

By

()

Supervisors:

1. Dr. Lawrence Muchemi

2. Prof. Elijah Omwenga

Thesis Presented for the Award of Degree of Doctor of Philosophy in Computer Science

School of Computing and Informatics

University of Nairobi, Kenya

© 2018

A Model for Mapping Graduates’ Skills to Industry Roles

Using Machine Learning Techniques: A Case of Software

Engineering

Fullgence Mwachoo Mwakondo

P80/98728/2015

 ii

DECLARATION

I hereby declare that this thesis is my own work and has, to the best of my knowledge, not been

submitted to any other institution of higher learning.

Signature: ... Date:...

Name: Fullgence Mwachoo Mwakondo Registration Number: P80/98728/2015

This thesis has been submitted for examination towards fulfillment for the award of degree of Doctor

of Philosophy in Computer Science with my approval as the supervisor.

Signature: ... Date: ..

Name: Dr. Lawrence Muchemi

 School of Computing and Informatics,

 University of Nairobi, Kenya

Signature: ... Date: ..

Name: Prof. Elijah Isanda Omwenga

 School of Computing and Informatics,

 University of Nairobi, Kenya

12/10/2017

 iii

Abstract
Despite rapid development in information technologies, a practical way of mapping graduates‘ skills to

industry roles is a challenge. Attempts have been made by posing this as a multi-classification problem and

solving using machine learning techniques. However, existing approaches seem not to embrace attributes and

machine learning structures relevant to the problem, and hence, their results may not be reliable. For example,

although occupational industry roles in the organizations are structured hierarchically, many studies have

approached this problem using flat instead of hierarchical methods. Either relevant attributes or hierarchical

structure that correctly reflects hierarchy of industry roles, or both, are unknown for an effective model for

mapping graduates‘ skills to industry roles.

Currently, hierarchical method has not been applied in skills mapping to industry roles despite its many

benefits vis-à-vis flat method. However, in other areas where it has been used, classification approach

contradicts underlying structure of the problem thus resulting in multiple label prediction problems. As a

result, this study presents an investigation that posed skills mapping to industry roles as a hierarchically

structured multiclass problem where a machine learning structure that correctly reflects the hierarchy of

industry roles was applied. The aim being to demonstrate using a case how to build a machine learning model

for mapping graduates‘ skills to hierarchically structured industry roles. This was achieved by establishing

both underlying structural characteristic of industry roles, as concepts required for target classes, that correctly

reflects the hierarchy of industry roles and concepts appropriate as attributes for hierarchical machine learning

purpose, before building and evaluating the mapping model. The model is based on the underlying taxonomic

structure whose basic approach is to correctly reflect the hierarchical structure of industry roles. Literature

analysis of three theoretical frameworks provided a basis for establishing appropriate attributes for machine

learning investigation after which hierarchical classification strategy was designed to generate the model

before its prototype was constructed. Experimental design was adopted using four machine learning

techniques (Logistic Regression, K-Nearest Neighbor, SVM, and Naïve Bayes). A benchmark dataset and 113

Software Engineering employees‘ skills profile data collected using stratified random sampling from various

software development firms in Nairobi were involved in the investigation. Experiments to evaluate

performance and validity of the model were designed using repeated 5-fold cross validation procedure.

Performance reported on carefully selected benchmarks on multi-classification method was adopted for

validation of results.

Findings revealed five appropriate attributes for building a model for mapping skills to industry roles and the

best model was SVM induced with an average generalization performance accuracy of 67% across three

datasets. On benchmark dataset, our model registered performance accuracy of 85% better than 82% reported

by a selected benchmark on similar dataset. These results seem to be fairly consistent with results achieved by

similar hierarchical models as reported in other problem domains such as proteins (53.3%) and music (61%).

In conclusion, the research objective was fulfilled with the following contributions, namely conceptual model,

ML architecture for the model, software prototype, hierarchical mapping framework, research findings,

datasets and literature survey which will benefit researchers in general (students, universities and industry)

and specially the government in developing an effective policy for training evaluation that ensures graduates

are relevant to the industry.

Keywords: Hierarchical Classification, Industry-Academia Gap, Problem-solving, Skills Mapping

 iv

Acknowledgement
As I approach towards the end of this journey, I would like to take this great moment to remember all

those who have contributed directly and indirectly towards this end. Indeed, a PhD journey is one

that is full of ups and downs, mountains and valleys, rivers and rocks, oceans and forests and every

kind of person you meet around is as useful as a friend, and a friend indeed. It is upon this I would

like to remember you all whom I gripped your hands and lifted me up again when I almost fell into

despair. Your encouragement, support, patience, tolerance, understanding, consolation, consultancy,

advice, opinion, suggestion, counseling, guidance, is what I greatly needed during this moment for a

little forward movement towards the end.

First, I would like to express my thanks to my supervisors, Dr Lawrence Muchemi and Prof Elijah I.

Omwenga for their endless support and guidance throughout this study. I am greatly indebted to Prof

Omwenga without whom this idea would not have grown to maturity and with whose guidance

shaped the whole idea into a research proposal worth a PhD research. Prof you have done a great job

worth to mention. To Dr Muchemi, you have been my great inspiration, ensuring my determination

and strength of mind is always high, to carry on with the journey. I feel greatly owed to you,

especially when I remember great meetings with you that raised my spirits high. Daktari, I am

grateful for the job well done.

Secondly, I greatly express my thanks to University of Nairobi for granting me this great opportunity

to study in this great institution, especially School of Computing and Informatics for their great

resources, seminars and supervisions. I would like, also, to express my gratitude to all my classmates

for their valuable advice and support including Hadullo and especially Omondi for data collection

support; all the lecturers in the school for all their endless support during my study, including Prof

Waiganjo, Dr Oboko, Dr Opiyo, Prof Okello, Dr Mbura, to mention just a few; and a special friend

indeed Dr Collins for your great support during data collection.

Thirdly, my great appreciations go to my colleagues in my home department at Technical University

of Mombasa (TUM) including Dr Mvurya Mgala for proof reading, and especially TUM as an

institution for financially supporting this study through staff development scholarship award towards

tuition fees. I would like to say without this scholarship my studies would have been very difficult.

Others worth to remember and appreciate for their dramatic help include National Council of

Science, Technology and Innovation (NACOSTI). NACOSTI have been very instrumental in

supporting the research funding part of this study without which would have been difficult to collect

and analyze data and present results. Thank you all.

Finally, to my own family especially my wife, Selestinah, my children, my dad and mum, my sisters,

family friends, I wish to thank them all for their endless support. I wish to say the list is too long to

fit into this space. However, the whole list is in my heart and I wish you all ―many thanks‖ for this

great work. God bless you all.

 v

Dedication

I would like to dedicate this thesis to my family, dad, and mum for their patience and great support

during my study.

 vi

Table of Contents Page

DECLARATION .. ii

ABSTRACT ... iii

ACKNOWLEDGEMENT ... iv

DEDICATION .. v

LIST OF TABLES ... vi

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS AND ACRONYMS ... xiii

DEFINITION OF RESEARCH DISCIPLINE ... xv

DEFINITION OF TERMS ... xvi

CHAPTER 1: INTRODUCTION ... 1

1.1 Background to the study .. 1

1.1.1 Causes of the Gap between Industry and Academia ... 2

1.1.2 Effects of the Industry Academia Gap .. 5

1.1.3 Towards Bridging the Gap .. 6

1.2 Statement of the Problem .. 11

1.3 Objectives .. 12

1.3.1 General Objectives .. 12

1.3.2 Specific Objectives .. 12

1.4 Research Questions ... 13

1.5 Scope ... 13

1.6 Significance of the Study .. 13

1.7 Assumption of the Study ... 14

1.8 Thesis Review ... 14

CHAPTER 2: LITERATURE REVIEW .. 15

2.0 Introduction ... 15

2.1 Trends .. 15

 vii

2.2 Industry Academia gap .. 17

2.3 Evaluation and Mapping of Graduate‘s Knowledge, Skills, and Competences 19

2.3.1 Relationship between Content Knowledge and Competences 21

 2.3.1.1 Communication ... 21

 2.3.1.2 Collaboration ... 21

 2.3.1.3 Critical Thinking ... 21

 2.3.1.4 Adaptive Learning ... 21

 2.3.1.5 Problem Solving .. 22

2.3.2 Skills Evaluation Frameworks ... 22

 2.3.2.1 Software Engineering Body of Knowledge (SWEBOK) 23

 2.3.2.2 European e-Competence Framework .. 24

 2.3.2.3 Professional Knowledge and Skills Base Framework 25

2.3.3 Automatic Skills Evaluation .. 26

 2.3.3.1 Machine Learning Classification Methods .. 26

 2.3.3.2 Supervised Classification Method ... 28

 2.3.3.3 Unsupervised Classification Method ... 28

 2.3.3.4 Reinforced Classification Method ... 29

2.3.4 Machine Learning Algorithms ... 29

2.3.4.1 Back Propagation Algorithm ... 29

2.3.4.2 Support Vector Machines Algorithm .. 30

2.3.4.3 Naïve Bayes Algorithm ... 32

2.3.4.4 Logistic Regression Algorithm.. 33

2.3.4.5 K-Nearest Neighbor Algorithm ... 34

 2.3.5 Advanced Machine Learning Methods and Algorithms .. 34

 2.3.5.1 Extreme Learning .. 34

 2.3.5.2 Deep Learning ... 35

 2.3.6 Multiclass Classification Classifiers .. 36

 viii

 2.3.6.1 Hierarchical Classifiers ... 36

 2.3.6.2 Flat Classifiers ... 37

 2.3.6.3 Big Bhang Classifiers .. 37

 2.3.6.4 Local Classifiers .. 38

2.4 Models for Skill Mapping using Machine Learning ... 38

2.5 Models using Hierarchical Machine Learning Structure .. 41

2.6 Synopsis of Literature Review .. 41

2.7 Theoretical and Conceptual Models .. 42

2.7.1 Models for Training Evaluation .. 42

2.7.2 Kirkpatrick‘s Training Model .. 43

2.7.3 CRESST Model for Learning .. 44

2.7.4 Cognitive Theory for Training Evaluation .. 46

2.7.5 Discussion Summary of Training Evaluation Methods ... 49

2.7.6 Conceptual Framework for the Proposed Mapping Model 50

2.7.7 Automatic Skills Mapping using Machine Learning Methods 51

2.7.7.1 Top-down Versus Bottom-up Approaches .. 52

2.7.7.2 Proposed Taxonomy .. 55

2.7.7.3 Proposed ML Architecture for the Mapping Model 57

2.7.7.4 Basic Architecture of Model Classifier‘s Objects 59

2.7.7.5 Choice of ML Algorithms for the Model‘s Classifier Objects 59

 2.7.7 Synopsis of Theoretical Concepts Development ... 61

2.8 Summary ... 63

CHAPTER 3: RESEARCH METHODOLOGY... 65

3.0 Introduction ... 65

3.1 Research Philosophy ... 65

3.2 Research Design .. 68

3.2.1 Synopsis of Research Design .. 70

 ix

3.2.2 Literature Review/Analysis ... 72

3.2.3 Survey .. 74

3.2.4 Lab Experiment ... 75

3.3 Research Framework ... 77

3.4 Research Methods ... 79

 3.4.1 Sampling .. 79

 3.4.4.1 Reliability and Validity of Research Instrument 81

 3.4.2 Data Analysis and Presentation ... 82

 3.4.2.1 Data Pre-Processing... 83

 3.4.2.2 Creating the Data Files .. 85

 3.4.2.3 Demographic Characteristics Analysis.. 87

 3.4.2.4 Industry Role Requirements Analysis ... 87

 3.4.2.5 Trends Analysis ... 88

 3.4.3 Evaluation Methods ... 88

3.5 Methodology for Developing the Mapping Model ... 89

 3.5.1 Problem Domain Understanding ... 89

 3.5.1.1 A Case of Software Engineering ... 89

 3.5.1.2 Mismatch of Skills and Industry Roles ... 90

 3.5.2 Data Understanding ... 93

 3.5.2.1 Data Collection .. 93

 3.5.3 Data Preparation .. 103

 3.5.4 Modeling and Selecting the Best Classifier using the Best Features 112

 3.5.4.1 Design of Machine Learning Algorithm using the Best Features 113

 3.5.4.2 Algorithm Optimization .. 114

 3.5.4.3 Model Validation ... 116

 3.5.5 Model Evaluation .. 120

3.6 Summary ... 120

 x

CHAPTER 4: MODELING RESULTS AND FINDINGS ... 122

4.0 Introduction ... 122

4.1 Descriptive Results and Findings .. 122

4.1.1 Population Description .. 122

4.1.2 Proportions of Job Entry Industry Roles ... 122

4.1.3 Proportions of Job Entry Level Role Performance Activities 123

4.1.4 Central Tendency Measures .. 125

4.1.5 Hypothesis Testing Results ... 130

4.1.6 Trends Analysis Results .. 132

4.2 Experimental Results and Findings for Feature and Algorithm Selections 135

4.2.1 Introduction ... 135

4.2.2 Taxonomic Description of Software Engineers‘ (SE) Industry Roles 135

4.2.3 Taxonomic Description of Academic Librarians‘ (AL) Industry Roles 136

4.2.4 Experiments‘ Datasets Descriptions .. 136

4.2.5 Class Sizes in the Experiment Datasets ... 137

4.2.6 Model Building Results and Findings ... 137

 4.2.6.1 Feature Selection using SE Benchmark Dataset (Experiment A) 138

 4.2.6.2 Selecting Parameter Values using SE Benchmark Dataset

 (Experiment B) .. 143

 4.2.6.3 Estimation of Generalization Error using SE Benchmark Dataset

 (Experiment C) .. 145

 4.2.6.4 Selecting Parameter Value using SE Field Dataset (Experiment B) 147

 4.2.6.5 Estimation of Generalization Error using SE Field Dataset

 (Experiment C) .. 149

4.3 Discussions of Modeling Findings .. 151

4.3.1 Discussions of Descriptive Findings ... 152

 4.3.1.1 Concepts as Target Classes for Machine Learning Process 152

 xi

 4.3.1.2 Characteristics of Target Classes for Machine Learning Process 152

4.3.2 Discussions of Experimental Findings .. 152

 4.3.2.1 Selection of Meaningful Features .. 152

 4.3.2.2 Selection of the Best Parameter Values... 153

 4.3.2.3 Estimation of Generalization Performance of the Model 153

 4.3.3 Discussions Conclusion of Modeling Findings ... 154

4.4 Summary ... 156

CHAPTER 5: PROTOTYPE DESIGN AND IMPLEMENTATION .. 158

5.0 Introduction ... 158

5.1 Software Prototype Development Methodology ... 158

5.1.1 Choice of Prototype Development Methodology .. 158

5.1.2 Requirements Analysis .. 160

5.1.3 Design .. 162

5.1.3.1 Design of Data source Subsystem ... 164

5.1.3.2 Design of Machine Learning Subsystem ... 167

5.1.3.3 Design of Dashboard Subsystem ... 170

 5.1.4 Implementation and Testing .. 171

5.1.3.1 Implementation of Data source Subsystem ... 172

5.1.3.2 Implementation of Machine Learning Subsystem 173

5.1.3.3 Implementation of Dashboard Subsystem ... 176

5.2 Computing and Development Resources .. 181

5.3 Summary ... 182

CHAPTER 6: MODEL EVALUATIONS AND FINDINGS ... 183

6.0 Introduction ... 183

6.1 Background to Evaluation Methods .. 183

6.1.1 Choice of Evaluation Method and Metric ... 185

6.1.2 Stratified K-Fold Cross Validation Evaluation Method 186

 xii

6.1.3 Evaluation Metrics ... 186

 6.1.3.1 Accuracy .. 186

 6.1.3.2 Precision .. 186

 6.1.3.3 Recall ... 187

 6.1.3.4 F1_Score .. 187

6.2 Experimental Results and Findings ... 187

6.2.1 Experimental Evaluation using Software Engineers‘ Field Dataset 188

6.2.2 Experimental Evaluation using Software Engineers‘ Benchmark Dataset 191

6.2.3 Experimental Evaluation using Academic Librarians‘ (AL) Field Dataset 194

 6.2.3.1 Selecting Parameter Values using AL Field Dataset (Experiment B) ... 194

 6.2.3.2 Estimation of Generalization Error using AL Field Dataset

 (Experiment C) 195

 6.2.3.3 Evaluating Model using AL Field Dataset Test set (Experiment D) 195

6.3 Comparative Analysis ... 197

6.4 Discussions of Evaluation Findings .. 198

6.4.1 The Best Generalization Performance of the Classifier Model 199

6.4.2 To Compare Model Performance under Different Industry Domains 199

6.4.3 Performance Comparison with other Models in Literature 200

6.5 Discussions Conclusion of Evaluation Findings ... 201

6.6 Discussions of Results Validity... 202

 6.6.1 Internal Validity ... 202

 6.6.2 External Validity .. 203

 6.6.3 Construct Validity .. 204

 6.6.4 Conclusion Validity ... 205

6.6 Summary ... 205

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS .. 206

7.0 Introduction ... 206

 xiii

7.1 Conclusion and Future Research ... 206

7.1.1 Conclusion ... 206

7.1.2 Future Research ... 213

7.2 Research Contributions ... 214

7.2.1 Theoretical Contributions .. 214

7.2.2 Methodological Contributions ... 219

7.2.3 Dataset Contributions .. 220

7.2.4 Empirical Contributions .. 220

7.2.5 Artifact Contributions .. 221

 7.2.6 Survey Contributions ... 221

7.3 Research Limitations ... 221

7.4 Benefits and Achievements ... 221

7.5 Relevant Research Publications .. 223

REFERENCES .. 224

APPENDIX A: Research Time Schedule & Budget ... 232

APPENDIX B: Letter to Respondents .. 233

APPENDIX C: Questionnaires ... 234

APPENDIX D: SE Exams past Papers‘ Sampling Frame .. 248

APPENDIX E: Software Developers‘ Sampling Frame ... 250

APPENDIX F: Research Permit ... 252

APPENDIX G: TurnIT Report .. 253

APPENDIX H: SE Benchmark Dataset .. 254

APPENDIX I: SE Field Dataset .. 257

APPENDIX J: Academic Librarians Dataset .. 259

APPENDIX K: Python Sample Code for Prototype ... 260

BIOGRAPHY .. 291

 xiv

List of Tables Page

Table 2.2: Summary analysis of related ML skills napping models 40

Table 2.3: Learning outcomes and their measures 49

Table 2.4: Features of the main categories of machine learning algorithms 61

Table 2.5: Operationalization of Conceptual Framework‘s concepts 62

Table 3.1: Taxonomy of research methods (Bolan & Mende, 2004) 68

Table 3.2a: Characterization of research objectives (adapted from Shaw (2002)) 70

Table 3.2c: Criteria for literature search 73

Table 3.2d: Characterization of research survey design 75

Table 3.2e: Characterization of experimental design (adapted from Pfleeger (1995)) 76

Table 3.4: Computing the Content knowledge Index 83

Table 3.5: Computing the Cognitive Skills Index 84

Table 3.6: Computing the Technical Skills Index 84

Table 3.7: Computing the Academic Capacity Index 85

Table 3.8: Employee data variables description 85

Table 3.9: Exam past paper data variables description 86

Table 3.10: Firm data variables description 86

Table 3.11: Role categories‘ minimum and maximum index values 88

Table 3.5.2a: Description of the Benchmark dataset 97

Table 3.5.2b: Characteristics of Employees Questionnaire 98

Table 3.12: Computing Content Knowledge Index for the case study 98

Table 3.13: Computing Cognitive Skills Index for the case study 99

Table 3.14: Computing Technical Skills Index for the case study 99

Table 3.15: Computing Academic Capacity Index for the case study 99

Table 3.5.2c: Characteristics of Exams Past Papers Questionnaire 100

Table 3.5.2d: Two way classification of independent variables 101

Table 3.6: Operationalization of research methodology 121

Table 4.1.1a: Demographic characteristics of exam past papers sample 122

Table 4.1.1b: Demographic characteristics of employees‘ sample 123

Table 4.1.3: Prevalence of competences in each industry role 124

Table 4.1.4a: Rotated component matrix for principle component analysis 125

 xv

Table 4.1.4b: Index values for various industry roles 126

Table 4.1.5a: Test of data validity 131

Table 4.1.5b: Tests of hypotheses results 132

Table 4.1.5c: Hypotheses decision results 132

Table 4.1.6: Summary of trending industry roles in the academia 134

Table 4.2.4: Demographic characteristics of experiment datasets 136

Table 4.2.5: Distribution of class instances in the datasets 137

Table 4.2.6.1a: Model building experiments‘ design 138

Table 4.2.6.1b: Analysis of relevant features in SE Benchmark dataset 141

Table 4.2.6.1c: Model performance (effect of selected features) in SE Benchmark dataset 142

Table 4.2.6.1d: ANOVA results (effect of selected features) in SE Benchmark dataset 142

Table 4.2.6.2a: Analysis of relevant parameter values in SE Benchmark dataset 143

Table 4.2.6.2b: Model performance (effect of selected parameter values) in Benchmark data . 144

Table 4.2.6.2c: ANOVA results (effect of selected parameter values) in SE field data 145

Table 4.2.6.3a: 10 iterations of 5-fold cross validation tests in SE Benchmark dataset 146

Table 4.2.6.3b: Paired Sample T Tests for Model Selection in SE Benchmark dataset 147

Table 4.2.6.4a: Analysis of relevant parameter values in SE benchmark dataset 148

Table 4.2.6.4b: Model performance (effect of selected parameters) in SE benchmark dataset . 148

Table 4.2.6.4c: ANOVA results (effect of selected parameter values) in SE benchmark data ... 149

Table 4.2.6.5a: 10 iterations of 5-fold cross validation tests in SE benchmark dataset 150

Table 4.2.6.5b: Paired Sample T Tests for Model Selection in SE benchmark dataset 151

Table 4.3a: Method followed to answer research question 1 154

Table 4.3b: Method followed to answer research question 2 155

Table 4.3c: Method followed to answer research question 3 156

Table 5.1: Detailed description of database model‘s tables 166

Table 5.2: Original set of the SE field dataset attributes 167

Table 5.3: Model design and implementation summary 182

Table 6.1: Evaluation Experiment design 188

Table 6.2.1a: Class distribution of test set for SE field dataset 189

Table 6.2.1b: Paired Sample T Tests for Model Selection using SE field dataset 190

Table 6.2.2a: Class distribution of test set for SE benchmark dataset 191

 xvi

Table 6.2.2b: Paired Sample T Tests for Model Selection using SE benchmark dataset 193

Table 6.2.3a: Model performance evaluation using Academic Librarians (AL) dataset 194

Table 6.2.3b: Analysis of relevant features in AL field dataset 195

Table 6.2.3c: Class distribution of test set for AL field dataset 196

Table 6.3a: Comparison of performance across three dataset 197

Table 6.3b: Comparison of performance along hierarchical levels across three dataset 197

Table 6.3c: Comparison of performance across other models in literature 198

Table 6.4: Comparison of performance measures across two cases in the study 200

Table 6.5: Method followed to answer research question 4 201

Table 6.6.1b: Description of Typical Situation in each Case study 204

Table 7.1a: Summary of analysis of theoretical knowledge impact 219

 xvii

List of Figures Page

Figure 1.1: Skills mapping using flat classifiers and Hierarchical classifiers 10

Figure 2.1: Training evaluation stages .. 43

Figure 2.2: CRESST model for learning (Baker & Mayer (1999) .. 44

Figure 2.3: Learning outcomes as per Kraiger et al (1993). ... 47

Figure 2.4: Cognitive levels (competence skills level) as per Bloom et al (1956) 48

Figure 2.5: Deriving variables of the proposed mapping model from Kraiger‘s

conceptual model (Kraiger et al, 1993). .. 50

Figure 2.6: The conceptual framework for the proposed mapping model 51

Figure 2.7a: Organization Structures for Industry Roles (Malone, 2011) 52

Figure 2.7b: Tree and DAG structures .. 53

Figure 2.8: Bottom-up friendly taxonomic structure .. 56

Figure 2.9a: Machine Learning Architecture for the Model ... 58

Figure 2.9b: Machine Learning Architecture for the Model Objects .. 59

Figure 2.9c: Development of conceptual model ... 62

Figure 3.1: Research Framework (as adapted from Guruler and Istanbullu, 2014) 78

Figure 3.5.1: Understanding problem domain .. 91

Figure 3.5.2a: Data Collection .. 93

Figure 3.5.2b: Benchmark Dataset .. 97

Figure 3.5.3a: Branch mapping framework .. 107

Figure 3.5.3b: Instances Mapping framework .. 108

Figure 3.5.3c: Selecting Meaningful Features .. 109

Figure 3.5.4a: Workflow Framework for Predictive Modeling using Machine Learning

 (adapted from Raschka, 2015) ... 113

Figure 3.5.4b: Design architecture .. 114

Figure 3.5.4c: Algorithm Optimization through Validation Curve ... 116

Figure 3.5.4d: Model Validation & Evaluation (adapted from Clare & King, 2003) 117

Figure 3.5.4e: Splitting Dataset ... 118

Figure 4.1.2: Industry roles for software engineers .. 123

Figure 4.1.3: Role performance for software engineers industry roles 124

Figure 4.1.4a: Average software requirements knowledge content required for each

 xviii

industry role ... 127

Figure 4.1.4b: Average software configuration knowledge content required for each

industry role ... 127

Figure 4.1.4c: Average software quality knowledge content required for each

industry role ... 127

Figure 4.1.4d: Average content knowledge for each industry role ... 127

Figure 4.1.4e: concept application skill required for each industry role 127

Figure 4.1.4f: concept understanding skill required for each industry role 128

Figure 4.1.4g: concept judgment skill required for each industry role 128

Figure 4.1.4h: Average cognitive skill index for each industry role ... 128

Figure 4.1.4i: Average technical skill required to perform each industry role 129

Figure 4.1.4j: Average intellectual capacity required to perform each industry role 130

Figure 4.1.4k: Average technical skill index required for each industry role 130

Figure 4.1.4l: Average academic capacity index for each industry role 130

Figure 4.1.6a: Content knowledge index derived from academia ... 133

Figure 4.1.6b: Cognitive skills index derived from academia .. 133

Figure 4.1.6c: Comparison of average content knowledge index of academia and industry role133

Figure 4.1.6d: Comparison of average cognitive skills index of academia and industry role 134

Figure 4.2.1: Taxonomy for Software Engineers industry roles ... 135

Figure 4.2.2: Taxonomy for Academic Librarians Industry roles ... 136

Figure 4.2.6.1a: Logistic Regression (LR) algorithm run results in SE Benchmark dataset 139

Figure 4.2.6.1b: K-Nearest Neighbor (KNN) algorithm run results in Benchmark dataset 139

Figure 4.2.6.1c: Support Vector Machines (SVC) algorithm run results in Benchmark dataset 139

Figure 4.2.6.1d: Sequential backward selection of features (LR, KNN, SVC) using SE 141

Figure 4.2.6.1e: Selection of features using our model in SE Benchmark dataset 144

Figure 4.2.6.2: Validation curve for SVM model using SE Benchmark dataset 144

Figure 4.2.6.3a: Learning curves for naiveBayes and SVM models in SE Benchmark dataset . 145

Figure 4.2.6.4: Validation curve for SVM model using SE Field dataset 148

Figure 4.2.6.5a: Learning curves for naiveBayes and SVM models in SE Field dataset 150

Figure 5.1: Incremental model adapted from (Pressman, 2001) ... 159

Figure 5.2: Use case model ... 161

 xix

Figure 5.3: Class model ... 162

Figure 5.3b: Wireframe for the prototype design .. 163

Figure 5.4: Architectural design model for the prototype ... 164

Figure 5.5: Components of the data source subsystem ... 164

Figure 5.6: Database model ... 165

Figure 5.7: Design model for machine learning subsystem .. 168

Figure 5.7a: Fit method‘s algorithm .. 169

Figure 5.7b: Predict method‘s algorithm ... 170

Figure 5.8: Design model for dashboard subsystem ... 171

Figure 5.9: Design model for user interfaces .. 171

Figure 5.10: Welcome screen for the prototype implementation .. 172

Figure 5.11: Database class code segment .. 173

Figure 5.12: Role class code segment ... 174

Figure 5.13: ML Algorithm class code segment (SVM) ... 175

Figure 5.14a: Model class store method code segment ... 176

Figure 5.14b: Model class retrieve method code segment .. 176

Figure 5.15a: GUI class code segment .. 177

Figure 5.15b: Employer user interface screen ... 178

Figure 5.15c: Institution user interface screen .. 178

Figure 5.15d: Graduate user interface screen .. 179

Figure 5.15e: Training and model selection user interface screen .. 180

Figure 5.15f: Prediction results user interface screen ... 180

Figure 6.2.1a: Confusion matrices for naiveBayes and SVM models for SE field dataset 189

Figure 6.2.1b: Bar graph comparative analysis of two model versions in SE field dataset 189

Figure 6.2.1c: Class performance accuracies for selected model in SE field dataset 190

Figure 6.2.2a: Confusion matrices for naiveBayes and SVM models for SE Benchmark data .. 192

Figure 6.2.2b: Bar graph comparative analysis of two model versions in SE benchmark data .. 192

Figure 6.2.2c: Class performance accuracies for selected model in SE benchmark dataset 193

Figure 6.2.3a: Learning performance behavior of selected model in AL field dataset 195

Figure 6.2.3b: Class performance accuracies for selected model in AL benchmark dataset 196

Figure 7.2: Analysis of contribution to knowledge ... 218

 xx

List of Abbreviations and Acronyms

AI Artificial Intelligence

AL Academic Librarians

ANN Artificial Neural Network

DBMS Database Management Systems

e-CF European e-Competence Framework

CRESST Center for Research on Evaluation, Standards, and Student Testing

GPA Grade Point Average

HKCS Hong Kong Computer Society

ICT Information and Communication Technology

IDC International Data Corporation

IS Information Systems

IST Innovation Science & Technology

IT Information Technology

ITCA Industry Training Advisory Committee

LTU Long Term Unemployment

LR Logistic Regression

NAS National Academy of Sciences

OECD Organization for Economic Co-operation and Development

SE Software Engineering

SWEBOK Software Engineering Body of Knowledge

 xxi

Definitions of Terms

Competence

This refers to a proven ability to use or apply knowledge, skills and attitudes for achieving

observable results in a work or study situations.

Knowledge

This refers to a body of facts, principles, theories and practices that is related to a field of work or

study which is assimilated through learning or training.

Learning outcomes

These are statements of what a learner knows, understands and is able to do on completion of a

learning process, which are defined in terms of knowledge, skills and competence.

Qualification

It is a formal outcome of an assessment and validation process which is obtained when a competent

body determines that an individual has achieved learning outcomes to given standards. It is a

standard declaring the amount of learning outcome achieved by a learner.

Industry Role

It is a job title in an industry occupation.

Skills

This is the ability to apply knowledge and use know-how to complete tasks and solve problems.

Skills are described as cognitive (involving the use of logical, intuitive and creative thinking) or

practical (involving manual dexterity and the use of methods, materials, tools and instruments)

Skills Mapping

This is a mechanism for matching a set of related skills with known industry roles for the purpose of

prediction. This process links industry jobs with highly skilled workforce and involves use of

analytical methods, such as machine learning, to determine graduate‘s right match of knowledge,

skills and their levels for performing jobs efficiently.

 1

CHAPTER 1: INTRODUCTION

1.1 Background to the Study

International Labor Organization Global Employment Trends (2015) indicate rapid growth of Long

Term Unemployment (LTU) which is as a result of increased unemployment rate currently standing

at 13 per cent, originally at 5.6 and 6.2 per cent in 2007 and 2010 respectively (Jantawan & Tsai,

2013). In Europe, number of unemployed persons went up from 30.6 million in 2007 to 47 million in

2010, while LTU went up from 8.5 million to 14.9 million in the same period (Junankar, 2011).

These correspond to an increment ratio of 1.5359 and 1.7529 respectively.

Empirical studies indicate that unemployment problem relates to either workers unable to match their

skills to requirements of advertised jobs (Kaminchia, 2014), or employers unable to find workers

with important skills, especially both before and after economic recession of 2008 to 2010. Large

companies have the highest trouble (30% before and 25% after recession), than smaller companies

(19% before and 17% before recession) (Perron, 2011).

In Kenya, the number of unemployed persons increased from 1.8 million in 1998/99 to 1.9 million in

2005/2009 (Kaminchia, 2014). Empirical studies indicate that unemployment problem relates to

workers unable to match their skills to the requirements of advertised jobs (Kaminchia, 2014). This

situation has posed serious psychological and socio-economic challenges to the unemployed persons

including loss of skills through human capital depreciation, loss of motivation, self-respect and

dignity, and finally leading to poverty, terrorism, riots, divorce, illness and death (Kaminchia, 2014).

According to McCowan et al. (2016), the economic survey of 2014 in the Republic of Kenya

indicates the youth (15-35 years) who form 35% of Kenyan population have the highest

unemployment rate of 67%.

However, LTU wouldn‘t be a trouble if characteristics of each kind of job, level of education and

skills, and experience were precisely known by the new graduates; if search strategies followed by

graduates improved search intensity and efficiency; if matching the characteristics employers sought

against characteristics of applicants was made possible to predict suitability for employment much

earlier before the applicants faced the employer and before duration of unemployment was used as a

signal of quality of work productivity. Suitability for employment of skilled graduates in the industry

is a challenge not only because of the effect of LTU, but due to increased skills variation among both

graduates and industry roles, emanating from the industry academia gap (Quintin, 2011).

 2

For instance, employers often describe their staffing requirements in terms of job profiles and/or

competences while academia expresses the characteristics of their graduates through certifications

and qualifications. Although creation of job profiles and the concept of competence are ways of

communicating the knowledge and skills characteristics required by industry (CWA16458, 2012) to

stakeholders and specifically academia, Aggarwal et al. (2015) indicates that mapping graduates‘

skills to job profiles is not easy

In the academia, education and training are key activities that ensure supply of qualified practitioners

in the industry (Show, 2000; Shkoukani, 2013a). However, many education and training providers in

the academia have certifications that lack transparency in content (Korte et al., 2013) and have

resulted not only to increased qualifications mismatch but also skill variations between individuals

with same qualifications (Quintin, 2011). This has been evidenced by revelation of recent studies

(Cihan & Kalipsiz, 2014; Shkoukani, 2013b; Cope et al., 2000) that employers are not satisfied with

knowledge and skills of new graduates. In fact, there is an obvious difference between the industry

needs and the actual supply from the academia hence causing a mismatch gap between academia and

industry (Tamayko, 1998, Shkoukani, 2013a).

1.1.1. Causes of the Gap between Academia and Industry

The issues causing industry-academia gap have been studied widely with an obvious aim of sending

a strong signal of warning to academia and these issues have ranged from curriculum to assessment.

1) Curriculum Issues

There are three types of curriculum: planned, delivered, and experienced curricula (Kenny &

Desmarais, 2010). Planned curriculum refers to what is intended or planned for the learner while

delivered curriculum refers to what is taught by the teacher to the learner and experienced curriculum

consists of what is learned or experienced by the learner during or after learning. According to

Kenny & Desmarais (2010), the three types of curricula are layered. Planned curriculum, which is at

the lower level, affects the delivered curriculum, while delivered curriculum, which is in the second

level, affects the experienced curriculum. Since planned curriculum is the foundation for the other

two and experienced curriculum is the product, then the gaps in planned curriculum affects the

experienced curriculum causing the industry to raise alarm.

Recent studies (Moreno et al., 2012) suggest there are mismatch gaps between defacto curriculum

and the knowledge expected by the industry. McCowan et al. (2016) have associated all this with

 3

decline of funding in public universities by the government hence forcing universities to cut cost by

focusing on less expense aspects of curricula. As a result, academic curricula are mostly theory

based, heavily governed by knowledge components and rarely include problem solving skills, best

practices, interpersonal skills, and leadership skills (Lee & Han, 2008; Kichenham et al., 2005).

According to McCowan et al. (2016), universities are forced to focus less expense areas such as

theoretical aspects, knowledge aspects (factual, conceptual and procedural) and very little on

expensive aspects such as practical skills.

Besides, Moreno et al. (2012) revealed that some topics in the domain body of knowledge are totally

ignored. This is in agreement with previous studies (Lethbridge et al, 2007; Gargi & Varma, 2008)

that cited the same views. Higher order cognitive skills such as application, analysis and evaluation

which are important for problem solving are rarely part of the curriculum.

Many similar undergraduate degree programs curricula in different universities have different

emphasis on domain content knowledge and skills. For example, a survey conducted in 1998 shows

that there are over 77 graduate software engineering programs all over the world each with different

career and content emphasis for SE skills (Shaw, 2000). Or, even some undergraduate programs

contain more than one domain skills in one curriculum, such as in computer science where most

undergraduate SE education is enshrined within computer science degree programs as SE course and

related SE courses (Cihan & Kalipsiz, 2014).

2) Pedagogy issues

The traditional lecture-based teaching method and large classroom enrollments are not effective for

teaching. Lecture-based teaching method is only suitable for imparting theoretical knowledge hence

denying learner‘s application of knowledge and skills through practical training (Shaw, 2000). The

lecture-based model has been shown by Jackson and Posser (1989) as cited by Cope et al (2000) to

be effective in transferring knowledge from lecturer to students but ineffective in promoting

conceptual understanding. According to Gargi & Varma (2008), large number of students enrolled in

each class is too high for effective classroom teaching. McCowan et al. (2016) observes low quality

of training as a result of this.

While some topics are prescribed very little time, others are taught in more depth than required in the

industrial practice (Lethbridge et al., 2000; Kichenham et al 2005; Surakka, 2007). Further, there is a

complain of inadequate time to cover the curriculum as provided by the domain‘s body of

 4

knowledge. For example, according to Gargi & Varma (2008), SE course is often taught as a one

semester course in most computer science programs of which it means 2-3 hours of teaching per

week for about 14-16 weeks.

3) Resource related issues

The resources available in many institutions are not sufficient to model quality professionals as per

the industry requirements. Poor educational infrastructure such as under-equipped computer labs

denies students practical exposure. Findings of a study carried out by Shkoukani (2013b) in Indian

Universities reveals that there are no well equipped laboratories, adequate tools and software

development experienced teachers towards producing well qualified SE graduate (Shkoukani,

2013b). Bondesson (2004) observes lack of qualified teachers resulting to professional experience

limiting learners to theoretical aspects only (Bondesson, 2004).

4) Assessment issues

Assessments, especially in projects, are not done effectively to provide sufficient evaluation of the

learners‘ skills capacity or learning outcomes or to check if students used practices, tools or

techniques appropriately. Sometimes, projects assigned to students are not assessed throughout each

step but at the end during presentation hence giving a grade that merely reflects presentation alone

(Shkoukani, 2013a, 2013b). Besides, since there is a one or two semester gap between attending the

training of the course and applying the training skills in the project, the learners are likely to forget

the knowledge.

Also, most projects are academic in nature and do not represent the issues of scale and complexity of

real world and are very poor in soft skills. For instance, findings in a study by Cihan & Kalipsiz

(2014) reveals that soft skills are more important than hard skills for the success of projects, and

therefore, there is close relationship between success of projects and soft skills.

5) Industry issues

There are rapid changes in the industry resulting in a growing demand for both professionals and

products especially in the ICT sector. However, Ellis et al. (2002) note that the number of

professionals is not growing at the rate equal to the growth rate of industry demand. For instance, in

the ICT sector, the few software engineers available do not meet the SE industry needs (Kolding &

 5

Ahorlon, 2009); while Moreno et al., (2012) observe that the newly graduated software engineers

have a problem of matching the industry skill profiles.

6) New observations

In the modern age, matching of skills to industry roles could be achieved using information

technologies. However, the current study has observed little efforts towards use of appropriate

methods and as a result causing the industry academia gap.

1.1.2. Effects of the Industry-Academia gap

1) Effect of curriculum issues on graduates

The curriculum issues described above have resulted into a pool of graduates with diverse domain

skills. Their diversity is around a number of attributes with different levels that determine their skills

(Norwood & Briggeman, 2010) such as depth of understanding, level of skill competence or problem

solving skills, general capabilities of the student, etc. (Shaw, 2000; Shkoukani, 2013a). These

variations have rendered graduates a challenge in matching their domain skills with the existing

industry needs (Shkoukani, 2013a). Determining which roles they are likely to fit in the industry

based on their skills is not easy. There is significant amount of diversity among graduates and among

industry jobs (Norwood & Briggeman, 2010). Although Show (2000) recommends that education

and training should prepare student differently for different industry roles, it is expensive.

2) Effect of industry issues on industry practitioners

In order to cope with challenges of evolving industry sector, many companies have structured their

needs into a number of professional roles. The job descriptions of these roles capture the

requirements relevant to their industry needs (HKCS, 2011). For example, evolving SE industry

produces new applications that must have new SE requirements of being autonomous, extensible,

flexible, robust, reliable and capable of being remotely monitored and controlled. According to

Shkoukani & Lail (2012), this demands new SE approaches whose nature is different from that of

classical approaches. This leads to new SE roles with new competences which are significantly

different from those of classical SE.

These variations of industry needs into diverse professional roles have rendered industry a challenge

in matching their requirements with the available graduate skills (Shkoukani, 2013a). Determining

whether a graduate has the skills level relevantly needed by a given company is not easy due to the

 6

diverse skills of these graduates. Furthermore, graduates possessions of these skills are not directly

observable (Norwood & Briggeman, 2010).

1.1.3. Towards bridging the gap

There is need to bridge the gap between industry and academia. Thompson et al. (2007) observe that

academia Industry interaction is vital to bridging the gap through partnership in research projects and

curriculum development and review. This can lead to production of skillful graduates compatible

with industry requirements. However, employers in the industry describe and communicate their

staffing requirements in terms of job profiles and/or competences, while academia communicates the

skills and knowledge characteristics of their graduates in terms of certifications and qualifications

(CWA16458, 2012). This communication breakdown has possibly led to a mismatch between skills

possessed by graduates and skills required by the industry (Quintin, 2011).

Besides, there are many institutions providing undergraduate degree programs with similar names

leading to certifications that are different or similar, but producing graduates with different

qualifications or competences. According to Korte et al., (2013), this is as a result of either or both

lack of transparency in the content of different courses or different entry points for new students in

different training institutions. Ideally, individuals with the same certification and qualifications

should portray same level of competence. However, this cannot be guaranteed because individuals

differ in the ability to acquire knowledge and skills (Quintin, 2011; Plant & Hammond, 2004;

Kraiger et al., 1993) leading to differences between individuals in skill levels and types they possess

(Handel, 2012).

To acquire knowledge and skills, intellectual abilities are essential prerequisites that are needed

(Winterton et al., 2005). While academia provides this knowledge and skills through training, there

is no direct control on the amounts the learner finally acquires or transfers apart from the learner‘s

abilities (Handel, 2012). Though studies have also shown there are other factors that influence the

acquisition and transfer of knowledge and skills including academic staff capability, infrastructure,

domain course content, specific requirements, etc (Shkoukani, 2013a), which is clearly evidenced in

individuals with same qualifications but have varied competences (Quintin, 2011). Consequently,

there is a challenge to employers in screening through the qualification mix of many individuals with

similar qualifications (Quintin, 2011; Korte et al., 2013) for the required skills needed for the jobs

during recruitment.

 7

According to Thompson et al. (2007), the industry has a picture of the knowledge, skills and abilities

that a new graduate should possess for each role, and these are the skills that employers seek from

graduates, like problem solving skills, communication skills, leadership skills, ability to work well

with others etc (Griffin, 2008; Sutherland et al., 2009; Norwood & Briggeman, 2010). Although

many studies have singled out problem solving as one of the key skills that employers seek (NACE,

2006; Hansen & Hansen, 2007, Texas A & M, 2007), there is little research about how this skill is

assessed (Norwood & Briggeman, 2010). The signals employers use to measure graduates for

problem solving skills like performance in interviews, previous leadership positions and internship,

are not ideal for measuring problem solving skills (Norwood & Briggeman, 2010).

Problem solving is a cognitive process that includes goal-oriented thinking and involves the use of

previously acquired knowledge, skills and understanding to meet the demands of an unfamiliar

situation (Krulik & Rudnik, 1996; Baker & Mayer, 1999; Orhun, 2003; Wirth & Klieme, 2011).

Research findings indicate that knowledge and skills acquired during class lectures are the most

important variables that increase performance in problem solving skills (Robertson, 1990; Orhun,

2003). Further, the thresholds and certification levels for these skills vary differently for different

domain roles in the industry (Shkoukani & Lail, 2012; Korte et al, 2013) but the precise levels and

kind of skills demanded by each role are poorly understood (Handel, 2012).

There is a challenge in assessing problem solving competence in the traditional classroom education

and training where evaluation is limited only to the learning objectives. More often, classroom

grades are used to indicate knowledge and skills acquired in class lectures hence signal problem

solving skills. However, grades alone are not sufficient to indicate problem solving skills due to

issues in section 1.1.1 of this chapter. Furthermore, there is a significant variation in grading from

grader to grader (Srikant & Aggarwal, 2014).

Although, apart from classroom, there are other forms of education and training such as online, self

study, and on job training (CWA16458, 2012), still the challenge remains, and most often there are

three issues in problem solving competence assessment which Baker & Mayer (1999) characterize as

follows: what to test (product or process?), how to test (routine or non-routine problems?), where to

test (separate skills in isolated situation or integrated skills in authentic context situation?). For

example, education for software engineers is confounded with education for other non-software

engineers (Show, 2000).

 8

Problem solving competence is multidimensional (Wirth & Klieme, 2011), and consists of at least

two aspects: analytic and dynamic. Analytic aspect of problem solving competence is strongly

related to intelligence while dynamic aspect is neither related to intelligence nor school-related

literacy. Moreover, problem solving competence is more of knowledge transfer than retention, more

of meaningful learning than rote learning, and more of qualitative learning than quantitative learning

(Baker & Mayer, 1999; Wirth & Klieme, 2011). Therefore, evaluation of problem solving

competence requires assessment methods that are not only valid and efficient (Mayer, 2002; Kraiger

et al., 1993) but also cognitive, skill-based and affective.

Evaluation of problem solving competence should not be done quantitatively in the traditional

classroom way because of its multidimensionality nature, but instead qualitatively relative to

industry roles‘ competences. Dimensions for problem solving competence should be used as signals

for problem solving skills that employers should use for different industry roles and they should be

founded on strong cognitive abilities that enable them to adapt in case of unexpected changes or

problems (Plant & Hammond, 2004). The scales for these dimensions should be derived from the

respective industry roles requirements.

While employers seek insight on current and future personnel needs, job seekers, parents, and

students seek to not only know which job prospects look favorable but also understand the

requirements in terms of education, training and other characteristics (Handel, 2012). Besides, with

ever increasing unemployment trends in the world and decreasing capacity of most economies to

create employment opportunities, employability of young and productive graduates from universities

is at threat of LTU if something is not done to reverse the trend.

Likewise, with ever increasing pool of qualification mix of new graduates from universities each

year, employers are at risk of not only taking longer to search the pool but also selecting graduates

whose skills do not match their needs. Conventionally, Bharthvajan (2013) has observed that

employers select employees with the right match to efficiently perform jobs based on qualifications

before they interview them. However, the relationship of this technique to selection of employees

with adequate performance is not even 10% correct (Bharthvajan, 2013).

As an alternative, many employers have converted to skills mapping. Skills mapping is a mechanism

that links highly skilled graduates with industry jobs. This involves use of analytical methods to

determine graduate‘s right match of knowledge, skills and their levels for performing jobs

efficiently. Analytical methods in skills mapping are vital in ensuring high performance of highly

 9

skilled workforce from academia in the industry jobs. Computationally, skills mapping problem

could be viewed as a pattern recognition problem where evaluation of such problems using

technology is the essence of Artificial Intelligence (AI).

In AI, such problems are tackled using two broad approaches, either searching techniques or

modeling techniques. Searching techniques involve applying a process with search conditions to look

for the solution of the problem through a set of possibilities, where solution is a path from current

state to goal state. Modeling techniques involve creating a general model to represent the natural

phenomena then using either knowledge based systems or data driven methods such as machine

learning (ML) techniques to estimate or learn unknown parameters of the model. Due to wide

availability of data globally, data driven methods, such as ML techniques, are gaining traction.

ML is one of the major branches of Artificial Intelligence (AI) that is concerned with designing

programs (ML algorithms) that attempt to make computers behave intelligently by being able to

sense, remember, learn, and recognize patterns (Leeuwen, 2004). Currently, major areas of ML

research include speech recognition, computer vision, bio-surveillance, robotic control, and data

mining. The first three are concerned with pattern recognition, while the last two relate to adapting

based on self-collected data and knowledge discovery respectively. The current study relates to the

area of pattern recognition but in the focused area of skills mapping to industry roles.

Pattern recognition, according to Basu et al. (2010), is the study of how machines can observe the

environment, learn to distinguish patterns of interest in their background, and make reasonable

decisions about the categories of patterns. The pattern recognition problem is posed as a

classification task where the classes are either predefined or are learned based on similarities of

patterns. To solve such kind of problems a suitable classification method and algorithm to learn the

classifier are needed. This study relates to pattern recognition where classes are predefined as

industry roles. As a result, skills mapping problem can be viewed computationally as a pattern

recognition problem where a feature space of diverse skills graduates requires a classifier to map to a

set of possible classes of industry roles.

Recently, research on skills mapping using ML techniques has been active as observed in the works

of Chien & Chen (2008) in mapping demographic profile of employees to retention and performance

in the job; Jantawan & Tsai (2013) in mapping demographic profile of employees to employment

status; Korte et al. (2013) in mapping certification knowledge and skills content to industry roles;

Srikart & Aggarwal (2014) in mapping programming skills of an employee to software developer‘s

 10

ability to solve problems; Shashidhar et al. (2015) in mapping skills to SE industry roles. This is as a

result of wide availability of data globally where data driven methods are gaining traction. Figure 1.1

illustrates skills mapping using classifiers.

Figure 1.1: Skills mapping using flat classifiers and hierarchical classifiers (adapted from

Chien & Chen, 2008; KIM, 2009)

However, there seems to be a broad way of establishing ML attributes where some are not relevant

either to industry roles performance or across occupational industry domains. Besides, there seems to

be two lines of thought for skills mapping (Chien & Chen, 2008; Jantawan & Tsai, 2013; Korte et

al., 2013; Shashidhar et al., 2015), classification or regression. There is need to make clear which

one is relevant. Classification is where job performance skills are classified into various known finite

range of industry roles‘ classes before skills of graduate are matched with these classes. This process

results to matching graduate‘s skills to only known and finite industry roles.

Regression is where skills thresholds for various industry roles are predefined on a continuous scale

before skills a graduate possesses are determined whether they meet the thresholds of various roles

(Srikart & Aggarwal, 2014). This process results in matching of graduate‘s skills to infinite number

of industry roles, both known and unknown. Due to the need to assist graduates and employers match

correctly skills to available and known industry roles and predict job suitability or performance

capability, classification approach seemed as the only approach that was viable to achieve this goal

because of: 1) its ability to produce known class label predictions, and 2) its state of the art

classification models that improve accuracy of results.

However, existing ML classification models for skills mapping are based on flat classifiers, despite

possibility of underlying structure of industry roles being hierarchical as observed in organizational

structures. Flat classifiers are classification models whose underlying structure of target classes

ignore relationships between classes and predict only leaf classes. Apart from their inability to

 11

handle non-mandatory leaf class prediction problems, either they commit more serious errors or are

not as accurate as hierarchical classifiers (Silla & Freitas, 2011; Merschmann & Freitas, 2013).

On the other hand, Wu et al., (2005) note that hierarchical classifiers are designed for classification

problems whose classes are naturally organized in a hierarchically structured class taxonomy. Two

types of underlying ML structures used for hierarchical ML are top-down and Directed-Acyclic

Graph (DAG) trees. Unlike flat, hierarchical classifiers are flexible in representing underlying

structure of the problem and hence likely to achieve better accuracy levels. Despite these benefits,

they have not been applied in skills mapping to industry roles. However, in other domains where

they have been applied, underlying ML structure of classes not only contradicts underlying structure

of the problem but also the results have been subject to multiple class labels problem hence may not

be reliable.

Consequently, the real challenge in skills mapping is how to map graduates‘ skills to underlying

hierarchical structure of industry roles as reflected by the four types of structures used to organize

industry roles, namely functional, geographical, product, and matrix (Malone, 2011). Analysis of

these four organization structures against the two ML structures (trees) available for hierarchical ML

revealed no tree could be used to describe all four organization structures at once. Ideally, top-down

tree is suited well for only functional, geographic, and product structures while DAG tree is suited

well for only matrix structure. So, we do not know a ML methodology that maps skills to a

hierarchical tree that correctly reflects the hierarchy of industry roles.

1.2 Statement of the Problem

The problem of mapping graduates‘ skills to industry roles using machine learning techniques has

remained a challenge due to both non-relevant attributes and lack of appropriate machine learning

structure that correctly reflects the hierarchy of industry roles. This situation may cause poor

matching of graduates‘ skills to industry roles and possibly lead to a mismatch problem. The

mismatch problem has negative impact not only to graduates of low job satisfaction but also to

employers of high employee turnover and low productivity.

Despite rapid development in information technologies, a practical way of mapping graduates‘ skills

to industry roles is a challenge. This is evidenced by large number of graduates holding jobs that do

not make best use of their skills, 70% in Sub Saharan Africa; 35% in Europe (ILO, 2015). Although

attempts have been made by posing this as a multi- classification problem and solving using machine

 12

learning techniques, existing approaches use both a broad range of non-relevant attributes that are

industry domain dependent and flat classifiers whose classification methodology does not correctly

reflect the hierarchy of industry roles (Srikat & Aggarwal, 2014; Shashidhar et al., 2015), and hence,

their results (82% and 60% respectively) may not be reliable.

Currently, flat classifiers used for skills mapping either may not be accurate or commit more serious

errors than their hierarchical counterparts. Hence, exposing not only graduates to a threat of low job

satisfaction but also employers to the risk of low productivity and high employee turnover. Although

hierarchical classifiers are more accurate than flat classifiers, they have not been used in skills

mapping. However, in other domains where they have been used, the underlying machines learning

structure contradicts the underlying structure of the problem, and have often resulted in possibly

unreliable results.

Therefore, we do not know an effective machine learning model with relevant attributes that maps

graduates‘ skills to industry roles and that correctly reflects the hierarchy of industry roles. Our main

challenge is, therefore, to develop a machine learning model with both relevant attributes and

underlying machine learning structure that correctly matches the hierarchy of industry roles. The

skills mapping model will benefit not only graduates by providing both feedback on job suitability

and credentials to signal employability but also employers by providing an easy way to filter

candidates before interviews.

1.3 Objectives

1.3.1. General Objective

To build a data driven model using machine learning for mapping graduates‘ skills to hierarchically

structured industry roles.

1.3.2. Specific Objectives

1) To establish concepts appropriate as machine learning attributes for mapping graduates skills to

occupational industry roles

2) To establish structural characteristic of concepts that correctly reflect the hierarchy of industry

roles required as target classes for machine learning process

3) To build using these concepts an appropriate machine learning model that maps graduates‘ skills

to hierarchically structured industry roles

4) To evaluate the performance and validity of the machine learning mapping model

 13

1.4 Research Questions

1) What concepts are appropriate as machine learning attributes for mapping graduates‘ skills to

occupational industry roles?

2) What is the structural characteristic of concepts that correctly reflects the hierarchy of industry

roles required as target classes for machine learning purpose?

3) How do we build using these concepts an appropriate machine learning model for mapping

graduates‘ skills to hierarchically structured industry roles?

4) How do we evaluate performance and validity of the machine learning mapping model?

1.5 Scope

The study investigated the content of undergraduate training programs and industry roles‘

requirements in a given occupational domain. The undergraduate content related to domain

curriculum coverage, competence skills tested as reflected in the exams past papers and student

performance in domain related subjects. Industry role requirements related to job

descriptions/competence requirements for various categories of domain job titles. The research was

conducted in Kenya and a case of Software Engineering was used as an industry domain.

1.6 Significance of the study

The findings of this study are expected to benefit universities, industry, the government, and

students. This is in attempt to reduce both low job satisfaction and long term unemployment that is

one of the causes of social and economic pain both in Kenya and around the world. More

specifically, Universities and the government as stakeholders in education and training will get a

better understanding of the gap between the academia and industry and can use this information to

plan on how to bridge the gap using the mapping model.

On the other hand, the industry will benefit by getting evaluation tool for revealing information on

graduates‘ suitability for employment which they can use for decision making when filtering

candidates for interview. Finally, students will benefit by being able to get an insight on the industry

roles they are suitable at, hence empowering them to conduct informed search for jobs and lead to

the right job fix. Right job fix is the ultimate goal the researcher intends to achieve in order to lower

the risk of low job satisfaction, high employee turnover and low productivity.

The expected results of this study constitute a number of products that would contribute significantly

both in the world of knowledge and research. These include: 1) a conceptual model for tackling the

 14

problem of mapping graduates‘ skills to hierarchically structured industry roles, 2) a machine

learning model for predicting new graduates‘ suitability to industry roles, 3) a taxonomic structure

that is friendly to hierarchical classification methodology, 4) a framework for mapping industry roles

to hierarchically structured class taxonomy 5) machine learning datasets for experimenting

hierarchical classification algorithms, 6) a software prototype that can be used by both academia and

industry in assessing graduates‘ skills vis-à-vis industry roles during training and recruitment

respectively.

1.7 Assumptions of the study

The following assumptions were made in the study:

1) Entry level occupational industry roles have different requirements for skills proficiency levels

2) Content coverage in the exam paper directly reflects content coverage during training.

3) Questions model in the exam paper reflects competencies tested during training.

4) Student class performance in domain technical subjects reflects the level of competence

required to perform technical tasks.

1.8 Thesis Overview

The rest of this thesis is organized as follows: chapter 2 presents a detailed review of literature

focusing first on trends of knowledge and skills required by industry, then a mismatch gap between

industry and academia, followed by evaluation frameworks and methods of knowledge and skills

competences, then a review of machine learning and its relevance to automatic skills mapping, and

finally analysis of theoretical frameworks that form the basis for derivation of the conceptual model.

Chapter 3 outlines the research methodology adopted while chapter 4 presents modeling results and

findings. Chapter 5 presents the software methodology adopted in the design and implementation of

the software prototype of the proposed machine learning model. Chapter 6 presents both the

evaluation results and discussions of the evaluation findings while chapter 7 concludes by

highlighting not only the main contributions and limitations but also achievements of this study.

 15

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

Employment suitability of skilled graduates in the industry has become a challenge due to both

increased skills variation among graduates and among industry roles, and evidenced by the industry

academia mismatch gap. This chapter not only reviews background literature on knowledge and

skills trends in the industry and academia, the industry academia mismatch gap, evaluation of

graduates skills through mapping to industry roles, and machine learning techniques but also

examines how skills mapping problem can be viewed computationally as a pattern recognition

problem where Machine Learning (ML) can play an important role in addressing the challenge.

This chapter is organized as follows: Section 2.1 presents a review of knowledge and skills trends.

Section 2.2 reviews issues of industry academia gap. Section 2.3 provides a review of evaluation and

mapping of graduates‘ knowledge, skills, and competences, an introduction to ML classification

methods and algorithms, reviews the past, present, and proposed techniques. Section 2.4 & 2.5

review mapping models. Section 2.6 presents a synopsis of literature review. Section 2.7 outlines the

theoretical frameworks for skills evaluation. Section 2.8 concludes the chapter with a summary.

2.1 Trends

Although this section reviews trends in the industry with a special focus on Software Engineering

(SE), the researcher remains optimistic that same trends can be generalized in other domains. It is

equally important to note that the objective is to generally show how research studies are biased

towards skills trends in the industry at the expense of skills trends in the academia towards industry

roles and hence failing to effectively highlight the industry academia mismatch gap.

Globally, extensive research has been made in the area of ICT trends towards industry roles.

Houghton (2012) highlights these digital trends and attributes these exponential changes in industry

technology to the pressure exerted by industry roles‘ demand due to expansion in population,

improvements in human wealth and health, and climate change. The relationship between ICT trends

and demand to industry roles can be likened with the famous Moore‘s law, which predicted that the

number of transistors of an affordable C.P.U would double every two years, such that every time

population doubles so is the demand for industry roles and change in technology. In addition, Walter

(2005) highlights the Kryder‘s law that predicts doubling of hard drive storage space in every 1-2

years.

 16

However, according to Kanellos (2003) the current chip technology used on C.P.U and hard drives is

based on silicon technology which is now approaching the limit of physics of shrinking the size of

transistors on the chip. According to Kaku (2012), unless a new technology is developed to replace

the silicon technology then both the Moore‘s law and Kryder‘s law are going to collapse. Kaku cites

that a number of technologies to replace silicon have been proposed including nanotechnology which

will be used to produce protein computers, DNA computers, Optical computers, Molecular

computers and Quantum computers.

On the other hand, there is increasing criticality of software within systems and this has put an

increasing demand not only for software products but also manpower onto 21st century systems

(Boehm, 2005). According to Boehm (2005), systems and software engineering processes will

evolve significantly over the next decades in order to address the need to design and develop not

only software products but also industry roles that incorporate new technologies. He highlights the

following eight trends in SE industry: integration, usability, dependability, rapidity, connectivity,

interoperability, complexity, and autonomy. These trends predict a lot of job requirements changes

expected in the industry that academia should take into account when preparing graduates.

As a result, educational institutions are currently experiencing a lot of challenges to change the way

they educate software developers due to the way software evolves and is developed in the industry

(show, 2000). According to Show, education for software developers that is currently emphasizing

on content taught in the traditional way and inspired by closed-shop development model of software

has failed to produce the supply and quality of developers needed to satisfy the growing demand of

software. He underlines four key challenges facing educators for software developers which are:

education for software developers should prepare students differently for different roles, infuse a

stronger engineering attitude in curricula, help students stay current in the face of rapid change, and

establish credentials that accurately reflect ability.

To address these challenges, educators need to understand which skills are important for software

developers and their changing trends so that they can align their curricula accordingly. Surakka

(2005) analyzed the trends of job advertisements to find out the most common technical skills sought

in various software developers roles and identified five common skills for software developers:

platform skills, database skills, networking skills, distributed technology skills and programming

skills. According to Surakka, over the past 35 years the technical requirements for software

 17

developers have changed significantly, the number of required individual skills has increased and

duties of software developers have also changed.

There is little research evidence in Kenya (0 studies) and Africa (12 studies), (outside Africa (600

studies)) relating to graduates‘ destinations after university, interventions in universities to improve

employability and their effectiveness, and attributes that promote performance in the job (McCowan

et al., 2016). A lot of research is focused only on trends in the industry while trends in knowledge

and skills covered during training in the academia towards industry roles still remain unnoticed.

In conclusion, trends in the industry indicate significant evolution of technologies that demand strong

problem solving skills and, equally, evolution of skills requirements for professionals (Show, 2000;

Boehm, 2005; Surakka, 2005; Houghton, 2012). Long term trends have been towards jobs requiring

more education and cognitive skills, but the precise levels and kinds of skills are poorly understood

by graduates (Handel, 2012). Currently, there is no study that indicates the trend of problem solving

skills transferred to and acquired by graduates during training towards industry roles.

2.2 Industry Academia Gap

ILO (2015) reveals a large number of graduates holding jobs that do not make best use of their skills

(70% in Sub Saharan Africa; 35% in Europe). Therefore, this section reviews literature and studies

that have previously worked on the industry academia mismatch with a special focus on the methods

used or proposed to evaluate or bridge the gap. The aim is to propose an improved method for

bridging the mismatch gap that is more promising than previous methods.

A study by OECD (2012) reveals unemployment rate of ICT specialists all over the world was on a

gradual increase, with 2% in 2007 and 6% in 2010, 2012). IDC study in 2009 in 13 European Union

countries, observes that graduates are educated but not trained in the commercial world; they do not

have the latest and appropriate technology skills; they have a good foundation but do not have skills

for the market (Kolding & Ahorlon, 2009). Most of the graduates from school do not have skills for

technologies that are used or required in the industry.

Moreno et al. (2012) reveal that curricula in the academia do not deliver all or the minimum

knowledge and skills prescribed by the industry. They evaluated the relationship between SE

education and industry needs using career space report of 2001 as a source of industrial needs, while

SE2004 curriculum guideline for undergraduates and SE2009 curriculum guideline for graduates as a

source for SE education. They examined whether the two curricula provided knowledge that was

 18

useful for performing tasks identified by career space report that related to software and application

development, software architecture and design, and IT business consultancy. They observed that

neither of the curricula delivered the knowledge of all tasks, and therefore were some gaps in the

curricula. However, they did not indicate the minimum required by the industry.

Saiedian (2002) in his study, bridging academic education and industrial needs, observes key issues

that are identified by researchers as challenges between education and industry, and proposes to

bridge the mismatch gap through industry academia collaboration. Among these being reluctance of

education community to introduce component-based principles of templates, specification and

reasoning in introductory undergraduate classes either because they are too difficult for freshmen to

understand or they might displace other principles taught in introductory courses.

Shkoukani (2012) proposes a model to find the mismatch gap between academia and industry that

consists of three independent variables and one dependent variable. The dependent variable consists

of well qualified graduates, while independent variables include solid courses and resources

availability, academic staff capabilities and properties, and well equipped laboratories and adequate

tools. The findings indicate that there are no qualified SE graduates. Hence, there is a mismatch

between industry and academia. However, their study did not include student academic capabilities

as this also may equally contribute to graduate qualification.

Ludi & Collofello (2001) observe a mismatch between academic projects and industry prescribed

knowledge and skills for real projects. They analyzed the gap between the knowledge and skills

learned in projects and those required in real projects. Their technique involved mapping a SE

project course to SWEBOK content and Bloom‘s taxonomies‘ skills. The findings reveal, although

most of the SWEBOK topics are covered to some extent, there exist several gaps between the level

of knowledge expected from SWEBOK and the project course. However this study was limited to

project course which is only one source of SE skills.

We conclude that although many studies reveal there is a mismatch gap between academia and

industry, none has been able to show that one of the underlying causes of the gap is poor evaluation

of problem solving skills of graduates by the industry and academia (Ludi & Collofello, 2001;

Saiedian, 2002; Kolding & Ahorlon, 2009; Shkoukani, 2012; Moreno et al, 2012; OECD, 2012;

McCowan, 2016). Studies on evaluation of graduates‘ skills indicate problem solving skill is poorly

evaluated (Griffin, 2008; Sutherland et al., 2009; Norwood & Briggeman, 2010) hence causing

industry academia mismatch gap.

 19

Our attempt was to solve the mismatch problem between industry and academia through evaluating

and mapping not only content knowledge and skills gained during training, but also academic

capability of the student to learning, towards job performance competences. We also put great focus

on the industry minimum requirements of knowledge and skills to perform the industry roles.

2.3 Evaluation and Mapping of Graduate’s Knowledge, Skills, and Competences

The aim of this section is to highlight not only how graduate skills in the industry and academia are

evaluated, but also what kind of skills and competences that are evaluated and sought for by the

industry. This is import because it can provide insight on the fundamental components or attributes

that the industry seeks from graduates. Competence is a useful concept in bridging the mismatch gap

between industry and academia. Sandberg (2000) defines competence as attributes possessed by

workers, typically represented as knowledge, skills, and abilities and personal traits, required for

effective work performance. Employers usually describe their job requirements in terms of

competences, while academia provides qualifications and certification tests as evidence of

knowledge and skills acquired during training (CWA1654, 2012).

Extensive efforts have been made to evaluate graduates‘ skills through mapping qualifications and

certifications to job competences in the industry but with no success. For example, Korte et al.

(2013) produces a prototype of a model to map certifications based competences to competences in

the industry jobs. Although the mapping method is not clearly shown in the study, they report a

challenge of a reliable formula to combine competences in order to understand the overall capability

of the graduate.

There is also confusion among students and graduates in understanding employers‘ preferences, with

some being underestimated or overestimated by students (Hansen & Hansen, 2007). For example,

Belcheir (1996) as cited by Norwood & Briggeman (2010) reveals that Boise State University

understood properly the importance of communication skills to employers but overemphasized the

role of problem solving skills and underemphasized the value of interpersonal skills. Again, showing

there is a problem with the reliability of the formula to predict employers‘ preferences.

Quintin (2011) in their study in OECD countries reveal 25% of workers are overqualified while 20%

are under-qualified. They further reveal a challenge to employers in screening job competences

through graduates with same formal qualifications, as workers with same qualification level may

portray different degrees of competence. Competence assessment methods used for graduates by

 20

employers in the industry are different and most common are interviews, grades, and awards.

However, many of them do not express the actual worker‘s value or attribute that organizations

prefer, but instead only signal those values or attributes. A survey by Norwood & Briggeman (2010)

reveal that interview is the most used method by employers to signal every attribute they prefer of a

graduate, then followed by others like grades, course taken, major, etc.

Most studies seek to know methods and competences employers prefer to assess graduates.

Sutherland et al. (2009) reveal five competences that must be offered side by side with content

knowledge during training: problem solving, critical thinking, communication, collaboration, and

adaptive learning. They show that learning based on content knowledge only encourages

memorization at the expense of deep conceptual understanding of core ideas, generalizable

principles, and knowledge that can be applied in new situations.

Since universities offer flexible degrees with diverse experiences as learning outcomes, they use a

wide range of assessment methods including formal examination, laboratory reports, problem-

solving exercises, presentations, and project work. However, there is no adequate cross check made

to ensure that some learning outcomes are not over tested at the expense of others which may not be

tested at all (Karl et al., 2009). Although Colvin (2007) cite that some courses taught by different

professors may vary in content and emphasis, Karl et al. (2009) reveal that the cognitive skill level

examined by exam questions remains relevant to the cognitive skills. But still, assessment of

examinations tends to vary from grader to grader because there is no underlying framework of

reference.

