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Abstract 
Despite rapid development in information technologies, a practical way of mapping graduates‘ skills to 

industry roles is a challenge. Attempts have been made by posing this as a multi-classification problem and 

solving using machine learning techniques. However, existing approaches seem not to embrace attributes and 

machine learning structures relevant to the problem, and hence, their results may not be reliable. For example, 

although occupational industry roles in the organizations are structured hierarchically, many studies have 

approached this problem using flat instead of hierarchical methods. Either relevant attributes or hierarchical 

structure that correctly reflects hierarchy of industry roles, or both, are unknown for an effective model for 

mapping graduates‘ skills to industry roles. 

Currently, hierarchical method has not been applied in skills mapping to industry roles despite its many 

benefits vis-à-vis flat method. However, in other areas where it has been used, classification approach 

contradicts underlying structure of the problem thus resulting in multiple label prediction problems. As a 

result, this study presents an investigation that posed skills mapping to industry roles as a hierarchically 

structured multiclass problem where a machine learning structure that correctly reflects the hierarchy of 

industry roles was applied. The aim being to demonstrate using a case how to build a machine learning model 

for mapping graduates‘ skills to hierarchically structured industry roles. This was achieved by establishing 

both underlying structural characteristic of industry roles, as concepts required for target classes, that correctly 

reflects the hierarchy of industry roles and concepts appropriate as attributes for hierarchical machine learning 

purpose, before building and evaluating the mapping model. The model is based on the underlying taxonomic 

structure whose basic approach is to correctly reflect the hierarchical structure of industry roles. Literature 

analysis of three theoretical frameworks provided a basis for establishing appropriate attributes for machine 

learning investigation after which hierarchical classification strategy was designed to generate the model 

before its prototype was constructed. Experimental design was adopted using four machine learning 

techniques (Logistic Regression, K-Nearest Neighbor, SVM, and Naïve Bayes). A benchmark dataset and 113 

Software Engineering employees‘ skills profile data collected using stratified random sampling from various 

software development firms in Nairobi were involved in the investigation. Experiments to evaluate 

performance and validity of the model were designed using repeated 5-fold cross validation procedure. 

Performance reported on carefully selected benchmarks on multi-classification method was adopted for 

validation of results.  

Findings revealed five appropriate attributes for building a model for mapping skills to industry roles and the 

best model was SVM induced with an average generalization performance accuracy of 67% across three 

datasets. On benchmark dataset, our model registered performance accuracy of 85% better than 82% reported 

by a selected benchmark on similar dataset. These results seem to be fairly consistent with results achieved by 

similar hierarchical models as reported in other problem domains such as proteins (53.3%) and music (61%).  

In conclusion, the research objective was fulfilled with the following contributions, namely conceptual model, 

ML architecture for the model, software prototype, hierarchical mapping framework, research findings, 

datasets and literature survey which will benefit researchers in general (students, universities and industry) 

and specially the government in developing an effective policy for training evaluation that ensures graduates 

are relevant to the industry. 

  

Keywords: Hierarchical Classification, Industry-Academia Gap, Problem-solving, Skills Mapping 
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Definitions of Terms 

Competence  

This refers to a proven ability to use or apply knowledge, skills and attitudes for achieving 

observable results in a work or study situations. 

Knowledge 

This refers to a body of facts, principles, theories and practices that is related to a field of work or 

study which is assimilated through learning or training. 

Learning outcomes 

These are statements of what a learner knows, understands and is able to do on completion of a 

learning process, which are defined in terms of knowledge, skills and competence. 

Qualification  

It is a formal outcome of an assessment and validation process which is obtained when a competent 

body determines that an individual has achieved learning outcomes to given standards. It is a 

standard declaring the amount of learning outcome achieved by a learner. 

Industry Role  

It is a job title in an industry occupation. 

Skills 

This is the ability to apply knowledge and use know-how to complete tasks and solve problems. 

Skills are described as cognitive (involving the use of logical, intuitive and creative thinking) or 

practical (involving manual dexterity and the use of methods, materials, tools and instruments) 

Skills Mapping 

This is a mechanism for matching a set of related skills with known industry roles for the purpose of 

prediction. This process links industry jobs with highly skilled workforce and involves use of 

analytical methods, such as machine learning, to determine graduate‘s right match of knowledge, 

skills and their levels for performing jobs efficiently.
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CHAPTER 1: INTRODUCTION 

1.1 Background to the Study 

International Labor Organization Global Employment Trends (2015) indicate rapid growth of Long 

Term Unemployment (LTU) which is as a result of increased unemployment rate currently standing 

at 13 per cent, originally at 5.6 and 6.2 per cent in 2007 and 2010 respectively (Jantawan & Tsai, 

2013). In Europe, number of unemployed persons went up from 30.6 million in 2007 to 47 million in 

2010, while LTU went up from 8.5 million to 14.9 million in the same period (Junankar, 2011). 

These correspond to an increment ratio of 1.5359 and 1.7529 respectively. 

Empirical studies indicate that unemployment problem relates to either workers unable to match their 

skills to requirements of advertised jobs (Kaminchia, 2014), or employers unable to find workers 

with important skills, especially both before and after economic recession of 2008 to 2010. Large 

companies have the highest trouble (30% before and 25% after recession), than smaller companies 

(19% before and 17% before recession) (Perron, 2011). 

In Kenya, the number of unemployed persons increased from 1.8 million in 1998/99 to 1.9 million in 

2005/2009 (Kaminchia, 2014). Empirical studies indicate that unemployment problem relates to 

workers unable to match their skills to the requirements of advertised jobs (Kaminchia, 2014). This 

situation has posed serious psychological and socio-economic challenges to the unemployed persons 

including loss of skills through human capital depreciation, loss of motivation, self-respect and 

dignity, and finally leading to poverty, terrorism, riots, divorce, illness and death (Kaminchia, 2014). 

According to McCowan et al. (2016), the economic survey of 2014 in the Republic of Kenya 

indicates the youth (15-35 years) who form 35% of Kenyan population have the highest 

unemployment rate of 67%. 

However, LTU wouldn‘t be a trouble if characteristics of each kind of job, level of education and 

skills,  and experience were precisely known by the new graduates; if search strategies followed by 

graduates improved search intensity and efficiency; if matching the characteristics employers sought 

against characteristics of applicants was made possible to predict suitability for employment much 

earlier before the applicants faced the employer and before duration of unemployment was used as a 

signal of quality of work productivity. Suitability for employment of skilled graduates in the industry 

is a challenge not only because of the effect of LTU, but due to increased skills variation among both 

graduates and industry roles, emanating from the industry academia gap (Quintin, 2011).  
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For instance, employers often describe their staffing requirements in terms of job profiles and/or 

competences while academia expresses the characteristics of their graduates through certifications 

and qualifications. Although creation of job profiles and the concept of competence are ways of 

communicating the knowledge and skills characteristics required by industry (CWA16458, 2012) to 

stakeholders and specifically academia, Aggarwal et al. (2015) indicates that mapping graduates‘ 

skills to job profiles is not easy  

In the academia, education and training are key activities that ensure supply of qualified practitioners 

in the industry (Show, 2000; Shkoukani, 2013a). However, many education and training providers in 

the academia have certifications that lack transparency in content (Korte et al., 2013) and have 

resulted not only to increased qualifications mismatch but also skill variations between individuals 

with same qualifications (Quintin, 2011). This has been evidenced by revelation of recent studies 

(Cihan & Kalipsiz, 2014; Shkoukani, 2013b; Cope et al., 2000) that employers are not satisfied with 

knowledge and skills of new graduates. In fact, there is an obvious difference between the industry 

needs and the actual supply from the academia hence causing a mismatch gap between academia and 

industry (Tamayko, 1998, Shkoukani, 2013a). 

1.1.1. Causes of the Gap between Academia and Industry 

The issues causing industry-academia gap have been studied widely with an obvious aim of sending 

a strong signal of warning to academia and these issues have ranged from curriculum to assessment.  

1) Curriculum Issues 

There are three types of curriculum: planned, delivered, and experienced curricula (Kenny & 

Desmarais, 2010). Planned curriculum refers to what is intended or planned for the learner while 

delivered curriculum refers to what is taught by the teacher to the learner and experienced curriculum 

consists of what is learned or experienced by the learner during or after learning. According to 

Kenny & Desmarais (2010), the three types of curricula are layered. Planned curriculum, which is at 

the lower level, affects the delivered curriculum, while delivered curriculum, which is in the second 

level, affects the experienced curriculum. Since planned curriculum is the foundation for the other 

two and experienced curriculum is the product, then the gaps in planned curriculum affects the 

experienced curriculum causing the industry to raise alarm.   

Recent studies (Moreno et al., 2012) suggest there are mismatch gaps between defacto curriculum 

and the knowledge expected by the industry. McCowan et al. (2016) have associated all this with 
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decline of funding in public universities by the government hence forcing universities to cut cost by 

focusing on less expense aspects of curricula. As a result, academic curricula are mostly theory 

based, heavily governed by knowledge components and rarely include problem solving skills, best 

practices, interpersonal skills, and leadership skills (Lee & Han, 2008; Kichenham et al., 2005). 

According to McCowan et al. (2016), universities are forced to focus less expense areas such as 

theoretical aspects, knowledge aspects (factual, conceptual and procedural) and very little on 

expensive aspects such as practical skills.  

Besides, Moreno et al. (2012) revealed that some topics in the domain body of knowledge are totally 

ignored. This is in agreement with previous studies (Lethbridge et al, 2007; Gargi & Varma, 2008) 

that cited the same views. Higher order cognitive skills such as application, analysis and evaluation 

which are important for problem solving are rarely part of the curriculum.  

Many similar undergraduate degree programs curricula in different universities have different 

emphasis on domain content knowledge and skills. For example, a survey conducted in 1998 shows 

that there are over 77 graduate software engineering programs all over the world each with different 

career and content emphasis for SE skills (Shaw, 2000). Or, even some undergraduate programs 

contain more than one domain skills in one curriculum, such as in computer science where most 

undergraduate SE education is enshrined within computer science degree programs as SE course and 

related SE courses (Cihan & Kalipsiz, 2014). 

2) Pedagogy issues 

The traditional lecture-based teaching method and large classroom enrollments are not effective for 

teaching. Lecture-based teaching method is only suitable for imparting theoretical knowledge hence 

denying learner‘s application of knowledge and skills through practical training (Shaw, 2000). The 

lecture-based model has been shown by Jackson and Posser (1989) as cited by Cope et al (2000) to 

be effective in transferring knowledge from lecturer to students but ineffective in promoting 

conceptual understanding. According to Gargi & Varma (2008), large number of students enrolled in 

each class is too high for effective classroom teaching. McCowan et al. (2016) observes low quality 

of training as a result of this. 

While some topics are prescribed very little time, others are taught in more depth than required in the 

industrial practice (Lethbridge et al., 2000; Kichenham et al 2005; Surakka, 2007). Further, there is a 

complain of inadequate time to cover the curriculum as provided by the domain‘s body of 
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knowledge. For example, according to Gargi & Varma (2008), SE course is often taught as a one 

semester course in most computer science programs of which it means 2-3 hours of teaching per 

week  for about 14-16 weeks. 

3) Resource related issues 

The resources available in many institutions are not sufficient to model quality professionals as per 

the industry requirements. Poor educational infrastructure such as under-equipped computer labs 

denies students practical exposure. Findings of a study carried out by Shkoukani (2013b) in Indian 

Universities reveals that there are no well equipped laboratories, adequate tools and software 

development experienced teachers towards producing well qualified SE graduate (Shkoukani, 

2013b). Bondesson (2004) observes lack of qualified teachers resulting to professional experience 

limiting learners to theoretical aspects only (Bondesson, 2004). 

4) Assessment issues 

Assessments, especially in projects, are not done effectively to provide sufficient evaluation of the 

learners‘ skills capacity or learning outcomes or to check if students used practices, tools or 

techniques appropriately. Sometimes, projects assigned to students are not assessed throughout each 

step but at the end during presentation hence giving a grade that merely reflects presentation alone 

(Shkoukani, 2013a, 2013b). Besides, since there is a one or two semester gap between attending the 

training of the course and applying the training skills in the project, the learners are likely to forget 

the knowledge.  

Also, most projects are academic in nature and do not represent the issues of scale and complexity of 

real world and are very poor in soft skills. For instance, findings in a study by Cihan & Kalipsiz 

(2014) reveals that soft skills are more important than hard skills for the success of projects, and 

therefore,  there is close relationship between success of projects and soft skills.  

5) Industry issues 

There are rapid changes in the industry resulting in a growing demand for both professionals and 

products especially in the ICT sector. However, Ellis et al. (2002) note that the number of 

professionals is not growing at the rate equal to the growth rate of industry demand. For instance, in 

the ICT sector, the few software engineers available do not meet the SE industry needs (Kolding & 
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Ahorlon, 2009); while Moreno et al., (2012) observe that the newly graduated software engineers 

have a problem of matching the industry skill profiles.  

6) New observations 

In the modern age, matching of skills to industry roles could be achieved using information 

technologies. However, the current study has observed little efforts towards use of appropriate 

methods and as a result causing the industry academia gap. 

1.1.2. Effects  of the Industry-Academia gap 

1) Effect of curriculum issues on graduates 

The curriculum issues described above have resulted into a pool of graduates with diverse domain 

skills. Their diversity is around a number of attributes with different levels that determine their skills 

(Norwood & Briggeman, 2010) such as depth of understanding, level of skill competence or problem 

solving skills, general capabilities of the student, etc. (Shaw, 2000; Shkoukani, 2013a). These 

variations have rendered graduates a challenge in matching their domain skills with the existing 

industry needs (Shkoukani, 2013a). Determining which roles they are likely to fit in the industry 

based on their skills is not easy. There is significant amount of diversity among graduates and among 

industry jobs (Norwood & Briggeman, 2010). Although Show (2000) recommends that education 

and training should prepare student differently for different industry roles, it is expensive. 

2) Effect of industry issues on industry practitioners 

In order to cope with challenges of evolving industry sector, many companies have structured their 

needs into a number of professional roles. The job descriptions of these roles capture the 

requirements relevant to their industry needs (HKCS, 2011). For example, evolving SE industry 

produces new applications that must have new SE requirements of being autonomous, extensible, 

flexible, robust, reliable and capable of being remotely monitored and controlled. According to 

Shkoukani & Lail (2012), this demands new SE approaches whose nature is different from that of 

classical approaches. This leads to new SE roles with new competences which are significantly 

different from those of classical SE.   

These variations of industry needs into diverse professional roles have rendered industry a challenge 

in matching their requirements with the available graduate skills (Shkoukani, 2013a). Determining 

whether a graduate has the skills level relevantly needed by a given company is not easy due to the 
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diverse skills of these graduates. Furthermore, graduates possessions of these skills are not directly 

observable (Norwood & Briggeman, 2010). 

1.1.3. Towards bridging the gap 

There is need to bridge the gap between industry and academia. Thompson et al. (2007) observe that 

academia Industry interaction is vital to bridging the gap through partnership in research projects and 

curriculum development and review. This can lead to production of skillful graduates compatible 

with industry requirements. However, employers in the industry describe and communicate their 

staffing requirements in terms of job profiles and/or competences, while academia communicates the 

skills and knowledge characteristics of their graduates in terms of certifications and qualifications 

(CWA16458, 2012). This communication breakdown has possibly led to a mismatch between skills 

possessed by graduates and skills required by the industry (Quintin, 2011).  

Besides, there are many institutions providing undergraduate degree programs with similar names 

leading to certifications that are different or similar, but producing graduates with different 

qualifications or competences. According to Korte et al., (2013), this is as a result of either or both 

lack of transparency in the content of different courses or different entry points for new students in 

different training institutions. Ideally, individuals with the same certification and qualifications 

should portray same level of competence. However, this cannot be guaranteed because individuals 

differ in the ability to acquire knowledge and skills (Quintin, 2011; Plant & Hammond, 2004; 

Kraiger et al., 1993) leading to differences between individuals in skill levels and types they possess 

(Handel, 2012).  

To acquire knowledge and skills, intellectual abilities are essential prerequisites that are needed 

(Winterton et al., 2005). While academia provides this knowledge and skills through training, there 

is no direct control on the amounts the learner finally acquires or transfers apart from the learner‘s 

abilities (Handel, 2012). Though studies have also shown there are other factors that influence the 

acquisition and transfer of knowledge and skills including academic staff capability, infrastructure, 

domain course content, specific requirements, etc (Shkoukani, 2013a), which is clearly evidenced in 

individuals with same qualifications but have varied competences (Quintin, 2011). Consequently, 

there is a challenge to employers in screening through the qualification mix of many individuals with 

similar qualifications (Quintin, 2011; Korte et al., 2013) for the required skills needed for the jobs 

during recruitment. 
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According to Thompson et al. (2007), the industry has a picture of the knowledge, skills and abilities 

that a new graduate should possess for each role, and these are the skills that employers seek from 

graduates, like problem solving skills, communication skills, leadership skills, ability to work well 

with others etc (Griffin, 2008; Sutherland et al., 2009; Norwood & Briggeman, 2010). Although 

many studies have singled out problem solving as one of the key skills that employers seek (NACE, 

2006; Hansen & Hansen, 2007, Texas A & M, 2007), there is little research about how this skill is 

assessed (Norwood & Briggeman, 2010). The signals employers use to measure graduates for 

problem solving skills like performance in interviews, previous leadership positions and internship, 

are not ideal for measuring problem solving skills (Norwood & Briggeman, 2010).  

Problem solving is a cognitive process that includes goal-oriented thinking and involves the use of 

previously acquired knowledge, skills and understanding to meet the demands of an unfamiliar 

situation (Krulik & Rudnik, 1996; Baker & Mayer, 1999; Orhun, 2003; Wirth & Klieme, 2011). 

Research findings indicate that knowledge and skills acquired during class lectures are the most 

important variables that increase performance in problem solving skills (Robertson, 1990; Orhun, 

2003). Further, the thresholds and certification levels for these skills vary differently for different 

domain roles in the industry (Shkoukani & Lail, 2012; Korte et al, 2013) but the precise levels and 

kind of skills demanded by each role are poorly understood (Handel, 2012). 

There is a challenge in assessing problem solving competence in the traditional classroom education 

and training where evaluation is limited only to the learning objectives. More often, classroom 

grades are used to indicate knowledge and skills acquired in class lectures hence signal problem 

solving skills. However, grades alone are not sufficient to indicate problem solving skills due to 

issues in section 1.1.1 of this chapter. Furthermore, there is a significant variation in grading from 

grader to grader (Srikant & Aggarwal, 2014).  

Although, apart from classroom, there are other forms of education and training such as online, self 

study, and on job training (CWA16458, 2012), still the challenge remains, and most often there are 

three issues in problem solving competence assessment which Baker & Mayer (1999) characterize as 

follows: what to test (product or process?), how to test (routine or non-routine problems?), where to 

test (separate skills in isolated situation or integrated skills in authentic context situation?).  For 

example, education for software engineers is confounded with education for other non-software 

engineers (Show, 2000).  
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Problem solving competence is multidimensional (Wirth & Klieme, 2011), and consists of at least 

two aspects: analytic and dynamic. Analytic aspect of problem solving competence is strongly 

related to intelligence while dynamic aspect is neither related to intelligence nor school-related 

literacy. Moreover, problem solving competence is more of knowledge transfer than retention, more 

of meaningful learning than rote learning, and more of qualitative learning than quantitative learning 

(Baker & Mayer, 1999; Wirth & Klieme, 2011). Therefore, evaluation of problem solving 

competence requires assessment methods that are not only valid and efficient (Mayer, 2002; Kraiger 

et al., 1993) but also cognitive, skill-based and affective. 

Evaluation of problem solving competence should not be done quantitatively in the traditional 

classroom way because of its multidimensionality nature, but instead qualitatively relative to 

industry roles‘ competences. Dimensions for problem solving competence should be used as signals 

for problem solving skills that employers should use for different industry roles and they should be 

founded on strong cognitive abilities that enable them to adapt in case of unexpected changes or 

problems (Plant & Hammond, 2004). The scales for these dimensions should be derived from the 

respective industry roles requirements. 

While employers seek insight on current and future personnel needs, job seekers, parents, and 

students seek to not only know which job prospects look favorable but also understand the 

requirements in terms of education, training and other characteristics (Handel, 2012). Besides, with 

ever increasing unemployment trends in the world and decreasing capacity of most economies to 

create employment opportunities, employability of young and productive graduates from universities 

is at threat of LTU if something is not done to reverse the trend.  

Likewise, with ever increasing pool of qualification mix of new graduates from universities each 

year, employers are at risk of not only taking longer to search the pool but also selecting graduates 

whose skills do not match their needs. Conventionally, Bharthvajan (2013) has observed that 

employers select employees with the right match to efficiently perform jobs based on qualifications 

before they interview them. However, the relationship of this technique to selection of employees 

with adequate performance is not even 10% correct (Bharthvajan, 2013).  

As an alternative, many employers have converted to skills mapping. Skills mapping is a mechanism 

that links highly skilled graduates with industry jobs. This involves use of analytical methods to 

determine graduate‘s right match of knowledge, skills and their levels for performing jobs 

efficiently. Analytical methods in skills mapping are vital in ensuring high performance of highly 
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skilled workforce from academia in the industry jobs. Computationally, skills mapping problem 

could be viewed as a pattern recognition problem where evaluation of such problems using 

technology is the essence of Artificial Intelligence (AI).  

In AI, such problems are tackled using two broad approaches, either searching techniques or 

modeling techniques. Searching techniques involve applying a process with search conditions to look 

for the solution of the problem through a set of possibilities, where solution is a path from current 

state to goal state. Modeling techniques involve creating a general model to represent the natural 

phenomena then using either knowledge based systems or data driven methods such as machine 

learning (ML) techniques to estimate or learn unknown parameters of the model. Due to wide 

availability of data globally, data driven methods, such as ML techniques, are gaining traction. 

ML is one of the major branches of Artificial Intelligence (AI) that is concerned with designing 

programs (ML algorithms) that attempt to make computers behave intelligently by being able to 

sense, remember, learn, and recognize patterns (Leeuwen, 2004). Currently, major areas of ML 

research include speech recognition, computer vision, bio-surveillance, robotic control, and data 

mining. The first three are concerned with pattern recognition, while the last two relate to adapting 

based on self-collected data and knowledge discovery respectively. The current study relates to the 

area of pattern recognition but in the focused area of skills mapping to industry roles.  

