mosquitoes. Akaike (1973) demonstrated that the best model
is determined by calculating an AIC score as follows:

AIC = 2K −2ln(L)

Where k represents the number of parameters and L represents the likelihood function’s
maximized value. The constant 2 means is used for historical reasons (Snipes and Taylor,
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2014). The AIC value is interpreted such that the lower value of AIC indicates a be�er
model.

3.3.2 BIC

The BIC is a popular tool used by researchers for the selection of statistical models. It
is preferred by many researchers due to its computational simplicity as well as its good
performance in various modelling framworks where where other distributions have proved
to be elusive (Neath and Cavanaugh, 2012). Under the assumption that the model errors
are independently and identically distributed in accordance to a normal distribution, and
that the boundary condition that the derivative of the log likelihood with respect to the
true variance is zero, the formula for BIC is given as follows

BIC =−nln(σ̂2
e )+ kln(n)

Where σ̂2
e is the error variance given by σ̂2

e = 1
n ∑

n
i=1(xi − x̄)2

Under the assumption of normality, a more tractable version is given by

BIC = X2 + k.ln(n)

Just like the AIC, the BIC value is interpreted such that the lower value of BIC indicates a
be�er model. The statistical analyses were conducted using the R so�ware. The AIC and
BIC values for each model were conducted, and the model with the smallest AIC and BIC
selected as the best fit model.
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4 Results

This chapter presents the data analysis, presentation, and interpretation of the study
findings. The objective of the present study was to compare four parametric methods for
regression models to mosquito survival data. In this section, data from Murdock et al.
(2016) is analyzed in relation to the topic of study. Models and formulas presented in the
materials and methods section will be applied in analyzing the data.

4.1 Data Exploration

The information of the current dataset is given in Table 2 below. It has 2279 observations.
The variable of age is considered in terms of days post-infection, and is measured on
an interval scale while the temperature is considered in as the average temperature and
diurnal temperature range. There are no cases of missing values in the present dataset.
Figure 2 below illustrates a Kaplan Mier plot of the data. Out of the 2279 mosquitoes
considered, 931 mortalities were recorded in a period of 15 days.
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Figure 2. Kaplan Mier Curve

4.2 Model Selection

The goal of the present study is to confirm age and temperature as significant factors
a�ecting the survival of mosquitoes and determine the model that best fits mosquito
survival data. As such, model selection forms the center of focus of this data analysis.
Using the flexsurfreg() function in R, the mosquito survival data was fi�ed using four
di�erent models: the exponential, gamma, Weibull, and Gompertz model. In the next
section, a comparison of the covariates is o�ered.

4.2.1 Comparison of Covariates

Table 2 below shows that the variables of age and average temperature are significantly
associated with the survival time for all the four parametric models considered. Under the
exponential model, the coe�icients of age and temperature were found to be statistically
significant predictors of mosquito survival (p<0.05) at 0.05 level of significance. Similarly,
the variables were found to be statistically significant under the Weibull (Temperature:
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p=0.013, Age: p=0.0004), gamma (Temperature: p<0.05, Age: p=0.05), and Gompertz
(Temperature: p<0.05, Age: p=0.05).

Table 2. Comparison of Covariates

Covariates Exponential Weibull Gamma Gompertz

Age (Est) 0.1701 0.0775 0.0960 0.0046

p-value <0.05 <0.05 <0.05 <0.05

Temperature (Est) 0.0650 -0.2805 0.3004 0.0567

p-value <0.05 <0.05 <0.05 <0.05

4.2.2 Model Selection Criteria

Table 3 below shows the values of the log-likelihood (-2LL), Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) criteria for the fi�ed models. The
log-likelihood results provide strong evidence that the Gompertz model (-2LL=-4138.59) is
the best fit model for the mosquito survival data, followed by the Weibull (-2LL=-4764.97),
gamma model (-2LL=-4822.81), and the exponential model (-2LL=-5707.03) in that order.
The -2LL results were confirmed by the AIC and BIC criteria, which showed the lowest
values for the Gompertz model (AIC= 8285.18, BIC= 8308.11), followed by the Weibull
(AIC= 9537.95, BIC= 9560.87), Gamma (AIC= 9653.62, BIC= 9676.55), and the Exponential
model emerged as the worst model of the four (AIC= 11420.06, BIC= 11437.25).

Table 3. Model Selection

Parametric Distributions -2LL AIC BIC

Exponential -5707.03 11420.06 11437.25

Weibull -4764.97 9537.95 9560.87

Gamma -4822.81 9653.62 9676.55

Gompertz -4138.59 8285.18 8308.11

4.2.3 Graphical Goodness-of-fit Test

The goodness-of-fit of a model describes how well a model fits a set of observations.
Whereas measures of goodness-of-fit above gives a summary of the discrepancy between
the observed values and the expected values of the dataset under the four models, fi�ed
line plots of the models given in figures 3, 4, 5, and 6 display the relationship between
the variables of age and temperature and the survival of the mosquitoes. In addition, the
models display the e�icacy of each model in fi�ing the survival data.
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Figure 3. Exponential Model data plot

The data plot under the exponential model shows that the model is a poor fit. The black
curve represents the survival curve as estimated by the Kaplan-Meier process, and the
black do�ed lines represent the 95 percent confidence interval. On the other hand, the
red line and the red do�ed lines represent the abstract function fi�ed by the exponential
model and the confidence interval respectively. The objective of the model selection
process is to achieve a model where the red and black curves to get close to each other. In
the exponential model, the red and black curves are far from each other, indicating a poor
fit.
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Figure 4. Gamma Model data plot

Figure 4 displays how the gamma model fits the mosquito survival data. As compared to
the exponential model, the gamma model curve is closer to the Kaplan Meier curve but
not as close as the Weibull and the Gompertz model curves.