We conclude, therefore, that a number of issues that may arise in the evaluation and mapping of

graduates‘ skills: Content knowledge evaluation may not be adequate, and therefore we may need to

also evaluate competences (Sutherland et al., 2009); Qualifications and certifications alone may not

adequately communicate graduates‘ skill possession (Quintin, 2011); Manual grading may be

subjective (Colvin, 2007; Karl et al., 2009); there may not be reliable formula to combine

competences to predict and indicate overall capability of graduate (CWA1654, 2012).

As a way forward, there was need to explore a number of strategies that could provide focus to deep

understanding of the solution requirements based on the existing knowledge. For example, to

perform job tasks properly in the industry core technical knowledge (content knowledge) received

during training and experience are key requirements, although experience is acquired with practice

on the job (Moreno et al., 2012). Sutherland et al. (2009) note that learning content knowledge alone

 21

makes it difficult to apply the knowledge in unfamiliar context away from the context in which it

was learned, and this would promote memorization. However, if the goal is to apply the knowledge

in unfamiliar context outside classroom, such as in the job, then content knowledge should be

accompanied by some competences that promote deep understanding and generalizable principles.

2.3.1. Relationship between Content Knowledge and Competences

2.3.1.1. Communication

Content knowledge is required to provide logic and evidence to explain a task i.e. a good command

of content knowledge is required to do so. Baker & Mayer (1999) posit that one of the cognitive

tasks of content understanding is explanation which involves illustrating an argument by applying

the relevant prior knowledge and writing in an organized way that avoids misconceptions (Mayer,

2002).

2.3.1.2. Collaboration

Collaboration helps in sharing, clarifying, and distributing content knowledge among peers.

Collaboration cannot occur without communication. Both communication and collaboration increase

understanding, retention, and expression of content knowledge (Mayer, 2002). They both add value

to content knowledge.

2.3.1.3. Critical thinking

Critical thinking refers to deep thinking required to tightly connect discrete pieces of content

knowledge to produce integrated content knowledge. Mayer (2002) outlines four types of knowledge

as factual, conceptual, procedural, and meta-cognitive. While factual and procedural are low level

knowledge, conceptual and meta-cognitive are higher level knowledge that involve connecting

pieces of knowledge together to enhance or demonstrate better content understanding (Baker &

Mayer, 1999; Mayer, 2002).

2.3.1.4. Adaptive learning

Adaptive thinking refers to the ability to actively use ones cognitive resources to regulate ones

thinking in order to improve understanding of integrated content knowledge with an aim of creating

new content. According to Mayer (2002), meta-cognitive involves knowing strategies for doing

tasks, knowing demands for tasks, and knowing ones‘ own capabilities towards a task. This promotes

creating new content or strategies.

 22

2.3.1.5. Problem solving

Problem solving involves application of integrated content knowledge in a new context. Problem

solving involves critical thinking in relation to a problem while adaptive learning controls and

regulates thinking about a problem. So, critical thinking and adaptive learning support problem

solving.

We conclude, from this analysis, that communication and collaboration are subordinate to content

knowledge. Likewise, critical thinking and adaptive learning are subordinate to problem-solving.

Therefore, the most important and useful relationship to evaluate is content knowledge and problem

solving relationship. Robertson (1990) reveals high correlation between conceptual understanding of

content knowledge and transfer of problem solving skills. In the study, they claim that concept

understanding is the main predictor of performance in transfer problems and there is a cognitive

structure associated with that successful performance. This is in concurrence with earlier studies that

also reveal that cognitive connections within a person‘s memory structure promote understanding

and enhance performance on transfer problems (Ausubel, 1968; Gagne & White, 1978).

However, the index Robertson (1990) uses for understanding is not clearly understood what it

reveals and therefore cannot be interpreted. This is because the index is a very poor predictor of

performance in familiar problems in the written exam, and also is not correlated with overall

performance in the written exam.

2.3.2. Skills Evaluation Frameworks

Content knowledge is usually the main source of domain-specific knowledge (declarative knowledge

and procedural knowledge, also known as domain-specific strategies). Content knowledge can be

evaluated using the body of knowledge provided in the academic discipline or competence

framework provided in the industry.

Each academic discipline has a body of knowledge that all graduates ought to acquire during training

(Calvin, 2007). Krishnan (2009) characterizes every academic discipline with a body of accumulated

specialist knowledge referring to their object of research. In their study, on analysis of the gap

between the knowledge and skills learned in academic course project and those required in real

projects, Ludi & Collofello (2001) used Software Engineering Body of Knowledge guide

(SWEBOK) as the framework to evaluate the industry academia mismatch gap.

 23

Problem solving can be evaluated using competence framework which provides skill areas,

competences, and proficiency levels to which every certification or qualification can be mapped

(Korte et al., 2013). This then splits problem-solving into three dimensions: skill area, competence,

proficiency level. Each problem-solving area consists of a number of skill areas, and each skill area

requires a number of domain specific competences. Now, each competence is scaled into several

proficiency levels. Korte et al. (2013), in their study, use e-Competence Framework (e-CF) to

evaluate the skill value of industry based certifications.

Therefore, competence framework defines a set of skill-based competences needed by all students

entering the industry profession. Some frameworks that may be relevant to this study have been

described below. Since the domain of academic librarians was used as a validation case for our

model there was need to also discuss its framework.

2.3.2.1. SWEBOK Guide

The industry accepted SE knowledge and skills required of a qualified software engineer are

provided under the Software Engineering Body of Knowledge (SWEBOK) curriculum guideline.

There are two versions of SWEBOK guide for both undergraduate and graduate students. These SE

curriculum guidelines are provided in SE2004 and GSWE2009 under the joint effort of IEEE/ACM

for both graduate and undergraduate students respectively (SE, 2004; GSWE, 2009). The two

curriculum guidelines are used as defacto standards for the knowledge and skills expected of a

professional software engineer (Merono et al., 2012), and they constitute planned curriculum

(Pideaux, 2003; Kenny & Desmarais, 2010).

According to Abran et al., (2006), the purpose of SWEBOK guide is to describe what portion of the

body of knowledge is generally accepted and to provide topical access to it. The actual body of

knowledge already exists in published literature provided as reference materials in the guide.

SWEBOK is just a guide that can assist in the development of curriculum as each Knowledge Area

(KA) is decomposed into topics, and knowledge depths of each topic are rated using Bloom‘s

Taxonomy (Ludi & Collofello, 2001).

SWEBOK guide is a joint product of a continued collaboration between industry, academia and

standard setting bodies all over the world (Ludi & Collofello, 2001). Abran et al. (2006) cite that so

as to get a worldwide consistent view of SE, the first version 2001 guide was developed through a

 24

process that engaged about 500 reviewers from 42 countries while the second version 2004 guide

engaged over 120 reviewers from 21 countries from North America, Pacific Rim, and Europe.

SWEBOK guide provides the following ten Knowledge Areas (KA) that define the SE profession for

undergraduates, and considered as core knowledge for all software engineers (Ludi & Collofello,

2001):

1) Software Configuration Management

2) Software Construction

3) Software Design

4) Software Engineering Infrastructure

5) Software Engineering Management

6) Software Engineering Process

7) Software Evaluation and Maintenance

8) Software Quality Analysis

9) Software Requirements Analysis

10) Software Testing

According to Abran et al. (2006), the reference material for each KA is provided in the form of book

chapters, referenced papers or other recognized sources of authoritative information. Further, the

guide recognizes eight related disciplines that software engineers should have knowledge from and

each KA description may make reference to. Since it is a result of a process of domain experts

review and validation, SWEBOK is not only a good foundation for creating SE curriculum (Ludi &

Collofello , 2001; Abran et al., 2006) but also for creating a skills mapping model for software

engineers in this study.

2.3.2.2. European e-Competence Framework

European e-Competence Framework (e-CF) is a common European framework for ICT professionals

in all industry sectors created in 2008 (version 1) and 2010 (version 2). It provides a reference of 40

competences as required and applied at ICT workplace, using a common language for competences,

skills and proficiency levels that can be understood across Europe (www.ecompetences.eu). It is an

implementation of the European Qualification Framework (EQF) for application in the ICT sector by

all stakeholders.

 25

Korte, et al. (2013) cite that EQF is the overall qualification framework for the European countries

agreed in 2008 and its intention is to help make national qualifications more transferable across

Europe by relating national qualification systems to a common reference framework. The e-CF, on

the other hand, is an effort of the need for standardization and guidance to ICT practitioners (students

or experienced) in their performance, training and development in European countries (CWA16458).

Basically, e-CF is used to support the definition of jobs, training courses, qualifications, career paths,

certifications etc in the ICT sector.

The e-CF framework provides a three dimensional views, namely skill areas, competences, and

proficiency levels to which every certification can be mapped. The 40 competences of the framework

are classified according to five main ICT business areas and relate to EQF. To support e-CF

application within multiple environments, a series of case studies have been carried out including the

following:

1) e-CF for ICT professional self-assessment

2) e-CF for assessment and career tools

Although e-CF has been used successfully to create European ICT job profiles, the following

challenges have been reported:

1) how to combine competences using a reliable formula to indicate the overall capability of a

candidate

2) how to verify the competences claimed by ICT professionals

3) e-CF is a high level description of competences and does not take into account the granularity

levels of individual job competences

4) e-CF requires the combined use with other frameworks or educational achievements

2.3.2.3. Professional Knowledge and Skill Base (BPKSB) Framework

The knowledge and skills necessary for academic librarians are captured in the Body of Professional

Knowledge described as Professional Knowledge and Skills Base (PKSB). PKSB was created by the

Chartered Institute of Library and Information Professionals (CILIP) and, according to Nagata et al.

(2006), describes the knowledge base that distinguishes information professionals in three concentric

circles. The framework describes a total of 11 areas of knowledge and skills necessary for

professional academic librarians as outlined below:

1) Traditional services

 26

2) Books and libraries

3) New services

4) Organization of information

5) Collection building

6) Library standards and networks

7) Information flow/publishing industry

8) Communication

9) IT technology

10) Business administration

11) Foreign languages

The framework divides the knowledge and skills areas into three groups, core schema (1-5),

application environment (6-7), and generic and transferable services (8-11).

We conclude, from the above analysis that frameworks need to be used as references for skill

evaluation (Srikant & Aggarwal, 2014) in order to reduce assessment variation from grader to grader.

However, frameworks provide skill transparency only but not the entire solution to variation problem

from grader to grader, cost of hiring graders, or evaluation time wasted during grading. And

therefore, automatic skill evaluation can greatly provide a reliable solution and formula for

combining competences to predict overall capability of a graduate during both training and

recruitment processes of industry and academia (Srikant & Aggarwal, 2014).

2.3.3. Automatic Skills Mapping

Variations in assessment from grader to grader has made automatic skills evaluation and mapping a

hot topic of keen interest both in the recruitment process of industry and training process of academia

(Srikant & Aggarwal, 2014). This is an attempt to greatly lower the cost of hiring, reduce time

wasted and provide a standard way of graduate assessment. Due to wide availability of data globally,

data driven methods, such as machine learning techniques, have become popular. Machine learning

classification methods and algorithms may provide a reliable formula for combining competences to

indicate or predict overall capability of a graduate.

2.3.3.1. Machine Learning Classification Methods

Machine Learning (ML) is one of the major branches of Artificial Intelligence (AI) that is concerned

with designing programs (ML algorithms) that attempt to make computers behave intelligently by

 27

being able to sense, remember, learn, and recognize patterns (Leeuwen, 2004). Through the years,

major branches of ML have emerged including symbolic learning by Hunt et al. (1966), neural

networks by Rosenblatt (1962), and statistical learning by Nilsson (1965). In each of the ML

branches there has been a rapid development of ML algorithms, although majority of them face so

many challenges. ML algorithms are designed to analyze a known data set so as to discover and

extract knowledge rules from the data set through building a classifier that can map or predict group

membership of unknown data instances.

Machine learning problem can be defined as the problem of improving some measure of

performance when executing some task, through some kind of training experience (Jordan &

Mitchell, 2015). Task can be of assigning a label to an item, performance to be improved could be

accuracy (or speed) of doing this task and training experience could be historical data of the item

with labels. Traditionally, the task can be modeled as a function (f), where learning problem is to

improve the accuracy of the function and training experience consists of a sample data of known

input-output pairs (x,y) of the function.

In many machine learning setups, the goal is to learn the function f such that:

 eqn (1)

Where x є X are inputs while y є Y are outputs. The goal of learning f is to improve its performance

accuracy through function approximation or optimization procedures and is achieved using various

machine learning algorithms. Conceptually, machine learning algorithms are viewed to be searching

through a large space of candidate functions that optimize the performance metric, guided by the

training experience (Jordan & Mitchell, 2015). Depending on the kind of output (discrete or

continuous) the candidate function is called a classifier or regression function respectively.

ML is used to solve problems through a number of methods including segmentation, feature

extraction, classification, clustering, regression, modeling, etc. There are three main categories of

machine learning methods: supervised, unsupervised, and reinforced learning methods. Classification

is one of the machine learning methods used to predict group membership for data instances

(Mehtani, 2011). The groups, also known as classes, are either predefined (supervised classification)

or are learned based on similarities (unsupervised classification) or rewards (reinforced

classification) (Basu et al., 2010; Raschka, 2015).

f: x y

 28

2.3.3.2. Supervised Classification Method

This is the construction of a classification procedure from a set of data for which the true classes are

known (Mitchie et al., 1994), and is sometimes referred to as supervised learning, pattern recognition

or discrimination. The main objective of supervised classification method is to establish a

classification rule from a given correctly classified data, or to construct a learning model from

labeled training data set so as to be able to classify new objects with unknown labels (Mehra &

Gupta, 2013). Supervised classification methods are further sub-divided into parametric and non-

parametric depending on whether the data follows a specific distribution or not.

The supervised classification method (also known as supervised machine learning) consists of the

following main elements (Kotsiantis, 2007):

1) Identification of required data

o Involves identifying the most informative features

o Methods which can be used include: experts, brute-force

2) Data pre-processing

o Involves removing noisy features to enhance learning from very large data set

o Methods used include: instance selection, features subset selection

3) Algorithm selection

o Involves comparing two or more supervised learning algorithms

o Methods used include: statistical comparisons, paired t-test

4) Training

o Involves teaching the model with a sample of existing correctly classified cases

o Methods used include: Artificial Intelligence (AI), Neural Networks, Statistical

techniques, Support Vector Machines (SVM)

5) Evaluation

o Involves running the trained model with a set of classified cases it has never seen

before so as to see whether it will classify correctly or not

2.3.3.3. Unsupervised Classification Method

This is the construction of a classification procedure from a set of data for which the true classes are

unknown but are inferred from the data set (Mitchie et al., 1994), and is sometimes known as

 29

clustering. This method can be viewed as aiming to identify natural groups or classes or clusters in

the data.

2.3.3.4. Reinforced Classification Method

This is the construction of a classification system that improves its performance through interaction

with the environment (Raschka, 2015). This method can be viewed as aiming to establish a

classification rule based on a reward signal in the environment. Reinforcement learning is related to

supervised learning where instead of the correct ground truth label or value, we have a measure of

how well the classification action was measured by a reward function.

2.3.4. Machine Learning Algorithms

ML algorithms are usually designed around a particular paradigm for the learning process which

must be clear about the learner, domain, goal, representation, algorithmic technology, data source,

training scenario, prior knowledge, success criteria, and performance (Leeuwen, 2004). As a result,

Kotsiantis (2007) indicate that classifier design must be based on assumptions made about the

classification problem and the training sample used to teach the classifier. This is because the

predictive power of the classifier is largely dependent on the quality and size of the training sample.

However, determining the termination point for the training is still a challenge (Figueroa, et al.,

2012) and this can lead to over fitting.

Preliminary survey revealed three categories of supervised machine learning algorithms/techniques:

Logical/symbolic techniques (Artificial Intelligence), Perception-based techniques (Neural

Networks), Statistics-based techniques (statistical methods), and support vector machines technique.

However, many ML algorithms suffer challenges in terms of algorithmic approach, data

representation, computational efficiency, and quality of the resulting classifier (Kotsiantis, 2007).

This triggered review of various ML algorithms to reveal various ways they could be improved.

2.3.4.1. Back Propagation Algorithm

Under neural networks, Rosenblatt (1962) developed a basic delta learning rule for Single Layered

Neural Network (SFNN). Minsky and Papert (1969) proved that this rule could not solve non-linear

problems. Rumelhart et al. (1986) developed the Back Propagation Algorithm (BPA) for Multi-

Layered Feedforward Neural Networks (MLFNN). BPA is based on gradient descent search method

that it uses to adjust the connection weights in MLFNNs. According to Kononenko (2001), although

 30

BPA is well known for its accuracy, it suffers a problem of slow convergence and local minimum

problem.

Survey by Vora and Yaguik (2013), reveal extensive research proposing various ways of solving

BPA problems and improving its performance such as replacing its gradient descent method with

momentum and delta-bar-delta method; modifying coefficient of correlation between prior weight

change and downhill momentum factor; choosing a network weight upgrade rule; choosing a series

of weight vector over learning phase; multiplying connecting weight by a factor; changing the

derivative of the learning function; updating learning rate and inertia factor dynamically; summing

linear and non-linear quadratic errors of the output neurons; adjusting learning rate and momentum

factor at each iteration; introducing activation function of neurons in hidden layer in each training

pattern; combining non-linear regression with; training hidden and output layers independently;

combining linear least squares with gradient descent; combining BPA with genetic algorithm.

Even though several variations and different techniques have been suggested to improve

performance of BPA none guarantees a global solution and, therefore, the problem of slow

convergence and local minimum is yet to be solved.

2.3.4.2. Support Vector Machines Algorithm

Support Vector Machines (SVM) is a learning algorithm invented by Vladmir Vapnik in 1995 and is

used in many fields of pattern recognition and classification of data. SVM is based on convex

quadratic programming. Although SVM has emerged as a good classification technique and has

achieved excellent generalization performance in a variety of applications, it suffers a problem of

bad memory utilization and long training time as the number of training examples increase (Wang,

2015).

Recent survey by Wang (2015) reveals extensive research in SVM, and a variety of ways for

improving the SVM problems have been proposed. These include decomposition-based approaches

that consider a small subset of variables in each training iteration; alpha seeding approaches; adding

a constant to the objective function; using conjugate gradient scheme; informative instance selection

for training; incremental learning; using Finite Newton Method.

Given N input elements and two disjointed output classes, the goal of SVM is to take the input

elements, learn them, and predict if each of them belongs to one of the two classes.

 31

Given a training set, S= {(x1,y2),(x2,y2),….(xN,yN)}, SVM learning algorithm involves building a

model that maps new instances of X to Y. Geometrically, the function, f, represents the hyperplane

of all possible planes that are able to correctly classify the input elements.

For linear model, f is given by,

 Eqn (2)

Where x є X are inputs while y є Y are outputs.

Finding the function f involves modeling of this hyperplane by learning two parameters w and b that

maximize the distance between the nearest points of the two classes, i.e. that make f(x) = 0. These

nearest points between the two classes are called support vectors and the distance between each point

in each class and the hyperplane is called functional margin(Y) and is given by,

 Eqn (3)

The nearest points of each of the two classes are those points that optimize Yi = 1, and distance

between these nearest points of the two classes is given by the sum of their functional margins.

Therefore, SVM learning involves finding an optimal separation hyper-plane that maximizes this

sum of the two margins i.e. Yi >=1, and its parameters (w, b) minimized to the lowest level possible.

The solution to the above dual optimization can be summarized using the equation below which

gives the hyperplane.

 Eqn (4)

For non-linear model, f is given by,

 Eqn (5)

Where is a non-linear mapping from a high dimensional input space to a high

dimensional output space. The solution to the above dual optimization can be summarized using the

equation below which gives the hyperplane.

 Eqn (6)

Given the original input space points, calculate (ф(x). ф (xi) product directly in the feature space and

then map the point in the feature space. To do this an instrument known as kernel is needed. There

are a few functions that can be considered as kernel i.e.

1. Linear kernel, K(xi,xj) = (xi.xj)

f(x) = (w.x) + b

Yi = yi(w.xi) + b

f(x) = ∑N xiyi(x.xi) + b

f(x) = ∑N wiфi(xi) + b

Ф : X y

f(x) = ∑N xiyi (ф(x) . ф(xi)) + b

 32

2. Polynomial, K(xi,xj) =[(xi.xj)+1]
d
 where d is not zero

3. Gaussian, K(xi,xj) = e

2.3.4.3. Naïve Bayesian Algorithm

The theoretical basis of the naïve Bayesian algorithm and its variants was first developed by Thomas

Bayes in 1964. Naïve Bayesian algorithm assumes underlying probabilistic model and allows us to

capture uncertainty about the model using maximum likelihood method. Although it is simple and

very powerful, naïve Bayes algorithm does not work well if there is dependency between predictor

variables.

Survey by Bielza & Larranaga (2014), reveals extensive variants and extensions of the naïve

Bayesian classifier focusing towards detecting and handling dependency between predictor variables

such as the m-estimate of probabilities that significantly improved the performance of Bayesian

classifier; a semi-naïve Bayesian classifier that detects dependency between attributes; fuzzy

discretization of continuous attributes within the naïve Bayesian classifier; a recursive Bayesian

classifier that uses naïve Bayesian classifier in the nodes of decision trees; explicit searching of

dependences between attributes in the naïve Bayesian classifier; relaxing conditional independence

assumption by allowing each predictor variable to depend on at most one other predictor in addition

to the class; allowing each predictor variable to have a maximum of k parent variables apart from the

class variable.

Given X (x1, x2,…, xn) input attributes and W (w1, w2,…, wm) disjointed output classes, where X

and W are dependent the goal of naiveBayes is to take the input attributes, learn them, and predict

conditional probability of W given X. naïve Bayes is based on the Bayesian theory which uses the

knowledge of prior events to predict the future events. According to Bayesian theorem, if wj is a

hypothesis that is made over an event and xi is the data set describing the event then:

 Eqn (7)

Where P (wj) is prior probability of hypothesis wj, P (xi) is prior probability of data xi, P (xi|wj) is

conditional probability of xi given wj, and P (wj|xi) is conditional probability of wj given xi.

Suppose xi is a feature vector of a sample of instances i (i=1,2,…,n) and wj be notation of class j

(j=1,2,…,m), then probability of observing sample xi given that it belongs to class wj is called

conditional probability of xi and is given by P(xi|wj).

P(wj|xi) = P(xi|wj).P(wj) / P(xi)

 33

Also:

P (xi|wj) = Eqn (8)

The general probabilities of encountering a class wj are given by counting all instances of class wj

then dividing by the total count of all instances in the training dataset and are called prior

probabilities and denoted by P(wi)

Also:

P (wj) = Eqn (9)

While the general probabilities of observing an instance xi independent from class labels are given by

adding probabilities of xi given wj and probabilities of xi given not in wj

Also:

P (xi) = eq Eqn (10)

However, we make some assumption that xi are independent and identically distributed so that xi are

independent and drawn from similar probability distribution such as normal probability distribution.

Hence, using this probability distribution we can easily calculate prior probabilities of xi.

2.3.4.4. Logistic Regression Algorithm

This is a linear and binary classification algorithm that can easily be extended to multiclass

classification through the one versus the rest (OvR) technique (Raschka, 2015). The principle of

logistic regression is based on the ratio of probabilities of two mutually exclusive events (y=1, y=0),

where probability of y=1 is p and probability of y=0 is 1-p. Then, the ratio of these probabilities also

known as odd ratio is given by:

odd ratio = p/(1-p) Eqn (11)

Logit probability of p is the logarithm of the odds ratio and is given by:

 Logit (p (y=1)) =log (p/(1-p)) Eqn (12)

Logit function takes in values in the range (0, 1) and transforms them to the entire range of real

numbers, which we can use to express the relationship between feature values and the log odd-ratio

as follows:

Count of all instances of class wj

Total count of all instances in the training dataset

No. of times xi appears in all instances of class j
__
Total count of all values of features of instances in class wj

P(xi|wj). P(wj) + P(xi|~wj). P(~wj)

 34

Logit (p (y=1|x)) = w0x0 + w1x1 + w2x2 +……. Wmxm Eqn (13)

From Eqn (13) p(y=1|x) is the conditional probability that a particular instance belongs to class 1

given its features x which is obtained by getting the inverse of eqn (13). This inverse of logit

function is given a follows:

Inverse (logit (p (y=1|x))) = 1/(1- e
-logit (p (y=1|x))

) Eqn(14)

L(z) = 1/(1- e
-z

) Eqn (15)

 Where z = w0x0 + w1x1 + w2x2 +……. Wmxm

L(z) which is the inverse function is called the logistic regression model

2.3.4.5. K-Nearest Neighbor (KNN) Algorithm

This is one of the algorithms which does not learn any discriminative function from the data but

memorizes the training data instead (Raschka, 2012). The algorithm uses distance metric to find the

instances in the training dataset that are closest or most similar to the new instance that needs to be

classified. The class label of the new instance is then determined by a majority vote among its

nearest neighbors. Its procedure can be summarized by the following steps:

i) Choose a number, k, as a distance metric.

ii) Find k nearest neighbors of the new instance that needs to be classified.

iii) Assign the class label by majority vote.

While the main merit of this algorithm is the ability to immediately adapt as we collect new training

data, its downside is the computational complexity for classifying new instances that grows linearly

with the number of instances in the training dataset in the worst-case scenario, unless the dataset has

very few features.

We conclude, from the above analysis, that the classification methodology applied on a particular

problem depends on the data, the model of the data, and the expected results of analysis (Bedzek,

1981).

2.3.5. Advanced ML Methods and Algorithms

2.3.5.1. Extreme Machine Learning

Extreme Machine Learning (EML) is the state of the art ML algorithm for learning a Single hidden

Layer Feedforward Neural Network (SLFNN) where the hidden nodes are randomly initiated and

 35

then fixed without iteratively tuning (Huang et al., 2014). The only free parameters needed to be

learned are the connection weights between the hidden layer and output layer.

According to Huang et al. (2014), ELM is based on three learning principles: 1) learning capability

i.e. can fit perfectly to any training data set so long as the number of hidden neurons is large enough

and no larger than the number of distinct training samples (Huang et al., 2006); 2) universal

approximation capability i.e. ELM parameters are randomly generated instead of being learned and

therefore does not require the activation function to be continuous or differentiable (Huang & Chen,

2007, 2008; Huang et al., 2006). 3) generalization performance i.e. ELM has a relatively low VC

dimension and Lin et al.(2012) show that the VC dimension of ELM is equal to its number of hidden

neurons with probability one.

One of the major problems with ELM is demand for more neurons than conventional neural

networks in order to achieve a matched performance, hence resulting in longer running time during

testing. A recent review of ELM trends by Gao et al. (2014) reveals various proposals of ELM

variants to solve the ELM problems. Incremental ELM proposes getting rid of insignificant neurons

dynamically during training process using pruning techniques; Parsimonious ELM proposes

recursive orthogonal least squares to perform forward selection and backward elimination of hidden

neurons; tuning most of the output weights to zero using a sparse Bayesian approach.

2.3.5.2. Deep Learning

Deep Learning (DL) is a set of algorithms in ML that attempt to learn in multiple levels of modeling

corresponding to different levels of abstractions in the model (Li & Yu, 2013). Key aspects that are

common among these algorithms are: 1) models consisting of multiple layers, and 2) methods for

learning feature representation at successively higher and more abstract layers.

Most traditional ML algorithms are based on shallow structured architectures that are effective in

solving simple and well-constrained problems. However, more complicated real-world applications

involving natural signals such as human speech, natural sound and language, natural images and

visual scenes, are more difficult to be handled by such shallow architectures, hence calling for deep

learning architectures.

Deep learning techniques are divided into two: supervised learning techniques (also known as deep

discriminative models) and unsupervised learning techniques (also known as deep generative

models). Deep discriminative models include Deep Neural Networks (DNN), Recurrent Neural

 36

Networks (RNN), and Convolution Neural Networks (CNN), while deep generative models include

Restricted Boltzmann Machines (RBM), Deep Beliefs Networks (DBN), and Deep Boltzmann

Machines (DBM).

2.3.6. Multiclass Classification Classifiers

In ML the problem of classification is encountered in various areas such as in medicine to identify

the disease of a patient or in industry to decide whether a defect has appeared or not, or whether the

temperature is low, medium or high (Mehra & Gupta, 2013). In all these situations, multiclass

classification is the major problem (Aly, 2005; Mehra & Gupta, 2013).

Multiclass classification is a case of the classification problem where there are many distinct classes

while binary classification is a case of the classification problem where there are only two distinct

classes. Many of the basic ML algorithms were developed to solve the binary classification problem

(i.e. two classes case). However, majority of ML algorithms can be naturally extended to solve the

multiclass classification problem (i.e. multiclass case). Extensible algorithms use different

techniques such as codeword for output neurons (neural networks), adding additional parameters and

constraints to the optimization problem to handle the separation of various classes (SVM). Though, a

few of ML algorithms require converting the multiclass classification problem into a set of binary

classification problems (Aly, 2005; Mehra & Gupta, 2013).

A survey on multiclass classification methods (Aly, 2005; Mehra & Gupta, 2013), reveals a number

of methods various researchers have proposed to solve the multiclass classification problem

including decomposition and hierarchical methods, apart from extensible methods. Decomposition

methods involve splitting and include one-versus-all (OVA) that results to the number of binary

classifiers equal to the number of classes in the multiclass classification problem, all-versus-all

(AVA) that requires K(K-1)/2 binary classifiers for a classification problem with K classes, and

error-correcting-output-code (ECOC) results to several binary classifiers.

2.3.6.1. Hierarchical Classifiers

Hierarchical methods involve arranging classes hierarchically into a tree and using a simple classifier

at each node. According to the two surveys (Kumar et al., 2002; Vural & Dy, 2004; Chen et al.,

2004), a method that uses K-1 binary classifiers to classify K-classes problem has been proposed in

the literature. Mehra & Gupta (2013) experiments with all the available multiclass classification

methods on various data sets, and the results reveal that no any single method is perfect across all the

 37

data sets. The conclusion is, any one of the method can be used depending on the need. But their

conclusion was based on experimental results focusing on accuracy alone. However, looking at the

survey literature, multiclass classification is still a major problem area for research (Aly, 2005;

Mehra & Gupta, 2013), and the following are some of the major issues:

1) If outputs corresponding to two or more classes are very close to each other those points are

labeled as unclassified (OVA)

2) Memory requirement is very high in tune of the square of the total amount of training

samples (OVA, AVA, ECOC)

3) Unbalanced training sample sizes i.e. ratio of training sample of one class to rest of the

classes is 1:K-1 (OVA,AVA, ECOC, Hierarchical)

4) Large number of classifiers i.e. for OVA (K classifiers), AVA (K(K-1)/2 classifiers), ECOC

(N classifiers where N>K), Hierarchical (K-1 classifiers).

Silla & Freitas (2011), in their survey of hierarchical classification across different application

domains, define three criteria that distinguish hierarchical classification methods: 1) hierarchical

structure (tree or DAG), 2) depth of classification hierarchy (mandatory or non mandatory leaf node

prediction at any level of hierarchy), 3) hierarchical structure transverse (flat, big-bang, or top-

down). Major types of multiclass classifiers based on the above criteria are flat, big bang (also

global), and local classifiers as outlined in the following subsections.

2.3.6.2. Flat classifiers

These are classifiers that ignore class relationships and predict only the leaf nodes, and also known

as bottom-up classifiers in some literatures. One disadvantage with these classifiers is inability to

handle non-mandatory leaf node prediction problems (Silla & Freitas, 2011; Merschmann & Freitas,

2013). In industry roles classification problems, where some roles are intermediate to some high

level roles, some employees are assigned to intermediate (non-leaf nodes) and some to high level

roles (leaf nodes) and therefore during classification there is need for non-mandatory leaf node

prediction. For a problem with K classes, we need K classifiers, one for each class.

2.3.6.3. Big bang classifiers

These are classifiers that handle the entire class hierarchy by being able to classify both leaf and non

leaf nodes using one classifier. They are also known as global classifiers. Although their prediction

 38

accuracy is pretty good, they lack the kind of modularity for local training (Silla & Freitas, 2011;

Merschmann & Freitas, 2013).

2.3.6.4. Local classifiers

Also known as top-down classifiers, local classifiers have the ability to use local information at each

level of hierarchy to create a classifier. They apply different approaches for using local information

and building a classifier around that information: 1) local classifier per node 2) local classifier per

parent node 3) local classifier per hierarchy level.

i) Local classifier per node approach

This approach creates one binary classifier for each class node in the hierarchy except the root node.

Has a disadvantage of allowing classes to be assigned to classes in distinct branches in the hierarchy,

hence can lead to class membership inconsistency (Silla & Freitas, 2011; Merschmann & Freitas,

2013). Several inconsistency removal methods are available.

ii) Local classifier per parent node approach

This approach creates a classifier for each parent node in the class hierarchy with the aim of

distinguishing its child nodes.

iii) Local classifier per level approach

This approach creates a classifier for each level of the class hierarchy. Has same disadvantage as

local classifier per node approach of allowing classes to be assigned to classes in distinct branches in

the hierarchy, hence can lead to class membership inconsistency and requires post processing

procedure to correct the inconsistency (Merschmann & Freitas, 2013).

We conclude, from the above review, that hierarchical classifier is the only classifier that respects the

hierarchical structure of the class taxonomy in a classification problem. It is also evident that local

classifiers are synonymous to topdown classification approach (Merschmann & Freitas, 2013; Silla

& Freitas, 2011). Also, despite the nature of some classification problems being bottom-up, there is

little research towards bottom-up hierarchical classifiers.

2.4. Models for Skills Mapping using Machine Learning

Chien & Chen (2008) built a classification model for improvement of employee selection by

predicting both retention and performance of new job applicants. They used flat ML classification

structure and a total of seven demographic attributes. Although performance of their model was

 39

good (80%), the target concepts for mapping were broad. For each role, graduates were mapped not

only as either ‗can perform‘ or ‗can‘t perform‘ but also as either ‗retainable or unretainable‘, hence

in two layered labels. Prediction label was a combination of layer1 (can perform or can‘t perform)

and layer2 (retainable or unretainable) labels. This way, it was possible to have more than one

industry role with similar labels hence multiple label prediction problems. Besides, their target

classes were hierarchically related and, hence, better accuracy could have been achieved using

hierarchical classifier despite the fact that the class labels were not directly industry roles.

Also, Jantawan & Tsai (2013) presented a classification model for predicting graduate‘s

employability. They attempted to predict whether a graduate twelve month after graduation would be

employed, unemployed, or undetermined, based on twenty one demographic attributes that

influenced graduate employability identified from actual data collected from graduates twelve month

after graduation. They used Bayesian and decision tree and flat ML classification structure to

generate their model. Although performance of their model was good (98%), the target concepts

were broad and were mapping graduate‘s skills as either employed or unemployed. Whereas target

concepts were too broad and therefore not specific to industry roles, most of their ML attributes were

not relevant to problem solving skills.

Equally, Shashidhar et al. (2015) developed a classification model to predict employability by

mapping graduate‘s skills to software engineer‘s role. Their underlying ML classification structure

was flat with a total of four attributes for machine learning. Although performance of their model

was good (82%) and their ML attributes were relevant to problem solving skills, their target concepts

for mapping were broad and were mapping graduate‘s skills as either satisfactory or unsatisfactory.

Besides, it was possible to have more than one industry role with similar labels hence multiple label

prediction problems.

Srikant & Aggarwal (2014) presented a model to map graduate‘s skills to programmer competences.

Their approach involved mapping graduate‘s program for skills based on two layered steps: 1)

program logic that was evaluated for best programming practices; 2) complexity of the program that

was evaluated for execution time. An average score of the two steps was mapped to five competence

levels defined by domain experts. They used ridge, SVM, and Random Forest to generate their

model based on regression method. Their underlying ML structure was flat with an average

performance of 60% for SVM model. Although their ML attributes were relevant to problem solving

skills, they were just too specific for programmers only and hence domain dependent.

 40

Table 2.2 provides a summary of analysis for some of the most important properties of models in

related literature where broad range of attributes and flat ML classification structure were dominant.

Our dilemma was whether ML methods used in the past were adequate, and whether attributes and

ML classification structure used were relevant to industry roles.

Table 2.2: Summary analysis of related ML skills mapping models

A
u

th
o

r/
 w

o
rk

Y
ea

r

M
et

h
o

d

T
y

p
e

o
f

A
tt

ri
b

u
te

s

N
u

m
b

er
 o

f

a
tt

ri
b

u
te

s

C
la

ss
if

ic
a

ti
o

n

S
tr

u
ct

u
re

P
er

fo
rm

a
n

ce

T
a

rg
et

 c
la

ss

T
a

rg
et

 c
la

ss

co
n

st
ru

ct

N
a

tu
re

 o
f

a
tt

ri
b

u
te

s
to

p
ro

b
le

m
 s

o
lv

in
g

Chien &

Chen

2008 Classification Demographic

profile

 7 Flat 80% engineers broad Non

relevant

Jantawan

& Tsai

2013 Classification Demographic

profile

21 Flat 98% employee broad Non

relevant

Korte et al. 2013 Classification Qualifications 9 Flat Not given Multiple

roles

specific relevant

Srikart &

Aggarwal

2014 Regression Programming

practices

6 Flat 60% programme

r

specific Domain

specific

Shashidhar

et al.

2015 Classification English,Logical,

Program,Quant

4 Flat 82% Software

engineers

broad relevant

In summary, models for mapping problem solving skills to industry roles in an attempt to bridge

industry academia mismatch gap have been proposed (Chien & Chen, 2008; Korte et al., 2013;

Srikant & Aggarwal, 2014; Shashidhar et al., 2015). However, either their target classes are too

broad or their attributes are domain specific and not relevant to problem solving skills for effective

performance in the industry role. Besides, there is very little research in skills mapping especially

towards improving graduates employability using machine learning techniques (McCowan et al.,

2016).

We conclude that a mapping model is unknown that has relevant attributes and that takes advantage

of both the hierarchical nature of industry roles and the natural mobility of employees in the industry

organizational hierarchy. Mapping models using flat machine learning structure that are currently

used are either inaccurate or commit more serious errors (Silla & Freitas, 2011; Merschamann &

Freitas, 2013).

 41

2.5. Models using Hierarchical Machine Learning Structure

Models using hierarchical machine learning structure for their target classes have not been reported

in skills mapping. However, in other domains there is evident effort towards hierarchical machine

learning. Barbedo & Lopes (2007) organized musical genre in a hierarchical structure and used

musical signals as machine learning attributes to predict the genre of music. They used the

conventional top-down tree as the hierarchical ML structure. They applied bottom-up multi-

classification approach on the conventional top-down tree where they reported performance result of

61%. Besides, they analyzed the performance of their model along various levels of the structure and

reported 87%, 80%, 72%, and 61% at level 1, level 2, level 3, and level 4 respectively. However,

their work suffered multiple class labels problem as a result of bottom-up classification method

applied to a top-down structured problem.

Clare & King (2003) organized gene functions in a hierarchical structure and used various features of

genes as their machine learning attributes to predict the function of a gene. They also used the

conventional top-down tree as the hierarchical ML structure. They applied top-down multi-

classification approach where they reported performance result of 53.3%. Besides, they analyzed the

performance of their model along various levels of the structure and reported 56.4%, 46.3%, 23.1%,

and 7.9% at level 1, level 2, level 3, and level 4 respectively.

We conclude that choice and design of an effective classifier model is dependent upon: 1)

assumptions made about the classification problem and 2) the problem structure (Kotsiantis, 2007;

Silla & Freitas, 2011; Merschamann & Freitas, 203).

2.6. Synopsis of Literature Review

Literature review reveals not much has been done in the area of mapping graduates‘ skills to industry

roles using machine learning techniques. There are several potential areas for improvement ranging

from ML attributes, classification method, to ML structure. For example, one of the major

problematic issues in multi-classification is a classification approach that contradicts the underlying

hierarchical structure of class taxonomy. This formed some of the gaps we focused to address

through development of appropriate concepts for ML attributes, structure, and model required to

achieve effective mapping of graduates‘ skills to industry roles. Therefore, theoretical literature

analysis was necessary to provide concepts to characterize the mapping problem and ML structure

 42

before the state of the art classification methodology that reflects organization of industry roles was

proposed.

2.7 Theoretical and Conceptual Frameworks.

A framework is an essential supporting idea around which a research problem is modeled and solved.

Two common frameworks around which a research problem is solved are theoretical and conceptual

frameworks (Green, 2014). While theoretical framework refers to existing theory or theories used to

provide essential explanatory support for the solution to the research problem, conceptual framework

is an essential concept developed by the researcher and derived from the existing theory or theories

to help provide explanatory support for the solution to the research problem.

Conceptual framework is derived from theoretical framework and is also sometimes known as

research framework, research model or research paradigm or conceptual model. Conceptual

framework, also conceptual model, specifies variables that will have to be explored in the

investigation and identifies relationships between those variables. Therefore, we derived our

conceptual model from concepts of existing models for training evaluation that served as the

theoretical framework.

The rest of this section attempts to answer systematically the following questions:

1. What concepts are appropriate as machine learning attributes for mapping graduates‘ skills to

occupational industry roles?

2. What is the structural characteristic of concepts that correctly reflects the hierarchy of

industry roles required as target classes for machine learning purpose?

3. How do we build using these concepts an appropriate machine learning model for mapping

graduates‘ skills to hierarchically structured industry roles?

2.7.1. Models for Training Evaluation

The purpose of education and training is to improve knowledge, increase skills, and change attitudes

of a person in order to improve the fit between the person and job requirements. This can only be

achieved through learning and evaluation. Learning is achieved through thinking (cognitive) or doing

(psychomotor) or feeling (affective). Hence, the three domains of learning: cognitive learning,

psychomotor learning, and affective learning.

The purpose of training evaluation is two folded: to determine whether training objectives were

achieved and whether the achievement of these objectives can result into enhanced performance on

 43

the job. To achieve this, several evaluation models have been developed to explain the theory behind

evaluation. This study is hinged on three theoretical models. These are the Kirkpatrick‘s (1959)

model of training evaluation, the CRESST model of learning evaluation attributed to Baker & Mayer

(1999), and the Kraiger‘s (1993) theory of cognitive learning. These theories have been widely used

in describing learning outcomes (O‘Neil et al., 2005).

2.7.2. Kirkpatrick’s Model of Training Evaluation

Kirkpatrick (1959) produced a training evaluation model that focused on four stages of assessment as

shown in Fig.2.1. Stage 1 is reaction that assesses learners‘ satisfaction and how they react to the

learning program. Stage 2 is learning that assesses the extent to which learners‘ improved

knowledge, increased skills, and changed attitudes. Stage 3 is transfer which assesses the extent to

which learners‘ change in behavior and applies what they learn in the job. Stage 4 is result and

assesses the extent to which the company benefits as a result of training the learner. These stages are

hierarchically layered and the difficult of measuring the training performance increases as you move

up from stage 1 to stage 4. Many fields have relied on this model or its adaptations for many years

(Leake & Parry, 2003).

Figure 2.1: Training evaluation stages (adapted from Kirkpatrick, 1959)

According to Kirkpatrick (1959), the trainee must learn the content knowledge (stage 2 learning)

before applying or transferring it to the job (stage 3 transfer). Hence, we conclude that learning must

begin with acquisition of content knowledge that is relevant to the job and, therefore, evaluation

should focus on assessing the relevance of content knowledge acquired.

This current study is basically concerned with stage 2 of the model. However, Kirkpatrick‘s model

does not explain clearly effective measures and variables for assessing learning outcomes at stage 2.

In fact, research suggests (Leake & Parry. 2003) that employees transfer very little of what they learn

 44

in training (about 10-20%), hence raising curiosity to know whether any learning occurs, and which

learning outcomes enhance performance in the job and how can they be measured. Consequently,

Leake & Parry (2003) suggest that certain attributes can be used to predict and improve transfer of

learning. These are: 1) motivation 2) self-efficacy 3) personality 4) expectations 5) control 6) ability

7) quality of training 8) relevancy of content to the job. That is why, therefore, it became necessary

to incorporate the CRESST model to shed more light on the types of learning outcomes that enhance

performance in the job.

2.7.3. CRESST Model for Learning

Baker & Mayer (1999) came up with CRESST (Center for Research on Evaluation, Standards, and

Student Testing) model of learning evaluation which is a micro-view for stage 2 of Kirkpatrick‘s

model. According to Baker & Mayer, to assess a student in any field it is important to design

performance tasks that represent the type of learning intended in terms of broad subject matter topics,

item formats, and types of cognitive demands expected to attain success.

In their CRESST model, Baker & Mayer (1999) identified five families of cognitive demands that

can be used as a framework for designing teaching, learning, and testing as shown in Fig.2.2. As a

result, the CRESST model is composed of 1) content understanding 2) problem solving 3) self-

regulation 4) collaboration/teamwork 5) communication skills. Problem solving is the core outcome

of this model. Problem solving is a cognitive process that includes goal-oriented thinking and

involves the use of prior or previously acquired knowledge, skills and understanding to meet the

demands of an unfamiliar situation (Krulik & Rudnik, 1996; Baker & Mayer, 1999; Orhun, 2003;

Wirth & Klieme, 2011).

Figure 2.2: CRESST model for learning (adapted from Baker & Mayer, 1999)

Consequently, problem solving provides the learner with the capacity to apply or transfer content

knowledge learned to the job (new situation). According to Anderson et al. (2001) as quoted by

 45

O‘Neil et al. (2005), problem solving transfer involves applying a specific set of cognitive processes

to a specific set of knowledge types. Baker & Mayer (1999) further observes that problem solving is

a family that is a superset of other families, and consists of: content understanding, problem solving

strategies, and self-regulation. Self-regulation comprises of motivation and metacognition, while

problem solving strategies comprises of domain dependent and domain independent aspects.

Domain dependent (specific) aspect of problem solving strategies involves the specific content

knowledge, specific procedural knowledge in the domain, domain specific cognitive strategies, and

domain specific discourse (Baker & Mayer, 1999). On the other hand, domain independent (general)

aspect of problem solving is static and is very strongly related to intelligence (reasoning) (Wirth &

Klieme, 2011). Motivation comprises of two components: effort and self-efficacy.

Furthermore, Baker & Mayer (1999) observe that each family consists of a set of cognitive tasks

which can be used as a skeleton for the design of instruction and testing, and this forms a skeletal

structure. Each cognitive task in the skeletal structure will have a set of core cognitive demands. The

skeletal structures in each family will be instantiated in content domains so as to form structurally

similar models that can be applied across domains, like science, mathematics, or social sciences.

A number of training evaluations have been conducted using these evaluation models. Common

measures that are used to assess these learning outcomes are multiple-question test, essays, and

knowledge maps. A survey conducted by O‘Neil et al. (2005) reveals that assessment of problem

solving is the most popular and is assessed using performance measures, followed by content

understanding which is assessed using knowledge maps measures. Collaboration is rarely assessed

and is not explicitly measured.

Hence, from CRESST model we conclude that the core learning outcome that is fundamental in

enhancing performance on the job is problem solving competence. In order to be able to apply

content knowledge to the job, problem solving competence is needed. Besides, problem solving

competence is multi-dimensional consisting of: - content understanding dimension, intelligence

(domain independent) dimension, and technical (domain dependent) dimension, and self-regulation

dimension.

Therefore, evaluation of learning should focus in evaluating problem solving competence along the

three dimensions. Although the CRESST model is very clear about the outcomes of learning and

their various aspects, it is silent about what to test, how to test, and where to test. It does not provide

the possible set or range of cognitive tasks or demands needed for each learning outcome and how to

 46

assess them. This makes it difficult to evaluate problem solving competence unless we understand

the measures for evaluation; hence it was also necessary to look at the cognitive theory of training

evaluation to see more about various measures of evaluation.

2.7.4. Cognitive Theory For Training Evaluation

Cognition is a term that describes quantity and type of knowledge and the relationship between

knowledge elements. In the context of training evaluation, cognition involves acquisition,

organization and application of knowledge (Kraiger et al., 1993). The purpose of training evaluation

is two folded: to determine whether training objectives were achieved and whether the achievement

of these objectives can result into enhanced performance on the job. To achieve this purpose, Kraiger

et al. (1993), proposed a classification scheme for the learning outcomes that could be used as a

guide for developing a training evaluation model.

Kraiger et al. (1993) assumed that learning outcomes are multidimensional and therefore can be

evident from changes in cognitive, skill or affective capacities. Consequently, they proposed three

learning outcomes: cognitive, skill-based, and affective-based outcomes. They further proposed

assessment measures and techniques corresponding to the learning outcomes categories. Cognitive

outcomes consists of verbal knowledge measures (measure of amount and accuracy of acquired

knowledge), knowledge organization measures (measure of mental models for knowledge retention),

and cognitive strategies measures (measure of meta-cognition for skills on self regulation of own‘s

cognition).

While verbal knowledge could be measured directly using speed tests (measures amount of

knowledge) and power test (measures accuracy of knowledge), knowledge organization and

cognitive strategies require measures that test higher order thinking skills (critical thinking) that

promote creation of mental models for knowledge retention.

Skill-based outcomes consist of compilation measures (measure of proceduralization, generalization

and discrimination of verbal knowledge during practice), and automacity measures (measure of

automatic reaction after a long practice). Both compilation and automaticity require measures that

test hands-on performance.

Affective-based outcomes consist of attitude (measure of internal state that influences choice of

personal actions) and motivation (measure of internal state that influences behavior). Both attitude

 47

and motivation, although require measures that test internal states, they are highly dynamic. Fig.2.3

below shows the learning outcomes as proposed by Kraiger et al. (1993).

Figure 2.3: Learning outcomes as per Kraiger et al. (1993).

Classification of learning outcomes was originally proposed by Bloom et al. (1956). According to

Bloom, cognitive outcomes beyond recall or recognition of verbal knowledge are legitimate learning

outcomes and proposed taxonomy of cognitively based learning outcomes where they came up with

six levels of cognitive abilities (intellectual abilities or competence skills) needed during and after

learning: Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation. The six

levels indicate the increasing level of thinking difficulty starting with knowledge upward to

synthesis, to evaluation. According to Mayer (2002), there are a total of 19 types of cognitive

processes that can be classified into the six levels or categories of Bloom‘s taxonomy.

Bloom intended his work to benefit assessment experts who were developing new ways to measure

what learners learned. By correlating assessment questions to Bloom‘s cognitive levels of abilities or

skills, test developers can be assured that their questions promote both knowledge retention and

critical thinking. However, according to Kraiger et al. (1993), Bloom‘s taxonomy is one-dimensional

i.e. is based only on cognitive domain and hence he extended it into three domains. Bloom‘s

taxonomy is well recognized and widely used system in the design and assessment of education

components. Fig.2.4 shows the six Bloom‘s levels of cognitive domain.

 48

Figure 2.4: Cognitive levels (competence skills level) as per Bloom et al. (1956).

Therefore, from Kraiger‘s theory we conclude that there are three categories of learning outcomes

hence evaluation measures: cognitive-based, skill-based, and affective-based. Cognitive-based

measures include verbal knowledge measures, knowledge organization measures, and cognitive

strategies measures. Verbal knowledge is a measure of relevant amount and accuracy of knowledge

acquired during training and can be signaled from content knowledge coverage and grades scored as

indicated in achievement tests respectively at the end of the course.

Traditionally, knowledge and skill acquisition during training is assessed through achievement tests

(Kraiger et al., 1993) administered at the end of training season. In the context of this study, relevant

amount of knowledge would be measured relative to the domain body of knowledge and accuracy of

knowledge would be measured in terms of domain dependent aspects of problem solving. Since

performance in technical subjects (or skill related subjects) that provide technical skill required for

the industry role is a measure and predictor for problem solving skills (Kraiger et al., 1993), this

could be used as a signal for accuracy of knowledge and skills acquired during training.

Knowledge organization and cognitive strategies are measures of knowledge retention for durability

or transfer required for critical thinking, which are promoted through Bloom‘s competence skills as

covered in test items. Achievement tests use items that require learners to apply a particular cognitive

process to a particular type of knowledge (Mayer, 2002) or that test higher order thinking skills to

assess student ability to apply acquired knowledge and skills in situations inside and outside school

(Kellaghan & Greaney, 2003). There are 19 types of cognitive processes that can be classified into

six major categories: knowledge, comprehension, application, analysis, synthesis and evaluation

(Bloom et al., 1956; Mayer, 2002).

Verbal knowledge is necessary for higher order skills development and task performance at early

stages of training, but in advanced training stages tasks behaviors become internalized and

performance levels for tasks will be influenced as much as psychomotor differences and general

 49

intellectual abilities (Kraiger et al., 1993). Individual‘s academic capability is an index directly

relevant to training and employment opportunities, and performance Grade Point Average (GPA) in

high school and university undergraduate level is a good predictor of student capacity for the

industry role (Richardson & Abraham, 2012).

Skill-based outcomes can only be measured after the graduate is assigned the industry role because

they require hands-on performance measures. Finally, affective-based outcomes (attitude and

motivation) are highly dynamic and influence graduate choice of industry role, and therefore were

used as confounded variables in the proposed model.

2.7.5. Discussion Summary of Training Evaluation Models

Table 2.3 below captures a summary of how the three models contributed to the derivation of the

proposed research variables and their proposed measures of evaluation.

Table 2.3: Learning outcomes and their measures (Kirkpatrick, 1956; Baker & Mayer, 1999;

Kraiger et al., 1993)

Leaning

outcomes

Theoretical Models for Analysis Learning Proposed variables

for evaluation of

learning transfer

Source of

student

assessment

information

Evaluation

framework
Kirkpatrick’s

model

CRESST

model

(learning

outcome)

Kraiger’s

model

(measures)

Content

knowledge

Relevance to

job

Prior

knowledge

 Possession of Relevant

Content knowledge

Domain exam

questions

(qualitative)

Body of

knowledge

Problem

solving

competence

 Content

understanding

Cognitive

strategies

(processes)

Understanding of

Content (Cognitive

skills)

Domain exam

questions

(qualitative)

Cognitive skills

framework

 (Domain

independent)

Intelligence

Knowledge

organization

Intellectual ability to

learn (Academic

capacity)

Student GPA

(qualitative)

High school and

undergraduate

GPA

 (domain

dependent)

Technical

Verbal

knowledge

Ability to perform with

precision and speed

(Technical skills)

Domain

subjects

performance

(quantitative)

Performance

grades in domain

technical skills

subjects

Content knowledge is one that is taught in class by teachers. Teachers are known to align their

teaching to the demands of examinations and studies have shown considerable evidence that a

change in the content area examined results into a shift in the content to which students are exposed

(Madaus & Kellaghan, 1992; Eisemon, 1990) as cited by Kellaghan & Greaney (2003). Since

graduate‘s skills are influenced by individual‘s capability and subject content coverage (Kraiger et

al., 1993), analysis of the examination test items and student performance can provide insights into

 50

the nature and level of knowledge and skills learned at the end of the course (Kellaghan & Greaney,

2003).

Student performance GPA, in high school and university undergraduate, is a good predictor of

individual‘s academic capability and is an index directly relevant to training and employment

opportunities (Geiser & Sentelices, 2007; Richardson & Abraham, 2012). Fig.2.5 below summarizes

how the proposed mapping model variables are related to and derived from the Kraiger‘s conceptual

model. The yellow balloons represent one of the four independent factors in the model while the

green balloon represents the confounding factors.

Figure 2.5: Deriving variables of the proposed mapping model from Kraiger’s conceptual

model (Kraiger et al., 1993).

2.7.6 Conceptual Framework for the Proposed Mapping Model

The study‘s conceptual model was based on three theoretical models: Kirkpatrick‘s model, CRESST

model, and Kraiger‘s cognitive theory for training evaluation. The study hypothesized that the

problem solving competence requirement of an industry role could be determined by five cognitive

factors: Content knowledge, technical skills, cognitive skills, academic capacity of individual‘s

ability and Attitude-Motivational factors. Therefore, content knowledge, cognitive skills, technical

skills, and academic capacity are independent factors or variables and industry role is the dependent

variable as shown in the proposed conceptual model. Fig.2.6 shows the proposed conceptual

mapping model.

 51

Figure 2.6: The conceptual model for proposed mapping model as adapted from training

evaluation model (Kirkpatrick, 1956), learning evaluation model (Baker & Mayer, 1999),

training evaluation model (Kraiger et al., 1993).

Choice of industry roles may also be affected by attitude and motivation associated with

demographic factors. Demographic factors that have been known to influence motivation and

attitude include environmental factors, physiological factors, and psychological factors.

Environmental factors relate to location and specialization of the job which may be closely correlated

to university of study and type of bachelor‘s degree for an inexperienced graduate. Physiological

factors are related to the physical systems of the person which may be correlated to age.

Psychological factors are related to internal motives that make a person to seek for more success or

achievement and this may be correlated to grading system used to reward academic performance.

The above categories of demographic factors may influence not only the way the graduate is

attracted to an industry role but also the way the employer selects a graduate for an industry role and,

therefore, they were captured in the conceptual model generally as confounding factors.

2.7.7 Automatic Skills Mapping using the Proposed Mapping Model

The conceptual model of the proposed mapping model was used to describe each industry role

concept as a function of the independent factors defined in the conceptual model. Basically, the

concept of industry roles was linked to the concept of occupation which is a collection of jobs,

 52

sufficiently similar in work performed and grouped under a common label known as occupational

title (NOC, 2011). Some occupational titles are broad while others are specializations within

occupational area.

Traditionally, four types of structures are used to organize industry roles in any organization, namely

functional, geographical, product, and matrix (Malone, 2011). Fig.2.7a presents the four types of

structures used to organize industry roles. Therefore, occupational titles, and hence industry role

concepts, are predefined, are structured hierarchically, are associated with a certain skill level (as

explained in section 2.3.2) and occupational mobility of employees is vertical and upward.

Computationally, skills mapping problem can be viewed as a pattern recognition problem and

modeled as a ML task for mapping skills to predefined roles in the hierarchical structure using a

suitable traditional design methodology for problem solving, such as bottom-up or top-down.

Figure 2.7a: Organization Structures for Industry Roles (Malone, 2011)

2.7.7.1 Top-Down Versus Bottom-Up Approaches

1) Top-down Approach

In top-down approach, a problem is split repeatedly into smaller units and each unit is further split

over and over again until the resulting smaller problem unit is manageable. The aim is to solve the

problem progressively from generality to specifics where the underlying problem is described

hierarchically using a tree structure that is asymmetric and transitive (Silla & Freitas, 2011). As a

problem solving approach, top-down involves solving the problem from a known starting state

 53

(defined objective/requirements) to an unknown end state (solution or technical basis that satisfies

the objective/requirements) where repeated decomposition is a divide and conquer strategy towards

the unknown state (technical basis). The objective or requirements must be global and delegatable to

individual lower level components (Crespi et al., 2005) where the aim is to satisfy these known

requirements through unknown solutions.

In the classification problem, top-down method‘s objective is to first predict the most generic class

(generic level) then it relies on the predicted class to select the next level class where the only valid

candidate classes are children of the previous level predicted class, and this is repeated in each level

until the most specific class is predicted. Fig.2.7 presents two common types of hierarchical machine

learning taxonomic structures/trees that model and support top-down approach as tree (top-down)

and directed acyclic graph (DAG) as presented by Silla & Freitas (2011).

Figure 2.7b: Tree structure (left-side diagram) and DAG structure (right-side diagram)

According to Silla & Freitas (2011), the underlying structure of most hierarchical classification

problems are based on tree or DAG structures whose ―IS-A‖ relationship is asymmetric, anti-

reflexive, transitive, and has the following properties:

1) The only one greatest element R is the root of the tree.

2) For every class ci ; cj є C; if ci is related to cj then cj is not related to ci.

3) For every class ci є C; ci is not related to ci.

4) For every class ci; cj ; ck є C; ci is related to cj and cj is related to ck imply ci is related to ck.

Currently, classification problems with the above structures have been solved successfully using top-

down approaches. However, not all problems have such kind of structures and, therefore, top-down

approach may not be suitable for them.

2) Bottom-up Approach

In bottom-up approach, the problem solution is derived in the reverse order of top-down approach

(Barbedo & Lopes, 2007). The main idea is to analyze large volumes of individual pieces of

 54

information so as to find relationships and patterns that can help to generalize into a meaningful

solution. Ideally, the aim is to solve the problem progressively and incrementally from the most

specific and basic aspects to the most complex and general aspect. This approach begins with lower

level local processing and works towards higher level global processing, where lower level

specific/basic items are analyzed to provide information that helps to generalize into meaningful and

complex higher level items (Amir, 2014; Maloof, M.A, 1999).

As a problem solving approach, bottom-up involves solving the problem from a known end state

(solution/technical reality) to an unknown goal state (objective/requirements) where known solutions

are agglomerated in a more flexible way to satisfy unknown (or variety of realistic) requirements

(Crespi et al., 2005). In the classification problem, bottom-up method‘s objective is to first select the

technical basis (lower level) for describing/modeling classifier objects (higher level) that whose

prediction results are agglomerated in a more flexible way to satisfy a number of unknown or

realistic user requirements represented by class concepts.

Both top-down and bottom-up can be viewed as complementary approaches for mapping

predetermined requirements (top) to available possible solutions (bottom) which can be approached

from either side. While top-down begins with requirements then followed by stepwise refinement

down to technical basis for implementation, bottom-up begins with technical basis of implementation

and attempts to reach up the requirements by constructing higher level services and components on

already existing implementations (Crespi et al., 2005). Both approaches are valid and constitute

different ways of thinking which have been used widely to develop computing models such as

operating systems, computer games, banking systems among many others.

However, it is important to note that the underlying structure of some problems, such as skills

mapping, may not fit well to top-down approach. Besides, applying a bottom-up method on the

traditional taxonomic tree structures, as defined by Silla & Freitas (2011), leads to either class

inconsistency or multiple label classification problems as revealed by Barbedo & Lopes (2007). As a

result, for a bottom-up solution to work effectively, a suitable taxonomic structure must be defined

that promotes or facilitates bottom-up processing and results to a single class label prediction.

Consequently, part of the contribution of this study was to propose not only a machine learning

architecture for a skills mapping model but also a taxonomic structure that is bottom-up friendly.

 55

2.7.7.2 Proposed Taxonomy

Hierarchical classification is a special type of structured classification problem. Structured

classification is a problem where there is some structure (hierarchical or not) among the classes and

the output of the classification algorithm is defined over a class taxonomy. Wu et al. (2005) defined a

class taxonomy as a tree structured regular concept hierarchy defined over a partially order set (C,

R), where C is a finite set that lists all classes in the application domain and the relation, R,

represents the ―IS-A‖ relationship. According to Silla & Freitas (2011), most hierarchical

classification problems are based on: 1) trees or DAG structure whose ―IS-A‖ relationship is

asymmetric, anti-reflexive, and transitive, 2) flat or multi-class classifiers that are multi-label.

However, underlying structure of skills mapping problem may not fit well to top-down approach.

This is because occupational titles, and hence industry roles, are structured hierarchically according

to the organizational structure. This is evident from the hierarchical nature of most organizational

structures including functional, product, geographical, and matrix organization structures (Malone,

2011). Each occupation is associated with a certain skill level which varies increasingly upward in

the hierarchy, from lower skilled occupations to higher skilled occupations.

Further, occupational mobility of employees is vertical and upward i.e. employees start with

occupational roles at entry level positions and progress to increasingly higher skilled occupational

roles. Occupational roles at higher levels of the hierarchy are characterized by higher levels of

responsibility, accountability, and subject matter expertise gained through formal education or

extensive experience in lower skilled occupational roles (NOC, 2011). Occupational mobility may be

through promotion or appointment. Unlike promotion where an existing employee progresses

upward the occupational ladders based on observed job performance and experience, in appointment

an employee (new or existing) does not necessarily start at the lower levels occupational roles but

can be appointed to any occupational role at any level based on performance predicted from their

academic qualifications.

Therefore, skills mapping involves classifying a set of skills into one of predefined industry

occupational roles in the hierarchy. Since the natural occupational mobility of employees is upward,

then the classification strategy that fits well with this phenomenon is bottom-up approach. However,

the above two machine learning structures in Fig. 2.7b are top down oriented and may not be fit to

not only represent the skills mapping problem but also work well with bottom-up approach.

 56

Analysis of these four organization structures against the two ML structures (trees) available for

hierarchical ML revealed no tree could be used to describe all four organization structures at once.

Ideally, top-down tree is suited well for only functional, geographic, and product structures while

DAG tree is suited well for only matrix structure. Therefore, way forward was to create a ML

structure suitable to represent hierarchy of industry roles uniformly across the four possible

organization structures and in a way that also obeys the natural mobility of employees along the

organization structure, which is practically from bottom to top.

Literature (CWA16458, 2012) provided a clue that all industry roles are characterized by three

dimensions, namely main competence, specific competence, and proficiency. In the present study, a

tree was created that represented the three dimensions graphically and was proposed as the machine

learning structure suitable to achieve the research goal. Fig. 2.8 shows the proposed bottom-up

friendly taxonomic structure (BFTS) that represents the hypothetical structural organization of

classes as per the structured classification problem and classification assumptions in this method.

Figure 2.8: Bottom-up friendly taxonomic structure.

Figure 2.8 illustrates hierarchical structure with two branches (may be more), each branch with three

levels, a total of twelve leaf node classes (C1.5, C1.6, C1.1.3, C1.2.4, C1.2.1, C1.2.2, C2.5, C2.6,

C2.1.3, C2.1.4, C2.2.1, and C2.2.2), and a total of six parent nodes (1, 1.1, 1.2, 2, 2.1, and 2.2), and

root node (R). Leaf nodes represent specific competences, non-leaf nodes represent main

competences of individual roles while the upward arrow indicates the direction of employees‘

occupational mobility with time based on proficiency.

However, although the proposed taxonomic structure ―IS-A‖ relationship is asymmetric and ant-

reflexive as in Sillas & Freitas (2011) definition of ―IS-A‖ relationship, it departs away from this

definition by being anti-transitive with the following properties:

 57

1) The only one greatest element R is the root of the tree.

2) For every class ci ; cj є C; if ci is related to cj then cj is not related to ci.

3) For every class ci є C; ci is not related to ci.

4) For every class ci; cj ; ck є C; ci is related to cj and cj is related to ck does not imply ci is

related to ck.

In the context of skills mapping, the above proposed taxonomic structure represents the hypothetical

structural organization of occupational industry roles‘ problem, and reflects not only the natural

mobility of employees upward the occupational ladders but also promises effective bottom-up

mapping of graduate skills to industry roles that does not result to multiple label prediction problem.

As per the assumptions of the current skills mapping problem, each branch represents an

occupational function which refers to a skills category; each level represents proficiency which refers

to a skills level, non-leaf node represents main competence which refers to a main skill type, while

each leaf node represents specialty of industry role which refers to a specific skill type.

However, while each specialty is a member of a proficiency category, relationship between

proficiency categories is one of peer to peer where one category follows the other. As a result, these

concepts have been applied in subsequent discussion of the proposed machine learning architecture.

The main difference between the proposed taxonomic structure and the traditional tree structure is

eminent at the levels/non-leaf nodes where the former adopts peer-to-peer and the later adopts

parent-child relationships.

While in the traditional structure lower level parents are decompositions of higher level parents, this

is not the case in the proposed structure as each level is a category that indicates superiority of skills

proficiency. However, to be able to explore the proposed taxonomic structure from bottom to top as

it is natural with employee mobility in the organizational hierarchy, there was need of a special type

of architecture for the skills mapping model.

2.7.7.3 Proposed Machine Learning Architecture for Skills Mapping Model

Modeling skills mapping problem computationally involves abstracting it from the problem space

and defining the computational theory and tools needed to solve it (Vernon, 2009). Although

attempts have been made by posing this problem as a multi-class classification problem and solving

using machine learning theory (Jantawan & Tsai, 2013; Chien & Chen, 2008), existing studies have

 58

approached this problem using top-down instead of bottom-up method, hence are not sufficient and

their results may not be reliable.

Currently, bottom-up method has not been applied in skills mapping to industry roles, and therefore

part of the contribution of this study was to propose bottom-up ML architecture needed to generate

the automatic skills mapping model that promises reliable results. Fig. 2.9a illustrates a machine

learning architecture of a model for skills mapping to industry roles by exploring the proposed

taxonomic structure in Fig. 2.8 that represents the problem. The mapping model consists of a number

of objects that are hierarchically arranged to progressively group industry role constructs before

selecting the best.

At each level, different kind of objects are triggered to generate specific type of information that is

jointly used at higher levels for further processing and this continues up to the highest level where

the most promising class is predicted. The model objects at lower levels gather local information

about the demographic characteristic of the problem structure (height, width, siblings, evaluation

objects) which they then pass to higher levels whose objects collect further local information about

the potential function, proficiency and specialty before this information is subjected to higher level

global processing to reveal or predict the industry role class label. The industry role‘s label is

described in terms of function, specialty, and proficiency.

Figure 2.9a: Machine Learning Architecture for the Model

 59

Based on the problem formulation, the appropriate classification methodology was: 1) Multiclass

(i.e. many classes), 2) Hierarchical (i.e. several levels), 3) Bottom-up (i.e. vertically upward the

levels), 4) Supervised (i.e. trained with predefined classes). The multi-class classifier comprised a

collection of binary classifiers or objects organized methodically into layers that were activated from

bottom to top.