Pattern recognition, according to Basu et al. (2010), is the study of how machines can observe the 

environment, learn to distinguish patterns of interest in their background, and make reasonable 

decisions about the categories of patterns. The pattern recognition problem is posed as a 

classification task where the classes are either predefined or are learned based on similarities of 

patterns. To solve such kind of problems a suitable classification method and algorithm to learn the 

classifier are needed. This study relates to pattern recognition where classes are predefined as 

industry roles. As a result, skills mapping problem can be viewed computationally as a pattern 

recognition problem where a feature space of diverse skills graduates requires a classifier to map to a 

set of possible classes of industry roles.  

Recently, research on skills mapping using ML techniques has been active as observed in the works 

of Chien & Chen (2008) in mapping demographic profile of employees to retention and performance 

in the job; Jantawan & Tsai (2013) in mapping demographic profile of employees to employment 

status;  Korte et al. (2013) in mapping certification knowledge and skills content to industry roles; 

Srikart & Aggarwal (2014) in mapping programming skills of an employee to software developer‘s 
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ability to solve problems; Shashidhar et al. (2015) in mapping skills to SE industry roles. This is as a 

result of wide availability of data globally where data driven methods are gaining traction. Figure 1.1 

illustrates skills mapping using classifiers. 

 

Figure 1.1: Skills mapping using flat classifiers and hierarchical classifiers (adapted from 

Chien & Chen, 2008; KIM, 2009) 

However, there seems to be a broad way of establishing ML attributes where some are not relevant 

either to industry roles performance or across occupational industry domains. Besides, there seems to 

be two lines of thought for skills mapping (Chien & Chen, 2008; Jantawan & Tsai, 2013; Korte et 

al., 2013; Shashidhar et al., 2015), classification or regression. There is need to make clear which 

one is relevant. Classification is where job performance skills are classified into various known finite 

range of industry roles‘ classes before skills of graduate are matched with these classes. This process 

results to matching graduate‘s skills to only known and finite industry roles.  

Regression is where skills thresholds for various industry roles are predefined on a continuous scale 

before skills a graduate possesses are determined whether they meet the thresholds of various roles 

(Srikart & Aggarwal, 2014). This process results in matching of graduate‘s skills to infinite number 

of industry roles, both known and unknown. Due to the need to assist graduates and employers match 

correctly skills to available and known industry roles and predict job suitability or performance 

capability, classification approach seemed as the only approach that was viable to achieve this goal 

because of: 1) its ability to produce known class label predictions, and 2) its state of the art 

classification models that improve accuracy of results.  

However, existing ML classification models for skills mapping are based on flat classifiers, despite 

possibility of underlying structure of industry roles being hierarchical as observed in organizational 

structures. Flat classifiers are classification models whose underlying structure of target classes 

ignore relationships between classes and predict only leaf classes. Apart from their inability to 
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handle non-mandatory leaf class prediction problems, either they commit more serious errors or are 

not as accurate as hierarchical classifiers (Silla & Freitas, 2011; Merschmann & Freitas, 2013).  

On the other hand, Wu et al., (2005) note that hierarchical classifiers are designed for classification 

problems whose classes are naturally organized in a hierarchically structured class taxonomy. Two 

types of underlying ML structures used for hierarchical ML are top-down and Directed-Acyclic 

Graph (DAG) trees. Unlike flat, hierarchical classifiers are flexible in representing underlying 

structure of the problem and hence likely to achieve better accuracy levels. Despite these benefits, 

they have not been applied in skills mapping to industry roles. However, in other domains where 

they have been applied, underlying ML structure of classes not only contradicts underlying structure 

of the problem but also the results have been subject to multiple class labels problem hence may not 

be reliable. 

Consequently, the real challenge in skills mapping is how to map graduates‘ skills to underlying 

hierarchical structure of industry roles as reflected by the four types of structures used to organize 

industry roles, namely functional, geographical, product, and matrix (Malone, 2011). Analysis of 

these four organization structures against the two ML structures (trees) available for hierarchical ML 

revealed no tree could be used to describe all four organization structures at once. Ideally, top-down 

tree is suited well for only functional, geographic, and product structures while DAG tree is suited 

well for only matrix structure. So, we do not know a ML methodology that maps skills to a 

hierarchical tree that correctly reflects the hierarchy of industry roles.  

1.2 Statement of the Problem 

The problem of mapping graduates‘ skills to industry roles using machine learning techniques has 

remained a challenge due to both non-relevant attributes and lack of appropriate machine learning 

structure that correctly reflects the hierarchy of industry roles. This situation may cause poor 

matching of graduates‘ skills to industry roles and possibly lead to a mismatch problem. The 

mismatch problem has negative impact not only to graduates of low job satisfaction but also to 

employers of high employee turnover and low productivity.  

Despite rapid development in information technologies, a practical way of mapping graduates‘ skills 

to industry roles is a challenge. This is evidenced by large number of graduates holding jobs that do 

not make  best use of their skills, 70% in Sub Saharan Africa; 35% in Europe  (ILO, 2015). Although 

attempts have been made by posing this as a multi- classification problem and solving using machine 
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learning techniques, existing approaches use both a broad range of non-relevant attributes that are 

industry domain dependent and flat classifiers whose classification methodology does not correctly 

reflect the hierarchy of industry roles (Srikat & Aggarwal, 2014; Shashidhar et al., 2015), and hence, 

their results (82% and 60% respectively) may not be reliable.  

Currently, flat classifiers used for skills mapping either may not be accurate or commit more serious 

errors than their hierarchical counterparts. Hence, exposing not only graduates to a threat of low job 

satisfaction but also employers to the risk of low productivity and high employee turnover. Although 

hierarchical classifiers are more accurate than flat classifiers, they have not been used in skills 

mapping. However, in other domains where they have been used, the underlying machines learning 

structure contradicts the underlying structure of the problem, and have often resulted in possibly 

unreliable results.  

Therefore, we do not know an effective machine learning model with relevant attributes that maps 

graduates‘ skills to industry roles and that correctly reflects the hierarchy of industry roles. Our main 

challenge is, therefore, to develop a machine learning model with both relevant attributes and 

underlying machine learning structure that correctly matches the hierarchy of industry roles. The 

skills mapping model will benefit not only graduates by providing both feedback on job suitability 

and credentials to signal employability but also employers by providing an easy way to filter 

candidates before interviews. 

1.3 Objectives 

1.3.1. General Objective 

To build a data driven model using machine learning for mapping graduates‘ skills to hierarchically 

structured industry roles. 

1.3.2. Specific Objectives 

1) To establish concepts appropriate as machine learning attributes for  mapping graduates skills to 

occupational industry roles 

2) To establish structural characteristic of concepts that correctly reflect the hierarchy of industry 

roles required as target classes for machine learning process 

3) To build using these concepts an appropriate machine learning model that maps graduates‘ skills 

to hierarchically structured industry roles  

4) To evaluate the performance and validity of the machine learning mapping model  



 

   13 

 

1.4 Research Questions 

1) What concepts are appropriate as machine learning attributes for mapping graduates‘ skills to 

occupational industry roles? 

2) What is the structural characteristic of concepts that correctly reflects the hierarchy of industry 

roles required as target classes for machine learning purpose? 

3) How do we build using these concepts an appropriate machine learning model for mapping 

graduates‘ skills to hierarchically structured industry roles? 

4) How do we evaluate performance and validity of the machine learning mapping model? 

1.5 Scope 

The study investigated the content of undergraduate training programs and industry roles‘ 

requirements in a given occupational domain. The undergraduate content related to domain 

curriculum coverage, competence skills tested as reflected in the exams past papers and student 

performance in domain related subjects. Industry role requirements related to job 

descriptions/competence requirements for various categories of domain job titles. The research was 

conducted in Kenya and a case of Software Engineering was used as an industry domain. 

1.6 Significance of the study 

The findings of this study are expected to benefit universities, industry, the government, and 

students. This is in attempt to reduce both low job satisfaction and long term unemployment that is 

one of the causes of social and economic pain both in Kenya and around the world. More 

specifically, Universities and the government as stakeholders in education and training will get a 

better understanding of the gap between the academia and industry and can use this information to 

plan on how to bridge the gap using the mapping model.  

On the other hand, the industry will benefit by getting evaluation tool for revealing information on 

graduates‘ suitability for employment which they can use for decision making when filtering 

candidates for interview. Finally, students will benefit by being able to get an insight on the industry 

roles they are suitable at, hence empowering them to conduct informed search for jobs and lead to 

the right job fix. Right job fix is the ultimate goal the researcher intends to achieve in order to lower 

the risk of low job satisfaction, high employee turnover and low productivity.  

The expected results of this study constitute a number of products that would contribute significantly 

both in the world of knowledge and research. These include: 1) a conceptual model for tackling the 
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problem of mapping graduates‘ skills to hierarchically structured industry roles, 2) a machine 

learning model for predicting new graduates‘ suitability to industry roles, 3) a taxonomic structure 

that is friendly to hierarchical classification methodology, 4) a framework for mapping industry roles 

to hierarchically structured class taxonomy 5) machine learning datasets for experimenting 

hierarchical classification algorithms, 6) a software prototype that can be used by both academia and 

industry in assessing graduates‘ skills vis-à-vis industry roles during training and recruitment 

respectively. 

1.7 Assumptions of the study 

The following assumptions were made in the study: 

1) Entry level occupational industry roles have different requirements for skills proficiency levels 

2) Content coverage in the exam paper directly reflects content coverage during training.  

3) Questions model in the exam paper reflects competencies tested during training. 

4) Student class performance in domain technical subjects reflects the level of competence 

required to perform technical tasks.  

1.8 Thesis Overview 

The rest of this thesis is organized as follows: chapter 2 presents a detailed review of literature 

focusing first on trends of knowledge and skills required by industry, then a mismatch gap between 

industry and academia, followed by evaluation frameworks and methods of knowledge and skills 

competences, then a review of machine learning and its relevance to automatic skills mapping, and 

finally analysis of theoretical frameworks that form the basis for derivation of the conceptual model. 

Chapter 3 outlines the research methodology adopted while chapter 4 presents modeling results and 

findings. Chapter 5 presents the software methodology adopted in the design and implementation of 

the software prototype of the proposed machine learning model. Chapter 6 presents both the 

evaluation results and discussions of the evaluation findings while chapter 7 concludes by 

highlighting not only the main contributions and limitations but also achievements of this study. 
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CHAPTER 2: LITERATURE REVIEW 

2.0 Introduction  

Employment suitability of skilled graduates in the industry has become a challenge due to both 

increased skills variation among graduates and among industry roles, and evidenced by the industry 

academia mismatch gap. This chapter not only reviews background literature on knowledge and 

skills trends in the industry and academia, the industry academia mismatch gap, evaluation of 

graduates skills through mapping to industry roles, and machine learning techniques but also 

examines how skills mapping problem can be viewed computationally as a pattern recognition 

problem where Machine Learning (ML) can play an important role in addressing the challenge.  

This chapter is organized as follows: Section 2.1 presents a review of knowledge and skills trends. 

Section 2.2 reviews issues of industry academia gap. Section 2.3 provides a review of evaluation and 

mapping of graduates‘ knowledge, skills, and competences, an introduction to ML classification 

methods and algorithms, reviews the past, present, and proposed techniques. Section 2.4 & 2.5 

review mapping models. Section 2.6 presents a synopsis of literature review. Section 2.7 outlines the 

theoretical frameworks for skills evaluation. Section 2.8 concludes the chapter with a summary. 

2.1 Trends 

Although this section reviews trends in the industry with a special focus on Software Engineering 

(SE), the researcher remains optimistic that same trends can be generalized in other domains. It is 

equally important to note that the objective is to generally show how research studies are biased 

towards skills trends in the industry at the expense of skills trends in the academia towards industry 

roles and hence failing to effectively highlight the industry academia mismatch gap. 

Globally, extensive research has been made in the area of ICT trends towards industry roles. 

Houghton (2012) highlights these digital trends and attributes these exponential changes in industry 

technology to the pressure exerted by industry roles‘ demand due to expansion in population, 

improvements in human wealth and health, and climate change. The relationship between ICT trends 

and demand to industry roles can be likened with the famous Moore‘s law, which predicted that the 

number of transistors of an affordable C.P.U would double every two years, such that every time 

population doubles so is the demand for industry roles and change in technology. In addition, Walter 

(2005) highlights the Kryder‘s law that predicts doubling of hard drive storage space in every 1-2 

years.  
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However, according to Kanellos (2003) the current chip technology used on C.P.U and hard drives is 

based on silicon technology which is now approaching the limit of physics of shrinking the size of 

transistors on the chip. According to Kaku (2012), unless a new technology is developed to replace 

the silicon technology then both the Moore‘s law and Kryder‘s law are going to collapse. Kaku cites 

that a number of technologies to replace silicon have been proposed including nanotechnology which 

will be used to produce protein computers, DNA computers, Optical computers, Molecular 

computers and Quantum computers.  

On the other hand, there is increasing criticality of software within systems and this has put an 

increasing demand not only for software products but also manpower onto 21st century systems 

(Boehm, 2005). According to Boehm (2005), systems and software engineering processes will 

evolve significantly over the next decades in order to address the need to design and develop not 

only software products but also industry roles that incorporate new technologies. He highlights the 

following eight trends in SE industry: integration, usability, dependability, rapidity, connectivity, 

interoperability, complexity, and autonomy. These trends predict a lot of job requirements changes 

expected in the industry that academia should take into account when preparing graduates.  

As a result, educational institutions are currently experiencing a lot of challenges to change the way 

they educate software developers due to the way software evolves and is developed in the industry 

(show, 2000). According to Show, education for software developers that is currently emphasizing 

on content taught in the traditional way and inspired by closed-shop development model of software 

has failed to produce the supply and quality of developers needed to satisfy the growing demand of 

software. He underlines four key challenges facing educators for software developers which are: 

education for software developers should prepare students differently for different roles, infuse a 

stronger engineering attitude in curricula, help students stay current in the face of rapid change, and 

establish credentials that accurately reflect ability.  

To address these challenges, educators need to understand which skills are important for software 

developers and their changing trends so that they can align their curricula accordingly. Surakka 

(2005) analyzed the trends of job advertisements to find out the most common technical skills sought 

in various software developers roles and identified five common skills for software developers: 

platform skills, database skills, networking skills, distributed technology skills and programming 

skills. According to Surakka, over the past 35 years the technical requirements for software 
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developers have changed significantly, the number of required individual skills has increased and 

duties of software developers have also changed.  

There is little research evidence in Kenya (0 studies) and Africa (12 studies), (outside Africa (600 

studies)) relating to graduates‘ destinations after university, interventions in universities to improve 

employability and their effectiveness, and attributes that promote performance in the job (McCowan 

et al., 2016). A lot of research is focused only on trends in the industry while trends in knowledge 

and skills covered during training in the academia towards industry roles still remain unnoticed. 

In conclusion, trends in the industry indicate significant evolution of technologies that demand strong 

problem solving skills and, equally, evolution of skills requirements for professionals (Show, 2000; 

Boehm, 2005;   Surakka, 2005; Houghton, 2012). Long term trends have been towards jobs requiring 

more education and cognitive skills, but the precise levels and kinds of skills are poorly understood 

by graduates (Handel, 2012). Currently, there is no study that indicates the trend of problem solving 

skills transferred to and acquired by graduates during training towards industry roles.  

2.2 Industry Academia Gap 

ILO (2015) reveals a large number of graduates holding jobs that do not make best use of their skills 

(70% in Sub Saharan Africa; 35% in Europe). Therefore, this section reviews literature and studies 

that have previously worked on the industry academia mismatch with a special focus on the methods 

used or proposed to evaluate or bridge the gap. The aim is to propose an improved method for 

bridging the mismatch gap that is more promising than previous methods.  

A study by OECD (2012) reveals unemployment rate of ICT specialists all over the world was on a 

gradual increase, with 2% in 2007 and 6% in 2010, 2012). IDC study in 2009 in 13 European Union 

countries, observes that graduates are educated but not trained in the commercial world; they do not 

have the latest and appropriate technology skills; they have a good foundation but do not have skills 

for the market (Kolding & Ahorlon, 2009). Most of the graduates from school do not have skills for 

technologies that are used or required in the industry.  

Moreno et al. (2012) reveal that curricula in the academia do not deliver all or the minimum 

knowledge and skills prescribed by the industry. They evaluated the relationship between SE 

education and industry needs using career space report of 2001 as a source of industrial needs, while 

SE2004 curriculum guideline for undergraduates and SE2009 curriculum guideline for graduates as a 

source for SE education. They examined whether the two curricula provided knowledge that was 
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useful for performing tasks identified by career space report that related to software and application 

development, software architecture and design, and IT business consultancy. They observed that 

neither of the curricula delivered the knowledge of all tasks, and therefore were some gaps in the 

curricula. However, they did not indicate the minimum required by the industry. 

Saiedian (2002) in his study, bridging academic education and industrial needs, observes key issues 

that are identified by researchers as challenges between education and industry, and proposes to 

bridge the mismatch gap through industry academia collaboration. Among these being reluctance of 

education community to introduce component-based principles of templates, specification and 

reasoning in introductory undergraduate classes either because they are too difficult for freshmen to 

understand or they might displace other principles taught in introductory courses. 

Shkoukani (2012) proposes a model to find the mismatch gap between academia and industry that 

consists of three independent variables and one dependent variable. The dependent variable consists 

of well qualified graduates, while independent variables include solid courses and resources 

availability, academic staff capabilities and properties, and well equipped laboratories and adequate 

tools. The findings indicate that there are no qualified SE graduates. Hence, there is a mismatch 

between industry and academia. However, their study did not include student academic capabilities 

as this also may equally contribute to graduate qualification. 

Ludi & Collofello (2001) observe a mismatch between academic projects and industry prescribed 

knowledge and skills for real projects. They analyzed the gap between the knowledge and skills 

learned in projects and those required in real projects. Their technique involved mapping a SE 

project course to SWEBOK content and Bloom‘s taxonomies‘ skills. The findings reveal, although 

most of the SWEBOK topics are covered to some extent, there exist several gaps between the level 

of knowledge expected from SWEBOK and the project course. However this study was limited to 

project course which is only one source of SE skills.  

We conclude that although many studies reveal there is a mismatch gap between academia and 

industry, none has been able to show that one of the underlying causes of the gap is poor evaluation 

of problem solving skills of graduates by the industry and academia (Ludi & Collofello, 2001; 

Saiedian, 2002; Kolding & Ahorlon, 2009; Shkoukani, 2012; Moreno et al, 2012; OECD, 2012; 

McCowan, 2016). Studies on evaluation of graduates‘ skills indicate problem solving skill is poorly 

evaluated (Griffin, 2008; Sutherland et al., 2009; Norwood & Briggeman, 2010) hence causing 

industry academia mismatch gap. 
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Our attempt was to solve the mismatch problem between industry and academia through evaluating 

and mapping not only content knowledge and skills gained during training, but also academic 

capability of the student to learning, towards job performance competences. We also put great focus 

on the industry minimum requirements of knowledge and skills to perform the industry roles. 

2.3 Evaluation and Mapping of Graduate’s Knowledge, Skills, and Competences 

The aim of this section is to highlight not only how graduate skills in the industry and academia are 

evaluated, but also what kind of skills and competences that are evaluated and sought for by the 

industry. This is import because it can provide insight on the fundamental components or attributes 

that the industry seeks from graduates. Competence is a useful concept in bridging the mismatch gap 

between industry and academia. Sandberg (2000) defines competence as attributes possessed by 

workers, typically represented as knowledge, skills, and abilities and personal traits, required for 

effective work performance. Employers usually describe their job requirements in terms of 

competences, while academia provides qualifications and certification tests as evidence of 

knowledge and skills acquired during training (CWA1654, 2012). 

Extensive efforts have been made to evaluate graduates‘ skills through mapping qualifications and 

certifications to job competences in the industry but with no success. For example, Korte et al. 

(2013) produces a prototype of a model to map certifications based competences to competences in 

the industry jobs. Although the mapping method is not clearly shown in the study, they report a 

challenge of a reliable formula to combine competences in order to understand the overall capability 

of the graduate. 

There is also confusion among students and graduates in understanding employers‘ preferences, with 

some being underestimated or overestimated by students (Hansen & Hansen, 2007). For example, 

Belcheir (1996) as cited by Norwood & Briggeman (2010) reveals that Boise State University 

understood properly the importance of communication skills to employers but overemphasized the 

role of problem solving skills and underemphasized the value of interpersonal skills. Again, showing 

there is a problem with the reliability of the formula to predict employers‘ preferences. 

Quintin (2011) in their study in OECD countries reveal 25% of workers are overqualified while 20% 

are under-qualified. They further reveal a challenge to employers in screening job competences 

through graduates with same formal qualifications, as workers with same qualification level may 

portray different degrees of competence. Competence assessment methods used for graduates by 
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employers in the industry are different and most common are interviews, grades, and awards. 

However, many of them do not express the actual worker‘s value or attribute that organizations 

prefer, but instead only signal those values or attributes. A survey by Norwood & Briggeman (2010) 

reveal that interview is the most used method by employers to signal every attribute they prefer of a 

graduate, then followed by others like grades, course taken, major, etc. 

Most studies seek to know methods and competences employers prefer to assess graduates. 

Sutherland et al. (2009) reveal five competences that must be offered side by side with content 

knowledge during training: problem solving, critical thinking, communication, collaboration, and 

adaptive learning. They show that learning based on content knowledge only encourages 

memorization at the expense of deep conceptual understanding of core ideas, generalizable 

principles, and knowledge that can be applied in new situations.  

Since universities offer flexible degrees with diverse experiences as learning outcomes, they use a 

wide range of assessment methods including formal examination, laboratory reports, problem-

solving exercises, presentations, and project work. However, there is no adequate cross check made 

to ensure that some learning outcomes are not over tested at the expense of others which may not be 

tested at all (Karl et al., 2009). Although Colvin (2007) cite that some courses taught by different 

professors may vary in content and emphasis, Karl et al. (2009) reveal that the cognitive skill level 

examined by exam questions remains relevant to the cognitive skills. But still, assessment of 

examinations tends to vary from grader to grader because there is no underlying framework of 

reference.  

We conclude, therefore, that a number of issues that may arise in the evaluation and mapping of 

graduates‘ skills: Content knowledge evaluation may not be adequate, and therefore we may need to 

also evaluate competences (Sutherland et al., 2009); Qualifications and certifications alone may not 

adequately communicate graduates‘ skill possession (Quintin, 2011); Manual grading may be 

subjective (Colvin, 2007; Karl et al., 2009); there may not be reliable formula to combine 

competences to predict and indicate overall capability of graduate (CWA1654, 2012). 