Figure 5. Weibull Model data plot
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Figure 5 is a Weibull model curve of the data compared to the Kaplan Meier curve.
Evidently, the Weibull curve is closer to the Gamma model curve but does not provide the
best fit for the data.

Figure 6. Gompertz Model data plot

The Gompertz model data plot shown in figure 6 above shows a perfect fit of the observed
values and the expected values. The Gompertz model curve lies very close to the Kaplan
Meier Curve. Based on the visual assessment of the four curves, the Gompertz model
provides the perfect fit for the mosquito survival data.
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5 Discussion and Conclusion

Section five of this report presents the summary of the study findings and discusses
their implications for studies involving survival analysis of vector mortality data. The
significance of the parametric survival models in modeling mosquito-vector mortality
data is discussed in light of the existing literature, and new insights about the problem
explained in consideration to the findings of the present study.

5.1 Summary of Findings

Malaria is one of the most significant infectious diseases globally. It is estimated to
a�ect over 200million people every year and accounts for about 750,000 deaths during
the same period. The adult female Anopheles mosquito accounts for all transmissions of
the human malaria pathogen, Plasmodium. Research on the interventions and control
of the disease has o�en focused on interrupting the transmission of the parasite by
mosquitoes. Scientists have sought to disrupt the survival of mosquitoes using such
factors as temperature, and age. To be�er understand the impacts of the individual factors
on the survival of the vectors, many parametric models have been built for measuring
their e�ect. These include the exponential, gamma, Weibull, Gomperts models among
others. However, significant variations are usually observed across vector populations
by applying a specific model. As such, models have been cross-validated with di�erent
cohorts.

Therefore, the aim of the present study was to compare the performance of four parametric
models, namely, Gompertz, gamma, Weibull, and exponential models to determine the
best model for analyzing the survival of the female Anopheles mosquito. The current
investigation a�empts to validate a predictive model based on mosquito mortality data
by survival analysis.

The present study used data from 2279 Anopheles gambiae and Anopheles stephensi adult
female mosquitoes to construct a temperature and age-dependent survival. The study
rea�irms that environmental temperature a�ects the survival of Anopheles gambiae and
Anopheles stephensi during their lifetime as adults. The results from the present study
indicate that changes in the adult temperatures may have a significant impact on the
survival of the mosquitoes. There was a statistically significant increase in environmental
temperature with every 3°C increase in temperature. These results were consistent with
results reported by Christiansen-Jucht et al. (2014) who used the temperature intervals of
4°C.



23

In general, the Gompertz survivorship function fi�ed the mosquito survival data reasonably
well, confirming the results by Christiansen-Jucht et al. (2014), and confirming the age-
dependent mortality in adult female A. gambiae and A. stephensi species of mosquitoes.
Early studies by Dawes et al. (2009) and Christiansen-Jucht et al. (2014) had reported
age-dependent mortality in the laboratory adult A. stephensi mosquito populations. Some
authors have pointed out that vector-borne disease models tend to dismiss evidence
supporting the age-dependent mortality for the sake of tractability, and because of the
contradictory evidence between the laboratory and field studies (Christiansen-Jucht et al.,
2014), but the present study further solidifies the evidence on the age-dependent vector
mortality. This is because the age-independent exponential model is a poor fit.

5.2 Implications

The findings of the present study indicate that environmental temperature to which A.
gambiae and A. stephensi are exposed to during their adult stages significantly a�ect
their survival. This has important implications for the A. gambiae and A. stephensi
population dynamics, ecology as well as the transmission of the Plasmodium pathogen.
The Gompertz model emerges as the best-fit model for fi�ing data on adult A. gambiae
and A. stephensi survival in the laboratory as compared to the other parametric models
such as the exponential, gamma and the Weibull models. This implies that the survival of
the vector is age-dependent. The results will help in parameterizing reliable mathematical
models that examine the potential impact of temperature as well as global warming on
the transmission of malaria.

5.3 Conclusion

This paper o�ers a comparison of the performance of four parametric models to determine
the best model for analyzing the survival of the female Anopheles mosquito. The Gompertz,
gamma, Weibull, and exponential models were utilized to model the survival of A. gambiae
and A. stephensi species of mosquitoes. The four models di�ered significantly. The
exponential model provided a poor fit of the vector survival data, while the Gompertz
model provided a be�er fit compared to the Weibull, Gamma, and the Exponential models.
On the other hand, temperature and age were rea�irmed as important predictors of
mosquito survival. Overall, the Gompertz model provides a powerful statistical tool for
the survival analysis of mosquito vector mortality data.

5.4 Future Research

The present study is based on a laboratory experiment. Other researchers exploring the
problem have suggested a potential contradiction between laboratory data and field studies
data (Christiansen-Jucht et al., 2014). In addition, the experimental design conducted in
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the present study did not consider di�erences in humidity, which would a�ect mosquito
development as well as survival. Therefore, the model needs further confirmation from
vector mortality data from the field given its importance in modeling vector population
dynamics as well as malaria transmission.
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