2.7.7.4 Basic Architecture of Model’s Classifier Objects

Machine learning is one of the commonly representatives of bottom-up analysis where various types

of data are analyzed to reveal relationships and patterns (Wirsch, 2014). As a result, the underlying

structure of each machine learning object is based on bottom-up method as per Fig. 2.6 of proposed

conceptual framework. Fig. 2.9b shows the basic architecture of each classifier objects indicated in

Fig. 2.9a.

Figure 2.9b: Machine Learning Architecture for the Model’s Objects

2.7.7.5 Choice of ML Algorithm for the Model’s Classifier Objects

Key questions when choosing machine learning algorithm is not about whether or not a learning

algorithm is superior to the others, but how significantly it outperforms others on a given application

problem under certain known conditions (Kononenko, 2001). Perhaps the best and simplest approach

could be to estimate the accuracy needed on the problem and choose the one that appeared to be most

accurate. However, accuracy alone is not sufficient (Kononenko, 2001). The trend in the

improvement of classifier performance is the concept of combining two or more learning algorithms.

 60

This is currently popular among researchers with the ultimate goal of generating more certain,

precise and accurate results.

Criteria for selecting learning algorithm are characterized by: 1) accuracy 2) speed of learning 3)

number of parameters 4) transparency (ease to understand a method) 5) results interpretability 6)

incremental learning (Stefanowski, 2010). Some of the best known algorithms include:1) decision

trees(DT), 2) rule-learners(RL), 3) Neural Networks(NN), 4) K-Nearest Neighbor(KNN), 5) Support

Vector Machine(SVM), 6) Naïve Bayes(NB) 7) Logistic Regression (LR)) and can be divided into

three groups based on assessment against the six criteria: group A (DT,RL), group B (LR,NB), and

group C (NN, KNN ,SVM).

While group A members have similar operational profile and strongly conform to quick learning,

fewer parameter handling, good transparency and high interpretability, group C members (although

have similar operational profile) have low learning speeds, many parameters therefore poor

parameter handling, poor transparency, and poor interpretability. However, group C is superior in

high accuracy and good incremental learning while group A is very poor in those aspects. To

moderate between these two extreme groups there is group B which conveniently harmonizes the

two groups by taking half of the good features of either side (of group A and B) while taking the

average of each feature of the remaining half.

Although group B members have joint added advantage of dealing with over fitting dangers,

members here complement each other on the speed of classification, tolerance of noise and missing

values. Therefore group B and C stood out as better candidates to use in the current research for

constructing the classifier. Table 2.4 outlines a summary of criteria that could guide selection of the

machine learning technique in each category.

Based on the analysis in Table 2.4 the study proposed to train the model using Naïve Bayes and

SVM learning algorithms. The selection was guided first by good incremental learning (ability to

refine its learned rules), then ability to deal with missing data and noise in data, and finally ability to

accurately perform. In skills mapping, skills requirements for industry roles gradually migrate as

environmental factors, such as technology, change. This demands the model to accumulate these

changes and refine its learning rules without necessarily requiring retraining of the model. Therefore,

the model needs to have a very good incremental learning property. As a result, group A ML

algorithms were technically removed from any further consideration.

 61

Besides, skills mapping model should be able to work with data collected in the field which is likely

to have missing data or non-relevant values (also known as outliers) without necessarily requiring

replacing them with meaningful values. However, K-Nearest Neighbors and Neural Networks

algorithms are very poor at tolerating missing values and noise data while SVM and Naïve Bayes

handle this easily by ignoring them (Kononenko, 2001; Kotsiantis, 2007). As a result, this improves

the classification speed of the model and therefore K-Nearest Neighbors and Neural Networks

algorithms were dropped from further consideration.

Finally, to ensure the right people are placed in the right job, the model must have very high

performance accuracy. SVM algorithm is highly associated with high performance accuracy which

should be an important property of the model. In contrast, naïve Bayes and Logistic Regression have

a moderate accuracy. However, naïve Bayes has been used widely as a benchmark algorithm in

many other studies (Kononenko, 2001) as opposed to Logistic Regression. Therefore, to ensure our

work is able to compare with results achieved in other related work for validity purposes, Logistic

Regression was dropped in favor of naïve Bayes algorithm.

Table 2.4: Features of main categories of machine learning algorithms (Kotsiantis, 2007)

TYPES OF MACHINE LEARNING ALGORITHMS

GROUP A GROUP B GROUP C

TYPE OF FEATURES
Rule-Learners(RL),
Decision Trees(DT)

Naïve Bayes(NB), Logistic
Regression (LR)

K-Nearest Neighbour(KNN)
Neural Networks(NN),
Support Vector
Machines(SVM)

GOOD

a) Quick learning
b) Fewer/Good parameter

handling
c) Good transparency
d) High interpretability

a) Quick learning
b) Fewer/Good parameter

handling
c) Good transparency
d) High interpretability
e) Good incremental learning

a) High accuracy
b) Good incremental

learning

BAD

a) Low accuracy
b) Poor incremental learning

a) Low accuracy b) Slow learning
c) Many parameter

handling
d) Bad transparency
e) Low interpretability

2.7.7 Synopsis of Theoretical Concepts Development

Lessons learnt from this section related to our research questions 1 & 2 included:

1) Concepts appropriate as machine learning attributes for mapping graduates‘ skills to

occupational industry roles must be based on strong cognitive theoretical frameworks. Fig. 2.9c

and Table 2.5 have summarized how these proposed concepts were derived and operationalised

 62

Table 2.5: Operationalization of Conceptual Framework concepts

Concept Indicator Variable Measure-

ment

1.Relevant content

knowledge

Domain Body of Knowledge Topic areas of Body of knowledge Scale

2.Cognitive skills Cognitive skills areas Skills areas of Bloom‘s Taxonomy Scale

3.Technical skills Domain technical subjects Domain technical subjects Scale

4.Academic capacity School GPA Average GPA high school and university Scale

5.Industry role Occupational industry roles Occupational industry roles Nominal

6. Demographic

factors as

Confounding factors

Environmental factors: University of study Nominal

Bachelor‘s Degree type Nominal

Location of ‗O‘ level study Nominal

Physiological factors: age Nominal

gender Nominal

Psychological factors: ‗O‘ level grading system Nominal

‗O‘ level results Nominal

Degree grading system Nominal

Bachelor‘s Results Nominal

respectively.

In the present study proposed concepts were approached from two cognitive dimensions, namely

knowledge and skills, and were derived from three cognitive theories. A total of 13 concepts

were revealed as follows: 4 as independent and 9 as confounding factors. The validity of these

concepts was to be investigated empirically and confirmed.

 63

Figure 2.9c: Development of conceptual model

2) While structural characteristics of concepts to be used as target classes for machine learning can

be flat or hierarchical, underlying nature of the problem greatly determines this. In the present

chapter, indeed literature analysis revealed occupational industry roles were structured

hierarchical and their underlying fundamental dimensions were identified as: main competence,

specific competence, and proficiency levels. The validity of this hierarchical structure would be

investigated empirically and confirmed.

3) Three issues that greatly affect the design and building of classifier models that learn from

observations are: 1) Input that consists of a sample of data instances described by a number of

attributes which may be of different data types but also parameter values 2) the type of feedback

for observational learning which can be of three types: supervised, unsupervised, and

reinforcement, and 3) the way the solution is to be represented which depends on feedback

output (Lavesson, 2006; Vernon, 2009). While representation of the solution in supervised

learning depended on whether the desired output was discrete or continuous, thus it could be

represented using a classifier or regression function respectively, in the present case it was a

classifier.

2.8 Summary

This chapter has presented detailed review of literature on background information on trends of

industry roles requirements, mismatch gap of academia skills and industry roles, related studies, and

state of the art technology that guided in providing answers to the research questions. Trends on

evolution of industry roles requirements were observed towards jobs requiring more education and

cognitive skills. Besides, a mismatch of graduates‘ skills and industry roles was noted as the main

problem between academia and industry, and whose underlying cause was poor mapping of

graduates‘ problem solving skills to industry roles.

However, approaches of related studies towards this mismatch problem indicated models with a

broad range of machine learning attributes that either are not relevant to industry roles performance

or are not usable across occupational domains. After careful literature review, three learning and

evaluation theories provided concepts to support explanation of our solution on this aspect of the

problem. Although state of the art technology indicated potential of a better technique to describe the

solution using a structure that could represent industry roles, it needed some modification to

 64

correctly reflect the hierarchy of industry roles across occupational domains. In summary, the

chapter culminated with a proposed conceptual model of the mapping model and a proposed machine

learning structure that correctly reflects the structure of industry roles.

 65

CHAPTER 3: RESEARCH METHODOLOGY

3.0 Introduction

This chapter discusses the research philosophy, research strategy including research methods,

research design model, and data analysis and presentation. The chapter is organized as follows:

Section 3.1 discusses research philosophy, section 3.2 outlines research design, section 3.3 describes

the research framework, section 3.4 highlights research methods, section 3.5 describes the

methodology for developing the model, and section 3.6 concludes the chapter with a summary.

3.1 Research Philosophy

Research philosophy relates to the development of knowledge and the nature of knowledge. It is a

belief system or view about the world that guides the investigation. Philosophical views about the

world assumed by the researcher during investigation are described under broad philosophical

paradigms such as epistemology, ontology, and axiology.

Epistemology is a term that refers to the theory of knowledge that provides a philosophical support

for accepting knowledge discovery and especially how to ensure the adequacy and legitimacy of

investigation for the discovered knowledge (KIM, 2009). Hirschheim (1985) reiterates that

knowledge is acquired through an inquiry process. At one time, Greeks classified knowledge into

two types, i.e. doxa (what is believed to be true) and episteme (what is known to be true), and

method of inquiry involved transformation of doxa to episteme. Therefore, science as a method of

inquiry is considered as the process of transforming what is believed to be true to what is known to

be true.

The agreed set of conventions in science is the scientific method, and therefore, for anything to be

called scientific knowledge must conform to the scientific method. However, philosophical questions

were raised on how to know that something was true. This led to a major difference in opinion over

the nature of truth and how to arrive at it through the scientific investigation (Easterbrook et al.,

2007).

Consequently, ontology is a term that refers to the nature of reality in terms of the way the world

objects operate and provides a philosophical support for accepting knowledge discovery (Saunders,

et al., 2009). Two popular aspects of ontology are objectivism and subjectivism. Objectivism

assumes that social entities exist in the external reality outside the mind of a social actor, while

 66

subjectivism assumes that social phenomena exist in the mind of the social actors and is created from

the perceptions and consequence actions of the social actors.

Two well known philosophies based on the above two paradigms are positivism and interpretivism.

Positivists believe that reality is fixed and can be observed and described from an objective point of

view. It advocates the use of highly structured methodology that facilitates replicability, repeatability

and generalization. Also, it assumes that the researcher is independent of, and neither affects nor is

affected by, the subjects of research. On the other hand, interpretivists believe that reality is too

complex and in order to understand it without losing rich insights of its complexity, some kind of

subjective interpretation and intervention must be involved (Levin, 1988). Science is based on a strict

conception of positivism, an epistemology which posits beliefs and scrutinizes them through

empirical testing (Hirschheim, 1985).

In computing, Alavi & Carlson (1992) reviewed 902 Information Systems (IS) research articles and

revealed that all empirical studies were positivist in approach. Orlikwoski & Baroudi (1991) as cited

by Bolan & Mende (2004) reveal 96.8% of the use of positivists approach in IS based research

journals in US. Further, there is reliable evidence that positivism has had successful association with

physical and natural sciences in which computer science belongs (Hirschheim, 1985). Hirschheism

(1985) summarizes five pillars of positivisms which provide a link between our study and positivism.

1) Unity of scientific method

Scientific method is the only valid and accepted approach for knowledge generation. Our study

embraced the conventions of scientific method which include replicability and generalization.

2) Search for casual relationships

We had a desire to find regularities and casual relationship among the elements of study. We

attempted to understand regularities and casual relationship between graduate skills and industry

roles.

3) Belief in empiricism

We believed that valid data is one that was experienced from the senses and extraordinary

experiences, conscious or unconscious arrangement of apparatus, and subjective perceptions were

not to be acceptable.

4) Science and its process is value free

Science and its processes are value-free and as a result the undertaking of this study had no

relationship or connection with political, ideological or moral beliefs.

 67

5) Foundation of science is based on logic and mathematics

 Logic and mathematics provided the basis for quantitative analysis which is an important tool for

searching casual relationships. We sought for the casual relationship between graduate skills and

industry roles experimentally, where the end product was a law-like generalizations derived through

quantitative analyses.

Since the basic idea was to come up with credible findings, we had a clear understanding that

graduates were observable objects that were real while industry roles were observable social

phenomena. Hence, there was an assurance that the data collected would lead to credible findings.

Moreover, knowledge and skills imparted to graduates in academia are realities that exist separate

from the graduates who benefit from that reality. This is because the description of the content of

knowledge and skills intended for the graduates is well documented in the curricula and the extent to

which they are delivered to the graduates is well expressed in the exams papers administered to the

students, hence this content is an objective entity.

Although industry roles with similar role names in different organizations may have job descriptions

that are different, the role names are just a creation of the social actors who create them. Ideally, the

underlying functional requirements are realities that exist separate from the social actors who occupy

them and may distinguish industry roles objectively. This is why the researcher believed the

relationship between graduates‘ skills and underlying functional requirements of industry roles were

fixed and could be observed and described from an objective point of view.

As a result, a structured methodology that was used in this study promised objectivity to search and

reveal any regularities and casual relationship between graduates‘ skills and industry roles. The

structured search and analysis not only enabled the variables that were relevant to the relationship to

be explored but also enabled the precise relationship to be described and manipulated in order to

observe its behavior. This is to say, the ontological position taken by this study was that of

objectivism. And, because positivism is associated with the notion of observable social reality and

phenomena that are considered to be real where the assumption made is only real objects can

produce credible data, this is clear evidence that this study fitted well to this approach.

To collect this kind of credible data there was need to develop a research design that would enable

relevant research hypotheses to be defined and tested using factual data. Factual data was collected

with instruments that ensured same questions were asked to the respondents in exactly the same way.

Table 3.1 presents a spectrum of research design methods as described by Travis (1999) as cited by

 68

Bolan & Mende (2004) which formed part of the elements of the research strategy to achieve this

goal.

 Table 3.1 Taxonomy of research methods (Bolan & Mende, 2004)

In research, for the results to be credible it is important to know the role of the researcher‘s values in

the research process. This is relevant to both the researcher and research stakeholders. To the

researcher, this may raise the issue of individual‘s honesty in the research process, awareness of

value judgments when drawing conclusions and this may help in deciding what is appropriate

ethically and answering queries in case they are raised about a decision.

Axiology is a term that is widely used to refer to the study of judgments about values in terms of the

role values play in making judgment about a decision and provides a philosophical support for

accepting knowledge discovery (Saunders, et al., 2009). The role of the researcher‘s values adopted

in this research process related to issues of scientific honesty and ethics to be observed in the

selection of data, giving credit where it was due, and avoidance of issues of scientific misconduct.

NAS (1995) provided a guideline that was used both to raise awareness of value judgment when

drawing scientific conclusion and to caution the researcher on issues of scientific misconduct, ethics

and honesty adopted in this study.

3.2 Research Design

Research design is a logic of enquiry or plan or blueprint for an investigation towards obtaining

answers to research questions within a caution of controlled variance. While no research design is

more superior to all others in all research areas (Benbasat et al., 1987), selection of the design was

 69

influenced by the nature of the research topic, goals of the researcher and the paradigmatic

assumptions.

With respect to specific goals, paradigmatic assumptions played important role especially when

positivism is highly associated with deductive and quantitative approaches. Deductive approach

enabled not only the formulation and testing of hypotheses but also identification of the possible

results, research method for obtaining the results as well as a validation strategy appropriate for the

research results (Shaw, 2002).

Indeed, our design was a mixed methods research design that focused on providing a research

purpose for each research question and a plan by which the research purpose was to be achieved.

This enabled to reveal the appropriate methods and procedures that were suitable to help collect and

analyze data so as to provide research answers. The research approach adopted corresponds roughly

to the three major categories of scientific methods consisting of observe, formulate, and evaluate

(Glass, 1995).

In computer science, literature reveals the corresponding research approaches are descriptive (also

known as characterization), formulative (also known as design), and evaluative respectively (Ramesh

et al., 2002; Glass et al., 2004). Descriptive research is concerned with a systematic process of

describing systems or situations or groups so as to portray accurately the underlying characteristics,

formulative research is concerned with formulating models, processes, or algorithms so as to explore

new insights into a phenomenon, while evaluative is concerned with evaluating models or systems or

algorithms deductively, or interpretively, or critically so as to test casual relationship between

variables. Formulative is the most widely used approach with 79.15% followed by evaluative and

descriptive with 10.98% and 9.88 respectively based on a survey by Ramesh et al. (2002).

Based on the type of result expected for each research question, appropriate research approaches for

obtaining the results as well as to validate the results were determined. In computer science, research

results may be of the type of model (qualitative, empirical, analytical, and descriptive), procedure or

technique, notation or tool, answer or judgment, or report (Shaw, 2002). Table 3.2 summarizes the

characterization of our study‘s research questions as adapted from Shaw (2002), and proposed

research design for each.

Therefore, the research methods applied in the study were determined by the nature and character of

research questions, expected results and type of results validation in the study. Shaw (2002) provided

a guideline for describing the character of research questions in computer science by outlining the

 70

Table 3.2a: Characterization of research objectives (adapted from Shaw (2002))

Research objective/question
Criteria for characterization of research objectives

Research type Question type Results

expected

Method expected

to validate results

1) What concepts are appropriate as

machine learning attributes for

mapping graduates‘ skills to

occupational industry roles?

Generalization/

characterization

(exploratory)

Qualitative

model

Evaluation &

Analysis

Descriptive (result)

&

Experimental

(validation)

2) What is the structural

characteristic of concepts that

correctly reflect the hierarchy of

industry roles required as target

classes for machine learning?

Generalization/

characterization

(descriptive)

Qualitative

model

Analysis Descriptive (both)

3) How do we build using these

concepts, an appropriate machine

learning model for mapping

graduates‘ skills to hierarchically

structured occupational industry

roles?

Design

(formulative)

Empirical

model

Evaluation &

Analysis

Experimental (both)

4) How do we evaluate

performance and validity of the

mapping model?

Evaluation Answer/

judgment

Evaluation &

Analysis

Experimental (result)

&

Descriptive (validation)

approach types of research questions, types of research results, and types of validation and illustrated

how this could be used as a guide to choose a research design.

Using Shaw‘s model, we were able to characterize the research questions and concluded that two

questions (1 & 2) were of the type generalization/characterization, one (question 3) was of design

type, and the remaining one (question 4) was of the type evaluation. Further, one question (4) result

was of the type analysis/judgment and another (question 3) of the type empirical model, while the

other two (questions 1 & 2) results were of the type qualitative model. Finally, the type of validation

for three questions‘ (1, 3, & 4) results was of type evaluation/analysis and one (question 2) was only

analysis. The proposed research types for each were based on the four research purpose i.e.

exploratory, descriptive, diagnostic, and experimentation.

3.2.1 Synopsis of Research Design

1.) To establish concepts appropriate as machine learning attributes for mapping graduates

skills to occupational industry roles

There was need for a research design that provides a way to analyze literature and identify concepts

appropriate as machine learning attributes for mapping skills to industry roles then experimental

 71

evaluation to determine valid attributes. The type of result expected to be a qualitative model,

namely conceptual model to be established and validated through literature analysis and

experimental evaluation respectively. Based on this requirement, appropriate research designs to

collect the data for providing answers were literature review/analysis and experimental designs.

a) Literature Review/Analysis

Based on literature review, we were able to identify candidate attributes that determine ones

performance in a particular industry role.

b) Experimental design

From the candidate attributes selected during literature review in a), we were able to conduct feature

selection experiments to determine the most relevant attributes.

2.) To establish structural characteristic of concepts that correctly reflect the hierarchy of

industry roles required as target classes for machine learning process

There was need for a research design that provides a way to analyze and identify structural

characteristic of industry roles then collect data to analyze concepts to be used as target classes for

machine learning purpose. The type of result expected to be a qualitative model, namely hierarchical

machine learning structure to be established and validated through literature and descriptive analyses

respectively. Based on this strategy requirement for research question 2, the most appropriate

research designs to collect the data for providing answers were literature review/analysis and

descriptive survey designs.

a) Literature Review/Analysis

Based on literature, we were able to identify the most appropriate structure for organizing industry

roles for machine learning purpose

b) Descriptive Survey

From the candidate attributes selected during literature review in 1a) and structure identified in 2a),

we were able to prepare dataset for machine learning.

3.) To build using these concepts an appropriate machine learning model that maps graduates’

skills to hierarchically structured industry roles

 72

There was need for a research design that provides a way to design a mapping model through

predictive modeling and experimental analyses to optimize the model then experimentally evaluate

to get the best fit model. The type of result expected to be an empirical model, namely machine

learning model to be built and validated through experimental analyses and experimental evaluations

respectively. Based on this strategy requirement for research question 3, the most appropriate

research design to collect the data for providing answers was experimental design.

a) Experimental Design

From the dataset prepared in 2b), we were able to conduct algorithm selection experiments and

algorithm optimization experiments to build the machine learning model.

4.) To evaluate the performance and validity of the machine learning mapping model

There was need for a research design that provides a way to build a model‘s prototype and

experimentally evaluate model‘s prediction performance then analyze performance vis-à-vis other

related models. The type of result expected to be a judgment, namely performance result to be

validated through comparative literature analysis. Based on this strategy requirement for research

question 4, the most appropriate research designs to collect the data for providing answers were

literature review/analysis and experimental designs.

a) Literature Review/Analysis

Based on literature we were able to identify appropriate benchmark models and their performance

properties.

b) Experimental Design

From the machine learning model developed in 3a) and benchmark models identified in 4a), we were

able to conduct performance evaluation experiments and benchmark comparisons to evaluate

performance and validity of the model.

3.2.2 Literature Review/Analysis

A model captures relevant features of a phenomenon and these features a derived from theoretical

literature, as elaborated by Onweugbuzie et al. (2012), which forms the foundation of the study.

Therefore, this research method was vital in formulating the research models using explorative

variables. This was after enough evidence was gathered that literature analysis is widely used in

 73

computer science (Glass et al., 2002, 2004; Ramesh et al., 2004; Vessey, 2001; Zelkowitz &

Wallace, 1997) as revealed in a survey by Holz et al. (2006).

This design method was applied to three of our research questions, first, second and fourth. First

research question required to establish concepts appropriate as machine learning attributes for

mapping graduates‘ skills to industry roles. The design method was used to select appropriate

conceptual literature on theories related to learning outcomes and to collect literature data on

appropriate concepts as learning outcomes that promoted performance in the job. Qualitative analysis

on literature data collected helped to analyze similarities between these theories and relationships

towards job performance before constructing the proposed conceptual model (Dodig-Crnkovic,

2002).

Second research question required to establish structural characteristic of concepts that correctly

reflected the hierarchy of industry roles required as target classes for machine learning. In this

question, literature analysis was used to identify appropriate conceptual literature on frameworks

related to describing or organizing industry roles and to collect literature data on appropriate

dimensions for describing or organizing industry roles across companies. Qualitative analysis on

literature data collected helped to analyze structural elements and their relationships towards

describing industry roles across companies before constructing a hierarchical structure for machine

learning that correctly describes industry roles.

Fourth research question required to evaluate performance and validity of the model. As a result,

literature analysis was used to identify appropriate empirical literature on machine learning models

for skills mapping and to eventually collect relevant information pertaining to their performance

parameters. Qualitative analysis was used to compare present study‘s model with other literature

models before validating its performance. Table 3.2b outlines a summary of qualitative activities of

literature analysis under each target research question.

Table 3.2b: Literature search design

Activity Research 1 Research 2 Research 4

1. Search Learning theories Industry roles‘ frameworks Skills mapping models

2. Identify Relevant theories Relevant frameworks Relevant ML models

3. Select Relevant concepts Relevant dimensions Relevant performance parameters

4. Construct Proposed

conceptual model

proposed hierarchical

structure

Comparison criteria

 74

3.2.2 Survey

Sufficient evidence was gathered revealing that surveys have been used successfully in computer

science (Glass et al., 2002, 2004; Ramesh et al., 2004; Vessey, 2001; Alavi & Carlson, 1992;

Orlikowski, 1991; Farhoomand, 1999; Hamilton & Ives, 1982; Vogel, 1984) as surveyed by Holz et

al. (2006). Mathers et al. (2007) reveal survey can be cross-sectional or longitudinal and provide

detailed description of each.

Then, survey method was applied to research question two where the objective was to collect data

that was used to describe structural characteristic of industry roles. The basic idea was that the model

must be learned and tested with data on employees profile and applied to recently graduated

university students in the academia who were unemployed. Graduate employees who have been

holding industry roles were a source of primary data that was collected through survey. Equally,

exams past papers of the relevant subjects in the respective domains were a source of primary data

for unemployed graduates where the model would be deployed.

Descriptive survey was employed in executing this goal under research question two where industry

roles concepts needed to be determined, and the survey was conducted by designing two samples and

questionnaire instruments for each. One instrument was designed as a survey questionnaire to collect

data from employees‘ sample so as to establish employees industry roles concepts to be used as

target classes for machine learning while the other as an analysis questionnaire to collect data from

exams past papers to characterize institution in academia towards industry roles.

The exact details of sample design and instrument validation are provided in sections 3.3.2 and 3.3.3

respectively. Table 3.2c provides a characterization of the survey design that guided the current

study‘s survey. The main justification for using survey in this study included: 1) need to collect data

from a wide number of variables, such as 17 variables in this case, 2) need to collect data

retrospectively for a phenomenon that has been in existence for while, such as graduates who have

been in employment for a while and exam past papers that were done a while ago, only survey could

achieve this.

Descriptive analysis was used to characterize industry roles according to the data collected based on

attributes of each reference framework identified during literature review. As a result, to provide

focus towards the research question under investigation using this research design six aims were set:

1) to establish various industry roles that could be used as target classes for machine learning, 2) to

analyze central tendency characteristics of these industry roles as potential target classes, 3) to

 75

analyze class boundaries of industry roles as potential target classes, 4) to test significance of class

differences of industry roles, 5) to establish academia bias towards these industry roles, 6) to

establish underlying structure of industry roles.

Table 3.2c: Characterization of research survey design

3.2.3 Laboratory experiment

In Software Engineering and generally in computing, there is a predefined way of carrying out

experiments. Pfleeger (1995) has elaborately defined the six steps to follow as: 1) conception, 2)

design 3) preparation 4) execution 5) analysis 6) dissemination and decision making. Besides,

Wohlin et al. (2003) outlines basic principles that should be observed before an experiment is

conducted. Following these guidelines, laboratory experiments enabled the researcher to validate the

proposed conceptual model generated in research question one as well as to build and evaluate the

machine learning model as per the research questions three and four respectively.

Through experiments the model performance was evaluated by evaluating results obtained with the

model. The model was experimented with three kinds of datasets. First dataset was manually created

from employees profile data collected from survey conducted in the domain of Software

Engineering. Second dataset was a benchmark dataset derived from literature. Third dataset was

manually created from employees profile data collected from survey in the domain of academic

librarians. Basically, the experiments were guided by three questions: 1) what is the performance of

the model in mapping graduates‘ skills to industry roles? 2) How do we ensure the validity of the

 76

results? Answers from these experimental questions enabled the researcher to provide answers to

three research questions, research question 1, 3 & 4. Using Pfleeger's (1995) strategy Table 3.2d

outlines design characterization that was generated for the experiments.

Table 3.2d: Characterization of research experimental design (adapted from Pfleeger (1995))

Step Design

element

Research Question 1 Research Question 3 Research Question 4

1
.

C
o
n

ce
p

ti
o

n

Research

question

What concepts are appropriate

as machine learning attributes

for mapping graduates‘ skills

to occupational industry roles?

How do we build an appropriate

machine learning model for mapping

graduates‘ skills to hierarchically

structured occupational industry roles?

How do we evaluate the

performance and validity of

the machine learning model?

Experiment

objective

Exp. A: To select relevant

features for the model

Exp. B: To select relevant parameter

values for the model

Exp. C: To estimate generalization

performance of the model

Exp.D: To evaluate model

performance using three

different datasets

1
.

D
es

ig
n

Hypothesis H0A: All features are equally

relevant for better performance

of the model

HoB: Any parameter value induces

better performance in the model

HoC: All induction algorithms induce

equal performance to the model

H0D: There is no significant

performance difference of

the classifier model in

different industry domains

Experimental

unit

Graduate Employees

(Software Engineering

Domain Field & Lit)

Graduate Employees (Software

Engineering Domain Field & Lit)

Graduate Employees

(SE(Field & Lit)

Academic Librarians(Field)

Experimental

subjects

ML Models (filter algorithms) ML Models (induction algorithms) ML Models

Dependent

(response)

variable

Performance (accuracy) Performance (accuracy) Performance (accuracy,

precision, recall, f1_score)

Independent

(state) variables

Features, parameters,

algorithms

Features, parameters, algorithms Features, algorithms

2
.

P
re

p
ar

at
io

n

&
 E

x
ec

u
ti

o
n
 Data

preprocessing

Training dataset, test dataset Training dataset, test dataset Training dataset, test data set

Randomization 6-10 random trials 6-10 random trials 6-10 random trials

Local control 5-fold cross-validation 5-fold cross-validation 5-fold cross-validation

3
.

A
n

al
y

si
s

Pre-Analysis Selection of analysis technique Selection of analysis technique Selection of analysis

technique

Main-Analysis

(Model

Evaluation)

Evaluation of model

accuracy using benchmark

(dataset2):

Approach : Hypothesis testing

Technique :ANOVA, Paired

sample T Test

Significance value: 0.05

Evaluation of model accuracy using

Field & benchmark (dataset2):

Approach : Hypothesis testing

Technique :ANOVA, Paired sample T

Test

Significance value: 0.05

Evaluation of model

performance differences in

three datasets: Accuracy,

Precision, Recall, F_score

Approach : Hypothesis

testing

Technique : Paired sample T

Test

Significance value: 0.05

 77

The need to use laboratory experiments was as a result of the following reasons: 1) need to

manipulate one or more variables as observed in the data collected, such as in this case knowledge

and skills variables, 2) need to identify precise relationships between small numbers of variables,

such as in this case knowledge-cum-skills variables and industry role variable.

3.3 Research Framework

Research framework operationalized the research design to provide answers systematically to the

main research question: How do we build a data driven model using machine learning for mapping

graduate‘s skills to hierarchically structured industry roles? There were several approaches in

machine learning and especially in data mining which could be used to operationalize the research

design, but one that was considered significantly important and also widely used in data mining and

was both technological and sector independent was Cross Industry Standard Process for Data Mining

(CRISP-DM). CRISP-DM aims at making projects less costly, more reliable, more manageable,

faster and, most importantly, more repeatable (Wirth & Hipp, 2000).

The six main phases of CRISP-DM model are:

1) Business understanding – understanding objectives and requirements from business view.

2) Data understanding – familiarizing with data quality and interesting subsets

3) Data preparation – constructing dataset from initial raw data

4) Modeling – selecting modeling techniques and parameters for model building and assessment

5) Evaluation – assessment of model results

6) Deployment – generating a report or implementing a repeatable data mining process

However, Guruler & Istanbullu (2014) note that CRISP-DM model is highly recommended for

technical projects that follow a structured plan-do-check-act (PDCA) cycle and therefore to achieve

optimized quality and success in data mining projects they recommended combining the two. PDCA

cycle is a quality-driven approach to change and problem-solving that consist four phases:

1) Plan – identify and define the problem

2) Do – develop and test a potential solution

3) Check – measure how effective the tested solution is and whether can be improved

4) Act – implement the improved solution

 78

Therefore, to ensure high quality and reliable results CRISP-DM model and PDCA cycle were

combined and presented in a research framework with ten systematic stages as shown in Figure 3.1

and described below:

Figure 3.1: Research framework as adapted from Guruler & Istanbullu (2014)

While PDCA provides the underlying blueprint for the research design, CRISP-DM provides the

operational activities to realize the end product of the research as follows:

a. Business problem domain understanding – understanding objectives and requirements from

business point of view. This was achieved through three operational activities: identifying in

the literature 1) factors that promote performance and productivity in the job, 2) various

industry roles occupied by personnel in a given occupational domain and 3) bachelors degree

programs in the academia that provide a source of skills towards these occupational industry

roles.

b. Data understanding – familiarizing with data quality and interesting subsets. This was

achieved through two operational activities: data collection and analysis of 1) identified job

specifications for occupational industry roles and 2) trends towards those roles in the

academia so as to establish institutions‘ biases towards industry roles. The aim of this task

was to verify validity of the initial assumptions of the current study that industry roles are

 79

hierarchically structured and there was skills bias in various institutions in the academia

towards these industry roles.

c. Data preparation – constructing dataset from initial raw data. This involved transforming data

and mapping it into the proposed taxonomic structure and selecting the most meaningful

features using standard machine learning techniques.

d. Modeling – selecting modeling techniques and parameters for model building and

assessment. This involved computational modeling by simplifying the phenomenon of

interest to be studied where the best model was selected.

e. Evaluation – assessment of model results. This involved creating a prototype of the model

and assessing its performance.

f. Deployment – generating a report or implementing a repeatable data mining process. This

involved mapping the evaluation results to the original objectives so that conclusions could

be drawn.

3.4 Research Methods

Research methods refer to schemes, procedures, algorithms and techniques that were used to perform

research operations that included data collection, data analysis, and results evaluation. Three

categories of research methods were applied: 1) data collection or sampling methods, 2) data analysis

methods, and 3) evaluation methods.

3.4.1 Sampling

Data collection, also known as sampling, focused on availing data for the study. Depending on the

research design method, the source of data could be literature review where literature analysis was

used as data collection method, survey where questionnaires were used as data collection methods,

experiments where experimental observations were used as data collection method, and case study

where a variety of data collection methods could be employed. In the current sub-section, the focus

was data collection methods that availed data from the population of study.

1) Target Population

We targeted two populations in one domain of occupation: past exam papers of degree programs in

the academia and graduate employees, both belonging to the same domain. A domain expert was

 80

used to create a checklist that was used to filter the industry firms and universities‘ degree programs

from which the target personnel and exam past papers populations were formed (Refer to 3.5.2.1).

2) Sampling Method

The goal was to use a sampling method that would make the study as representative of sources of

knowledge and skills as possible and that truly reflects the multi-university environment in the

academia across the country. Therefore, multi-stage sampling technique was applied to draw the two

samples i.e. each sample created in two stages. For employees, sampling of industry firms was

performed (stage 1), before employees were sampled from each firm (stage 2). For exam past papers,

sampling of degree programs was done (stage 1), before exam past papers were sampled from each

degree program (stage 2). Refer to sub-section 3.5.2.1 for specific details.

For employees‘ sample, simple random sampling was used to generate stage-1 sample of the firms

and stratified random sampling was applied to select stage-2 sample of employees (so that each firm

contributes employees to employees‘ sample). For exam past papers‘ sample, simple random

sampling was applied to select stage-1 sample of universities where the required bachelor‘s degree

programs were offered and stratified random sampling was applied to select stage-2 sample of exam

past papers (so that each degree program sampled contributes to exam past papers‘ sample).

Three types of questionnaires were designed, two to collect data from employees (ordinary

employees and head of department/sections separately) and one from exam past papers. Employees‘

questionnaire was used to collect data for various job titles and their requirements in terms of content

knowledge, cognitive skills, technical skills, and academic capacity. Analysis questionnaire was used

on exam past paper to collect data on cognitive skills and content knowledge.

For each exam past paper, each question was split into two parts i.e. verb and topic parts. The verb

part was used as the indicator for the cognitive skills, while the topic part was used as the indicator

for the content knowledge. Bloom‘s taxonomy has been used as a reference framework for extracting

cognitive skills from each question‘s verb part, while domain‘s body of knowledge has been used as

a reference framework for extracting content knowledge from the topic part of the question. Dalton

and Smith (1986) verb list was used to map the verb part of each question to Bloom‘s taxonomy. The

marks awarded to the question were recorded as the value for the cognitive skill as well as

knowledge type of the question. Two domain experts have been used to evaluate the past exam

papers and their results were correlated.

 81

For each employee‘s job title, requirements for content knowledge, cognitive skill, technical skill,

and academic capacity have been assessed in a set of lickert scale type of competence item/sub-

variable matrix whose score range from 1=least important to 12=most important.

The three questionnaires details are summarized below:

1) Questionnaire to collect data from each employee (inexperienced). Details collected were:

 Personal information (gender, age, university of study, degree program, year of graduation)

 Academic performance (secondary school performance, undergraduate performance, domain

area subjects‘ performance)

 Domain area industry requirements (job title, job activities, domain area knowledge demands,

Cognitive skills demands,).

2) Questionnaire to analyze and collect data from each past exam paper. Details collected were:

 Exam information (university and year of administration, degree program name, number of

questions, total marks allocated, duration)

 Exam content (knowledge area covered and rating, cognitive skills covered and rating).

3) Questionnaire to collect data experienced personnel (Leader or expert). Details collected were:

 Firm/Department information (Regional size, staff size, products or services delivered)

 Domain area job titles (graduate entry level titles, minimum entry grades, job activities, title

knowledge area rating, title cognitive skills rating, title technical skills rating)

3.4.1.1 Reliability and Validity of Research Instrument

The data reliability, internal-consistency reliability coefficients for all completed questionnaire

(during both pre-test and actual survey) were determined using Cronbach‘s alpha. The questionnaire

was administered to the same respondents two times. After the fast administration, some time was

allowed to elapse, long enough to eliminate response by remembering the responses in the first

administration. The scores on the two sets were then correlated and reported.

The validity of the instrument was achieved through a pilot study using a section of the respondents

in each of the cases of the study before the actual study was conducted. This was necessary to

determine whether the respondents would find the questions in the questionnaire precise and concise

to the subject of the study. Any questions found ambiguous to the study was restructured to make the

instrument more valid.

 82

Ethical issues or norms are important in research because they tend to deal with and discourage

cheating through falsifying and fabricating. Ethical issues are important in promoting truthfulness,

honesty, social responsibility and integrity in research (Shamoo et al, 2009).This research adopted

the following ethical principles as adapted by (Shamoo et al, 2009; NAS, 1995):

i. Honesty – was achieved through citing relevant sources of information as used in the research

ii. Objectivity- was achieved by following the format of research as provided by the School of

Computing and Informatics, University of Nairobi.

iii. Integrity –was achieved by ensuring the research design and data was valid and reliable

through validating research instruments.

iv. Legality – was achieved through complying with the laws governing research in Kenya by

acquiring permission and authorization to conduct research from National Council of Science

and Technology (NCST) of Kenya which is the board in charge of research in Kenya.

3.4.2 Data Analysis and Presentation

Data analysis focused on establishing relationships between the data and the unknowns. The choice

of data analysis method depended on the nature of the unknowns, namely qualitative or quantitative.

For example, to establish relationship between theoretical concepts in various theories, literature data

required qualitative analyses methods such as qualitative comparison analysis technique; to establish

descriptive summaries in a population of study, survey data (questionnaire or interview collected)

required quantitative analyses methods such as descriptive statistics techniques.

We had four unknowns which were largely quantitative and these were the independent variables,

namely Content Knowledge, Cognitive skill, Technical skill, and Academic Capacity. Each was

assessed in a set of lickert scale type of sub-variable matrix (competence item) whose score range

from 1-12; least important to most important. Each sub-variable score on each competence item was

then aggregated to a total score which was then divided by the maximum possible score of all

competence items then multiplied by twelve to reduce the sub-variable score to an index ranging

between 1 and 12. An average index was then calculated from values of all sub-variable scores to

give overall index for each independent variable (refer to section 3.7.1).

Thus, to achieve the objectives of data analysis, data collected through the questionnaires was pre-

processed using Excel spreadsheets before creating the data files and subjecting the data to actual

analysis.

 83

3.4.2.1 Data Pre-Processing

In order to use the proposed model, data was modeled according to the four independent variables.

The industry role requirements for each variable were captured and calculated using the tables

described below. With the exception of Capacity variable where the table content type is indicated as

column headings High School GPA and Undergraduate GPA, the rest derived their content type from

reference frameworks.

The reference framework for content knowledge variable was based on the specific domain‘s body of

knowledge, for technical skills variable it was based on specific domain‘s competence framework,

while for cognitive skills variable it was based on Bloom‘s taxonomy as the cognitive framework.

Data collected from industry experts, heads of sections, was used for reliability validation, while data

collected from employed graduates and past exam papers was used as values for individual cases.

Excel worksheet was used in the preprocessing of data. The researcher proposed to use the coding

scheme described below.

1) Content knowledge (Relevance): Under each content type (subject or topic) a value on the scale

of 1 to 12 was used to indicate the level of importance for each requirement, where 1 = least

important, 12 = most important. The totals were then calculated for each content type, i, and a

ratio ri (i=1,..,n) was calculated and rounded off to a whole number ranging from 1 to 12. An

average was then calculated from all r for each content type to get an index value R for the role.

Table 3.4 illustrates the layout for calculating the content knowledge index.

Table 3.4: Computing the Content Knowledge Index (m

Role/Career: Relevant Content Required: (either Topics or Subjects denoted by C)

Requirements C 1 C 2 C 3 ---------------- C n

a

b

-

Possible Total(T)

Calculated total(t)

r=t*12/T

2) Cognitive skills (Durability): Under each core skills area (subject or topic or competence) a

value on the scale of 1 to 12 was used to indicate the level of importance for each requirement,

where 1 = least important, 12 = most important. The totals were then calculated for each content

 84

type, i, and a ratio di (i=1,..,n) was calculated and rounded off to a whole number ranging from 1

to 12. An average was then calculated from all d for each content type to get an index value D for

the role. Table 3.5 illustrates the layout for calculating the cognitive skills index.

Table 3.5: Computing the Cognitive Skills Index (m

Role/Career: Core Skills Areas Clusters Required: (either Topics or Subjects or

Competences denoted by C)

Requirements C 1 C 2 C 3 ---------------- C n

a

b

c

-

Possible Total(T)

Calculated total(t)

d=t*12/T

3) Technical skills (Accuracy): Under each core area (subject or topic or competence) a value on

the scale of 1 to 12 was used to indicate the level of importance for each requirement, where 1 =

least important, 12 = most important. The totals were then calculated for each content type, i,

and a ratio ai (i=1,..,n) was calculated and rounded off to a whole number ranging from 1 to 12.

An average was then calculated from all, a, for each content type to get an index value A for the

role. Table 3.6 illustrates the layout for calculating the technical skills index.

Table 3.6: Computing the Technical Skills Index

Role/Career: Core Areas Cluster Points: (either Topics or Subjects or Other denoted by C)

Requirements C 1 C 2 C 3 ---------------- C n

a

b

c

-

Possible Total(T)

Calculated total(t)

a=t*12/T

4) Academic capacity (Capacity): Individual‘s capacity for each role/career was derived from both

high school and undergraduate Grade Point Average (GPA) which each was converted to

decimal number where 1 = E, 2 = D-, 3 = D, 4 = D+, 5 = C-, 6 = C, 7 = C+, 8 = B-, 9 = B, 10 =

 85

B+, 11 = A-, 12 = A. Then, an average was then calculated from the two to get an index value C

for the role capacity index value. Table 3.7 shows the layout for calculating the academic

capacity index.

Table 3.7: Computing the Capacity Index (max. 11001100 =204)

 High school GPA Undergraduate GPA

Grades Points

3.4.2.2 Creating the Data Files

After the above pre-processing the data was then entered into SPSS software version 6, case by case,

and stored in four separate files under the following variables:

1) Employees‘ data file

This file was used to store data from employees‘ questionnaires under the following variables (see

table 3.8).

Table 3.8: Employee data variables description

VARIABLE NAME VARIABLE DISCRIPTION

1. Gender Gender

2. Agebracket Age

3. Olevelstudyregion O level study region

4. Ogradingsystem O level grading system

5. Oresults O level results

6. Bachelordegree Name of first degree

7. Bacheloruniversity First degree university of study

8. Graduationyear Graduation year

9. Bachelorgradingsystem First degree grading system

10. Bachelorresults First degree results

11. Entryleveljobtitle Entry level Job title

12. Entryleveljobyearofappointment Entry level Job year of appointment

13. Firstjobdescription First/entry level job description

14. Currentjobtitle Current job title

15. Currentjobyearofappointment Current Job year of appointment

16. currentjobdescription Current Job description

17. DSubjectstudyyear Domain area Subject year of study

18. DSubjectscore Domain area Subject score

19. Jobactivitycategory Job activity category

20. KAratingRI Relevancy Index calculated from Knowledge Area ratings

21. CSratingDI Durability Index calculated from Cognitive Skills ratings

 86

2) exam past paper file

This file was used to store data from domain area exam past paper questionnaires under the

following variables (see table 3.9).

Table 3.9: Exam past paper data variables description

VARIABLE NAME VARIABLE DISCRIPTION

1. Papercode Subject code for the exam paper

2. Universityname University name

3. Examyear Exam year

4. Examduration Exam duration

5. Totalmarks Total marks

6. Yearofstudy Year of study

7. Coursename Degree program name

8. Totalquestions Total number of questions

9. BoKnowledgerating
Body of knowledge area ratings (several variables depending on

domain area)

10. Krating Knowledge Acquisition rating

11. Crating Comprehension rating

12. Anrating Application rating

13. Aprating Analysis rating

14. Srating Synthesis rating

15. Erating Evaluation rating

3) Industry firm file

This file was used to store the details of the firm or department from which the employees were

sampled under the following variables (see table 3.10).

Table 3.10: Firm data variables description

VARIABLE NAME VARIABLE DISCRIPTION

1. Ownership Ownership of the firm

2. Staffsize Number of staff related to the domain area

3. Totaljobcategories Total number of job categories

4. productsdelivered Name of product or service delivered by the firm

5. Entryleveljobcategories List of entry level job categories

The three files were then be used to perform the following analyses on the data collected and stored

in SPSS format:-

 87

1) Demographic characteristics analyses

2) Industry role requirements analyses.

3) Trends analysis.

All data analyses were conducted using SPSS software version 16 while experimental analyses have

been done using python 4.3 version.

3.4.2.3 Demographic Characteristics Analysis

The purpose of this section was to analyze the demographic characteristic of the sample. The data

was analyzed quantitatively to reveal the demographic characteristics of the two survey samples and

experimental samples as follows: 1) Frequency distribution table and chart for employees sample to

reveal types of bachelor‘s degree program, gender and industry roles distribution, 2) Frequency

distribution table for exams past papers sample to reveal types of bachelor‘s degree program, year of

study, number of questions and total marks distribution, 3) Frequency distribution table for

experiment samples to reveal classes distribution.

3.4.2.4 Industry Role Requirements Analysis

The purpose of this section was to analyze competence (content knowledge, cognitive skills,

technical skills and academic capability) requirements for each job title so as to reveal knowledge

and skills landscape for various industry roles based on our conceptual model (CWA16458, 2012).

This was important not only to many stakeholders who have interest in the recruitment and

development, education and training, and qualifications and certifications of professionals (Korte et

al, 2013) but also to provide transparency in validating our assumption that occupational industry

roles are distinct and therefore are feasible for machine learning classification.

This was achieved through the following quantitative analyses: 1) Frequency distribution charts for

employees sample to reveal types of entry level industry roles, job activities and their proportions, 2)

Factor analysis for employees sample to reduce data redundancy using principle component method.

Factor analysis, as a statistical procedure for identifying underlying variables (called factors) that

explain most variation using fewer variables observed in the original data and principle component

method, was used to achieve this, 3) Descriptive statistical analyses for employees sample to reveal

central tendency, dispersion values for each independent variable and eventually calculate class

boundaries and the index vector for each industry role.

 88

The index vector consists of four values: The minimum index value (Mn), maximum index value

(Mx), average index value (Iv) and relative index value (IR) of each predictor variable (content

knowledge, cognitive skills, technical skills, and academic capacity) in each role category as shown

in table 3.11. 5) Significance tests analyses for employees sample to test differences between

industry roles.

Table 3.11: Role Categories’ Indexes minimum and maximum values

Role

category

name

Content Knowledge

(Relevancy Index)

Cognitive skills

(Durability Index)

Technical skills

(Accuracy Index)

Academic capacity

(Capacity Index)

Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR

1.

2.

………

….

3.4.2.5 Trend Analysis

The purpose of this section was to analyze trends of knowledge and skills transferred during training

in the academia so as to reveal biases towards industry roles among institutions of academia (Topno,

2012). Jones et al. (2009) provides a green light that examinations are key tools to evaluate in order

to determine whether the test questions‘ items contain the knowledge and skills desired of learners at

the end of training.

The data stored in the exam past paper file was analyzed to show and compare the index values for

cognitive skills and knowledge content for each academia institution sampled using the following

quantitative analysis procedure: 1) Descriptive statistical analyses for exam past paper sample to

reveal central tendency and dispersion values for content knowledge and cognitive skills for each

institution, 2) Box plot charts to graphically present the index means and inter-quartile range for

various industry roles, 3) Reference lines representing central tendency value for content knowledge

and cognitive skills of each institution superimposed on the box plot charts.

3.4.3. Evaluation Methods

Evaluation focused to establish the relevance of research results obtained. For example in literature

analysis, triangulation was applied to establish legitimation of the results, while in survey,

 89

experiments, or case study, statistical significance tests techniques were used. In the present study,

the main focus was to build a classifier model and therefore evaluation was significantly needed to

determine its performance and validity. To evaluate the performance of the classifier model a

number of experiments were performed according to experimental design described in section 3.1.

The choice of evaluation method depended on the choice of evaluation criteria, also known as

performance measure. Chapter 6 discusses the evaluation methods and metrics chosen.

3.5. Methodology for Developing the Mapping Model

3.5.1 Problem Domain Understanding

The most important task was to first understand the problem domain, namely mismatch of skills and

industry roles. To provide focus towards this problem and narrow down the scope, the problem was

treated somehow as an evaluation challenge in the academia where evaluation was limited to

learning objectives instead of evaluation of learning outcomes that promote performance and

productivity in the job. Based on this in mind and the wide availability of data in a society where

data driven methods are gaining traction, the researcher posed a research question towards solution

to this problem: how do we build a data-driven model using machine learning to map graduates‘

skills to hierarchically structured industry roles. However, to answer this question several questions

needed to be answered as outlined in section 1.4.

This was done within the context of a selected case of industry occupation.

3.5.1.1 A Case of Software Engineering

We selected the domain of Software Engineering (SE) as a typical case of occupational industry

roles. This domain has been widely studied in research literature (Moreno et al., 2012; Shashidhar et

al., 2015). Software Engineering (SE) is an industry occupation concerned with development of

software that is reliable, efficient and economical. Software developers or engineers refer to the

entire community of people involved in software development or working in the SE industry. The

universally recommended source of knowledge and skills for software engineers is known as

Software Engineering Body of Knowledge (SWEBOK).

Equally, kind of technical skills required of software developers were revealed by a study carried out

by Surakka (2005) which grouped these skills into five categories: platform skills, programming

skills, networking skills, database skills and distributed technology skills. Software developers are

 90

trained along with other ICT practitioners through a number of degree programs such as Computer

science, Information Technology, Software Engineering, Mathematics and Computer science.

3.5.1.2 Mismatch of skills and industry roles

A review conducted on literature (Ludi & Collofello, 2001; Saiedian, 2002; Kolding & Ahorlon,

2009; Shkoukani, 2012; Moreno et al, 2012; OECD, 2012; McCowan, 2016) revealed indeed there

was a problem of skills mismatch between graduates produced by academia and industry roles

requirements. Since literature (Griffin, 2008; Sutherland et al., 2009; Norwood & Briggeman, 2010)

indicates problem solving skill is poorly evaluated, poor approaches for skills mapping to industry

roles may have contributed partly to this situation.

This problem may have rendered both graduates and employers difficult in matching graduates‘

skills with industry roles. There was need to focus the study to its main goal, namely to build an

effective machine learning model for mapping graduate‘s skills to matching industry roles in

hierarchically structured class taxonomy so as to be able to predict suitable industry roles for new

graduates based on their skills.

At this point there was need to understand issues that affected the design and building of such

computational models that learn from observations. Lavesson (2006) outlined these issues as: 1) the

input 2) the type of feedback, and 3) the way the solution is to be represented. Input consists of a

sample of data instances described by a number of attributes which may be of different data types,

feedback for observational learning could be of three types: supervised, unsupervised, and

reinforcement, while representation of the solution in supervised learning depends on whether the

desired output is discrete or continuous and thus could be represented using classifier or regression

function respectively.

Clearly, out of these three issues three observations were made. First, there was need to select

appropriate attributes for describing industry roles instances to be used for machine learning.

Secondly, based on feedback requirements of this problem where employees with known industry

roles were needed to learn the model, then this was conducted as a supervised learning problem

(Lavesson, 2006). Thirdly, since the prediction output of the model was to be discrete then it was

addressed as a classifier model.

The first observation focused on the first research question: what concepts are appropriate as

machine learning attributes for mapping graduates‘ skills to occupational industry roles? To answer

 91

this question a systematic investigation was required to identify and analyze theories for evaluating

learning outcomes so as:

1) To establish their underlying concepts that promotes performance in the job.

2) To identify suitable frameworks in academia that are suitable for assessing these concepts.

Figure 3.5.1 provides a logical plan that was used to conduct this type of investigation whose

findings were fundamental in providing answers to the above research question.

Figure 3.5.1: Understanding problem domain

Activity 1a: Literature Review/Analysis

Literature review was conducted that helped to provide information on concepts that were used to

develop the conceptual model of the problem. Problem modeling involved looking at the domain to

identify the issue that needed to be addressed and the problem to be solved, and understanding the

theoretical issues by which we could model the problem (Vernon, 2009). Keywords in the abstract

section of this study were used to select journals for the literature review.

Initially, the keywords guided the searching of literature, then refined using the following questions:

What learning outcomes enhance performance in the job? How do we evaluate learning outcomes?

Which evaluation methods are common for each learning outcome identified? While literature was

the main source, between study literature analysis method was preferred, literature on three theories

for learning evaluation were compared and contrasted, complementarity and development techniques

of literature analysis were used to achieve representation while triangulation was used to achieve

 92

legitimation (Onmuegbuzie et al., 2012). The end product of this activity was the conceptual model

within which the concepts to be used as attributes for machine learning were proposed.

Findings 1b: Conceptual Model

Three theoretical models for evaluating learning outcomes were identified, namely Kirkpatrick

model, CRESST model, and Kraiger‘s model. Their underlying concepts were analyzed to reveal

ones that promoted performance in the job, and their relationships were represented in the conceptual

model. The conceptual model has been presented in Fig. 2.6 and its proposed concepts were

operationalized using frameworks that provided indicators that were used to derive the variables for

collecting data as shown in Table 2.3.

Activity 2a: Preliminary Survey on Senior staffs

One instrument was designed as a survey questionnaire to collect data from senior employees sample

so as to establish employees‘ industry roles concepts to be used as target classes for machine

learning. The instrument was designed to collect data from senior staffs so as to provide insight on

three issues.

1) Degree programmes that were the main source of software developers

2) Occupational role names for software developers

3) Main competence areas for occupational industry roles

4) Hierarchical relationship between main competence areas

Findings 2b: Common industry roles

Six broad industry role names were identified for software developers and three degree programs

were identified as their main source, namely Computer Science, Information Technology, and

Software Engineering. Three main competence areas for software developers were identified and

their hierarchical relationship from bottom to top in terms of their skills superiority was established

as follows respectively, namely software programmer, software designer and software project

manager.

Activity 3a: Build a workbench computational model

A workbench computational model was built to test the feasibility of the study. Computational

modeling involved abstracting the problem from the problem space and modeling it computationally

by identifying the computational theory and tools needed to solve the problem (Vernon, 2009). The

 93

end product was a comprehensive definition of the data input, explicit techniques to

process/transform/analyze the data and the information to be produced as output.

3.5.2 Data Understanding

This phase was key not only in familiarizing with the quality of data that was to be used to build the

mapping model but also to provide answer to the second research question: what is the structural

characteristic of concepts that correctly reflect the hierarchy of industry roles required as target

classes for hierarchical machine learning purpose? To answer this question an investigation that

needed data collection was launched to:

1) Establish employees‘ industry roles for entry level jobs in the domain industry that could be

used as target classes for machine learning.

2) Analyze job specifications for the occupational industry roles as potential target classes so as to

establish their central tendency characteristics.

3) to analyze class boundaries of industry roles as potential target classes so as to establish their

uniqueness characteristics,

4) Test significance of the assumption that class boundaries of occupational industry roles were

real.

5) establish academia bias towards these industry roles,

6) Establish underlying structure of industry roles.

3.5.2.1 Data Collection

Figure 3.5.2a illustrates the complete data collection process that was started with a preliminary

survey on the target populations that led to the identification of three sources that were used as the

source of data.

 94

Figure 3.5.2a: Data collection

Activity 1a: Preliminary Survey on Target Populations

Two websites provided the source for software houses as one of our target population (www.kenya-

information-guide.com, 2015; www.softkenya.com, 2015). Most software houses are based or

centralized in Nairobi because it is the business hub of Kenya and East Africa. Identifiable addresses,

physical location and phone number or email address were used as the criteria to locate reachable

software houses. Researcher‘s preliminary survey revealed about 43 software houses working on

software development related activities with identifiable addresses, physical location and phone

number or email address. These had an average of 10 software developers and a total of about 430

developers. . See Appendix D and Appendix E for sampling frames.

Also, Commission of University Education (CUE) website and other two related websites

(www.cue.or.ke, 2015; www.softkenya.com, 2015; www.businesslist.co.ke, 2015) provided the

source of university programmes providing SE training courses. This research adopted the list of

universities together with their accredited programmes provided by CUE on their website dated 2th

February, 2015.

A total of 43 universities (private/public) with a total of 87 bachelor‘s degree programs in at least

computer science or Information Technology or Software Engineering which offered Software

Engineering as a course were identified. There was at least one exam for SE each academic year for

each of the 87 degree programs. The current study was targeting SE past exam papers from each of

the 87 degree programs in a period not more than 10 years, hence a total of at least 870 SE exam past

papers. The universities‘ population excluded university colleges, because it was assumed that the

degree programs and exams they offered were originally provided by the mentor university and

would cause duplication if included.

1) Sample Design for the Case

Sample of software developers was created by first sampling the software houses (as sampling units),

then from each sampled software house a second sampling procedure was conducted by selecting the

software developers employed (as sampling units). The software developers sample consists of two

strata i.e. job entry level software developers (inexperienced) and head of section or department

software developers (experienced). 50% (about 22 firms) of the target software houses were selected

for stage one sample. This resulted to a total of about 220 software developers from which stage two

http://www.kenya-information-guide.com/
http://www.kenya-information-guide.com/
http://www.softkenya.com/
http://www.cue.or.ke/
http://www.businesslist.co.ke/

 95

sample was generated by selecting 22 (department or section head for each firm) experienced

developers and 165 inexperienced developers. This gives a sample size of about 187 (44%) software

developers of the total population.

Sample of SE exam past papers has been created by first sampling universities where SE related

degree programs are offered, then from the sampled universities a stratified random sample of SE

exam past papers was created. Bachelor‘s degree programs of the 43 universities were sampled to

create a sample of SE exam past papers by selecting one degree program per sampled university. A

total of 5 universities offering the required bachelors‘ degree programs (12% of the total population

of 43 universities) were used to generate stage two sample of SE exam past papers. This resulted to a

total of at least 50 exam past papers from which stage two sample was generated by selecting 25 (3%

of the total population) SE exams past papers administered in the period of less than 10 years, 5

exam past papers from each of the degree programs.

2) Sampling for the Case

For software developers sample, simple random sampling technique was used to generate stage-one

sample of the software houses and stratified random sampling was applied to select stage-two sample

of software developers. For SE exam past papers‘ sample, simple random sampling was applied to

select stage-1 sample of universities where the required bachelor‘s degree programs are offered and

stratified random sampling was applied to select stage-2 sample of exam past papers administered in

the period less than 10 years (so that each degree program sampled contributes to exam past papers‘

sample).

3) Data Collection for the Case

Three types of questionnaires were used to collect data, from experienced software developers

(experts), inexperienced software developers (recently employed graduates) and SE exam past

papers. The three questionnaires details are provided in the appendix (refer to appendix C).

Activity 2a: Secondary Data

After carefully searching for a dataset that would suit the purpose of this method, AMEO2015, one

of the datasets listed by Aggarwal et al. (2015) was selected as baseline to validate our method. The

dataset was downloaded from the web link http://research.aspiringminds.com/resources/. The dataset

contains data related to entry level engineers, including software engineers. The dataset has 38

 96

attributes and 3998 instances. AMEO2015 is a dataset comprising cognitive skills test scores

(AMCAT test scores), biodata details and employability outcomes of job seekers.

AMEO is an acronym for Aspiring minds Employability Outcomes which is a research affiliated

group with the following research objectives: 1) to determine combination of skills needed for

various jobs in the market, 2) to provide feedback to candidates on their job suitability, gaps in their

skill set for a particular job, and ways for them to improve upon, 3) to provide job credentials to

candidates to signal employability, 4) to provide an easy way for companies to filter high quality

candidates and provide interview opportunities for them.

In our study, the dataset was carefully analyzed to produce a benchmark dataset. This included the

following steps:

1) Filtering out all non-software engineers‘ data records. Specialization column of the data set was

used where all non-Computer Science and non-Information Technology data records were

removed.

2) Filtering out all trainees and senior software engineers‘ data record. Designation column was

used to remove any data record that implied a trainee or senior software developer/engineer.

3) Filtering out columns or attributes that were not relevant to our study, such as date of joining,

job city, personality attributes, salary, etc. Attributes that correlated to our data collection

variables in the questionnaire were retained.

4) Deriving data values for variables that were not directly represented in the dataset, such as age

was derived from date of birth and date of joining columns, Relevant content knowledge was

derived from domain column, cognitive skills was derived from average of English, Logical, and

Quant columns, Technical skills was derived from computer programming column, academic

Capacity was derived from average of 12percentage (High school exam grade) and collegeGPA

columns.

5) Selecting industry roles whose names clearly indicated a well defined software engineer‘s role.

General names such as software engineers and software developers were ignored.

6) Computing the weights for each of the independent variables for all the industry roles selected.

Findings 2a: Secondary Data

A total of 13 variables were derived from the dataset with 279 data records (instances) and 12 well

defined industry roles. Figure 3.5.2b shows a snapshot of the benchmark dataset where the codes

 97

Figure 3.5.2b: SE Benchmark dataset

adopted in the class columns represented the following industry roles extracted: 1:ios developer(9),

2:data analyst (14), 3:android developer(23), 4:java developer(40), 5:programmer(12), 6:software

test engineer(42), 7:systems administrator(9), 8:network engineer(8), 9:php developer(19), 10:web

developer(32), 11:programmer analyst(51), 12:test engineer(19). Table 3.5.2a describes the main

sources of the benchmark dataset attributes relative to the original secondary dataset.

Activity 2b: Entry level Employee’s Questionnaire

A survey Questionnaire with 17 items was used to collect data from 113 software engineers in the

industry (after data management process). Table 3.5.2b describes the structural characteristic of the

employee‘s questionnaire.

Table 3.5.2a: Description of the benchmark dataset

NO. ATTRIBUTES DESCRIPTION SOURCE (Column name in the original dataset)

1 GENDER Gender GENDER

2 AGE Age DOB (Date of Birth)

3 LOLE Place of O-level Study CollegeCityTier (2=1, 0=1)

4 GSOLE Grading System of O-level 12 Grade Exam Board (High School Exam. Board)

5 ROLE Results for O-level 12 Grade Exam Results (High School Results- 4 classes)

6 BDGREE Type of Bachelor‘s Degree Specialization

7 UNIVERSITY University of Study for Bachelors CollegeID

8 GSBDEGREE Grading System for Bachelors CollegeTier

9 RBACHELORS Results for Bachelors CollegeGPA (grouped into 4 classes)

10 R Relevant Content Knowledge Domain (converted to out of 12 points = x12)

17 D Cognitive Skills Average (Logical, English, Quant) X12/1000

12 A Technical skills ComputerProgramming (X12/1000)

13 C Intellectual Capacity Average (12 Grade Exam Result, CollegeGPA)

14 Class Target Industry Role Designation (Job title)

 98

Table 3.5.2b: characteristics of employee’s questionnaire

1) Data Pre-processing

Data collected through the questionnaires was pre-processed and stored in four separate files under

the variables described in section 3.4.2. To demonstrate the applicability of this method, SE was used

as a case study where SWEBOK content, Bloom‘s taxonomy, Surakka‘s technical skills, and Student

GPA were used as reference framework as follows:

1) Content knowledge: SWEBOK content‘s topics were used to calculate the index as shown

in table 3.12. (for detailed description refer to section 3.4.1 and Table 3.4)

Table 3.12: Computing the Content knowledge Index for the case study)

SE role: SWEBOK Content

Requirements Topic 1 Topic 2 Topic 3 ---------------- Topic n

a

b

Possible Total(T)

Calculated total(t)

r=t*12/T

NO ATTRIBUTES VALUES DESCRIPTION

1 GENDER {Male, Female} Gender

2 AGE {20-24, 25-29, 30-34, 35-39, 40 and above} Age

3 LOLE { Local, Abroad} Place of O-level Study

4 GSOLE {Grades, Points, Marks} Grading System of O-level

5 ROLE {Less than 4, 5-7, 8-10, 11 and above } Results for O-level

6 BDGREE

{Computer Science, Information Technology,

 Software Engineering, Other} Type of Bachelor‘s Degree

7 UNIVERSITY

{UON, KU, JKUAT, MOI, EGERTON, Strathmore,

KEMU, Daystar, Nazarene, Maseno, Other} University of Study for Bachelors

8 GSBDEGREE {Grades, Points, Marks} Grading System for Bachelors

9 RBACHELORS {Less than 4, 5-7, 8-10, 11 and above } Results for Bachelors

10 FIRSTJOB

{Software Architect, Analyst Programmer, Test

Engineer, Web Programmer, Mobile Programmer,

System programmer, Project manager, Other } First Appointed Job

11 CURRENTJOB

{Software Architect, Analyst Programmer, Test

Engineer, Web Programmer, Mobile Programmer,

System programmer, Project manager, Other } Current Job

12 CHANGEDJOB {NO, YES} Current Job Is Different From First Job

13 ATTRACTOR {Passion, Salary, Ambition, Qualification, Other} Enticing Factor to Current Job

14 SEEXAM {100%, 75%, 50%, 25%, 0%} Se Content In Exam

15 Technical Skills {interval value} Index of Technical Skills Components

16

Relevant

Knowledge {interval value}

Index of Content Knowledge

Components

17 Cognitive skills {interval value} Index of Cognitive Skills Components

 99

2) Cognitive skills: Bloom‘s taxonomy was used as coding scheme for cognitive skill areas:

K=Knowledge, C=Competence, A=Application, A=Analysis, S=Synthesis, E=Evaluation as

shown in Table 3.13. These will be used to compute the index (for detailed descriptions refer to

section 3.4.1 and Table 3.5).

Table 3.13: Computing Cognitive Skills Index for the case study

SE ROLE: Bloom‘s Competence skills

Role Requirement K C A A S E

a

b

-

Possible Total(T)

Calculated total(t)

r=t*12/T

3) Technical Skills: The Surakka‘s technical skills for software developers were used to compute

index as shown in Table 3.14 (for detailed descriptions refer to section 3.4.1 and Table 3.6).

Table 3.14: Computing Technical Skills Index for the case study

Subjects

(Technical skills)

Database

(skills)

Networking

(skills)

Distributed

(skills)

Programming

(skills)

Platform

(skills)

Grades

value

4) Academic Capacity: Student capacity for each role was derived from both high school and

undergraduate Grade Point Average (GPA) as shown in Table 3.15 (for detailed descriptions

refer to section 3.4.1 and Table 3.7).

Table 3.15: Computing Capacity Index for the case study100 =204)

 High school GPA Undergraduate GPA

Grades

Value

2) Demographic characteristics of SE sample

Figure 4.1.2 in chapter four reveals the results for this stage where seven software engineers‘ roles

were identified as software architect, analyst programmer, test engineer, web programmer, mobile

programmer, system administrator, and project manager.

 100

Activity 2c: Domain exam past papers

The purpose of this activity was to identify undergraduate programs through which domain

professionals were trained and identify exams past papers for the domain core subject. Descriptive

survey methods, especially data collection method using questionnaires was used to collect content

knowledge and cognitive skills transferred during learning through a selected set of exam past

papers. This stage was achieved through data collection on population 2: Exams past papers. Table

3.5.2b describes the structural characteristic of the exam past papers‘ questionnaire.

Table 3.5.2c: characteristics of exam past papers questionnaire

NO. ATTRIBUTES VALUES DESCRIPTION

1 EXAMCODE {Numeric} Exam Paper Code

2
DEGREENAME

{Computer sciences, Information technology,

Software engineering, other} Degree Name

3

UNIVERSITY

{UON, KU, JKUAT, MOI, EGERTON,

Strathmore,

KEMU, Daystar, Nazarene, Maseno, Other} University Name

4 EXAMYEAR {2009,2010,2011,2012,2013,2014, other} Exam Calendar Year

5 EXAMDURATION {1,2,3,4,5 or more} Exam Durations In Hours

6 STUDYYEAR {1st,2nd,3rd,4th,5th} Year Of Study

7 EXAMQUESTIONS {3,4,5,6,7 or more} Exam No Of Questions

8 TOTALMARKS {interval value} Exam Total Marks

9 SR {interval value} Software Requirements

10 SD {interval value} Software Design

11 SP {interval value} Software Processes

12 ST {interval value} Software Testing

13 SCONF {interval value} Software Configuration

14 SMAINT {interval value} Software Maintenance

15 SI {interval value} Software Infrastructure

16 SQ {interval value} Software Quality

17 SMGT {interval value} Software Management

18 SCONS {interval value} Software Construction

19 KNOWLEDGE {interval value} Knowledge

20 COMPREHENSION {interval value} Comprehension

21 APPLICATION {interval value} Application

22 ANALYSIS {interval value} Analysis

23 SYNTHESIS {interval value} Synthesis

Activity 3a: Analysis of Role Boundaries and Trends

The purpose of this activity was not only to identify various entry level job titles that referred to the

occupational domain area but also their boundaries and trends or bias in the academia towards

 101

industry roles. Their boundaries along each meaningful attribute were important characteristic in

distinguishing unique industry roles while their trends in academia were important characteristic in

distinguishing bias of graduates‘ skills from various academia institutions. Descriptive survey

methods were used to analyze content knowledge, cognitive skills, technical skills and academic

capability requirements for each job title and establish distinction among industry roles.