As a way forward, there was need to explore a number of strategies that could provide focus to deep 

understanding of the solution requirements based on the existing knowledge. For example, to 

perform job tasks properly in the industry core technical knowledge (content knowledge) received 

during training and experience are key requirements, although experience is acquired with practice 

on the job (Moreno et al., 2012). Sutherland et al. (2009) note that learning content knowledge alone 
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makes it difficult to apply the knowledge in unfamiliar context away from the context in which it 

was learned, and this would promote memorization. However, if the goal is to apply the knowledge 

in unfamiliar context outside classroom, such as in the job, then content knowledge should be 

accompanied by some competences that promote deep understanding and generalizable principles. 

2.3.1. Relationship between Content Knowledge and Competences 

2.3.1.1. Communication  

Content knowledge is required to provide logic and evidence to explain a task i.e. a good command 

of content knowledge is required to do so. Baker & Mayer (1999) posit that one of the cognitive 

tasks of content understanding is explanation which involves illustrating an argument by applying 

the relevant prior knowledge and writing in an organized way that avoids misconceptions (Mayer, 

2002). 

2.3.1.2. Collaboration 

Collaboration helps in sharing, clarifying, and distributing content knowledge among peers. 

Collaboration cannot occur without communication. Both communication and collaboration increase 

understanding, retention, and expression of content knowledge (Mayer, 2002). They both add value 

to content knowledge. 

2.3.1.3. Critical thinking 

Critical thinking refers to deep thinking required to tightly connect discrete pieces of content 

knowledge to produce integrated content knowledge. Mayer (2002) outlines four types of knowledge 

as factual, conceptual, procedural, and meta-cognitive. While factual and procedural are low level 

knowledge, conceptual and meta-cognitive are higher level knowledge that involve connecting 

pieces of knowledge together to enhance or demonstrate better content understanding (Baker & 

Mayer, 1999; Mayer, 2002). 

2.3.1.4. Adaptive learning 

Adaptive thinking refers to the ability to actively use ones cognitive resources to regulate ones 

thinking in order to improve understanding of integrated content knowledge with an aim of creating 

new content. According to Mayer (2002), meta-cognitive involves knowing strategies for doing 

tasks, knowing demands for tasks, and knowing ones‘ own capabilities towards a task. This promotes 

creating new content or strategies. 
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2.3.1.5. Problem solving 

Problem solving involves application of integrated content knowledge in a new context. Problem 

solving involves critical thinking in relation to a problem while adaptive learning controls and 

regulates thinking about a problem. So, critical thinking and adaptive learning support problem 

solving. 

We conclude, from this analysis, that communication and collaboration are subordinate to content 

knowledge. Likewise, critical thinking and adaptive learning are subordinate to problem-solving. 

Therefore, the most important and useful relationship to evaluate is content knowledge and problem 

solving relationship. Robertson (1990) reveals high correlation between conceptual understanding of 

content knowledge and transfer of problem solving skills. In the study, they claim that concept 

understanding is the main predictor of performance in transfer problems and there is a cognitive 

structure associated with that successful performance. This is in concurrence with earlier studies that 

also reveal that cognitive connections within a person‘s memory structure promote understanding 

and enhance performance on transfer problems (Ausubel, 1968; Gagne & White, 1978).  

However, the index Robertson (1990) uses for understanding is not clearly understood what it 

reveals and therefore cannot be interpreted. This is because the index is a very poor predictor of 

performance in familiar problems in the written exam, and also is not correlated with overall 

performance in the written exam. 

2.3.2. Skills Evaluation Frameworks 

Content knowledge is usually the main source of domain-specific knowledge (declarative knowledge 

and procedural knowledge, also known as domain-specific strategies). Content knowledge can be 

evaluated using the body of knowledge provided in the academic discipline or competence 

framework provided in the industry.  

Each academic discipline has a body of knowledge that all graduates ought to acquire during training 

(Calvin, 2007). Krishnan (2009) characterizes every academic discipline with a body of accumulated 

specialist knowledge referring to their object of research. In their study, on analysis of the gap 

between the knowledge and skills learned in academic course project and those required in real 

projects, Ludi & Collofello (2001) used Software Engineering Body of Knowledge guide 

(SWEBOK) as the framework to evaluate the industry academia mismatch gap.  
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Problem solving can be evaluated using competence framework which provides skill areas, 

competences, and proficiency levels to which every certification or qualification can be mapped 

(Korte et al., 2013). This then splits problem-solving into three dimensions: skill area, competence, 

proficiency level. Each problem-solving area consists of a number of skill areas, and each skill area 

requires a number of domain specific competences. Now, each competence is scaled into several 

proficiency levels. Korte et al. (2013), in their study, use e-Competence Framework (e-CF) to 

evaluate the skill value of industry based certifications.  

Therefore, competence framework defines a set of skill-based competences needed by all students 

entering the industry profession. Some frameworks that may be relevant to this study have been 

described below. Since the domain of academic librarians was used as a validation case for our 

model there was need to also discuss its framework. 

2.3.2.1. SWEBOK Guide 

The industry accepted SE knowledge and skills required of a qualified software engineer are 

provided under the Software Engineering Body of Knowledge (SWEBOK) curriculum guideline. 

There are two versions of SWEBOK guide for both undergraduate and graduate students. These SE 

curriculum guidelines are provided in SE2004 and GSWE2009 under the joint effort of IEEE/ACM 

for both graduate and undergraduate students respectively (SE, 2004; GSWE, 2009). The two 

curriculum guidelines are used as defacto standards for the knowledge and skills expected of a 

professional software engineer (Merono et al., 2012), and they constitute planned curriculum 

(Pideaux, 2003; Kenny & Desmarais, 2010).  

According to Abran et al., (2006), the purpose of SWEBOK guide is to describe what portion of the 

body of knowledge is generally accepted and to provide topical access to it. The actual body of 

knowledge already exists in published literature provided as reference materials in the guide. 

SWEBOK is just a guide that can assist in the development of curriculum as each Knowledge Area 

(KA) is decomposed into topics, and knowledge depths of each topic are rated using Bloom‘s 

Taxonomy (Ludi & Collofello, 2001).  

SWEBOK guide is a joint product of a continued collaboration between industry, academia and 

standard setting bodies all over the world (Ludi & Collofello, 2001). Abran et al. (2006) cite that so 

as to get a worldwide consistent view of SE, the first version 2001 guide was developed through a 
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process that engaged about 500 reviewers from 42 countries while the second version 2004 guide 

engaged over 120 reviewers from 21 countries from North America, Pacific Rim, and Europe.  

SWEBOK guide provides the following ten Knowledge Areas (KA) that define the SE profession for 

undergraduates, and considered as core knowledge for all software engineers (Ludi & Collofello, 

2001):  

1) Software Configuration Management 

2) Software Construction 

3) Software Design 

4) Software Engineering Infrastructure 

5) Software Engineering Management 

6) Software Engineering Process 

7) Software Evaluation and Maintenance 

8) Software Quality Analysis 

9) Software Requirements Analysis 

10) Software Testing 

According to Abran et al. (2006), the reference material for each KA is provided in the form of book 

chapters, referenced papers or other recognized sources of authoritative information. Further, the 

guide recognizes eight related disciplines that software engineers should have knowledge from and 

each KA description may make reference to. Since it is a result of a process of domain experts 

review and validation, SWEBOK is not only a good foundation for creating SE curriculum (Ludi & 

Collofello , 2001; Abran et al., 2006) but also for creating a skills mapping model for software 

engineers in this study. 

2.3.2.2. European e-Competence Framework 

European e-Competence Framework (e-CF) is a common European framework for ICT professionals 

in all industry sectors created in 2008 (version 1) and 2010 (version 2). It provides a reference of 40 

competences as required and applied at ICT workplace, using a common language for competences, 

skills and proficiency levels that can be understood across Europe (www.ecompetences.eu). It is an 

implementation of the European Qualification Framework (EQF) for application in the ICT sector by 

all stakeholders.  
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Korte, et al. (2013) cite that EQF is the overall qualification framework for the European countries 

agreed in 2008 and its intention is to help make national qualifications more transferable across 

Europe by relating national qualification systems to a common reference framework. The e-CF, on 

the other hand, is an effort of the need for standardization and guidance to ICT practitioners (students 

or experienced) in their performance, training and development in European countries (CWA16458). 

Basically, e-CF is used to support the definition of jobs, training courses, qualifications, career paths, 

certifications etc in the ICT sector. 

The e-CF framework provides a three dimensional views, namely skill areas, competences, and 

proficiency levels to which every certification can be mapped. The 40 competences of the framework 

are classified according to five main ICT business areas and relate to EQF. To support e-CF 

application within multiple environments, a series of case studies have been carried out including the 

following: 

1) e-CF for ICT professional self-assessment 

2) e-CF for assessment and career tools 

Although e-CF has been used successfully to create European ICT job profiles, the following 

challenges have been reported: 

1) how to combine competences using a reliable formula to indicate the overall capability of a 

candidate 

2) how to verify the competences claimed by ICT professionals 

3) e-CF is a high level description of competences and does not take into account the granularity 

levels of individual job competences 

4) e-CF requires the combined use with other frameworks or educational achievements 

2.3.2.3. Professional Knowledge and Skill Base (BPKSB) Framework 

The knowledge and skills necessary for academic librarians are captured in the Body of Professional 

Knowledge described as Professional Knowledge and Skills Base (PKSB). PKSB was created by the 

Chartered Institute of Library and Information Professionals (CILIP) and, according to Nagata et al. 

(2006), describes the knowledge base that distinguishes information professionals in three concentric 

circles. The framework describes a total of 11 areas of knowledge and skills necessary for 

professional academic librarians as outlined below: 

1) Traditional services 
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2) Books and libraries 

3) New services 

4) Organization of information 

5) Collection building 

6) Library standards and networks 

7) Information flow/publishing industry 

8) Communication 

9) IT technology 

10) Business administration  

11) Foreign languages 

The framework divides the knowledge and skills areas into three groups, core schema (1-5), 

application environment (6-7), and generic and transferable services (8-11).   

We conclude, from the above analysis that frameworks need to be used as references for skill 

evaluation (Srikant & Aggarwal, 2014) in order to reduce assessment variation from grader to grader. 

However, frameworks provide skill transparency only but not the entire solution to variation problem 

from grader to grader, cost of hiring graders, or evaluation time wasted during grading. And 

therefore, automatic skill evaluation can greatly provide a reliable solution and formula for 

combining competences to predict overall capability of a graduate during both training and 

recruitment processes of industry and academia (Srikant & Aggarwal, 2014).  

2.3.3. Automatic Skills Mapping 

Variations in assessment from grader to grader has made automatic skills evaluation and mapping a 

hot topic of keen interest both in the recruitment process of industry and training process of academia 

(Srikant & Aggarwal, 2014). This is an attempt to greatly lower the cost of hiring, reduce time 

wasted and provide a standard way of graduate assessment. Due to wide availability of data globally, 

data driven methods, such as machine learning techniques, have become popular. Machine learning 

classification methods and algorithms may provide a reliable formula for combining competences to 

indicate or predict overall capability of a graduate. 

2.3.3.1. Machine Learning Classification Methods  

Machine Learning (ML) is one of the major branches of Artificial Intelligence (AI) that is concerned 

with designing programs (ML algorithms) that attempt to make computers behave intelligently by 
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being able to sense, remember, learn, and recognize patterns (Leeuwen, 2004). Through the years, 

major branches of ML have emerged including symbolic learning by Hunt et al. (1966), neural 

networks by Rosenblatt (1962), and statistical learning by Nilsson (1965). In each of the ML 

branches there has been a rapid development of ML algorithms, although majority of them face so 

many challenges. ML algorithms are designed to analyze a known data set so as to discover and 

extract knowledge rules from the data set through building a classifier that can map or predict group 

membership of unknown data instances. 

Machine learning problem can be defined as the problem of improving some measure of 

performance when executing some task, through some kind of training experience (Jordan & 

Mitchell, 2015). Task can be of assigning a label to an item, performance to be improved could be 

accuracy (or speed) of doing this task and training experience could be historical data of the item 

with labels. Traditionally, the task can be modeled as a function (f), where learning problem is to 

improve the accuracy of the function and training experience consists of a sample data of known 

input-output pairs (x,y) of the function. 

In many machine learning setups, the goal is to learn the function f such that: 

                                                                                                                                                 eqn (1) 

Where x є X are inputs while y є Y are outputs. The goal of learning f is to improve its performance 

accuracy through function approximation or optimization procedures and is achieved using various 

machine learning algorithms. Conceptually, machine learning algorithms are viewed to be searching 

through a large space of candidate functions that optimize the performance metric, guided by the 

training experience (Jordan & Mitchell, 2015). Depending on the kind of output (discrete or 

continuous) the candidate function is called a classifier or regression function respectively. 

ML is used to solve problems through a number of methods including segmentation, feature 

extraction, classification, clustering, regression, modeling, etc. There are three main categories of 

machine learning methods: supervised, unsupervised, and reinforced learning methods. Classification 

is one of the machine learning methods used to predict group membership for data instances 

(Mehtani, 2011). The groups, also known as classes, are either predefined (supervised classification) 

or are learned based on similarities (unsupervised classification)  or rewards (reinforced 

classification) (Basu et al., 2010; Raschka, 2015).  

f: x                 y 
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2.3.3.2. Supervised Classification Method 

This is the construction of a classification procedure from a set of data for which the true classes are 

known (Mitchie et al., 1994), and is sometimes referred to as supervised learning, pattern recognition 

or discrimination. The main objective of supervised classification method is to establish a 

classification rule from a given correctly classified data, or to construct a learning model from 

labeled training data set so as to be able to classify new objects with unknown labels (Mehra & 

Gupta, 2013). Supervised classification methods are further sub-divided into parametric and non-

parametric depending on whether the data follows a specific distribution or not. 

The supervised classification method (also known as supervised machine learning) consists of the 

following main elements (Kotsiantis, 2007): 

1) Identification of required data 

o Involves identifying the most informative features 

o Methods which can be used include: experts, brute-force 

2) Data pre-processing 

o Involves removing noisy features to enhance learning from very large data set 

o Methods used include: instance selection, features subset selection 

3) Algorithm selection 

o Involves comparing two or more supervised learning algorithms 

o Methods used include: statistical comparisons, paired t-test 

4) Training  

o Involves teaching the model with a sample of existing correctly classified cases 

o Methods used include: Artificial Intelligence (AI), Neural Networks, Statistical 

techniques, Support Vector Machines (SVM) 

5) Evaluation  

o Involves running the trained model with a set of classified cases it has never seen 

before so as to see whether it will classify correctly or not 

2.3.3.3. Unsupervised Classification Method 

This is the construction of a classification procedure from a set of data for which the true classes are 

unknown but are inferred from the data set (Mitchie et al., 1994), and is sometimes known as 
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clustering. This method can be viewed as aiming to identify natural groups or classes or clusters in 

the data. 

2.3.3.4. Reinforced Classification Method 

This is the construction of a classification system that improves its performance through interaction 

with the environment (Raschka, 2015). This method can be viewed as aiming to establish a 

classification rule based on a reward signal in the environment. Reinforcement learning is related to 

supervised learning where instead of the correct ground truth label or value, we have a measure of 

how well the classification action was measured by a reward function. 

2.3.4. Machine Learning Algorithms 

ML algorithms are usually designed around a particular paradigm for the learning process which 

must be clear about the learner, domain, goal, representation, algorithmic technology, data source, 

training scenario, prior knowledge, success criteria, and performance (Leeuwen, 2004). As a result, 

Kotsiantis (2007) indicate that classifier design must be based on assumptions made about the 

classification problem and the training sample used to teach the classifier. This is because the 

predictive power of the classifier is largely dependent on the quality and size of the training sample. 

However, determining the termination point for the training is still a challenge (Figueroa, et al., 

2012) and this can lead to over fitting.  

Preliminary survey revealed three categories of supervised machine learning algorithms/techniques: 

Logical/symbolic techniques (Artificial Intelligence), Perception-based techniques (Neural 

Networks), Statistics-based techniques (statistical methods), and support vector machines technique. 

However, many ML algorithms suffer challenges in terms of algorithmic approach, data 

representation, computational efficiency, and quality of the resulting classifier (Kotsiantis, 2007). 

This triggered review of various ML algorithms to reveal various ways they could be improved.  

2.3.4.1. Back Propagation Algorithm 

Under neural networks, Rosenblatt (1962) developed a basic delta learning rule for Single Layered 

Neural Network (SFNN). Minsky and Papert (1969) proved that this rule could not solve non-linear 

problems. Rumelhart et al. (1986) developed the Back Propagation Algorithm (BPA) for Multi-

Layered Feedforward Neural Networks (MLFNN). BPA is based on gradient descent search method 

that it uses to adjust the connection weights in MLFNNs. According to Kononenko (2001), although 
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BPA is well known for its accuracy, it suffers a problem of slow convergence and local minimum 

problem.  

Survey by Vora and Yaguik (2013), reveal extensive research proposing various ways of solving 

BPA problems and improving its performance such as replacing its gradient descent method with 

momentum and delta-bar-delta method; modifying coefficient of correlation between prior weight 

change and downhill momentum factor; choosing a network weight upgrade rule; choosing a series 

of weight vector over learning phase; multiplying connecting weight by a factor; changing the 

derivative of the learning function; updating learning rate and inertia factor dynamically; summing 

linear and non-linear quadratic errors of the output neurons; adjusting learning rate and momentum 

factor at each iteration; introducing activation function of neurons in hidden layer in each training 

pattern; combining non-linear regression with; training hidden and output layers independently; 

combining linear least squares with gradient descent; combining BPA with genetic algorithm. 

Even though several variations and different techniques have been suggested to improve 

performance of BPA none guarantees a global solution and, therefore, the problem of slow 

convergence and local minimum is yet to be solved. 

2.3.4.2. Support Vector Machines  Algorithm 

Support Vector Machines (SVM) is a learning algorithm invented by Vladmir Vapnik in 1995 and is 

used in many fields of pattern recognition and classification of data. SVM is based on convex 

quadratic programming. Although SVM has emerged as a good classification technique and has 

achieved excellent generalization performance in a variety of applications, it suffers a problem of 

bad memory utilization and long training time as the number of training examples increase (Wang, 

2015). 

Recent survey by Wang (2015) reveals extensive research in SVM, and a variety of ways for 

improving the SVM problems have been proposed. These include decomposition-based approaches 

that consider a small subset of variables in each training iteration; alpha seeding approaches; adding 

a constant to the objective function; using conjugate gradient scheme; informative instance selection 

for training; incremental learning; using Finite Newton Method.  

Given N input elements and two disjointed output classes, the goal of SVM is to take the input 

elements, learn them, and predict if each of them belongs to one of the two classes.  
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Given a training set, S= {(x1,y2),(x2,y2),….(xN,yN)}, SVM learning algorithm involves building a 

model that maps new  instances of X to Y. Geometrically, the function, f, represents the hyperplane 

of all possible planes that are able to correctly classify the input elements. 

For linear model, f is given by, 

                                                                                                                                                 Eqn (2) 

Where x є X are inputs while y є Y are outputs. 

Finding the function f involves modeling of this hyperplane by learning two parameters w and b that 

maximize the distance between the nearest points of the two classes, i.e. that make f(x) = 0. These 

nearest points between the two classes are called support vectors and the distance between each point 

in each class and the hyperplane is called functional margin(Y) and is given by, 

                                                                                                                                                Eqn (3) 

The nearest points of each of the two classes are those points that optimize Yi = 1, and distance 

between these nearest points of the two classes is given by the sum of their functional margins.   

Therefore, SVM learning involves finding an optimal separation hyper-plane that maximizes this 

sum of the two margins i.e. Yi >=1, and its parameters (w, b) minimized to the lowest level possible. 

The solution to the above dual optimization can be summarized using the equation below which 

gives the hyperplane. 

                                                                                                                                                Eqn (4) 

For non-linear model, f is given by, 

                                                                                                                                                      Eqn (5) 

Where                                       is a non-linear mapping from a high dimensional input space to a high 

dimensional output space. The solution to the above dual optimization can be summarized using the 

equation below which gives the hyperplane. 

                                                                                                                                                  Eqn (6) 

Given the original input space points, calculate (ф(x). ф (xi) product directly in the feature space and 

then map the point in the feature space. To do this an instrument known as kernel is needed. There 

are a few functions that can be considered as kernel i.e.  

1. Linear kernel, K(xi,xj) = (xi.xj) 

f(x) = (w.x) + b 

Yi = yi(w.xi) + b 

f(x) =  ∑N xiyi(x.xi) + b 

f(x) =  ∑N wiфi(xi) + b 

Ф : X                     y 

f(x) =  ∑N xiyi (ф(x) . ф(xi)) + b 
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2. Polynomial, K(xi,xj) =[ (xi.xj)+1]
d
 where d is not zero 

3. Gaussian,  K(xi,xj) = e  

2.3.4.3. Naïve Bayesian Algorithm 

The theoretical basis of the naïve Bayesian algorithm and its variants was first developed by Thomas 

Bayes in 1964. Naïve Bayesian algorithm assumes underlying probabilistic model and allows us to 

capture uncertainty about the model using maximum likelihood method. Although it is simple and 

very powerful, naïve Bayes algorithm does not work well if there is dependency between predictor 

variables.  

Survey by Bielza & Larranaga (2014), reveals extensive variants and extensions of the naïve 

Bayesian classifier focusing towards detecting and handling dependency between predictor variables  

such as the m-estimate of probabilities that significantly improved the performance of Bayesian 

classifier; a semi-naïve Bayesian classifier that detects dependency between attributes; fuzzy 

discretization of continuous attributes within the naïve Bayesian classifier; a recursive Bayesian 

classifier that uses naïve Bayesian classifier in the nodes of decision trees; explicit searching of 

dependences between attributes in the naïve Bayesian classifier; relaxing conditional independence 

assumption by allowing each predictor variable to depend on at most one other predictor in addition 

to the class; allowing each predictor variable to have a maximum of k parent variables apart from the 

class variable. 

Given X (x1, x2,…, xn) input attributes and W (w1, w2,…, wm) disjointed output classes, where X 

and W are dependent the goal of naiveBayes is to take the input attributes, learn them, and predict 

conditional probability of W given X. naïve Bayes is based on the Bayesian theory which uses the 

knowledge of prior events to predict the future events. According to Bayesian theorem, if wj is a 

hypothesis that is made over an event and xi is the data set describing the event then: 

                                                                                                                                                   Eqn (7) 

 

Where P (wj) is prior probability of hypothesis wj, P (xi) is prior probability of data xi, P (xi|wj) is 

conditional probability of xi given wj, and P (wj|xi) is conditional probability of wj given xi. 