For each industry role a minimum (Mn) and maximum (Mx) value under each variable was

established, then an average (IV) was calculated for each variable before it was ranked (IR) against

other roles. Table 4.1.4b in chapter four presents results for this activity.

Further, descriptive statistics analyses were conducted to reveal the central tendency and dispersion

values of each independent variable for all industry roles. The most important aspect of this activity

was to determine boundaries among revealed industry roles and to test whether class differences

between these industry roles was significant. To achieve this purpose a research hypothesis was

defined and investigated as follows:

H02A: There are no significant boundary differences between industry roles/potential target

classes

To approach this research hypothesis, the four main qualitative variables were classified into two

different ways with the help of a 2 by 2 matrix as shown in Table 3.5.2d. One way classified them as

either knowledge (content knowledge & academic capacity) or skill type (technical skills &

cognitive skills), and the other way classified them as either domain specific (content knowledge &

technical skills) or domain general (academic capacity & cognitive skills). Table 3.5.2d shows a two

way classification of the independent variables. After which, four research hypotheses were defined

and investigated in order to answer this research question as follows:

Table 3.5.2d: Two way classification of independent variables

Variable type Knowledge Skill

Domain specific Content Knowledge Technical skills

Domain general Academic capacity Cognitive skills

Hypothesis 1(H01):

H0: There are no significant domain specific knowledge differences between industry roles in the

same occupation

 102

Ha: There are significant domain specific knowledge differences between industry roles in the

same occupation

For this hypothesis, content knowledge variable was used as the test variable and we reject the null

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept

the null hypothesis.

Hypothesis 2(H02):

H0: There are no significant domain general knowledge differences between industry roles in the

same occupation

Ha: There are significant domain general knowledge differences between industry roles in the

same occupation

For this hypothesis academic capacity variable was used as the test variable and we reject the null

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept

the null hypothesis.

Hypothesis 3(H03):

H0: There are no significant domain specific skill differences between industry roles in the same

occupation

Ha: There are significant domain specific skill differences between industry roles in the same

occupation

For this hypothesis technical skills variable was used as the test variable and we reject the null

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept

the null hypothesis.

Hypothesis 4(H04):

H0: There are no significant domain general skill differences between industry roles in the same

occupation

Ha: There are significant domain general skill differences between industry roles in the same

occupation

For this hypothesis cognitive skills variable was used as the test variable and we reject the null

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept

the null hypothesis. Finally, the hypothesis testing results were appended in the two way

classification table and interpreted accordingly.

 103

Equally, in this activity descriptive survey methods were used to analyze content knowledge, and

cognitive skills administered in the domain core subject exam past papers for each selected academia

institution and establish trends/bias towards industry roles. Descriptive statistics analyses were

conducted to reveal the central tendency and dispersion values of each of the two independent

variables for all institutions and compared these values relative to industry roles revealed. The core

aim was to show how different academia institutions were biased towards these industry roles

requirements. Table 4.1.6 in chapter presents a summary of the counts of the trending industry roles

in each university as revealed by analysis results in chapter four.

3.5.3 Data Preparation

Before the process of building the machine learning model was started a thorough cleaning activity

was conducted to put the data into the appropriate shape that promised optimal and reliable results.

This involved addressing the following issues: 1) missing data 2) categorical data 3) standard scale

for all features 4) selecting meaningful features 5) hierarchical mapping of target classes.

1) Missing data

Two ways for handling missing data according to Raschka (2015) are: 1) eliminating sample

instances or data features with missing values and, 2) imputing missing values. The former has

several disadvantages such as by removing either many instances ends with reducing the sample size

and thus affecting the reliability of the results or too many features we lose valuable information that

the classifier model to discriminate between classes. The later is often used where the missing value

is estimated using a number of interpolation techniques such as mean imputation. Mean imputation is

an interpolation technique where the mean value of the entire feature column is used to replace the

missing values of that column. The most convenient way to achieve this in python is to use the

imputer class of scikit-learn and is implemented as shown below (Raschka, 2015).

>>> from sklearn.preprocessing import Imputer

>>> imr = Imputer(missing_values='NaN', strategy='mean', axis=0)

>>> imr = imr.fit(df)

 >>> imputed_data = imr.transform(df.values)

In the current study, some feature columns had missing values as well as the target class column.

This was as a result of unfilled values in some questionnaires where some employees did not fill

simply because they did not have adequate information about the questionnaire item or simply an

 104

error of omission during the filling process. To cope up with this problem, the researcher removed all

records whose target class values were missing and it was concluded that they were incomplete while

for the other feature columns the imputation technique described above was applied.

2) Categorical features

Categorical features have their data values in discrete group or categories. Categorical data values

can be nominal (unordered set) or ordinal (ordered set). To ensure that the learning algorithms

interpreted categorical data values correctly, we needed to map categorical data and class labels to

integers (Raschka, 2015). As observed under the data collection section, most of the features were

categorical and therefore they needed some transformation to integer values. In the current study, this

was conducted manually.

3) Standard scale for all features

Majority of the machine learning and optimization algorithms work well when features are put on the

same scale (Raschka, 2015). However, decision trees and random forests are the only machine

learning techniques that do not care for feature scaling. Two common approaches for scaling features

observed in literature were normalization and standardization. Normalization refers to scaling all

features to a range of 0 to 1. To normalize data a min-max scaling formula that could be applied to

each feature is as shown below:

 Eqn(16)

Where X
i
norm is the new normalized value of an instance value X

i
 in a feature column where Xmin is

the minimum and X

max is the maximum value. The min-max scaling procedure could be

implemented as follows:

>>> from sklearn.preprocessing import MinMaxScaler

>>> mms = MinMaxScaler()

>>> X_train_norm = mms.fit_transform(X_train)

 >>> X_test_norm = mms.transform(X_test)

On the other hand, standardization is a way of centering the feature around the mean 0 and standard

deviation 1 so that the feature column values take the form of a normal distribution which makes it

Xi
norm =

Xi
 - Xmin

X
max - Xmin

 105

easier to learn the weights (Raschka, 2015). Therefore, unlike normalization, standardization was

likely to maintain useful information about outliers and make the learning algorithm less sensitive to

it. To standardize any instance value Xi
the formula below was applied:

 Eqn(17)

 Where Xi
std is the new standardized value while μx and σx are the feature column mean and

standard deviation respectively. The standardization procedure was implemented as follows

(Raschka, 2015):

>>> from sklearn.preprocessing import StandardScaler

>>> stdsc = StandardScaler()

>>> X_train_std = stdsc.fit_transform(X_train)

 >>> X_test_std = stdsc.transform(X_test)

In the present study, preliminary results indicated scaling through standardization produced better

results than scaling using normalization. As a result, scaling through standardization was adopted.

4) Hierarchical mapping of target classes.

The goal of this stage was to map the industry roles into the proposed taxonomic structure. Mapping

the industry roles to the proposed taxonomic structure involved merging duplicate industry roles or

separating industry roles with similar names but different requirements. As result of variation of

definition of industry roles in various industry firms, some roles may have elements from more than

one role and this might endanger intra-class similarity and inter-class dissimilarity which is an

important requirement in classification (Chien & Chen, 2008).

To improve on this, a procedure was devised to divide the dataset into several classes in which the

intra-class similarity was maximized while the inter-class similarity was minimized (Chien & Chen,

2008). The original employees‘ data that contained, among other attributes describing the industry

roles, first appointed role after attaining university bachelor‘s degree as well as current role of the

employee was vital in achieving this. This procedure helped also to harmonize role names and

boundaries derived from various firms. The procedure was conducted in three steps as described

below.

Xi
std =

X
i
 - μx

 σx

 106

Step 1: Branch Mapping

The aim was to identify industry roles as set members with almost similar characteristics and isolate

them into separate branches. Figure 3.5.3a presents a summary of this procedure. First, the mean was

calculated for all the features that were core in describing the industry roles. Along each feature,

industry roles were partitioned into two sets based on each feature‘s mean to give two partition sets

of industry roles i.e. upper and lower sets. The two sets (i.e. upper or lower) for all the features were

listed to get a list of sets. Each set in the list was cross-examined against each feature‘s two partition

sets (i.e. upper or lower) to check whether all role members of the list set were contained jointly in

the feature‘s partition sets. If all members were contained in either one of the feature‘s partition sets

then a score of 1 was noted otherwise 0. This process was repeated for each listed set across all

features, and a sum was calculated by adding the scores for all the features.

Therefore, role members of a listed set that occurred frequently and consistently in majority of

feature partition sets would constitute a possibly separate branch and was evidenced by high sum of

scores. If two or more sets tied with highest score each was noted as candidate for isolation into a

branch set only if the sets were disjoint, else only the one with the highest total sample size was

isolated.

This process was repeated after removing the isolated branch set from the listed sets and all its

members from the remaining listed sets. However, any of the subsequent candidates must have both

their set cardinalities and highest scores exceed both the cardinality and highest score of the original

set. This was to minimize chances of many branches with very few industry roles. The process was

optimal if all remaining listed sets‘ cardinalities were less than the cardinality of the original branch

set. This process revealed new branches and appropriate names were identified for each branch.

Step 2: Mapping Instances to Proposed Taxonomy’s Branches

The aim of this step was to identify and isolate instances of the dataset into specific branches based

on first and current appointment role values. Figure 3.5.3b shows a summary of this procedure.

Before isolation procedure, cross-tabulation of values of the first and current appointment roles was

conducted and the following assumptions were noted when doing the isolation using the cross-

tabulation technique:

1) employees originally holding industry roles (as first role) belonging to one branch and were still

holding those roles currently (as current roles) in the same branch were considered permanently

 107

affiliated to that branch while those converted to other roles in a different branch may be considered

to have left permanently

2) Employees who converted from previous roles in one branch and were currently holding industry

roles belonging to another second branch were now affiliated towards that second branch

3) If one of the first appointment roles in a branch overlapped or coincided with the branch name

then it was removed as a possible name of industry role and its employees who converted to other

roles in a different branch were assumed to still belong to the original branch and were redistributed

to the original branch roles accordingly.

Figure 3.5.3a: Branch Mapping Framework

Step 3: Mapping to Proposed Taxonomy’s Hierarchies

The aim was to categorize industry roles into levels in the hierarchy. First, with the help of domain

experts, the levels in the hierarchy were identified based on superiority of functionality in the

domain, with the most superior at the top and the least superior at the bottom. Secondly, the industry

roles were categorized along the levels and their count scores extracted from the cross-tabulation

 108

described in step 2. A two by two table was used to relate industry roles in each level with branches

by splitting each first appointment role total in the cross-tabulation into respective branches based on

the assumptions.

Figure 3.5.3b: Instances Mapping Framework

1) Mapping software engineers raw data to the proposed taxonomy

This procedure was applied to raw data with the original seven industry roles and resulted into

twelve distinct industry roles. Fig. 4.2.1 in chapter four illustrates the mapping of 12 industry roles

for software engineers into the proposed taxonomic structure using our method. The 12 distinct

industry roles have been coded as follows: 1: mobile system manager, 2: mobile project manager, 3:

mobile architect designer 4: mobile web designer 5: mobile analyst programmer 6: mobile test

programmer 7: desktop system manager 8: desktop project manager 9: desktop architect designer 10:

desktop web designer 11: desktop analyst programmer 12: desktop test programmer.

 109

5) Selecting meaningful features

This was one of the most common and important methods applied to data preprocessing so as to

improve the performance of the classifier model (Chang, 2009). Real-world classification tasks

contain irrelevant or redundant features that may compromise the accuracy of the classifier model.

As a result, many feature subset selection approaches were developed to help reduce dimensionality

problem (Raschka, 2015). Feature subset selection, as a process of removing irrelevant or redundant

features from the original feature set, offered many benefits such as reducing the cost of gathering

data for training or testing or even reducing the time for creating the classification model (Chang,

2009).

In the current study, so as to ensure a specific feature subset was optimal, an evaluation strategy was

needed. As a result, feature subset selection process was approached as a search problem and was

conducted in four stages: 1) starting point for the search space, 2) a generation rule with search

strategies to generate the next candidate feature subset, 3) an evaluation function to evaluate the

generated feature subset, 4) stopping criterion to determine when to stop the selection process

(Chang, 2009). Figure 3.5.3c illustrates the procedure for feature selection.

Figure 3.5.3c: Selecting meaningful features

Activity 1a: Search starting point

At the search starting point, a decision was made whether to start with zero features (sequential

forward selection method, where features are added successively as evaluation progresses) or start

with all the features (sequential backward method, where features are eliminated from the original

feature set successively as evaluation progresses). Sequential backward method was selected because

it is simple and widely used in machine learning pattern classification methods and, most

importantly, previous studies have shown that the technique produces better classification accuracy

Search

starting point

Generation

Rule

Evaluation

function

Stopping

criterion

start

stop Optimal

features

1a. Activity 1b. Activity 1c. Activity

2a. Activity 2b. Findings

 110

than sequential forward method (Witten & Frank, 2005). The simple steps for sequential backward

method were outlined as follows (Raschka, 2015):

1. Initialize the algorithm with k = d, where d is the dimensionality of the full feature space

Xd.

2. Determine the feature x− that maximizes the criterion x− =kargmaxJ(Xx−x) where xє Xk.

3. Remove the feature x− from the feature set: Xk – 1 = Xk – 1 = Xx− x−, k=k-1

4. Terminate if k equals the number of desired features, if not, go to step 2.

Activity 1b: Generation rule

A rule that generated a subset of features to be assessed based on a certain search strategy was to be

selected. Common search strategies for the subsets in the feature space are: 1) exhaustive search

(search all possible subsets, becomes difficult as the number of attributes increases), 2) greedy search

(search that begins in one direction, top or bottom, and progresses by adding or eliminating a feature

to or from the current subset, search terminates when no feature improves on the current subset), 3)

best first search (search that keeps a list of subsets evaluated so far and sorted in order of

performance measure) , 4) beam search (like best first search but truncates its list to a specified fixed

number), 5) genetic algorithm search (search based on evolution or natural selection theory). In the

present study, our approach used sequential backward method whose search strategy was greedy

search (Witten & Frank, 2005).

Activity 1c: Evaluation function

When selecting a good feature subset, two fundamentally different evaluation approaches that we

came across were: independent assessment based on the general characteristics of data and

assessment using machine learning algorithm that would be used for the learning of the classifier

model (Witten & Frank, 2005). The former are called filters while the later wrappers. Filter approach

was used in the current study. Filters assess the features according to their prediction ability using

two approaches: ranking method (ranking features according to some predictive measure then the

best subset is made of high ranking features) or space search method (maximizing a predetermined

cost function where features that maximize this function make up the optimal subset).

Features were selected that other evidence, including more general models fitted into the full dataset,

suggest would be important predictors of industry roles as applied by Clive & Joan (2000). The same

approach was used successfully elsewhere (Ramaswami and Bhaskaran, 2009; Mgala, 2016) and this

 111

informed our decision to use it. However, Mgala (2016) used Information Gain, ReliefF, and Gain

Ratio filter algorithms for feature selection where their technique was ranking and comparison across

the three algorithms. This was slightly different from current study where Logistic Regression (LR),

K-Nearest Neighbor (KNN) and Support Vector Machines (SVM) were preferred. Instead of feature

ranking, however, the current study used space search where each algorithm searched for the best

feature combination subsets that produced the best performance level.

The best feature subsets results from each algorithm were compared to determine features that were

widely selected. This approach, unlike elsewhere (Mgala, 2016), ensured that each feature was

popular among the participating algorithm where simple majority was used as a criterion for

popularity. Unpopular features were removed. In case of more than one candidate feature subsets,

evaluation was conducted with each subset and the one that gave better results was selected as the

best feature subset for that particular algorithm. This procedure was conducted with one dataset,

namely SE benchmark dataset, through an experimental procedure whose objective was clearly

stated as shown below:

Activity 2a: Stopping criterion

The criteria of removing a feature at each iteration was defined as ―Remove the feature that

maximized the difference in performance of the classifier model after and before the removal of this

particular feature‖.

Findings 2b: Optimal Features

Section 4.2.6.1 presents results for the current activity of selecting meaningful features. The optimal

number of features from the original 13 feature set was then concluded as 5 features. The aim was to

Objective: To select valuable feature subset likely to induce optimal accuracy to the model

Procedure:

 Split (ratio 80:20) dataset into 2: train, test sets

 Divide features into subsets using combinations of 2 to all features

 Train and test 3 filter algorithms on each subset

 Get the best subset for each algorithm

 Select features that appear in at least two of these 3 best subsets

 112

determine optimal features that generated optimal performance to the classifier model with the

ultimate focus to investigate appropriate features that enabled the model achieve appropriate

performance to serve its purpose. In order to investigate whether these generated features were likely

to induce optimal performance significantly to our classifier model a research hypothesis was

defined to be tested as follows:

 H01A: All features are equally relevant for better performance of the classifier model

3.5.4 Modeling and Selecting the best classifier model using the best feature subsets

This phase involved building the machine learning model and ensuring the model was appropriate to

serve its purpose. The phase was vital in providing answer to the third research question : how do we

build an appropriate machine learning model for mapping graduates‘ skills to hierarchically

structured occupational industry roles? To answer this question it required the following three

activities:

1) Design of machine learning algorithm,

2) Algorithm optimization through induction algorithm and parameter selection

3) Model evaluation through estimation of its generalization performance.

Generally, overall implementation of the classifier was achieved using python technology due to its

richness in ML resources and simplicity. Fig. 3.5.4a illustrates a typical work flow diagram for using

machine learning in predictive modeling.

 113

Figure 3.5.4a: Workflow framework for predictive modeling using machine learning (adapted

from Raschka, 2015)

3.5.4.1. Design of Machine learning algorithm for the classifier model

Design and building of such a computational model that learns from observations required three

considerations, namely: input, feedback process, and output (Lavesson, 2006). Thus, the design

architecture of the classifier model consists of three elements: 1) input, the various materials or

resources that the model requires to accomplish its purpose and these constitutes three items:

employee‘s data, occupational domain‘s roles, and the taxonomic structure.

As revealed in Fig. 2.9b f represents features or knowledge and skills attributes of industry roles

whose data values, for the purpose of building the classifier objects of the model, were derived from

graduate employees in the industry holding various roles through data collection stage as emphasized

in Fig. 3.5.4a. 2) process, the ML logic that the model applies to transform the input materials or

resources into required form and this comprises the ML architecture as given in Fig. 2.9a, 3) output,

the prediction result generated by the process. Fig. 3.5.4b outlines the design architecture for the

classifier model. This design architecture was eventually converted into a design algorithm.

 114

Figure 3.5.4b: Design architecture

Building of the classifier model‘s algorithm was conducted using meaningful features that were

selected in section 3.5.3.

3.5.4.2. Algorithm optimization

This process helped to validate the classifier model by ensuring it had appropriate valid properties to

serve its purpose.

a) Through selection of appropriate induction algorithm

This activity involved selecting appropriate machine learning technique for the classifier model.

Raschka (2015) observes that choosing an induction algorithm for a particular classification problem

required experience because each algorithm has its own quirks and is based on certain assumptions.

As a result, it is recommended to compare performance of at least two learning algorithms before

selecting the best classifier model for the problem (Drummond, 2006).

In the present study, two machine learning techniques, naïve Bayes and support vector machines

were selected in the construction of the classifier algorithm to implement the architecture and learn

the model. Section 2.7.7.5 describes the criteria for choosing the two algorithms. Evaluation

experiments were conducted with each of the induction algorithms on the classifier model where

generalization performance of each was determined. An induction algorithm that induced better

 115

performance was selected as the best induction algorithm. This procedure was conducted with two

datasets, namely SE benchmark and SE field datasets, through an experimental procedure whose

objective was clearly stated as shown below:

In order to investigate whether the induced performance of our model by each induction algorithm

was significantly better than the other, a research hypothesis was defined and tested as follows:

H03A: All induction algorithms induce equal generalization performance to the model

b) Through parameter tuning

This was achieved through parameter tuning using validation curves. Only one algorithm was

involved in this, namely as per the results of selection of the best induction algorithm in (a) above.

The aim was to determine parameter values that generated better performance to the classifier model

with the ultimate focus to investigate appropriate values that enabled the model achieve appropriate

performance to serve its purpose.

To investigate this, a research hypothesis was defined as follows:

 Ho3B: Any parameter value induces better performance to the model

Objective: To select induction algorithm likely to induce optimal accuracy to the model

Procedure: 5-fold cross-validation

 Split dataset into 2: train, test sets

 Divide train set into samples of increasing size intervals of 20%

 Split each sample into 2: train, test sets

 Train and test induction algorithms on each sample

 Plot the train and test accuracy of respective samples

 Observe the behavior of accuracy difference as the sample grows

 Split train set into five folds

 Alternately, train with 4 folds and test with 1 fold both induction algorithms

simultaneously and ten times

 Get the means in each test fold

 116

Three trials of an experiment were conducted under each dataset whose findings were important in

selecting the best parameter values of the classifier model. Figure 3.5.4c illustrates the parameter

tuning procedure that was adopted in the experiment.

Figure 3.5.4c: Algorithm optimization through validation curve

3.5.4.3. Model validation

This was conducted through a number of experiments and the focus was to estimate the

generalization performance of the classifier model. In supervised learning, classification is conducted

in two phases, namely training and prediction phase. In the training phase, a learning algorithm trains

by observing known data then generates the best classifier that is used to classify new data of same

kind. In the present study, this was achieved through cross-validation technique where the best

performing model was selected, and this involved a number of activities as described in the diagram

below. Fig. 3.5.4d illustrates the model validation process as adopted from Care & King (2003).

 117

Figure 3.5.4d: Model validation & Evaluation (adapted from Clare & King (2003))

Activity 1a: Splitting Dataset

This involved partitioning the dataset into three sets: training set and testing set where the most

common practice is to split in the ratio of 60:40, 70:30. 80: 20, and 90: 10 (Raschka, 2015). It was

noted that splitting the dataset amounts to withholding valuable information which could otherwise

be beneficial to the learning algorithm while at the same time the smaller the test size the more

inaccurate the generalization error (Raschka, 2015).

In order to balance this trade-off, stratified random sampling was adopted to ensure each target class

was maintained in either of the two splits to safeguard against poor generalization error. Further, to

ensure little information was withheld in the test set which could be valuable to our learning

algorithm, a split ratio of 80:20 was selected. In practice, 80:20 split ratio is beneficial to large

datasets, however, in case of smaller datasets, as is the case in the current study, cross-validation

technique guarantees better results (Raschka, 2015). Consequently, in the current study, 5-fold cross-

validation technique was applied to split further the training set into two, train (64%) and validate set

(16%), so that together with test set (20%) we got a total of three split sets.

 118

Although 10-fold splitting is recommended, 5-fold was adopted as a result of smaller frequencies of

less than 10 in some target classes. While the training set was used to fit the data and learn various

classifier models, validate set was used to select the best performing classifier model, and the test set

was used as an ultimate test to the model before it was ready to release in the real world. Fig 3.5.4e

describes the dataset splitting process.

Figure 3.5.4e: Splitting datasets (adapted from Raschka, 2015)

Activity 2a: Generating Model

The classifier model was generated through two learning algorithms, namely naïve Bayes and SVM.

Raschka (2015) provided a guiding principle used to select the two learning algorithms, that no

single classification model enjoys superiority over others since each classification algorithm used to

generate the model has its own inherent biases and assumptions. The best practice is to make

assumption about the classification task and use a handful of classification algorithms for

comparative analyses.

Each candidate classification algorithm selected to generate the model correlates closely with the

main classification assumption made in the present study that occupational industry roles are distinct

to each other and their predictors are independently identical. Consequently, the element of

independence of identical predictors is the basis of naïve Bayes while the element of distinct classes

that are separable is the basis of SVM. Choice criteria for the two algorithms was given in 2.7.7.5.

Generation of the model involved training and tuning iterative processes. Training involved making

the learning algorithms learn a map function from features to target classes by analyzing data in the

feature set. Tuning involved making the learning algorithms find optimal hyperparameter values that

generated satisfactory generalization performance (Raschka, 2015). These twin iterative processes

were conducted under well designed experiments and generated a variety of models with different

performance levels that demanded careful evaluation strategy. This is because in each iteration the

Original dataset (100%)

Training (80%)

Train (64%)

Test(20%)

Validate(16%)

dataset

Test(20%)

1st split sets

2nd split sets

 119

learning algorithms improved their performance of classification as a result of the learning

experience derived from data and the result would be a new candidate classifier model.

Activity 2b: Evaluate Model with validate set

In the current study, evaluation of each candidate classifier model was important in three ways: 1) to

assess the extent to which the type of parameter tuning affected performance of generated model, 2)

to assess generalization performance of individual candidate classifier models with respect to their

generalization error, 3) to enable compare performance between various candidate classifier models.

A widely used measure of performance, namely accuracy where number of correctly classified

samples are determined, was selected (Raschka, 2015). The aim was to evaluate performance of each

individual candidate classifier generated at each iteration of training using validate set.

However, performance of a classifier may be affected by the bias in partitioning dataset into training

set and validate set. Practically, in k-fold cross-validation one fold is set aside as a validation set and

whose choice may affect performance estimate of the candidate model. To ensure an estimate

performance that is less sensitive to partitioning and choice of validation set effect, repeated k-fold is

recommended (Raschka, 2015). As a result of activity 1a (splitting dataset), the current work

adopted repeated 5-fold cross-validation where each fold was used as a validation set alternately thus

amounting to five iterations. The classification accuracy for each fold used as a validation set in each

iteration were then used to calculate the average performance of each candidate model (Raschka,

2015).

Activity 3a: Select the Best Model

The question we should ask is, how do we know which model performs well on the final test dataset

and real world data? Each classification algorithm is based on certain assumptions which may differ

from algorithm to algorithm in terms of number of features or samples, amount of noise in the

dataset, and whether the target classes are linearly separable or not (Raschka, 2015). Further, each

algorithm may have different classifiers depending on its different configurations (Lavesson, 2006).

An experimental comparison between classifiers of the selected algorithm, was conducted.

Activity 3b: Evaluate Model with Test set

To determine whether the model would perform well in the real world data, a test set, that had not

been seen by the model before was adopted.

 120

3.5.5. Model Evaluation

Model evaluation was conducted to establish generalization suitability and validity of the model. In

the present study, experimental approach was adopted for evaluation where two questions guided the

process: 1) what is the performance of the model in mapping graduates‘ skills to industry roles? 2)

How do we ensure the validity of the results? Answers from these experimental questions enabled

the researcher to provide answers to the last research question: how do we evaluate performance and

validity of the mapping model?

To investigate this question a research hypothesis was defined as follows:

 Ho4A: There is no significant performance difference of the model in different industry

domains

The findings from a number of experimental trials helped to investigate the above hypothesis.

Sokolova & Lapalme (2009) provided source for performance measures for evaluating classifier

models where apart from accuracy and miscalculation errors, precision, recall, and f1-score were

adopted. Classification accuracy was preferred in this study because it has been reported widely in

many machine learning studies (Raschka, 2015).

However, Raschka (2015) notes that a lot of caution has to be taken because model accuracy is only

a useful metric to quantify performance of the model in general. In light of this fact, there was a

desire to use performance measures that would provide insight into the quality of the model in terms

of committing more serious errors, such as precision, recall, and f-score as elaborated by Sokolova &

Lapalme (2009). To achieve this kind of evaluation a prototype software system for mapping

graduates‘ skills to industry roles based on the model was developed. This helped to not only

evaluate the model‘s performance but also compare its performance with other models in literature.

3.6. Summary

This chapter has presented a detailed analysis and design of the research methodology adopted in this

study, ranging from research philosophy, research strategies, research designs and methods. The

research philosophy was selected based on two philosophical assumptions: epistemology and

ontology. Philosophical assumptions helped to locate the philosophical paradigm, positivism, in

which the research methodology was placed. A carefully selected approach was used to design a

research strategy for each research question before finally deciding on the appropriate research

design for each.

 121

The first specific research question was approached using literature review and experimental designs

which provided important concepts that formed the basis of data collection and analyses in the

second question. The second research question was largely approached using descriptive survey

design where data was collected and analyzed to reveal either boundaries between concepts used as

target classes or whether the classes are separable as required in machine learning classification.

Research questions three and four were both largely approached using experimental design where

evaluation of classifier model performance and validity was necessary.

A framework to operationalize the research process was designed where a number of hypotheses

were defined. In summary, five research hypotheses were placed at the center of investigation where

a concrete research methodology was put into action to provide proof to either accept or reject the

hypotheses. Table 3.6 presents a summary of how research was operationalized.

Table 3.6: Operationalization of research methodology(

Research Question Research hypothesis Research methodology

RQ1: What concepts are appropriate

as machine learning attributes for

mapping graduates‘ skills to

occupational industry roles?

 H01A: All features are equally relevant for inducing

better performance to the classifier model

Literature Review/Analysis

Experimental Design

RQ2: What is the structural

characteristic of concepts that

correctly reflect the hierarchy of

industry roles required as target

classes for machine learning?

H02A: There is no significant boundary differences

between industry roles/potential target classes

Descriptive Survey Design

RQ3: How do we build, using these

concepts, an appropriate machine

learning model for mapping

graduates‘ skills to hierarchically

structured occupational industry

roles?

Ho3B: Any parameter value induces better performance in

the model

Ho3C:All induction algorithms induce equal generalization

performance to the model

Experimental Design

RQ4: How do we evaluate the

performance and validity of the

machine learning model?

H04A: There is no significant performance difference of

the model in different industry domains

Literature Review/Analysis

Experimental Design

 122

CHAPTER 4: MODELING RESULTS AND FINDINGS

4.0. Introduction

Data analysis results have been grouped into sections. Section 4.1 presents descriptive analysis

results while section 4.2 presents experiments analysis results. Discussion provides interpretation of

the results and is presented in section 4.3.

4.1. Descriptive Results and Findings

4.1.1 Population description

Tables 4.1.1a and 4.1.1b describe the demographic characteristics of exam past papers‘ sample and

employees‘ sample.

Table 4.1.1a: Demographic characteristics of exam past papers sample

Variable Category Frequency Percentage (%)

1. Degree program BSc. Computer science 15 62.5%

 BSc. IT 9 37.5%

2. Year studied Second year 4 16.7%

 Third year 10 47.7

 Fourth year 5 20.8%

 Second and third year 5 20.8%

3. Number of questions Four 5 20.8%

 Five 14 58.3%

 Eight 1 4.2%

 Ten 4 16.7%

4. Total exam marks 90 5 20.8%

 110 14 58.3%

 160 3 12.5%

 170 1 4.2%

 180 1 4.2%

4.1.2. Proportions of job entry industry roles

Figure 4.1.2 presents pie chart results showing common industry roles undertaken by software

engineers in the industry at job entry level after graduation and their proportions (%) as revealed by

the survey.

Findings #1:

Figure 4.1.2 reveals that while ‗web programmer [WP]‘ (25.66%) and ‗analyst programmer [AP]‘

(23.39%) were very popular at job entry level ‗project manager [PM]‘ (3.54%) was not. The

 123

assumption behind this is that experience is highly demanded in this position than the rest and yet

this experience may not be available to entry level graduates.

Table 4.1.1b: demographic characteristics of employees’ sample

Variable Category Frequency Percentage (%)

1. Gender Male 77 68.1%

 Female 36 31.9%

2. Bachelor‘s degree BSc. Computer science 32 28.3%

 BSc. IT 55 48.7%

 BSc. Software engineering 22 19.5%

 Others 4 3.5%

3. Attractor to job Passion 31 27.4%

 Salary 33 29.2%

 Ambition 33 29.2%

 Qualification 7 6.2%

 Other 9 8.0%

4. % of classroom learnt

content tested in exam

100% 4 3.5%

 75% 73 64.6%

 50% 33 29.2%

 25% 2 1.8%

 0% 1 9.0%

Figure 4.1.2: industry roles for software engineers

4.1.3. Proportions of job entry level role performance activities

Figure 4.1.3 presents a bar graph showing frequency analysis results of a total of 17 role performance

activities (RPA) performed by software engineers in various industry roles at job entry level as

revealed by the survey. The results reveal RPA ‗design data base‘ is the highest performed (11%)

while ‗manage project workflows‘ is the least (2%). Table 4.1.3 presents results showing two types

of competences for software engineers as main competences and specialization area for specific

 124

competences. Three main competences are ‗Design [D]‘, ‗Coding [P]‘, and ‗Manage [M]‘ and their

prevalence proportions (%) indicated for each industry role. The results indicate, for example in

‗Software Architecture [SA], design competence is more demanded (prevalence of 50%) than coding

(prevalence of 33.2%) and manage (prevalence of 16.8%). Two specialization areas of specific

competences are ‗Mobile Developer‘ and ‗Desktop Developer‘ and their proportion numbers in the

sample data are indicated for each industry role. The results indicate out of 19 ‗Software Architecture

[SA] for example, 4 have specialized as ‗Mobile Developers‘ and 15 as ―Desktop Developers‘. The

results also indicate that the overall software engineers‘ demand for ‗Coding [P]‘ is higher

(prevalence of 42.72%) than ‗Design [D]‘ (prevalence of 36%) and ‗Manage‘ (prevalence of

21.2.8%).

Figure 4.1.3: Role performance activities for software engineers’ industry roles

Table 4.1.3: Prevalence of competences in each industry role

Findings #2:

Figure 4.1.3 and Table 4.1.3 reveal that occupational industry roles have similar job performance

activities/competences but different levels of emphasis where some are more emphasized in one role

but less emphasized in other roles. Also, software engineers demand more of programming than

management skills.

 125

4.1.4. Central tendency measures

Both mean and mode were used to describe the central tendency of the independent variables.

However, before further analyses were conducted, reduction of data redundancy using principle

component analysis method was performed on the study‘s data file. Table 4.1.4a presents a rotated

component matrix result indicating the uncorrelated factors of the data. A total of 24 original sub-

variables for analysis were reduced to 13 components or factors, hence considerably reducing data

complexity with little loss of accuracy information of only 13.71%. The 13 components represent 13

sub variables that were used to assess respondents‘ perception on the four factors that could be used

to determine graduates suitability for various industry roles as indicated in the research model‘s input

variables and as described in this section.

Table 4.1.4a: Rotated Component Matrix for principle component analysis

Table 4.1.4b presents summarized results showing the calculated index vector for each industry role

where Mn, Mx, Iv, and IR represent minimum index value, maximum index value, average index

value, and relative index value.

 126

Table 4.1.4b: Class boundaries for various industry roles

Role

category

name

Content Knowledge

(Relevance Index)

Cognitive skills

(Durability Index)

Technical skills (Accuracy

Index)

Academic capacity

(Capacity Index)

Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR

Project
Manager (PM)

8.44 8.51 8.5 3 9.06 9.51 9.5 2 0 9.53 9.525 7 8.84 above 9 1

Mobile
Programmer
(MP)

8.06 8.08 8.074 6 9.51 above 9.815 1 10.01 10.03 10.022 3 8.77 8.84 8.833 2

System
Administrator
(SAD)

8.58 above 8.718 1 8.99 9.06 9.051 3 10.06 above 10.342 1 8.26 8.77 8.769 3

Test Engineer
(TE)

8.08 8.43 8.429 5 less 8.01 8 7 9.88 10.01 10 4 8.07 8.26 8.25 4

Web
Programmer
(WP)

less 8.06 8.057 7 8.01 8.25 8.241 6 9.55 9.88 9.876 5 7.56 8.07 8.069 5

Analyst
Programmer
(AP)

8.43 8.44 8.436 4 8.25 8.49 8.487 5 10.03 10.06 10.058 2 7.09 7.56 7.558 6

Software
Architect (SA)

8.51 8.58 8.574 2 8.49 8.99 8.981 4 9.53 9.55 9.545 6 0 7.09 7.083 7

Independent Variable1 – Relevant content knowledge that promotes enhanced performance in

the industry role.

Out of the original 10 sub-variables only three are uncorrelated i.e. 1) software requirement 2)

software configuration, and 3) software quality. Figures 4.1.4a, 4.1.4b, and 4.1.4c present bar graph

results showing comparison of average content required of various knowledge areas to perform each

industry role. Mode has been used as the measure of central tendency and the results reveal

knowledge content type ‗software requirements‘ and ‗software quality‘ are least relevant to ‗analyst

programmer‘ while ‗software configuration‘ is least relevant to ‗project manager‘. However,

‗software requirements‘ and ‗software configuration‘ are highly relevant to ‗systems administrator‘

while ‗software quality‘ is most relevant to ‗test engineer‘.

Finally, the content knowledge index has been calculated by getting the average of the three sub-

variables and the mean has been used as the measure of central tendency. Figure 4.1.4d presents bar

graph results showing comparison of the means for the content knowledge index of the various

industry roles. Y axis of this figure represents the average of the three subvariables referred in this

 127

section and denoted as meanR. The results indicate ‗systems administrator‘ has the highest content

knowledge index (8.718) while ‗web programmer‘ has the least content knowledge index (8.057).

Figure 4.1.4d: Average Content knowledge index for each industry role

Independent Variable2 – Cognitive skills that promote prolonged retention of relevant

knowledge required to perform the industry role.

Out of the original 6 sub-variables only three are uncorrelated i.e. 1) concept understanding 2)

concept application, and 3) concept judgment. Figure 4.1.4e, 4.1.4f, and 4.1.4g present bar graph

results showing comparison of average level required of various types of cognitive skills to perform

each industry role. Again, mode has been used as the measure of central tendency and results

indicate industry role ‗analyst programmer‘ demands highest levels of skill type ‗concept

 128

understanding‘ and ‗concept application‘, while ‗test engineer‘ and ‗project manager‘ demand levels

for these skill types are the lowest.

However, ‗concept judgment‘ demand levels are very high for ‗software architect‘ and very low to

‗systems administrator‘. Finally, the cognitive skills index has been calculated by getting the average

of the three sub-variables and the mean has been used as the measure of central tendency. Figure

4.1.4h presents bar graph results showing comparison of the means for the cognitive index of the

various industry roles. Y axis of this figure represents the average of the three sub-variables referred

in this section and denoted as meanD. The results indicate ‗mobile programmer‘ have the highest

cognitive skills index (9.815) while ‗test engineer‘ have the least cognitive skills index (8.0).

Figure 4.1.4h: Average cognitive skills index for each industry role

Independent Variable3 – Technical skills that promote precision of performance results in the

industry role.

Out of the original 6 sub-variables five are uncorrelated i.e. 1) SE project 2) database skills 3)

programming skills 4) networking skills, and 5) distributed skills. Figure 4.1.4i presents bar graph

 129

results showing comparison of average level required of various types of technical skills to perform

each industry role. Again, mode has been used as the measure of central tendency and results

indicate industry roles ‗analyst programmer‘, ‘test engineer‘, ‗web programmer‘, and ‗mobile

programmer‘ have similar demand levels of all skill types while the rest reveal some variations.

Finally, the technical skills index has been calculated by getting the average of the five sub-variables

and the mean has been used as the measure of central tendency. Figure 4.1.4k presents bar graph

results showing comparison of the means for the technical skills index of the various industry roles.

The results indicate ‗systems administrator‘ has the highest technical skills index (10.342) while

‗project manager‘ has the least technical skills index (9.525).

Figure 4.1.4i: Average Technical skills required to perform each industry role

Independent Variable4 – Intellectual content that promotes capacity to perform the industry

role

All the two original sub-variables are uncorrelated i.e. ‗O‘ level Aggregate points and Bachelors final

grade. Figure 4.1.4j presents bar graph results showing comparison of average level required of

various types of intellectual content to perform each industry role. Again, mode has been used as the

measure of central tendency and results indicate only industry roles ‘test engineer‘ and ‗web

programmer‘ have their content type values paired different while the rest reveal their pairs are

tying. However, it is important to note that there are two blocks of ties, lower and upper. Industry

roles ‗software architect‘ and ‗analyst programmer‘ have the lowest similar tie, while ‗project

manager ‘,‘ systems administrator and ‘mobile programmer‘ have the highest similar tie.

Finally, the academic capacity index has been calculated by getting the average of the paired sub-

variables and the mean has been used as the measure of central tendency. Figure 4.1.4l presents bar

 130

graph results showing comparison of the means for the academic capacity index of the various

industry roles. The results indicate ‗project manager‘ have the highest academic capacity index (9.0)

while ‗software architect‘ have the least academic capacity index (7.083).

Figure 4.1.4j: Average Intellectual capacity required to perform each industry role

4.1.5. Hypothesis Testing Results

Table 4.1.5a: presents results of validity test to data that indicates normality of data and homogeneity

of group variance in the data. Two types of data (actual values based data and factor values based

data) have been scrutinized for validity before they could be adopted in subsequent analysis. The

findings in Table 4.1.5a reveal while all the variables of factor based data pass the test for

homogeneity of variance, most test variables of actual data do not pass the test. Moreover, both types

of data do not meet all the three conditions of normality. Therefore, the tests in this section were

conducted with the later data type. Table 4.1.5b: presents results of non-parametric test for multiple

independent samples that have been conducted using factor values derived during data redundancy

process, to test the research hypotheses.

 131

Table 4.1.5a: Tests of data validity

Type of

validity

Type of test Type of

data

content

knowledge

Cognitive

skills

Technical

skills

Academic

capacity

1.Homogeneity

of group

variances

Accept if >0.1

(Levene test)

(Equality of variances)

Hypothesis:
Are variances between

the groups equal?

Actual 0.172 0.054 0.804 0.077

yes no yes no

Factors 0.364 0.265 0.432 0.159

yes yes yes yes

2.Normality of

data

Accept if

difference not

more than 1

Accept if when

rounded is 0

Accept if greater

than 0.05

 (mean ≈ trimmed

mean≈ median)

Hypothesis:

Which groups test

positive?

Actual all all all all

Factors all all all all

(Skewness ≈ kurtosis ≈

0)

Hypothesis:

Which groups test

positive?

Actual SAD none TE, AP WP

Factors none WP,TE none none

(kolmogorov-smirnov

test)

Hypothesis:

Is this data a good fit

to a normal

distribution?

Actual 0.146 0.607 0.150 0.003

yes yes yes no

Factors 0.995 0.466 0.966 0.903

yes yes yes yes

Table 4.1.5b presents significance test results for the first set of four hypotheses defined in the

research design as given chapter3 section 3.5.2) and restated below:

Hypothesis 1(H01):

H0: There are no significant domain specific knowledge differences between industry roles in the

same occupation

Ha: There are significant domain specific knowledge differences between industry roles in the

same occupation

Hypothesis 2(H02):

H0: There are no significant domain general knowledge differences between industry roles in the

same occupation

Ha: There are significant domain general knowledge differences between industry roles in the

same occupation

Hypothesis 3(H03):

H0: There are no significant domain specific skill differences between industry roles in the same

occupation

 132

Ha: There are significant domain specific skill differences between industry roles in the same

occupation

Hypothesis 4(H04):

H0: There are no significant domain general skill differences between industry roles in the same

occupation

Ha: There are significant domain general skill differences between industry roles in the same

occupation

Table 4.1.5b: Tests
b
 of hypotheses results

 Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4

N 109 109 109 109

Median .0279 -.0525 .0464 -.0005

Chi-Square 2.441 16.151 1.866 13.109

df 6 6 6 6

Asymp. Sig. .875 .013 .932 .041

b. Grouping Variable: FIRST APPOINTED JOB

The results indicate while Hypothesis 1 results (χ
2
=2.441, p=0.875) and Hypothesis 3 results

(χ
2
=1.866, p=0.932) imply we accept the null hypotheses, Hypothesis 2 results (χ

2
=16.151, p=0.013)

and Hypothesis 4 results (χ
2
=13.109, p=0.041) imply we reject the null hypotheses. Table 4.1.5c

presents a cross tabulation of the hypothesis testing results.

 Table 4.1.5c: Hypothesis decision results

Variable type KNOWLEDGE SKILL

DOMAIN SPECIFIC Hypothesis 1 = Accept Hypothesis 3 = Accept

DOMAIN GENERAL Hypothesis 2 = Reject Hypothesis 4 = Reject

Findings #3:

Table 4.1.5c reveals that domain specific knowledge and skills for occupational industry roles were

similar while their domain general knowledge and skills were different in each role.

4.1.6. Trend analysis results

Figure 4.1.6a presents bar graph results showing comparison of average content knowledge Index

values while Figure 4.1.6b presents bar graph results showing comparison of average cognitive skills

 133

index values for various universities in the academia both derived from their exam past papers.

Results reveal although ‗KCA‘ university has the highest content knowledge index value, its

cognitive skills index value is the lowest. While ‗UON‘ university has the highest cognitive skills

index value, ‗JKUAT‘ university has the lowest content knowledge index value.

Figure 4.1.6c shows box-plot results of the content knowledge index value requirements for various

industry roles represented using boxes and content knowledge index values for various universities

represented using reference lines. The reference line represents the minimum content knowledge

index values expected by various universities. The results reveal that while universities ‗KCA‘ and

‗UON‘ are trending in all industry roles, ‗JKUAT‘ is only trending in only three industry roles i.e.

‗software architect‘, ‗mobile programmer‘, and ‗project manager‘.

Figure 4.1.6c: Comparison of Average Content Knowledge Index of Academia and Industry

roles

 134

Figure 4.1.6d shows box-plot results of the cognitive skills index value requirements for various

industry roles and cognitive skills index values for various universities represented using reference

lines. The results reveal that only ‗UON‘ is trending in all industry roles, while ‗KCA‘ and

‗EGERTON‘ are only trending in only one and two industry roles respectively i.e. ‗analyst

programmer‘ for ‗KCA‘, while for ‗EGERTON‘ are ‗analyst programmer‘, and ‗web programmer‘.

Figure 4.1.6d: Comparison of Average Cognitive Skills Index of Academia and Industry roles

Table 4.1.6 presents a summary of the counts of the trending industry roles in each university as

revealed by figure 4.1.6a and 4.1.6b analysis results.

Table 4.1.6: Summary of trending industry roles in the academia

University name Counts of roles in

Content knowledge Index

Counts of roles in

Cognitive skills Index

Average counts

per university

Percentage

(%)

1. UON 7 7 7 100%

2. JKUAT 3 3 3 42.9%

3. Kabarak 6 3 4.5 64.3%

4. Egerton 5 2 3.5 50%

5. KCA 7 1 4 57.1%

Average counts per

variable

5.6 3.2

Percentage (%) 80% 45.7% 62.86%

Findings #4:

Table 4.1.6 reveals that academia was able to meet knowledge requirements of 80% of industry roles

while only 45% of industry roles had their skills requirements fulfilled. Academia institutions had

different biases towards industry roles‘ requirements.

 135

4.2. Experimental Results and Findings for Feature Selection and Algorithm Selection

4.2.1 Introduction

Three types of datasets with known demographic descriptions were used i.e. research (dataset1),

benchmark (dataset2), and validation (dataset3). Hypotheses for experimental analyses were tested

for significance using either analysis of variance (ANOVA) or paired sample T tests. Significance

level of 0.05 was used. Three ML algorithms used for the feature selection experiments were

Logistic Regression (LR) whose parameter was (c = 1.0), K-Nearest Neighbor (KNN) whose

parameter was (k = 4), and Support Vector Machines (SVM) whose parameters were

(kernel='gamma=0.0', C=1.0, random_state=0). The parameters were selected through preliminary

trials that produced the best training results. Two ML algorithms used for the algorithm selection

experiments were naïve Bayes and SVM whose parameter tuning was explicitly determined.

4.2.2 Taxonomic description of Software Engineers’ Industry roles (dataset1)

Figure 4.2.1 illustrates mapping of 12 roles for software engineers from Table 4.1.3 into the

proposed taxonomic structure using our method. The 12 roles have been coded as follows: 1: mobile

system manager, 2: mobile project manager, 3: mobile architect designer 4: mobile web designer 5:

mobile analyst programmer 6: mobile test programmer 7: desktop system manager 8: desktop project

manager 9: desktop architect designer 10: desktop web designer 11: desktop analyst programmer 12:

desktop test programmer.

Figure 4.2.1: The Taxonomy for Software Engineers’ Industry roles

 136

4.2.3 Taxonomic description of Academic Librarians’ Industry roles (dataset3)

Figure 4.2.2 illustrates the mapping of 7 industry roles for academic librarians into the proposed

taxonomic structure using our method. The 7 distinct industry roles have been coded as follows: 1:

Reference librarian, 2: Circulation librarian, 3: Digital media librarian 4: Multi-service librarian 5:

Acquisition & cataloguing librarian 6: Africana librarian 7: Information literacy librarian.

Figure 4.2.2: The Taxonomy for Academic Librarians’ roles

Findings #5:

Figures 4.2.1 and 4.2.2 reveals that entry level occupational industry roles were both branched into

functional areas and each functional branch was hierarchical with different levels of skills demand

(proficiency) and different types of skills at various levels.

4.2.4 Experiment Datasets Description

Table 4.2.4 describes the demographic characteristics of the three datasets that have been used for

experimental purpose. Dataset1 represents software engineering employees‘ profile data while

dataset2 represents extract of the AMEO2015 data that has been used as a benchmark and dataset3

represents academic librarians‘ profile data that has been used for model validation.

Table 4.2.4: Demographic characteristics of experiment datasets

Dataset Attributes Instances Classes Levels

1. Dataset1 18 113 12 3

2. Dataset2 18 279 12 3

3. Dataset3 14 50 7 3

 137

4.2.5 Class Sizes in the Experiment Datasets

Table 4.2.5 presents table results showing distribution of class instances in the three datasets as

revealed by the experiment. While in dataset1 class number 10 has the largest number of instances of

16 and the lowest number of instances in a class is 1, in dataset2 class number 9 has the highest

number of instances of 75 and 10 is the lowest number of instances in a class. In dataset3, classes

number 1 and 5 have the highest number of instances of 9, 4 is the lowest number of instances in a

class.

Table 4.2.5: Distribution of class instances in the datasets

Class-codes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

Instances

(dataset1)

1 1 5 15 14 8 12 6 14 16 15 6 - - - - - - 113

Instances

(dataset2)

9 14 23 40 13 42 9 8 19 32 51 19 279

Instances

(dataset3)

9 8 7 7 9 4 6 - - - - - - - - - - - 50

Findings #6:

Table 4.2.5 reveals that dataset1 had classes with smaller sizes such as class 1 and class 2 whose

sizes were both one. Such class sizes would not be useful for machine learning that required the

class instances to be partitioned into training and test set. Therefore such classes were eliminated in

the subsequent experiments with this dataset.

4.2.6 Model Building Results and Findings

A total of three experiments were conducted with an overall aim of building the best model. The

aims and design elements of the individual experiments have been summarized as shown in Table

4.2.6.1a:

1) Experiment A: To select meaningful features for the model

Three algorithms (Logistic Regression, K-Nearest Neighbors, and SVM) were used experimental

subjects. Out of the features generated by each of the three algorithms, features that appeared in

at least two of these algorithms were selected.

2) Experiment B: To select parameter values for the model.

A range of parameter values was purposively chosen for the algorithm selected in experiment C.

Out of the range select a parameter value that renders the model the best performance

3) Experiment C: To select the best model with the smallest generalization error

 138

Two induction algorithms (Naïve Bayes and SVM) were used as experimental subjects. Out of

the two induction algorithms used, algorithm that gave the smallest generalization error was

selected.

Table 4.2.6.1a presents the planning of the experiments while the detailed results for these

experiments have been presented in sections 4.2.6.1, 4.2.6.2, and 4.2.6.3 respectively.

Table 4.2.6.1a: Model Building Experiments’ Designs

 Experiment A Experiment B Experiment C

Conception/Objective To select valuable features

for the model

To select relevant parameter

values for the model

To estimate generalization

error of the model

Design

1.Experimental units

2.Experimental

subjects

3.Dependent variable

4.Independent Variable

1. Graduate employees skills

2.ML model‘s Algorithms

3.Performance (accuracy)

4.Number of features

1. Graduate employees skills

2.ML model‘s Algorithms

3.Performance (accuracy)

4.Parameter values

1. Graduate employees skills

2.ML model‘s Algorithms

3.Performance (accuracy)

4.Sample size

Preparation &

Execution

1.Split dataset into three:

Training set, Validation set,

Testing set

2.apply 5-fold cross

validation

3.Select features using

Sequential backward

selection method

1.Split dataset into three:

Training set, Validation set,

Testing set

2.Apply 5-fold cross

validation

3.Apply purposive sampling

to values

1.Split dataset into three:

Training set, Validation set,

Testing set

2.Apply 5-fold cross

validation

3.Apply progressive sampling

Analysis Compare features that give

the best accuracy for the

model

Compare parameter values

that give the best accuracy

for the model

Compare generalization

performance of the model by

the two induction algorithms

Criteria of selection Out of the features generated

by each of the three

algorithms, select the one

that appears in at least two

of these algorithms

Out of a range purposively

chosen, select a parameter

value that renders the model

higher performance

Out of the two induction

algorithms used, select

algorithm that gives the

smallest generalization error

4.2.6.1 Feature Selection using SE Benchmark Dataset (Experiment A)

Initially, benchmark dataset (dataset2) had a total of 13 features excluding the class feature after

which feature selection was applied and reduced the features to 5. Initially, features were selected

that other evidence, including more general models fitted into the full dataset, suggest would be

important predictors of industry roles as applied by Clive & Joan (2000). In the present study, three

machine learning algorithms, namely logistic regression (LR), K-Nearest Neighbor (KNN) and

Support Vector Machines (SVM) were used for this process. Through sequential backward selection

method the three algorithms, namely logistic regression (LR), KNN, and SVM(kernel='gamma',

C=1.0, random_state=0) functions were applied on the benchmark dataset (see Figure:

 139

4.2.6.1a,b,&c) and resulted into a range of 4 feature subsets for each of the respective algorithms that

gave an optimal performance accuracy (validation =0.80%, test=0.78%) , (validation =0.84%,

test=0.71%) and (validation =0.90%, test=0.85%) respectively. Therefore, the best features that gave

optimal results to each algorithm as evidenced by Figures 4.2.6.1a,b,&c, in increasing order of

importance, were:

Logistic regression = {Age, D, A, C}; KNN = { Age, R, D, A, }; SVC = { R, D, A, C}

Figure 4.2.6.1a: Logistic Regression algorithm run results

Figure 4.2.6.1b: K-Nearest Neighbor algorithm run results

 140

Figure 4.2.6.1c: SVM algorithm run results

In the present study, comparison was conducted and features that were popular in at least two

algorithms were selected as true candidates for the best features while the rest were marked as false.

Table 4.2.6.1b presents results of comparative analysis of features‘ subsets for the three algorithms

where Y (yes) was used to mark a feature selected by an algorithm, otherwise a dash (-). A true/false

score was used to analyze the features along the columns where a feature with at least two Ys was

scored true otherwise false.

Those algorithms whose features had been scored false, hence marked for removal, were further

analyzed to study performance impact of removing each feature both in isolation and in combination.

Caution was taken to ensure core features of the model were carefully removed and analysis was

conducted on the impact of adding a feature in other algorithms where it was not selected, especially

the core features marked for removal. Popular features that did not exist in other algorithms, were

added unconditionally into the subsets of these algorithms. In the present study, all three algorithms

were affected through adding popular features, namely LR (feature ‗R‘), KNN (feature ‗C‘) and

SVM (feature ‗age‘). The overall impact in performance for removing or adding new features was

determined.

For logistic regression (LR), the impact of adding ‗R‘ was a loss in performance of -0.01 (0.78 to

0.77). For KNN, the impact of adding ‗C‘ was a gain in performance of +0.12 (0.71-0.83) . For SVC,

the impact of adding ‗age‘ was 0.00 (0.85-0.85) . In conclusion, the addition of these popular features

would result to a total gain in performance of +0.11 as shown in Table 4.2.6.1b. As a result, a total of

five features from the original 13 were selected as optimal features for further analyses, namely: age,

R (relevant knowledge), D (cognitive skills), A (technical skills), C (capacity). Table 4.2.6.1b shows

cross analysis of features selected by the three algorithms.

Figure 4.2.6.1d shows general performance behavior of each algorithm when fitted with the selected

four feature dataset while Figure 4.2.6.1e shows general performance behavior of our model under

each induction algorithm when fitted with the all features dataset where the result seem to be

consistent with previous observations.

 141

Figure 4.2.6.1d: Sequential Backward Selection of features (LR, KNN, SVM) in SE

benchmark dataset.

Table 4.2.6.1b: Analysis of relevant features in SE benchmark dataset

Further experiments were conducted using our model on all, and 5 features and the results were as

shown in Table 4.2.6.1c. Further analysis was conducted to test whether model‘s performance

difference was significant.

Figure 4.2.6.1e: Selection of features using our model in SE benchmark dataset.

 142

Table 4.2.6.1c: Model performance with all and only selected features in SE benchmark

dataset

 Validation Test (naïve Bayes) % Validation Test (SVM) %

 All features (ta) Selected features (ts) All features (ta) Selected features (ts)

Fold1 36.59 85.37 75.61 85.37

Fold2 51.43 74.29 74.29 88.57

Fold3 38.24 79.41 85.29 88.24

Fold4 40.63 75.00 87.50 87.5

Fold5 53.33 80.00 93.33 93.33

Mean 44.04 78.81 83.20 88.60

Testing whether the difference of group means (folds) was significant using ANOVA:

Table 4.2.6.1c presents validation test results showing a trade-off between model‘s performance with

all features and selected features both under naïve Bayes and SVM based constructs of the model.

Two groups were defined, namely all features‘ and selected features‘ groups. The results reveal a

possible difference between the two scenarios under both constructs of the model. The mean

difference under naïve Bayes construct of the model was 34.77 (78.81-44.04) while under SVM was

5.4 (88.60-83.20). To be sure the difference was not due to any other factor but only difference in

number of features, ANOVA test was conducted to rule out the effect of group(fold) to group (fold).

For this type of test to be valid, conditions for ANOVA that must be satisfied, homogeneity of group

variance and normality of data, were checked.

Table 4.2.6.1d presents results for ANOVA analysis for both kinds of model constructs investigated

through 10 trials of 5-fold cross-validation experiments. The results indicate the feature sets

variances were equal for naïve Bayes based model while not equal for SVM based model and, in

fact, means of the two feature sets scores were different in either case and, therefore, the seemingly

difference between the two models in Table 4.2.6.1c was real, was due to effect of variation of

feature set. For SVM based model Welch and Brown-Forsythe values are 0.000 for both.

Table 4.2.6.1d: ANOVA results (effect of feature selection) in SE benchmark dataset

Type of validity Type of test Model p-value Decision

1.Homogeneity of

group variances

Accept if p>0.1

(Levene test - Equality of variances)

Hypothesis: Are variances between the

groups equal?

naiveBayes 0.250 ACCEPT

SVM 0.021 REJECT

2.Difference of group

means

Accept if p>0.05

(F test - Equality of group means)

Hypothesis: Are group means equal?
naiveBayes 0.000 REJECT

SVM 0.000 REJECT

 143

Findings #7:

Table 4.2.6.1d reveals that reduction of features improved the performance of our model. The change

in performance was significant. Slightly better performance could be achieved with fewer features,

hence reducing the computational demand in terms of time and computational power. For this

dataset, out of 13 features only 5 features produced optimal results, namely Age, R, D, A, C.

4.2.6.2 Selecting Parameter values using SE BenchMark Dataset (Experiment B)

Table 4.2.6.2a presents results of our model performance under various combination of gamma and

complexity parameter, while kernel parameter was held constant at value equal ‗Gaussian‘. The

findings reveal that the model was optimal at gamma value at most 0.01 and complexity value at

least 100. Gamma parameter was varied at intervals of 10
n
 in the range of n (-5 to 0) while

complexity was varied at intervals of 10
n
 in the range of n (-5 to 3). This gave us insight into the

relevant values of gamma and complexity for our experiment to select the right values. Figure 4.2.6.2

presents graphical results showing validation curves for the SVM model under various gamma

parameter settings in the range of { 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0} for two relevant values of

complexity, namely complexity = 1000 and gamma = 10000. These results indicate that our model

showed very little improvement under complexity greater than 1000 while the optimal value gamma

was 0.001.

Table 4.2.6.2b presents experimental results with various parameter values for gamma and

complexity to show a trade-off between relevant and non-relevant parameter values. Further analysis

was conducted to determine whether model‘s performance difference was significant between model

with relevant and non-relevant parameter values.

Table 4.2.6.2a: Analysis of relevant parameter values using SE benchmark dataset

Complexity

 gamma 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

0.00001 18.3 18.3 18.9 17.6 20.3 18.9 20.2 18.9 44.1 66.7

0.0001 17.6 20.8 19.6 18.9 18.9 18.3 20.8 44.7 66.1 89.5

0.001 18.3 20.2 20.8 17.6 20.3 18.9 45.4 66.6 87.0 87.4

0.01 24.0 24.0 23.4 24.0 24.0 43.0 64.8 87.1 87.6 87.2

0.1 24.0 24.0 24.0 24.0 36.9 65.1 84.7 86.3 84.3 82.7

1 23.4 23.4 23.4 23.4 43.7 79.9 82.9 78.4 79.1 79.2

 144

Figure 4.2.6.2: Validation curve for SVM model in SE benchmark dataset

Table 4.2.6.2b: Model performance under various relevant parameter values.

 Non-Relevant gamma and

complexity values

Relevant gamma and complexity

values

 C =0.1, gamma = 0.1 C=1000, gamma=0.001

F1 31.71 80.49

F2 31.43 85.71

F3 38.24 82.35

F4 34.38 81.25

F5 36.67 90.0

Mean 34.48 83.96

Testing whether the difference was significant using ANOVA procedure

Table 4.2.6.2b presents validation test results showing a trade-off between model‘s performances

under various parameter values under SVM based constructs of the model. The focus of this test was

between relevant and non-relevant parameter values, hence two groups. The results reveal a possible

difference between the two scenarios under this constructs of the model. The mean difference of the

model was 49.48 (83.96-34.48). To be sure the difference was not due to any other factor but only

difference in parameter values, ANOVA test was conducted. For this type of test to be valid,

conditions for ANOVA were checked (homogeneity of group variance and normality of data). Two

models, one treated with non-relevant parameter values (gamma = 0.1 and complexity = 0.1) and

another with relevant parameter values (gamma = 0.001 and complexity =1000) were used in the

investigation.

 145

Table 4.2.6.2c presents results for ANOVA analysis for 10 iterations of 5-fold cross-validation

experiments that were conducted to investigate performance change. The results indicate the

,model‘s performance variances were equal across parameter set values and, in fact, the average

model performance scores under the two parameter sets were different. Therefore, the seemingly

Table 4.2.6.2c: ANOVA results (effect of parameter values) in SE benchmark dataset

Type of validity Type of test Model p-value Decision

1.Homogeneity of

group variances

Accept if p>0.1

(Levene test - Equality of variances)

Hypothesis: Are variances between the

groups equal?

SVM 0.760 ACCEPT

2.Difference of group

means

Accept if p>0.05

(F test - Equality of group means)

Hypothesis: Are group means equal?

SVM 0.000 REJECT

difference between the two models in Table 4.2.6.2b was real, which means it was not due to effect

of any other factor but parameter variations in the model.

Findings #8:

Table 4.2.6.2c reveals that parameter values of SVM improved performance of our model, especially

when gamma was at 0.001 and complexity was at least 1000. The change in performance was

significant at p=0.05.

4.2.6.3 Estimating generalization error of model using SE Benchmark dataset (Experiment C)

Figure 4.2.6.3a presents graphical results showing learning curves for the two models under various

sample sizes starting from sample size of 20. The results reveal that while training and test accuracy

Figure 4.2.6.3a: Learning Curves for Naïve Bayes and SVM models in SE benchmark dataset

 146

curves for SVM were almost converging as sample sizes increased, for naïve Bayes model the gap

between the two curves still remained large. The results also indicate SVM model required a sample

size, of about 190 to achieve optimal performance and smaller generalization error, while naive

Bayes with sample size less than 120 readily achieved optimal performance. The results also indicate

SVM has the smallest generalization error compared to naïve Bayes model at their optimal

performance levels.

To investigate this behavior further the two models were experimented under similar conditions then

the results were compared. This involved fitting and testing both models with similar training and

validate sets respectively through 10 iterations of 5-fold cross-validation. Table 4.2.6.3a presents

results of this experiment that indicated there was a difference in mean performance between SVM

(78.77) and naïve Bayes (63.93) models which suggested that SVM model was better than naïve

Bayes. Further investigation was conducted to test whether the difference (14.84) was real and

significant. This test was conducted using paired sample T test procedure.

Table 4.2.6.3a: 10 iterations of 5-fold cross validation tests in SE benchmark dataset

Test fold

5-Fold cross validation accuracy tests (%)

 Naïve Bayes SVM

Fold_1 Mean 60.81 73.30

 N 10 10

 Std. Deviation 3.38 3.65

Fold_2 Mean 63.00 77.78

 N 10 10

 Std. Deviation 3.70 4.21

Fold_3 Mean 66.69 80.18

 N 10 10

 Std. Deviation 5.92 6.04

Fold_4 Mean 63.35 81.90

 N 10 10

 Std. Deviation 5.49 2.63

Fold_5 Mean 65.79 80.70

 N 10 10

 Std. Deviation 6.18 5.81

Total Mean 63.93 78.77

 N 50 50

 Std. Deviation 5.30 5.42

 147

Testing whether the difference was significant using Paired Sample T test procedure

Table 4.2.6.3a presents validation test results showing a trade-off between model‘s performance

under both naïve Bayes and SVM based constructs. The focus of this test was between naïve Bayes

and SVM, hence two paired variables. Table 4.2.6.3a indicates a potential difference of 14.84 (78.77-

63.93) in the overall mean performance A paired sample T test was conducted to test the hypothesis

that model performance difference was not significant. For this type of test to be valid, conditions for

tests were checked (homogeneity and normality of data). Table 4.2.6.3b presents results based on 10

iterations of 5-fold cross-validation tests. The results indicate the difference was real and significant.

Table 4.2.6.3b: Paired Sample T Tests for Model selection using SE benchmark dataset

 Pair Paired differences t df Sig(2

-

tailed

)

RESULT

Mean Std. dev. Std.

error

mean

95% confidence

interval for

difference

lower upper

Paired naiveBayes-

svm

-14.84 6.988 .988 -16.83 -12.86 -15.02 49 .000 REJECT

Findings #9:

General performance indicated that SVM model (78.77%) was better than naïve Bayes model

(63.93%), this was revealed by cross-validation results in Table 4.2.6.3a. Table 4.2.6.3b confirmed

that the performance difference was real and significant at p=0.05.

4.2.6.4 Selecting Parameter values using SE Field Dataset (Experiment B)

Table 4.2.6.4a presents results of our model performance under various combination of gamma and

complexity parameter, while kernel parameter was held constant at value equal ‗Gaussian‘. The

findings reveal that the model was optimal at gamma value at least 0.1 and complexity value at least

10. Gamma parameter was varied at intervals of 10
n
 in the range of n (-5 to 0) while complexity was

varied at intervals of 10
n
 in the range of n (-5 to 3). This gave us insight into the relevant values of

gamma and complexity for our experiment to select the right values.

Figure 4.2.6.4 presents graphical results showing validation curves for the SVM model under various

complexity parameter settings in the range of { 0.001, 0.01, 0.1, 1.0, 10.0, 100.0 } for both relevant

values of gamma, namely gamma = 0.1 and gamma = 1.0. These results indicate that our model

shows better results under gamma = 0.1 than when gamma = 1.0 and we experimented further with

all relevant values of

 148

Table 4.2.6.4a: Analysis of relevant parameter values using SE field dataset

Complexity

 gamma 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000

0.00001 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 37.8

0.0001 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 55.1

0.001 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 57.8

0.01 57.8 57.8 57.8 57.8 57.8 57.8 60.2 60.4 60.4

0.1 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4

1 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4

complexity parameter where gamma = 0.1. Table 4.2.6.4b presents experimental results with various

parameter values for gamma and complexity to show a trade-off between relevant and non-relevant

parameter values. Further analysis was conducted to determine whether model‘s performance

difference was significant between model with relevant and non-relevant parameter values.

Figure 4.2.6.4: Validation curve for SVM model using SE field dataset

Table 4.2.6.4b: Model performance under various relevant parameter values.

 Non-Relevant(at gamma = 0.0001) Relevant Complexity values (at gamma = 0.1)

 C =0.0001 C =10 C = 100 C = 1000

F1 11.7 64.7 52.9 58.8

F2 12.5 56.2 68.7 50.0

F3 13.3 53.3 53.3 53.3

F4 18.1 63.6 63.6 54.5

F5 37.5 87.5 62.5 75.0

Mean 18.6 65.0 60.2 58.3

Testing whether the difference was significant using ANOVA procedure

Table 4.2.6.4b presents validation test results showing a trade-off between model‘s performance

under various parameter values under SVM based constructs of the model. The focus of this test was

 149

between relevant and non-relevant parameter values, hence two groups. The results reveal a possible

difference between the two scenarios under this constructs of the model. The mean difference of the

model was 46.6 (65.0-18.6) to 39.7 (58.3-18.6). To be sure the difference was not due to any other

factor but only difference in parameter values, ANOVA test was conducted. For this type of test to

be valid, conditions for ANOVA were checked (homogeneity of group variance and normality of

data). Two models, one treated with non-relevant parameter values (gamma = 0.0001 and complexity

= 0.0001) and another with relevant parameter values (gamma = 0.1 and complexity =10) were used

in the investigation.

Table 4.2.6.4c presents results for ANOVA analysis for 10 iterations of 5-fold cross-validation

experiments that were conducted to investigate performance change. The results indicate the

,model‘s performance variances are equal across parameter set values and, in fact, the average model

performance scores under the two parameter sets are different. Therefore, the seemingly difference

between the two models in Table 4.2.6.4b was real, was not due to effect of any other factor but

parameter variations in the models.

Table 4.2.6.4c: ANOVA results (effect of parameter values) in SE field data

Type of validity Type of test Model p-value Decision

1.Homogeneity of

group variances

Accept if p>0.1

(Levene test - Equality of variances)

Hypothesis: Are variances between the

groups equal?

SVM 0.673 ACCEPT

2.Difference of group

means

Accept if p>0.05

(F test - Equality of group means)

Hypothesis: Are group means equal?

SVM 0.000 REJECT

Findings #10:

Table 4.2.6.4c reveals that parameter values of SVM improved performance of our model, especially

when gamma was at least 0.1 and complexity was at least 10. The change in performance was

significant at p=0.05.

4.2.6.5 Estimation of generalization error of the model using SE Field dataset (Experiment C)

Figure 4.2.6.5a presents graphical results showing learning curves for the two models under various

sample sizes starting from sample size of 20. The results reveal that while training and test accuracy

curves for naïve Bayes were almost converging as sample sizes increased, for SVM model the gap

between the two curves still remained large. The results also indicate SVM model required a bigger

sample size, i.e. greater than 100, to achieve optimal performance and smaller generalization error,

while naive Bayes with sample size less than 100 readily achieved optimal performance.

 150

Figure 4.2.6.5a: Learning Curves for Naïve Bayes and SVM models in SE field data

To investigate this behavior further, the two models were experimented under similar conditions then

the results were compared. This involved fitting and testing both models with similar training and

validate sets respectively through 10 iterations of 5-fold cross-validation. Table 4.2.6.5a presents

results of the experiment that indicate there was a difference in mean performance between the two,

Table 4.2.6.5a: 10 iterations of 5-fold cross validation tests in SE field dataset

Test fold

5-Fold cross validation accuracy tests (%)

 Naïve Bayes SVM

Fold_1 Mean 49.51 55.86

 N 10 10

 Std. Deviation 7.54 9.59

Fold_2 Mean 48.89 59.41

 N 10 10

 Std. Deviation 11.37 4.99

Fold_3 Mean 56.22 58.09

 N 10 10

 Std. Deviation 7.22 10.65

Fold_4 Mean 51.22 53.11

 N 10 10

 Std. Deviation 10.54 8.46

Fold_5 Mean 56.84 57.48

 N 10 10

 Std. Deviation 13.97 12.70

Total Mean 52.54 56.79

 N 50 50

 Std. Deviation 10.56 9.48

 151

SVM (56.7) and naïve Bayes (52.5) models, which suggested that SVM model was better than naïve

Bayes. Further investigation was conducted to test whether the difference was real and significant.

This test was conducted using paired sample T test procedure.

Testing whether the difference was significant using Paired Sample T test procedure

Table 4.2.6.5a presents validation test results showing a trade-off between model‘s performance

under both naïve Bayes and SVM based constructs. The focus of this test was between naïve Bayes

and SVM, hence two paired variables. Table 4.2.6.5a indicates a potential difference of 4.25 (56.79-

52.54) in the overall mean performance A paired sample T test was conducted to test the hypothesis

that model performance difference was not significant. For this type of test to be valid, conditions for

tests were checked (homogeneity and normality of data). Table 4.2.6.5b presents results based on 10

iterations of 5-fold cross-validation tests. The results indicate the difference was real and significant.

Table 4.2.6.5b: Paired Sample T Tests for Model selection using SE field dataset

 Pair Paired differences t df Sig(2

-

tailed

)

RESULT

Mean Std. dev. Std.

error

mean

95% confidence

interval for

difference

lower upper

Paired naiveBayes-

svm

-4.254 14.39 2.03 -8.34 -.163 -2.09 49 .042 REJECT

Findings #11:

General performance indicated that SVM model (56.79%) was better than naïve Bayes model

(52.54%), this was revealed by cross-validation results in Table 4.2.6.5a. Table 4.2.6.5b confirmed

that the performance difference was real and significant at p=0.05.

4.3. Discussion of Modeling Findings

Descriptive results and findings were crucial in providing foundation for building the classifier

model while experimental results and findings were crucial in building the classifier model. They

both provided crucial information that was needed to execute those two processes respectively.

Besides, they were both vital in answering research questions under investigation, namely research

question 1, 2 and 3.

 152

4.3.1. Discussion of Descriptive Findings

4.3.1.1. Concepts as target classes for machine learning process

Findings#1, #2 and #6 were crucial in discovering industry roles concepts that formed the basis of

creating target classes for machine learning. While findings#1 & #2 revealed the concepts as raw

which were initially 7, findings#6 later on revealed the refined form of these concepts as 12.

Finding#6 also revealed the distribution of these concepts that was important in deciding how to

handle class imbalances during training process of machine learning.

4.3.1.2. Characteristics of target classes for machine learning process

The choice and design of machine learning methodology depends on: 1) structure of the problem and

2) assumptions about the learning problem (Kotsiantis, 2007; Silla & Freitas, 2011; Merschamann &

Freitas, 2013). As a result, findings#2 was crucial in discovering that these concepts had similar

structural elements (job activities/skills) but different levels of emphasis. Further, findings#5

discovered the structural relationship among these concepts that was crucial in deciding the machine

learning approach suitable for building the classifier model, in this case hierarchical classification

approach.

The fundamental assumption in the present study that occupational industry roles have different

requirements for problem solving skills was put in the form of a hypothesis under research question

2: H02A: There is no significant boundary differences between concepts to be used as potential

target classes for machine learning. Findinsgs#3 was crucial in rejecting this hypothesis.

Finding#4 was important in revealing that learning institutions have different biases towards these

concepts. This was crucial in designing the prototype software to handle graduates from different

learning institutions differently when deployed in the real world.

4.3.2. Discussion of Experimental Findings

4.3.2.1. Selection of meaningful features

Findings#7 was related to determination of not only the number of features that would maximize

performance of the classifier model but also whether the improved performance was significant.

Findings #7 revealed 5 features out of 13 were able to induce better performance results for the

classifier model equivalent to performance that could be achieved with 13 features. Besides, there

was significant improvement in performance leading to a conclusion that reduction of features has a

 153

number of benefits to the classifier model, including lowering demand for computational resources

and reducing the processing time. The findings revealed R (Relevant content), D (Cognitive skills),

A (Technical skills), C (Intellectual Capacity) and ‗Age‘ as the only 5 features out of 13 which were

able to induce optimal performance to the classifier model and this performance improvement was

significantly better than that of 13 feature model.

The implication of these findings provided insight not only into which features should be included in

the subsequent investigations but also to accept or reject the hypothesis posed in research question 1:

H01A: All features are equally relevant for inducing better performance in the classifier model.

The outcome based on these findings was to reject the hypothesis at significance level, p=0.05.

These findings‘ explanation was that when more than five features were used, the summary feature

space dimension became too large causing performance of the model to start decreasing and while

when less than five features were used essential information was lost that caused accuracy to decline

(Barbedo & Lopes, 2006).

4.3.2.2. Selection of the best induction algorithm for the model

The main focus of this experiment was to estimate the generalization performance of each of the two

models generated by each machine learning algorithm and select the best. Both findings#9 and #11

were key in revealing this fact where both concurred that the general performance of the SVM

classifier model was much better than that of naïve Bayes and in fact the difference between the two

was significant. Based on these findings, SVM was more likely to generalize its performance to

unseen data in the real world better than naïve Bayes classifier model. As a result, it was selected as

the best induction algorithm for classifier model. Also, the two findings were in concurrency in

rejecting a hypothesis posed in the research question 3 that: Ho3C: All induction algorithms induced

equal generalization error.

4.3.2.3. Selection of the best parameter values

Both finding#8 and finding#10 were related to investigation towards parameter tuning, although

through different datasets with different landscapes. Coincidentally, both findings agreed that

parameter tuning of SVM improved performance of the classifier model significantly. However,

parameter values that induced the best performance of the classifier model were dataset dependent.

The implication of these findings in this investigation suggested that in every different dataset we

needed to tune the parameter values for the best performance. Also, these findings provided key

 154

evidence that was used to reject the hypothesis paused in research question 3 that: Ho3B: Any

parameter value induces optimal performance in the model.

4.3.3. Discussions Conclusion of Modeling Findings

The conclusion relates to the research questions which were subject to investigation, namely research

questions 1, 2 and 3.

RQ1: What concepts are appropriate as machine learning attributes for mapping graduates’

skills to occupational industry roles?

Based on the findings in the present study, it is important to note when developing classifier models

for mapping skills to industry roles that appropriate attributes that are valid for machine learning are

content knowledge, cognitive skills, technical skills, academic capacity, and age. Table 4.3a

illustrates method followed to arrive at the findings.

Table 4.3a: Method followed to answer research question 1

METHOD FINDINGS

1. Literature analysis Obtained 13 concepts:

1. Independent factors (4 concepts)

2. Confounding factors (9 concepts)

2. Evaluation of three filter algorithms

using benchmark dataset [Experiment]

Obtained meaningful concepts under each algorithm

3. Analysis of three algorithms’ results for

relevant concepts

Established 5 relevant concepts appearing in at least

two results of the three algorithms:

1. Independent factors (4 concepts)

2. Confounding factors (1 concepts)

4. Use the relevant concepts to develop

the conceptual model

Obtained a validated conceptual model (OUTCOME)

RQ2: What is the structural characteristic of concepts required as target classes for machine

learning process of mapping graduates’ skills to industry roles?

Based on the findings in the present study, it is important to note when developing classifier models

for mapping skills to industry roles that target classes for machine learning are industry roles

 155

concepts which are distinct, and therefore, should be approached using supervised classification

approach. Class distributions of these concepts are imbalanced, and therefore, they need stratified

sampling during machine learning process of building the classifier model.

Besides, structural relationship among these concepts is hierarchical, and therefore, the process of

building the classifier model should be approached using hierarchical machine learning approach.

Finally, when designing software to deploy for real world use, the underlying biases of different

learning institutions towards these concepts should be known so that the software can handle

graduates from different institutions differently. Table 4.3b illustrates method followed to arrive at

the findings.

Table 4.3b: Method followed to answer research question 2

METHOD FINDINGS

1. Literature analysis Obtained three dimensions:

1. Main competence

2. Specific competence

3. Proficiency

2. Analysis of data collected [Descriptive] Established relationships between industry roles

1. Main roles [Programmer, Designer, Manager]

2. Specific roles within main roles [total of 12]

3. Skill levels among main roles [3 levels]

3. Graphically represent relationships Obtained hierarchical structure (OUTCOME)

RQ3: How do we build an appropriate machine learning model for mapping graduates’ skills

to hierarchically structured occupational industry roles?

Based on the findings and outcomes of research hypotheses that were tested, three things are key in

building machine learning model for mapping graduates skills to industry roles, namely selection of

appropriate features, tuning parameters of the model to appropriate values, and selecting induction

algorithm that induces appropriate generalization performance to the model. These three are key

determinants of the final performance of the model. Table 4.3c illustrates method followed to arrive

at the findings.

 156

Table 4.3c: Method followed to answer research question 3

METHOD FINDINGS

1. Data collection [Survey] Obtained 78.9% response rate

- Out of 190 questionnaires 150 were returned

2. Data preprocessing Obtained cleaned and scaled data

- Out of 150 records, 37 with missing values removed

- Out of 17 variables, 11 were digitized 6 discretized

- All variables were standardized

3. Construction Obtained design of mapping model

- Design architecture

- Design of Algorithm

4. Evaluation of two induction algorithms

using data collected and benchmark

dataset [Experiment]

Established the best induction algorithm for the model

- SVM

5. Evaluation of parameter values of the

best induction algorithm [Experiment]

Established the best parameter values for the model

[Kernel = gamma (values>0.1), complexity = 0.0001 to 1000]

6. Building model using the best induction

algorithm and the best parameter

values

Obtained the ML mapping model (OUTCOME)

4.4. Summary

This chapter has presented results of the study, both descriptive and experimental, and a detailed

discussion of the major research findings. For purpose of clarity, the results have been presented

using not only tables and but also graphs. The statistical analysis procedures have been carefully

selected based on preliminary tests results for data validity. The final research findings have been

carefully drawn from both descriptive and experimental results after detailed discussion of the

results.

In summary, the results findings discussed in this chapter have literally provided answers to three

research questions posed in this study. What concepts are appropriate as machine learning attributes

for mapping graduates‘ skills to occupational industry roles? This was the first research question

which was answered through experiment A where five features were selected as relevant for the ML

 157

model. What is the structural characteristic of concepts that correctly reflects the hierarchy of

industry roles required as target classes for machine learning purpose? This was the second research

question which was answered through descriptive analysis where the hierarchical structure was

conceptualized and described. How do we build using these concepts an appropriate machine

learning model for mapping graduates‘ skills to hierarchically structured industry roles? This was the

third research question which was answered through experiment C and B. whereas experiment C

provided the appropriate induction algorithm to use when building the ML model, experiment B

provided appropriate parameter values for that induction algorithm.

 158

CHAPTER 5: PROTOTYPE DESIGN AND IMPLEMENTATION

5.0. Introduction

Design and implementation of a software prototype can be a complex task, especially, if an

organized approach is not followed. This chapter presents an elaborate description of the design and

implementation aspects of the software prototype for the skills mapping model. The chapter is

organized into three sections as follows: section 5.1 discusses the background and details of

prototype development methodology, section 5.2 highlights the computing resources utilized, and

section 5.3 closes the chapter with a summary.

5.1. Prototype Development Methodology

Prototype development methodology, as applied in this study, is a reference model for software

development process that provides a common basis for standards, description of major functions

involved in the software development, and an insight into important features necessary for common

understanding and focus.

Ideally, software prototype development is part of a broader field known as software engineering

where several software development process models are presented, such as waterfall, prototyping,

Rapid Application Development (RAD) and evolutionary models. Generic software engineering

activities which are executed within different software development models include requirements

specification, software design, software implementation, software validation. These activities may be

carried out linearly, or iteratively, or cyclically, or a combination of these, depending on the

assumptions behind the software development methodology adopted.

5.1.1. Choice of Prototype Development Methodology

Since we did not have detailed requirements for the customer, there was need for a customer driven

model. A process model that generates the first version of the usable product quickly and

subsequently to be used not only to solicit for more requirements from customers but also to keep the

customer happy with a working version that keeps them busy as we incrementally improve on it.

This suggested two important principles in software development, i.e. incrementality and reusability.

Incrementality principle ensured easier to make small changes to a working system than to rebuild

the system while reusability ensured standard components that are flexible to changes.

 159

As a result the design methodology that promised to fulfill this desire was an incremental model. The

incremental model combines elements of linear sequential model (applied repetitively) with the

iterative philosophy of prototyping (Pressman, 2001). It applies linear sequences in a staggered

fashion to deliver software in small but usable pieces, called ―increments‖. Each increment builds on

those ―increments‖ that have already been delivered. When an incremental model is used, the first

increment is often called the ―core product‖, which addresses only the basic requirements, but many

supplementary features (some known, others unknown) remain undelivered.

Figure.5.1 presents the stages of the incremental model followed in this study. The model‘s activities

were done in successive iterations, each of which ended with the delivery of a new version of an

increment (P) that was usable, until the product‘s final version is delivered.

Figure 5.1: Incremental model adapted from (Pressman, 2001)

Incremental model includes the following advantages: 1) Customer value can be delivered with each

increment, so system functionality is available early, 2) Early increments act as a prototype to help

elicit requirements for later increments, 3) Lower risk of overall project failure, and 4) The highest

priority system services tend to receive the most testing. Besides, incremental model fulfills all the

typical characteristics that are commonly used as a criteria for choosing a software process model

such as: 1) Visibility i.e. easy for an external assessor to determine the progress made, 2) Reliability

i.e. how good the process is at detecting errors before they appear in a product, 3) Robustness i.e.

 160

how well the process is in coping with unexpected change, 4) Maintainability i.e. easy to change so

as to take account of changed circumstances, 5) Rapidity i.e. how fast a system can be produced.

Incremental model is mostly important when staffs are unavailable for a complete implementation by

the deadline that has been established for the project. The basic idea is, if the core product is well

received, then additional staff (if required) can be added to implement the next increments where

early increments can be implemented with fewer people.

Initially, rapid prototyping was applied where a laboratory prototype was designed and used to

investigate on the initial set of the skills mapping software requirements. The laboratory prototype

was then incrementally developed and tested for maturity until it became a field prototype. The field

prototype was derived by adding a better user interface to the laboratory prototype, before it was

ready to be tested with the real world data collected from the real environment. After the field

prototype was successfully tested with the real data, it was then considered as the final requirements

specification for the production version (Kemboi, 2013).

The rest of this section highlights each of the Software Engineering activity as applied in the

software prototype methodology of the current study.

5.1.2. Requirements Analysis

This involves an elicitation activity which resulted into an initial set of requirements specifications.

The initial set was the basis for the design of the preliminary research prototype. The requirements

specifications were revised every time the research prototype evolved. This version of the

specifications was the basis for developing the lab prototype. At the end of the lab prototype

development and testing, the requirements specifications were again revised. This second revision

was the basis for developing the field prototype. The final requirements specifications were then

produced after the implementation and testing of the field prototype. The final set of requirements

specifications were the basis for the production of the software prototype developed.

Traditionally, the requirements for any software will be manifested by a number of analysis models

such as data models, functional models, and behavioral models (Pressman, 2001). In the current

study, the plan section of the research design model in Fig. 3.1 of this study indicates the source of

requirements where both industry and academia were target grounds for requirements elicitation. As

a result of analysis of data derived from these two areas, initial data model for the prototype was

constructed.

 161

1) Use case model

A use case model which describes the function of the system as viewed by its users, developers, and

testers, was developed as the initial specification of the skills mapping model‘s requirements . Fig.

5.2 presents the functional model in the form of a use case model.

Figure 5.2: Use Case Model

The use case model envisaged three kind of users for the model prototype i.e. employer, graduate,

and university institution. Employers should be able to register industry roles available in various

sectors in which they operate, clearly indicating their minimum skills and knowledge index values

requirements. Also, they should be able to view academic sector profiles for various institutions

based on their knowledge and skills content in the exams each year they examine. Finally, employers

should be able to evaluate new graduates on industry roles suitability.

Likewise, institutions should be able to register their academic profiles for sectors in which their

degree programs are based. Where for each sector, each year they should record knowledge and

skills indices derived from their exam‘s content administered to students. Also, they should be able

view industry roles profiles for various sectors based on knowledge and skills minimum indices

required by industry. Finally, institutions should be able to evaluate their graduates on industry roles

suitability before they graduate so as to assess themselves against industry requirements.

Graduates, as well should be able to evaluate themselves against industry roles requirements to

determine their suitability for employment. They should, also, be able to view industry role

requirements for various sectors in industry as well as view academic performance profiles in various

sectors for various institutions.

 162

2) Class model

Also, a data model, which also describes the information requirements of the domain, was developed

as the initial specification of the skills mapping model. Fig. 5.3 presents the data model in form of a

class model.

Figure 5.3: Class Model

5.1.3. Design

A preliminary design was constructed just after initial set of requirements specifications was

determined, and a preliminary mapping model was specified. This design was the basis for the

research prototype which was used to produce the requirements specifications for the lab prototype.

Another cycle of the design was done after the lab prototype specifications were determined, and

more elaboration on the mapping model was conducted. This cycle was repeated after the

implementation and testing of the lab prototype to produce the design of the field prototype. Once

the field prototype was implemented and tested, the final design of the software system was issued.

The analysis models produced during requirements specification feed into the design task where four

design models required to complete the design specification were produced. The four design models

are architectural design, data design, interface design, and component design (Pressman. 2001). A

wireframe design was produced to guide the overall design process of the four design models. Fig.

5.3b illustrates the wire-design for the software prototype where interfaces were defined for the

following types of users, namely EMP= Employer, GRAD = Graduate, COLL= college institution,

ADM = Administrator for the software, and RESU= Results for all users.

 163

Figure 5.3b: Wire-frame for the Prototype software Design

1) Architectural design

Architectural design defines the relationship between major structural elements of the software and

the design pattern that is appropriate to achieve the requirements. Layering is a strategy that is often

used to divide a system into subsystems where two approaches used to guide the layering styles are

either responsibility or reuse driven (Ojo & Estevez, 2005). In the current study, a preliminary

architectural design of the research prototype was based on responsibility driven layering of the basic

system elements i.e. input, process, and output. Thus, each layer was designed to fulfill a specific

role.

The input component was designed as a data source system to provide input data to the prototype

while the output component was designed as a dashboard subsystem that presents the results of the

prototype to the user. The process component is the core function of the prototype and was designed

as a machine learning subsystem that provides transformative function for mapping skills to industry

 164

roles. Each layer makes use of the services provided by the lower layers. Fig. 5.4 presents the

skeleton for the architectural design of the research prototype.

5.1.3.1. Data Source Subsystem

The data source consists of two components: a) Database and b) Dataset. The two components

realize or implement an interface that they export for the other subsystems to access them i.e.

Sinterface and Dinterface. Fig. 5.5 presents the high level design of the subsystem.

Figure 5.4: Architectural design model for the prototype

Figure 5.5: Components of the data source subsystem

 165

i) Database

A database is an organized collection of central data and was used in this study to store user-centered

data generated at the dashboard, as well as a source of data to feed into the machine learning model

to produce predictions. The database was designed based on the class model identified during data

requirements analysis and variables of the conceptual mapping model shown in Fig.2.6. Relational

data model was selected as a basis of deriving the database design whose main components are

related tables storing industry-academia requirements data, such as sectors‘ table, roles‘ table,

institutions‘ table, institution/sector index table, and dataset table as shown in Fig.5.6.

Fig.5.6 was derived from the class model in Fig.5.3 by removing ‗Graduate‘ and ‗Employer‘ classes

in the model and also resolving the many to many relationship between ‗Industry sector‗ and

‗Institution‘ by creating an extra class ‗Institution sector indices‘ to store sector indices derived from

academic institutions. The decision to remove was arrived at after an assumption that they are both

external actors whose data may not be needed to be stored in the system as indicated by the use case

model. However, although ‗Institution‘ is also an external actor, it is quite important to store its data

because each academic sector registered in the system would be associated with a particular

institution and it is important to store academic institutions‘ indices for various industry sectors.

The complete set of attributes for the database was determined using the data collected and analyzed

during descriptive analysis stage.

Figure 5.6: Database Model

Table 5.1 shows the detailed description of each table indicating the purpose, fields, data type, data

width, and primary key.

 166

Table 5.1: Detailed description for database model tables

Table Purpose Fields Data type (Data Width) Primary/

Foreign Key

Sector To store academia

subject details for

each industry

sector.

ID Integer(AutoIncrement), NAME

CHAR(50), SUBJECT1 CHAR(50),

SUBJECT2 CHAR(50), SUBJECT3

CHAR(50), SUBJECT4 CHAR(50),

SUBJECT5 CHAR(50), SUBJECT6

CHAR(50), SUBJECT7 CHAR(50)

ID (Primary Key)

Role To store index

details for each

sector in the

industry

ROLEID INTEGER (AUTOINCREMENT),

NAME CHAR(50, SECTORID INTEGER,

RI CHAR(10), DI CHAR(10), AI CHAR(10),

CI CHAR(10), FOREIGN KEY(SECTORID)

REFERENCES SECTOR(ID)

ROLEID – Primary

Key

SECTORID –

Foreign Key

Institution To store name

details for

institutions in the

academia

ID INTEGER(AUTOINCREMENT), NAME

CHAR(50)
ID – Primary Key

Institution/

sector Index

To store

institutions‘

yearly indexes for

each sector in the

academia

ID INTEGER (AUTOINCREMENT),

INSTID INTEGER, SECTORID INTEGER,

YEAR CHAR(10), RI CHAR(10), DI

CHAR(10), FOREIGN KEY(INSTID)

REFERENCES INSTITUTION(ID),

FOREIGN KEY(SECTORID)

REFERENCES SECTOR(ID)

ID – Primary Key

INSTID- Foreign

Key

SECTORID-

Foreign Key

Dataset To store training

dataset for each

sector in the

industry

ID INTEGER (AUTOINCREMENT), NAME

CHAR(50), PATH CHAR(50), SECTORID

INTEGER, FOREIGN KEY(SECTORID)

REFERENCES SECTOR(ID)

ID- Primary Key

SECTORID-

Foreign Key

ii) Dataset

A dataset, which is a collection of data that is stored in a specific format, was used for the purpose of

learning and evaluating the machine learning model. The data set was used as input to the machine

learning subsystem where a machine learning model is generated. In the current study, the data set

was derived from the data collected after pre-processing. The pre-processing was conducted using

Ms Excel spreadsheet where the predictors‘ and class values were defined before getting converted

into a .csv text file. Originally, the structure of the dataset consisted of attributes derived both from

the questionnaire and some computed attributes. Table 5.2 shows the original set of the dataset

attributes.

 167

Table 5.2: original set of the dataset attributes

5.1.3.2. Machine learning subsystem

This is the transformative function and core component that forms the predictive engine of the

prototype. While the transformative function involves mapping skills to industry roles, two main

activities involved to achieve this were learning and classification. Therefore, design of this

component involved designing the algorithm for machine learning and classification. Fig.5.7 presents

the design model for machine learning and classification. This was derived from a section of the

class model in Fig.5.3 where the section consisting of ‗Industry sector‘, ‗Role‘, and ‗Dataset‘ classes

was extracted as the main classes in the interaction. In order to align the classes with respect to the

new roles they were to play, some of the classes were renamed, such as ‗Industry sector‘ was

renamed as ‗Algorithm‘, while ‗Dataset‘ as ‗Model‘.

NO. ATTRIBUTES VALUES DESCRIPTION

1 GENDER {Male, Female} Gender

2 AGE {20-24, 25-29, 30-34, 35-39, 40 and above} Age

3 LOLE { Local, Abroad} Place of O-level Study

4 GSOLE {Grades, Points, Marks} Grading System of O-level

5 ROLE {Less than 4, 5-7, 8-10, 11 and above } Results for O-level

6 BDGREE

{Computer Science, Information Technology,

 Software Engineering, Other} Type of Bachelor‘s Degree

7 UNIVERSITY

{UON, KU, JKUAT, MOI, EGERTON, Strathmore,

KEMU, Daystar, Nazarene, Maseno, Other} University of Study for Bachelors

8 GSBDEGREE {Grades, Points, Marks} Grading System for Bachelors

9 RBACHELORS {Less than 4, 5-7, 8-10, 11 and above } Results for Bachelors

10 FIRSTJOB

{Software Architect, Analyst Programmer, Test

Engineer, Web Programmer, Mobile Programmer,

System programmer, Project manager, Other } First Appointed Job

11 CURRENTJOB

{Software Architect, Analyst Programmer,

TestEngineer,

Web Programmer, Mobile Programmer, System

programmer,

 Project manager, Other } Current Job

12 CHANGEDJOB {NO, YES}

Current Job Is Different From First

Job

13 ATTRACTOR {Passion, Salary, Ambition, Qualification, Other} Enticing Factor to Current Job

14 SEEXAM {100%, 75%, 50%, 25%, 0%} Se Content In Exam

15 R {interval value}

Index of Content Knowledge

Components

16 D {interval value}

Index of Cognitive Skills

Components

17 A {interval value}

Index of Technical Skills

Components

18 C {interval value}

Index of Academic Capacity

Components

 168

Moreover, two machine learning techniques, naïve Bayes and support vector machines were adopted

as the basis for designing the algorithms to implement the architecture and learn the model. This is

because of their good incremental learning ability and assurance of high accuracy in either cases of

small or large dataset where each of them is good at. Further, these techniques are widely used in

supervised learning and belong to two different families of learning algorithms i.e. instance-based

and kernel machines, as described in Table 2.4 in the literature review. As a result, two classes,

‗SVM‗ and ‗naiveBayes‘, were introduced in a generalization relationship with the ‗Algorithm‘

class in the design. Other classes in this subsystem include ‗Model‘ class that stores the model object

generated by the ‗ML Algorithm‘ class and ‗Role‘ class that stores the hierarchical structure of

industry roles of each sector.

Figure 5.7: Design model for machine learning subsystem

Fig.5.7 illustrates the design model for the algorithms that was adopted to learn the model. This

subsystem relies on an interface, ‗Sinterface‘, created by the data source subsystem to realize its

behavior and implements an interface, ‗Minterface‘, which it exports for other subsystems to use.

The ‗Minterface‘ enables the learned model to be accessed and used by other subsystems, such as the

Dashboard subsystem, while ‗Sinterface‘ enables the machine learning subsystem to access the

dataset to be used for learning the model.

Basically, the ML algorithm was designed such that there were two core methods, ‗fit‘ and ‗predict‘.

 169

1) Fit Algorithm explanation

This method is responsible for fitting the data into the model to learn or estimate the parameters. Fig.

5.7a outlines algorithm of the ‗fit‘ method. This algorithm takes in the taxonomic tree in which the

industry roles are organized and the dataset containing graduate employees details to be learned. The

algorithm is able to group the dataset content based on their dependent values according to the

various sections of the taxonomic tree such as sub-tree, non-leaf nodes, leaf nodes, or tree heights.

The algorithm is able to learn how items of the dataset belonging to various leaf nodes look like, if

they belong to known non-leaf nodes and various non-leaf nodes are distinguished by their height

levels in the tree or sub-trees. Finally, the algorithm is able to store the learned knowledge rules for

that particular dataset. Therefore, the key aspects of this algorithm are: 1) input 2) learning 3) storing

the learned knowledge rules.

Fit(taxonomy_tree, dataset)

 1_Get taxonomy_tree’s height/levels

 1_Get subtrees/functions

 1_For each subtree/function

 2_Get subtree’s leaf nodes/classes

 2_Get other subtrees’ leaf nodes/classes

 2_Create subtree’s (function) classifier object

 1_For each subtree’s non-leaf nodes/proficiencies

 2_Get leaf children

 2_Get other non-leaf nodes’ leaf children

 2_Create non-leaf node’s (proficiency) classifier object

 1_For each subtree’s leaf nodes/specialties

 2_Get leaf node/class

 2_Get siblings

 2_Create leaf node’s (specialty) classifier object

 1_Store classifier objects in a data structure object

 1:Function objects

 2:Proficiency objects (ordered by taxonomic_tree’s height/levels)

 2:Specialty objects (ordered by taxonomic_tree’s height/levels)

Figure 5.7a: Fit Method’s Algorithm

 170

2) Predict Algorithm explanation

This method is responsible for the prediction function of the model. Fig. 5.7b outlines the algorithm

of the ‗predict‘ method. The algorithm takes in an instance of unemployed graduate‘s data and

taxonomic tree for industry roles in which the graduate is seeking for employment. The algorithm

uses the knowledge rules generated by the ‗fit‘ algorithm to decide the role for which the graduate is

suitable. The key aspects for this algorithm are: 1) input tree and graduate data 2) load the knowledge

rules from the store 3) search for the appropriate knowledge rules to process the graduate data 4) use

the rules to decide the industry role suitable for the graduate.

Predict(taxonomy_tree, data)

1_Load classifier objects

1_Get taxonomy_tree’s width/subtrees/functions

1_For each subtree/function

 2_Get function classifier objects

 2_Predict data’s function

 2_Select function of classifier object that predicts +ve

1_For each subtree’s non-leaf nodes/proficiencies ordered in ascending order of levels

 2_Get corresponding order’s proficiency classifier objects

 2_Predict data’s proficiency

 2_Select proficiency of classifier object that predicts +ve

1_Get current non-leaf node’s specialty classifier objects

 2_ Get specialty classifier object

 2_Predict data’s specialty

 2_Select specialty of classifier object that predicts +ve

1_Report industry role = function+specialty+proficiency

Figure 5.7b: Predict Method’s Algorithm

5.1.3.3. Dashboard Subsystem

The main purpose of this is to link the user of the prototype with the prediction engine using

interactive user interfaces. This was based on a class model in Fig.5.3 where the ‗Graduate‘ and

‗Employer‘ classes were used to design two categories of user interfaces. While ‗Graduate‘ class was

used to produce ‗GraduateUI‘ class, ‗Employer‘ class was used to produce ‗EmployerUI‘ class. Fig

 171

5.8 presents the design model for the dashboard subsystem. These two have all their functionalities

similar except for only two, ‗RegisterIndustryRoles‘ and ‗RegisterAcademicSectors‘. Fig.5.9

presents design model for the user interfaces. The dashboard subsystem uses two interfaces,

‗Minterface‘ from the machine learning subsystem and ‗Dinterface‘ from the data source subsystem.

‗Dinterface‘ enables this subsystem to access and use the database while ‗Minterface‘ enables the

subsystem to access and use the mapping model.

Figure 5.8: Design model for the Dashboard Subsystem.

Figure 5.9: Design model for user interfaces

5.1.4. Implementation and Testing

The implementation process of the prototype for the mapping model was conducted by first

reviewing and evaluating existing machine learning techniques and this resulted into choosing the

most generally applicable techniques that would be suitable to support the building of the research

prototype. Further, python was identified as the most common platform for machine learning

implementations and was reviewed to determine how it could be used with additional technologies to

implement the prototype. Finally, the construction of the prototype was implemented using python

technology and as WEMA (Where Employers Meet Academia) platform being the preferred name

 172

for the prototype. The WEMA platform was tested and validated using data collected, and a

presentation of how it operates including analysis of its performance was conducted. Fig.5.10 shows

the welcome screen of the prototype implementation.

Figure 5.10: welcome screen for the prototype implementation

A number of system elements designed in the previous section were eventually implemented as

describe below:

5.1.4.1. Implementation of Data source subsystem

(1) Database Class

The database design was implemented using SQL Technology that is already integrated in python as

SQLite. This involved implementing the SQLite class where several of its methods were used. The

connection method of the SQLite class is a very useful method for accessing the implemented

database and, therefore, was used to implement the ‗Dinterface‘. Fig. 5.11 presents a snapshot of the

code that was used to implement the database class.

Code segment explanation

The code illustrates that the model uses a number of concepts that are key to its operations. These

concepts are stored in a number of tables that are related and sqlite technology was used to

implement and store this relationship in a database object. The database object was defined using

object-oriented concept known as class. Therefore, the key aspects of this code are: 1) class 2) sqlite

3) tables 4) relationships.

 173

Figure 5.11: Database class code segment

(2) Dataset class

The dataset was implemented directly as a text file and to be stored as .csv format where the python

csv class was used for implementation. The read method of the csv class was used to access and

retrieve the dataset and, therefore was used as the implementation of the ‗Sinterface‘.

5.1.4.2. Implementation of Machine learning subsystem

(1) Role class

The implementation involved coding classes mapped on the taxonomic structure. Classes on the leaf

nodes were coded with non-negative integers while internal nodes were coded serially with negative

integers. The levels of the taxonomic structure were coded from 0 as topmost and downwardly. Then

the whole taxonomic structure was represented using a python data dictionary noting the structural

relationships in terms of level, parent class, and child classes. Fig.5.12 presents a segment of the

dictionary data structure that was used to implement the taxonomic structure and its implementation

code.

Code segment explanation

This code segment illustrates how the taxonomic tree mentioned in Fig.5.7a&b was implemented

using data structure in python technology called data dictionary. The structure contains a number of

data items that represent codes for industry roles which were arranged methodically according to

order described by the following structure:

{classCode:[[levelcode], [parentClasscode], [childsClasscodes]], classCode:[[levelcode],

[parentClasscode], [childsClasscodes]],……….}.

 174

Figure 5.12: Role class code segment

(2) ML algorithm class

The overall implementation of this class‘s generalization relationship was achieved using the concept

of polymorphism. The ‗fit‘ method was implemented as ‗classify‘ method while the ‗predict‘ method

was implemented as ‗classifyinstance‘ method in two separate classes. The two classes are

‗svmRootclassfier‘ and ‗naiveRootclassifier‘ for svm and naïveBayes algorithms respectively. Fig.

5.13a presents segment codes of the ‗svmRootclassfier‘classes' . A number of python technologies

were plugged in to realize the purpose of the code such as svmpy, numpy, pickle. The final

implementation of the algorithm was then trained or fitted with data to learn the mapping model.

Code segment explanation

The code segment illustrate how the ‗Fit ‗ and ‗Predict‘ algorithms mentioned in Fig. 5.7a&b were

implemented and most importantly the algorithm for the model as described in 3.5.4b. The important

aspect of this code is to show how ‗Fit‘ algorithm was implemented using class method called

‗classify‘ while ‗Predict‘ algorithm using ‗classifyinstance‘ method. Besides, the code illustrates that

the model algorithm was implemented as ‗SVMclassifier‘ object that was defined using classs

concept of python technology.

 175

Figure 5.13: ML Algorithm class code segment

(3) Model class

The pickle class was used to implement this class directly where its damp method was used to store

the model object while its load method was used to retrieve the object. Thus, the load method of

pickle class was used as the implementation of ‗Minterface‘ for making the model accessible to other

subsystems. Fig. 5.14a &b presents the code segments for store and retrieve methods of the model

class.

Code segment explanation

This code illustrates how the classifier object generated by the ‗Fit‘ algorithm is stored (Fig. 5.14a)

in a folder using the pickle class of the python technology. This enables this classifier to be copied

 176

and used elsewhere away from the training dataset environment. Hence Fig. 5.14b is a code segment

that illustrates how the ‗Predict‘ algorithm loads the classifier object from store.

Figure 5.14a: Model class store code segment

Figure 5.14b: Model class retrieve code segment

5.1.4.3. Implementation of Dashboard subsystem

This provides a simplified mode for the user to interact with the system. Its implementation was

conducted using a python graphical user interface class called tkinter. Tkinter is a python module for

creating a rich graphical user interface. Two separate user interface classes indicated on the design

were implemented in such a way to suit the requirements of three primary users of the system as

illustrated in the use case model presented in Fig.5.2, and these are academia institutions, industry

employers, and graduates. To address these needs, their functions as indicated in the use case model

were portioned into primary and secondary ones, where ‗RegisterAcdemicSector‘ and

‗RegisterIndustryRole‘ are primary to ‗Institution‘ and ‗Employer‘ users respectively while the rest

are secondary functions to all users.

Primary functions can only be executed by the specific target users while secondary any user can

execute. Tabbed windows were adopted in the implementation of the multi-user interface where

there is a tab window for each primary user and two subsidiary windows for viewing prediction

results and learning/selecting the learning model. Fig 5.15a presents segment code for the

implementation of the systemUI class as ‗gui‘ class while Fig. 5.15b to 5.15f presents sample views

windows of various user interfaces.

Code segment explanation

The code segment illustrates how the user interface of the model prototype was implemented. A

tabbed window was implemented using GUI technology in python known as ‗tkinter‘ also ‗ttk‘. The

tabs were created using several layered ‗frames‘ of ‗ttlinter‘. Each user of the prototype was given

access to the model through a specific tab.

 177

Figure 5.15a: GUI class code segment

 178

1) Employer user Interface

Employer is the primary user of this user interface while the rest of the users are secondary users.

The primary function is ‗RegisterIndustryRoles‘ which was implemented through a number of menu

items indicated on the screen shot. The rest of the users can only scroll through by clicking sector

names and industry roles to view the underlying details.

2) Institution user Interface

Institution is the primary user of this user interface while the rest of the users are secondary users.

The primary function is ‗RegisterAcademicSectors‘ which were implemented through a number of

menu items indicated on the screen shot. The rest of the users can only scroll through by clicking

sector names, academic institutions and academic years to view the underlying details.

Figure 5.15b: Employer user interface

Figure 5.15c: Institution user interface

 179

3) Graduate user interface

All are secondary users of this user interface. This is part of the secondary function of

‗EvaluateGraduate‘ which was implemented through a number of menu items indicated on the screen

shot. All the users can interact with this interface using the commands indicated on the screenshot.

Figure 5.15d: Graduate user interface

4) Training and model selection user interface

This user interface was created specifically for system administrator as the primary user where the

primary function is to ‗RegisterIndustrySectorDatasets‘ implemented through menu items indicated

on the screenshot. System administrator may be an employer regulator in the industry market. All

other users of this user interface are secondary users. However, all the users can interact with this

interface through clicking both sectors and training algorithms to select as well as using the ‗train‘

commands indicated on the screenshot.

 180

Figure 5.15e: Training and model selection user interface

5) Prediction results

All are secondary users of this user interface. This is part of the secondary function of

‗EvaluateGraduate‘ which was implemented through a number of menu items indicated on the screen

shot. All the users can interact with this interface using the commands indicated on the screenshot.

Figure 5.15f: Prediction results user interface

Finally, a number of python libraries were used in the implementation of the user interface.

Visualization system that is capable of representing the data using graphical symbols was adopted

and was implemented using a python library known as matplotlib. Matplotlib is a python module for

data visualization capable of creating most kinds of charts, plots, and graphs and also rendering them

 181

on the screen using a canvas system. Data analysis feature that was capable of modeling the data was

also adopted and was implemented using python library known as pandas. Pandas is a python

module for data analysis which at the core of its data analysis has a powerful datasheet known as

dataframe that is capable of modeling the data into rows and columns.

5.2. Computing and Development Resources

A number of computing resources were adopted and applied to produce the implementation of the

software prototype at various points of design.

1) Hardware platform

Hewlett-Packard computer was used for the project and whose processor and memory specifications

were Intel Core i5 CPU, 2,53 GHz speed and 4.0 GB of memory size.

2) Software operating system platform

A 64-bit Microsoft window‘s operating software version 7 was the driving force behind the

development platform providing the necessary computing resources such as storage.

3) Software development environment

A 64-bit Python software version 3.4.3 provided the development environment where both

programming and database activities were realized ranging from the overall code editor, debugging,

to testing. Python was identified as one of the most common platform for machine learning

implementations with rich programming resources and was reviewed to determine how it could be

used with additional technologies to implement the prototype. The following were some of the many

python resources exploited during the development.

a. SQLite module was used to implement the database component of the prototype. SQLite is a

version of SQL Technology that is already integrated in python as sqlite3 library class

module. The sqlite3 class has several of its methods used, such as the connection method is a

very useful in creating and accessing the implemented database

b. Python‘s csv class module was used for implementation of the dataset for machine learning.

The read method of the csv class was used to access and retrieve the dataset.

c. Python‘s dictionary data structure was very useful in implementing the proposed taxonomical

structure for the machine learning architecture.

d. Python‘s svmpy class was used to implement SVM machine learning technique.

 182

e. Python‘s numpy was very useful in implementing the naïve Bayes machine learning

technique. This is a library for processing n-dimensional arrays.

f. Python‘s pickle library class was very useful in implementing the storage and retrieval of the

generated machine learning models‘ objects.

g. Python‘s tkinter library class was used to implement the graphical user interface for the

prototype.

h. Python‘s pandas‘ library class was used for numerical and statistical data analyses.

i. Python‘s sklearn library was used for both data preprocessing, feature selection and feature

extraction purposes during machine learning. This library provided a number of essential

algorithms that were key in implementing machine learning techniques such as cross-

validation, naïve Bayes, support vector machines, Linear discriminant analysis, principal

component analysis, scaler and many other algorithms.

j. Python‘s matplotlib library class was used for graphical data analyses especially in the

production of high quality 2D graphics.

5.3. Summary

This chapter has outlined the methodology and software processes adopted in building the software

prototype for the mapping model. An incremental methodology was adopted where four basic

software processes were iteratively applied to generate the final prototype. The outcome of each

process was emphasized with diagrams that illustrated the important aspects of the prototype. In

summary, the chapter has demonstrated using the prototype that a prediction model for mapping

graduates skills to industry roles in a practical way is feasible. Table 5.3 presents a summary of the

main aspects of the mapping model‘s prototype and their implementation implication.

Table 5.3: Model ‘s design and implementation summary

Model’s components and Design Design Implementation Software Development Resource

1.Data source subsystem

-Database design model

-Dataset design structure

- Database class

- Dataset file

- python sqlite3 class

- python‘s csv library class

2.Machine learning subsystem

- Machine learning design model

- ML Algorithm class

- Models class

- Role class

- python‘s pandas, sklearn, matplotlib,

svmpy, numpy library classes

- python‘s pickle library class

- Python‘s data dictionary

3.Dashboard subsystem

- Dashboard design model

- User Interface design model

- Gui class - python‘s tkinter library class

 183

CHAPTER 6: MODEL EVALUATION AND DISCUSSIONS

6.0. Introduction

This chapter presents a comprehensive description of evaluation results and discussion of the

findings. The chapter has been organized into four sections as follows: Section 6.1 presents

background to evaluation methods. Section 6.2 presents evaluation results using Research dataset

(SE field data). Section 6.3 presents evaluation results using Benchmark dataset (SE literature data).

Section 6.4 presents evaluation results using Validation dataset (AL field data). Section 6.5 provides

a discussion and interpretation of the research findings. Finally, Section 6.5 concludes the chapter

with a summary.

6.1. Background to Evaluation Methods

Evaluation in machine learning is needed to evaluate not only the ability of a classifier model

(Lavesson, 2006) but also its generalization performance (Kahavi, 1995). There are many evaluation

methods which have been categorized as either empirical (evaluate classifiers using portions of

known data which have not been seen before by the classifier) or theoretical (evaluate classifiers

using training data only or combined with other theoretical measures of generalization performance).

We aimed to evaluate whether the model would perform well in the real world, and this required a

portion of known data which had not been seen before by the classifier to provide a test situation that

emulated the real world data.

As a result, our evaluation focused on empirical evaluation methods. Empirical methods divide the

data into two subsets, training and test set, where training set is used to learn or generate the model

while test set is used for evaluation its performance. Hence, we used training set to generate the

classifier model and test set to test its performance. However, performance could be determined

through a number of metrics. And, therefore, the type of performance metric used depends on the

specific evaluation method employed (Lavesson, 2006).

We consider briefly some of the candidate evaluation methods and their types of performance

metrics.

1) Vapnik Chervonenkis (VC) Evaluation Method

This is an evaluation method for algorithm that consists of a combination of theoretical measures of

algorithm‘s capacity to select the best classifier based on its inductive bias (also known VC

 184

dimension) and training error of a classifier generated by the algorithm (also known as empirical

risk). This combination is called the VC bound which is the actual or expected risk, namely an

estimate of the classifier‘s error on unseen instances of test data. This evaluation method is

theoretical and depends on an algorithm with particular configurations. According to this method all

algorithms have theoretical values calculated for VC dimension (Lavesson, 2006). Therefore, the

evaluation metric for this method is VC bound.

2) Minimum Description Length (MDL) Evaluation Method

This is an evaluation method based on theoretical measure of classifier‘s complexity or simplicity

which is related to classifiers length. Classifiers length is a theoretical indicator of existence of

regularities in data that have been compressed using fewer symbols by the classifier than the symbols

needed to describe the data literally. It is not only difficult to calculate the length of a classifier but

also there is no guarantee that MDL will choose the most accurate classifier (Lavesson, 2006).

Therefore, the evaluation metric is classifier‘s length.

3) Structural Risk Minimization (SRM) Evaluation Method

This is an algorithm evaluation method that is classifier dependent and based on VC dimension. The

aim of SRM is to find a classifier with minimal empirical risk and low VC bound from a series of

classifiers organized in structured subsets. The use of SRM is limited to algorithms with which one

can create nested subsets of classifiers (Lavesson, 2006).

4) Bootstrap (BS) Evaluation Method

This is a classifier evaluation method that is based on statistical method of sampling with

replacement where instances are sampled from the data to create the training set. To create a training

set of size n involves sampling with replacement from the data n times. The instances that were never

sampled are set aside for evaluation purposes. It is possible to have some instances repeated in the

training set. This method is only suitable with large datasets. The main evaluation metric is the

measure of performance, accuracy.

5) Cross Validation (VC) Evaluation Method.

This is an evaluation method that focuses on partitioning data into two mutually exclusive subsets,

namely training and test set. The main evaluation metrics are measures of performance

 185

(accuracy/error) and measures of cost of misclassification (precision, recall, f1_score). There are

several variants of CV, namely hold-out, leave-one-out(Jack-Knife), and k-fold cross-validations.

6.1.1. Choice of Evaluation Metrics and Method

According to Lavesson (2006), there are many evaluation metrics for measuring a variety of quality

measures of a classifier, such as metrics for measuring performance (accuracy, errors), metrics for

measuring complexity (VC dimensions), metrics for measuring similarity and misclassification cost

(precision, recall, f1_score) or metrics for measuring sensitivity. Our choice of evaluation metric was

based on the assumption that effective evaluation for job suitability of a graduate before employment

improves not only performance but also productivity in the job.

Since misplacement of people in the job results into a negative impact such as low job satisfaction

hence low productivity and high employee turnover, our aim was to get a model that should be able

to place the right people in the right job (also known as accuracy). Therefore, our focus was to

measure not only the classification accuracy but also misclassification cost of the classifier model.

The risk or cost associated with misclassification errors can greatly harm not only the organization‘s

productivity but also graduate‘s performance. Misclassification errors include placing either the right

people in the wrong job (also known as false negative) or wrong people in the right job (also known

as false positive). As a result our desired metrics for performance evaluation were accuracy,

precision, and recall.

A number of evaluation methods were reviewed but only two turned out to be empirical, namely

cross validation (CV) and bootstrap (BS). CV and BS have been studied widely and conclusions

drawn indicate that while BS has high bias and low variance, CV has low bias and high variance

which is the opposite of BS (Lavesson, 2006). High bias implies our model will not be complex

enough to capture well the underlying pattern in the training data and hence will suffer from low

performance on unseen data. CV provides a better technique for finding an acceptable bias-variance

tradeoff than BS (Raschka, 2015).

The recommendation in literature has been CV with 10-folds as the standard (Kohavi, 1995).

However, in situations where there is unequal class proportions stratified k-fold CV is better than the

standard CV with 10-folds in yielding better bias-variance trade-off. Besides, stratified k-fold CV

applies a resampling technique without replacement on the dataset that renders it the advantage of

yielding a lower variance estimate of the model performance than other variants of CV. Since our

 186

focus was a model with low bias and low variance, and all our datasets had unequal class proportions

then stratified 5-fold CV was a better option. 5-fold was adopted so as to ensure each class was

represented in each fold through stratification in the data set where some classes had frequencies as

low as 5.

6.1.2. Stratified K-fold Cross-Validation Evaluation Method

The method is appropriate where we have unequal class proportions in the dataset. It is a special

form of K-fold CV method that uses a resampling technique without replacement to partition the

dataset into several mutually exclusive subsets where all are used for learning the classifier except

one subset that is used for evaluation purposes. The training and evaluation are repeated until all

subsets have been used once for evaluation purposes. Each subset is called a fold and to ensure that

each class is properly represented in each fold a special configuration called stratified folds is

employed. It is widely used in machine learning due to its ability to yield better bias-variance trade-

off. Its main evaluation metrics are measures of performance (accuracy/error) and measures of cost

of misclassification (precision, recall, f1_score).

6.1.3. Evaluation Metrics

One important source of information for deriving accuracy, precision and recall values was noted as

the confusion matrix. A confusion matrix was defined as an n by n matrix, where n is the number of

classes, which displays the number of correct and incorrect predictions made by the model compared

with the actual classification in the test data.

6.1.3.1. Accuracy

This is the probability of a classifier to correctly classify a randomly selected instance (Kohavi,

1995). It is the most widely used measure for performance currently in practice (Lavesson, 2006). In

the present study, accuracy was used to capture the average and the best performance of the classifier

model under cross validation evaluation. A single accuracy estimate is meaningless without

confidence (Kohavi, 1995) about quality of its performance. In the present study, accuracy was used

to measure performance of classifier model generated.

6.1.3.2. Precision

The precision is the ratio TP/(TP + FP) where TP is the number of true positives and FP the number

of false positives. The precision is intuitively the ability of the classifier not to label as positive a

 187

sample that is negative. The best value is 1 and the worst value is 0. In the present study, precision

was used to conduct further investigation to reveal the performance quality of the model.

6.1.3.3. Recall

The recall is the ratio TP/(TP + FN) where TP is the number of true positives and FN the number of

false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0. In the present study, recall was used to conduct further

investigation to reveal the performance quality of the model.

6.1.3.4. F1-score

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score

reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the

F1 score are equal. The formula for the F1 score is:

 F1 = 2 * (precision * recall) / (precision + recall)

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

In the present study, f1_scores were used to conduct further investigation to reveal the performance

quality of the model.

6.2. Experimental Evaluations Results

We adopted stratified 5-fold cross validation. The aim was to evaluate whether the model would

perform well in the real world, and this required a portion of known data which had not been seen

before by the classifier to provide a test situation that emulated the real world data. As a result, using

accuracy alone as the performance metric would have only indicated the general performance of the

model to correctly predict class labels over all predictions, but would not have given enough

information on the quality of the model towards critical or important classes. And that was why

precision, recall, and f1_score were used to conduct further investigation to reveal the performance

quality of the model.

One experiment was repeated on three datasets to evaluate performance of the model. Although our

main focus was to evaluate the SVM model selected in chapter 4, we felt necessary to further

monitor its behavior by comparing with the naïve Bayes model. This was to confirm beyond

reasonable doubt about its capacity. Table 6.1 illustrates the planning of the experiment while the

sections that follow present details of evaluation results.

 188

Table 6.1: Evaluation Experiment design

 Conception/

Objective

Design Preparation &

Execution

Analysis

Experiment

D

To evaluate

performance

and validity of

the machine

learning model

1.Experimental units:

Graduate Employees‘ skills

2.Experimental subjects:

ML models

3. Dependent variable:

accuracy,precision,recall,f1-

score

4. Independent variables:

feature subsets

1.Split dataset into

three: Training set,

Validation set,

Testing set

2.Apply 5-fold cross

validation

3.Apply 6-10

iterations

Evaluate model using three

datasets

-compare performance, per

class, per level and across

other models in literature

Approach : Hypothesis

testing

Technique : Paired sample T

Test

Test variable: Machine

learning technique

Significance value: 0.05

6.2.1. Experimental Evaluation using Software Engineers Field Data (Research Dataset)

Initially, the dataset had 113 instances but two classes (1 & 2) had sizes of only one, so they were

dropped. The remaining 111 instances were split into two, training and test set, in the ratio of 80:20.

Stratified random sampling was applied to ensure each was represented. This resulted with a test set

size of 28 instances (about 25%). Table 6.2.1a presents the class distribution of the test set derived

from the Research dataset (SE field data). From Table 6.2.1a it is clear that class sizes were

imbalanced in the original dataset. The training set was subjected to 5-fold cross-validation where 5

instances of classifier models were generated. One instance of classifier model with the best training

results was selected for subsequent evaluation that generated a confusion matrix for the model.

From the confusion matrix various performance metrics‘ values were extracted such as accuracy,

precision, recall, and f1_score. This experiment was repeated for each induction algorithm, namely

naïve Bayes and SVM, hence two models. Fig. 6.2.1a presents graphical results showing confusion

matrix for the two models while Fig.6.2b presents bar graph results showing comparative analysis of

the performances of the two classifier models along the four evaluation metrics. For both models‘

results accuracy and recall values seemed to be equal. However, SVM classifier model was in all

aspects better than naïve Bayes model as expected and in fact its precision seemed to be the highest.

Further analysis was conducted to confirm whether these performance differences between the two

models were significant.

 189

Table: 6.2.1a Class distribution of test set for the SE field dataset (Research dataset)

Class 3 4 5 6 7 8 9 10 11 12 TOTAL

Size 1 3 3 2 3 2 3 4 3 2 28

Figure 6.2.1a: Confusion matrices for Naïve Bayes and SVM models using (Research dataset)

dataset1

The confusion matrix for each model in Fig. 6.2.1a shows classes that were correctly classified along

the principal diagonal while the classes below were falsely classified as correct and the classes above

were falsely classified as incorrect.

Figure 6.2.1b: Bar graph comparative analysis of the two models using (Research dataset)

dataset1

Testing whether the differences between the two models were significant

The aim of this investigation was to find out whether performance difference between the two

models was real. Therefore, the focus of this test was between naïve Bayes and SVM, hence two

paired variables. Fig.6.2.1b indicates a potential difference between the two along all performance

metrics. A paired sample T test was conducted to test the hypothesis that model performance

 190

difference was not significant. For this type of test to be valid, conditions for tests were checked

(homogeneity and normality of data). Table 6.2.1b presents results based on 10 iterations of 5-fold

cross-validation evaluation where we rejected the hypothesis at p=0.05. The results indicate the

difference was real and significant.

Table 6.2.1b:Paired Sample T Tests for Model Evaluation using SE field dataset (Research)

 Pair Paired differences t df Sig(2

-

tailed

)

RESULT

Mean Std.

dev.

Std.

error

mean

95% confidence

interval for

difference

lower upper

Pair

1

accuracyNB_R -

accuracySVM_R

-.017 .14135 .04470 -.1181 .0841 -.380 9 .713 REJECT

Pair

2

precisionNB_R -

precisionSVM_R

-.077 .17366 .05492 -.2012 .04723 -1.402 9 .194 REJECT

Pair

3

recallNB_R -

recallSVM_R

-.017 .14135 .04470 -.1181 .08411 -.380 9 .713 REJECT

Pair

4

fscoreNB_R -

fscoreSVM_R

-.057 .15370 .04860 -.1669 .05295 -1.173 9 .271 REJECT

Based on these results it was clear that SVM model was the best as expected. Further analysis of its

performance per class was also investigated. Fig.6.2.1c presents bar graph results showing

performance per class of the selected classifier model.

Figure 6.2.1c: Class performance accuracies of the selected model using (Research dataset)

dataset1

 191

Findings #12

Fig.6.2.1b reveals that SVM classifier model was significantly the best (accuracy=59.2% against

43.8% for naïve Bayes) for this dataset (as expected from chapter 4) and its performance per class

was fairly good in some classes (class7 =93.4%) and fairly poor in other classes (class3=10%).

However, its ability not to label negative classes as positive was more or less the same as its ability

to find all positive classes correctly (precision =.61.8%, recall = 59.2%).

6.2.2. Experimental Evaluation using Software Engineers Benchmark Dataset (Literature)

The dataset had 279 instances which were split into two, training and test set, in the ratio of 80:20.

Stratified random sampling was applied to ensure each class was represented. This resulted with a

test set size of 60 instances (about 21%). Table 6.2.2a presents the class distribution of the test set

derived from the Benchmark dataset (SE literature data). From Table 6.2.2a it is clear that class sizes

were also imbalanced in the original dataset. The training set was subjected to 5-fold cross-validation

where 5 instances of classifier models were generated.

One instance of classifier model with the best training results was selected for subsequent evaluation

that generated a confusion matrix for the model. From the confusion matrix various performance

metric values were extracted such as accuracy, precision, recall, and f1_score. This experiment was

repeated for each inducer algorithm, namely naïve Bayes and SVM, hence two models. Fig.6.2.2a

presents graphical results showing confusion matrix for the two models while Fig.6.2.2b presents bar

graph results showing comparative analysis of the performances of the two classifier models along

the four evaluation metrics.

For both models‘ results, accuracy and recall values seemed to be equal. However, SVM classifier

model was in all aspects similar as naïve Bayes model. In fact, further analysis was conducted to

confirm whether this observation between the two models was significant.

Table: 6.2.2a Class distribution of test set for the Benchmark dataset

Class 1 2 3 4 5 6 7 8 9 10 11 12 TOTAL

Size 2 3 5 8 3 9 2 2 4 7 11 4 60

The confusion matrix for each model in Fig. 6.2.2a shows classes that were correctly classified along

the principal diagonal while the classes below were falsely classified as correct and the classes above

were falsely classified as incorrect.

 192

Figure 6.2.2a: Confusion matrices for Naïve Bayes and SVM models using Benchmark dataset

(dataset2)

Figure 6.2.2b: Bar graph comparative analysis of the two models using (Benchmark dataset)

dataset2

Testing whether there were any significant differences between the two models

The aim of this investigation was to find out whether there was any performance difference between

the two versions of the model. Therefore, the focus of this test was between naïve Bayes and SVM,

hence two paired variables. Fig.6.2.2b indicates a potential of no difference between the two along

all performance metrics. A paired sample T test was conducted to test the hypothesis that model

performance difference was not significant. For this type of test to be valid, conditions for tests were

checked (homogeneity and normality of data). Table 6.2.2b presents results based on 10 iterations of

5-fold cross-validation tests where we accepted the hypothesis at p=0.05. The results indicate there

was no difference that was significant.

 193

Based on these results the model selected in chapter 4, namely SVM model, was further analyzed of

its performance per class in the current dataset. Fig.6.2.2c presents bar graph results showing

performance per class of the selected classifier model under the current dataset.

Table 6.2.2b:Paired Sample T Tests for Model Evaluation using Benchmark dataset

 Pair Paired differences t df Sig(2

-

tailed

)

RESULT

Mean Std. dev. Std.

error

mean

95% confidence

interval for

difference

lower upper

Pair 1 accuracyNB -

accuracySVM

-.130 .03333 .01054 -.1538 -.1061 -12.33 9 .000 ACCEPT

Pair 2 precisionNB -

precisionSVM

-.140 .05312 .01680 -.1780 -.1020 -8.334 9 .000 ACCEPT

Pair 3 recallNB -

recallSVM

-.130 .03333 .01054 -.1538 -.1061 -12.33 9 .000 ACCEPT

Pair 4 fscoreNB -

fscoreSVM

-.152 .04492 .01420 -.1841 -.1198 -10.70 9 .000 ACCEPT

Figure 6.2.2c: Class performance accuracies of the selected model using (Benchmark dataset)

dataset1

Findings #13

Fig.6.2.2c reveals the performance per class of the selected model, namely SVM model, was

excellently good in some classes (100% accuracy for 4 classes) and fairly poor in other classes (5%

accuracy for class7). However, its ability not to label negative classes as positive was more or less

the same as its ability to find all positive classes correctly which were equally excellent

(precision=83%, recall=85%).

 194

6.2.3. Experimental Evaluation using Academic Librarians’ Field Data (Validation Dataset)

The aim of this investigation was to find out the behavior of our classifier model in other related

areas different from SE with an ultimate goal to evaluate its applicability across domains. Table

6.2.3a presents 5-fold cross-validation tests results of the model performance in the current dataset

where SVM model was run with parameter settings adopted in dataset1 (section 6.2.1). However,

SVM model needed parameter tuning within the current dataset.

Table 6.2.3a: Model Evaluation performance using AL dataset

 Naïve Bayes SVM (0.1,1000)

 5-feature 5-feature

F1 62.5 62.5

F2 71.4 71.5

F3 66.6 50.0

F4 33.3 66.6

F5 50.0 50.0

Mean 56.7 60.1

Findings #14

Table 6.2.3a reveals that in the current dataset (validation dataset) 5 feature subset, similar to the

ones selected in dataset2 (benchmark), SVM induced the best results for the model (60.1%) as

expected.

6.2.3.1. Parameter Selection using Academic Librarians’ Dataset (Experiment B)

Both gamma and complexity values were varied in a range of {0.00001 to 1} and {0.00001 to

10000} incrementally in multiples of 10. Table 6.2.3b indicates gamma value of 0.1 and complexity

values of at least 10 appeared to be optimal. Fig.6.2.3a presents results of a validation curve(a) that

confirmed these findings.

Finding #15

Table 6.2.3b reveals that in the current dataset parameter settings that induced the best performance

in the model (63.4%) were gamma=0.1 and complexity of at least 10.

 195

Table 6.2.3b: Analysis of relevant parameter values in AL dataset

Complexity

 gamma 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

0.00001 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 45.2

0.0001 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 41.9 60.1

0.001 27.3 27.3 27.3 27.3 27.3 27.3 27.3 39.4 60.1 53.9

0.01 27.3 27.3 27.3 27.3 27.3 27.3 39.4 60.1 63.4 60.1

0.1 27.3 27.3 27.3 27.3 27.3 39.4 63.4 63.4 63.4 63.4

1 27.3 27.3 27.3 27.3 27.3 42.2 45.5 42.2 50.5 51.4

6.2.3.2. Estimating generalization error of the model using Academic Librarians’ Dataset

(Experiment C)

Generalization performance of the model was studied using different dataset sizes at increments of

10. Fig.6.2.3a presents results of a learning curve (b) that indicate the generalization error of the

selected model, namely SVM model, progressively reduced as sample size increased. This was an

indication that the classifier model was able to generalize its performance very well in the current

dataset.

Figure 6.2.3a: Learning performance behavior of selected model using (Academic Librarians’

dataset) dataset3

6.2.3.3. Evaluating model using Academic Librarians’ Test set (Experiment D)

The evaluation dataset had 50 instances which were split into two, training and test set, in the ratio of

80:20. Stratified random sampling was applied to ensure each class was represented. This resulted

with a test set size of 13 instances (about 26%). Table 6.2.3a presents the class distribution of the test

 196

set derived from the Validation dataset (Academic Librarians‘ field data). From Table 6.2.3a it is

clear that class sizes were also imbalanced in the original dataset. The training set was subjected to 5-

fold cross-validation where 5 instances of classifier models were generated.

One instance of classifier model with the best training results was selected for subsequent evaluation

that generated a confusion matrix for the model. From the confusion matrix various performance

metric values were extracted such as accuracy, precision, recall, and f1_score. This experiment was

repeated for each induction algorithm, namely naïve Bayes and SVM, hence two models. Fig.6.2.3a

presents graphical results showing confusion matrix (c) for the two models while Fig.6.4b presents

bar graph results showing comparative analysis of the performances of the two classifier models

along the four evaluation metrics. For both models‘ results, accuracy and recall values seemed to be

equal. However, SVM classifier model was in all aspects similar as naïve Bayes model. This

behavior of the models was also observed when evaluating with the benchmark dataset.

Table: 6.2.3c Class distribution of test set for the AL dataset

Class 1 2 3 4 5 6 7 TOTAL

Size 2 2 2 2 2 1 2 13

Figure 6.2.3b: Class performance accuracies of the selected model using (AL dataset) dataset3

Findings #16

Fig.6.2.3b reveals that the two models seemed to be equally the same along most performance

metrics except precision where SVM model (0.542) seemed to outdo naïve Bayes model (0.528) as

 197

expected. The performance per class of the selected model, namely SVM model, was excellently

good in some classes (100% for classes1&5) and fairly poor in other classes (5% for classes 2&7).

However, its ability not to label negative classes as positive was not as good as its ability to find all

positive classes correctly which was equally good (precision = 54.2%, recall = 64.5%).

6.3. Comparative analysis

Comparative analysis was necessary to reveal not only the dataset in which the model performed best

but also hierarchical level as well as class where the model performed best. Table 6.3a presents

performance results across the three datasets while Table 6.3b presents performance results along

hierarchical levels across the three datasets. In each case, the model reported equal performance in

both accuracy and recall. On average, model performance seemed to improve upward the hierarchy

levels.

Table 6.3a: Comparison of performance across three datasets

Performance Metric Research

Dataset

Benchmark

Dataset

Validation

Dataset

Mean

accuracy 0.59 0.85 0.65 0.69

precision 0.62 0.83 0.54 0.66

recall 0.59 0.85 0.65 0.69

F1_score 0.57 0.83 0.56 0.65

Table 6.3b: Comparison of performance along hierarchical levels across datasets

 Research Dataset Benchmark Dataset Validation Dataset

level classes average classes average classes average Mean

1 7,8 0.79 1,2,7,8 0.53 4,5 0.98 0.77

2 3,4,9,10 0.41 3,4,9,10 0.95 3,6 0.73 0.69

3 5,6,11,12 0.43 5,6,11,12 0.82 1,2,7 0.37 0.54

Mean 0.54 0.77 0.69 0.67

Model‘s performance seemed to be very high in the benchmark dataset as a result of having more

instances whose classes had very high accuracies (class 10 & 11) and fewer instances whose classes

had very low accuracies (class 7 & 8). This was not the case with other two datasets where a

distribution difference of classes with very high and very low accuracies was not high. Explanation

behind this could be differences in sources of data and their data collection techniques. While our

 198

data was collected through questionnaires and from the Kenyan population, the benchmark data was

collected through a carefully designed assessment tool that improves the accuracy of the data.

Table 6.3c: Reported performance across other related models in literature

Performance accuracy Current (2017)

{Industry roles}

Clare & King (2003)

{Proteins}

Barbedo & Lopes (2006)

{Music}

Type of model SVM Decision Tree K-NN

Number of datasets

experimented with

3 12 1

Reported performance

accuracy

Level 1 77 56.4 87

Level 2 69 46.3 80

Level 3 54 23.1 72

Level 4 - 7.9 61

Average per level 67 33.4 75

Reported evaluation 69 53.3 61

Findings #17

Table 6.3b reveals that model performance depends on the distribution differences in the dataset of

class instances with very high and very low accuracies. In Benchmark dataset where performance

was 85%, high accuracy (100%) class (class11) had the highest number of instances (size=11) while

low accuracy (5%) class (class7) had the lowest number of instances (size=2). In Research dataset

where performance was 59%, high accuracy (93.4%) class (class7) had moderate number of

instances (size=3) while low accuracy (5%) class (class3) had moderate number of instances

(size=1). In Validation dataset where performance was 65%, high accuracy (100%) class (class1&5)

had moderate number of instances (size=2) while low accuracy (5%) class (class2&7) had moderate

number of instances (size=2).