Suppose xi is a feature vector of a sample of instances  i (i=1,2,…,n) and wj be  notation of class j 

(j=1,2,…,m), then probability of observing sample xi given that it belongs to class wj is called 

conditional probability of xi  and is given by P(xi|wj).  

P(wj|xi) = P(xi|wj).P(wj) / P(xi) 
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Also: 

 

P (xi|wj) =            Eqn (8) 

 

The general probabilities of encountering a class wj are given by counting all instances of class wj 

then dividing by the total count of all instances in the training dataset and are called prior 

probabilities and denoted by P(wi) 

Also: 

 

P (wj) =                                                                                                                                         Eqn (9) 

 

While the general probabilities of observing an instance xi independent from class labels are given by 

adding probabilities of xi given wj and probabilities of xi given not in wj  

Also: 

P (xi) =  eq                                                                                                                                  Eqn (10) 

However, we make some assumption that xi are independent and identically distributed so that xi are 

independent and drawn from similar probability distribution such as normal probability distribution. 

Hence, using this probability distribution we can easily calculate prior probabilities of xi. 

2.3.4.4. Logistic Regression Algorithm 

This is a linear and binary classification algorithm that can easily be extended to multiclass 

classification through the one versus the rest (OvR) technique (Raschka, 2015). The principle of 

logistic regression is based on the ratio of probabilities of two mutually exclusive events (y=1, y=0), 

where probability of y=1 is p and probability of y=0 is 1-p. Then, the ratio of these probabilities also 

known as odd ratio is given by: 

odd ratio = p/(1-p)           Eqn (11) 

Logit probability of p is the logarithm of the odds ratio and is given by: 

            Logit (p (y=1)) =log (p/(1-p))          Eqn (12) 

Logit function takes in values in the range (0, 1) and transforms them to the entire range of real 

numbers, which we can use to express the relationship between feature values and the log odd-ratio 

as follows: 

Count of all instances of class wj 
 
Total count of all instances in the training dataset 

No. of times xi appears in all instances of class j 
____________________________________________________ 
Total count of all values of features of instances in class wj 

P(xi|wj). P(wj) + P(xi|~wj). P(~wj) 
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Logit (p (y=1|x)) = w0x0 + w1x1 + w2x2 +……. Wmxm         Eqn (13) 

From Eqn (13) p(y=1|x) is the conditional probability that a particular instance belongs to class 1 

given its features x which is obtained by getting the inverse of eqn (13).  This inverse of logit 

function is given a follows: 

Inverse (logit (p (y=1|x))) = 1/(1- e 
-logit (p (y=1|x)) 

)        Eqn(14) 

L(z) = 1/(1- e
-z 

)            Eqn (15) 

 Where z = w0x0 + w1x1 + w2x2 +……. Wmxm  

L(z) which is the inverse function is called the logistic regression model 

 

2.3.4.5. K-Nearest Neighbor (KNN) Algorithm 

This is one of the algorithms which does not learn any discriminative function from the data but 

memorizes the training data instead (Raschka, 2012). The algorithm uses distance metric to find the 

instances in the training dataset that are closest or most similar to the new instance that needs to be 

classified. The class label of the new instance is then determined by a majority vote among its 

nearest neighbors. Its procedure can be summarized by the following steps: 

i) Choose a number, k, as a distance metric. 

ii) Find k nearest neighbors of the new instance that needs to be classified. 

iii) Assign the class label by majority vote. 

While the main merit of this algorithm is the ability to immediately adapt as we collect new training 

data, its downside is the computational complexity for classifying new instances that grows linearly 

with the number of instances in the training dataset in the worst-case scenario, unless the dataset has 

very few features. 

We conclude, from the above analysis, that the classification methodology applied on a particular 

problem depends on the data, the model of the data, and the expected results of analysis (Bedzek, 

1981). 

2.3.5. Advanced ML Methods and Algorithms  

2.3.5.1. Extreme Machine Learning  

Extreme Machine Learning (EML) is the state of the art ML algorithm for learning a Single hidden 

Layer Feedforward Neural Network (SLFNN) where the hidden nodes are randomly initiated and 
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then fixed without iteratively tuning (Huang et al., 2014). The only free parameters needed to be 

learned are the connection weights between the hidden layer and output layer.  

According to Huang et al. (2014), ELM is based on three learning principles: 1) learning capability 

i.e. can fit perfectly to any training data set so long as the number of hidden neurons is large enough 

and no larger than the number of distinct training samples (Huang et al., 2006); 2) universal 

approximation capability i.e. ELM parameters are randomly generated instead of being learned and 

therefore does not require the activation function to be continuous or differentiable (Huang & Chen, 

2007, 2008; Huang et al., 2006). 3) generalization performance i.e. ELM has a relatively low VC 

dimension and Lin et al.(2012) show that the VC dimension of ELM is equal to its number of hidden 

neurons with probability one.  

One of the major problems with ELM is demand for more neurons than conventional neural 

networks in order to achieve a matched performance, hence resulting in longer running time during 

testing. A recent review of ELM trends by Gao et al. (2014) reveals various proposals of ELM 

variants to solve the ELM problems. Incremental ELM proposes getting rid of insignificant neurons 

dynamically during training process using pruning techniques; Parsimonious ELM proposes 

recursive orthogonal least squares to perform forward selection and backward elimination of hidden 

neurons; tuning most of the output weights to zero using a sparse Bayesian approach. 

2.3.5.2. Deep Learning 

Deep Learning (DL) is a set of algorithms in ML that attempt to learn in multiple levels of modeling 

corresponding to different levels of abstractions in the model (Li & Yu, 2013). Key aspects that are 

common among these algorithms are: 1) models consisting of multiple layers, and 2) methods for 

learning feature representation at successively higher and more abstract layers.  

Most traditional ML algorithms are based on shallow structured architectures that are effective in 

solving simple and well-constrained problems. However, more complicated real-world applications 

involving natural signals such as human speech, natural sound and language, natural images and 

visual scenes, are more difficult to be handled by such shallow architectures, hence calling for deep 

learning architectures.  

Deep learning techniques are divided into two: supervised learning techniques (also known as deep 

discriminative models) and unsupervised learning techniques (also known as deep generative 

models). Deep discriminative models include Deep Neural Networks (DNN), Recurrent Neural 
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Networks (RNN), and Convolution Neural Networks (CNN), while deep generative models include 

Restricted Boltzmann Machines (RBM), Deep Beliefs Networks (DBN), and Deep Boltzmann 

Machines (DBM). 

2.3.6. Multiclass Classification Classifiers 

In ML the problem of classification is encountered in various areas such as in medicine to identify 

the disease of a patient or in industry to decide whether a defect has appeared or not, or whether the 

temperature is low, medium or high (Mehra & Gupta, 2013). In all these situations, multiclass 

classification is the major problem (Aly, 2005; Mehra & Gupta, 2013). 

Multiclass classification is a case of the classification problem where there are many distinct classes 

while binary classification is a case of the classification problem where there are only two distinct 

classes. Many of the basic ML algorithms were developed to solve the binary classification problem 

(i.e. two classes case). However, majority of ML algorithms can be naturally extended to solve the 

multiclass classification problem (i.e. multiclass case).  Extensible algorithms use different 

techniques such as codeword for output neurons (neural networks), adding additional parameters and 

constraints to the optimization problem to handle the separation of various classes (SVM). Though, a 

few of ML algorithms require converting the multiclass classification problem into a set of binary 

classification problems (Aly, 2005; Mehra & Gupta, 2013). 

A survey on multiclass classification methods (Aly, 2005; Mehra & Gupta, 2013), reveals a number 

of methods various researchers have proposed to solve the multiclass classification problem 

including decomposition and hierarchical methods, apart from extensible methods. Decomposition 

methods involve splitting and include one-versus-all (OVA) that results to the number of binary 

classifiers equal to the number of classes in the multiclass classification problem, all-versus-all 

(AVA) that requires K(K-1)/2 binary classifiers for a classification problem with K classes, and 

error-correcting-output-code (ECOC) results to several binary classifiers.  

2.3.6.1. Hierarchical Classifiers 

Hierarchical methods involve arranging classes hierarchically into a tree and using a simple classifier 

at each node. According to the two surveys (Kumar et al., 2002; Vural & Dy, 2004; Chen et al., 

2004), a method that uses K-1 binary classifiers to classify K-classes problem has been proposed in 

the literature. Mehra & Gupta (2013) experiments with all the available multiclass classification 

methods on various data sets, and the results reveal that no any single method is perfect across all the 
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data sets. The conclusion is, any one of the method can be used depending on the need. But their 

conclusion was based on experimental results focusing on accuracy alone. However, looking at the 

survey literature, multiclass classification is still a major problem area for research (Aly, 2005; 

Mehra & Gupta, 2013), and the following are some of the major issues: 

1) If outputs corresponding to two or more classes are very close to each other those points are 

labeled as unclassified (OVA) 

2) Memory requirement is very high in tune of the square of the total amount of training 

samples (OVA, AVA, ECOC) 

3) Unbalanced training sample sizes i.e. ratio of training sample of one class to rest of the 

classes is 1:K-1 (OVA,AVA, ECOC, Hierarchical) 

4) Large number of classifiers i.e. for OVA (K classifiers), AVA (K(K-1)/2 classifiers), ECOC 

(N classifiers where N>K), Hierarchical (K-1 classifiers).  

Silla & Freitas (2011), in their survey of hierarchical classification across different application 

domains, define three criteria that distinguish hierarchical classification methods: 1) hierarchical 

structure (tree or DAG), 2) depth of classification hierarchy (mandatory or non mandatory leaf node 

prediction at any level of hierarchy), 3) hierarchical structure transverse (flat, big-bang, or top-

down). Major types of multiclass classifiers based on the above criteria are flat, big bang (also 

global), and local classifiers as outlined in the following subsections. 

 

2.3.6.2. Flat classifiers 

These are classifiers that ignore class relationships and predict only the leaf nodes, and also known 

as bottom-up classifiers in some literatures. One disadvantage with these classifiers is inability to 

handle non-mandatory leaf node prediction problems (Silla & Freitas, 2011; Merschmann & Freitas, 

2013). In industry roles classification problems, where some roles are intermediate to some high 

level roles, some employees are assigned to intermediate (non-leaf nodes) and some to high level 

roles (leaf nodes) and therefore during classification there is need for non-mandatory leaf node 

prediction. For a problem with K classes, we need K classifiers, one for each class. 

2.3.6.3. Big bang classifiers 

These are classifiers that handle the entire class hierarchy by being able to classify both leaf and non 

leaf nodes using one classifier. They are also known as global classifiers. Although their prediction 
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accuracy is pretty good, they lack the kind of modularity for local training (Silla & Freitas, 2011;  

Merschmann & Freitas, 2013). 

2.3.6.4. Local classifiers 

Also known as top-down classifiers, local classifiers have the ability to use local information at each 

level of hierarchy to create a classifier. They apply different approaches for using local information 

and building a classifier around that information: 1) local classifier per node 2) local classifier per 

parent node 3) local classifier per hierarchy level. 

i) Local classifier per node approach 

This approach creates one binary classifier for each class node in the hierarchy except the root node. 

Has a disadvantage of allowing classes to be assigned to classes in distinct branches in the hierarchy, 

hence can lead to class membership inconsistency (Silla & Freitas, 2011; Merschmann & Freitas, 

2013). Several inconsistency removal methods are available.   

ii) Local classifier per parent node approach 

This approach creates a classifier for each parent node in the class hierarchy with the aim of 

distinguishing its child nodes. 

iii) Local classifier per level approach 

This approach creates a classifier for each level of the class hierarchy. Has same disadvantage as 

local classifier per node approach of allowing classes to be assigned to classes in distinct branches in 

the hierarchy, hence can lead to class membership inconsistency and requires post processing 

procedure to correct the inconsistency (Merschmann & Freitas, 2013). 

We conclude, from the above review, that hierarchical classifier is the only classifier that respects the 

hierarchical structure of the class taxonomy in a classification problem. It is also evident that local 

classifiers are synonymous to topdown classification approach (Merschmann & Freitas, 2013; Silla 

& Freitas, 2011). Also, despite the nature of some classification problems being bottom-up, there is 

little research towards bottom-up hierarchical classifiers.  

2.4. Models for Skills Mapping using Machine Learning 

Chien & Chen (2008) built a classification model for improvement of employee selection by 

predicting both retention and performance of new job applicants. They used flat ML classification 

structure and a total of seven demographic attributes.  Although performance of their model was 
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good (80%), the target concepts for mapping were broad. For each role, graduates were mapped not 

only as either ‗can perform‘ or ‗can‘t perform‘ but also as either ‗retainable or unretainable‘, hence 

in two layered labels. Prediction label was a combination of layer1 (can perform or can‘t perform) 

and layer2 (retainable or unretainable) labels. This way, it was possible to have more than one 

industry role with similar labels hence multiple label prediction problems. Besides, their target 

classes were hierarchically related and, hence, better accuracy could have been achieved using 

hierarchical classifier despite the fact that the class labels were not directly industry roles.  

Also, Jantawan & Tsai (2013) presented a classification model for predicting graduate‘s 

employability. They attempted to predict whether a graduate twelve month after graduation would be 

employed, unemployed, or undetermined, based on twenty one demographic attributes that 

influenced graduate employability identified from actual data collected from graduates twelve month 

after graduation. They used Bayesian and decision tree and flat ML classification structure to 

generate their model. Although performance of their model was good (98%), the target concepts 

were broad and were mapping graduate‘s skills as either employed or unemployed. Whereas target 

concepts were too broad and therefore not specific to industry roles, most of their ML attributes were 

not relevant to problem solving skills. 

Equally, Shashidhar et al. (2015) developed a classification model to predict employability by 

mapping graduate‘s skills to software engineer‘s role. Their underlying ML classification structure 

was flat with a total of four attributes for machine learning. Although performance of their model 

was good (82%) and their ML attributes were relevant to problem solving skills, their target concepts 

for mapping were broad and were mapping graduate‘s skills as either satisfactory or unsatisfactory. 

Besides, it was possible to have more than one industry role with similar labels hence multiple label 

prediction problems. 

Srikant & Aggarwal (2014) presented a model to map graduate‘s skills to programmer competences. 

Their approach involved mapping graduate‘s program for skills based on two layered steps: 1) 

program logic that was evaluated for best programming practices; 2) complexity of the program that 

was evaluated for execution time. An average score of the two steps was mapped to five competence 

levels defined by domain experts. They used ridge, SVM, and Random Forest to generate their 

model based on regression method. Their underlying ML structure was flat with an average 

performance of 60% for SVM model. Although their ML attributes were relevant to problem solving 

skills, they were just too specific for programmers only and hence domain dependent. 
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Table 2.2 provides a summary of analysis for some of the most important properties of models in 

related literature where broad range of attributes and flat ML classification structure were dominant. 

Our dilemma was whether ML methods used in the past were adequate, and whether attributes and 

ML classification structure used were relevant to industry roles. 

Table 2.2:  Summary analysis of related ML skills mapping models  
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Chien & 

Chen  

2008  Classification  Demographic 

profile  

 7 Flat  80% engineers broad Non 

relevant 

Jantawan 

& Tsai   

2013  Classification  Demographic 

profile  

21 Flat  98% employee broad Non 

relevant 

Korte et al.  2013  Classification  Qualifications  9 Flat  Not given Multiple 

roles 

specific relevant 

Srikart & 

Aggarwal  

2014   Regression  Programming 

practices  

6 Flat  60% programme

r 

specific Domain 

specific 

Shashidhar 

et al.  

2015  Classification  English,Logical, 

Program,Quant  

4 Flat  82% Software 

engineers 

broad relevant 

 

In summary, models for mapping problem solving skills to industry roles in an attempt to bridge 

industry academia mismatch gap have been proposed (Chien & Chen, 2008; Korte et al., 2013; 

Srikant & Aggarwal, 2014; Shashidhar et al., 2015). However, either their target classes are too 

broad or their attributes are domain specific and not relevant to problem solving skills for effective 

performance in the industry role. Besides, there is very little research in skills mapping especially 

towards improving graduates employability using machine learning techniques (McCowan et al., 

2016).  

We conclude that a mapping model is unknown that has relevant attributes and that takes advantage 

of both the hierarchical nature of industry roles and the natural mobility of employees in the industry 

organizational hierarchy. Mapping models using flat machine learning structure that are currently 

used are either inaccurate or commit more serious errors (Silla & Freitas, 2011; Merschamann & 

Freitas, 2013).  
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2.5. Models using Hierarchical Machine Learning Structure 

Models using hierarchical machine learning structure for their target classes have not been reported 

in skills mapping. However, in other domains there is evident effort towards hierarchical machine 

learning. Barbedo & Lopes (2007) organized musical genre in a hierarchical structure and used 

musical signals as machine learning attributes to predict the genre of music. They used the 

conventional top-down tree as the hierarchical ML structure. They applied bottom-up multi-

classification approach on the conventional top-down tree where they reported performance result of 

61%. Besides, they analyzed the performance of their model along various levels of the structure and 

reported 87%, 80%, 72%, and 61% at level 1, level 2, level 3, and level 4 respectively. However, 

their work suffered multiple class labels problem as a result of bottom-up classification method 

applied to a top-down structured problem. 

Clare & King (2003) organized gene functions in a hierarchical structure and used various features of 

genes as their machine learning attributes to predict the function of a gene. They also used the 

conventional top-down tree as the hierarchical ML structure. They applied top-down multi-

classification approach where they reported performance result of 53.3%. Besides, they analyzed the 

performance of their model along various levels of the structure and reported 56.4%, 46.3%, 23.1%, 

and 7.9% at level 1, level 2, level 3, and level 4 respectively.  

We conclude that choice and design of an effective classifier model is dependent  upon: 1) 

assumptions made about the classification problem and 2) the problem structure (Kotsiantis, 2007; 

Silla & Freitas, 2011; Merschamann & Freitas, 203). 

2.6. Synopsis of Literature Review 

Literature review reveals not much has been done in the area of mapping graduates‘ skills to industry 

roles using machine learning techniques. There are several potential areas for improvement ranging 

from ML attributes, classification method, to ML structure. For example, one of the major 

problematic issues in multi-classification is a classification approach that contradicts the underlying 

hierarchical structure of class taxonomy. This formed some of the gaps we focused to address 

through development of appropriate concepts for ML attributes, structure, and model required to 

achieve effective mapping of graduates‘ skills to industry roles. Therefore, theoretical literature 

analysis was necessary to provide concepts to characterize the mapping problem and ML structure 
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before the state of the art classification methodology that reflects organization of industry roles was 

proposed.  

2.7 Theoretical and Conceptual Frameworks. 

A framework is an essential supporting idea around which a research problem is modeled and solved. 

Two common frameworks around which a research problem is solved are theoretical and conceptual 

frameworks (Green, 2014). While theoretical framework refers to existing theory or theories used to 

provide essential explanatory support for the solution to the research problem, conceptual framework 

is an essential concept developed by the researcher and derived from the existing theory or theories 

to help provide explanatory support for the solution to the research problem.  

Conceptual framework is derived from theoretical framework and is also sometimes known as 

research framework, research model or research paradigm or conceptual model. Conceptual 

framework, also conceptual model, specifies variables that will have to be explored in the 

investigation and identifies relationships between those variables. Therefore, we derived our 

conceptual model from concepts of existing models for training evaluation that served as the 

theoretical framework.  

The rest of this section attempts to answer systematically the following questions: 

1. What concepts are appropriate as machine learning attributes for mapping graduates‘ skills to 

occupational industry roles? 

2. What is the structural characteristic of concepts that correctly reflects the hierarchy of 

industry roles required as target classes for machine learning purpose? 

3. How do we build using these concepts an appropriate machine learning model for mapping 

graduates‘ skills to hierarchically structured industry roles? 

2.7.1. Models for Training Evaluation  

The purpose of education and training is to improve knowledge, increase skills, and change attitudes 

of a person in order to improve the fit between the person and job requirements. This can only be 

achieved through learning and evaluation. Learning is achieved through thinking (cognitive) or doing 

(psychomotor) or feeling (affective). Hence, the three domains of learning: cognitive learning, 

psychomotor learning, and affective learning.  

The purpose of training evaluation is two folded: to determine whether training objectives were 

achieved and whether the achievement of these objectives can result into enhanced performance on 
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the job. To achieve this, several evaluation models have been developed to explain the theory behind 

evaluation. This study is hinged on three theoretical models. These are the Kirkpatrick‘s (1959) 

model of training evaluation, the CRESST model of learning evaluation attributed to Baker & Mayer 

(1999), and the Kraiger‘s (1993) theory of cognitive learning. These theories have been widely used 

in describing learning outcomes (O‘Neil et al., 2005). 

2.7.2. Kirkpatrick’s Model of Training Evaluation 

Kirkpatrick (1959) produced a training evaluation model that focused on four stages of assessment as 

shown in Fig.2.1. Stage 1 is reaction that assesses learners‘ satisfaction and how they react to the 

learning program. Stage 2 is learning that assesses the extent to which learners‘ improved 

knowledge, increased skills, and changed attitudes. Stage 3 is transfer which assesses the extent to 

which learners‘ change in behavior and applies what they learn in the job. Stage 4 is result and 

assesses the extent to which the company benefits as a result of training the learner. These stages are 

hierarchically layered and the difficult of measuring the training performance increases as you move 

up from stage 1 to stage 4. Many fields have relied on this model or its adaptations for many years 

(Leake & Parry, 2003). 

 

Figure 2.1: Training evaluation stages (adapted from Kirkpatrick, 1959) 

According to Kirkpatrick (1959), the trainee must learn the content knowledge (stage 2 learning) 

before applying or transferring it to the job (stage 3 transfer). Hence, we conclude that learning must 

begin with acquisition of content knowledge that is relevant to the job and, therefore, evaluation 

should focus on assessing the relevance of content knowledge acquired.  

This current study is basically concerned with stage 2 of the model. However, Kirkpatrick‘s model 

does not explain clearly effective measures and variables for assessing learning outcomes at stage 2. 

In fact, research suggests (Leake & Parry. 2003) that employees transfer very little of what they learn 
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in training (about 10-20%), hence raising curiosity to know whether any learning occurs, and which 

learning outcomes enhance performance in the job and how can they be measured. Consequently, 

Leake & Parry (2003) suggest that certain attributes can be used to predict and improve transfer of 

learning. These are: 1) motivation 2) self-efficacy 3) personality 4) expectations 5) control 6) ability 

7) quality of training 8) relevancy of content to the job. That is why, therefore, it became necessary 

to incorporate the CRESST model to shed more light on the types of learning outcomes that enhance 

performance in the job. 