Model performance in both Research and Validation datasets seemed to be fairly good (59% and

65% respectively). Model performance seemed to improve upward in the hierarchical levels of the

taxonomy consistent with other related models in literature.

6.4. Discussion of Evaluation Findings

Evaluation results and findings were crucial not only in establishing the best generalization

performance and the best classifier model but also in understanding the behavior of the classifier

 199

model from what was expected and how it compared with other models in literature. Besides, these

findings were eventually used to answer the last research question: how do we evaluate performance

and validity of the mapping model?

6.4.1. The best generalization performance of the classifier model

Findings #12, #13, #14, & #15 were crucial in establishing the best generalization performance of the

classifier model using the selected inducer algorithm. According to findings #13 & #14 the best

classifier model seemed to show excellent performance behavior (along all four performance metrics

adopted) in all the three datasets. However, it performed differently in the first dataset (research) and

approximately similar performance behavior in the second (benchmark) and third (validation)

datasets. This could possibly be attributed to class distribution differences where dataset2 and 3 have

more or less similar distribution of ‗bad‘ (less) and ‗good‘ (more) classes, unlike in dataset 1 where

‗bad‘ classes are more than ‗good‘ classes. In this case, classes with very high accuracies are ‗good‘

while classes with very low accuracies are ‗bad‘.

The best generalization performance was calculated as an average performance across the three

datasets as indicated in Table 6.3a&b. In this case, along hierarchical levels the best average

accuracy performance of the model was 67% and, therefore, we can confidently claim that the best

performance of our model was 67%.

6.4.2. To compare model performance under two industry domains

Likewise, to compare model‘s performance findings 12# and #16 equally played an important role.

The two results of the classifier model seemed to show more or less similar performance behavior

(along all four performance metrics adopted). Precision as a measure of the ability of the model not

to label a negative outcome as positive is a very crucial measure of the classifier model. This is

because the original goal of the study was to build a model that would improve productivity and

performance in the job.

Table 6.4 presents comparative results for the model contrasting the two cases as extracted from

SVM model results in Fig. 6.2.1b and 6.2.3b. These results indicate that in both cases the precision

values were good (SE case precision = 61%; AL case precision = 54%). The two findings signal

strongly the confirmation and acceptance of the hypothesis posed in research question four: H04A:

There is no significant performance difference of the model in different industry domains

 200

Low precision would have meant the model would be prone to act against this objective. This was

enough reason to confirm SVM model as the best classifier.

Besides, along the three datasets SVM model was able to show a consistent superior performance

over naïve Bayes model along all the performance metrics. There was clear evidence that SVM

model performance per class was 100% accurate for about 30% of the target classes in a dataset,

namely 28% in dataset2 (2 out of 7 classes) and 33% in dataset3 (4 out of 12 classes).

Table 6.4: Comparison of performance measures in each Case in the study

Variable Case 1: Software Engineers Case 2: Academic Librarians

Accuracy 0.59 0.64

Precision score 0.61 0.54

Recall score 0.59 0.64

F-score 0.59 0.56

6.4.3. Performance Comparison with other Classifier Models in Literature

Our model seemed to compare well with other hierarchical classifier models in literature. Model

performance seemed to improve upward in the hierarchical levels of the taxonomy consistent with

other models in literature (Clare & King, 2003; Barbedo & Lopes, 2006). Based on the model‘s

performance as revealed in findings #17, average level performance across the three datasets was

better than average level performance of Clare & King‘s model (2003) across 12 datasets. However,

the model‘s average level performance was slightly lower compared to Barbedo & Lopes‘s model

(2006). Although, Barbedo & Lopes‘s model results (2006) were based on only one dataset which

we did not know its distribution.

Nevertheless, in the present study the best average performance achieved by the model was in

dataset2 (benchmark) whose results were much better compared to Barbedo & Lopes‘s model

(2006). Although there was no evidence whether there was use of hierarchical approach, Shashidhar

et al. (2015) built a classifier model using the same Benchmark dataset and achieved a performance

of 82% which was slightly lower compared to the performance level achieved using the same

Benchmark dataset (85%) by the classifier model produced in the current study.

 201

6.5. Discussions Conclusion of Evaluation Findings

The main focus of this discussion was not only to demonstrate the appropriateness of the classifier

model to serve its purpose by evaluating its performance but also to assess the validity of the

classifier model by comparing its evaluation results across other related models in literature. From

this discussion it was clear that the appropriate performance of was achieved using SVM model at an

average accuracy of 67% across three datasets. Its performance on three datasets was fairly good

59% (SE field data), 65% (AL dataset) and 85% (Benchmark dataset was better)

The validity of the model was demonstrated experimentally where the results of the model

performance under different industry domains were compared. Lastly, the discussion also clearly

demonstrated comparative performance of the classifier model against other literature models,

especially hierarchical models, was considerably better than most of them. These findings were

crucial in providing answer to the fourth research question: RQ4: How do we evaluate

performance and validity of the mapping model?

Table 6.5 presents a summary of the outline research method that contributed towards answering the

research.

Table 6.5: Method followed to answer research question 4

METHOD FINDINGS

1. Building model’s prototype Obtained prototype of the mapping model

2. Evaluation of prototype using data

collected and benchmark dataset

Obtained average generalization performance of 67%

for the model

3. Evaluation of prototype using only

benchmark dataset [Experiment]

Obtained average generalization performance of 85%

for the model

4. Comparison of prototype results on

benchmark dataset with related models

results on same benchmark dataset

Obtained better results :85% (current model) against

82% (related model) (OUTCOME)

5. Reporting related performance in

other non-industry role domains

Obtained : 53.3% on protein dataset (Clare & Kings,

2003) and 61% on music dataset (Barbedo & Lopes,

2006) (OUTCOME)

 202

6.6. Discussion of Results Validity

The results presented for discussion in this section have been carefully planned and generated under

the assumption that credibility of any study and its findings depends on not only the research

methodology applied but also the validity of its results. Therefore, it would be improper to discuss

the results without assessing how valid the results are. Wohlin et al (2003) highlights four types of

results validity concerns and observes that it is important to assess how valid the results are before

they are presented for discussion. The four types are internal validity, external validity, construct

validity and conclusion validity. This section outlines each one of them and how they have been

addressed in the current study.

6.6.1. Internal Validity

This kind of validity was concerned with factors that might have affected the dependent variable

without the researcher‘s knowledge (Wohlin et al.,2003). In the current study, several factors that

would have affected the results outside the original four dependent variables considered in the

conceptual framework were noted during the experiments. These included ‗age‘ (this refers to age of

the graduate), ‗university‘ (this refers to the University of Study for the graduate), and ‗bachelor ‘s

degree‘ (this refers to the type of degree program the graduate enrolls).

However, one more factor that would have affected the results adversely was variation of industry

roles‘ definition in various industry firms where some roles‘ definitions would have either similar

names but different requirements or requirements elements from more than one role (Chien & Chen,

2008). To address this issue, two frameworks (Fig.3.5,3a & 3.5.3b in section 3.5) that were designed

to harmonize role names and role boundaries were adopted and are part of the contribution of this

study. Before the frameworks were applied as described in section 3.5 of research methodology,

there was need to maximize intra-role similarity and minimize inter-class similarity with the aim to

avoid the model under-fitting the data (Raschka, 2015; Chien & Chen, 2008).

A case is comparative in nature where there is contrasting of results generated from either case. To

avoid bias and ensure internal validity, a valid basis for assessing the results was adopted and this

involved organizing the study in a way that facilitated comparison of results. Three common

strategies for organizing a study to facilitate this comparisons consists of comparing results using 1)

sister projects, 2) company baseline projects, and 3) differently treated components of a single

project (Kitchenham & Lesley, 1995). Alternative occupational domains and benchmark studies in

 203

literature were closely related to these strategies, and thus the present study employed strategy 1&2

to facilitate comparative analysis of results. Table 6.4 presents comparative results for the model

contrasting the two cases as extracted from SVM results in Fig. 6.2.1b and 6.2.3b.

6.6.2. External validity

This was concerned with ability to generalize results of the experiments over the entire target

population. Again, Wohlin et al. (2003) raises concerns that the problem and the participants in the

study have to be representative of the target population for the results to reach the threshold for

generalization. Clearly, this was an issue of research design. The overall research question of this

study was answered through a case study research design. Case studies have been known to be

generalizable to theoretical propositions and not to population universes, because they do not

represent a sample (Yin, 1994).

However, the choice for this design was driven by not only the explanatory nature of the question but

also the contemporary nature of the event where the relevant behaviors could not be manipulated. To

address this issue, multiple cases approach was adopted where a case of software engineers was used

as the primary case to produce the research dataset while a case of academic librarians was used as a

secondary case to generate the validation dataset. In the present study, multiple case approach

offered greater validity to the case study findings because each case was considered as a replication

that was used to confirm the findings consistency for generalization (Easterbrook et al., 2007). The

adoption of case approach was also important in avoiding the scale-up problem (Kitchenham &

Lesley, 1995).

The biggest challenge was in the selection of the cases, because case samples are not based on

variables that are manipulated but on variables that represent typical situations and this was central

to the issue of external validity for this study (Kitchenham & Lesley, 1995). Common approach

adopted consisted of describing cases based on significant characteristics and using these as state

variable information to select a case. Demographic characteristics results of Table 4.1.1a and Table

4.2.4 helped to identify four characteristics to represent typical cases, namely gender (variation),

bachelors degree (several types), University of study (at least one) , and industry roles (several).

Table 6.6.1 presents description of the two typical cases.

 204

6.6.3. Construct validity

This was concerned with the relationship between the concepts and theories behind the study and

what was measured and affected (Wohlin et al., 2003). Construct validity tried to establish correct

operational measures for the concepts being studied (Yin, 1994). This involved defining concepts

clearly before measurements were conducted and justifying measures adopted for such concepts.

This study derived its concepts from three existing models for training evaluation that served as its

theoretical framework as explained in section 2.7. The justification of each framework used as

measure for each concept was clearly illustrated and summarized in Table 2.2.

Table 6.6.1: Description of Typical Situation in each Case

 Case 1: Software Engineers Case 2: Academic Librarians

Variable Category Frequency Percent Category Frequency Percent

1. Gender Male 77 68.1% Male 18 36.0%

 Female 36 31.9% Female 32 64.0%

2. Bachelor‘s

degree

BSc. Computer

science

32 28.3% BSc. Library science 3 6.0%

 BSc. IT 55 48.7% BSc. Information science 13 26.0%

 BSc. Software

engineering

22 19.5% BSc. Library &

Information

science

27 54.0%

 Others 4 3.5% Others 7 14.0%

3. Industry

roles

Software Architect 18 15.9% System Librarian 1 2.0%

 Analyst

Programmer

26 23.0% Reference Librarian 9 18.0%

 Test Engineer 14 12.4% Information Literacy

Librarian

6 12.0%

 Web Programmer 29 26.7% Circulation Librarian 8 16.0%

 Mobile

Programmer

9 7.9% Africana Librarian 3 6.0%

 Systems

Administrator

13 11.5% Digital Media Librarian 7 14.0%

 Project Manager 4 3.5% Multi-Purpose Librarian 7 14.0%

 Other 9 18.0%

4. University UoN 14 12.4% UoN 5 10.0%

 Kenyatta 9 8.0% Kenyatta 21 42.0%

 Moi 4 3.5% Moi 11 22.0%

 Egerton 9 8.0% Egerton 1 2.0%

 KEMU 11 9.7% KEMU 1 2.0%

 Daystar 10 8.8% Daystar 1 2.0%

 Maseno 1 0.9% Other 10 20.0%

 JKUAT 27 23.9%

 Strathmore 8 7.1%

 Nazarene 12 10.6%

 Other 8 7.1%

 205

6.6.4. Conclusion validity

This kind of validity related to the possibility to draw correct conclusions regarding the relationship

between treatments (independent variable) and outcome of an experiment (dependent variable)

(Wohlin et al., 2003). This tried to establish the power of the tests and the reliability of the

measurements. The aim was to reduce errors and biases in the study so that if the same procedure

was repeated by a second investigator would be able to arrive at the same findings and conclusion

(Yin, 1994). One approach adopted was to make research methodology steps as operational as

possible as evidenced in the research design (refer to section 3.3) and the verification of conditions

for each statistical test procedure.

6.7. Summary

This chapter has presented experimental evaluation results of the study, and a detailed discussion of

the major research findings. The climax of this discussion has culminated with validation of the

mapping model through not only a holistic multi-case design but also a theoretical replication

approach. For purpose of clarity, the results have been presented using not only tables and but also

graphs. The statistical analysis procedures have been carefully selected based on preliminary tests

results for data validity. The final research findings have been carefully drawn from both descriptive

and experimental results after details discussion of the results and findings. In summary, the results

and findings discussed in this chapter have provided answers to the fourth research question posed in

this study.

 206

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.0 Introduction

This chapter has been structured into sections: Section 7.1 presents the conclusion and future

research. Section 7.2: highlights the research contributions. Section 7.3: presents the research

limitations. Section 7.4: outlines the benefits and achievements of the study. Finally, section 7.5:

highlights relevant research publications generated by this study.

7.1 Conclusion and Future Research

7.1.1 Conclusion

This study set out to investigate whether skills profile from employed graduates could be used to

develop a machine learning model to map graduates‘ skills to industry roles that are hierarchically

structured and the applicability of machine learning techniques in improving prediction of graduates‘

performance and productivity towards industry jobs. This was as a result of not only the glaring risk

that graduates were facing of long term unemployment but also the growing dissatisfaction by

industry over graduates‘ productivity as a result of poor evaluation of graduates‘ skills vis-à-vis

industry job competence requirements in a practical way. To address this problem an investigation

was launched to build a model for mapping graduate‘s skills to matching industry roles using

machine learning techniques. The challenges towards this study were:

1) Lack of appropriate concepts to be used as machine learning attributes to predict performance of

new graduates towards industry roles

2) Lack of understanding of characteristics of relevant concepts to be used as target classes for

machine learning process for mapping graduates‘ skills to industry roles

3) Lack of a valid and effective machine learning model for predicting graduates‘ performance

towards industry roles

The above challenges formed the basis of the research objectives which were operationalized

through research questions and hypotheses to be answered. Initially, relevant literature was reviewed

to understand the problem and its domain. A number of systematic questions, such as: what learning

outcomes are looked for in the job industry; what learning outcomes enhance performance in the job;

how we evaluate learning outcomes; what evaluation approaches are commonly used in related work.

The literature derived from these questions was reviewed where three theories that are commonly

used to evaluate learning outcomes were jointly analyzed to produce the conceptual framework while

 207

literature on related work was used to refine the final research questions in an attempt to achieve

each of the corresponding objective.

We consider each of the objectives and the extent to which they were achieved.

1) To establish concepts appropriate as machine learning attributes for mapping graduates

skills to occupational industry roles

Initially, the investigation to answer this research question was launched through literature review

and analysis before empirical analysis refined these concepts. The main focus of literature review

and analysis was to review and analyze literature so as to identify: 1) theories for evaluating learning

outcomes, 2) underlying concepts of these theories that promote performance in the job, 3) suitable

cognitive frameworks that could be used to assess these concepts in the academia. Three theoretical

models for evaluating learning outcomes were identified, namely Kirkpatrick model, CRESST

model, and Kraiger‘s model. Their underlying concepts were analyzed to reveal ones that promoted

performance in the job, and their relationships were represented in the conceptual model (Fig.2.6).

The proposed concepts in the conceptual model were operationalized using frameworks that

provided indicators used to derive the variables for collecting data as shown in Table 2.5.

i) Selecting meaningful features for building the model

Findings #7 was related to determination of not only the number of features that would optimize

performance of the classifier model but also whether the improved performance was significant.

Findings #7 revealed 5 features out of 13 were able to induce the best performance results for the

classifier model equivalent to performance that could be achieved with 13 features. Reduction of

features had a number of benefits to the classifier model, including lowering demand for

computational resources and reducing the processing time. The 5 features out of 13 were able to

induce best performance of the classifier model and this performance improvement was significantly

better than that of 13 feature model.

The findings revealed the number of valuable features as, namely R (Relevant content knowledge), D

(Cognitive skills), A (Technical skills), C (Intellectual Capacity) and ‗Age‘. The implication of this

findings provided insight not only into which features should be included in the subsequent

investigations but also to accept or reject the hypothesis posed in research question 1: H01A: All

features are equally relevant for better performance of the classifier model. The outcome based

on these findings was to reject the hypothesis at significance level, p=0.05. These findings‘

 208

explanation was that when more than five features were used, the summary feature space dimension

became too large causing performance of the model to start decreasing while when less than five

features were used essential information was lost that caused accuracy to decline. These findings

concurred with others in literature (Barbedo & Lopes, 2006).

2) To establish characteristics of concepts required as target classes for hierarchical machine

learning purpose

Descriptive survey research design was adopted to answer this research question where the main

focus was: 1) to establish concepts to be used as target classes for the machine learning process 2) to

establish characteristics of these concepts in terms of their structural elements, structural relationship

amongst them and relationship of academia towards these concepts. These issues were important to

understand not only to help select the appropriate approach for building the machine learning model

and design appropriate features for the prototype to handle new graduates from diverse institutions of

academia but also to verify the research assumption that occupational industry roles were unique and

hierarchical. To verify research assumption a hypothesis was defined, tested and provided results to

answer the question. The findings towards this research question were organized according to the

two main focuses as summarized below:

i) Establishing concepts to be used as target classes for machine learning process

Findings#1 and #6 were crucial in discovering industry roles concepts that formed the basis of

creating target classes for machine learning. While findings#1 revealed the concepts as raw which

were initially 7, findings#6 later on revealed the refined form of these concepts as 12. Finding#6 also

revealed the distribution of these concepts that was important in deciding how to handle class

imbalances during training process of machine learning for building the model.

ii) Establishing characteristics of target classes for machine learning process

The choice and design of machine learning methodology depends on: 1) structure of the problem and

2) assumptions about the learning problem (Kotsiantis, 2007; Silla & Freitas, 2011; Merschamann &

Freitas, 2013). As a result, findings#2 was crucial in discovering that these concepts had similar

structural elements (job activities/skills) but different levels of emphasis. Further, findings#5

discovered the structural relationship among these concepts that was crucial in deciding the machine

 209

learning approach suitable for building the classifier model, in this case hierarchical classification

approach.

The fundamental assumption in the present study that occupational industry roles have different

requirements for problem solving skills was put in the form of a hypothesis: H02A: There is no

significant boundary differences between concepts to be used as potential target classes for

machine learning. Findinsgs#3 was crucial in rejecting this hypothesis. Hypothesis results

suggested that occupational industry roles were unique and demanded a unique capacity to apply

content knowledge learned during training. These results concurred with other findings that industry

roles were becoming more and more diversified and therefore workers were required to be

empowered to apply domain specific knowledge and skills differently in different industry roles

(Chien & Chen, 2008).

Findings#4 was important in revealing that learning institutions have different biases towards these

concepts. This was crucial in designing the model‘s prototype software to handle graduates from

different learning institutions differently when deployed in the real world. Findings#4, concurred

with other studies that, either methods used during training were only able to impart theoretical

knowledge to the learners hence denying them application of knowledge and skills through practical

training (Shaw, 2000, McCowan et al., 2016) or some areas were prescribed very little time, or were

taught in more depth than others (Lethbridge et al, 2000; Kichenham et al 2005; Surakka, 2007).

Based on the findings in the study, it is important to note that, when developing classifier models for

mapping skills to industry roles, target classes for machine learning are industry roles concepts

which are distinct, and therefore, should be approached using supervised classification approach.

Class distributions of these concepts could be imbalanced, and therefore, they may need stratified

sampling during machine learning process of building the classifier model. Besides, structural

relationship among these concepts is hierarchical, and therefore, the process of building the classifier

model should be approached using hierarchical machine learning approach.

Finally, when designing software for the model to deploy for real world use, the underlying biases of

different learning institutions towards these concepts should be known so that the model could

handle graduates from different institutions differently.

 210

3) To build using these concepts a machine learning model that maps graduates’ skills to

hierarchically structured industry roles

Experimental research design was adopted to answer the research question where the model was

built through training and testing experimental processes. The main focus of these experimental

processes was: 1) to select appropriate machine learning algorithm required to build the model 2) to

select appropriate parameter values for the machine learning algorithm,. These two issues were key

in building the machine learning model for mapping graduates skills to industry roles and were used

as experimental objectives in the experiment design.

Because the nature of true experiments should not only be objective and repeatable but also be

characterized by testing claims. Two hypotheses each for the two experimental objectives were

defined, tested and their results utilized to answer the research question. Again, the findings towards

this research question were organized according to the two main focuses as summarized below:

i) Selecting the best machine learning algorithm for building the model

This main focus of this experiment was to estimate the generalization performance of each of the two

models generated by each machine learning algorithm and possibly help select the best induction

algorithm. Both findings#9 and #11 were key in revealing this where both concurred that the general

performance of the SVM classier model was much better than that of naïve Bayes and in fact the

difference between the two was significant. Based on these findings, SVM was more likely to

generalize its performance to unseen data in the real world better than naïve Bayes classifier model.

As a result, it was selected as a candidate for the best classifier model.

Also, the two findings were key in rejecting a hypothesis posed in the research question that: Ho3C:

All induction algorithms induce equal generalization performance to the model. These findings

concur with other findings in literature that prediction performance of a classification methodology

applied on a particular problem depends on the data, the induction algorithm for the model, and the

expected results of analysis (Bedzek, 1981). Also, classifiers behave differently in many different

datasets because induction algorithms that generated them have different internal biases and imposed

different assumptions about the data (Raschka, 2015), but can be proved equivalent when applied on

certain datasets (Mitchell, 2006).

 211

ii) Selecting best parameter values for building the model

Both finding#8 and finding#10 were related to investigation towards parameter tuning, although

through different datasets with different landscapes. Coincidentally, both findings agreed that

parameter tuning of SVM improved performance of the classifier model significantly. However,

parameter values that induced optimal performance of the classifier model were dataset dependent.

The implication of these findings in this investigation suggested that in every different dataset we

needed to tune the parameter values for optimal performance.

Also, these findings provided key evidence that was used to reject the hypothesis paused in the

research question that: Ho3B: Any parameter value produces better performance in the model.

These findings concurred with observations in literature that default parameter values in the libraries

of induction algorithms may not induce better performance of a model (Raschka, 2015). Besides,

parameter tuning is sometimes more important than even choosing an induction algorithm

(Lavesson, 2006).

Based on the findings and outcomes of research hypotheses that were tested, two things (among

others) were key in building machine learning model for mapping graduates skills to industry roles,

namely selecting induction algorithms that induce appropriate generalization performance and tuning

parameters of the model to appropriate values, and. These two were among the key determinants of

the final performance of the model.

4) To evaluate the validity of the model

To answer this question, experimental research design and literature analysis were adopted where the

model was evaluated through training and testing experimental processes then its results compared

with other similar models in literature. The main focus of these processes was:1) to determine the

generalization performance of the best classifier model selected for mapping graduates‘ skills to

industry roles, 2) to compare performance of the classifier model with other models in literature. The

two issues were important in understanding the properties or behavior of the classifier model from

what was expected and how it compared with other models in literature.

But one that was key was experimental evaluation to establish the generalization performance of the

best classifier model. Thus, it was handled as a true experiment and characterized by a testing claim,

where a hypothesis was defined, tested and results utilized to answer the research question.

Performance of the model on carefully selected benchmark was compared with performance of other

 212

models on the same dataset, while comparison was also made with other models using same

approach and not necessarily on the same dataset. Again, the findings towards this research question

were organized according to the two main focuses as summarized below:

i) To establish the generalization performance of the best classifier model

Findings #12, #13, & #14 were crucial in establishing the generalization performance of the best

classifier model using best induction algorithm. According to findings #12, #13 & #14 the best

classifier model seemed to show excellent performance behavior (along all four performance metrics

adopted) in all the first, second, and third datasets where the average accuracy performance was

67%/. Along the three datasets, SVM model was able to show a consistent performance over naïve

Bayes model (that was dropped in chapter 4) as expected along all the four performance metrics. Its

performance per class was 100% accurate for about 30% of the target classes in a dataset (2 out 7

classes (28%) in dataset2 and 4 out of 12 classes (33%) in dataset3).

Besides, our model seemed to perform equally better in both dataset2 (SE field data) and datset3 (AL

field data) and yet they belong to different occupational domains. This was a clear indicator of the

ability of the classifier model to generalize in other occupational domains not covered in the study.

The findings#12 & #16 and Table 6.4 were key in signaling acceptance of a hypothesis posed in the

research question that: Ho4A: There is no significant performance difference of the classifier

model in different industry domains.

In the present study, the best generalization performance was calculated as an average performance

across the three datasets as indicated in Table 6.3a&b. In this case, along hierarchical levels the best

average performance of the model was 67% and, therefore, we can confidently claim that the best

accuracy performance of our model was 67%.

ii) To compare performance of the best classifier model with other models in literature

Our model seemed to compare well with other hierarchical classifier models in literature. Model

performance seemed to improve upward in the hierarchical levels of the taxonomy consistent with

other models in literature (Clare & King, 2003; Barbedo & Lopes, 2006). Based on the model‘s

performance as revealed in findings #18, average level performance (67%) across the three datasets

was better than average level performance (33.5%) of Clare & King‘s model (2003) across 12

datasets. However, the model‘s average level performance was slightly lower compared to 75% that

of Barbedo & Lopes‘s model (2006). Although, Barbedo & Lopes‘s model results (2006) were

 213

based on only one dataset which we did not know its distribution. Nevertheless, in the present study

the best average performance achieved by the model was in dataset2 (benchmark) whose results were

much better compared to Barbedo & Lopes‘s model (2006).

Although there was no evidence whether there was use of hierarchical approach, Shashidhar et al.

(2015) built a classifier model using the same SE Benchmark dataset and achieved a performance of

82% which was slightly lower compared to the performance level achieved using the same

Benchmark dataset (85%) by the classifier model produced in the current study. Assuming their

classifier model was flat then our model was evidence that hierarchical models are more accurate

than flat models as claimed in literature and hence concurs with other findings (Silla & Freitas, 2011;

Merschamann & Freitas, 2013). To the best of our knowledge this was the first classifier model to

pose skills mapping to industry roles problem as a hierarchical multiclass classification problem that

was solved successfully.

7.1.2 Future Research

This model will greatly help to alleviate the risks facing graduates and employers due to effects of

industry academia gap, such as employing graduates who do not match their needs, and taking longer

to search the ever growing pool of new graduates with qualification mix. SVM and naïve Bayes were

used to extract the rules for the model. SVM was adopted due to its high level of accuracy while

naïve Bayes was chosen due to its ability to produce good results quickly while both of them are

widely used in skills mapping. However, in order to improve on the reliability of the model, the

following future research is highly recommended.

1) Testing this approach using other alternative machine learning techniques such as decision

trees and neural networks.

2) Although the applicability of this approach in other alternative industry domains has been

implied, it is important future research is conducted in these domains to confirm this so that

more experiments to be performed with cases in other domains.

3) To ensure a good match between skills acquired in education and those required in the labor

market, more investigation is needed to identify both individual and training attributes that

predict transfer of learning.

 214

7.2 Research Contributions

The key objective of this thesis was to investigate a model for mapping graduate‘s skills to industry

roles using machine learning techniques so as to improve prediction performance for both

employability and productivity. This was approached by using employees‘ data to model the

relationship between employees‘ academic profile and work requirements. Useful strategies were

applied in designing the model which would possibly accrue numerous benefits not only to the

evaluation and recruitment processes of both academia and industry but also to the whole fraternity

of researchers. These useful strategies culminated in making a significant contribution to the world

of research.

Making a significant contribution implies adding to knowledge or contributing to the discourse by

providing evidence to substantiate a conclusion that‘s worth making (Petre & Rugg (2010).

Wobbrock & Kientz (2016) outlined seven types of research contributions in computing and these

are theoretical, empirical, methodological, dataset, artifact, survey, and opinion.

The rest of this section presents the main contributions of this study as per Wobbrock & Kientz

(2016) model.

7.2.1 Theoretical contributions

Theoretical contribution may be in the form of new or improved models, frameworks, concepts or

principles that inform what we do, why we do it, and what we expect from it. They are evaluated

based on their novelty, soundness, and power to describe, predict and explain (Wobbrock & Kientz ,

2016). Based on this observation, this study has made the following theoretical contributions whose

contribution to knowledge was analyzed using Whetten framework (1989):

1) Conceptual framework

Conceptual framework for studying skills mapping to industry roles problem was one of the major

theoretical contributions. The framework identified factors that were appropriate to predict

performance in the job and indicated the logical relationship between them (refer to chapter 2, Figure

2.6). The need for this framework was as a result of a missing tool for training evaluation that

enhances both employability of graduates and performance in the job. For purposes of graduate

employability, the conceptual framework was applied in understanding both factors that were key in

differentiating between occupational industry roles from the academic point of view and the trends or

biases in the academia towards these occupational industry roles.

 215

The former was important especially in the design and implementation of the curriculum where there

is need to identify core factors that target general aspects of occupational industry roles and the

factors that target specific aspects of industry roles. The later was important especially to the

academic institutions in evaluating their progress in enhancing graduates employability towards

occupational industry roles.

The findings derived from analyses based on this framework have not only important significance to

theory especially in explaining why we have qualification mismatch among graduates of same

bachelor‘s degree program whether from same or different universities but also several implications

both to the academia and industry in terms of: 1) coverage of domain specific knowledge and skills;

2) approval of curriculum by domain experts and stakeholders; 3) selection of undergraduate

students; 4) emphasis of the right levels of thinking skills.

In summary, for many years the researchers and stakeholders both in academia and industry have

been struggling to come up with a framework that could describe, explain, and bridge the gap

between industry and academia. This is what this conceptual framework has done theoretically and is

a contribution that is significant to skills mapping researchers who would want to describe, explain,

and bridge industry academia gap by using this conceptual framework as a research model.

2) Taxonomic structure

Taxonomic structure that is not only friendly to bottom-up classification methodology but also based

on functional organizational structure was developed. This indicated the logical and hierarchical

relationship between nodes that reduced multiple label prediction problem (refer chapter 2, Figure

2.8). This approach where the classification taxonomic structure was derived from functional

organizational structure has not been applied anywhere in machine learning literature. The approach

renders skills mapping to industry roles practically relevant and reliable, where skills mapping is

performed according to not only the natural structure of industry roles but also the natural mobility of

employees in the organizational structure, and this promotes single label prediction.

The significance of this approach lies in partitioning the industry roles in three natural dimensions

adopted in many organizations (i.e. functional, proficiency, and specialty) when considering

employability of personnel. In summary, this is a positive contribution to the body of knowledge in

machine learning based skills mapping where none had existed. The significance of this contribution

extends to researchers in skills mapping to industry roles who can use this taxonomic structure to

 216

organize classes as required in supervised machine learning. The implication of this finding is that

for relevant and reliable results in skills mapping, this kind of taxonomic structure is vital. The

original class taxonomy for hierarchical classification was defined by Wu et al. (2005) as a tree

structure with two properties, anti-reflexive and transitive. Further, Silla & Freitas (2011) extended

the definition to include asymmetric properties.

However, these properties by both are biased towards top-down approach to hierarchical multi-class

classification where the assumption is a child node naturally belongs to not only the immediate

parent node but also all other ancestor nodes up the hierarchy. This makes it difficult to apply

bottom-up navigation without leading to multiple labels. As a result, to make the class taxonomy

compatible with the currently proposed bottom-up method so as to promote integrity and validity of

this method, transitive property of the taxonomy was reviewed as follows: For every class ci; cj ; ck є

C; ci is related to cj and cj is related to ck does not imply ci is related to ck.

Figure 2.8: Bottom-up friendly taxonomic structure (repeat)

Figure 2.8 illustrates hierarchical structure with two branches (may be more), each branch with three

levels, a total of twelve leaf node classes (C1.5, C1.6, C1.1.3, C1.2.4, C1.2.1, C1.2.2, C2.5, C2.6,

C2.1.3, C2.1.4, C2.2.1, and C2.2.2), and a total of six parent nodes (1, 1.1, 1.2, 2, 2.1, and 2.2), and

root node (R). Leaf nodes represent specialized individual roles while the upward arrow indicates the

direction of employees‘ occupational mobility with time.

In the context of skills mapping, the above proposed taxonomic structure represents the hypothetical

structural organization of occupational industry roles‘ problem, and reflects not only the natural

mobility of employees upward the occupational ladders but also promises effective bottom-up

mapping of graduate skills to industry roles that does not result to multiple label prediction problem.

As per the assumptions of the current skills mapping problem, each branch represents an

 217

occupational function which refers to a skills category, each level or non-leaf node represents a skills

proficiency which refers to a skills level, while each leaf node represents specialty of industry role

which refers to a skills type. However, while each specialty is a member of a proficiency category,

relationship between proficiency categories is one of peer to peer where one category follows the

other.

The main difference between the proposed taxonomic structure and the traditional tree structure is

eminent at the levels/non-leaf nodes where the former adopts peer-to-peer and the later adopts

parent-child relationships. While in the traditional structure lower level parents are decompositions

of higher level parents, this is not the case in the proposed structure as each level is a category that

indicates superiority of skills proficiency. However, to be able to explore the proposed taxonomic

structure from bottom to top as it is natural with employee mobility in the organizational hierarchy,

there was need of a special type of architecture for the skills mapping model, which was clearly

another contribution in the study.

3) Architecture of the ML based model for skills mapping

Architecture of the machine learning based model for mapping graduates‘ skills to industry roles was

another theoretical contribution (refer to chapter 2, section 2.7.5, Figure 2.8a&b). This architecture

was significant for the machine learning model to not only browse the taxonomic structure but also

produce single-label prediction results. This architecture has been and will be the backbone for

producing software prototype as revealed in chapter 5. The need for this architecture was as a result

of a missing model for training evaluation that predicts both employability of graduates and

performance in the job without multiple label results. Figure 2.9a illustrates the building blocks of

the bottom-up machine learning architecture of the model.

Figure 2.9a: Machine Learning Architecture for the Model (repeat)

 218

4) Theoretical Knowledge

Besides, Whetten (1989) provided a comprehensive elaboration of a framework for analyzing what a

theoretical contribution to knowledge was, and this was based on four elements of a theory: 1)

Element that relates to the factors that should be considered as part of the explanation of a

phenomena of interest (what), 2) Element that relates to relationship between factors that describe

casual nature of the theory (how), 3) Element concerned with the justification of the selection of

factors and their proposed casual relationship (why) and 4) Element concerned with the range of the

theory in terms of the limitations placed on the propositions generated from the theoretical model

(who,where,when). Each of these elements can be evaluated against a certain criteria to establish

their correctness, practicality, reasonableness, and generalizability respectively. Fig.7.2 summarized

the analysis to knowledge contribution.

Figure 7.2: Analysis of contribution to knowledge

In the present study, the existing theory under investigation was on prediction of job performance

originally by Schmidt & Hunter (1992). Using Whetten (1989) framework, analysis was conducted

to bring out clearly the contribution to theoretical knowledge and was guided by two themes or

arguments or lines of thoughts that justify a new and valid contribution: 1) How factors either added

as new or removed as redundant in existing models affected accepted relationship between variables,

and 2) The reason why a theory either does not work in a new setting or does work when it was not

expected to. The main independent variables in the present hierarchical mapping model for skills

mapping were content knowledge, cognitive skills, technical skills, and academic capacity.

 219

There is compelling evidence in the body of literature suggesting personality traits, language,

cognitive skills, domain skills, and job knowledge are important attributes for predicting job

suitability for a job seeker (Schmidt & Hunter, 1992, Chang & Xi, 2009, Shashidhar et al, 2015).

However, it was not known or expected whether 1) these factors would remain valid in a new setting

where industry roles were considered as structured hierarchically 2) how new sub-variables of each

category would affect this known relationship between these main factors.

A slightly similar empirical study by Shashidhar was based on two categories of four sub-variables:

cognitive skills (English comprehension, logical ability, Quantitative ability) and domain skills

(Programming skills), different sub-variables from the ones used in this study. Table 7.1 has

summarized the results. The observation reveals as the number of sub-variables increases, the

strength of relationship between these factors slightly improved as indicated. The improvement was

attributed to the hierarchical approach applied and was expected. However, the addition of new sub

variables that were easy to work with in academia did not compromise the relationship that describe

the casual nature of the theory, and was the greatest contribution to theoretical knowledge of the

study. We therefore, conclude that our contribution to knowledge was a hierarchical mapping model

for skills mapping to industry roles.

Table 7.1: Summary of analysis of theoretical knowledge impact

 What factors Results

 Cognitive skills Domain skills Knowledge Academic capacity

Shashidhar et al,

2015

-English,

-logical ability

-Quantitative

ability

- Programming

skills

 80-82%

Current study -Recall

-Comprehension

-Application

-Analysis

-Synthesis

-Evaluation

-Programming

-Database

-Operating

systems

-Networking

-Distributed

-Reqments Analy.

-Sys. Design

-Dev. Process

-Project Mgt

-Configuration

mgt

-High School GPA

-College GPA

83-85%

Change addition addition addition Addition improve

7.2.2 Methodological contributions

Methodological contribution were in the form of new or improved methods that inform how we

discover, measure, analyze, create or build things. They improve research or practice and are

 220

evaluated based on their utility, reproducibility, reliability, and validity (Wobbrock & Kientz , 2016).

Based on this observation, this study has made the following contributions:

1) Research framework for operationalizing the study (refer to chapter 3, section 3.3, Figure 3.1)

2) Mapping frameworks for grouping roles into logical classes based on their underlying functional

requirements and promoting maximum intra-class similarity and minimum inter-class similarity

(refer to chapter 3).

7.2.3 Dataset contributions

Dataset contribution was in the form of new and useful corpus, accompanied by an analysis of its

characteristics that would enable the research community to perform evaluations against shared

benchmarks by new algorithms or systems or methods (Wobbrock & Kientz , 2016). They are

valued based on the extent they supply useful and representative corpus against which to test and

measure. As a result, this study was able to generate three types of datasets for hierarchical multi-

class classification problems whose characteristics were well described (refer to chapter 3&4).

1) Research dataset (dataset1) stores data for software engineers‘ field

2) Benchmark dataset (dataset2) is an extract from AMEO2015 dataset which is an Engineers

dataset that is famous in the machine learning industry

3) Validation dataset (dataset3) stores data for academic librarians‘ field data

7.2.4 Empirical contributions

Empirical contributions were in the form of findings based on systematically observed data both

from experiments and data collection (Wobbrock & Kientz , 2016). These were evaluated based on

the importance of their findings and soundness of their methods. In this case, the study revealed very

compelling findings that are relevant to the contemporary problem facing both the academia and

industry. The discussion of these findings were well supported with validity claims (refer to section

6.6)

1) Research findings in research question #1 revealed there is significant difference in both

knowledge and skills among occupational industry roles.

2) Research findings in research question #2 revealed that the trends towards industry roles were not

uniform among universities

3) Research findings in research question #3 revealed that prediction performance of the mapping

model was affected by both machine learning technique used for the model induction.

 221

4) Research findings in research question #4 revealed that indeed generalization of the mapping

model across industry domains was practically feasible and valid

7.2.5 Artifact contributions

Artifact contributions were inventions in the form of systems, tools, techniques, or architectures that

showed how to accomplish either new things formerly impossible or things formerly possible but

now more easily (Wobbrock & Kientz , 2016). These enabled to make new explorations or facilitate

new insights. In this study, the main artifact produced was a software prototype for mapping

graduates‘ skills to industry roles.

1) Software prototype in the name of WEMA (Where Employers Meet Academia) was developed

as a platform where employers and academia (students and university administrators) meet to

interact with the mapping model.

7.2.6 Survey contributions

Survey contribution was in the form of review and synthesis conducted in a research field with the

goal to reveal trends, themes, and gaps in literature. In this study a thorough literature review was

conducted and was able to reveal the gap, namely ineffectiveness of hierarchical classifiers to map

graduates‘ skills to industry roles.

7.3 Research Limitations

Although this approach has numerous benefits it has the following limitations.

1) It depends on evaluation of the currently employed graduates. The skill requirements of the

industry roles derived from incumbents may not correspond exactly to the levels they are

holding, with some being overqualified or under qualified, or due to change in entry

requirements for the occupation after they were employed.

7.4 Benefits and Achievements

Skills mapping as a mechanism that links industry job (entry-level or on-demand) with a highly

skilled workforce (Johnson, C. & Simpson, T., P-Tech Brooklyn) was directly informed by actual

job requirements and was the lynchpin for connecting the best employment opportunities to a series

of rigorous classroom learning objectives. It reduces the risk of hiring overqualified or under-

qualified graduate employees. Hiring overqualified or under-qualified workers may result into: 1)

industry compensating these positions at a higher rate than necessary, 2) workers likely to leave if

 222

they find a more appropriate position, 3) high potential graduates likely to be left out of

consideration for jobs they could perform brilliantly.

As a result, the mapping model generated by this study has numerous benefits not only to evaluation

processes of academia but also recruitment processes of industry as outlined here.

1) The approach lowers the cost of hiring by empowering employers to practice direct hiring, rather

than hiring through recruitment agencies which can sometimes be very expensive.

2) This approach, also, focuses to reduce evaluation time wasted during recruitment. Matching of

the vector of characteristics employers seek against characteristics of new graduates or applicants

will make possible to predict probability of success of the worker within few seconds of waiting

rather than long interviews.

3) In addition, it provides a standard way of graduate assessment by promoting evidence based

decision making rather than the employer using duration of unemployment as a signal of the

quality of the worker.

4) This approach can, also, promote improvement of job search strategies followed by new

graduates, by increasing search intensity and efficiency. Large database of up-to-date job

requirements can be searched and analyzed online.

The following achievements have evidently marked the success of this study:

1) A hierarchical method that uses fewer classifiers (K-1) than popular methods, such as one against

one approach (K(K-1))/2 and one against all approach (K classifiers).

2) A hierarchical method that registers fairly better performance accuracy (65-67%) than the

benchmark method (61%)

3) Empirical findings to be used as a basis of deciding in future the methods, tools, and techniques

to apply when developing an automatic skills mapping to industry roles software.

4) Extension of the list provided by Silla & Freitas (2011) on taxonomic structures for hierarchical

classification.

 223

7.5 Relevant Research Publications

Mwakondo FM, Muchemi L & Omwenga EI. ―Proposed Model for Predictive Mapping of

Graduate‘s Skills to Industry Roles Using Machine Learning Techniques‖. The International

Journal of Engineering And Science (IJES) Vol.5, Issue 4, PP -15-24, 2016 .

Mwakondo FM, Muchemi L & Omwenga EI. ―Trends towards Predictive Mapping of Graduate‘s

Skills to Industry Roles: A Case Study of Software Engineering‖. British Journal of

Education, Society & Behavioral Science Vol.18, Issue 1, PP -1-17, 2016 .

Mwakondo FM, Muchemi L & Omwenga EI. ―Automatic Mapping of Graduate‘s Skills to Industry

Roles using Machine Learning Techniques: A Case Study of Software Engineering‖.

International Journal of Computer Science & Technology Vol.9, Issue 4, PP -111-118, 2016

.

 224

References

Aly, M.(2005).Survey on Multiclass Classification Methods

Aggarwal, V., Srikant, S., & Nisar, H. (2015). A dataset comprising AMCAT test scores, biodata

details, and employment outcomes of job seekers.

Amoui, M., Salehie, M., & Tahvildari, L. (2009).Temporal Software Change Prediction Using

Neural Networks. International Journal of Software Engineering and Knowledge Engineering,

January,8,2009

Barbedo J.G.A, & Lopes A. (2007).Automatic Genre Classification of Musical Signals‖. Journal on
Advances in Signal Processing Volume 2007, Article ID 64960, 12 pages
doi:10.1155/2007/64960

Basu, J., Bhattacharyya, D. & Kim, T. (2010). Use of Artificial Neural Network in Pattern

Recognition. International Journal of Software Engineering and Its Applications Vol. 4, No. 2,

April 2010

Benbasat, I. (1984).An Analysis of Research Methodologies in The Information Systems

Research Challenge, F. Warren McFarlan (ed.), Harvard Business School Press, Boston,

Massachusetts1, 984, pp 47-85.

Bharthvajan, R. (2013). Competency Mapping. International Journal of Innovative Research in

Science,Engineering and Technology Vol. 2, Issue 11, November 2013

Bigelow, K. (2009). Lecture Notes for AI (CS-482) Fall 2009, Lecture 24

Bloom, B.S. (Ed.), Engelhart, M.D., Furst, E.J., Hill, W.H., & Krathwohl, D.R. (1956). Taxonomy of

educational objectives: The classification of educational goals. Handbook 1: Cognitive

domain. New York: David McKay.

Boehm, B. (2005). Some Future Trends and Implications for Systems and Software Engineering

Processes. Retrieved February 20, 2013 from

http://csse.usc.edu/csse/TECHRPTS/2005/usccse2005-507/usccse2005-507.pdf

Bondesson, T.(2004).Software Engineering Education Improvement: An Assessment of a Software

Engineering Programme Thesis

Cannady, J. (1998).Artificial neural networks for misuse detection. Retrieved February 17, 2013

from http://csrc.nist.gov/nissc/1998/proceedings/paperF13.pdf

Chang, H.(2009).Employee Turnover: A Novel Prediction Solution with Effective Feature Selection

Wseas Transactions on Information Science and Applications Issue 3, Volume 6, March 2009

Chien C., Chen L.(2008). Data mining to improve personnel selection and enhance human capital: A

case study in high-technology industry. Expert Systems with Applications 34 (2008) 280–290

.Retrieved February 17, 2016 from: http://www.sciencedirect.com

http://csse.usc.edu/csse/TECHRPTS/2005/usccse2005-507/usccse2005-507.pdf
http://csrc.nist.gov/nissc/1998/proceedings/paperF13.pdf
http://www.sciencedirect.com/

 225

Clare A. and King R. D. (2003).Predicting gene function in Saccharomyces cerevisiae‖.
Bioinformatics Vol. 19 Suppl. 2, pp. ii42–ii49, 2003

Cope, C., Staehr, and L. & Horan, P. (2000) .Towards Establishing the Best Ways to Teach and

Learn about IT. The Challenge of IT Education in the 21st Century

Dalton, J. and Smith, D. (1986). Extending Children‘s Special Abilities - Strategies for primary

classrooms. Australia: Ministry of Education Victoria, 1986, 36-7.

doITinKenya.(2011).Kenya National ICT Survey Results, 2011

Dodig-Crnkovic, G. (2002). Scientific Methods in Computer Science.

Proc. Conf. for the Promotion of Research in IT at New Universities and at University Colleges

in Sweden, (2002)

EasterBrook, S., Singer, J., Story, A. & Damian, D. (2007).Selecting Empirical Methods for

Software Engineering Research Oct 24-25, 2007. Retrieved February 15, 2013 from

http://www.springerlink.com/index/q78020282234148r.pdf

Ellis, H., Moreno, A., Mead, N. & Seidman, S. (2002).Industry/University Software Engineering

Collaborations for the Successful Reeducation of Non-Software Professionals

Garg, K. & Varma, V. (2008): People issues relating to software engineering education and training

in India, ACM, India. Software Engineering Conference, Proceedings of the 1st conference on

India software engineering conference, pp. 121-128.

Ghezzi, C. & Mandrioli, D. (2006). Challenges of Software Engineering Education. Springer-Verlag

Berlin Heidelberg, 2006

Green, H. (2014). Use of theoretical and conceptual frameworks in qualitative research. Nurse

Researcher. 21, 6, 34-38.

Hämäläinen, H., Ikonen, J. & Porras, J. (2011).A Tool for Visualizing Skill Requirements in ICT Job

Advertisements. 7th E-learning Conference, e-Learning'11 (E-Learning and the Knowledge

Society), Bucharest, Romania, August 25-26th, 2011, pp. 254-259

Handel, M. (2012). Trends in Job Skills Demands in OECD Countries.

Harb, H. M. and Moustafa, M. A. (2012). Selecting optimal subset of features for student

performance model. Int J Comput Sci, (9):253{262.

Haryanto, I. , Setiawan, J. & Budiyono, A. (2007). Structural damage detection using randomized

trained neural networks. ICIUS Bali, Indonesia, Oct 24-25, 2007. Retrieved February 15, 2013

from http://www.springerlink.com/index/q78020282234148r.pdf

Harshito, T. (2012). Evaluation of Training and Development: Analysis of Various Models. IOSR

Journal of Business and Management, ISSN: 2278-487x. Vol. 5, Issue 2, pp. 16-22. Retrieved

June 15 2015 from www.iosrjournals.org

Hirschheim, R. (1985). Chapter2: Information Systems Epistemology. An Historical Perspective

http://www.springerlink.com/index/q78020282234148r.pdf
http://www.springerlink.com/index/q78020282234148r.pdf

 226

HKCS (2011).Development of a Certification Roadmap for IT Professional Certification‖ Project,

Aug 2011

Holz, H., Applin. A., Joyce, D., Purchase, H., Haberman, B, & Reed, C. (2006). Research Methods

in Computing: What are they and how do we teach them? ITiCSE, Bologna, Italy. 2006, 576.

Houghton, R.S. (2012).Thinking & Teaching Tools for Digital Thought, August 2012. Retrieved

September 20, 2013 from http://www.wcu.edu/ceap/houghton/readings/technology_trends.html

Hunt, E., Martin, J., & Stone, P.(1966). Experiments in Induction. New York: Academic Press, 1966.

IST-Africa Consortium. (2012). Guide to ICT Policy in IST-Africa Partner Countries v2.2 20 April

2012.

Jantawan, B. & Tsai, C.(2013).Application of Data Mining to Build Classification Model for

Predicting Graduate Employment. International Journal of Computer Science and Information

Security, Vol. 11, No.4, October, 2013.

Jones, K., Harland, J., Reid, J. & Bartlett, R. (2009). Relationship between Examination Questions

and Bloom‘s Taxonomy. 39th ASEE/IEEE Frontiers in Education Conference October 18 - 21,

2009, San Antonio, TX.

Johnson, C. & Simpson, T. (P-Tech Brooklyn) Pathways in Technology Early College High School

(9-14) Model Development: Skills Mapping Process Guide

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects

Science Vol. 349, Issue 6245.

Kaku, M. (2012).Tweaking Moore‘s Law: Computers of the Post-Silicon Era. Big Think.

http://bigthink.com/ideas/42825

Kaminchia, S.(2014). Unemployment in Kenya: Some economic factors affecting wage

Employment. African Review of Economics and Finance Vol. 6, No. 1, June 2014

Kanellos, M. (2003).Intel Scientists Find Wall for Moore‘s Law.ZDNet. Retrieved February 15,

2013 from http://www.zdnet.com/news/intel-scientists-find-wall-for-moores-law/133066

Kashorda, M. (2007). Emerging Trends in Information and Communications Technology Education

in Kenyan Universities. In M. Kashorda, F. Acosta and C. Nyandiere (eds). ICT Infrastructure,

Applications, Society and Education: Proceedings of the Seventh Annual Strathmore

University ICT Conference. Strathmore University Press: Nairobi

Kellaghan, T. & Greaney, V. (2003). Monitoring Performance: Assessment and Examinations in

Africa. Association for the Development of Education in Africa ADEA Biennial Meeting 2003

(Grand Baie, Mauritius, December 3-6, 2003)

Kenny, N. & Desmarais, S. (2010). A Guide to Developing and Assessing Learning Outcomes at the

University of Guelph

http://www.wcu.edu/ceap/houghton/readings/technology_trends.html
http://bigthink.com/ideas/42825
http://www.zdnet.com/news/intel-scientists-find-wall-for-moores-law/133066

 227

Keshtkar, F., Burkett, C., Li, H. & Graesser, A. (2014). Using Data Mining Techniques to Detect the

Personality of Players in an Educational Game. Studies in Computational Intelligence, Vol.

524,2014.

Kitchenham, B., Pickard, L. & Pfleeger, S.L. (1995). Case Studies for Method and Tool Evaluation

Kolding, M. & Ahorlon, M. (2009).Post Crisis: e-Skills Are Needed to Drive Europe‘s Innovation

Society. Retrieved September 20, 2013 from

http://ec.europa.eu/enterprise/sectors/ict/files/idc_wp_november_2009_en.pdf

Korte W., Husing T., Hendriks, L. & Dirkx, J. (2013). Towards a European Quality Label for ICT

Industry Training and Certification. Final Report. 2013.

Kotsiantis, S.B.(2007). Supervised Machine Learning: Review of Classification Technques.

Informatica, 2007, Vol 31, pp. 249-268

Kumar, S, Ghosh, J. & Crawford, M. (2002). Hierarchical fusion of multiple classifiers for hyper

spectral data analysis, Pattern Analysis& Applications, 5:210-220, 2002.

Leeuwen, J.V. (2004).Chpater1: Approaches to Machine Learning. Algorithms in Ambient

Intelligence. Kluwer Academic Publishers (2004) Ed.

Lenth, R. (2001). Some Practical Guidelines for Effective Sample Size Determination. The American

Statistician, August 2001, Vol. 55, No. 3.

Ludi, S. & Collofello, J. (2001).An Analysis of The Gap Between The Knowledge And Skills

Learned In Academic Software Engineering Course Projects And Those Required In Real

Projects

Mathers, N., Fox, N,. & Hunn, A. (2007). Surveys and Questionnaires. The NIHR RDS for the East

Midlands / Yorkshire & the Humber, 2007.

Mead, N., Tobin, L., Couturiaux, S. (1996).Best Training Practices within the Software Engineering

Industry. Retrieved September 20, 2013 from http://www.sei.cmu.edu/reports/96tr034.pdf

Mehra, N. & Gupta, S. (2013). Survey on Multiclass Classification Methods. International Journal

of Computer Science and Information Technologies, Vol. 4 (4), 2013, 572 - 576

Merschmann, L.H. C. & Freitas, A.A. (2013). An Extended Local Hierarchical Classifier for

Prediction of Protein and Gene Functions.

Mgala, M. (2016). Investigating Prediction Modeling of Academic Performance for Students in

Rural Schools in Kenya, PhD Thesis.

Mitchie, D., Spiegelhalter, D.J., Taylor, C.C. (1994). Machine Learning, Neural Networks and

Statistical Classification

Moreno, A., Sanchez-Segurab, M., Medina-Dominguezb, F. & Carvajal, L. (2012).Balancing

software engineering education and industrial needs

http://www.sei.cmu.edu/reports/96tr034.pdf

 228

Nagata, H., Toda, S., Itsumura, H., Koyama, K., Saito, Y., Suzuki, M., & Takahashi, N. (2006).

Body of professional knowledge required for academic librarians in Japan. In C. Khoo, D.

Singh & A.S. Chaudhry (Eds.), Proceedings of the Asia-Pacific Conference on Library &

Information Education & Practice 2006 (A-LIEP2006), Singapore, 3-6 April 2006 (pp. 316-

327). Singapore: School of Communication & Information, Nanyang Technological University.

NAS. (1995).On Being a Scientist: Responsible Conduct in Research, Second Edition (1995)

NOC. (2011). Human Resource & Skills Development Canada. National Occupational

Classification 2011 Report

Norwood, B. & Briggemen, B. (2010). Assessing the College Graduate: How Employers Measure

Graduates‘ Possession of General Skills.

OECD. (2012). ICT Skills and Employment; New Competences and Jobs for Greener and Smarter

Economy. OECD Digital Economy Papers, No.198. http://dxdoi.org/10.1787/5k994f3prlr5_en

Ojo, A. & Estevez, E. (2005). Object Oriented Analysis & Design with UML. e-Macao Report 19,

Version 1.0

Onwuegbuzie, A.J, Leech, N.L, & Collins, K.M.T. (2012). Qualitative Analysis Techniques for the

Review of the Literature . Qualitative Report 2012, Vol 17.

Orhun, N. (2003).Effects of Some Properties 5. Grade Students on the Performance of Mathematical

Problem Solving

Payne, C. & Payne, J. (2000). Early Identification of the Long Term Unemployed. PSI Research

Discussion Paper 4, PSI Report No. 874

Perron R. (2011). Employer Expections and Experiences. Findings, Training and Keeping Qualified

Workers. 2011.

Pideaux, D. (2003). ABC of learning and teaching in medicine: curriculum design. British Medical

Journal 326:268- 270.

Pillai, S. Curriculum Design and Development http://www.unom.ac.in/asc/pdf/curriculum design and

development-1.pdf

Pressman, R. S. (2001). Software engineering: a practitioner‘s approach.—5th ed. McGraw-Hill

series in computer science index. ISBN 0-07-365578-3

Quintin G. (2011). Right for the job: Overqualified or Underqualified.

Raschka, S. (2015). Python Machine Learning. Packt Publishing, Copyright 2015

Refaeilzadeh, P., Tang, L., & Liu, H. (2008). Cross-Validation, Arizona State University. Retrieved

November 16, 2014 from http://www.leitang.net/papers/ency-cross-validation.pdf

http://dxdoi.org/10.1787/5k994f3prlr5_en
http://www.unom.ac.in/asc/Pdf/CURRICULUM%20DESIGN%20AND%20DEVELOPMENT-1.pdf
http://www.unom.ac.in/asc/Pdf/CURRICULUM%20DESIGN%20AND%20DEVELOPMENT-1.pdf
http://www.leitang.net/papers/ency-cross-validation.pdf

 229

Richardson, M. & Abraham, C. (2012). Psychological Correlates of University Students‘ Academic

Performance: A Systematic Review and Meta-Analysis. Psychological Bulletin 2012, Vol. 138,

No. 2, pp. 353–387

Saidian, H. (2002).Bridging Academic Software Engineering Education and Industrial Needs.

Computer Science Education 2002, Vol. 12, No. 1-2, pp. 5-9

Saunders, M, Lewis, P., & Thomhill, A. (2009). Research for Business Studies, 5
th

 Edition

Schmidt, F.L and Hunter, J. E. (1992).Development of a causal model of processes determining job

performance. Current Directions in Psychological Science, pp. 89–92,1992.

Shamoo, A. & Rensik, D. (2009). Responsible Conduct of Research, 2
nd

 ed. (New York: Oxford

University Press).

Shashidhar, V., Srikant, S., Aggarwal, V.(2015). Learning Models for Personalized Educational

Feedback and Job Selection. Proceedings of the 32 nd International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015

Shaw, M. (2000).Software Engineering Education Roadmap. The Future of Software Engineering.

Anthony Finkelstein (Ed.), ACM Press 2000ACM E-Store: http://store.acm.org/acmstore

Shaw, M. (2002). What Makes Good Research in Software Engineering?

International Journal for Software Tools and Technology Transfer Vol.4, no.1, pp. 1-7:

http://store.acm.org/acmstore

Shkoukani, M. (2013a).Proposed Model to Find the Gap between Academic Supply and Industry

Demand in Software Engineering Field in Jordan. International Journal of Advanced

Computational Engineering and Networking, ISSN (p): 2320-2106, Volume-1, Issue-2, April-

2013

Shkoukani, M. (2013b).The Ability to Provide Well Qualified Software Engineering Graduates to

the Software Industry Case Study: Jordanian Universities. International Journal of Engineering

Science and Technology (IJEST) ISSN: 0975-5462 Vol. 5 No.03 March 2013

Shkoukani, M. & Lail, R. (2012).The Importance of Restructuring Software Engineering Education

Strategies In Order To Minimize The Gap Between Academic Supply And Industry Demand In

Software Engineering Field, International Journal of Reviews in Computing, Vol.11, pp. 26-31.

Silla, C.N & Freita, A.A. (2011).A Survey of Hierarchical Classification across different Application

Domains. Data Mining and Knowledge Discovery ·January 2011

Software Engineering, GSwE2009 (2009). Curriculum Guidelines for Graduate Degree Programs in

Software Engineering. Integrated Software & Systems Engineering Curriculum (ISSEC)

Project.

Software Engineering, SE2004 (2004). Curriculum Guidelines for Undergraduate Degree Programs

in Software Engineering. A Volume of the Computing Curricula Series.

http://store.acm.org/acmstore
http://store.acm.org/acmstore

 230

Sokolova, M. & Lapalme, G. (2009). A systematic analysis of performance measures for

classification tasks. Information Processing and Management 45 (2009) 427–437

Srikant, S., Aggarwal, V. (2014).A system to grade computer programming skills using machine

learning

Stefanowski, J. (2010). Data Mining -Evaluation of Classifiers .Lecture 4: 2010, Institute of

Computing Sciences Poznan University of Technology Poznan, Poland. Retrieved November

16, 2014 from http://www.cs.put.poznan.pl/jstefanowski/sed/DM-4-

evaluatingclassifiersnew.pdf

Surakka, S. (2005).Trend Analysis of Job Advertisements: What Technical Skills Do Software

Developers Need?

Thompson, j., Noro, M. & Edwards, H. (2007).Introduction to the Workshop: Bridging the

University/Industry Gap. Proceedings Workshop on Software Engineering Education. A

workshop collocated with 14th Asia-Pacific Software Engineering Conference (APSEC'07)

Nagoya, Japan, December 4, 2007

Tomayko, J. (1998). Forging a discipline: An outline history of software engineering education.

Annals of Software Engineering 6 (1998) 3-18

Tutorialspoint.com. ―Design Patterns in Java Tutorial‖, Simply Easy Learning.

www.tutorialspoint.com

Walter, C. (2005).Kryder‘s Law. Scientific American. Retrieved September 20, 2013 from

http://www.sciam.com/article.cfm?id=kryders-law.

Winterton, J., Delamere, F. & Stringfellow, E. (2005). Typology of Knowledge, Skills and

Competences: Clarification of the concept and prototype.

Wirsch, A. (2014). Analysis of Top-down Bottom-up Data Analysis Framework and Software

Architecture Design. Retrieved on 3
rd

 December 2016 from

web.mit.edu/smadnick/www/wp/2014-08.pdf

Witten, I.H. and Frank, E. (2005) Data Mining: Practical machine learning tools and techniques. 2nd

edition Morgan Kaufmann, San Francisco.

Wobbrock, J.O & Kientz, J.A. (2016). Research contributions in human-computer interaction.

Digital Library, ACM, 2016. https://interactions.acm.org/archive/view/may-june-

2016/research-contribution-in-human-computer-interaction.

Wohlin, C. & Regnel, B.(1999).Achieving Industrial Relevance in Software Engineering Education,

Proceedings Conference on Software Engineering Education & Training, pp. 16-25, New

Orleans, Lousiana, USA, 1999.

Wu, F., Zhang, J., Honavar, V. (2005) Learning classifiers using hierarchically structured class

taxonomies. In: Proc. of the Symp. on Abstraction, Reformulation, and Approximation,

Springer, 313-320, vol 3607

http://www.cs.put.poznan.pl/jstefanowski/sed/DM-4-evaluatingclassifiersnew.pdf
http://www.cs.put.poznan.pl/jstefanowski/sed/DM-4-evaluatingclassifiersnew.pdf
http://www.tutorialspoint.com/
http://www.sciam.com/article.cfm?id=kryders-law

 231

www.businesslist.co.ke. ―Computers Companies in Kenya‖. Retrieved on February 20, 2015. From:

http://www.businesslist.co.ke/category/computers

www.kenya-information-guide.com. "Nairobi-The Center for Business and Economic Activities in

Kenya". Retrieved on February 20, 2015. From:http://www.kenya-information-

guide.com/nairobi-business.html

Vernon, D. (2009). Software Engineering 2: Module 514 Course Notes, Khalifa University

Vural, V. & Dy, J.G. (2004). A hierarchical method for multi-class support vector machines. In

Proceedings of the Twenty-First International Conference on Machine Learning, 105-112,

2004

Yin, R., K. (1994). Case Study Research Design and Methods. Sage Publications, Beverly Hills,

California

 232

APPENDIX A: TIME SCHEDULE & BUDGET

Proposed Research Time Frame

TIME IN MONTHS

S/N

O
ACTIVITY

Sept-

2014-

Marc

-2015

Apr-

2015

July-

2015

Aug-

2015-

Sept.

-2015

Oct-

2015-

Jan.-

2016

Febt-

2015 -

Marc

-2016

Apr.-

2016-

May.-

2016

June-

2016-

Aug.-

2016

Sept-

2016-

Dec-

2016

Jan.-

2017-

Apr.-

2017

May-

2017-

June.-

2017

TOTAL(

MONT

HS)

1 Proposal Writing/

Approval

2 DEVELOP initial

MODEL

3 Data collection for

industry roles

4 Analyzing job title/roles‘

specs & DIFFERENCES

5 Data collection for degree

programs

6 Analyzing academia

TRENDS

7 Prototyping MODEL

8 Phase 1: EVALUATE

MODEL

9 Phase 2: EVALUATE

MODEL

10 Report Writing/

Presentation

 DURATION

(MONTHS)
7 4 2 4 2 2 3 4 4 2

34

Budget (Kenya Shillings (KSh.))

NO. ITEM QUANTITY UNIT COST TOTAL COST

1. Laptop 1 80,000 80,000

2. Stationery Rim 20 500 10,000

3. Internet Modem 2 5,000 10,000

4. Internet data bundle(1GB) 100 1,000 100,000

5. Printing copies 1000 30 30,000

6. Binding (copy) 8 5000 40,000

7. Transport(trips) 10 100,000 1,000,000

8. Tuition Fee 838,000

 TOTAL 2,088,000

 233

APPENDIX B: LETTER TO THE RESPONDENTS

University of Nairobi,

School of Computing and Informatics,

P.O Box 30197,

Nairobi.

4th June, 2015.

Dear Respondent,

COLLECTION OF RESEARCH DATA

I am a PhD student at the University of Nairobi, School of Computing and Informatics.

In order to fulfill the degree requirement, I am undertaking a research study in the area of Software

Engineering. You have been selected to form part of this study. This is therefore to kindly request

you to assist me collect the data by filling out the accompanying questionnaire, which I will collect

from your premises.

The information provided will be used exclusively for academic and research purposes only. This

will be kept in strict confidence. Kindly answer all questions. In case of any queries pertaining to this

research, please do not hesitate to contact me on mobile phone: 0725-133-239 or email:

mwakondopoly@gmail.com.

Thank you for your help.

Fullgence M. Mwakondo Dr. Lawrence Muchemi Prof. Elijah Omwenga

Candidate Supervisor Supervisor

mailto:mwakondopoly@gmail.com

 234

APPENDIX C: QUESTIONNAIRES

Analysis Questionnaire A (for Exam Past Paper)

PART A: EXAMINATION INFORMATION

Please respond by ticking in the appropriate boxes or providing the appropriate information required.

1. What is the university name of the examination paper?

Nairobi Kenyatta JKUAT Moi

Egerton Strathmore KEMU Daystar

 If other, specify_________________________________

2. What is the administration year of the examination paper?

2014 2013 2012 2011 2010 2009

 If other, specify_________________________________

3. What is the time duration allocated for the examination paper?

 1 2 3 4 5 or more

 If other, specify_________________________________

4. What is the total mark allocated for the examination paper?

 60 70 80 90 100

 If other, specify_________________________________

5. Which year of study is the examination paper administered?

 First Second Third Fourth Fifth

6. What is the name of the undergraduate programme for which the examination was administered?

Please specify_________________________________

7. What is the number of the main questions in the examination paper?

 3 4 5 6 7 or more

 If other, specify_________________________________

 235

PART B: EXAMINATION CONTENT (KNOWLEDGE AND SKILLS WEIGHTS)

8. For each question in the exam paper fill in the marks allocated to each of its sections against the

software development area tested.

Questions Details Software development areas marks allocated

Question number

Question

sections S
o
ft

w
ar

e

R
eq

u
ir

em
en

ts

S
o
ft

w
ar

e

D
es

ig
n

S
o
ft

w
ar

e

P
ro

ce
ss

S
o
ft

w
ar

e

T
es

ti
n
g

C
o
n
fi

g
u
ra

ti
o
n

M
an

ag
em

en
t

S
o
ft

w
ar

e

M
ai

n
te

n
an

ce

S
o
ft

w
ar

e

In
fr

as
tr

u
ct

u
re

S
o
ft

w
ar

e

Q
u
al

it
y

S
o
ft

w
ar

e

M
an

ag
em

en
t

S
o
ft

w
ar

e

C
o
n
st

ru
ct

io
n

Q1

P1

P2

P3

P4

Q2

P1

P2

P3

P4

Q3

P1

P2

P3

P4

Q4

P1

P2

P3

P4

Q5

P1

P2

P3

P4

If others, specify

below and rate

accordingly

 236

9. For each question in the exam paper fill in the marks allocated to each of its sections against the

mental activities tested.

Question number Mental activities Question sections marks allocated

Q1

Question sections P1 P2 P3 P4 P5 P6

M
en

ta
l

ac
ti

v
it

ie
s Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

Q2

Question sections P1 P2 P3 P4 P5 P6

M
en

ta
l

ac
ti

v
it

ie
s Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

Q3

Question sections P1 P2 P3 P4 P5 P6

M
en

ta
l

ac
ti

v
it

ie
s

Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

Q4

Question sections P1 P2 P3 P4 P5 P6

M
en

ta
l

ac
ti

v
it

ie
s

Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

Q5

Question sections P1 P2 P3 P4 P5 P6

M
en

ta
l

ac
ti

v
it

ie
s

Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

 237

REFERENCE LIST

Knowledge Examples: list, define, tell, identify, label, collect, tabulate, quote, name, state

Comprehension Examples: summarize, describe, interpret, contrast, associate, distinguish,

estimate, discuss

Application Examples: apply, calculate, complete, illustrate, solve, modify, relate

Analysis Examples: separate, order, explain, classify, arrange, divide, compare, select

Synthesis Examples: combine, integrate, modify, rearrange, substitute, plan, create, design,

invent, compose, formulate, rewrite, develop

Evaluation Examples: assess, choose, rank, grade, recommend, select, judge, support, conclude

 238

Questionnaire B (for Employed Software developers)

QUESTIONNARE

Questionnaire (for Employed Software developers)

This questionnaire is part of a study on Software development companies in Nairobi County. Your

participation in this study is voluntary. The questions will purely be used to satisfy an academic

requirement only, and not for any statistical study. We will not identify you as an individual. The

researcher would be most grateful if you give your views by answering the questions below. Please,

first answer the background questions and then complete the rest of the survey. Be assured that

Confidentiality of information solicited is guaranteed.