2.7.3. CRESST Model for Learning 

Baker & Mayer (1999) came up with CRESST (Center for Research on Evaluation, Standards, and 

Student Testing) model of learning evaluation which is a micro-view for stage 2 of Kirkpatrick‘s 

model.  According to Baker & Mayer, to assess a student in any field it is important to design 

performance tasks that represent the type of learning intended in terms of broad subject matter topics, 

item formats, and types of cognitive demands expected to attain success.  

In their CRESST model, Baker & Mayer (1999) identified five families of cognitive demands that 

can be used as a framework for designing teaching, learning, and testing as shown in Fig.2.2. As a 

result, the CRESST model is composed of 1) content understanding 2) problem solving 3) self-

regulation 4) collaboration/teamwork 5) communication skills. Problem solving is the core outcome 

of this model. Problem solving is a cognitive process that includes goal-oriented thinking and 

involves the use of prior or previously acquired knowledge, skills and understanding to meet the 

demands of an unfamiliar situation (Krulik & Rudnik, 1996; Baker & Mayer, 1999; Orhun, 2003; 

Wirth & Klieme, 2011).   

 

Figure 2.2: CRESST model for learning (adapted from Baker & Mayer, 1999) 

Consequently, problem solving provides the learner with the capacity to apply or transfer content 

knowledge learned to the job (new situation). According to Anderson et al. (2001) as quoted by 
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O‘Neil et al. (2005), problem solving transfer involves applying a specific set of cognitive processes 

to a specific set of knowledge types.  Baker & Mayer (1999) further observes that problem solving is 

a family that is a superset of other families, and consists of: content understanding, problem solving 

strategies, and self-regulation. Self-regulation comprises of motivation and metacognition, while 

problem solving strategies comprises of domain dependent and domain independent aspects.  

Domain dependent (specific) aspect of problem solving strategies involves the specific content 

knowledge, specific procedural knowledge in the domain, domain specific cognitive strategies, and 

domain specific discourse (Baker & Mayer, 1999). On the other hand, domain independent (general) 

aspect of problem solving is static and is very strongly related to intelligence (reasoning) (Wirth & 

Klieme, 2011). Motivation comprises of two components: effort and self-efficacy.  

Furthermore, Baker & Mayer (1999) observe that each family consists of a set of cognitive tasks 

which can be used as a skeleton for the design of instruction and testing, and this forms a skeletal 

structure. Each cognitive task in the skeletal structure will have a set of core cognitive demands. The 

skeletal structures in each family will be instantiated in content domains so as to form structurally 

similar models that can be applied across domains, like science, mathematics, or social sciences.  

A number of training evaluations have been conducted using these evaluation models. Common 

measures that are used to assess these learning outcomes are multiple-question test, essays, and 

knowledge maps. A survey conducted by O‘Neil et al. (2005) reveals that assessment of problem 

solving is the most popular and is assessed using performance measures, followed by content 

understanding which is assessed using knowledge maps measures. Collaboration is rarely assessed 

and is not explicitly measured.  

Hence, from CRESST model we conclude that the core learning outcome that is fundamental in 

enhancing performance on the job is problem solving competence. In order to be able to apply 

content knowledge to the job, problem solving competence is needed. Besides, problem solving 

competence is multi-dimensional consisting of: - content understanding dimension, intelligence 

(domain independent) dimension, and technical (domain dependent) dimension, and self-regulation 

dimension.  

Therefore, evaluation of learning should focus in evaluating problem solving competence along the 

three dimensions. Although the CRESST model is very clear about the outcomes of learning and 

their various aspects, it is silent about what to test, how to test, and where to test. It does not provide 

the possible set or range of cognitive tasks or demands needed for each learning outcome and how to 
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assess them. This makes it difficult to evaluate problem solving competence unless we understand 

the measures for evaluation; hence it was also necessary to look at the cognitive theory of training 

evaluation to see more about various measures of evaluation.  

2.7.4. Cognitive Theory For Training Evaluation  

Cognition is a term that describes quantity and type of knowledge and the relationship between 

knowledge elements. In the context of training evaluation, cognition involves acquisition, 

organization and application of knowledge (Kraiger et al., 1993). The purpose of training evaluation 

is two folded: to determine whether training objectives were achieved and whether the achievement 

of these objectives can result into enhanced performance on the job. To achieve this purpose, Kraiger 

et al. (1993), proposed a classification scheme for the learning outcomes that could be used as a 

guide for developing a training evaluation model.  

Kraiger et al. (1993) assumed that learning outcomes are multidimensional and therefore can be 

evident from changes in cognitive, skill or affective capacities. Consequently, they proposed three 

learning outcomes: cognitive, skill-based, and affective-based outcomes. They further proposed 

assessment measures and techniques corresponding to the learning outcomes categories. Cognitive 

outcomes consists of verbal knowledge measures (measure of amount and accuracy of acquired 

knowledge), knowledge organization measures (measure of mental models for knowledge retention), 

and cognitive strategies measures (measure of meta-cognition for skills on self regulation of own‘s 

cognition).  

While verbal knowledge could be measured directly using speed tests (measures amount of 

knowledge) and power test (measures accuracy of knowledge), knowledge organization and 

cognitive strategies require measures that test higher order thinking skills (critical thinking) that 

promote creation of mental models for knowledge retention.  

Skill-based outcomes consist of compilation measures (measure of proceduralization, generalization 

and discrimination of verbal knowledge during practice), and automacity measures (measure of 

automatic reaction after a long practice). Both compilation and automaticity require measures that 

test hands-on performance.  

Affective-based outcomes consist of attitude (measure of internal state that influences choice of 

personal actions) and motivation (measure of internal state that influences behavior). Both attitude 
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and motivation, although require measures that test internal states, they are highly dynamic. Fig.2.3 

below shows the learning outcomes as proposed by Kraiger et al. (1993). 

 

Figure 2.3: Learning outcomes as per Kraiger et al. (1993). 

Classification of learning outcomes was originally proposed by Bloom et al. (1956). According to 

Bloom, cognitive outcomes beyond recall or recognition of verbal knowledge are legitimate learning 

outcomes and proposed taxonomy of cognitively based learning outcomes where they came up with 

six levels of cognitive abilities (intellectual abilities or competence skills) needed during and after 

learning: Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation. The six 

levels indicate the increasing level of thinking difficulty starting with knowledge upward to 

synthesis, to evaluation. According to Mayer (2002), there are a total of 19 types of cognitive 

processes that can be classified into the six levels or categories of Bloom‘s taxonomy. 

Bloom intended his work to benefit assessment experts who were developing new ways to measure 

what learners learned. By correlating assessment questions to Bloom‘s cognitive levels of abilities or 

skills, test developers can be assured that their questions promote both knowledge retention and 

critical thinking. However, according to Kraiger et al. (1993), Bloom‘s taxonomy is one-dimensional 

i.e. is based only on cognitive domain and hence he extended it into three domains. Bloom‘s 

taxonomy is well recognized and widely used system in the design and assessment of education 

components. Fig.2.4 shows the six Bloom‘s levels of cognitive domain.  
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Figure 2.4: Cognitive levels (competence skills level) as per Bloom et al. (1956). 

Therefore, from Kraiger‘s theory we conclude that there are three categories of learning outcomes 

hence evaluation measures: cognitive-based, skill-based, and affective-based. Cognitive-based 

measures include verbal knowledge measures, knowledge organization measures, and cognitive 

strategies measures. Verbal knowledge is a measure of relevant amount and accuracy of knowledge 

acquired during training and can be signaled from content knowledge coverage and grades scored as 

indicated in achievement tests respectively at the end of the course.  

Traditionally, knowledge and skill acquisition during training is assessed through achievement tests 

(Kraiger et al., 1993) administered at the end of training season. In the context of this study, relevant 

amount of knowledge would be measured relative to the domain body of knowledge and accuracy of 

knowledge would be measured in terms of domain dependent aspects of problem solving. Since 

performance in technical subjects (or skill related subjects) that provide technical skill required for 

the industry role is a measure and predictor for problem solving skills (Kraiger et al., 1993), this 

could be used as a signal for accuracy of knowledge and skills acquired during training.  

Knowledge organization and cognitive strategies are measures of knowledge retention for durability 

or transfer required for critical thinking, which are promoted through Bloom‘s competence skills as 

covered in test items. Achievement tests use items that require learners to apply a particular cognitive 

process to a particular type of knowledge (Mayer, 2002) or that test higher order thinking skills to 

assess student ability to apply acquired knowledge and skills in situations inside and outside school 

(Kellaghan & Greaney, 2003). There are 19 types of cognitive processes that can be classified into 

six major categories: knowledge, comprehension, application, analysis, synthesis and evaluation 

(Bloom et al., 1956; Mayer, 2002).  

Verbal knowledge is necessary for higher order skills development and task performance at early 

stages of training, but in advanced training stages tasks behaviors become internalized and 

performance levels for tasks will be influenced as much as psychomotor differences and general 
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intellectual abilities (Kraiger et al., 1993). Individual‘s academic capability is an index directly 

relevant to training and employment opportunities, and performance Grade Point Average (GPA) in 

high school and university undergraduate level is a good predictor of student capacity for the 

industry role (Richardson & Abraham, 2012). 

Skill-based outcomes can only be measured after the graduate is assigned the industry role because 

they require hands-on performance measures. Finally, affective-based outcomes (attitude and 

motivation) are highly dynamic and influence graduate choice of industry role, and therefore were 

used as confounded variables in the proposed model.  

2.7.5. Discussion Summary of Training Evaluation Models 

Table 2.3 below captures a summary of how the three models contributed to the derivation of the 

proposed research variables and their proposed measures of evaluation. 

Table 2.3: Learning outcomes and their measures (Kirkpatrick, 1956; Baker & Mayer, 1999; 

Kraiger et al., 1993) 

Leaning 

outcomes 

Theoretical Models for Analysis Learning  Proposed variables 

for evaluation of 

learning transfer 

Source of 

student 

assessment 

information 

Evaluation 

framework 
Kirkpatrick’s 

model 

CRESST 

model 

(learning 

outcome) 

Kraiger’s 

model 

(measures) 

Content 

knowledge 

Relevance to 

job 

Prior 

knowledge 

 Possession of Relevant 

Content knowledge 

Domain exam 

questions 

(qualitative) 

Body of 

knowledge 

Problem 

solving 

competence 

 Content 

understanding 

Cognitive 

strategies 

(processes) 

Understanding of 

Content (Cognitive 

skills) 

Domain exam 

questions 

(qualitative) 

Cognitive skills 

framework 

 (Domain 

independent) 

Intelligence 

Knowledge 

organization 

Intellectual ability to 

learn (Academic 

capacity) 

Student GPA 

(qualitative) 

High school and 

undergraduate 

GPA 

 (domain 

dependent) 

Technical 

Verbal 

knowledge 

Ability to perform with 

precision and speed  

(Technical skills) 

Domain 

subjects 

performance 

(quantitative) 

Performance 

grades in domain 

technical skills 

subjects 

Content knowledge is one that is taught in class by teachers. Teachers are known to align their 

teaching to the demands of examinations and studies have shown considerable evidence that a 

change in the content area examined results into a shift in the content to which students are exposed 

(Madaus & Kellaghan, 1992; Eisemon, 1990) as cited by Kellaghan & Greaney (2003). Since 

graduate‘s skills are influenced by individual‘s capability and subject content coverage (Kraiger et 

al., 1993), analysis of the examination test items and student performance can provide insights into 
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the nature and level of knowledge and skills learned at the end of the course (Kellaghan & Greaney, 

2003).  

Student performance GPA, in high school and university undergraduate, is a good predictor of 

individual‘s academic capability and is an index directly relevant to training and employment 

opportunities (Geiser & Sentelices, 2007; Richardson & Abraham, 2012). Fig.2.5 below summarizes 

how the proposed mapping model variables are related to and derived from the Kraiger‘s conceptual 

model. The yellow balloons represent one of the four independent factors in the model while the 

green balloon represents the confounding factors.  

 

Figure 2.5: Deriving variables of the proposed mapping model from Kraiger’s conceptual 

model (Kraiger et al., 1993). 

2.7.6 Conceptual Framework for the Proposed Mapping Model  

The study‘s conceptual model was based on three theoretical models: Kirkpatrick‘s model, CRESST 

model, and Kraiger‘s cognitive theory for training evaluation. The study hypothesized that the 

problem solving competence requirement of an industry role could be determined by five cognitive 

factors: Content knowledge, technical skills, cognitive skills, academic capacity of individual‘s 

ability and Attitude-Motivational factors. Therefore, content knowledge, cognitive skills, technical 

skills, and academic capacity are independent factors or variables and industry role is the dependent 

variable as shown in the proposed conceptual model. Fig.2.6 shows the proposed conceptual 

mapping model. 
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Figure 2.6: The conceptual model for proposed mapping model as adapted from training 

evaluation model (Kirkpatrick, 1956), learning evaluation model (Baker & Mayer, 1999), 

training evaluation model (Kraiger et al., 1993). 

Choice of industry roles may also be affected by attitude and motivation associated with 

demographic factors. Demographic factors that have been known to influence motivation and 

attitude include environmental factors, physiological factors, and psychological factors. 

Environmental factors relate to location and specialization of the job which may be closely correlated 

to university of study and type of bachelor‘s degree for an inexperienced graduate. Physiological 

factors are related to the physical systems of the person which may be correlated to age. 

Psychological factors are related to internal motives that make a person to seek for more success or 

achievement and this may be correlated to grading system used to reward academic performance.  

The above categories of demographic factors may influence not only the way the graduate is 

attracted to an industry role but also the way the employer selects a graduate for an industry role and, 

therefore, they were captured in the conceptual model generally as confounding factors. 

2.7.7 Automatic Skills Mapping using the Proposed Mapping Model 

The conceptual model of the proposed mapping model was used to describe each industry role 

concept as a function of the independent factors defined in the conceptual model. Basically, the 

concept of industry roles was linked to the concept of occupation which is a collection of jobs, 
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sufficiently similar in work performed and grouped under a common label known as occupational 

title (NOC, 2011). Some occupational titles are broad while others are specializations within 

occupational area.  

Traditionally, four types of structures are used to organize industry roles in any organization, namely 

functional, geographical, product, and matrix (Malone, 2011). Fig.2.7a presents the four types of 

structures used to organize industry roles. Therefore, occupational titles, and hence industry role 

concepts, are predefined, are structured hierarchically, are associated with a certain skill level (as 

explained in section 2.3.2) and occupational mobility of employees is vertical and upward. 

Computationally, skills mapping problem can be viewed as a pattern recognition problem and 

modeled as a ML task for mapping skills to predefined roles in the hierarchical structure using a 

suitable traditional design methodology for problem solving, such as bottom-up or top-down. 

 

Figure 2.7a: Organization Structures for Industry Roles (Malone, 2011) 

2.7.7.1 Top-Down Versus Bottom-Up Approaches 

1) Top-down Approach 

In top-down approach, a problem is split repeatedly into smaller units and each unit is further split 

over and over again until the resulting smaller problem unit is manageable. The aim is to solve the 

problem progressively from generality to specifics where the underlying problem is described 

hierarchically using a tree structure that is asymmetric and transitive (Silla & Freitas, 2011). As a 

problem solving approach, top-down involves solving the problem from a known starting state 
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(defined objective/requirements) to an unknown end state (solution or technical basis that satisfies 

the objective/requirements) where repeated decomposition is a divide and conquer strategy towards 

the unknown state (technical basis). The objective or requirements must be global and delegatable to 

individual lower level components (Crespi et al., 2005) where the aim is to satisfy these known 

requirements through unknown solutions.  

In the classification problem, top-down method‘s objective is to first predict the most generic class 

(generic level) then it relies on the predicted class to select the next level class where the only valid 

candidate classes are children of the previous level predicted class, and this is repeated in each level 

until the most specific class is predicted. Fig.2.7 presents two common types of hierarchical machine 

learning taxonomic structures/trees that model and support top-down approach as tree (top-down) 

and directed acyclic graph (DAG) as presented by Silla & Freitas (2011). 

 

Figure 2.7b: Tree structure (left-side diagram) and DAG structure (right-side diagram) 

According to Silla & Freitas (2011), the underlying structure of most hierarchical classification 

problems are based on tree or DAG structures whose ―IS-A‖ relationship is asymmetric, anti-

reflexive, transitive, and has the following properties:  

1) The only one greatest element R is the root of the tree. 

2) For every class ci ; cj є C; if ci is related to cj then cj is not related to ci. 

3)  For every class ci є C; ci is not related to ci. 

4)  For every class ci; cj ; ck є C; ci is related to cj and cj is related to ck imply ci is related to ck. 

Currently, classification problems with the above structures have been solved successfully using top-

down approaches. However, not all problems have such kind of structures and, therefore, top-down 

approach may not be suitable for them. 

2) Bottom-up Approach 

In bottom-up approach, the problem solution is derived in the reverse order of top-down approach 

(Barbedo & Lopes, 2007). The main idea is to analyze large volumes of individual pieces of 
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information so as to find relationships and patterns that can help to generalize into a meaningful 

solution. Ideally, the aim is to solve the problem progressively and incrementally from the most 

specific and basic aspects to the most complex and general aspect. This approach begins with lower 

level local processing and works towards higher level global processing, where lower level 

specific/basic items are analyzed to provide information that helps to generalize into meaningful and 

complex higher level items (Amir, 2014; Maloof, M.A, 1999).  

As a problem solving approach, bottom-up involves solving the problem from a known end state 

(solution/technical reality) to an unknown goal state (objective/requirements) where known solutions 

are agglomerated in a more flexible way to satisfy unknown (or variety of realistic) requirements 

(Crespi et al., 2005). In the classification problem, bottom-up method‘s objective is to first select the 

technical basis (lower level) for describing/modeling classifier objects (higher level) that whose 

prediction results are agglomerated in a more flexible way to  satisfy a number of unknown or 

realistic user requirements represented by class concepts. 

Both top-down and bottom-up can be viewed as complementary approaches for mapping 

predetermined requirements (top) to available possible solutions (bottom) which can be approached 

from either side. While top-down begins with requirements then followed by stepwise refinement 

down to technical basis for implementation, bottom-up begins with technical basis of implementation 

and attempts to reach up the requirements by constructing higher level services and components on 

already existing implementations (Crespi et al., 2005). Both approaches are valid and constitute 

different ways of thinking which have been used widely to develop computing models such as 

operating systems, computer games, banking systems among many others. 

However, it is important to note that the underlying structure of some problems, such as skills 

mapping, may not fit well to top-down approach. Besides, applying a bottom-up method on the 

traditional taxonomic tree structures, as defined by Silla & Freitas (2011), leads to either class 

inconsistency or multiple label classification problems as revealed by Barbedo & Lopes (2007). As a 

result, for a bottom-up solution to work effectively, a suitable taxonomic structure must be defined 

that promotes or facilitates bottom-up processing and results to a single class label prediction. 

Consequently, part of the contribution of this study was to propose not only a machine learning 

architecture for a skills mapping model but also a taxonomic structure that is bottom-up friendly. 
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2.7.7.2  Proposed Taxonomy 

Hierarchical classification is a special type of structured classification problem. Structured 

classification is a problem where there is some structure (hierarchical or not) among the classes and 

the output of the classification algorithm is defined over a class taxonomy. Wu et al. (2005) defined a 

class taxonomy as a tree structured regular concept hierarchy defined over a partially order set (C, 

R), where C is a finite set that lists all classes in the application domain and the relation, R, 

represents the ―IS-A‖ relationship. According to Silla & Freitas (2011), most hierarchical 

classification problems are based on: 1) trees or DAG structure whose ―IS-A‖ relationship is 

asymmetric, anti-reflexive, and transitive, 2) flat or multi-class classifiers that are multi-label.  

However, underlying structure of skills mapping problem may not fit well to top-down approach. 

This is because occupational titles, and hence industry roles, are structured hierarchically according 

to the organizational structure. This is evident from the hierarchical nature of most organizational 

structures including functional, product, geographical, and matrix organization structures (Malone, 

2011). Each occupation is associated with a certain skill level which varies increasingly upward in 

the hierarchy, from lower skilled occupations to higher skilled occupations.  

Further, occupational mobility of employees is vertical and upward i.e. employees start with 

occupational roles at entry level positions and progress to increasingly higher skilled occupational 

roles. Occupational roles at higher levels of the hierarchy are characterized by higher levels of 

responsibility, accountability, and subject matter expertise gained through formal education or 

extensive experience in lower skilled occupational roles (NOC, 2011). Occupational mobility may be 

through promotion or appointment. Unlike promotion where an existing employee progresses 

upward the occupational ladders based on observed job performance and experience, in appointment 

an employee (new or existing) does not necessarily start at the lower levels occupational roles but 

can be appointed to any occupational role at any level based on performance predicted from their 

academic qualifications.   

Therefore, skills mapping involves classifying a set of skills into one of predefined industry 

occupational roles in the hierarchy. Since the natural occupational mobility of employees is upward, 

then the classification strategy that fits well with this phenomenon is bottom-up approach. However, 

the above two machine learning structures in Fig. 2.7b are top down oriented and may not be fit to 

not only represent the skills mapping problem but also work well with bottom-up approach.  
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Analysis of these four organization structures against the two ML structures (trees) available for 

hierarchical ML revealed no tree could be used to describe all four organization structures at once. 

Ideally, top-down tree is suited well for only functional, geographic, and product structures while 

DAG tree is suited well for only matrix structure. Therefore, way forward was to create a ML 

structure suitable to represent hierarchy of industry roles uniformly across the four possible 

organization structures and in a way that also obeys the natural mobility of employees along the 

organization structure, which is practically from bottom to top.  

Literature (CWA16458, 2012) provided a clue that all industry roles are characterized by three 

dimensions, namely main competence, specific competence, and proficiency. In the present study, a 

tree was created that represented the three dimensions graphically and was proposed as the machine 

learning structure suitable to achieve the research goal. Fig. 2.8 shows the proposed bottom-up 

friendly taxonomic structure (BFTS) that represents the hypothetical structural organization of 

classes as per the structured classification problem and classification assumptions in this method. 

 

Figure 2.8: Bottom-up friendly taxonomic structure. 

Figure 2.8 illustrates hierarchical structure with two branches (may be more), each branch with three 

levels, a total of twelve leaf node classes (C1.5, C1.6, C1.1.3, C1.2.4, C1.2.1, C1.2.2, C2.5, C2.6, 

C2.1.3, C2.1.4, C2.2.1, and C2.2.2), and a total of six parent nodes (1, 1.1, 1.2, 2, 2.1, and 2.2), and 

root node (R). Leaf nodes represent specific competences, non-leaf nodes represent main 

competences of individual roles while the upward arrow indicates the direction of employees‘ 

occupational mobility with time based on proficiency.  

However, although the proposed taxonomic structure ―IS-A‖ relationship is asymmetric and ant-

reflexive as in Sillas & Freitas (2011) definition of ―IS-A‖ relationship, it departs away from this 

definition by being anti-transitive with the following properties: 
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1) The only one greatest element R is the root of the tree. 

2) For every class ci ; cj є C; if ci is related to cj then cj is not related to ci. 

3)  For every class ci є C; ci is not related to ci. 

4) For every class ci; cj ; ck є C; ci is related to cj and cj is related to ck does not imply ci is 

related to ck. 

In the context of skills mapping, the above proposed taxonomic structure represents the hypothetical 

structural organization of occupational industry roles‘ problem, and reflects not only the natural 

mobility of employees upward the occupational ladders but also promises effective bottom-up 

mapping of graduate skills to industry roles that does not result to multiple label prediction problem. 

As per the assumptions of the current skills mapping problem, each branch represents an 

occupational function which refers to a skills category; each level represents proficiency which refers 

to a skills level, non-leaf node represents main competence which refers to a main skill type, while 

each leaf node represents specialty of industry role which refers to a specific skill type.  

However, while each specialty is a member of a proficiency category, relationship between 

proficiency categories is one of peer to peer where one category follows the other. As a result, these 

concepts have been applied in subsequent discussion of the proposed machine learning architecture. 

The main difference between the proposed taxonomic structure and the traditional tree structure is 

eminent at the levels/non-leaf nodes where the former adopts peer-to-peer and the later adopts 

parent-child relationships.  

While in the traditional structure lower level parents are decompositions of higher level parents, this 

is not the case in the proposed structure as each level is a category that indicates superiority of skills 

proficiency. However, to be able to explore the proposed taxonomic structure from bottom to top as 

it is natural with employee mobility in the organizational hierarchy, there was need of a special type 

of architecture for the skills mapping model. 

2.7.7.3 Proposed Machine Learning Architecture for Skills Mapping Model 

Modeling skills mapping problem computationally involves abstracting it from the problem space 

and defining the computational theory and tools needed to solve it (Vernon, 2009). Although 

attempts have been made by posing this problem as a multi-class classification problem and solving 

using machine learning theory (Jantawan & Tsai, 2013; Chien & Chen, 2008), existing studies have 
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approached this problem using top-down instead of bottom-up method, hence are not sufficient and 

their results may not be reliable.  

Currently, bottom-up method has not been applied in skills mapping to industry roles, and therefore 

part of the contribution of this study was to propose bottom-up ML architecture needed to generate 

the automatic skills mapping model that promises reliable results. Fig. 2.9a illustrates a machine 

learning architecture of a model for skills mapping to industry roles by exploring the proposed 

taxonomic structure in Fig. 2.8 that represents the problem. The mapping model consists of a number 

of objects that are hierarchically arranged to progressively group industry role constructs before 

selecting the best.  

At each level, different kind of objects are triggered to generate specific type of information that is 

jointly used at higher levels for further processing and this continues up to the highest level where 

the most promising class is predicted. The model objects at lower levels gather local information 

about the demographic characteristic of the problem structure (height, width, siblings, evaluation 

objects) which they then pass to higher levels whose objects collect further local information about 

the potential function, proficiency and specialty before this information is subjected to higher level 

global processing to reveal or predict the industry role class label. The industry role‘s label is 

described in terms of function, specialty, and proficiency.  

 

 

 

Figure 2.9a: Machine Learning Architecture for the Model 
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Based on the problem formulation, the appropriate classification methodology was: 1) Multiclass 

(i.e. many classes), 2) Hierarchical (i.e. several levels), 3) Bottom-up (i.e. vertically upward the 

levels), 4) Supervised (i.e. trained with predefined classes). The multi-class classifier comprised a 

collection of binary classifiers or objects organized methodically into layers that were activated from 

bottom to top.                 

2.7.7.4 Basic Architecture of Model’s Classifier Objects 

Machine learning is one of the commonly representatives of bottom-up analysis where various types 

of data are analyzed to reveal relationships and patterns (Wirsch, 2014). As a result, the underlying 

structure of each machine learning object is based on bottom-up method as per Fig. 2.6 of proposed 

conceptual framework. Fig. 2.9b shows the basic architecture of each classifier objects indicated in 

Fig. 2.9a. 

 

 

Figure 2.9b: Machine Learning Architecture for the Model’s Objects 

2.7.7.5    Choice of ML Algorithm for the  Model’s Classifier Objects 

Key questions when choosing machine learning algorithm is not about whether or not a learning 

algorithm is superior to the others, but how significantly it outperforms others on a given application 

problem under certain known conditions (Kononenko, 2001). Perhaps the best and simplest approach 

could be to estimate the accuracy needed on the problem and choose the one that appeared to be most 

accurate. However, accuracy alone is not sufficient (Kononenko, 2001). The trend in the 

improvement of classifier performance is the concept of combining two or more learning algorithms. 
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This is currently popular among researchers with the ultimate goal of generating more certain, 

precise and accurate results.  

Criteria for selecting learning algorithm are characterized by: 1) accuracy 2) speed of learning 3) 

number of parameters 4) transparency (ease to understand a method) 5) results interpretability 6) 

incremental learning (Stefanowski, 2010). Some of the best known algorithms include:1) decision 

trees(DT), 2) rule-learners(RL), 3) Neural Networks(NN), 4) K-Nearest Neighbor(KNN), 5) Support 

Vector Machine(SVM), 6) Naïve Bayes(NB) 7) Logistic Regression (LR)) and can be divided into 

three groups based on assessment against the six criteria: group A (DT,RL), group B (LR,NB), and 

group C (NN, KNN ,SVM).  

While group A members have similar operational profile and strongly conform to  quick learning, 

fewer parameter handling, good transparency and high interpretability, group C members (although 

have similar operational profile) have low learning speeds, many parameters therefore poor 

parameter handling, poor transparency, and poor interpretability. However, group C is superior in 

high accuracy and good incremental learning while group A is very poor in those aspects.  To 

moderate between these two extreme groups there is group B which conveniently harmonizes the 

two groups by taking half of the good features of either side (of group A and B) while taking the 

average of each feature of the remaining half.  

Although group B members have joint added advantage of dealing with over fitting dangers, 

members here complement each other on the speed of classification, tolerance of noise and missing 

values. Therefore group B and C stood out as better candidates to use in the current research for 

constructing the classifier. Table 2.4 outlines a summary of criteria that could guide selection of the 

machine learning technique in each category. 

Based on the analysis in Table 2.4 the study proposed to train the model using Naïve Bayes and 

SVM learning algorithms. The selection was guided first by good incremental learning (ability to 

refine its learned rules), then ability to deal with missing data and noise in data, and finally ability to 

accurately perform. In skills mapping, skills requirements for industry roles gradually migrate as 

environmental factors, such as technology, change. This demands the model to accumulate these 

changes and refine its learning rules without necessarily requiring retraining of the model. Therefore, 

the model needs to have a very good incremental learning property. As a result, group A ML 

algorithms were technically removed from any further consideration.  
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Besides, skills mapping model should be able to work with data collected in the field which is likely 

to have missing data or non-relevant values (also known as outliers) without necessarily requiring 

replacing them with meaningful values. However, K-Nearest Neighbors and Neural Networks 

algorithms are very poor at tolerating missing values and noise data while SVM and Naïve Bayes 

handle this easily by ignoring them (Kononenko, 2001; Kotsiantis, 2007). As a result, this improves 

the classification speed of the model and therefore K-Nearest Neighbors and Neural Networks 

algorithms were dropped from further consideration.  

Finally, to ensure the right people are placed in the right job, the model must have very high 

performance accuracy. SVM algorithm is highly associated with high performance accuracy which 

should be an important property of the model. In contrast, naïve Bayes and Logistic Regression have 

a moderate accuracy. However, naïve Bayes has been used widely as a benchmark algorithm in 

many other studies (Kononenko, 2001) as opposed to Logistic Regression. Therefore, to ensure our 

work is able to compare with results achieved in other related work for validity purposes, Logistic 

Regression was dropped in favor of naïve Bayes algorithm.  

 

Table 2.4:  Features of main categories of machine learning algorithms (Kotsiantis, 2007)  

 
TYPES OF MACHINE LEARNING ALGORITHMS 

 
GROUP A GROUP B GROUP C 

TYPE OF FEATURES 
Rule-Learners(RL),  
Decision Trees(DT) 

Naïve Bayes(NB), Logistic 
Regression (LR) 

K-Nearest Neighbour(KNN) 
Neural Networks(NN), 
Support Vector 
Machines(SVM) 

GOOD 

a) Quick learning 
b) Fewer/Good parameter 

handling 
c) Good transparency 
d) High interpretability 

a) Quick learning 
b) Fewer/Good parameter 

handling 
c) Good transparency 
d) High interpretability 
e) Good incremental learning 

a) High accuracy 
b) Good incremental 

learning 

BAD 

a) Low accuracy 
b) Poor incremental learning 

a) Low accuracy b) Slow learning 
c) Many parameter 

handling 
d) Bad transparency 
e) Low interpretability 

 

2.7.7 Synopsis of Theoretical Concepts Development 

Lessons learnt from this section related to our research questions 1 & 2 included: 

1) Concepts appropriate as machine learning attributes for mapping graduates‘ skills to 

occupational industry roles must be based on strong cognitive theoretical frameworks. Fig. 2.9c  

and Table 2.5 have summarized how these proposed concepts were derived and operationalised  
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Table 2.5: Operationalization of Conceptual Framework concepts 

Concept Indicator Variable Measure-

ment 

1.Relevant content 

knowledge 

Domain Body of Knowledge Topic areas of Body of knowledge Scale  

2.Cognitive skills Cognitive skills areas Skills areas of Bloom‘s Taxonomy Scale  

3.Technical skills Domain technical subjects Domain technical subjects Scale   

4.Academic capacity School GPA  Average GPA high school and university Scale  

5.Industry role  Occupational industry roles Occupational industry roles Nominal  

6. Demographic 

factors as 

Confounding factors 

Environmental factors:  University of study Nominal  

Bachelor‘s Degree type Nominal  

Location of ‗O‘ level study Nominal  

Physiological factors: age  Nominal  

gender Nominal  

Psychological factors: ‗O‘ level grading system Nominal  

‗O‘ level results Nominal  

Degree grading system Nominal  

Bachelor‘s Results Nominal  

 

respectively. 

In the present study proposed concepts were approached from two cognitive dimensions, namely 

knowledge and skills, and were derived from three cognitive theories.  A total of 13 concepts 

were revealed as follows: 4 as independent and 9 as confounding factors. The validity of these 

concepts was to be investigated empirically and confirmed. 
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Figure 2.9c: Development of conceptual model 

2) While structural characteristics of concepts to be used as target classes for machine learning can 

be flat or hierarchical, underlying nature of the problem greatly determines this. In the present 

chapter, indeed literature analysis revealed occupational industry roles were structured 

hierarchical and their underlying fundamental dimensions were identified as: main competence, 

specific competence, and proficiency levels. The validity of this hierarchical structure would be 

investigated empirically and confirmed. 

3) Three issues that greatly affect the design and building of classifier models that learn from 

observations are: 1) Input that consists of a sample of data instances described by a number of 

attributes which may be of different data types but also parameter values 2) the type of feedback 

for observational learning which can be of three types: supervised, unsupervised, and 

reinforcement, and 3) the way the solution is to be represented which depends on feedback 

output (Lavesson, 2006; Vernon, 2009). While representation of the solution in supervised 

learning depended on whether the desired output was discrete or continuous, thus it could be 

represented using a classifier or regression function respectively, in the present case it was a 

classifier. 

2.8 Summary 

This chapter has presented detailed review of literature on background information on trends of 

industry roles requirements, mismatch gap of academia skills and industry roles, related studies, and 

state of the art technology that guided in providing answers to the research questions. Trends on 

evolution of industry roles requirements were observed towards jobs requiring more education and 

cognitive skills. Besides, a mismatch of graduates‘ skills and industry roles was noted as the main 

problem between academia and industry, and whose underlying cause was poor mapping of 

graduates‘ problem solving skills to industry roles.  

However, approaches of related studies towards this mismatch problem indicated models with a 

broad range of machine learning attributes that either are not relevant to industry roles performance 

or are not usable across occupational domains. After careful literature review, three learning and 

evaluation theories provided concepts to support explanation of our solution on this aspect of the 

problem. Although state of the art technology indicated potential of a better technique to describe the 

solution using a structure that could represent industry roles, it needed some modification to 
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correctly reflect the hierarchy of industry roles across occupational domains. In summary, the 

chapter culminated with a proposed conceptual model of the mapping model and a proposed machine 

learning structure that correctly reflects the structure of industry roles.  
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CHAPTER 3: RESEARCH METHODOLOGY 

3.0 Introduction 

This chapter discusses the research philosophy, research strategy including research methods, 

research design model, and data analysis and presentation. The chapter is organized as follows: 

Section 3.1 discusses research philosophy, section 3.2 outlines research design, section 3.3 describes 

the research framework, section 3.4 highlights research methods, section 3.5 describes the 

methodology for developing the model, and section 3.6 concludes the chapter with a summary. 

3.1 Research Philosophy 

Research philosophy relates to the development of knowledge and the nature of knowledge. It is a 

belief system or view about the world that guides the investigation.  Philosophical views about the 

world assumed by the researcher during investigation are described under broad philosophical 

paradigms such as epistemology, ontology, and axiology.  

Epistemology is a term that refers to the theory of knowledge that provides a philosophical support 

for accepting knowledge discovery and especially how to ensure the adequacy and legitimacy of 

investigation for the discovered knowledge (KIM, 2009). Hirschheim (1985) reiterates that 

knowledge is acquired through an inquiry process. At one time, Greeks classified knowledge into 

two types, i.e. doxa (what is believed to be true) and episteme (what is known to be true), and 

method of inquiry involved transformation of doxa to episteme. Therefore, science as a method of 

inquiry is considered as the process of transforming what is believed to be true to what is known to 

be true.  

The agreed set of conventions in science is the scientific method, and therefore, for anything to be 

called scientific knowledge must conform to the scientific method. However, philosophical questions 

were raised on how to know that something was true. This led to a major difference in opinion over 

the nature of truth and how to arrive at it through the scientific investigation (Easterbrook et al., 

2007).  

Consequently, ontology is a term that refers to the nature of reality in terms of the way the world 

objects operate and provides a philosophical support for accepting knowledge discovery (Saunders, 

et al., 2009). Two popular aspects of ontology are objectivism and subjectivism. Objectivism 

assumes that social entities exist in the external reality outside the mind of a social actor, while 
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subjectivism assumes that social phenomena exist in the mind of the social actors and is created from 

the perceptions and consequence actions of the social actors. 

Two well known philosophies based on the above two paradigms are positivism and interpretivism. 

Positivists believe that reality is fixed and can be observed and described from an objective point of 

view. It advocates the use of highly structured methodology that facilitates replicability, repeatability 

and generalization. Also, it assumes that the researcher is independent of, and neither affects nor is 

affected by, the subjects of research. On the other hand, interpretivists believe that reality is too 

complex and in order to understand it without losing rich insights of its complexity, some kind of 

subjective interpretation and intervention must be involved (Levin, 1988). Science is based on a strict 

conception of positivism, an epistemology which posits beliefs and scrutinizes them through 

empirical testing (Hirschheim, 1985).  

In computing, Alavi & Carlson (1992) reviewed 902 Information Systems (IS) research articles and 

revealed that all empirical studies were positivist in approach. Orlikwoski & Baroudi (1991) as cited 

by Bolan & Mende (2004) reveal 96.8% of the use of positivists approach in IS based research 

journals in US.  Further, there is reliable evidence that positivism has had successful association with 

physical and natural sciences in which computer science belongs (Hirschheim, 1985). Hirschheism 

(1985) summarizes five pillars of positivisms which provide a link between our study and positivism. 

1) Unity of scientific method 

Scientific method is the only valid and accepted approach for knowledge generation. Our study 

embraced the conventions of scientific method which include replicability and generalization. 

2) Search for casual relationships 

We had a desire to find regularities and casual relationship among the elements of study. We 

attempted to understand regularities and casual relationship between graduate skills and industry 

roles.  

3) Belief in empiricism 

We believed that valid data is one that was experienced from the senses and extraordinary 

experiences, conscious or unconscious arrangement of apparatus, and subjective perceptions were 

not to be acceptable. 

4) Science and its process is value free 

Science and its processes are value-free and as a result the undertaking of this study had no 

relationship or connection with political, ideological or moral beliefs.  
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5) Foundation of science is based on logic and mathematics 

 Logic and mathematics provided the basis for quantitative analysis which is an important tool for 

searching casual relationships. We sought for the casual relationship between graduate skills and 

industry roles experimentally, where the end product was a law-like generalizations derived through 

quantitative analyses. 

Since the basic idea was to come up with credible findings, we had a clear understanding that 

graduates were observable objects that were real while industry roles were observable social 

phenomena. Hence, there was an assurance that the data collected would lead to credible findings. 

Moreover, knowledge and skills imparted to graduates in academia are realities that exist separate 

from the graduates who benefit from that reality. This is because the description of the content of 

knowledge and skills intended for the graduates is well documented in the curricula and the extent to 

which they are delivered to the graduates is well expressed in the exams papers administered to the 

students, hence this content is an objective entity.  

Although industry roles with similar role names in different organizations may have job descriptions 

that are different, the role names are just a creation of the social actors who create them. Ideally, the 

underlying functional requirements are realities that exist separate from the social actors who occupy 

them and may distinguish industry roles objectively. This is why the researcher believed the 

relationship between graduates‘ skills and underlying functional requirements of industry roles were 

fixed and could be observed and described from an objective point of view.  

As a result, a structured methodology that was used in this study promised objectivity to search and 

reveal any regularities and casual relationship between graduates‘ skills and industry roles. The 

structured search and analysis not only enabled the variables that were relevant to the relationship to 

be explored but also enabled the precise relationship to be described and manipulated in order to 

observe its behavior. This is to say, the ontological position taken by this study was that of 

objectivism. And, because positivism is associated with the notion of observable social reality and 

phenomena that are considered to be real where the assumption made is only real objects can 

produce credible data, this is clear evidence that this study fitted well to this approach.   

To collect this kind of credible data there was need to develop a research design that would enable 

relevant research hypotheses to be defined and tested using factual data. Factual data was collected 

with instruments that ensured same questions were asked to the respondents in exactly the same way. 

Table 3.1 presents a spectrum of research design methods as described by Travis (1999) as cited by 



 

   68 

 

Bolan & Mende (2004) which formed part of the elements of the research strategy to achieve this 

goal.  

 Table 3.1 Taxonomy of research methods (Bolan & Mende, 2004) 

 

In research, for the results to be credible it is important to know the role of the researcher‘s values in 

the research process. This is relevant to both the researcher and research stakeholders.  To the 

researcher, this may raise the issue of individual‘s honesty in the research process, awareness of 

value judgments when drawing conclusions and this may help in deciding what is appropriate 

ethically and answering queries in case they are raised about a decision.  

Axiology is a term that is widely used to refer to the study of judgments about values in terms of the 

role values play in making judgment about a decision and provides a philosophical support for 

accepting knowledge discovery (Saunders, et al., 2009). The role of the researcher‘s values adopted 

in this research process related to issues of scientific honesty and ethics to be observed in the 

selection of data, giving credit where it was due, and avoidance of issues of scientific misconduct.  

NAS (1995) provided a guideline that was used both to raise awareness of value judgment when 

drawing scientific conclusion and to caution the researcher on issues of scientific misconduct, ethics 

and honesty adopted in this study. 

3.2 Research Design 

Research design is a logic of enquiry or plan or blueprint for an investigation towards obtaining 

answers to research questions within a caution of controlled variance. While no research design is 

more superior to all others in all research areas (Benbasat et al., 1987), selection of the design was 
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influenced by the nature of the research topic, goals of the researcher and the paradigmatic 

assumptions.  

With respect to specific goals, paradigmatic assumptions played important role especially when 

positivism is highly associated with deductive and quantitative approaches. Deductive approach 

enabled not only the formulation and testing of hypotheses but also identification of the possible 

results, research method for obtaining the results as well as a validation strategy appropriate for the 

research results (Shaw, 2002).  

Indeed, our design was a mixed methods research design that focused on providing a research 

purpose for each research question and a plan by which the research purpose was to be achieved. 

This enabled to reveal the appropriate methods and procedures that were suitable to help collect and 

analyze data so as to provide research answers. The research approach adopted corresponds roughly 

to the three major categories of scientific methods consisting of observe, formulate, and evaluate 

(Glass, 1995).  

In computer science, literature reveals the corresponding research approaches are descriptive (also 

known as characterization), formulative (also known as design), and evaluative respectively (Ramesh 

et al., 2002; Glass et al., 2004). Descriptive research is concerned with a systematic process of 

describing systems or situations or groups so as to portray accurately the underlying characteristics, 

formulative research is concerned with formulating models, processes, or algorithms so as to explore 

new insights into a phenomenon, while evaluative is concerned with evaluating models or systems or 

algorithms deductively, or interpretively, or critically so as to test casual relationship between 

variables. Formulative is the most widely used approach with 79.15% followed by evaluative and 

descriptive with 10.98% and 9.88 respectively based on a survey by Ramesh et al. (2002).  

Based on the type of result expected for each research question, appropriate research approaches for 

obtaining the results as well as to validate the results were determined. In computer science, research 

results may be of the type of model (qualitative, empirical, analytical, and descriptive), procedure or 

technique, notation or tool, answer or judgment, or report (Shaw, 2002).  Table 3.2 summarizes the 

characterization of our study‘s research questions as adapted from Shaw (2002), and proposed 

research design for each.  

Therefore, the research methods applied in the study were determined by the nature and character of 

research questions, expected results and type of results validation in the study. Shaw (2002) provided 

a guideline for describing the character of research questions in computer science by outlining the  
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Table 3.2a: Characterization of research objectives (adapted from Shaw (2002)) 

Research objective/question 
Criteria for characterization of research objectives 

Research type Question type Results 

expected 

Method expected 

to validate results  

1) What concepts are appropriate as 

machine learning attributes for 

mapping graduates‘ skills to 

occupational industry roles? 