Thank you

Instructions: Please read the questions and answer them by either filling in the blank

Spaces or ticking the check boxes [/] or tables

PART A: PERSONAL BACKGROUND INFORMATION

Please respond by ticking in the appropriate boxes or providing the appropriate information required.

1. What is your gender?

 Male Female

2. Which of the following brackets does your age fall (in years)?

 20-24 25-29 30-34 35-39 40 or more

3. Where did you study for your ‗O‘ level education?

 Local Abroad

4. Which system was used to grade your ‗O‘ level results?

Grades Points Marks

5. Which of the following brackets does your overall ‗O‘ level education result fall?

If Grades,

 Less or equal D+ C- to C+ B- to B+ A- and above

If Points,

 Less or equal 4 5 to 7 8 to 10 11 and above

If marks,

Less or equal 44% 45% to 59% 60% to 74% 75% and above

 239

 If other, specify_________________________________

6. What is the area of your undergraduate degree?

 Computer Science Information Technology Software Engineering

 If other, specify___________________________

7. What is the university name of your undergraduate degree?

 Nairobi Kenyatta JKUAT Moi

 Egerton Strathmore KEMU Daystar

 If other, specify_________________________________

8. What is the graduation year for your Bachelor‘s degree?

2014 2013 2012 2011 2010 2009

 If other, specify_________________________________

9. Which system was used to grade your undergraduate degree final result?

Grades Points Marks

10. Which of the following brackets does your overall bachelor‘s degree final result fall?

If Grades,

 Less or equal D+ C- to C+ B- to B+ A- and above

 If Points,

 Less or equal 4 5 to 7 8 to 10 11 and above

If marks,

Less or equal 44% 45% to 59% 60% to 74% 75% and above

 If other, specify_________________________________

11. What is the title of your first (entry-level) Software development job appointment in the industry after graduating

and current job title? Select from the table, or specify, and fill years of appointment for both.

 Tick only job categories that apply to you

Tick

Appointment types and dates

S
o

ft
w

ar
e

ar
ch

it
ec

t/
d

es
ig

n
e

r A
n

al
y

st
/

p
ro

g
ra

m
m

er

T
es

t
an

al
y

st
/

en
g

in
ee

r

W
eb

 d
ev

el
o

p
er

/

p
ro

g
ra

m
m

er

M
o

b
il

e

ap
p

li
ca

ti
o

n

d
ev

el
o

p
er

/p
ro

g
ra

m
m

er

S
y

st
em

s
ad

m
in

/

p
ro

g
ra

m
m

er

P
ro

je
ct

 m
an

ag
er

 Others, specify

A First Software Development job category

appointment (Tick only one)

B Year of Appointment in A, specify in cell

C Current Software Development job

V

 240

category appointment (Tick only one)

D Year of Appointment in B, specify in cell

12. What inspired you to join the current Software development job?

 Passion Salary Ambition Qualification If other, specify_______

PART B: SOFTWARE DEVELOPMENT BACKGROUND INFORMATION

Please respond by ticking in the appropriate boxes or providing the appropriate information required.

13. Which year of your study did you study Software Engineering subject?

 First Second Third Fourth Fifth

 Specify the year___________________________

14. To what extend do you think the software engineering exam paper reflected the content covered in class during

training?

 100% 75% 50% 25% 0%

15. What grade did you score in the following Software development related subjects?

 O = One unit T = Two units M = More than 2 X=unit not done

Subject taught in one

unit

Subject taught in two unit

e.g. I, II, or advanced

Subject taught in more

than two units

Subject not taught at all

Subject

Name

No.

of

units

Mark one grade for

each unit

 Subject Name No.

of

units

Mark one grade for

each unit

Unit

1

Unit

2

Other

units

 Unit

1

Unit

2

Other

units

Software

Development

Project

 O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 Operating Systems O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

Database O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 Structured

Programming

 O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 241

Distributed

Systems

 O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 Object Oriented

Programming

 O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

Networking O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 Web-based

Programming

 O

 T

 M

 X

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

16. Which of the following activities is associated with your current job title? On a scale of 1=(less important) to 12=

(most important), rate the relative importance of each of the following Software development areas on each of your

job activities ticked.

Choose and tick job activities Software development areas (fill their rated values along column)

Tick

Job activities below

S
o

ft
w

ar
e

R
eq

u
ir

em
en

ts

S
o

ft
w

ar
e

D
es

ig
n

S
o

ft
w

ar
e

P
ro

ce
ss

S
o

ft
w

ar
e

T
es

ti
n

g

C
o

n
fi

g
u

ra
ti

o
n

M
an

ag
em

en
t

S
o

ft
w

ar
e

M
ai

n
te

n
an

ce

S
o

ft
w

ar
e

In
fr

as
tr

u
ct

u
re

S
o

ft
w

ar
e

Q
u

al
it

y

S
o

ft
w

ar
e

M
an

ag
em

en
t

S
o

ft
w

ar
e

C
o

n
st

ru
ct

io
n

1 Gathering and analyzing requirements

2 Modeling and simulating software

3 Designing database

4 Designing systems

5 Software Programming

6 Integrating software

7 Documenting programs

8 Deploying software

9 Testing software

 10 Training users

 11 Preparing manuals and user guides

 12 Documenting workflows

 13 Managing project workflows

 14 Coordinating project deliverables

 15 Ensuring software quality

 16 Providing customer and system support

 17 Upgrading and reviewing systems

 If others, specify and rate accordingly:

V

 242

17. On a scale of 1=(less thinking demand) to 12= (very high thinking demand), rate the relative mental demand for each

of your job activities (selected above) in terms of the following mental activities.

Tick only job activities as selected above Mental activities (fill their rated values)

Tick

Job/Role Activities

A
p

p
ly

in
g

co
n

ce
p

ts

R
em

em
b

er
in

g

co
n

ce
p

ts

U
n

d
er

st
an

d
in

g

co
n

ce
p

ts

A
n

al
y

zi
n

g

co
n

ce
p

ts

Ju
d

g
in

g

co
n

ce
p

ts

M
o

d
el

in
g

co
n

ce
p

ts

1 Gathering and analyzing requirements

2 Modeling and simulating software

3 Designing database

4 Designing systems

5 Software Programming

6 Integrating software

7 Documenting programs

8 Deploying software

9 Testing software

 10 Training users

 11 Preparing manuals and user guides

 12 Documenting workflows

 13 Managing project workflows

 14 Coordinating project deliverables

 15 Ensuring software quality

 16 Providing customer and system support

 17 Upgrading and reviewing systems

 If others, specify below and rate accordingly:

V

 243

Questionnaire C (for Industry Experts)

QUESTIONNARE

Questionnaire (for Software Development Head of Section)

This questionnaire is part of a study on Software development companies in Nairobi County. Your

participation in this study is voluntary. The questions will purely be used to satisfy an academic

requirement only, and not for any statistical study. We will not identify you as an individual. The

researcher would be most grateful if you give your views by answering the questions below. Please,

first answer the background questions and then complete the rest of the survey. Be assured that

Confidentiality of information solicited is guaranteed.

Thank you

Instructions: Please read the questions and answer them by either filling in the blank

Spaces or ticking the check boxes [/] or tables

PART A: SOFTWARE FIRM BACKGROUND INFORMATION

Please respond by ticking in the appropriate boxes or providing the appropriate information required.

1. What is the ownership status of your firm?

 Local Foreign Both

2. What is the number of software development staff in your firm in Kenya?

1-5 6-10 11-15 16-20 20 or more

3. What is the number of job title categories for software development in your firm in Kenya?

 1 2 3 4 5 or more

4. What type of software products or service does your firm provide?

 Mobile applications Desktop applications Web applications

 Multipurpose applications if others, specify___________________________

 244

5. Which of the following ICT job categories are offered as graduate level in your firm?

 Tick only job category offered in your firm (one or many)

Tick

S
o

ft
w

ar
e

ar
ch

it
ec

t

/d
es

ig
n

er

T
es

t
an

al
y

st

/e
n

g
in

ee
r

M
o

b
il

e
ap

p
li

ca
ti

o
n

d
ev

el
o

p
er

/p
ro

g
ra

m
m

er

P
ro

je
ct

 m
an

ag
er

A
n

al
y

st
/a

p
p

li
ca

ti
o

n
 p

ro
g

ra
m

m
er

W
eb

 d
ev

el
o

p
er

/p
ro

g
ra

m
m

er

S
y

st
em

s
ad

m
in

/p
ro

g
ra

m
m

er

 If
 o

th
er

s,
 s

p
ec

if
y

_
_

_
_
_

_
_
_

_
_

REQUIRMENT

TYPE

MINIMUM ENTRY REQUIRMENTS (Tick for each selected job category above)

Type of entry

GE=Graduate Entry

GP=Graduate

Promotion

X=Non-graduate

 GE

 GP

 X

 GE

 GP

 X

 GE

 GP

 X

 GE

 GP

 X

 GE

 GP

 X

 GE

 GP

 X

 GE

 GP

 X

 GE

 GP

 X

Secondary school

grade (

A = A- and Above

B = B-, B, B+

C = C-, C, C+

D = D-, D, D+

E = E and Below)

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

 A

 B

 C

 D

 E

Bachelors degree type

(1 = Computer Science

 2 = IT,

 3 = Any of the above,

 4 = Any degree type

 1

 2

 3

 4

 1

 2

 3

 4

 1

 2

 3

 4

 1

 2

 3

 4

 1

 2

 3

 4

 1

 2

 3

 4

 1

 2

 3

 4

 1

 2

 3

 4

Degree Grade

(F = First class,

 U = second Upper,

 L = second Lower,

 P = Pass,

 A = Any of the above

)

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

 F

 U

 L

 P

 A

Grade Quality

(S = Strong,

 W= Weak)

 S

 W

 S

 W

 S

 W

 S

 W

 S

 W

 S

 W

 S

 W

 S

 W

V

 245

6. Which of the following job activities are associated with each of the job categories offered in your firm? Tick cells

below the job category offered.

Tick

Tick only job categories that apply in your firm as selected above

Tick Job activities below that apply to the

selected job category S
o

ft
w

ar
e

ar
ch

it
ec

t/
d

es
ig

n
er

A
n

al
y

st
/

p
ro

g
ra

m
m

er

T
es

t
an

al
y

st
/

en
g

in
ee

r

W
eb

 d
ev

el
o

p
er

/

p
ro

g
ra

m
m

er

M
o

b
il

e
ap

p
li

ca
ti

o
n

d
ev

el
o

p
er

/p
ro

g
ra

m

m
er

S
y

st
em

s
ad

m
in

/

p
ro

g
ra

m
m

er

P
ro

je
ct

 m
an

ag
er

Others

1 Gathering and analyzing

requirements

2 Modeling and simulating software

3 Designing database

4 Designing systems

5 Software Programming

6 Integrating software

7 Documenting programs

8 Deploying software

9 Testing software

 10 Training users

 11 Preparing manuals and user guides

 12 Documenting workflows

 13 Managing project workflows

 14 Coordinating project deliverables

 15 Ensuring software quality

 16 Providing customer and system

support

 17 Upgrading and reviewing systems

 If others, specify and rate

7. On a scale of 1=(less important) to 12= (most important), rate the relative importance of each of the following

software development areas on each of the job categories offered in your firm.

 Tick Job categories below as they

 apply in your firm.

Software development areas

S
o

ft
w

ar
e

R
eq

u
ir

em
en

ts

S
o

ft
w

ar
e

D
es

ig
n

S
o

ft
w

ar
e

P
ro

ce
ss

S
o

ft
w

ar
e

T
es

ti
n

g

C
o

n
fi

g
u

ra
ti

o
n

M
an

ag
em

en
t

S
o

ft
w

ar
e

M
ai

n
te

n
an

ce

S
o

ft
w

ar
e

In
fr

as
tr

u
ct

u
re

S
o

ft
w

ar
e

Q
u

al
it

y

S
o

ft
w

ar
e

M
an

ag
em

en
t

S
o

ft
w

ar
e

C
o

n
st

ru
ct

io
n

1 Software architect/developer

2 Analyst/ programmer

3 Test analyst/ engineer

4 Web developer/ programmer

V

V

 246

5 Mobile application

developer/programmer

6 Systems admin/ programmer

7 Project manager

 If others, specify below and

rate accordingly:

8. On a scale of 1=(less thinking demand) to 12= (very high thinking demand), rate the relative mental demand of each

of the following mental activities for each of the job categories offered in your firm.

 Tick Job categories below as they

 apply in your firm.

Mental activities

A
p

p
ly

in
g

co
n

ce
p

ts

R
em

em
b

er
in

g

co
n

ce
p

ts

U
n

d
er

st
an

d
in

g

co
n

ce
p

ts

A
n

al
y

zi
n

g

co
n

ce
p

ts

Ju
d

g
in

g

co
n

ce
p

ts

M
o

d
el

in
g

co
n

ce
p

ts

1 Software architect/developer

2 Analyst/ programmer

3 Test analyst/ engineer

4 Web developer/ programmer

5 Mobile application developer/programmer

6 Systems admin/ programmer

7 Project manager

 If others, specify below and rate accordingly:

9. On a scale of 1=(less thinking demand) to 12= (very high thinking demand), rate the relative importance of each of

the following skills for each of the job categories offered in your firm.

 Tick Job categories below as they

 apply in your firm.

Software development skills

D
at

ab
as

e

sk
il

ls

P
ro

g
ra

m
m

in
g

sk
il

ls

D
is

tr
ib

u
te

d

sk
il

ls

N
et

w
o

rk
in

g

sk
il

ls

P
la

tf
o

rm

sk
il

ls

Others, specify

1 Software architect/developer

2 Analyst/ programmer

3 Test analyst/ engineer

4 Web developer/ programmer

5 Mobile application developer/

programmer

6 Systems admin/ programmer

7 Project manager

 If others, specify and rate:

V

V

 247

10. Is there a hierarchical organization structure that describes the software development job categories in your firm?

Yes No

 If Yes, provide the structure by sketching below or attach printed copy.

 248

APPENDIX D: SE EXAMS PAST PAPERS SAMPLING FRAME

ACCREDITED UNIVERSITIES AND ACADEMIC PROGRAMMES

 Sunday, February 01, 2015

N

o.

INSTITUTION

DETAILS OF SOFWARE ENGINEERING OFFERRING DEGREE

PROGRAMMES

 No. DEGREE PROGRAMMES

1 UNIVERSITY OF NAIROBI 1 Bachelor of Science in Computer Science

2 MOI UNIVERSITY 2 Bachelor of Science (Computer Science)

 3 Bachelor of Science (Information sciences)

 4 Bachelor of science in Computer Engineering

 5 Bachelor of Science (Informatics)

3 KENYATTA UNIVERSITY 6 Bachelor of Science in Computer Science

 7 Bachelor of science in Computer Engineering

 8 Bachelor of Science in Information Technology

 9 Bachelor of Information Technology

4 EGERTON UNIVERSITY 10 Bachelor of Science in Applied Computer Science

 11 Bachelor of Science in Computer Science

 12 Bachelor of Science in Software Engineering

5 JKUAT 13 Bachelor of Business Information Technology

 14 Bachelor of Science in Computer Science

 15 Bachelor of Science in Computer Technology

 16 Bachelor of Science in Information Technology

6 MASENO UNIVERSITY 17 Bachelor of Science in Computer Science

 18 Bachelor of Science in Information Technology

7 MASINDE MULIRO UNIVERSITY OF SCIENCE

AND TECHNOLOGY 19 Bachelor of Science in Information Technology

 20 Bachelor of Science in Computer Science

8 DEDAN KIMATHI UNIVERSITY OF

TECHNOLOGY 21 Bachelor of Business Information Technology

 22 Bachelor of Science in Computer Science

 23 Bachelor of Science in Information Technology

9 CHUKA UNIVERSITY 24 Bachelor of Science (Computer Science)

10 TECHNICAL UNIVERSITY OF KENYA 25 Bachelor of Technology (Business Information Technology)

 26 Bachelor of Technology (Information Technology)

 27 Bachelor of Technology (Computer Technology)

11 TECHNICAL UNIVERSITY OF MOMBASA 28 Bachelor of Mathematics & Computer Science

29 Bachelor of Science in Information Technology

 30 Bachelor Technology in Inform. & Communication Technology

12 PWANI UNIVERSITY 31 Bachelor of Science (Computer Science)

13 KISII UNIVERSITY
32 Bachelor of Applied Computer Science

33 Bachelor of Computer Science

34 Bachelor of Business Information Management

35 Bachelor of Software Engineering

14 UNIVERSITY OF ELDORET
36 Bachelor of Science in Computer Science

37 Bachelor of Science in Informatics

 38 Bachelor of Science in Information Technology

15 MAASAI MARA UNIVERSITY
39 Bachelor of Science (Computer Science)

16 JARAMOGI OGINGA ODINGA UNIVERSITY OF

SCIENCE AND TECHNOLOGY 40

Bachelor of Science (Business Information Systems)

 41 Bachelor of Science (Information Communication Technology)

17 LAIKIPIA UNIVERSITY 42 Bachelor of Science (Computer Science)

18 SOUTH EASTERN KENYA UNIVERSITY 43 Bachelor of Information Technology

 44 Bachelor of Science (Computer Science)

 249

19 MERU UNIVERSITY OF SCIENCE AND

TECHNOLOGY 45

Bachelor of Business Information Technology

 46 Bachelor of Science in Computer Science

 47 Bachelor of Science in Computer Technology

 48 Bachelor of Science in Information Technology

 49 Bachelor of Science in Mathematics and Computer Science

20 MULTIMEDIA UNIVERSITY OF KENYA 50 Bachelor of Information Technology

 51 Bachelor of Science and Business Information Technology

 52 Bachelor of Science and Information Technology

 53 Bachelor of Science Computer Science

 54 Bachelor of Science Computer Technology

 55 Bachelor of Science Mathematics & Computer

21 UNIVERISTY OF KABIANGA 56 Bachelor of Science in Computer Science

22 KARATINA UNIVERSITY 57 Bachelor of Science in Computer Science

 58 Bachelor of Science in Information Technology

23 UNIVERSITY OF EASTERN AFRICA BARATON 59 Bachelor of Business Information Technology

 60 Bachelor of Science in Software Engineering

24 CATHOLIC UNIVERSITY OF EAST AFRICA 61 Bachelor of Science in Computer Science

25 DAYSTAR UNIVERSITY 62 Bachelor of Science in Applied Computer Science

26 UNITED STATES INTERNATIONAL UNIVERSITY 63 Bachelor of Science in Information Science and Technology

27 AFRICA NAZARENE 64 Bachelor of Science in Computer Science

 65 Bachelor of Business and Information Technology

28 KENYA METHODIST UNIVERSITY 66 Bachelor of Science in Mathematics and Computer Science

 67 Bachelor of Business Information Technology

29 ST PAUL’S UNIVERSITY 68 Bachelor of Business Information Technology

 69 Bachelor of Science in Computing and Information Systems

30 STRATHMORE UNIVERSITY 70 Bachelor of Science in Informatics

 71 Bachelor of Business Information Technology

31 KABARAK UNIVERSITY 72 Bachelor of Science in Computer Science

 73 Bachelor of Business and Information Technology

74 Bachelor of Science in Information Technology

32 MOUNT KENYA UNIVERSITY 75 Bachelor of Business Information Technology

34 KCA UNIVERSITY 76 Bachelor of Science in Information Technology

 77 Bachelor of Business Information Technology

35 KIRIRI WOMEN’S UNIVERSITY OF SCIENCE

AND TECHNOLOGY 78

Bachelor of Science in Computer Science

36 GRETSA UNIVERSITY
79 Bachelor of Science in Computer Science

37 PRESBYTERIAN UNIVERSITY OF EAST AFRICA
80 Bachelor of Science in Computer Science

38 INOORERO UNIVERSITY
81 Bachelor of Information and Communication Technology

39 THE EAST AFRICAN UNIVERSITY 82 Bachelor of Computer Science and Information Technology

 83 Bachelor of Business Information Technology

40 RIARA UNIVERSITY 84 Bachelor of Science in Computer Science

41 PIONEER UNIVERSITY 85 Bachelor of Science in Information Technology

42 UMMA UNIVERSITY 86 Bachelor of Science in Computer Science

43 ZETECH UNIVERSITY 87 Bachelor of Science in Information Technology

TOTAL OF 43 UNIVERSITIES 87 PROGRAMMES

 250

APPENDIX E: SOFTWARE DEVELOPERS’ SAMPLING FRAME

Software Houses in Kenya (source: www.softkenya.com)

S/

N

O

COMPANY NAME TELEPHONE FAX/MOBILE EMAIL

1 Abacus Computer Systems Ltd. – 2 – 213740/ 214450/ 312491 215 – 2 – 221321 sales@abacuscom.com

2 Afritech Solutions Ltd. +254 020-2129035

3 Alphabit Technologies 020 2470510 0750220736 info@alphabitkenya.com

4 Andest Bites 254-020-2394420 254-0733720619,0724164346 info@andestbites.com

5 Bridge Ict 0726178724

6 Bunduz Creative 254723571032 fraogongi@yahoo.co.uk

7 Compulynx +254-20-3747060 + 254-20-3747280 sales@Lynxafrica.com

8 Copycat Limited +254 20 3970000/ +254 20

534008-15/ +254 20 3970000

+254 20 652276/ 554249 info@copycatltd.com

sales@copycatltd.com

9 Daniche Solutions 0202605564 info@daniche.co.ke

10 Designjobs Interactive Media +254 020 245 3230

11 Digital Horizons Ltd +254 20 2062457, +254 722 305680 info@dhkenya.com

12 East Africa Data Handlers Ltd +254-20-3751400/ 3751402 +254-722435163, +254-720-

776840 / +254-726-643116 Fax:
+254-20-3751400/ 3751402

info@datarecovery.co.ke

13 Ebits Online (254) 20 2384022 (254) 721 985408 (254) 738

168248

Email: info@ebitsonline.com

14 Empire Microsystems Ltd 254-(020)-352 5210 , 254-

(020)-247 2011

 (+254) 723 782 505 (+254) 721

815 466 (+254) 727 709 772

info@empire.co.ke

15 Endeavour Africa Kenya +254 (20) 375 2451 / 239 4959 +254 (734) 446 600 / (714) 446

600 Fax: +254 (20) 375 2458

info@endeavourafrica.com

16 Enfinite Solutions Limited 020-2603710

17 Enterprise Information Management

Solutions (EIM)

+254-20-2730900 +254-20-2731058 info@eimsolutions.co.ke

18 ESRI Eastern Africa +254 (0) 20 2713630,

2713631, 2713632

+254 (0) 722 521341, 733 568381

Fax: +254 (0) 20 2713633

sales@esriea.co.ke

19 Extend Limited Tel: 0202329194, 0202329195 info@extend.co.ke

20 Footprint Computer Solutions Limited 254 020 2727510/2727511 254 020 2727512 info@footprintebusiness.com

21 Freelance Web Developer +254733438933

22 Freepac Tech +254-20-4452691 0720 405 201 ,0721 617049 :info@frepactech.com,Sales@fr

epactech.com

23 Gem Multimedia Ltd +254 721 818 345 / 254 202
777 847

 info@gem.co.ke

24 MAGNUM 254724348990

25 Octagon Data System +254-020-2719733/2738708, +25420-2730675 info@octagon.co.ke

26 Octopus ICT Solutions Ltd. 0206007423 info@octopusict.com

27 Passive Software Technologies
Limited

+ 254 020 2485696 sales@softwares.co.ke

28 Peak and Dale Solutions Ltd 020 2216522 0722216522 info@peakanddale.com

29 Pinecrest Studios 0727163765 Emungai@pinecrest.co.ke

30 Rapid Applications Developers 0206760918 info@rad.co.ke

31 Snettscom | innovative web solutions 0723934017, 0725562184 info@snetts.com

32 Softlink Options +254 (020) 3559522 +254 – 0722810084 felista@softlinkoptions.com

33 Software Technologies Ltd + 254 20 7122971/2/3 Fax: +

254 20 7122991

 marketing@stl-horizon.com

34 Symbiotic Media Consortium +254 20 359 6305 business@symbiotic.co.ke

35 Symphony (+254) 20 – 4455000 (+254) 722 – 205456/7, (+254)
733 – 605739/40 Fax: (+254) 20 –

4453067/8

info@symphony.co.ke (General)
enquiries@symphony.co.ke (

36 Synfotech Technologies Kenya 0722270423

http://softkenya.com/it/abacus-computer-systems-ltd/
http://softkenya.com/it/afritech-solutions-ltd/
http://softkenya.com/it/alphabit-technologies/
http://softkenya.com/it/andest-bites/
http://softkenya.com/it/bridge-ict/
http://softkenya.com/it/bunduz-creative/
http://softkenya.com/it/compulynx/
http://softkenya.com/it/copycat-limited/
http://softkenya.com/it/daniche-solutions/
http://softkenya.com/it/designjobs-interactive-media/
http://softkenya.com/it/digital-horizons-ltd/
http://softkenya.com/it/east-africa-data-handlers-ltd/
http://softkenya.com/it/ebits-online/
http://softkenya.com/it/empire-microsystems-ltd/
http://softkenya.com/it/endeavour-africa-kenya/
http://softkenya.com/it/enfinite-solutions-limited/
http://softkenya.com/it/enterprise-information-management-solutions-eim/
http://softkenya.com/it/enterprise-information-management-solutions-eim/
http://softkenya.com/it/esri-eastern-africa/
http://softkenya.com/it/extend-limited/
http://softkenya.com/it/footprint-computer-solutions-limited/
http://softkenya.com/it/freelance-web-developer/
http://softkenya.com/it/freepac-tech/
http://softkenya.com/it/gem-multimedia-ltd/
http://softkenya.com/it/symbiotic-media-consortium/
http://softkenya.com/it/symphony/
http://softkenya.com/it/synfotech-technologies-kenya/

 251

37 Techbiz Ltd +254-20-2724916 +254-20-2724919 info@technic.co.ke

38 TK Professional Computer Services 0602030707 0725417111 tkcomputersp@gmail.com

39 Track and Trace Kenya Ltd. 254 20 2042628 254 720 844 638 Fax: 254 20
2250969

info@trackntrace.co.ke

40 Web Professional Services 0726-476-620 0726-476-620 gsimiy@gmail.com

41 WebSoft Development 254 (20) 249 2470 254 722 407 837 info@websoftdevelopment.com

42 WebSpaceKenya IT Solutions 254202384600 254-724-557 399 info@webspacekenya.com

43 ZeboTech Business Solutions (254) 02-2177372 (254)771047405 ict@zebotech.co.ke

http://softkenya.com/it/techbiz-ltd/
http://softkenya.com/it/tk-professional-computer-services/
http://softkenya.com/it/track-and-trace-kenya-ltd/
http://softkenya.com/it/web-professional-services/
http://softkenya.com/it/websoft-development/
http://softkenya.com/it/webspacekenya-it-solutions/
http://softkenya.com/it/zebotech-business-solutions/

 252

APPENDIX F: RESEARCH PERMIT

 253

APPENDIX G: TURNIT REPORT

 254

APPENDIX H: SE BENCHMARK DATASET

'GENDER' 'AGE' 'LOLE' 'BDGREE' 'ROLE' 'GSOLE' 'GSBDEGREE' 'UNIVERSITY' 'RBACHELORS' 'R' 'D' 'A' 'C' 'CLASS'
2 2 2 1 3 2 44 2 3 11 1.3 6.7 9 1
2 1 2 2 3 2 51 2 4 10.1 1 7.3 10.5 1
2 2 2 1 3 1 1621 2 4 7.5 1.2 5.9 10.5 1
2 2 2 2 3 2 8297 2 4 10.9 1.4 5.3 10.5 1
2 2 2 1 3 1 8350 2 3 1 1.1 5.6 9 1
2 2 2 2 4 1 9737 2 4 11.4 1.1 6.2 12 1
2 2 2 1 3 1 10185 2 4 12 1.3 8.8 10.5 1
2 2 2 1 3 1 10932 2 3 1.7 1 4.9 9 1
2 2 2 1 4 1 13344 2 4 11 1.5 6.7 12 1
2 2 2 1 3 2 350 2 3 1.9 1.9 1.1 4.5 2
2 2 2 7 4 1 893 2 3 3 2.3 1.5 5.3 2
2 2 2 0 4 2 3838 2 3 2.7 1.8 1.3 5.3 2
1 2 2 2 4 1 4973 2 4 0.1 1.5 1 6 2
2 2 2 1 3 1 5147 2 3 2.6 2.5 1.3 4.5 2
1 1 2 2 2 2 5508 2 4 2.7 2.1 0.8 4.5 2
2 2 2 16 2 2 6567 2 3 1.5 1.7 1 3.8 2
2 2 2 1 4 1 6907 2 3 3 2.8 1.5 5.3 2
2 2 2 7 3 2 7134 2 3 0.3 1.8 0.7 4.5 2
2 2 2 1 3 2 7626 2 3 1.5 2.1 0.8 4.5 2
1 2 2 2 3 1 9128 2 3 1.1 1.9 1.1 4.5 2
1 2 2 1 3 2 9256 2 2 2.7 2.5 1 3.8 2
1 2 2 2 4 1 9769 2 3 1.5 2 1 5.3 2
2 2 2 4 3 2 11759 2 3 2.4 2.2 1.2 4.5 2
2 2 2 2 3 2 55 2 3 1.5 0.6 1.3 3 3
1 1 2 2 4 2 137 2 3 2.4 0.6 1.3 3.5 3
2 2 2 1 3 2 172 2 3 1.8 0.6 1.6 3 3
2 2 2 1 3 1 184 2 3 1.4 0.7 1.4 3 3
2 2 2 2 3 1 184 2 3 1.2 0.5 1.5 3 3
2 2 2 2 4 2 236 2 3 0.6 0.6 1.7 3.5 3
2 2 2 25 2 2 272 2 3 1.4 0.6 1.3 2.5 3
1 2 2 1 4 2 429 2 4 2.1 0.8 1.6 4 3
2 2 2 2 3 1 982 2 3 0.6 0.5 1.4 3 3
2 2 2 2 4 2 3725 2 3 2 0.7 1.3 3.5 3
2 2 2 1 3 1 5904 2 3 1.4 0.6 1.3 3 3
2 1 2 1 3 2 5904 2 3 0.9 0.6 1.3 3 3
1 2 2 2 3 2 6294 2 3 1.5 0.5 1.3 3 3
2 2 2 1 2 1 6741 2 3 2.2 0.6 1.7 2.5 3
2 2 2 1 2 2 7376 2 3 1.3 0.7 1.3 2.5 3
1 2 2 4 4 2 10051 2 3 1.5 0.7 1.3 3.5 3
2 2 1 1 4 1 11127 1 3 2.2 0.8 1.9 3.5 3
1 2 2 2 4 1 11516 2 3 0.9 0.7 1.5 3.5 3
2 2 2 2 3 2 11664 2 4 1.5 0.5 1.1 3.5 3
1 1 1 1 4 1 12232 1 3 1.3 0.8 1.3 3.5 3
2 2 2 2 3 1 13147 2 4 1.8 0.7 1 3.5 3
2 2 2 2 4 1 15401 2 3 1.8 0.7 1.6 3.5 3
2 2 2 1 3 1 16347 2 4 2.2 0.8 1.6 3.5 3
2 2 1 1 4 1 47 1 4 3.8 0.9 2.3 3 4
2 2 1 1 4 1 47 1 4 3.7 0.9 2.2 3 4
2 2 2 2 4 1 52 2 3 3.4 0.8 2.1 2.6 4
2 2 2 1 3 2 96 2 3 1.4 0.7 1.9 2.3 4
2 2 2 2 4 1 108 2 4 4 0.9 2.6 3 4
2 2 2 0 3 1 220 2 3 0.3 0.5 1.4 2.3 4
2 1 2 2 4 1 272 2 4 3.8 0.8 2.3 3 4
2 2 2 2 4 2 315 2 3 3.5 0.7 2.1 2.6 4
2 1 2 2 4 1 434 2 4 1.4 0.5 1.3 3 4
2 2 2 2 3 1 439 2 3 1.5 0.7 1.5 2.3 4
2 2 2 4 4 1 485 2 4 3.9 0.9 2.5 3 4
1 2 2 14 4 2 974 2 3 2.9 0.7 1.9 2.6 4
2 2 2 2 4 1 1111 2 4 3.4 0.7 1.9 3 4
2 2 2 2 3 1 1219 2 3 3 0.7 2 2.3 4
2 2 2 1 3 2 1995 2 2 3.1 1 1.9 1.9 4
2 2 2 2 4 1 3668 2 3 3.9 0.6 1.7 2.6 4
2 2 2 12 3 1 3741 2 3 3.8 0.9 2.3 2.3 4
1 1 2 2 4 1 3931 2 4 3.9 0.8 2.5 3 4
2 2 2 2 3 2 4793 2 3 3.6 0.5 2 2.3 4
2 2 2 2 4 2 5338 2 3 3 0.8 2.1 2.6 4
2 2 2 1 3 1 5400 2 3 3.1 0.7 1.9 2.3 4
1 2 2 1 4 1 6874 2 4 3 0.8 2.2 3 4
1 2 2 2 4 1 7269 2 4 3.5 0.8 2.1 3 4
2 2 2 1 3 1 7376 2 3 1.1 0.7 1.4 2.3 4
2 2 2 1 2 1 7564 2 3 3.5 0.7 2.1 1.9 4
2 2 2 7 2 2 7627 2 3 3.3 0.8 2 1.9 4
1 1 2 2 4 1 9198 2 4 3.4 0.8 1.9 3 4
1 2 2 2 3 1 11000 2 3 1.9 0.6 1.6 2.3 4
2 1 2 2 3 1 11630 2 3 3.4 0.7 1.4 2.3 4
2 2 2 1 4 1 11759 2 3 3.4 0.7 2.1 2.6 4
1 2 2 2 4 1 11788 2 3 0.6 0.5 1.4 2.6 4
2 1 2 2 3 1 12515 2 3 0.2 0.5 2 2.3 4
2 2 2 20 3 1 12515 2 3 0.6 0.7 1.8 2.3 4
2 1 2 2 4 1 12867 2 3 1 0.7 2 2.6 4
2 2 2 1 3 1 13543 2 3 1.8 0.7 1.6 2.3 4
2 2 2 2 3 1 13697 2 4 2.7 0.6 1.8 2.6 4
2 2 2 2 3 2 14587 2 3 3.4 0.7 1.8 2.3 4
2 2 2 2 3 2 15041 2 3 2.1 0.7 1.7 2.3 4
2 2 2 2 3 1 15863 2 3 3.5 0.8 2.1 2.3 4
1 1 2 2 4 1 16183 2 3 1.9 0.5 1.7 2.6 4
2 2 2 1 3 2 350 2 3 1.7 1.6 0.9 1.8 5
2 2 2 2 3 2 431 2 3 0.8 1.1 0.7 1.8 5
2 2 2 1 3 2 914 2 3 1.4 2.2 0.8 1.8 5
2 2 2 23 2 2 993 2 2 0.6 1.3 0.6 1.2 5
2 2 2 2 4 2 1111 2 3 1 1.1 0.5 2.1 5
2 1 2 2 3 1 1282 2 2 1 1.5 0.7 1.5 5
2 1 2 2 4 1 1759 2 4 1.5 1.9 1 2.4 5
2 3 2 1 3 1 2673 2 3 1 1.6 0.7 1.8 5
2 2 2 2 3 1 4795 2 3 2 1.7 1.1 1.8 5
2 2 2 2 4 1 5752 2 3 1.3 1.3 0.9 2.1 5
1 2 2 2 4 1 6996 2 3 0.4 1.5 0.5 2.1 5
2 2 2 1 2 1 7428 2 3 1.3 1.5 0.8 1.5 5
2 2 2 1 3 2 8310 2 3 1.5 1.8 0.8 1.8 5
2 2 2 28 3 2 44 2 3 0.4 0.7 0.5 1.5 6
2 2 2 1 3 1 53 2 3 0.5 0.9 0.5 1.5 6
2 2 2 27 4 2 64 2 3 0.3 0.9 0.5 1.8 6
2 2 2 2 3 1 67 2 3 1 1 0.6 1.5 6
1 2 2 1 4 2 165 2 4 0.5 0.8 0.6 2 6
2 2 2 4 3 2 172 2 3 0.7 0.9 0.7 1.5 6
2 2 2 1 3 2 255 2 3 0.5 0.9 0.5 1.5 6
2 2 2 1 4 1 272 2 3 0.8 0.9 0.6 1.8 6
1 2 2 1 3 1 387 2 3 0.9 0.8 0.7 1.5 6

 255

2 2 2 1 3 1 387 2 3 0.3 0.8 0.5 1.5 6
2 2 2 0 4 2 429 2 4 0.5 0.8 0.5 2 6
2 2 2 6 3 2 547 2 3 0.7 0.7 0.6 1.5 6
1 2 1 1 4 1 849 1 4 0.5 1.1 0.9 2 6
2 3 2 1 2 1 1228 2 2 0.7 1 0.6 1 6
2 1 2 2 4 1 1843 2 3 0.2 0.8 0.6 1.8 6
2 2 2 24 3 2 2774 2 3 0 0.7 0.5 1.5 6
1 2 2 2 3 2 3579 2 3 0.2 0.7 0.4 1.5 6
2 2 2 0 4 2 3666 2 3 0.4 0.8 0.5 1.8 6
2 3 2 1 3 2 4023 2 3 0.7 0.9 0.6 1.5 6
2 2 2 18 3 2 4042 2 3 0.3 0.9 0.5 1.5 6
2 1 2 2 4 2 4805 2 3 0.7 0.8 0.5 1.8 6
1 2 2 1 2 2 6741 2 3 0.3 0.7 0.4 1.3 6
2 2 2 2 2 2 6835 2 3 0.5 0.7 0.4 1.3 6
1 2 2 1 3 2 7770 2 4 0.5 1 0.5 1.8 6
2 2 2 2 4 2 8011 2 3 0.3 0.5 0.5 1.8 6
2 2 2 7 3 1 8718 2 2 0.5 0.8 0.5 1.3 6
2 2 2 2 4 1 9122 2 3 0.5 1 0.5 1.8 6
2 1 2 2 4 2 9748 2 3 0.8 0.8 0.6 1.8 6
2 2 2 2 4 1 9803 2 4 0.2 0.8 0 2 6
1 2 2 1 3 1 9837 2 4 0.1 0.9 0.5 1.8 6
2 1 2 1 3 1 10971 2 3 0.5 0.8 0.6 1.5 6
1 2 2 17 3 2 11637 2 3 1 0.7 0.7 1.5 6
2 1 2 1 3 1 11759 2 4 0.5 0.9 0.7 1.8 6
2 2 2 2 4 1 11852 2 3 1 0.9 0.7 1.8 6
1 1 2 1 4 2 12061 2 3 0.5 0.8 0.5 1.8 6
2 1 2 2 3 2 12497 2 3 0.7 0.8 0.5 1.5 6
2 2 2 2 3 1 13473 2 3 0.8 1 0.6 1.5 6
1 2 2 1 4 2 13478 2 4 0.7 1 0.6 2 6
2 2 2 2 3 2 14662 2 3 0.2 0.8 0.4 1.5 6
2 2 2 2 4 2 16097 2 3 0.6 0.7 0.6 1.8 6
1 2 2 2 2 1 17168 2 3 0.7 0.7 0.6 1.3 6
2 2 2 1 4 1 17205 2 2 0.4 0.8 0.6 1.5 6
2 2 2 2 3 2 279 2 3 1.1 0.5 0.5 1.3 7
1 2 2 0 3 2 1019 2 4 0.3 0.4 0.4 1.5 7
2 2 2 0 3 2 1802 2 3 0.8 0.6 0.5 1.3 7
2 2 2 2 4 1 4557 2 3 0.5 0.5 0.3 1.5 7
1 2 2 1 4 1 6874 2 4 1.3 0.6 0.4 1.7 7
1 2 2 0 4 2 8011 2 3 0.4 0.6 0.4 1.5 7
2 2 2 1 4 1 11154 2 4 1.3 0.8 0.6 1.7 7
1 1 2 2 4 2 11788 2 4 0.5 0.6 0.4 1.7 7
2 2 2 1 4 2 13543 2 3 0.3 0.6 0.3 1.5 7
2 2 2 26 3 2 129 2 3 0.4 0.4 0 1.1 8
2 3 2 2 3 2 1995 2 2 0.2 0.4 0.3 0.9 8
1 2 2 24 3 2 4501 2 3 0.3 0.5 0.4 1.1 8
2 2 2 2 4 2 4566 2 3 0.2 0.4 0.3 1.3 8
1 2 2 2 4 2 7500 2 4 0.5 0.4 0.5 1.5 8
2 2 2 2 4 1 9129 2 3 0.6 0.5 0.4 1.3 8
1 2 2 0 3 2 11425 2 3 0.8 0.4 0.5 1.1 8
2 2 2 1 4 1 17935 2 3 0.5 0.6 0.5 1.3 8
1 2 1 1 4 2 34 1 3 1.3 0.6 0.6 1.2 9
1 2 2 2 3 1 51 2 3 0.8 0.5 0.5 1 9
2 1 2 1 3 1 184 2 3 0.4 0.5 0.6 1 9
2 2 2 2 3 2 184 2 3 0.5 0.5 0.4 1 9
2 2 2 1 2 1 429 2 3 0.7 0.5 0.5 0.8 9
2 2 2 1 4 1 527 2 3 1.2 0.6 0.6 1.2 9
2 2 2 2 3 1 2921 2 3 1 0.6 0.6 1 9
2 2 2 2 3 1 4217 2 2 1.1 0.4 0.3 0.8 9
1 1 2 2 4 1 5812 2 4 1.4 0.6 0.6 1.3 9
2 2 2 2 2 1 6545 2 2 0.5 0.4 0.4 0.7 9
2 2 2 2 3 2 7299 2 4 1.1 0.5 0.6 1.2 9
1 1 2 7 3 1 8718 2 4 1.4 0.5 0.6 1.2 9
2 2 2 4 3 2 8776 2 3 0.5 0.7 0 1 9
2 2 2 1 3 1 10859 2 3 0.5 0.5 0.6 1 9
2 1 2 2 3 1 11659 2 4 0.5 0.5 0.4 1.2 9
2 2 2 2 3 1 11759 2 4 1 0.5 0.6 1.2 9
2 2 2 2 4 1 12187 2 4 0.6 0.5 0.5 1.3 9
1 2 2 1 3 1 14351 2 4 0.9 0.6 0.5 1.2 9
2 1 2 2 3 2 16213 2 3 0.5 0.4 0.5 1 9
2 2 2 2 3 2 55 2 3 0.2 1 0.9 0.9 10
1 1 2 1 3 2 57 2 3 0.6 1 0.8 0.9 10
2 2 2 28 3 1 64 2 3 1.1 1 1.1 0.9 10
2 2 2 22 2 1 175 2 4 0.5 0.9 0.8 0.9 10
2 2 2 1 3 2 314 2 3 1.1 1.3 1.1 0.9 10
2 2 2 1 3 2 350 2 2 1.1 1.1 1.2 0.8 10
2 2 2 1 3 2 382 2 3 0.4 0.8 0.7 0.9 10
1 2 2 1 4 1 485 2 3 0.1 1.2 0.9 1.1 10
2 2 2 2 4 2 1018 2 3 1.2 1.1 1 1.1 10
2 2 2 1 3 1 1759 2 4 0.9 0.9 1.2 1.1 10
2 2 2 1 3 1 1940 2 3 1.1 1.1 1 0.9 10
2 1 2 1 3 1 2783 2 3 0.2 0.9 0.7 0.9 10
1 1 1 2 4 1 2988 1 4 0.2 1.2 0.9 1.2 10
1 2 2 2 3 1 3717 2 3 1 1.1 1 0.9 10
2 2 2 7 3 2 4043 2 1 0.8 1 0.9 0.6 10
2 2 2 1 3 2 4319 2 4 0.2 1.1 1.1 1.1 10
2 2 2 2 2 2 4417 2 4 0.3 0.8 0.8 0.9 10
2 2 2 1 3 1 4501 2 3 0.9 1.1 1 0.9 10
2 2 2 2 3 1 5081 2 3 0.3 0.8 0.7 0.9 10
2 2 2 2 4 1 5815 2 3 0.7 1 0.9 1.1 10
1 2 2 1 4 2 5904 2 3 0.9 1.3 1 1.1 10
1 2 2 22 2 2 6345 2 3 0.5 0.6 0.8 0.8 10
2 2 2 1 4 1 6545 2 3 1.1 1.2 1.1 1.1 10
2 2 2 1 3 1 6624 2 3 0.4 0.7 0.7 0.9 10
2 2 2 2 3 1 7783 2 3 0.8 0.9 1 0.9 10
2 2 2 2 3 1 8203 2 2 0.7 0.9 0.9 0.8 10
2 2 2 2 2 1 8949 2 3 0.9 1 1 0.8 10
2 2 2 1 4 2 10930 2 3 0.4 1 1.2 1.1 10
2 2 2 2 4 2 11603 2 3 -1.2 1.1 0 1.1 10
2 2 2 1 3 1 11759 2 3 0.8 1.1 1.2 0.9 10
2 2 2 1 2 1 14720 2 3 1 0.9 1 0.8 10
2 2 2 2 3 2 16687 2 3 0.3 0.9 0.7 0.9 10
2 2 2 1 3 1 28 2 3 5.8 6.7 3.6 0.8 11
2 3 2 4 4 2 137 2 3 3.8 5.5 2.7 1 11
1 2 2 1 3 1 184 2 4 3.6 5.4 2.6 1 11
2 2 2 0 3 2 252 2 4 3.4 5.3 2.6 1 11
2 2 2 1 3 1 272 2 4 5.2 7.1 3.2 1 11
1 2 2 4 4 1 272 2 3 2.2 7.9 3.2 1 11
2 1 2 1 4 1 272 2 4 5.9 6.8 3.7 1.1 11
2 1 2 1 4 1 272 2 4 5.7 6.9 3.2 1.1 11
2 1 2 1 4 1 272 2 4 6 6.3 3.4 1.1 11
2 2 2 24 4 1 462 2 3 5.5 6.3 3.2 1 11
1 2 2 0 4 2 501 2 3 3.4 7 2.6 1 11
2 1 2 2 4 1 883 2 3 5.1 6.5 3.2 1 11

 256

2 2 2 2 3 2 1087 2 3 2.7 6.6 2.4 0.8 11
2 1 2 22 4 1 1237 2 4 2.2 6.8 2.5 1.1 11
1 2 2 2 4 2 1428 2 3 2.9 5.6 2.2 1 11
1 2 2 22 4 2 1764 2 4 3.6 5.6 2.6 1.1 11
2 2 2 4 4 1 1906 2 4 5.4 8.4 3.3 1.1 11
2 2 2 2 3 2 1906 2 4 4.8 7.2 3 1 11
2 2 2 1 3 1 2009 2 4 1.5 5.6 3.1 1 11
1 1 2 2 3 1 2041 2 3 2.9 3.6 2.4 0.8 11
1 2 2 1 4 1 2925 2 4 5.9 5.1 3.9 1.1 11
1 2 2 0 4 2 3076 2 4 5.6 6.4 3.4 1.1 11
2 2 2 11 4 2 3076 2 4 5.7 6.2 3.5 1.1 11
1 2 2 0 4 2 3076 2 4 5.3 6.3 3.2 1.1 11
2 2 1 2 3 2 3136 1 3 5.5 5.8 3.4 0.8 11
2 2 2 1 3 1 3449 2 3 4.9 6.1 3.1 0.8 11
1 2 2 0 4 2 3670 2 4 1.5 5.5 2 1.1 11
2 2 2 1 3 1 3905 2 3 4.5 5.7 3.2 0.8 11
2 2 2 4 3 2 4439 2 3 3.8 7.1 2.6 0.8 11
2 2 2 7 3 2 4439 2 3 4.8 7 3 0.8 11
2 2 2 1 4 1 4971 2 3 5.1 7.3 3.4 1 11
2 2 2 1 3 1 5056 2 4 4.5 7.5 3.7 1 11
2 3 2 0 3 2 5400 2 3 5.5 6.7 3.4 0.8 11
2 2 2 1 4 2 5400 2 3 5.9 6.9 3.7 1 11
1 2 2 1 4 2 5812 2 4 5.7 7.7 3 1.1 11
2 2 2 17 4 2 6857 2 3 0.5 4.2 2 1 11
2 2 2 2 4 2 6884 2 4 2.2 6 3.5 1.1 11
1 2 2 2 4 1 6948 2 4 2.9 6.6 2.9 1.1 11
2 2 2 2 3 2 8116 2 3 5.7 6.4 2.7 0.8 11
2 2 1 1 3 2 8195 1 4 4.4 6.4 2.9 1 11
1 2 1 1 4 2 8351 1 3 5.1 8.2 3.4 1 11
2 2 2 21 4 2 8818 2 3 5.4 6.2 3.3 1 11
2 1 2 2 4 1 9173 2 4 2.2 7.2 2.9 1.1 11
2 2 2 2 3 1 9508 2 3 5.7 6.7 2.8 0.8 11
1 2 2 1 3 2 11302 2 2 1.3 5.2 2 0.7 11
2 2 2 2 4 2 11651 2 3 5.5 6.6 3 1 11
1 2 2 1 4 1 12289 2 4 3.6 5 2.6 1.1 11
2 2 1 2 4 1 15022 1 3 3.8 5.6 2.6 1 11
2 2 1 2 4 1 15022 1 3 3.8 6.9 3.1 1 11
1 2 2 1 4 1 15645 2 4 3.8 6.4 3.5 1.1 11
2 2 2 2 3 1 17470 2 3 2.9 4.7 2 0.8 11
2 1 2 1 3 2 387 2 3 1.3 2.3 0.5 0.8 12
2 2 2 1 3 1 1155 2 3 1.4 2.7 0.6 0.8 12
2 2 2 2 2 2 1618 2 3 0.4 2.3 0.7 0.6 12
2 2 2 2 4 1 1754 2 3 1.3 3.5 0.6 0.9 12
1 2 2 14 3 2 4056 2 2 1.3 2.4 0.7 0.6 12
2 2 2 2 4 2 4554 2 3 1.1 4 0.7 0.9 12
1 2 2 2 4 1 4569 2 3 1.2 2.6 0.7 0.9 12
2 2 1 1 4 1 6290 1 3 1.7 3.9 0.7 0.9 12
1 2 2 1 3 2 6874 2 3 0.4 3.8 0.7 0.8 12
2 2 2 1 3 1 7557 2 3 1.1 3.7 0.9 0.8 12
1 2 2 4 4 1 8161 2 4 1.6 3.1 0.9 1 12
2 2 2 1 3 2 8350 2 3 1.4 3.4 0.7 0.8 12
2 2 2 2 3 1 8888 2 3 0.2 2.4 0.4 0.8 12
1 2 2 2 3 2 9141 2 3 1.1 3 0.7 0.8 12
2 1 2 1 4 1 10932 2 3 1.1 3.3 0.8 0.9 12
2 2 1 1 4 1 11127 1 4 0.8 3.8 0.8 1 12
2 2 2 2 3 1 11467 2 3 1.7 2.8 0.6 0.8 12
2 2 2 19 3 1 12289 2 3 0.6 3 0.6 0.8 12
2 2 2 2 3 1 15051 2 4 1.6 3.4 0.9 0.9 12

 257

APPENDIX I: SE FIELD DATASET

'GENDER' 'AGE' 'LOLE' 'BDGREE' 'ROLE' 'GSOLE' 'GSBDEGREE' 'UNIVERSITY' 'RBACHELORS' 'R' 'D' 'A' 'C' 'CLASS'
2 1 1 1 2 1 1 2 2 3.9 1.9 1.8 0.9 3
2 1 1 1 2 2 2 2 2 4.7 2.2 1.4 0.9 3
1 3 2 2 3 3 3 2 2 5.2 2 1.6 1.1 3
2 2 1 1 2 1 9 1 2 5.7 2.9 1.7 0.9 3
1 4 1 3 2 1 7 3 3 1.5 9.7 3.4 3.8 3
2 1 1 1 2 2 4 2 2 1 1 2.1 1.2 4
1 1 1 1 4 3 2 1 4 1 1.7 2.1 2.4 4
2 2 1 1 2 2 3 1 3 0.9 1 1.8 1.5 4
2 1 1 1 3 2 3 1 3 1 1.2 1.9 1.8 4
2 1 1 1 2 1 1 2 3 1.4 1.4 2.1 1.5 4
2 3 1 1 2 2 3 1 3 1.7 1.5 2.2 1.5 4
1 1 1 1 4 3 3 2 2 1.3 1 2 1.8 4
2 1 1 1 2 1 1 1 4 1.7 2 1.8 1.8 4
2 1 1 1 3 1 9 2 3 1.5 1.6 2.1 1.8 4
2 2 1 2 2 3 10 1 2 1.4 1.6 1.9 1.2 4
2 2 1 1 2 1 9 1 2 0.6 2 2 1.2 4
2 2 2 1 3 1 10 2 3 1.3 1.8 1.8 1.8 4
1 4 1 1 3 3 7 3 3 1.3 1.5 1.9 1.8 4
1 2 1 1 2 3 7 1 3 1.5 8.7 3.4 3.8 4
1 3 1 2 3 3 8 3 3 0.9 8 3.5 4.5 4
1 3 1 1 3 2 2 1 2 1.6 1.7 4.8 1.3 5
2 3 1 2 2 3 3 2 2 1.5 1.3 5.3 1 5
2 2 1 1 2 3 7 2 3 1.9 2.3 4.4 1.3 5
2 3 1 2 2 1 8 3 2 2.8 2.1 4.8 1 5
2 2 1 3 2 3 7 2 2 2.1 1.7 4.8 1 5
1 4 1 2 2 2 4 2 3 1.8 1.4 5.3 1.3 5
2 1 1 1 2 1 1 1 4 3 2.4 4.5 1.5 5
2 2 1 2 2 2 4 2 3 1.8 1.5 4.8 1.3 5
2 3 1 3 3 2 8 3 3 1.6 1.1 5.4 1.5 5
1 2 1 3 3 2 3 3 3 1.8 1.1 5.1 1.5 5
2 2 1 2 3 2 2 2 2 1.8 0.9 5.3 1.3 5
2 2 1 2 3 2 10 2 3 1.5 10 3.2 4.5 5
2 3 2 1 4 1 10 1 3 1.5 8.7 3.7 5.3 5
2 2 1 1 4 1 11 3 3 0.8 12 3.4 5.3 5
1 3 1 2 2 3 5 2 2 2.2 1.4 2.3 1.5 6
1 3 1 2 2 3 8 2 2 1.5 1.2 2.3 1.5 6
2 2 1 1 3 2 3 1 3 1.3 1 2.5 2.3 6
2 2 1 3 2 2 5 1 3 2.1 1.5 2.7 1.9 6
1 3 1 1 2 3 6 2 3 1.8 1.1 2.5 1.9 6
2 2 1 1 3 3 8 3 2 2.1 0.7 2.4 1.9 6
1 4 1 2 2 1 8 2 2 2.1 1.4 2.4 1.5 6
2 3 1 2 3 1 5 2 3 1.5 1 2.7 2.3 6
1 1 1 2 3 2 10 1 3 9.7 2.2 11.5 3 7
2 1 1 1 2 2 9 2 2 7.3 2.6 9.6 2 7
2 1 1 1 4 2 3 1 2 8.7 3.2 10.5 3 7
2 1 1 1 4 3 3 1 2 10 2.9 10.7 3 7
2 3 1 1 2 1 9 1 3 7.7 2.9 11.1 2.5 7
2 3 1 1 3 2 10 1 3 9.3 3.3 9.8 3 7
2 2 1 1 4 2 6 1 3 7 3.1 10.8 3.5 7
2 4 1 3 3 2 10 2 4 8.7 2.9 10.1 3.5 7
2 2 1 1 2 2 6 1 1 5.7 3.1 10 1.5 7
1 5 1 2 4 2 3 2 4 7.7 3.8 9.9 4 7
2 2 1 1 3 1 3 1 2 8.7 2.9 9.2 2.5 7
2 2 1 1 3 1 3 1 4 12 3.7 10 3.5 7
2 4 1 1 3 2 3 1 3 2.2 3.9 1.5 9 8
1 2 1 1 3 1 5 1 3 3.8 5.9 1.3 9 8
2 1 1 1 3 1 1 1 3 3.7 5.2 1.4 9 8
2 1 1 1 3 4 1 1 3 1.7 4.2 1.3 9 8
2 1 1 1 2 2 3 1 3 1.7 12 2.9 3.8 8
2 1 1 1 3 2 3 2 3 1.7 10.7 3.1 4.5 8
2 2 1 2 3 2 2 3 3 2.7 1.9 1.8 1.3 9
2 2 1 2 2 3 7 2 2 2.4 2.7 1.5 0.9 9
2 2 1 3 3 1 1 3 3 3.2 1.6 1.7 1.3 9
2 3 1 2 2 3 5 2 2 3 1.6 1.7 0.9 9
1 3 1 1 2 2 3 2 2 3.5 1.9 1.5 0.9 9
1 1 1 1 2 2 9 1 3 4.9 2.1 1.5 1.1 9
2 1 1 1 2 1 1 1 2 4.5 2.5 1.8 0.9 9
1 3 1 1 2 2 6 1 2 5.5 2.3 1.7 0.9 9
2 1 1 3 2 2 7 1 2 4 2.1 1.5 0.9 9
2 3 1 1 2 4 9 1 3 6 3 1.6 1.1 9
2 1 1 1 3 1 1 1 3 3 1.7 1.2 1.3 9
1 1 2 1 4 1 10 1 2 6 2.9 1.6 1.3 9
2 1 1 1 2 1 1 1 3 5.5 3 1.6 1.1 9
2 2 1 1 2 2 7 1 3 3.9 2.3 1.6 1.1 9
2 1 2 1 2 2 9 2 1 1.4 1.8 1.8 0.9 10
2 2 1 1 2 2 3 3 3 1.1 1.3 2 1.5 10
2 2 1 3 4 2 3 3 3 1.1 1.5 2.1 2.1 10
2 1 1 3 3 2 9 3 4 0.9 1.3 2.2 2.1 10
2 2 1 2 2 3 3 2 3 1 1.2 1.8 1.5 10
1 3 1 2 2 2 3 2 2 1.4 1.7 1.7 1.2 10
2 2 1 2 2 2 5 2 3 1 1.2 2.1 1.5 10
2 3 1 1 4 1 2 3 3 0.8 1 2 2.1 10
2 2 1 1 2 3 8 1 2 1.4 2 2.2 1.2 10
2 3 1 3 4 1 2 3 2 1.4 1.6 2.1 1.8 10
1 2 1 1 2 2 3 1 2 1 0.9 1.9 1.2 10
2 2 1 1 4 1 4 3 3 1.1 1.1 1.9 2.1 10
2 3 1 2 3 2 2 2 3 1 1.1 2.1 1.8 10
2 1 1 1 2 4 1 2 3 0.9 1.1 1.6 1.5 10
1 2 2 2 3 2 6 2 2 0.9 0.8 2.1 1.5 10
1 3 2 2 2 2 8 2 3 1 1.2 2.1 1.5 10
2 2 1 2 3 2 5 1 2 1.7 1.4 5.2 1.3 11
2 1 1 1 3 1 1 1 4 2.2 1.3 5.6 1.8 11
1 1 1 1 3 1 3 1 3 1.6 1.5 5.4 1.5 11
2 3 1 2 1 3 3 2 2 2.6 1.7 4.5 0.8 11
2 3 1 1 2 2 7 2 3 2.6 2.3 5 1.3 11
1 2 1 2 3 2 9 2 2 2.5 1.9 4.2 1.3 11
2 1 1 2 3 1 1 1 3 2 1.9 5.4 1.5 11
1 2 1 2 2 3 7 1 2 2.4 2.3 4.9 1 11
1 2 1 2 2 2 6 2 2 2.3 2.3 5.4 1 11
1 2 1 1 2 2 3 2 3 1.6 1.1 5 1.3 11
1 2 1 2 2 1 1 2 2 2.4 2.3 4.1 1 11
2 1 1 1 2 2 6 1 2 2.5 1.6 5.7 1 11
2 3 1 1 2 2 7 1 3 1.8 1.3 5.1 1.3 11
2 2 1 1 4 2 3 1 4 3 2.4 5.9 2 11
1 1 1 1 3 2 8 2 2 2.3 1.3 5.5 1.3 11
2 2 1 2 3 2 8 2 3 1.3 1.5 2.5 2.3 12
2 1 1 3 4 2 6 1 4 1.7 1.1 2.9 3 12
2 2 1 1 3 2 2 2 3 1.1 0.7 2.6 2.3 12

 258

1 1 1 1 4 2 9 1 4 1.9 1.3 2.1 3 12
1 3 1 2 3 1 5 2 3 1.1 1 2.7 2.3 12
1 1 1 1 2 4 9 2 2 1.7 1.1 2.6 1.5 12

 259

APPENDIX J: ACADEMIC LIBRARIANS FIELD DATASET

'GENDER' 'AGE' 'LOLE' 'BDGREE' 'ROLE' 'GSOLE' 'GSBDEGREE' 'UNIVERSITY' 'RBACHELORS' 'R' 'D' 'A' 'C' 'CLASS'
1 4 1 1 3 3 2 1 3 3 4 1 2 3
1 4 1 3 2 2 4 1 2 1 1 1 1 7
1 3 1 1 2 3 2 1 2 8 1 9 1 1
2 2 1 1 2 2 4 1 3 1 3 2 1 2
1 2 1 1 3 3 2 3 3 3 4 1 2 3
1 5 1 1 2 3 2 1 2 2 2 1 1 7
1 3 1 1 3 3 2 1 3 3 3 1 2 3
1 5 1 1 3 3 2 3 3 8 1 9 1 1
1 2 1 1 2 3 2 2 3 9 0 11 1 1
1 3 1 2 2 2 2 2 2 2 2 1 1 7
2 3 1 1 2 2 4 1 2 9 0 11 1 1
1 3 1 1 3 3 10 2 2 3 1 1 2 3
1 3 1 1 2 3 4 1 2 1 1 1 1 7
1 3 1 1 2 3 2 3 3 10 1 9 1 1
2 5 1 1 1 3 2 1 3 2 2 1 1 7
1 2 1 1 3 3 2 1 3 2 2 5 5 5
1 2 1 1 3 3 2 3 3 2 1 5 5 5
1 2 1 1 3 3 2 1 3 3 3 1 2 3
1 5 1 1 3 2 10 1 3 1 2 2 2 2
1 5 1 1 3 4 1 1 3 3 3 1 2 3
1 5 1 1 4 1 10 1 4 1 1 1 2 7
1 2 1 1 2 2 10 1 3 1 2 3 1 2
1 5 1 1 2 3 10 3 3 1 2 2 1 2
2 2 1 1 3 3 2 1 3 10 1 11 1 1
2 4 1 1 3 2 4 1 3 3 1 4 5 5
2 4 1 1 2 3 4 1 3 1 2 2 1 2
2 4 1 1 2 2 2 3 2 4 1 3 2 4
2 4 1 1 3 3 4 1 3 4 1 4 3 4
1 2 1 2 3 3 2 1 3 4 1 3 3 4
2 5 1 1 2 4 10 1 3 2 2 2 1 2
1 5 1 2 4 4 1 3 3 1 3 2 2 2
1 1 1 2 2 1 2 2 2 8 1 9 1 1
2 5 1 1 3 2 4 3 3 2 2 5 5 5
2 5 1 2 3 4 1 3 3 2 2 5 5 5
1 5 1 2 4 4 1 3 3 3 0 5 5 5
1 2 1 1 3 3 5 1 3 12 1 11 1 1
1 4 1 2 4 2 4 3 3 1 1 4 5 5
2 5 1 2 4 4 1 1 2 1 2 3 2 2
2 5 1 2 4 4 8 2 2 1 5 2 2 6
1 4 1 2 2 3 2 1 3 3 2 2 2 3
1 5 2 2 4 2 10 3 3 9 1 10 2 1
2 5 1 2 3 3 2 2 3 1 5 2 2 6
1 3 1 1 3 2 7 2 3 5 1 4 3 4
1 2 1 1 3 3 2 2 3 5 1 3 3 4
2 5 1 2 4 3 2 2 3 2 1 3 5 5
2 3 1 1 4 2 4 3 3 1 10 2 11 6
1 5 2 2 2 3 10 2 3 1 5 1 2 6
2 5 1 2 4 3 4 3 3 4 1 3 4 4
1 5 2 2 2 1 10 2 3 5 1 3 3 4
2 5 2 1 3 3 10 3 3 3 2 6 5 5

 260

APPENDIX K: PYTHON SAMPLE CODE FOR THE PROTOTYPE

import tkinter.filedialog
from tkinter import *
#from ScrolledText import *
import tkinter.ttk as ttk
import pandas as pd
import dill as pickle
#import pickle
import random
import sqlite3
import svmpy
import logging
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import itertools
import argh
import csv
import decimal
import math
import copy
import time
import threading
import matplotlib
matplotlib.use("TkAgg")
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from sklearn.preprocessing import StandardScaler
splitRatio = 0.80
splitRatio2 = 0.10
#THIS CLASS IS FOR SVM CLASSIFIERS ONLY
class SVMRootclassifier():
 def __init__(self):
 #self.master = master
 self.value = None

 def loadCsv(self,filename):
 self.filename=filename
 lines = csv.reader(open(filename, "r"))
 dataset = list(lines)
 for i in range(len(dataset)):
 dataset[i] = [float(x) for x in dataset[i]]
 return dataset

 def splitDataset2(self, dataset, splitRatio):# splits the dataset into two: training and test dataset
 self.dataset=dataset
 self.splitRatio=splitRatio
 freq = self.getClassDistribution(dataset)
 trainSet = []
 copy = []
 #print('key','frequency','trainsize')
 for keys,frequency in freq.items():
 trainSize = int(frequency * splitRatio)
 #print(keys, frequency, trainSize)
 fold = []
 trainFold = []
 for k in range(len(dataset)):
 vector1=dataset[k]
 if (vector1[-1]==keys):
 fold.append(vector1)
 #print('frequency:len(fold):trainSize', frequency,len(fold),trainSize)
 while len(trainFold) < trainSize:
 index = random.randrange(len(fold))
 trainFold.append(fold.pop(index))
 #print('fold', fold)
 #trainSet.append(trainFold)
 trainSet= trainSet + trainFold
 #copy.append(fold)
 copy = copy + fold
 #print('copy', copy)
 return [trainSet, copy]

 def splitDataset(self, dataset, splitRatio):# splits the dataset into two: training and test dataset
 self.dataset=dataset
 self.splitRatio=splitRatio
 trainSize = int(len(dataset) * splitRatio)
 trainSet = []
 copy = list(dataset)
 while len(trainSet) < trainSize:
 index = random.randrange(len(copy))
 trainSet.append(copy.pop(index))
 return [trainSet, copy]

 #TAKES IN REQUIRED CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES
 def refineDataset(self, dataset, mergeclasses):# removes unwanted classes from dataset

 261

 self.dataset=dataset
 self.classValue = mergeclasses
 dataset2 = []
 for i in range(len(dataset)):
 vector1=dataset[i]
 if vector1[-1] in mergeclasses:
 dataset2.append(vector1)
 return dataset2

 #CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES
 def getClassDistribution(self,dataset):
 self.dataset = dataset
 #distinctcopy = list(dataset)
 dataset2 = {}
 counts = {}
 #print('trainSet', dataset)
 for i in range(len(dataset)):
 vector1 = dataset[i]
 #print('vector1',vector1)
 #print('vector1[-1]',vector1[-1])
 if (vector1[-1] in counts):
 counts[vector1[-1]] += 1
 else:
 counts[vector1[-1]]=1
 return counts

 def getClassAccuracy(self,testFile,correctClassified,incorrectClassified):
 self.testFile = testFile
 self.correctClassified = correctClassified
 self.incorrectClassified = incorrectClassified
 classAccuracy = {}
 for classValue,freq in testFile.items():
 if classValue in correctClassified:
 n = freq
 x = correctClassified[classValue]
 y = x * 100/n
 else:
 y = 0.0
 classAccuracy[classValue] = y
 return classAccuracy

 def getClassCodes(self,dataset,parentclass):
 self.dataset=dataset
 dataset2 = []
 self.parentclass = parentclass
 #print('parentclass',parentclass)
 for i in range(len(dataset)):
 vector1 = dataset[i]
 vector = dataset[i]
 value = float(parentclass)
 # print('parentclass',type(value),type(vector1[-1]))
 if (vector1[-1] == value):
 #print(i,'class for 1',vector1[-1],value)
 vector1[-1] = 1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 else:
 #print(i,'class for -1',vector1[-1],value)
 vector1[-1] = -1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 return dataset2

 def separateByRootClass(self,dataset,mergeclass,parentclass):# merges and then separates instances
 #into distinct classes
 self.dataset=dataset
 self.mergeclasses = mergeclass
 self.parentclass = parentclass
 separated = {}
 dataset2 = []
 dataset3 = []
 #print('parentclass,mergeclass,dataset',parentclass,mergeclass)
 positives = mergeclass[1]
 negatives = mergeclass[-1]
 #print('positives=:',positives)
 #print('negatives=:',negatives)
 for k in range(len(dataset)):
 vector1=list(dataset[k])
 if vector1[-1] in negatives:
 vector1[-1] = -1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 if vector1[-1] in positives:
 vector1[-1] = 1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 return dataset2