Generalization/ 

characterization 

(exploratory) 

Qualitative 

model 

Evaluation & 

Analysis  

Descriptive  (result) 

& 

Experimental 

(validation)  

2) What is the structural 

characteristic of concepts that 

correctly reflect the hierarchy of 

industry roles required as target 

classes for machine learning? 

Generalization/ 

characterization 

(descriptive) 

Qualitative 

model 

Analysis  Descriptive (both)   

3) How do we build using these 

concepts, an appropriate machine 

learning model for mapping 

graduates‘ skills to hierarchically 

structured occupational industry 

roles? 

Design 

(formulative)  

Empirical 

model 

Evaluation & 

Analysis  

Experimental (both) 

4) How do we evaluate 

performance and validity of the 

mapping model? 

Evaluation  Answer/ 

judgment 

Evaluation & 

Analysis 

Experimental (result) 

& 

Descriptive (validation) 

 

approach types of research questions, types of research results, and types of validation and illustrated 

how this could be used as a guide to choose a research design.  

Using Shaw‘s model, we were able to characterize the research questions and concluded that two 

questions (1 & 2) were of the type generalization/characterization, one (question 3) was of design 

type, and the remaining one (question 4) was of the type evaluation. Further, one question (4) result 

was of the type analysis/judgment and another (question 3) of the type empirical model, while the 

other two (questions 1 & 2) results were of the type qualitative model. Finally, the type of validation 

for three questions‘ (1, 3, & 4) results was of type evaluation/analysis and one (question 2) was only 

analysis. The proposed research types for each were based on the four research purpose i.e. 

exploratory, descriptive, diagnostic, and experimentation. 

3.2.1 Synopsis of Research Design 

1.) To establish concepts appropriate as machine learning attributes for mapping graduates 

skills to occupational industry roles 

There was need for a research design that provides a way to analyze literature and identify concepts 

appropriate as machine learning attributes for mapping skills to industry roles then experimental 
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evaluation to determine valid attributes. The type of result expected to be a qualitative model, 

namely conceptual model to be established and validated through literature analysis and 

experimental evaluation respectively. Based on this requirement, appropriate research designs to 

collect the data for providing answers were literature review/analysis and experimental designs. 

a) Literature Review/Analysis 

Based on literature review, we were able to identify candidate attributes that determine ones 

performance in a particular industry role. 

b) Experimental design 

From the candidate attributes selected during literature review in a), we were able to conduct feature 

selection experiments to determine the most relevant attributes. 

2.) To establish structural characteristic of concepts that correctly reflect the hierarchy of 

industry roles required as target classes for machine learning process 

There was need for a research design that provides a way to analyze and identify structural 

characteristic of industry roles then collect data to analyze concepts to be used as target classes for 

machine learning purpose. The type of result expected to be a qualitative model, namely hierarchical 

machine learning structure to be established and validated through literature and descriptive analyses 

respectively. Based on this strategy requirement for research question 2, the most appropriate 

research designs to collect the data for providing answers were literature review/analysis and 

descriptive survey designs. 

a) Literature Review/Analysis 

Based on literature, we were able to identify the most appropriate structure for organizing industry 

roles for machine learning purpose 

b) Descriptive Survey    

From the candidate attributes selected during literature review in 1a) and structure identified in 2a), 

we were able to prepare dataset for machine learning. 

3.) To build using these concepts an appropriate machine learning model that maps graduates’ 

skills to hierarchically structured industry roles  
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There was need for a research design that provides a way to design a mapping model through 

predictive modeling and experimental analyses to optimize the model then experimentally evaluate 

to get the best fit model. The type of result expected to be an empirical model, namely machine 

learning model to be built and validated through experimental analyses and experimental evaluations 

respectively. Based on this strategy requirement for research question 3, the most appropriate 

research design to collect the data for providing answers was experimental design. 

a) Experimental Design   

From the dataset prepared in 2b), we were able to conduct algorithm selection experiments and 

algorithm optimization experiments to build the machine learning model.              

4.) To evaluate the performance and validity of the machine learning mapping model  

There was need for a research design that provides a way to build a model‘s prototype and 

experimentally evaluate model‘s prediction performance then analyze performance vis-à-vis other 

related models. The type of result expected to be a judgment, namely performance result to be 

validated through comparative literature analysis. Based on this strategy requirement for research 

question 4, the most appropriate research designs to collect the data for providing answers were 

literature review/analysis and experimental designs. 

a) Literature Review/Analysis 

Based on literature we were able to identify appropriate benchmark models and their performance 

properties. 

b) Experimental Design 

From the machine learning model developed in 3a) and benchmark models identified in 4a), we were 

able to conduct performance evaluation experiments and benchmark comparisons to evaluate 

performance and validity of the model. 

 

3.2.2 Literature Review/Analysis 

A model captures relevant features of a phenomenon and these features a derived from theoretical 

literature, as elaborated by Onweugbuzie et al. (2012), which forms the foundation of the study. 

Therefore, this research method was vital in formulating the research models using explorative 

variables. This was after enough evidence was gathered that literature analysis is widely used in 
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computer science (Glass et al., 2002, 2004; Ramesh et al., 2004; Vessey, 2001; Zelkowitz & 

Wallace, 1997) as revealed in a survey by Holz et al. (2006). 

This design method was applied to three of our research questions, first, second and fourth. First 

research question required to establish concepts appropriate as machine learning attributes for 

mapping graduates‘ skills to industry roles.  The design method was used to select appropriate 

conceptual literature on theories related to learning outcomes and to collect literature data on 

appropriate concepts as learning outcomes that promoted performance in the job. Qualitative analysis 

on literature data collected helped to analyze similarities between these theories and relationships 

towards job performance before constructing the proposed conceptual model (Dodig-Crnkovic, 

2002).  

Second research question required to establish structural characteristic of concepts that correctly 

reflected the hierarchy of industry roles required as target classes for machine learning. In this 

question, literature analysis was used to identify appropriate conceptual literature on frameworks 

related to describing or organizing industry roles and to collect literature data on appropriate 

dimensions for describing or organizing industry roles across companies. Qualitative analysis on 

literature data collected helped to analyze structural elements and their relationships towards 

describing industry roles across companies before constructing a hierarchical structure for machine 

learning that correctly describes industry roles. 

Fourth research question required to evaluate performance and validity of the model. As a result, 

literature analysis was used to identify appropriate empirical literature on machine learning models 

for skills mapping and to eventually collect relevant information pertaining to their performance 

parameters. Qualitative analysis was used to compare present study‘s model with other literature 

models before validating its performance. Table 3.2b outlines a summary of qualitative activities of 

literature analysis under each target research question.   

Table 3.2b: Literature search design 

Activity  Research 1 Research 2 Research 4 

1. Search  Learning theories  Industry roles‘ frameworks Skills mapping models 

2. Identify  Relevant theories  Relevant frameworks Relevant ML models 

3. Select  Relevant concepts  Relevant dimensions  Relevant performance parameters 

4. Construct  Proposed 

conceptual model 

proposed hierarchical 

structure 

Comparison criteria  
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3.2.2 Survey  

Sufficient evidence was gathered revealing that surveys have been used successfully in computer 

science (Glass et al., 2002, 2004; Ramesh et al., 2004; Vessey, 2001; Alavi & Carlson, 1992; 

Orlikowski, 1991; Farhoomand, 1999; Hamilton & Ives, 1982; Vogel, 1984) as surveyed by Holz et 

al. (2006). Mathers et al. (2007) reveal survey can be cross-sectional or longitudinal and provide 

detailed description of each. 

Then, survey method was applied to research question two where the objective was to collect data 

that was used to describe structural characteristic of industry roles. The basic idea was that the model 

must be learned and tested with data on employees profile and applied to recently graduated 

university students in the academia who were unemployed. Graduate employees who have been 

holding industry roles were a source of primary data that was collected through survey. Equally, 

exams past papers of the relevant subjects in the respective domains were a source of primary data 

for unemployed graduates where the model would be deployed.  

Descriptive survey was employed in executing this goal under research question two where industry 

roles concepts needed to be determined, and the survey was conducted by designing two samples and 

questionnaire instruments for each. One instrument was designed as a survey questionnaire to collect 

data from employees‘ sample so as to establish employees industry roles concepts to be used as 

target classes for machine learning while the other as an analysis questionnaire to collect data from 

exams past papers to characterize institution in academia towards industry roles.  

The exact details of sample design and instrument validation are provided in sections 3.3.2 and 3.3.3 

respectively. Table 3.2c provides a characterization of the survey design that guided the current 

study‘s survey. The main justification for using survey in this study included: 1) need to collect data 

from a wide number of variables, such as 17 variables in this case, 2) need to collect data 

retrospectively for a phenomenon that has been in existence for while, such as graduates who have 

been in employment for a while and exam past papers that were done a while ago, only survey could 

achieve this.  

Descriptive analysis was used to characterize industry roles according to the data collected based on 

attributes of each reference framework identified during literature review. As a result, to provide 

focus towards the research question under investigation using this research design six aims were set: 

1) to establish various industry roles that could be used as target classes for machine learning, 2) to 

analyze central tendency characteristics of these industry roles as potential target classes, 3) to 
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analyze class boundaries of industry roles as potential target classes, 4) to test significance of class 

differences of industry roles, 5) to establish academia bias towards these industry roles, 6) to 

establish underlying structure of industry roles.    

Table 3.2c: Characterization of research survey design  

 

3.2.3 Laboratory experiment 

In Software Engineering and generally in computing, there is a predefined way of carrying out 

experiments. Pfleeger (1995) has elaborately defined the six steps to follow as: 1) conception, 2) 

design 3) preparation 4) execution 5) analysis 6) dissemination and decision making. Besides, 

Wohlin et al. (2003) outlines basic principles that should be observed before an experiment is 

conducted. Following these guidelines, laboratory experiments enabled the researcher to validate the 

proposed conceptual model generated in research question one as well as to build and evaluate the 

machine learning model as per the research questions three and four respectively.  

Through experiments the model performance was evaluated by evaluating results obtained with the 

model. The model was experimented with three kinds of datasets. First dataset was manually created 

from employees profile data collected from survey conducted in the domain of Software 

Engineering. Second dataset was a benchmark dataset derived from literature. Third dataset was 

manually created from employees profile data collected from survey in the domain of academic 

librarians. Basically, the experiments were guided by three questions: 1) what is the performance of 

the model in mapping graduates‘ skills to industry roles? 2)  How do we ensure the validity of the 
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results? Answers from these experimental questions enabled the researcher to provide answers to 

three research questions, research question 1, 3 & 4. Using Pfleeger's (1995) strategy Table 3.2d 

outlines design characterization that was generated for the experiments.  

Table 3.2d: Characterization of research experimental design (adapted from Pfleeger (1995)) 

Step Design 

element 

Research Question 1 Research Question 3 Research Question 4 

1
. 

C
o
n

ce
p

ti
o

n
 

Research 

question 

What concepts are appropriate 

as machine learning attributes 

for mapping graduates‘ skills 

to occupational industry roles? 

How do we build an appropriate 

machine learning model for mapping 

graduates‘ skills to hierarchically 

structured occupational industry roles? 

How do we evaluate the 

performance and validity of 

the machine learning model? 

Experiment 

objective 

Exp. A: To select relevant 

features for  the model 

Exp. B: To select relevant  parameter 

values for the model 

Exp. C: To estimate  generalization 

performance of the model  

Exp.D: To evaluate model 

performance using three 

different datasets 

 

1
. 

D
es

ig
n
 

Hypothesis  H0A: All features are equally 

relevant for better performance 

of the model 

 

HoB: Any parameter value induces 

better performance in the model 

HoC: All induction algorithms induce 

equal performance to the model 

H0D: There is no significant 

performance difference of 

the classifier model  in 

different industry domains 

Experimental 

unit 

Graduate Employees 

(Software Engineering 

Domain Field & Lit) 

Graduate Employees (Software 

Engineering Domain Field & Lit) 

Graduate Employees 

(SE(Field & Lit) 

Academic Librarians(Field) 

Experimental 

subjects 

ML Models (filter algorithms) ML Models (induction algorithms) ML Models  

Dependent 

(response) 

variable  

Performance (accuracy) Performance (accuracy) Performance (accuracy, 

precision, recall, f1_score) 

Independent 

(state) variables 

Features, parameters, 

algorithms 

Features, parameters, algorithms Features, algorithms 

2
. 

P
re

p
ar

at
io

n
 

&
 E

x
ec

u
ti

o
n
 Data 

preprocessing 

Training dataset, test dataset Training dataset, test dataset Training dataset, test data set 

Randomization 6-10 random trials 6-10 random trials  6-10 random trials  

Local control 5-fold cross-validation 5-fold cross-validation 5-fold cross-validation 

3
. 

A
n

al
y

si
s 

Pre-Analysis  Selection of analysis technique Selection of analysis technique Selection of analysis 

technique 

Main-Analysis 

(Model 

Evaluation) 

Evaluation  of model 

accuracy using benchmark 

(dataset2): 

Approach : Hypothesis testing 

Technique :ANOVA, Paired 

sample T Test 

Significance value: 0.05 

Evaluation  of model accuracy using 

Field & benchmark (dataset2): 

Approach : Hypothesis testing 

Technique :ANOVA, Paired sample T 

Test 

Significance value: 0.05 

Evaluation  of model 

performance differences in 

three datasets: Accuracy, 

Precision, Recall, F_score 

Approach : Hypothesis 

testing 

Technique : Paired sample T 

Test 

Significance value: 0.05 
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The need to use laboratory experiments was as a result of the following reasons: 1) need to 

manipulate one or more variables as observed in the data collected, such as in this case knowledge 

and skills variables, 2) need to identify precise relationships between small numbers of variables, 

such as in this case knowledge-cum-skills variables and industry role variable. 

3.3 Research Framework  

Research framework operationalized the research design to provide answers systematically to the 

main research question: How do we build a data driven model using machine learning for mapping 

graduate‘s skills to hierarchically structured industry roles? There were several approaches in 

machine learning and especially in data mining which could be used to operationalize the research 

design, but one that was considered significantly important and also widely used in data mining and 

was both technological and sector independent was Cross Industry Standard Process for Data Mining 

(CRISP-DM). CRISP-DM aims at making projects less costly, more reliable, more manageable, 

faster and, most importantly, more repeatable (Wirth & Hipp, 2000).  

The six main phases of CRISP-DM model are: 

1) Business understanding – understanding objectives and requirements from business view. 

2) Data understanding – familiarizing with data quality and interesting subsets 

3) Data preparation – constructing dataset from initial raw data 

4) Modeling – selecting modeling techniques and parameters for model building and assessment 

5) Evaluation – assessment of model results 

6) Deployment – generating a report or implementing a repeatable data mining process 

However, Guruler & Istanbullu (2014) note that CRISP-DM model is highly recommended for 

technical projects that follow a structured plan-do-check-act (PDCA) cycle and therefore to achieve 

optimized quality and success in data mining projects they recommended combining the two. PDCA 

cycle is a quality-driven approach to change and problem-solving that consist four phases: 

1) Plan – identify and define the problem 

2) Do – develop and test a potential solution 

3) Check – measure how effective the tested solution is and whether can be improved 

4) Act – implement the improved solution 
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Therefore, to ensure high quality and reliable results CRISP-DM model and PDCA cycle were 

combined and presented in a research framework with ten systematic stages as shown in Figure 3.1 

and described below: 

 

Figure 3.1: Research framework as adapted from Guruler & Istanbullu (2014) 

While PDCA provides the underlying blueprint for the research design, CRISP-DM provides the 

operational activities to realize the end product of the research as follows: 

a. Business problem domain understanding – understanding objectives and requirements from 

business point of view. This was achieved through three operational activities: identifying in 

the literature 1) factors that promote performance and productivity in the job, 2) various 

industry roles occupied by personnel in a given occupational domain and 3) bachelors degree 

programs in the academia that provide a source of skills towards these occupational industry 

roles.  

b. Data understanding – familiarizing with data quality and interesting subsets. This was 

achieved through two operational activities: data collection and analysis of 1) identified job 

specifications for occupational industry roles and 2) trends towards those roles in the 

academia so as to establish institutions‘ biases towards industry roles. The aim of this task 

was to verify validity of the initial assumptions of the current study that industry roles are 
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hierarchically structured and there was skills bias in various institutions in the academia 

towards these industry roles. 

c. Data preparation – constructing dataset from initial raw data. This involved transforming data 

and mapping it into the proposed taxonomic structure and selecting the most meaningful 

features using standard machine learning techniques.  

d. Modeling – selecting modeling techniques and parameters for model building and 

assessment. This involved computational modeling by simplifying the phenomenon of 

interest to be studied where the best model was selected. 

e. Evaluation – assessment of model results. This involved creating a prototype of the model 

and assessing its performance. 

f. Deployment – generating a report or implementing a repeatable data mining process. This 

involved mapping the evaluation results to the original objectives so that conclusions could 

be drawn. 

3.4 Research Methods 

Research methods refer to schemes, procedures, algorithms and techniques that were used to perform 

research operations that included data collection, data analysis, and results evaluation. Three 

categories of research methods were applied: 1) data collection or sampling methods, 2) data analysis 

methods, and 3) evaluation methods.  

3.4.1 Sampling 

Data collection, also known as sampling, focused on availing data for the study. Depending on the 

research design method, the source of data could be literature review where literature analysis was 

used as data collection method, survey where questionnaires were used as data collection methods, 

experiments where experimental observations were used as data collection method, and case study 

where a variety of data collection methods could be employed. In the current sub-section, the focus 

was data collection methods that availed data from the population of study.  

1) Target Population 

We targeted two populations in one domain of occupation: past exam papers of degree programs in 

the academia and graduate employees, both belonging to the same domain. A domain expert was 
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used to create a checklist that was used to filter the industry firms and universities‘ degree programs 

from which the target personnel and exam past papers populations were formed (Refer to 3.5.2.1). 

2) Sampling Method 

The goal was to use a sampling method that would make the study as representative of sources of 

knowledge and skills as possible and that truly reflects the multi-university environment in the 

academia across the country. Therefore, multi-stage sampling technique was applied to draw the two 

samples i.e. each sample created in two stages. For employees, sampling of industry firms was 

performed (stage 1), before employees were sampled from each firm (stage 2). For exam past papers, 

sampling of degree programs was done (stage 1), before exam past papers were sampled from each 

degree program (stage 2). Refer to sub-section 3.5.2.1 for specific details. 

For employees‘ sample, simple random sampling was used to generate stage-1 sample of the firms 

and stratified random sampling was applied to select stage-2 sample of employees (so that each firm 

contributes employees to employees‘ sample). For exam past papers‘ sample, simple random 

sampling was applied to select stage-1 sample of universities where the required bachelor‘s degree 

programs were offered and stratified random sampling was applied to select stage-2 sample of exam 

past papers (so that each degree program sampled contributes to exam past papers‘ sample).  

Three types of questionnaires were designed, two to collect data from employees (ordinary 

employees and head of department/sections separately) and one from exam past papers. Employees‘ 

questionnaire was used to collect data for various job titles and their requirements in terms of content 

knowledge, cognitive skills, technical skills, and academic capacity. Analysis questionnaire was used 

on exam past paper to collect data on cognitive skills and content knowledge. 

For each exam past paper, each question was split into two parts i.e. verb and topic parts. The verb 

part was used as the indicator for the cognitive skills, while the topic part was used as the indicator 

for the content knowledge. Bloom‘s taxonomy has been used as a reference framework for extracting 

cognitive skills from each question‘s verb part, while domain‘s body of knowledge has been used as 

a reference framework for extracting content knowledge from the topic part of the question. Dalton 

and Smith (1986) verb list was used to map the verb part of each question to Bloom‘s taxonomy. The 

marks awarded to the question were recorded as the value for the cognitive skill as well as 

knowledge type of the question. Two domain experts have been used to evaluate the past exam 

papers and their results were correlated.  
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For each employee‘s job title, requirements for content knowledge, cognitive skill, technical skill, 

and academic capacity have been assessed in a set of lickert scale type of competence item/sub-

variable matrix whose score range from 1=least important to 12=most important.  

The three questionnaires details are summarized below: 

1) Questionnaire to collect data from each employee (inexperienced). Details collected were:  

 Personal information (gender, age, university of study, degree program, year of graduation) 

 Academic performance (secondary school performance, undergraduate performance, domain 

area subjects‘ performance) 

 Domain area industry requirements (job title, job activities, domain area knowledge demands, 

Cognitive skills demands,). 

2) Questionnaire to analyze and collect data from each past exam paper. Details collected were: 

 Exam information (university and year of administration, degree program name, number of 

questions, total marks allocated, duration) 

 Exam content (knowledge area covered and rating, cognitive skills covered and rating).  

3) Questionnaire to collect data experienced personnel (Leader or expert). Details collected were: 

 Firm/Department information (Regional size, staff size, products or services delivered) 

 Domain area job titles (graduate entry level titles, minimum entry grades, job activities, title 

knowledge area rating, title cognitive skills rating, title technical skills rating) 

3.4.1.1 Reliability and Validity of Research Instrument 

The data reliability, internal-consistency reliability coefficients for all completed questionnaire 

(during both pre-test and actual survey) were determined using Cronbach‘s alpha. The questionnaire 

was administered to the same respondents two times. After the fast administration, some time was 

allowed to elapse, long enough to eliminate response by remembering the responses in the first 

administration. The scores on the two sets were then correlated and reported. 

The validity of the instrument was achieved through a pilot study using a section of the respondents 

in each of the cases of the study before the actual study was conducted. This was necessary to 

determine whether the respondents would find the questions in the questionnaire precise and concise 

to the subject of the study. Any questions found ambiguous to the study was restructured to make the 

instrument more valid. 
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Ethical issues or norms are important in research because they tend to deal with and discourage 

cheating through falsifying and fabricating. Ethical issues are important in promoting truthfulness, 

honesty, social responsibility and integrity in research (Shamoo et al, 2009).This research adopted 

the following ethical principles as adapted by (Shamoo et al, 2009; NAS, 1995): 

i. Honesty – was achieved through citing relevant sources of information as used in the research 

ii. Objectivity- was achieved by following the format of research as provided by the School of 

Computing and Informatics, University of Nairobi. 

iii. Integrity –was achieved by ensuring the research design and data was valid and reliable 

through validating research instruments. 

iv. Legality – was achieved through complying with the laws governing research in Kenya by 

acquiring permission and authorization to conduct research from National Council of Science 

and Technology (NCST) of Kenya which is the board in charge of research in Kenya.  

3.4.2 Data Analysis and Presentation 

Data analysis focused on establishing relationships between the data and the unknowns. The choice 

of data analysis method depended on the nature of the unknowns, namely qualitative or quantitative. 