 262

 def svmTrainer(self,data,num_samples, num_features,para):
 #self.k = k
 self.data = data
 self.num_samples=num_samples
 self.num_features=num_features
 samples = []
 value = []
 labels = []
 k = num_features
 #print('num_features',num_features)
 #print('data',data)
 #THIS SEPARATES SAMPLE CASES AND LABELS
 for i in range(len(data)):
 vector = data[i]
 #print('data,class',data[i],vector[-1])
 value = vector[-1]
 #samples.append(vector[0:77])#THIS STANDS FOR RANGE OF ATTRIBUTES
 #samples.append(vector[0:19])#THIS STANDS FOR RANGE OF ATTRIBUTES
 samples.append(vector[0:k])#THIS STANDS FOR RANGE OF ATTRIBUTES
 labels.append(value)
 #print('size',num_samples,num_features)
 sample = np.matrix(samples).reshape(num_samples,num_features)
 label = np.matrix(labels).reshape(-1,1)
 #print('label',label)
 #trainer = svmpy.SVMTrainer(svmpy.Kernel.linear(), para) #this is training with linear kernel
 #trainer = svmpy.SVMTrainer(svmpy.Kernel.gaussian(0.1), para) #this is training with linear kernel
 trainer = svmpy.SVMTrainer(svmpy.Kernel.gaussian(1.0), para) #this is training with linear kernel
 #trainer = svmpy.SVMTrainer(svmpy.Kernel._polykernel(0.1,1.0), para) #this is training with linear kernel
 #print('trainer',trainer)
 #print('label1')
 predictor = trainer.train(sample, label)
 #print('label2')
 #print('predictor')
 return predictor

 def Predict(self,predictor, X):
 self.predictor = predictor
 self.X = X
 #print('X',X,predictor)
 #print('predictor',predictor)
 result = []
 #vector = X[0:len(X)-1]
 vector = X
 result.append(predictor.predict(vector))
 #result.append(svmpy.SVMPredictor.predict(vector))
 return result

 def getPredictions(self, predictor, testdata):
 self.predictor = predictor# summary of mean and std dev of each atribute in each class
 self.testdata = testdata
 predictions = []
 test = []
 for i in range(len(testdata)):
 #test = testSet[i]
 test.append(testdata[i])
 #print('The testset is:',testdata)
 for i in range(len(test)):
 vector = test[i]
 result = self.Predict(predictor, vector)
 #print('Testset prediction is:',test[i],result)
 predictions.append(result)
 return predictions

 def getAccuracy(self, testdata, predictions):
 self.testdata=testdata
 self.predictions=predictions
 correct = 0
 #print('Testset prediction is:',testdata,predictions)
 for i in range(len(testdata)):
 #print('Testset prediction is:',testdata[i],predictions[i])
 vector = testdata[i]
 value1= predictions[i]
 value2 = vector[-1]
 #print('Testset prediction is:',value1[0],value2)
 if (value1[0] == value2):
 #print('Testset prediction is:',vector[-1],predictions[i])
 correct += 1
 return (correct/float(len(testdata))) * 100.0

 def getLevelNodes(self, classTree,level):
 self.classTree = classTree
 self.level = level
 parent = []
 childs = []
 levelNodes = {}
 for classValue,instances in classTree.items():

 263

 for i in range(len(instances)):
 classlev = instances[0]
 classlevel = classlev[0]
 parent = instances[1]
 childs = instances[2]
 if (classlevel == level): #only for this level
 levelNodes[classValue] = [parent,childs]
 return levelNodes

 def getTreeDepth(self, classTree):
 self.classTree = classTree
 depth = 0
 for classValue,instances in classTree.items():
 for i in range(len(instances)):
 classlevel = instances[0]
 level = classlevel
 if(len(level) > 0):
 #print(type(level[0]),type(depth))
 #print(level[0],depth)
 if (int(level[0]) > depth): #check leve of the current node
 depth = level[0]

 return depth

 def getChildrenOf(self, classvalue,classTree):
 self.classvalue = classvalue
 self.classTree = classTree
 childs = []
 #print('class value is',classvalue)
 for classValue,instances in classTree.items():
 #print('classValue,classvalue',classValue,classvalue)
 if (classValue == classvalue):
 #print('instances',instances)
 #for i in range(len(instances)):
 #parent = instances[1]
 childs = instances[2]
 #print('instances',instances[2])
 #print('childs',childs)
 return childs

 def getSubTrees(self, classTree):
 self.classTree = classTree
 childs = []
 subTrees = {}
 height = self.getTreeDepth(classTree)
 top = 0
 if (height > 0):
 topNodes= self.getLevelNodes(classTree,top)
 #print('THESE ARE TOPNODES',topNodes)
 for classValue,instances in topNodes.items():
 if (classValue < 0):
 nextparent = classValue
 #print('nextparent,classvalue',nextparent,classValue)
 #childs = self.getChildrenOf(nextparent,classTree)
 while nextparent<0:
 classes = []
 childs = self.getChildrenOf(nextparent,classTree)
 #print('childs of: ',nextparent,'are:',childs)
 nextparent = 0
 for i in range(len(childs)):
 if (childs[i]>0):
 classes.append(childs[i])
 else:
 nextparent=childs[i]
 if classValue not in subTrees:
 subTrees[classValue] = []
 subTrees[classValue].append(classes)
 return subTrees

 def getMainTrees(self, classTree):
 self.classTree = classTree
 childs = []
 mainTree = {}
 Tree = {}
 for classValue,instances in classTree.items():
 #if (classValue < 0):
 maintreeid = instances[3]
 #print('maintreeid:',maintreeid)
 if maintreeid[0]>0:
 if maintreeid[0] not in mainTree:
 mainTree[maintreeid[0]] = []
 Tree = {}
 classes = []
 classes = [instances[0],instances[1],instances[2]]
 Tree[classValue] = []
 Tree[classValue] = classes
 mainTree[maintreeid[0]] = Tree

 264

 else:
 classes = []
 classes = [instances[0],instances[1],instances[2]]
 Tree = mainTree[maintreeid[0]]
 if classValue not in Tree:
 Tree[classValue] = []
 Tree[classValue] = classes
 mainTree[maintreeid[0]] = Tree
 #print('maintree:',mainTree)
 return mainTree

 def orderByParents(self, classNodes):
 self.classNodes = classNodes
 print(classNodes)
 orderedByParent = {}
 parentList = []
 for classValue,instances in classNodes.items():
 #for i in range(len(instances)):
 parent = instances[0]
 #print('parent',parent[0])
 if(len(parent)!=0):
 if parent[0] not in orderedByParent:
 #parentList = classValue
 orderedByParent[parent[0]]=[]
 parentList=orderedByParent[parent[0]]
 #print('parentList',parentList)
 if classValue not in parentList:
 if (len(parentList)==0):
 parentList = [classValue]
 else:
 parentList.append(classValue)
 #print('classValue',classValue)
 #print('parentList',parentList)
 orderedByParent[parent[0]] = parentList
 #print('orderedByParent',orderedByParent)
 return orderedByParent

 def getParentNode(self, childnode,classTree):
 self.childnode = childnode
 self.classTree = classTree
 parent = []
 for classValue,instances in classTree.items():
 if (childnode in instances):
 parent = [classvalue]
 continue
 return parent

 #THIS CREATES A HIERARCHICAL MULTI-CLASSIFIER
 def classify(self,mainTree,trainingSet,para):
 svm = SVMRootclassifier()
 TreePredictors = {}
 self.para = para
 self.trainingSet = trainingSet
 self.mainTree = mainTree
 trainset = []
 trainset = list(trainingSet)
 #Trainfile = list(trainingSet
 maintrees = svm.getMainTrees(mainTree)
 mKey = maintrees.keys()
 otherTrees = []
 AllTrees = []
 value = []
 mainTreePredictor = {}
 for mKeys, classTree in maintrees.items():
 for mK, trees in classTree.items():
 value = mK
 #print('mK:',mK)
 if mK > 0:
 value =[mK]
 AllTrees = AllTrees + value
 otherTrees = otherTrees + value
 #print('ALLTREES and mKey :',AllTrees,mKey)
 treeno = 0
 #FOR EACH MAIN TREE
 for mKeys, classTree in maintrees.items():
 #print('CLASSTREES:',classTree)
 #COUNT MAIN TREES
 treeno = treeno + 1
 depth = svm.getTreeDepth(classTree)#GET DEPTH/HEIGHT OF EACH MAIN TREE
 subtrees = svm.getSubTrees(classTree)#GET SUBTREES/BRANCHES OF EACH MAIN TREE
 Key = list(subtrees.keys())#GET THE SUBTREE ID'S
 #print('SUBTREES and Key:',subtrees,Key)
 trainset = list(trainingSet)
 Allclasses = []
 otherClasses = []
 TreePredictorTree = {}
 CellPredictorTree = {}

 265

 NodePredictorTree = {}
 #'''
 #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET ALL THE CLASSES
 for Keys, cells in subtrees.items():
 for i in range(len(cells)):
 Allclasses = Allclasses + cells[i]
 otherClasses = otherClasses + cells[i]
 #print('ALL CLASSES SET :',Allclasses,type(otherClasses))
 order = 0
 #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET NODE AND CELL CLASSIFIERS
 for Keys, cells in subtrees.items():
 if len(Key)>1:
 order = order + 1#COUNT SUBTREES/BRANCHES
 cell1 = []
 cellorder = 0
 CellPredictorTree = {}
 NodePredictorTree = {}
 #''
 #IN EACH SUBTREE/BRANCH CELL
 #trainingSet3=trainset
 #print('len(trainingSet3):len(trainingSet3[0])-1',len(trainingSet3),len(trainingSet3[0])-1)
 for i in range(len(cells)):
 cellorder = cellorder + 1#COUNT CELLS IN EACH SUBTREE
 nodes = cells[i]
 #CREATE NODE PREDICTOR
 #print('NODES:',nodes)
 if len(nodes) == 2:#IF ONLY TWO LEAF NODES IN EACH CELL CREATE NODE CLASSIFIER FOR EACH
 #trainset = svm.loadCsv(filename)
 #trainset = list(Trainfile)
 trainingSet3=list(trainset)
 #print('len(trainingSet3)',len(trainingSet3))
 currentnode = []
 othernode = []
 currentnode = [nodes[0]]
 othernode = [nodes[1]]
 mergeclass = {1:currentnode,-1:othernode}
 #print('1:currentnode,-1:othernode',currentnode,othernode)
 trainingSet3, testSet3 = svm.splitDataset2(trainingSet3, splitRatio)
 trainingSet3 = svm.separateByRootClass(trainingSet3,mergeclass,nodes[0])
 if len(trainingSet3) > 0:
 testSet3 = svm.separateByRootClass(testSet3,mergeclass,nodes[0])
 #print('len(trainingSet3)',len(trainingSet3))
 cases = len(trainingSet3)

 #print('len(trainingSet3):len(trainingSet3[0])',len(trainingSet3),len(trainingSet3[0]))
 features = len(trainingSet3[0])-1
 predictor = svm.svmTrainer(trainingSet3,cases,features,para)
 dataframe = pd.DataFrame(testSet3)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions3 = svm.getPredictions(predictor,X)
 accuracy3 = svm.getAccuracy(testSet3, predictions3)
 NodePredictor = {currentnode[0]:[currentnode+othernode,predictor,accuracy3]}
 #print('PREDICTION ACURACY FOR NODES:',nodes,accuracy3)
 else:#IF ONLY ONE LEAF NODE IN EACH CELL CREATE NODE CLASSIFIER FOR ONLY ONE NODE
 predictor=[]
 accuracy3='100%'
 NodePredictor = {nodes[0]:[nodes,predictor,accuracy3]}
 #print('PREDICTION ACURACY FOR NODES:',nodes[0],': IS:',accuracy3)
 #print('THE NODE PREDICTOR :',NodePredictor)
 if (order not in NodePredictorTree):
 NodePredictorTree[order] = []
 NodePredictorTree[order].append(NodePredictor)#STORE NODE CLASSIFIERS ACCORDING TO THEIR CELL NUMBER
 #print('NODE PREDICTOR TREE:',NodePredictorTree)
 #CREATE HIERARCHICAL CELL CLASSIFIERS
 CellPredictor = []
 if cellorder<=len(cells)-1:#CREATE ONE AGAINST ALL(REMIANING CELLS) CELL CLASSIFIERS
 #trainset = svm.loadCsv(filename)
 #trainset = list(Trainfile)
 #trainset = copy.copy(Trainfile)
 trainingSet2=list(trainset)
 othercells = cell1 + cells[i]
 currentcell = cells[i+1]
 cell1 = cells[i]
 mergeclass = {1:currentcell,-1:othercells}
 trainingSet2, testSet2 = svm.splitDataset2(trainingSet2, splitRatio)
#print('getClassDistribution:trainset2',svm.getClassDistribution(trainingSet2),mergeclass)
 #print('getClassDistribution:cellsTrainfile',svm.getClassDistribution(Trainfile))
 trainingSet2 = svm.separateByRootClass(trainingSet2,mergeclass,i)
 #print('getClassDistribution:cellsTrainfile',svm.getClassDistribution(Trainfile))
 testSet2 = svm.separateByRootClass(testSet2,mergeclass,i)
 cases = len(trainingSet2)
 features = len(trainingSet2[0])-1
 predictor = svm.svmTrainer(trainingSet2,cases,features,para)
 dataframe = pd.DataFrame(testSet2)
 array1 = dataframe.values
 X = []

 266

 X = array1[:,0:features]
 predictions2 = svm.getPredictions(predictor,X)
 accuracy2 = svm.getAccuracy(testSet2, predictions2)
 CellPredictor ={len(cells)-cellorder:[currentcell,othercells,predictor,accuracy2]}
 #print('ACCURACY FOR CELL PREDICTION',currentcell,' IS: %=', accuracy2)
 #print('THE CELL PREDICTOR IS:',CellPredictor)
 if (order not in CellPredictorTree):
 CellPredictorTree[order] = []
 if len(CellPredictor) > 0:
 CellPredictorTree[order].append(CellPredictor)
 #print('CELL PREDICTOR TREE:',CellPredictorTree)
 #''
 #CREATE SUBTREE CLASSIFIERS
 if (order<=len(Key)-1):
 #trainset = svm.loadCsv(filename)
 #trainset = Trainfile
 trainingSet1= list(trainset)
 currentTree = []
 for i in range(len(cells)):
 currentTree = currentTree + cells[i]
 for i in range(len(currentTree)):
 otherClasses.remove(currentTree[i])
 others = []
 for j in range(len(otherClasses)):
 others.append(otherClasses[j])
 ThisLevelmergeclass = {1:currentTree,-1:others}
 trainingSet1, testSet1 = svm.splitDataset2(trainingSet1, splitRatio)
 trainingSet1 = svm.separateByRootClass(trainingSet1,ThisLevelmergeclass,Keys)
 testSet1 = svm.separateByRootClass(testSet1,ThisLevelmergeclass,Keys)
 cases = len(trainingSet1)
 features = len(trainingSet1[0])-1
 predictor = svm.svmTrainer(trainingSet1,cases,features,para)
 dataframe = pd.DataFrame(testSet1)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions1 = svm.getPredictions(predictor,X)
 accuracy1 = svm.getAccuracy(testSet1, predictions1)
 TreePredictor = {1.0:currentTree,-1.0:others,0.0:[predictor,accuracy1],}
 #print('ACCURACY FOR SUBTREE PREDICTION',currentTree, 'IS: %=', accuracy1)
 #print('THE SUBTREE PREDICTION:',TreePredictor)
 if (order not in TreePredictorTree):
 TreePredictorTree[order] = []
 TreePredictorTree[order].append([TreePredictor,CellPredictorTree,NodePredictorTree])
 #'''
 #print('TreePredictorTree:',TreePredictorTree)

 #CREATE TREE CLASSIFIERS
 if (treeno<=len(mKey)-1):
 #trainset = svm.loadCsv(filename)
 #trainset = Trainfile
 trainingSet1=list(trainset)
 currentMainTree = []
 for mK, trees in classTree.items():
 if mK > 0:
 value = [mK]
 currentMainTree = currentMainTree + value
 for i in range(len(currentMainTree)):
 otherTrees.remove(currentMainTree[i])
 others = []
 for j in range(len(otherTrees)):
 others.append(otherTrees[j])
 ThisLevelmergeclass = {1:currentMainTree,-1:others}
 trainingSet1, testSet1 = svm.splitDataset2(trainingSet1, splitRatio)
 trainingSet1 = svm.separateByRootClass(trainingSet1,ThisLevelmergeclass,mKeys)
 testSet1 = svm.separateByRootClass(testSet1,ThisLevelmergeclass,mKeys)
 cases = len(trainingSet1)
 features = len(trainingSet1[0])-1
 predictor = svm.svmTrainer(trainingSet1,cases,features,para)
 dataframe = pd.DataFrame(testSet1)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions2 = svm.getPredictions(predictor,X)
 accuracy2 = svm.getAccuracy(testSet1, predictions2)
 mainTreePredictor = {1.0:currentMainTree,-1.0:others,0.0:[predictor,accuracy2],}
 #print('ACCURACY FOR MAIN TREE PREDICTION IS:', accuracy2)
 else:
 #print('TWIN1 IS:treeno,len(mKey)',treeno,len(mKey))
 if (len(mKey)==1):
 predictor=[]
 accuracy2='100%'
 mainTreePredictor = {1.0:[],-1.0:[],0.0:[accuracy2],}
 #mainTreePredictor = {mKeys:[predictor,accuracy2]}
 #print('MAIN TREE PREDICTOR IS:', mainTreePredictor)
 #'''
 if (mKeys not in TreePredictors):

 267

 TreePredictors[mKeys] = []
 TreePredictors[mKeys].append([mainTreePredictor,TreePredictorTree])
 #print('ALL MAIN TREES PREDICTORS ARE:', TreePredictors)
 '''
 for tree, trees in TreePredictors.items():
 TreePredictorList = trees[0]
 mainTreePredictor = TreePredictorList[0]

 mainPredictors = mainTreePredictor[1]
 print('Key: 1.0', tree,mainPredictors)
 mainPredictors = mainTreePredictor[-1]
 print('Key: -1.0', tree,mainPredictors)
 '''
 #pickle_out = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\multiclassifier.pickle','wb')
 #pickle.dump(TreePredictors,pickle_out)
 #pickle_out.close()
 return TreePredictors
 #THIS CLASSIFIES A WHOLE DATASET
 def classifyInstance(self,classifier,classTree,data):
 svm = SVMRootclassifier()
 self.classifier = classifier
 self.classTree = classTree
 self.data = data
 tree = classTree
 testdata = data
 #mKey =list(TreePredictors.keys())
 #print('TreePredictors keys:',mKey)
 mKey =list(classifier.keys())
 #print('TreePredictors keys:',mKey)
 #TreePredictorTree = {}
 CellPredictorTree = {}
 NodePredictorTree = {}
 #predictiondata = data
 predictiondata = []
 correctClassified = {}
 incorrectClassified = {}
 predictionresult = -1
 for i in range(len(testdata)):
 X = testdata[i]
 vector = X[0:len(X)-1]
 #print('testdata[i]',testdata[i])
 T = 0
 while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS
 treeno = mKey[T]#GET CLASSIFIER NUMBER
 #mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictorList = classifier[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 #print('mainTreePredictor[0]', mainTreePredictor[0])
 mainPredictors = mainTreePredictor[0][0.0]
 if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE
 mainPredictor = mainPredictors[0]
 mainTreeResult = svm.Predict(mainPredictor,vector)#MAKE PREDICTION
 if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER
 TreePredictorTree = mainTreePredictor[1]
 #print('FOR MAINTREE NO:', treeno)
 T = len(mKey)+1#END THE LOOP
 else:#IF -1
 if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS SECOND LAST
 treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP
 #mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictorList = classifier[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 #print('mainTreePredictor[0]', mainTreePredictor[0])
 TreePredictorTree = mainTreePredictor[1]
 #print('(this is second last)FOR MAINTREE NO:', treeno)
 T = len(mKey)+1 #END THE LOOP
 else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2)
 T = T + 1 #LOOP AGAIN
 else:#CASE OF ONLY ONE TREE
 TreePredictorTree = mainTreePredictor[1]
 T = len(mKey)+1 #END THE LOOP
 Key = list(TreePredictorTree.keys())
 N = len(Key)
 #print('TreePredictorTree', TreePredictorTree)
 K = 0
 while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE
 TreePredictorTr = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]
 TreePredictor = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR
 CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS
 NodePredictorList = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS
 CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS
 Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE
 #print('Trpredictor[0]',Trpredictor[0])
 result1 = svm.Predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE
 #print('subtree result1',result1)

 268

 if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES
 #GET CELL PREDICTORS
 X = len(CellPredictors)
 #print('CellPredictor:for result1=1',CellPredictors)
 if (X>0):#IF THERE ARE CELL PREDICTORS
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:#WHILE THERE ARE CELL PREDICTORS
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1 #COUNT CELL PREDICTORS BOTTOM UP
 #print('Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = svm.Predict(cellpredictor,vector)
 #print('Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS
 #GET NODE PREDICTOR FOR THIS SUBTREE
 NodePredictors = NodePredictorList[subtreeno]
 #print('NodePredictors',NodePredictors)
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 #print('nodepredictor',nodepredictor)
 nodes = nodepredictor[currentcell[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES
 if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE
 if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL
 predictionresult = othercells[0]
 else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[othercells[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:

 269

 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 K = N
 else:#IF THERE ARE NO CELL PREDICTORS
 #GET NODE PREDICTORS
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 currentcell = nodepredictorskeys[0]
 #print('currentcell',currentcell)
 nodes = nodepredictor[currentcell]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)#PREDICT ONE OF THE NODES
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 K = N
 break
 else:#IF THERE IS ONLY ONR NODE IN A CELL
 predictionresult = nodepair[0]
 K = N
 else:#IF CURRENT SUBTREE NOT PREDICTED
 if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]
 TreePredictorTr = TreePredictorList[0]
 TreePredictor = TreePredictorTr[0]
 CellPredictorList = TreePredictorTr[1]
 NodePredictorList = TreePredictorTr[2]
 CellPredictors = CellPredictorList[subtreeno]
 X = len(CellPredictors)
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1
 #print('if current subtree not predicted,Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = svm.Predict(cellpredictor,vector)
 #print('if current subtree not predicted,Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE
 #GET NODE PREDICTOR
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []

 270

 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[currentcell[0]]
 #print('if current subtree not predicted,nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)
 #print('if current subtree not predicted,Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL PREDICTION IS FALSE
 if (count==0):
 if len(othercells)==1:
 predictionresult = othercells[0]
 #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)
 break
 K = N
 else:
 K = K + 1
 #print('Prediction result for this vector:',vector,predictionresult)
 y = float(predictionresult)
 predictiondata.append([y])
 #predictiondata[i][-1] = float(predictionresult)
 #print('len(testdata),len(predictiondata):',len(testdata),len(predictiondata))
 if vector[-1] == y:
 if (vector[-1] in correctClassified):
 #print('count before is:',correctClassified[vector[-1]])
 count=correctClassified[vector[-1]]
 correctClassified[vector[-1]] = count+1
 #print('count after is:',correctClassified[vector[-1]])
 #print('Yes1')
 else:
 correctClassified[vector[-1]] = 1
 #print('Yes2')
 else:
 if (vector[-1] in incorrectClassified):
 count=incorrectClassified[vector[-1]]
 incorrectClassified[vector[-1]] = count+1
 #print('No1')
 else:
 incorrectClassified[vector[-1]] = 1
 #print('No2')
 #print('correctClassified:',correctClassified)
 #print('incorrectClassified:',incorrectClassified)
 testFileDistribution = svm.getClassDistribution(testdata)
 classAccuracy = svm.getClassAccuracy(testFileDistribution,correctClassified,incorrectClassified)
 #print('classAccuracy is:',classAccuracy)
 overallaccuracy = self.getAccuracy(testdata,predictiondata)
 #print('THE ACCURACY FOR THIS CLASSIFICATION IS=%:',svm.getAccuracy(testdata,predictiondata))
 return overallaccuracy
 #THIS CLASSIFIES ONE INSTANCE AT A TIME USING A STORED TRAINED CLASSIFIER LOADED FROM PICKLE
 def classifyOneInstance(self,classifier,classTree,data):
 self.classTree = classTree
 self.data = data
 self.classifier = classifier
 tree = classTree
 testdata = data
 '''
 #RETRIEVE THE CLASSIFIER
 pickle_in = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\SVMclassifier.pickle','rb')
 tp=pickle.load(pickle_in)
 TreePredictors = tp
 '''
 TreePredictors = classifier
 mKey =list(TreePredictors.keys())
 CellPredictorTree = {}
 NodePredictorTree = {}
 TreePredictorTree = {}
 #predictiondata = data

 271

 predictiondata = []
 svm = SVMRootclassifier()
 vector = testdata
 T = 0
 while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS
 treeno = mKey[T]#GET CLASSIFIER NUMBER
 mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 #print('mainTreePredictor[0]', mainTreePredictor[0])
 mainPredictors = mainTreePredictor[0][0.0]
 if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE
 mainPredictor = mainPredictors[0]
 mainTreeResult = svm.predict(mainPredictor,vector)#MAKE PREDICTION
 if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER
 TreePredictorTree = mainTreePredictor[1]
 #print('FOR MAINTREE NO:', treeno)
 T = len(mKey)+1#END THE LOOP
 else:#IF -1
 if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS ECOND LAST
 treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP
 mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 #print('mainTreePredictor[0]', mainTreePredictor[0])
 TreePredictorTree = mainTreePredictor[1]
 #print('(this is second last)FOR MAINTREE NO:', treeno)
 T = len(mKey)+1 #END THE LOOP
 else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2)
 T = T + 1 #LOOP AGAIN
 else:#CASE OF ONLY ONE TREE
 TreePredictorTree = mainTreePredictor[1]
 T = len(mKey)+1 #END THE LOOP
 Key = list(TreePredictorTree.keys())
 N = len(Key)
 #print('TreePredictorTree', TreePredictorTree)
 K = 0
 while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS
 #print('K',K)
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE
 TreePredictorTr = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]
 TreePredictor = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR
 CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS
 NodePredictorList = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS
 CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS
 Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE
 result1 = svm.Predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE
 #print('Trpredictor[0]',Trpredictor[0])
 #result1 = nB1.getPredictions(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE
 #print('subtree result1',result1)
 if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES
 #GET CELL PREDICTORS
 X = len(CellPredictors)
 #print('CellPredictor:for result1=1',CellPredictors)
 if (X>0):#IF THERE ARE CELL PREDICTORS
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:#WHILE THERE ARE CELL PREDICTORS
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1 #COUNT CELL PREDICTORS BOTTOM UP
 #print('Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = svm.Predict(cellpredictor,vector)
 #print('Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS
 #GET NODE PREDICTOR FOR THIS SUBTREE
 NodePredictors = NodePredictorList[subtreeno]
 #print('NodePredictors',NodePredictors)
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]

 272

 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 #print('nodepredictor',nodepredictor)
 nodes = nodepredictor[currentcell[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]

 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES
 if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE
 if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL
 predictionresult = othercells[0]
 else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[othercells[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]

 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 K = N
 else:#IF THERE ARE NO CELL PREDICTORS
 #GET NODE PREDICTORS
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 currentcell = nodepredictorskeys[0]
 #print('currentcell',currentcell)
 nodes = nodepredictor[currentcell]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL

 273

 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)#PREDICT ONE OF THE NODES
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 K = N
 break
 else:#IF THERE IS ONLY ONR NODE IN A CELL
 predictionresult = nodepair[0]
 K = N
 else:#IF CURRENT SUBTREE NOT PREDICTED
 if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]
 TreePredictorTr = TreePredictorList[0]
 TreePredictor = TreePredictorTr[0]
 CellPredictorList = TreePredictorTr[1]
 NodePredictorList = TreePredictorTr[2]
 CellPredictors = CellPredictorList[subtreeno]
 X = len(CellPredictors)
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1
 #print('if current subtree not predicted,Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = svm.Predict(cellpredictor,vector)
 #print('if current subtree not predicted,Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE
 #GET NODE PREDICTOR
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[currentcell[0]]
 #print('if current subtree not predicted,nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = svm.Predict(nodepredictor,vector)
 #print('if current subtree not predicted,Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL PREDICTION IS FALSE
 if (count==0):
 if len(othercells)==1:
 predictionresult = othercells[0]
 #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)
 break
 K = N
 else:

 274

 K = K + 1
 #print('Prediction result for this vector:',vector,predictionresult)
 y = float(predictionresult)
 return y
--
import tkinter.filedialog
from tkinter import *
#from ScrolledText import *
import tkinter.ttk as ttk
import pandas as pd
import dill as pickle
#import pickle
import random
import sqlite3
import logging
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import itertools
import csv
import decimal
import math
import copy
import time
import threading
import matplotlib
matplotlib.use("TkAgg")
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from sklearn.preprocessing import StandardScaler
splitRatio = 0.80
splitRatio2 = 0.10
class naiveRootclassifier():
 def __init__(self):
 #self.master = master
 self.value = None

 def loadCsv(self,filename):
 self.filename=filename
 lines = csv.reader(open(filename, "r"))
 dataset = list(lines)
 for i in range(len(dataset)):
 #print(dataset[i])
 dataset[i] = [float(x) for x in dataset[i]]
 return dataset

 def scaler(self,datatrain,datatest):
 self.datatrain = datatrain
 self.datatest = datatest
 stand = StandardScaler()
 dataframe1 = pd.DataFrame(datatrain)
 array1 = dataframe1.values
 n1 = len(datatrain[0])-1
 m1 = []
 set1 = []
 X1 = array1[:,0:n1]
 Y1 = array1[:,n1]
 X1_std = stand.fit_transform(X1)
 count =0
 for i in X1_std:
 #print("before",i)
 #print("before",Y[count])
 m1 = list(i)
 m1.append(Y1[count])
 set1.append(m1)
 #print("after",m)
 count = count+1
 dataframe2 = pd.DataFrame(datatest)
 array2 = dataframe2.values
 n2 = len(datatest[0])-1
 m2 = []
 set2 = []
 X2 = array2[:,0:n2]
 Y2 = array2[:,n2]
 X2_std = stand.transform(X2)
 count =0
 for i in X2_std:
 #print("before",i)
 #print("before",Y[count])
 m2 = list(i)
 m2.append(Y2[count])
 set2.append(m2)
 #print("after",m)
 count = count+1
 return set1,set2

 def splitDataset2(self, dataset, splitRatio):# splits the dataset into two: training and test dataset

 275

 self.dataset=dataset
 self.splitRatio=splitRatio
 freq = self.getClassDistribution(dataset)
 trainSet = []
 copy = []
 #print('dataset',dataset)
 #print('frequency:',freq)
 for keys,frequency in freq.items():
 trainSize = int(frequency * splitRatio)
 #print(keys, frequency, trainSize)
 fold = []
 trainFold = []
 for k in range(len(dataset)):
 vector1=list(dataset[k])
 if (vector1[-1]==keys):
 fold.append(vector1)
 #print('frequency:len(fold):trainSize', frequency,len(fold),trainSize)
 while len(trainFold) < trainSize:
 index = random.randrange(len(fold))
 trainFold.append(fold.pop(index))
 #print('fold', fold)
 #trainSet.append(trainFold)
 trainSet= trainSet + trainFold
 #copy.append(fold)
 copy = copy + fold
 #print('copy', copy)
 return [trainSet, copy]

 def splitDataset(self, dataset, splitRatio):# splits the dataset into two: training and test dataset
 self.dataset=dataset
 self.splitRatio=splitRatio
 trainSize = int(len(dataset) * splitRatio)
 trainSet = []
 copy = list(dataset)
 while len(trainSet) < trainSize:
 index = random.randrange(len(copy))
 trainSet.append(copy.pop(index))
 return [trainSet, copy]

 #TAKES IN REQUIRED CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES
 def refineDataset(self, dataset, mergeclasses):# removes unwanted classes from dataset
 self.dataset=dataset
 self.classValue = mergeclasses
 dataset2 = []
 for i in range(len(dataset)):
 vector1=dataset[i]
 if vector1[-1] in mergeclasses:
 dataset2.append(vector1)
 return dataset2

 #CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES getClassDistirbution
 def getClassDistribution(self,dataset):
 dataset2 = {}
 counts = {}
 #print('trainSet', dataset)
 for i in range(len(dataset)):
 vector1 = dataset[i]
 #print('vector1',vector1)
 #print('vector1[-1]',vector1[-1])
 if (vector1[-1] in counts):
 counts[vector1[-1]] += 1
 else:
 counts[vector1[-1]]=1
 return counts

 def getClassAccuracy(self,testFile,correctClassified,incorrectClassified):
 self.testFile = testFile
 self.correctClassified = correctClassified
 self.incorrectClassified = incorrectClassified
 classAccuracy = {}
 for classValue,freq in testFile.items():
 if classValue in correctClassified:
 n = freq
 x = correctClassified[classValue]
 y = x * 100/n
 else:
 y = 0.0
 classAccuracy[classValue] = y
 return classAccuracy

 def getClassCodes(self,dataset,parentclass):
 self.dataset=dataset
 dataset2 = []
 self.parentclass = parentclass
 #print('parentclass',parentclass)
 for i in range(len(dataset)):
 vector1 = dataset[i]

 276

 vector = dataset[i]
 value = float(parentclass)
 # print('parentclass',type(value),type(vector1[-1]))
 if (vector1[-1] == value):
 #print(i,'class for 1',vector1[-1],value)
 vector1[-1] = 1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 else:
 #print(i,'class for -1',vector1[-1],value)
 vector1[-1] = -1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 return dataset2

 def separateByClass(self,dataset,mergeclass):#this separates instances into distinct classes i.e isolates class instances
 self.dataset=dataset
 self.mergeclass = mergeclass
 separated = {}
 dataset2 = []
 dataset3 = []
 positives = mergeclass[1]
 negatives = mergeclass[-1]
 for k in range(len(dataset)):
 vector1=list(dataset[k])
 #print('vector1=dataset[k]:k',k)
 if vector1[-1] in negatives:
 vector1[-1] = -1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 if vector1[-1] in positives:
 vector1[-1] = 1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 return dataset2

 # merges and then separates instances into two distinct classes
 def separateByRootClass(self,dataset,mergeclass):
 #MERGECLASS IS A DICTIONARY CONTAINING TWO KEYS EACH WITH CLASSES BELONGING TO EACH KEY I.E. {1:positivenodes, -1:negativenodes}
 self.dataset=dataset
 self.mergeclass = mergeclass
 separated = {}
 dataset2 = []
 dataset3 = []
 positives = mergeclass[1]
 negatives = mergeclass[-1]
 for k in range(len(dataset)):
 vector1=list(dataset[k])
 if vector1[-1] in negatives:
 vector1[-1] = -1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)

 if vector1[-1] in positives:
 vector1[-1] = 1
 vector1[-1]=float(vector1[-1])
 dataset2.append(vector1)
 for i in range(len(dataset2)):
 vector = dataset2[i]
 if (vector[-1] not in separated):
 separated[vector[-1]] = []
 separated[vector[-1]].append(vector)
 return separated

 def summarizeByClass(self,dataset,mergeclass):# produces attribute-based means and std. devs for each class in the dataset
 self.dataset=dataset
 self.mergeclass = mergeclass
 separated = self.separateByRootClass(dataset,mergeclass)
 summaries = {}
 #separated is a dictionary containing instances grouped into positives and negatives
 for classValue, instances in separated.items():
 summaries[classValue] = self.summarize(instances)
 #print('summaries are',summaries)
 #summaries is a dictionary containing mean and standard deviation of each attribute but grouped according to classes
 return summaries

 def summarize(self,instances):#calculates mean and std. dev. for each attribute in the given instances set
 self.instances=instances
 summaries = [(self.mean(attribute), self.stdev(attribute)) for attribute in zip(*instances)]
 del summaries[-1]
 return summaries

 def mean(self,numbers):
 self.numbers=numbers
 #print('attribute values are:',numbers)
 return sum(numbers)/float(len(numbers))

 277

 def stdev(self,numbers):
 #numbers here is a sequence values of one attribute
 self.numbers=numbers
 avg = self.mean(numbers)
 if len(numbers) > 1:
 variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
 else:
 variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers))
 sdt = math.sqrt(variance)
 if sdt == 0.0:
 #print('numbers:',numbers,'mean is:',avg, 'std is:', sdt,)
 sdt = 0.1
 return sdt

 def calculateProbability(self,x, mean, stdev):#calcualates conditional probability of an attribute instance given attribute mean and std dev
 self.x=x
 self.mean=mean
 self.stdev=stdev
 #print('The value of x is:',x,'mean is:',mean,'std. dev. is:',stdev)
 exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
 prob = (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
 return prob

 def calculateClassProbabilities(self,summaries, instanceVector):#calculates probabilitie of each instance towards each each class
 self.summaries=summaries
 self.instanceVector=instanceVector
 probabilities = {}
 #print('summaries :',summaries)
 #print('input vector :',inputVector)
 for classValue, attributeSummaries in summaries.items():
 #probabilities = {}
 probabilities[classValue] = 1
 #attributeSummaries is an array of paired mean and std deviation for each attribute
 for i in range(len(attributeSummaries)):#FOR EACH ATTRIBUTE
 mean, stdev = attributeSummaries[i]
 x = instanceVector[i]#X IS VALUE OF A GIVEN ATTRIBUTE i
 #GET PROBILITY OF THIS ATTRIBUTE AND MULTIPLY BY PROBABILITIES OF OTHER ATTRIBUTES IN EACH CLASS TO GET PROBALITY OF THE CLASS
 probabilities[classValue] = probabilities[classValue]*self.calculateProbability(x, mean, stdev)
 #probabilities is DICTIONARY CLASS PROBABILITIES
 return probabilities

 def predict(self,summaries, inputVector):
 self.summaries=summaries
 self.inputVector=inputVector
 #print('summaries:',summaries)
 probabilities = self.calculateClassProbabilities(summaries, inputVector)
 #print('The probabilities are:',probabilities)
 #print('The input vector is:',inputVector)
 bestLabel, bestProb = None, -1
 for classValue, probability in probabilities.items():
 if bestLabel is None or probability > bestProb:
 bestProb = probability
 bestLabel = classValue
 #print('bestLabel:',bestLabel)
 return [bestLabel, bestProb]

 def getPredictions(self, summaries, testSet):
 self.summaries=summaries# summary of mean and std dev of each atribute in each class
 self.testSet=testSet
 predictions = []
 #print('The summary is:',summaries)
 #print('len(testSet):',len(testSet))
 #print('testSet:',testSet)
 for i in range(len(testSet)):
 #print('testSet[i]:',testSet[i])
 result, prob = self.predict(summaries, testSet[i])
 predictions.append(result)
 return predictions

 def getAccuracy(self, testSet, predictions):
 self.testSet=testSet
 self.predictions=predictions
 correct = 0
 result = 0
 for i in range(len(testSet)):
 #print('testSet[i]:predictions[i]',testSet[i],predictions[i])
 if testSet[i][-1] == predictions[i]:
 #print('correct:before',correct)
 correct += 1
 #print('correct:after',correct)
 if (len(testSet)>0):
 result = correct/float(len(testSet)) * 100.0
 return result
 '''
 def Predict(self,predictor, X):
 self.predictor = predictor
 self.X = X

 278

 #print('X',X,predictor)
 result = []
 vector = X[0:len(X)-1]
 result.append(predictor.predict(vector))
 #result.append(svmpy.SVMPredictor.predict(vector))
 return result

 def getPredictions(self, predictor, testdata):
 self.predictor = predictor# summary of mean and std dev of each atribute in each class
 self.testdata = testdata
 predictions = []
 test = []
 for i in range(len(testdata)):
 #test = testSet[i]
 test.append(testdata[i])

 #print('The testset is:',testdata)
 for i in range(len(test)):
 vector = test[i]
 result = self.Predict(predictor, vector)
 #print('Testset prediction is:',test[i],result)
 predictions.append(result)
 return predictions

 def getAccuracy(self, testdata, predictions):
 self.testdata=testdata
 self.predictions=predictions
 correct = 0
 #print('Testset prediction is:',testdata,predictions)
 for i in range(len(testdata)):
 #print('Testset prediction is:',testdata[i],predictions[i])
 vector = testdata[i]
 value1= predictions[i]
 value2 = vector[-1]
 #print('Testset prediction is:',value1[0],value2)
 if (value1[0] == value2):
 #print('Testset prediction is:',vector[-1],predictions[i])
 correct += 1
 return (correct/float(len(testdata))) * 100.0
 '''
 def getLevelNodes(self, classTree,level):
 self.classTree = classTree
 self.level = level
 parent = []
 childs = []
 levelNodes = {}
 for classValue,instances in classTree.items():
 for i in range(len(instances)):
 classlev = instances[0]
 classlevel = classlev[0]
 parent = instances[1]
 childs = instances[2]
 if (classlevel == level): #only for this level
 levelNodes[classValue] = [parent,childs]
 return levelNodes

 def getTreeDepth(self, classTree):
 self.classTree = classTree
 depth = 0
 for classValue,instances in classTree.items():
 for i in range(len(instances)):
 classlevel = instances[0]
 level = classlevel
 if(len(level) > 0):
 #print(type(level[0]),type(depth))
 #print(level[0],depth)
 if (int(level[0]) > depth): #check leve of the current node
 depth = level[0]

 return depth

 def getChildrenOf(self, classvalue,classTree):
 self.classvalue = classvalue
 self.classTree = classTree
 childs = []
 #print('class value is',classvalue)
 for classValue,instances in classTree.items():
 #print('classValue,classvalue',classValue,classvalue)
 if (classValue == classvalue):
 #print('instances',instances)
 #for i in range(len(instances)):
 #parent = instances[1]
 childs = instances[2]
 #print('instances',instances[2])
 #print('childs',childs)
 return childs

 279

 def getSubTrees(self, classTree):
 self.classTree = classTree
 childs = []
 subTrees = {}
 height = self.getTreeDepth(classTree)
 top = 0
 if (height > 0):
 topNodes= self.getLevelNodes(classTree,top)
 #print('THESE ARE TOPNODES',topNodes)
 for classValue,instances in topNodes.items():
 if (classValue < 0):
 nextparent = classValue
 #print('nextparent,classvalue',nextparent,classValue)
 #childs = self.getChildrenOf(nextparent,classTree)
 while nextparent<0:
 classes = []
 childs = self.getChildrenOf(nextparent,classTree)
 #print('childs of: ',nextparent,'are:',childs)
 nextparent = 0
 for i in range(len(childs)):
 if (childs[i]>0):
 classes.append(childs[i])
 else:
 nextparent=childs[i]

 if classValue not in subTrees:
 subTrees[classValue] = []
 subTrees[classValue].append(classes)
 return subTrees

 def getMainTrees(self, classTree):
 self.classTree = classTree
 childs = []
 mainTree = {}
 Tree = {}
 for classValue,instances in classTree.items():
 #if (classValue < 0):
 maintreeid = instances[3]
 #print('maintreeid:',maintreeid)
 if maintreeid[0]>0:
 if maintreeid[0] not in mainTree:
 mainTree[maintreeid[0]] = []
 Tree = {}
 classes = []
 classes = [instances[0],instances[1],instances[2]]
 Tree[classValue] = []
 Tree[classValue] = classes
 mainTree[maintreeid[0]] = Tree
 else:
 classes = []
 classes = [instances[0],instances[1],instances[2]]
 Tree = mainTree[maintreeid[0]]
 if classValue not in Tree:
 Tree[classValue] = []
 Tree[classValue] = classes
 mainTree[maintreeid[0]] = Tree
 #print('maintree:',mainTree)
 return mainTree

 def orderByParents(self, classNodes):
 self.classNodes = classNodes
 print(classNodes)
 orderedByParent = {}
 parentList = []
 for classValue,instances in classNodes.items():
 #for i in range(len(instances)):
 parent = instances[0]
 #print('parent',parent[0])
 if(len(parent)!=0):
 if parent[0] not in orderedByParent:
 #parentList = classValue
 orderedByParent[parent[0]]=[]

 parentList=orderedByParent[parent[0]]
 #print('parentList',parentList)
 if classValue not in parentList:
 if (len(parentList)==0):
 parentList = [classValue]
 else:
 parentList.append(classValue)
 #print('classValue',classValue)
 #print('parentList',parentList)
 orderedByParent[parent[0]] = parentList
 #print('orderedByParent',orderedByParent)
 return orderedByParent

 def getParentNode(self, childnode,classTree):

 280

 self.childnode = childnode
 self.classTree = classTree
 parent = []
 for classValue,instances in classTree.items():
 if (childnode in instances):
 parent = [classvalue]
 continue
 return parent

 #THIS CREATES A HIERARCHICAL MULTI- CLASSIFIER USING NAIVE BAYES APPROACH
 def classify(self,mainTree,trainingSet):
 nB1 = naiveRootclassifier()
 nB2 = naiveRootclassifier()
 nB3 = naiveRootclassifier()
 nB4 = naiveRootclassifier()
 #TreePredictorTree = {}
 TreePredictors = {}
 #mainTreePredictor = {}
 #TreePredictor = {}
 self.trainingSet = trainingSet
 self.mainTree = mainTree
 trainset = list(trainingSet)
 #print("trainset:",len(trainset))
 maintrees = nB1.getMainTrees(mainTree)
 mKey = maintrees.keys()
 otherTrees = []
 AllTrees = []
 value = []
 for mKeys, classTree in maintrees.items():
 for mK, trees in classTree.items():
 value = mK
 #print('mK:',mK)
 if mK > 0:
 value =[mK]
 AllTrees = AllTrees + value
 otherTrees = otherTrees + value
 #print('ALLTREES and mKey :',AllTrees,mKey)
 treeno = 0
 #FOR EACH MAIN TREE
 for mKeys, classTree in maintrees.items():
 #print('CLASSTREES:',classTree)
 #COUNT MAIN TREES
 treeno = treeno + 1
 depth = nB1.getTreeDepth(classTree)#GET DEPTH/HEIGHT OF EACH MAIN TREE
 subtrees = nB1.getSubTrees(classTree)#GET SUBTREES/BRANCHES OF EACH MAIN TREE
 Key = list(subtrees.keys())#GET THE SUBTREE ID'S
 #print('SUBTREES and Key:',subtrees,Key)
 trainset = list(trainingSet)
 #print('TRAIN SET :',len(trainset))
 Allclasses = []
 otherClasses = []
 TreePredictorTree = {}
 CellPredictorTree = {}
 NodePredictorTree = {}
 #'''
 #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET ALL THE CLASSES
 for Keys, cells in subtrees.items():
 for i in range(len(cells)):
 Allclasses = Allclasses + cells[i]
 otherClasses = otherClasses + cells[i]
 #print('ALL CLASSES SET :',Allclasses,type(otherClasses))
 order = 0
 #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET NODE AND CELL CLASSIFIERS
 for Keys, cells in subtrees.items():
 if len(Key)>1:
 order = order + 1#COUNT SUBTREES/BRANCHES
 cell1 = []
 cellorder = 0
 CellPredictorTree = {}
 NodePredictorTree = {}
 #''
 #IN EACH SUBTREE/BRANCH CELL
 #trainingSet3=trainset
 #print('len(trainingSet3):len(trainingSet3[0])-1',len(trainingSet3),len(trainingSet3[0])-1)
 for i in range(len(cells)):
 cellorder = cellorder + 1#COUNT CELLS IN EACH SUBTREE
 nodes = cells[i]
 #CREATE NODE PREDICTOR
 #print('NODES:',nodes)
 if len(nodes) == 2:#IF ONLY TWO LEAF NODES IN EACH CELL CREATE NODE CLASSIFIER FOR EACH
 nB1 = naiveRootclassifier()
 #trainset = nB1.loadCsv(filename)
 trainingSet3=list(trainset)
 #print("trainingSet3:",len(trainingSet3))
 currentnode = []
 othernode = []
 currentnode = [nodes[0]]

 281

 othernode = [nodes[1]]
 mergeclass = {1:currentnode,-1:othernode}
 #print('len(trainingSet3):',len(trainingSet3))
 trainingSet3, testSet3 = nB1.splitDataset2(trainingSet3, splitRatio)
 #trainingSet3 = nB1.separateByRootClass(trainingSet3,mergeclass)
 #print('len(trainingSet3):',len(trainingSet3))
 testSet3 = nB1.separateByClass(testSet3,mergeclass)
 #print('getClassDistribution:trainset2',nB1.getClassDistribution(trainingSet3))
#print('getClassDistribution:trainset2',nB1.getClassDistribution(trainingSet3),mergeclass)
 summary3 = nB1.summarizeByClass(trainingSet3,mergeclass)
 #print('len(trainingSet3):',len(trainingSet3))
 features = len(trainingSet3[0])-1
 dataframe = pd.DataFrame(testSet3)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions3 = nB1.getPredictions(summary3,X)
 accuracy3 = nB1.getAccuracy(testSet3, predictions3)
 NodePredictor = {currentnode[0]:[currentnode+othernode,summary3,accuracy3]}
 #print('PREDICTION ACURACY FOR NODES:',nodes,accuracy3)
 else:#IF ONLY ONE LEAF NODE IN EACH CELL CREATE NODE CLASSIFIER FOR ONLY ONE NODE
 predictor=[]
 accuracy3='100%'
 NodePredictor = {nodes[0]:[nodes,predictor,accuracy3]}
 #print('PREDICTION ACURACY FOR NODES:',nodes[0],': IS:',accuracy3)
 #print('THE NODE PREDICTOR :',NodePredictor)
 if (order not in NodePredictorTree):
 NodePredictorTree[order] = []
 NodePredictorTree[order].append(NodePredictor)#STORE NODE CLASSIFIERS ACCORDING TO THEIR CELL NUMBER
 #print('NODE PREDICTOR TREE:',NodePredictorTree)
 #CREATE HIERARCHICAL CELL CLASSIFIERS
 CellPredictor = []
 if cellorder<=len(cells)-1:#CREATE ONE AGAINST ALL(REMIANING CELLS) CELL CLASSIFIERS
 nB2 = naiveRootclassifier()
 #trainset = nB2.loadCsv(filename)
 trainingSet2=list(trainset)
 #print('getClassDistribution:trainset1',nB1.getClassDistribution(trainingSet2))
 othercells = cell1 + cells[i]
 currentcell = cells[i+1]
 cell1 = cells[i]
 mergeclass = {1:currentcell,-1:othercells}
 trainingSet2, testSet2 = nB2.splitDataset2(trainingSet2, splitRatio)
 #trainingSet2 = nB2.separateByRootClass(trainingSet2,mergeclass)
 testSet2 = nB2.separateByClass(testSet2,mergeclass)
#print('getClassDistribution:trainset2',nB1.getClassDistribution(trainingSet2),mergeclass)
 summary2 = nB2.summarizeByClass(trainingSet2,mergeclass)
 features = len(trainingSet2[0])-1
 dataframe = pd.DataFrame(testSet2)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions2 = nB2.getPredictions(summary2,X)
 accuracy2 = nB2.getAccuracy(testSet2, predictions2)
 CellPredictor ={len(cells)-cellorder:[currentcell,othercells,summary2,accuracy2]}
 #print('ACCURACY FOR CELL PREDICTION',currentcell,' IS: %=', accuracy2)
 #print('THE CELL PREDICTOR IS:',CellPredictor)
 if (order not in CellPredictorTree):
 CellPredictorTree[order] = []
 if len(CellPredictor) > 0:
 CellPredictorTree[order].append(CellPredictor)
 #print('CELL PREDICTOR TREE:',CellPredictorTree)
 #''
 #CREATE SUBTREE CLASSIFIERS
 #print("order",order)
 if (order<=len(Key)-1):
 nB3 = naiveRootclassifier()
 #trainset = nB3.loadCsv(filename)
 trainingSet1=list(trainset)
 currentTree = []
 for i in range(len(cells)):
 currentTree = currentTree + cells[i]
 for i in range(len(currentTree)):
 otherClasses.remove(currentTree[i])
 others = []
 for j in range(len(otherClasses)):
 others.append(otherClasses[j])
 mergeclass = {1:currentTree,-1:others}
 trainingSet1, testSet1 = nB3.splitDataset2(trainingSet1, splitRatio)
 #trainingSet1 = nB1.separateByRootClass(trainingSet1,mergeclass)
 testSet1 = nB3.separateByClass(testSet1,mergeclass)
 summary1 = nB3.summarizeByClass(trainingSet1,mergeclass)
 features = len(trainingSet1[0])-1
 dataframe = pd.DataFrame(testSet1)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions1 = nB3.getPredictions(summary1,X)

 282

 accuracy1 = nB3.getAccuracy(testSet1, predictions1)
 TreePredictor = {1.0:currentTree,-1.0:others,0.0:[summary1,accuracy1],}
 #print('ACCURACY FOR SUBTREE PREDICTION',currentTree, 'IS: %=', accuracy1)
 #print('THE SUBTREE PREDICTION:',TreePredictor)
 if (order not in TreePredictorTree):
 TreePredictorTree[order] = []
 TreePredictorTree[order].append([TreePredictor,CellPredictorTree,NodePredictorTree])
 #'''
 #print('TreePredictorTree:',TreePredictorTree)

 #CREATE TREE CLASSIFIERS
 if (treeno<=len(mKey)-1):
 nB4 = naiveRootclassifier()
 #trainset = nB4.loadCsv(filename)
 trainingSet1=list(trainset)
 currentMainTree = []
 for mK, trees in classTree.items():
 if mK > 0:
 value = [mK]
 currentMainTree = currentMainTree + value
 for i in range(len(currentMainTree)):
 otherTrees.remove(currentMainTree[i])
 others = []
 for j in range(len(otherTrees)):
 others.append(otherTrees[j])
 mergeclass = {1:currentMainTree,-1:others}
 trainingSet1, testSet1 = nB4.splitDataset2(trainingSet1, splitRatio)
 #trainingSet1 = nB1.separateByRootClass(trainingSet1,mergeclass)
 testSet1 = nB4.separateByClass(testSet1,mergeclass)
 summary1 = nB4.summarizeByClass(trainingSet1,mergeclass)
 features = len(trainingSet1[0])-1
 dataframe = pd.DataFrame(testSet1)
 array1 = dataframe.values
 X = []
 X = array1[:,0:features]
 predictions2 = nB4.getPredictions(summary1,X)
 accuracy2 = nB4.getAccuracy(testSet1, predictions2)
 mainTreePredictor = {1.0:currentMainTree,-1.0:others,0.0:[summary1,accuracy2],}
 #print('ACCURACY FOR MAIN TREE PREDICTION IS:', accuracy2)
 else:
 #print('TWIN1 IS:treeno,len(mKey)',treeno,len(mKey))
 if (len(mKey)==1):
 predictor=[]
 accuracy2='100%'
 mainTreePredictor = {1.0:[],-1.0:[],0.0:[accuracy2],}
 #mainTreePredictor = {mKeys:[predictor,accuracy2]}

 #print('MAIN TREE PREDICTOR IS:', mainTreePredictor)
 #'''
 #if (mKeys not in classifier):
 if (mKeys not in TreePredictors):
 TreePredictors[mKeys] = []
 TreePredictors[mKeys].append([mainTreePredictor,TreePredictorTree])
 #print('ALL MAIN TREES PREDICTORS ARE:',len(TreePredictors))
 #print('ALL MAIN TREES PREDICTORS ARE:', TreePredictors)
 '''
 for tree, trees in TreePredictors.items():
 #TreePredictorList = trees[0]
 mainTreePredictor = trees[0]

 mainPredictors = mainTreePredictor[0][0.0]
 print('Key: 1.0', tree,len(mainPredictors))
 #mainPredictors = mainTreePredictor[-1]
 print('Key: -1.0', tree,mainPredictors)
 '''
 #pickle_out = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\multiclassifier.pickle','wb')
 #pickle.dump(TreePredictors,pickle_out)
 #pickle_out.close()
 #print('ALL MAIN TREES PREDICTORS ARE:', TreePredictors.keys())
 return TreePredictors
 #THIS CLASSIFIES WHOLE DATASET USING NAIVE BAYES CLASSIFIERS
 def classifyInstance(self,classifier,classTree,data):
 self.classifier = classifier
 self.classTree = classTree
 self.data = data
 #print('TreePredictors keys:',TreePredictors.keys())
 tree = classTree
 testdata = data
 #mKey =list(TreePredictors.keys())
 #print('TreePredictors keys:',mKey)
 mKey =list(classifier.keys())
 #TreePredictorTree = {}
 CellPredictorTree = {}
 NodePredictorTree = {}
 #predictiondata = data
 predictiondata = []
 correctClassified = {}

 283

 incorrectClassified = {}
 predictionresult = -1
 for i in range(len(testdata)):
 #mainTreePredictorList = {}
 #mainTreePredictor = {}

 nB1 = naiveRootclassifier()
 X = testdata[i]
 vector = X[0:len(X)-1]
 T = 0
 while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS
 treeno = mKey[T]#GET CLASSIFIER NUMBER
 #mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictorList = classifier[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 mainPredictors = mainTreePredictor[0][0.0]
 #print('mainPredictors', mainPredictors)
 if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE
 mainPredictor = mainPredictors[0]
 #print('mainPredictor', mainPredictor)
 mainTreeResult = nB1.predict(mainPredictor,vector)#MAKE PREDICTION
 if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER
 TreePredictorTree = mainTreePredictor[1]
 #print('FOR MAINTREE NO:', treeno)
 T = len(mKey)+1#END THE LOOP
 else:#IF -1
 if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS SECOND LAST
 treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP
 #mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictorList = classifier[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 #print('mainTreePredictor[0]', mainTreePredictor[0])
 TreePredictorTree = mainTreePredictor[1]
 #print('(this is second last)FOR MAINTREE NO:', treeno)
 T = len(mKey)+1 #END THE LOOP
 else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2)
 T = T + 1 #LOOP AGAIN
 else:#CASE OF ONLY ONE TREE
 TreePredictorTree = mainTreePredictor[1]
 #print('CASE OF ONLY ONE TREE',TreePredictorTree[2])
 #mainTreePredictor = mainTreePredictorList[1]
 T = len(mKey)+1 #END THE LOOP
 Key = list(TreePredictorTree.keys())
 N = len(Key)
 #print('TreePredictorTree', TreePredictorTree)
 #print('Key', Key)
 K = 0
 while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS
 #TreePredictorTr = {}
 #TreePredictor = {}
 #Trpredictor = {}
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE
 TreePredictorTr = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]
 TreePredictor = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR
 #print('TreePredictor ',TreePredictor)
 CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS
 NodePredictorList = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS
 CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS
 Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE
 result1 = nB1.predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE
 #print('Trpredictor[0]',len(Trpredictor[0]))
 #result1 = nB1.getPredictions(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE
 #print('subtree result1',result1)
 if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES
 #GET CELL PREDICTORS
 X = len(CellPredictors)
 #print('CellPredictor:for result1=1',CellPredictors)
 if (X>0):#IF THERE ARE CELL PREDICTORS
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:#WHILE THERE ARE CELL PREDICTORS
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1 #COUNT CELL PREDICTORS BOTTOM UP
 #print('Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]

 284

 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = nB1.predict(cellpredictor,vector)
 #print('Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS
 #GET NODE PREDICTOR FOR THIS SUBTREE
 NodePredictors = NodePredictorList[subtreeno]
 #print('NodePredictors',NodePredictors)
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 #print('nodepredictor',nodepredictor)
 nodes = nodepredictor[currentcell[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES
 if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE
 if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL
 predictionresult = othercells[0]
 else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[othercells[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]

 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 K = N
 else:#IF THERE ARE NO CELL PREDICTORS
 #GET NODE PREDICTORS
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]

 285

 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 currentcell = nodepredictorskeys[0]
 #print('currentcell',currentcell)
 nodes = nodepredictor[currentcell]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)#PREDICT ONE OF THE NODES
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 K = N
 break

 else:#IF THERE IS ONLY ONR NODE IN A CELL
 predictionresult = nodepair[0]
 K = N

 else:#IF CURRENT SUBTREE NOT PREDICTED
 if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]
 TreePredictorTr = TreePredictorList[0]
 TreePredictor = TreePredictorTr[0]
 CellPredictorList = TreePredictorTr[1]
 NodePredictorList = TreePredictorTr[2]
 CellPredictors = CellPredictorList[subtreeno]
 X = len(CellPredictors)
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1
 #print('if current subtree not predicted,Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = nB1.predict(cellpredictor,vector)
 #print('if current subtree not predicted,Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE
 #GET NODE PREDICTOR
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[currentcell[0]]
 #print('if current subtree not predicted,nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)
 #print('if current subtree not predicted,Node result',result3[0])

 286

 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL PREDICTION IS FALSE
 if (count==0):
 if len(othercells)==1:
 predictionresult = othercells[0]
 #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)
 break
 K = N
 else:
 K = K + 1

 #print('Prediction result for this vector:',vector,predictionresult)
 y = float(predictionresult)
 predictiondata.append(y)
 #predictiondata[i][-1] = float(predictionresult)
 #print(vector[-1],'...',y)

 if vector[-1] == y:
 if (vector[-1] in correctClassified):
 #print('count before is:',correctClassified[vector[-1]])
 count=correctClassified[vector[-1]]
 correctClassified[vector[-1]] = count+1
 #print('count after is:',correctClassified[vector[-1]])
 #print('Yes1')

 else:
 correctClassified[vector[-1]] = 1
 #print('Yes2')
 else:
 if (vector[-1] in incorrectClassified):
 count=incorrectClassified[vector[-1]]
 incorrectClassified[vector[-1]] = count+1
 #print('No1')
 else:
 incorrectClassified[vector[-1]] = 1
 #print('No2')

 #print('correctClassified:',correctClassified)
 #print('incorrectClassified:',incorrectClassified)
 testFileDistribution = nB1.getClassDistribution(testdata)
 classAccuracy = nB1.getClassAccuracy(testFileDistribution,correctClassified,incorrectClassified)
 #print('classAccuracy is:',classAccuracy)
 #print('len(testdata),len(predictiondata):',len(testdata),len(predictiondata))
 overallaccuracy = nB1.getAccuracy(testdata,predictiondata)
 #print('THE ACCURACY FOR THIS CLASSIFICATION IS=%:',nB1.getAccuracy(testdata,predictiondata))
 return overallaccuracy

 #THIS CLASSIFIES ONE INSTANCE AT A TIME USING A STORED TRAINED CLASSIFIER LOADED FROM PICKLE
 def classifyOneInstance(self,classifier,classTree,data):

 self.classTree = classTree
 self.data = data

 tree = classTree
 testdata = data
 '''
 #RETRIEVE THE CLASSIFIER
 pickle_in = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\BNclassifier.pickle','rb')
 tp=pickle.load(pickle_in)

 TreePredictors = tp
 '''
 TreePredictors = classifier

 mKey =list(TreePredictors.keys())
 CellPredictorTree = {}
 NodePredictorTree = {}
 #TreePredictorTre = {}
 #predictiondata = data
 predictiondata = []

 nB1 = naiveRootclassifier()
 vector = testdata
 T = 0
 while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS
 treeno = mKey[T]#GET CLASSIFIER NUMBER
 mainTreePredictorList = TreePredictors[treeno]

 287

 mainTreePredictor = mainTreePredictorList[0]

 #print('mainTreePredictor[0]', mainTreePredictor[0])
 mainPredictors = mainTreePredictor[0][0.0]
 if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE
 mainPredictor = mainPredictors[0]
 mainTreeResult = nB1.predict(mainPredictor,vector)#MAKE PREDICTION
 if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER
 TreePredictorTree = mainTreePredictor[1]
 #print('FOR MAINTREE NO:', treeno)

 T = len(mKey)+1#END THE LOOP
 else:#IF -1
 if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS SECOND LAST
 treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP
 mainTreePredictorList = TreePredictors[treeno]
 mainTreePredictor = mainTreePredictorList[0]
 #print('mainTreePredictor[0]', mainTreePredictor[0])
 TreePredictorTree = mainTreePredictor[1]
 #print('(this is second last)FOR MAINTREE NO:', treeno)

 T = len(mKey)+1 #END THE LOOP
 else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2)
 T = T + 1 #LOOP AGAIN
 else:#CASE OF ONLY ONE TREE
 TreePredictorTree = mainTreePredictor[1]
 T = len(mKey)+1 #END THE LOOP

 Key = list(TreePredictorTree.keys())
 N = len(Key)
 #print('TreePredictorTree', TreePredictorTree)
 K = 0
 while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE
 TreePredictorTr = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]
 TreePredictor = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR
 CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS
 NodePredictorList = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS
 CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS
 Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE
 result1 = nB1.predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE
 #print('Trpredictor[0]',Trpredictor[0])
 #result1 = nB1.getPredictions(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE

 #print('subtree result1',result1)
 if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES
 #GET CELL PREDICTORS
 X = len(CellPredictors)
 #print('CellPredictor:for result1=1',CellPredictors)
 if (X>0):#IF THERE ARE CELL PREDICTORS
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:#WHILE THERE ARE CELL PREDICTORS
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1 #COUNT CELL PREDICTORS BOTTOM UP
 #print('Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = nB1.predict(cellpredictor,vector)
 #print('Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS
 #GET NODE PREDICTOR FOR THIS SUBTREE
 NodePredictors = NodePredictorList[subtreeno]
 #print('NodePredictors',NodePredictors)
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}

 288

 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 #print('nodepredictor',nodepredictor)
 nodes = nodepredictor[currentcell[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]

 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES
 if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE
 if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL
 predictionresult = othercells[0]

 else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[othercells[0]]
 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]

 else:
 predictionresult = nodepair[0]
 #print('Node result(+ve)',vector,predictionresult)
 break
 K = N
 else:#IF THERE ARE NO CELL PREDICTORS
 #GET NODE PREDICTORS
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 currentcell = nodepredictorskeys[0]
 #print('currentcell',currentcell)
 nodes = nodepredictor[currentcell]

 289

 #print('nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)#PREDICT ONE OF THE NODES
 #print('Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 K = N
 break

 else:#IF THERE IS ONLY ONR NODE IN A CELL
 predictionresult = nodepair[0]
 K = N

 else:#IF CURRENT SUBTREE NOT PREDICTED
 if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING
 subtreeno = Key[K]
 TreePredictorList = TreePredictorTree[subtreeno]
 TreePredictorTr = TreePredictorList[0]
 TreePredictor = TreePredictorTr[0]
 CellPredictorList = TreePredictorTr[1]
 NodePredictorList = TreePredictorTr[2]
 CellPredictors = CellPredictorList[subtreeno]
 X = len(CellPredictors)
 cellpredictorskeys = []
 cellpredictor = {}
 i=0
 while i<X:
 predictor = CellPredictors[i]
 for Keys, cells in predictor.items():
 predictorkey = Keys
 cellpredictorskeys.append(predictorkey)
 cellpredictor[predictorkey] = []
 cellpredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 cellpredictorskeys.sort()
 count=X
 for Keys, cells in cellpredictor.items():
 count=count-1
 #print('if current subtree not predicted,Cell:',cells)
 cell = cells[0]
 currentcell = cell[0]
 othercells = cell[1]
 cellpredictor = cell[2]
 accuracy2 = cell[3]
 result2 = nB1.predict(cellpredictor,vector)
 #print('if current subtree not predicted,Cell result2',result2[0])
 if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE
 #GET NODE PREDICTOR
 NodePredictors = NodePredictorList[subtreeno]
 X = len(NodePredictors)
 nodepredictorskeys = []
 nodepredictor = {}
 i=0
 while i<X:
 predictor = NodePredictors[i]
 for Keys, nodes in predictor.items():
 predictorkey = Keys
 nodepredictorskeys.append(predictorkey)
 nodepredictor[predictorkey] = []
 nodepredictor[predictorkey].append(predictor[predictorkey])
 i=i+1
 nodepredictorskeys.sort()
 nodes = nodepredictor[currentcell[0]]
 #print('if current subtree not predicted,nodes',nodes)
 node = nodes[0]
 nodepair = node[0]
 if len(nodepair)==2:
 nodepredictor = node[1]
 accuracy = node[2]
 result3 = nB1.predict(nodepredictor,vector)
 #print('if current subtree not predicted,Node result',result3[0])
 if (result3[0] == 1.0):
 predictionresult = nodepair[0]
 else:
 predictionresult = nodepair[1]
 else:
 predictionresult = nodepair[0]
 #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)
 break
 else:#IF CELL PREDICTION IS FALSE
 if (count==0):

 290

 if len(othercells)==1:
 predictionresult = othercells[0]
 #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)
 break
 K = N
 else:
 K = K + 1

 #print('Prediction result for this vector:',vector,predictionresult)
 y = float(predictionresult)
 return y

 291

BIOGRAPHY

The author of this PhD thesis, Mr. Fullgence M. Mwakondo, is working at the Technical University

of Mombasa (TUM) as an assistant lecturer in the Institute of Computing and Informatics. He has

over 10 years experience in teaching at higher institutions of learning. He completed his BSc.

Mathematics and Computer science at Jomo Kenyatta University of Agriculture and Technology,

and MSc. (Information Technology) at Masinde Muliro University of Science and Technology. He is

currently pursuing a PhD in Computer science in the school of computing & Informatics at the

University of Nairobi.