For example, to establish relationship between theoretical concepts in various theories, literature data 

required qualitative analyses methods such as qualitative comparison analysis technique; to establish 

descriptive summaries in a population of study, survey data (questionnaire or interview collected) 

required quantitative analyses methods such as descriptive statistics techniques. 

We had four unknowns which were largely quantitative and these were the independent variables, 

namely Content Knowledge, Cognitive skill, Technical skill, and Academic Capacity. Each was 

assessed in a set of lickert scale type of sub-variable matrix (competence item) whose score range 

from 1-12; least important to most important. Each sub-variable score on each competence item was 

then aggregated to a total score which was then divided by the maximum possible score of all 

competence items then multiplied by twelve to reduce the sub-variable score to an index ranging 

between 1 and 12. An average index was then calculated from values of all sub-variable scores to 

give overall index for each independent variable (refer to section 3.7.1).  

Thus, to achieve the objectives of data analysis, data collected through the questionnaires was pre-

processed using Excel spreadsheets before creating the data files and subjecting the data to actual 

analysis. 
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3.4.2.1 Data Pre-Processing  

In order to use the proposed model, data was modeled according to the four independent variables. 

The industry role requirements for each variable were captured and calculated using the tables 

described below. With the exception of Capacity variable where the table content type is indicated as 

column headings High School GPA and Undergraduate GPA, the rest derived their content type from 

reference frameworks.  

The reference framework for content knowledge variable was based on the specific domain‘s body of 

knowledge, for technical skills variable it was based on specific domain‘s competence framework, 

while for cognitive skills variable it was based on Bloom‘s taxonomy as the cognitive framework.  

Data collected from industry experts, heads of sections, was used for reliability validation, while data 

collected from employed graduates and past exam papers was used as values for individual cases. 

Excel worksheet was used in the preprocessing of data. The researcher proposed to use the coding 

scheme described below. 

1) Content knowledge (Relevance): Under each content type (subject or topic) a value on the scale 

of 1 to 12 was used to indicate the level of importance for each requirement, where 1 = least 

important, 12 = most important.  The totals were then calculated for each content type, i, and a 

ratio ri (i=1,..,n) was calculated and rounded off to a whole number ranging from 1 to 12. An 

average was then calculated from all r for each content type to get an index value R for the role. 

Table 3.4 illustrates the layout for calculating the content knowledge index. 

Table 3.4: Computing the Content Knowledge Index (m 

Role/Career: Relevant Content Required: (either Topics or Subjects denoted by C) 

Requirements C 1 C 2 C 3 ---------------- C n 

a      

b      

-      

Possible Total(T)      

Calculated total(t)      

r=t*12/T      

 

2) Cognitive skills (Durability): Under each core skills area (subject or topic or competence) a 

value on the scale of 1 to 12 was used to indicate the level of importance for each requirement, 

where 1 = least important, 12 = most important.  The totals were then calculated for each content 
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type, i, and a ratio di (i=1,..,n) was calculated and rounded off to a whole number ranging from 1 

to 12. An average was then calculated from all d for each content type to get an index value D for 

the role. Table 3.5 illustrates the layout for calculating the cognitive skills index. 

Table 3.5: Computing the Cognitive Skills Index (m 

Role/Career: Core Skills Areas Clusters Required: (either Topics or Subjects or 

Competences denoted by C) 

Requirements C 1 C 2 C 3 ---------------- C n 

a      

b      

c      

-      

Possible Total(T)      

Calculated total(t)      

d=t*12/T      

3) Technical skills (Accuracy): Under each core area (subject or topic or competence) a value on 

the scale of 1 to 12 was used to indicate the level of importance for each requirement, where 1 = 

least important, 12 = most important.  The totals were then calculated for each content type, i, 

and a ratio ai (i=1,..,n) was calculated and rounded off to a whole number ranging from 1 to 12. 

An average was then calculated from all, a, for each content type to get an index value A for the 

role. Table 3.6 illustrates the layout for calculating the technical skills index. 

 

Table 3.6: Computing the Technical Skills Index 

Role/Career: Core Areas Cluster Points: (either Topics or Subjects or Other denoted by C) 

Requirements C 1 C 2 C 3 ---------------- C n 

a      

b      

c      

-      

Possible Total(T)      

Calculated total(t)      

a=t*12/T      

 

4) Academic capacity (Capacity): Individual‘s capacity for each role/career was derived from both 

high school and undergraduate Grade Point Average (GPA) which each was converted to 

decimal number where 1 = E, 2 = D-, 3 = D, 4 = D+, 5 = C-, 6 = C, 7 = C+, 8 = B-, 9 = B, 10 = 
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B+, 11 = A-, 12 = A.  Then, an average was then calculated from the two to get an index value C 

for the role capacity index value. Table 3.7 shows the layout for calculating the academic 

capacity index. 

Table 3.7:  Computing the Capacity Index (max. 11001100 =204) 

 High school GPA  Undergraduate GPA 

Grades Points   

 

3.4.2.2 Creating the Data Files 

After the above pre-processing the data was then entered into SPSS software version 6, case by case, 

and stored in four separate files under the following variables: 

1) Employees‘ data file  

This file was used to store data from employees‘ questionnaires under the following variables (see 

table 3.8). 

Table 3.8: Employee data variables description 

VARIABLE NAME VARIABLE DISCRIPTION  

1.     Gender Gender  

2.     Agebracket Age  

3.     Olevelstudyregion O level study region 

4.     Ogradingsystem O level grading system 

5.     Oresults O level results 

6.     Bachelordegree Name of first degree 

7.     Bacheloruniversity First degree university of study 

8.     Graduationyear Graduation year 

9.     Bachelorgradingsystem First degree grading system 

10.  Bachelorresults First degree results 

11.  Entryleveljobtitle Entry level Job title 

12.  Entryleveljobyearofappointment Entry level Job year of appointment 

13.  Firstjobdescription  First/entry level job description 

14.  Currentjobtitle Current job title 

15.  Currentjobyearofappointment Current Job year of appointment 

16.  currentjobdescription Current Job description 

17.  DSubjectstudyyear Domain area Subject year of study 

18.  DSubjectscore Domain area Subject score 

19.  Jobactivitycategory Job activity category 

20.  KAratingRI Relevancy Index calculated from Knowledge Area ratings 

21.  CSratingDI Durability Index calculated from Cognitive Skills ratings 
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2) exam past paper file 

This file was used to store data from domain area exam past paper questionnaires under the 

following variables (see table 3.9). 

Table 3.9: Exam past paper data variables description 

VARIABLE NAME VARIABLE DISCRIPTION  

1.     Papercode Subject code for the exam paper 

2.     Universityname  University name 

3.     Examyear  Exam year 

4.     Examduration  Exam duration 

5.     Totalmarks  Total marks 

6.     Yearofstudy  Year of study 

7.     Coursename Degree program name 

8.     Totalquestions  Total number of questions 

9.     BoKnowledgerating 
Body of knowledge area ratings (several variables depending on 

domain area) 

10.  Krating Knowledge Acquisition rating 

11.  Crating Comprehension rating 

12.  Anrating Application rating 

13.  Aprating Analysis rating 

14.  Srating Synthesis rating 

15.  Erating Evaluation rating 

 

3) Industry firm file 

This file was used to store the details of the firm or department from which the employees were 

sampled under the following variables (see table 3.10). 

Table 3.10: Firm data variables description 

VARIABLE NAME VARIABLE DISCRIPTION  

1.     Ownership Ownership of the firm 

2.     Staffsize Number of staff related to the domain area  

3.     Totaljobcategories  Total number of job categories 

4.     productsdelivered Name of product or service delivered by the firm 

5.     Entryleveljobcategories  List of entry level job categories 

 

The three files were then be used to perform the following analyses on the data collected and stored 

in SPSS format:- 
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1) Demographic characteristics analyses 

2) Industry role requirements analyses. 

3) Trends analysis. 

All data analyses were conducted using SPSS software version 16 while experimental analyses have 

been done using python 4.3 version. 

3.4.2.3 Demographic Characteristics Analysis 

The purpose of this section was to analyze the demographic characteristic of the sample. The data 

was analyzed quantitatively to reveal the demographic characteristics of the two survey samples and 

experimental samples as follows: 1) Frequency distribution table and chart for employees sample to 

reveal types of bachelor‘s degree program, gender and industry roles distribution, 2) Frequency 

distribution table for exams past papers sample to reveal types of bachelor‘s degree program, year of 

study, number of questions and total marks distribution, 3) Frequency distribution table for 

experiment samples to reveal classes distribution. 

3.4.2.4 Industry Role Requirements Analysis 

The purpose of this section was to analyze competence (content knowledge, cognitive skills, 

technical skills and academic capability) requirements for each job title so as to reveal knowledge 

and skills landscape for various industry roles based on our conceptual model (CWA16458, 2012). 

This was important not only  to many stakeholders who have interest in the recruitment and 

development, education and training, and qualifications and certifications of professionals (Korte et 

al, 2013) but also to provide transparency in validating our assumption that occupational industry 

roles are distinct and therefore are feasible for machine learning classification. 

This was achieved through the following quantitative analyses: 1) Frequency distribution charts for 

employees sample to reveal types of entry level industry roles, job activities and their proportions, 2) 

Factor analysis for employees sample to reduce data redundancy using principle component method. 

Factor analysis, as a statistical procedure for identifying underlying variables (called factors) that 

explain most variation using fewer variables observed in the original data and principle component 

method, was used to achieve this, 3) Descriptive statistical analyses for employees sample to reveal 

central tendency, dispersion values for each independent variable and eventually calculate class 

boundaries and the index vector for each industry role.  
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The index vector consists of four values: The minimum index value (Mn), maximum index value 

(Mx), average index value (Iv) and relative index value (IR) of each predictor variable (content 

knowledge, cognitive skills, technical skills, and academic capacity) in each role category as shown 

in table 3.11. 5) Significance tests analyses for employees sample to test differences between 

industry roles. 

Table 3.11: Role Categories’ Indexes minimum and maximum values 

Role 

category 

name 

Content Knowledge 

(Relevancy Index) 

Cognitive skills 

(Durability Index) 

Technical skills 

(Accuracy Index) 

Academic capacity 

(Capacity Index) 

Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR 

1.                 

2.                 

………

…. 

                

3.4.2.5 Trend Analysis 

The purpose of this section was to analyze trends of knowledge and skills transferred during training 

in the academia so as to reveal biases towards industry roles among institutions of academia (Topno, 

2012). Jones et al. (2009) provides a green light that examinations are key tools to evaluate in order 

to determine whether the test questions‘ items contain the knowledge and skills desired of learners at 

the end of training.  

The data stored in the exam past paper file was analyzed to show and compare the index values for 

cognitive skills and knowledge content for each academia institution sampled using the following 

quantitative analysis procedure: 1) Descriptive statistical analyses for exam past paper sample to 

reveal central tendency and dispersion values for content knowledge and cognitive skills for each 

institution, 2) Box plot charts to graphically present the index means and inter-quartile range for 

various industry roles, 3) Reference lines representing central tendency value for content knowledge 

and cognitive skills of each institution superimposed on the box plot charts. 

3.4.3.  Evaluation Methods 

Evaluation focused to establish the relevance of research results obtained. For example in literature 

analysis, triangulation was applied to establish legitimation of the results, while in survey, 
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experiments, or case study, statistical significance tests techniques were used. In the present study, 

the main focus was to build a classifier model and therefore evaluation was significantly needed to 

determine its performance and validity. To evaluate the performance of the classifier model a 

number of experiments were performed according to experimental design described in section 3.1. 

The choice of evaluation method depended on the choice of evaluation criteria, also known as 

performance measure. Chapter 6 discusses the evaluation methods and metrics chosen. 

3.5. Methodology for Developing the Mapping Model 

3.5.1 Problem  Domain Understanding 

The most important task was to first understand the problem domain, namely mismatch of skills and 

industry roles. To provide focus towards this problem and narrow down the scope, the problem was 

treated somehow as an evaluation challenge in the academia where evaluation was limited to 

learning objectives instead of evaluation of learning outcomes that promote performance and 

productivity in the job. Based on this in mind and the wide availability of data in a society where 

data driven methods are gaining traction, the researcher posed a research question towards solution 

to this problem: how do we build a data-driven model using machine learning to map graduates‘ 

skills to hierarchically structured industry roles. However, to answer this question several questions 

needed to be answered as outlined in section 1.4.  

This was done within the context of a selected case of industry occupation. 

3.5.1.1 A Case of Software Engineering 

We selected the domain of Software Engineering (SE) as a typical case of occupational industry 

roles. This domain has been widely studied in research literature (Moreno et al., 2012; Shashidhar et 

al., 2015). Software Engineering (SE) is an industry occupation concerned with development of 

software that is reliable, efficient and economical. Software developers or engineers refer to the 

entire community of people involved in software development or working in the SE industry. The 

universally recommended source of knowledge and skills for software engineers is known as 

Software Engineering Body of Knowledge (SWEBOK).  

Equally, kind of technical skills required of software developers were revealed by a study carried out 

by Surakka (2005) which grouped these skills into five categories: platform skills, programming 

skills, networking skills, database skills and distributed technology skills.  Software developers are 
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trained along with other ICT practitioners through a number of degree programs such as Computer 

science, Information Technology, Software Engineering, Mathematics and Computer science.  

3.5.1.2 Mismatch of skills and industry roles  

A review conducted on literature (Ludi & Collofello, 2001; Saiedian, 2002; Kolding & Ahorlon, 

2009; Shkoukani, 2012; Moreno et al, 2012; OECD, 2012; McCowan, 2016) revealed indeed there 

was a problem of skills mismatch between graduates produced by academia and industry roles 

requirements. Since literature (Griffin, 2008; Sutherland et al., 2009; Norwood & Briggeman, 2010) 

indicates problem solving skill is poorly evaluated, poor approaches for skills mapping to industry 

roles may have contributed partly to this situation.  

This problem may have rendered both graduates and employers difficult in matching graduates‘ 

skills with industry roles. There was need to focus the study to its main goal, namely to build an 

effective machine learning model for mapping graduate‘s skills to matching industry roles in 

hierarchically structured class taxonomy so as to be able to predict suitable industry roles for new 

graduates based on their skills.  

At this point there was need to understand issues that affected the design and building of such 

computational models that learn from observations. Lavesson (2006) outlined these issues as: 1) the 

input 2) the type of feedback, and 3) the way the solution is to be represented. Input consists of a 

sample of data instances described by a number of attributes which may be of different data types, 

feedback for observational learning could be of three types: supervised, unsupervised, and 

reinforcement, while representation of the solution in supervised learning depends on whether the 

desired output is discrete or continuous and thus could be represented using classifier or regression 

function respectively.  

Clearly, out of these three issues three observations were made. First, there was need to select 

appropriate attributes for describing industry roles instances to be used for machine learning. 

Secondly, based on feedback requirements of this problem where employees with known industry 

roles were needed to learn the model, then this was conducted as a supervised learning problem 

(Lavesson, 2006). Thirdly, since the prediction output of the model was to be discrete then it was 

addressed as a classifier model.  

The first observation focused on the first research question: what concepts are appropriate as 

machine learning attributes for mapping graduates‘ skills to occupational industry roles?  To answer 
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this question a systematic investigation was required to identify and analyze theories for evaluating 

learning outcomes so as: 

1) To establish their underlying concepts that promotes performance in the job. 

2) To identify suitable frameworks in academia that are suitable for assessing these concepts.   

Figure 3.5.1 provides a logical plan that was used to conduct this type of investigation whose 

findings were fundamental in providing answers to the above research question. 

 

Figure 3.5.1: Understanding problem domain 

Activity 1a: Literature Review/Analysis 

Literature review was conducted that helped to provide information on concepts that were used to 

develop the conceptual model of the problem. Problem modeling involved looking at the domain to 

identify the issue that needed to be addressed and the problem to be solved, and understanding the 

theoretical issues by which we could model the problem (Vernon, 2009). Keywords in the abstract 

section of this study were used to select journals for the literature review.  

Initially, the keywords guided the searching of literature, then refined using the following questions: 

What learning outcomes enhance performance in the job? How do we evaluate learning outcomes? 

Which evaluation methods are common for each learning outcome identified? While literature was 

the main source, between study literature analysis method was preferred, literature on three theories 

for learning evaluation were compared and contrasted, complementarity and development techniques 

of literature analysis were used to achieve representation while triangulation was used to achieve 
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legitimation (Onmuegbuzie et al., 2012). The end product of this activity was the conceptual model 

within which the concepts to be used as attributes for machine learning were proposed. 

Findings 1b: Conceptual Model 

Three theoretical models for evaluating learning outcomes were identified, namely Kirkpatrick 

model, CRESST model, and Kraiger‘s model. Their underlying concepts were analyzed to reveal 

ones that promoted performance in the job, and their relationships were represented in the conceptual 

model. The conceptual model has been presented in Fig. 2.6 and its proposed concepts were 

operationalized using frameworks that provided indicators that were used to derive the variables for 

collecting data as shown in Table 2.3. 

Activity 2a: Preliminary Survey on Senior staffs 

One instrument was designed as a survey questionnaire to collect data from senior employees sample 

so as to establish employees‘ industry roles concepts to be used as target classes for machine 

learning. The instrument was designed to collect data from senior staffs so as to provide insight on 

three issues. 

1) Degree programmes that were the main source of software developers 

2) Occupational role names for software developers 

3) Main competence areas for occupational industry roles 

4) Hierarchical relationship between main competence areas 

Findings 2b: Common industry roles 

Six broad industry role names were identified for software developers and three degree programs 

were identified as their main source, namely Computer Science, Information Technology, and 

Software Engineering. Three main competence areas for software developers were identified and 

their hierarchical relationship from bottom to top in terms of their skills superiority was established 

as  follows respectively,  namely software programmer, software designer and software project 

manager. 

Activity 3a: Build a workbench computational model 

A workbench computational model was built to test the feasibility of the study. Computational 

modeling involved abstracting the problem from the problem space and modeling it computationally 

by identifying the computational theory and tools needed to solve the problem (Vernon, 2009). The 
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end product was a comprehensive definition of the data input, explicit techniques to 

process/transform/analyze the data and the information to be produced as output.  

3.5.2 Data Understanding 

This phase was key not only in familiarizing with the quality of data that was to be used to build the 

mapping model but also to provide answer to the second research question: what is the structural 

characteristic of concepts that correctly reflect the hierarchy of industry roles required as target 

classes for hierarchical machine learning purpose? To answer this question an investigation that 

needed data collection was launched to: 

1) Establish employees‘ industry roles for entry level jobs in the domain industry that could be 

used as target classes for machine learning.   

2) Analyze job specifications for the occupational industry roles as potential target classes so as to 

establish their central tendency characteristics. 

3) to analyze class boundaries of industry roles as potential target classes so as to establish their 

uniqueness characteristics,  

4) Test significance of the assumption that class boundaries of occupational industry roles were 

real.  

5) establish academia bias towards these industry roles,  

6) Establish underlying structure of industry roles.  

3.5.2.1 Data Collection 

Figure 3.5.2a illustrates the complete data collection process that was started with a preliminary 

survey on the target populations that led to the identification of three sources that were used as the 

source of data. 
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Figure 3.5.2a: Data collection 

Activity 1a: Preliminary Survey on Target Populations 

Two websites provided the source for software houses as one of our target population (www.kenya-

information-guide.com, 2015; www.softkenya.com, 2015). Most software houses are based or 

centralized in Nairobi because it is the business hub of Kenya and East Africa. Identifiable addresses, 

physical location and phone number or email address were used as the criteria to locate reachable 

software houses. Researcher‘s preliminary survey revealed about 43 software houses working on 

software development related activities with identifiable addresses, physical location and phone 

number or email address. These had an average of 10 software developers and a total of about 430 

developers. . See Appendix D and Appendix E for sampling frames. 

Also, Commission of University Education (CUE) website and other two related websites 

(www.cue.or.ke, 2015; www.softkenya.com, 2015; www.businesslist.co.ke, 2015) provided the 

source of university programmes providing SE training courses. This research adopted the list of 

universities together with their accredited programmes provided by CUE on their website dated 2th 

February, 2015.  

A total of 43 universities (private/public) with a total of 87 bachelor‘s degree programs in at least 

computer science or Information Technology or Software Engineering which offered Software 

Engineering as a course were identified. There was at least one exam for SE each academic year for 

each of the 87 degree programs. The current study was targeting SE past exam papers from each of 

the 87 degree programs in a period not more than 10 years, hence a total of at least 870 SE exam past 

papers. The universities‘ population excluded university colleges, because it was assumed that the 

degree programs and exams they offered were originally provided by the mentor university and 

would cause duplication if included. 

1) Sample Design for the Case 

Sample of software developers was created by first sampling the software houses (as sampling units), 

then from each sampled software house a second sampling procedure was conducted by selecting the 

software developers employed (as sampling units). The software developers sample consists of two 

strata i.e. job entry level software developers (inexperienced) and head of section or department 

software developers (experienced). 50% (about 22 firms) of the target software houses were selected 

for stage one sample. This resulted to a total of about 220 software developers from which stage two 

http://www.kenya-information-guide.com/
http://www.kenya-information-guide.com/
http://www.softkenya.com/
http://www.cue.or.ke/
http://www.businesslist.co.ke/
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sample was generated by selecting 22 (department or section head for each firm) experienced 

developers and 165 inexperienced developers. This gives a sample size of about 187 (44%) software 

developers of the total population. 

Sample of SE exam past papers has been created by first sampling universities where SE related 

degree programs are offered, then from the sampled universities a stratified random sample of SE 

exam past papers was created. Bachelor‘s degree programs of the 43 universities were sampled to 

create a sample of SE exam past papers by selecting one degree program per sampled university. A 

total of 5 universities offering the required bachelors‘ degree programs (12% of the total population 

of 43 universities) were used to generate stage two sample of SE exam past papers. This resulted to a 

total of at least 50 exam past papers from which stage two sample was generated by selecting 25 (3% 

of the total population) SE exams past papers administered in the period of less than 10 years, 5 

exam past papers from each of the  degree programs.  

2) Sampling for the Case  

For software developers sample, simple random sampling technique was used to generate stage-one 

sample of the software houses and stratified random sampling was applied to select stage-two sample 

of software developers. For SE exam past papers‘ sample, simple random sampling was applied to 

select stage-1 sample of universities where the required bachelor‘s degree programs are offered and 

stratified random sampling was applied to select stage-2 sample of exam past papers administered in 

the period less than 10 years (so that each degree program sampled contributes to exam past papers‘ 

sample).  

3) Data Collection for the Case  

Three types of questionnaires were used to collect data, from experienced software developers 

(experts), inexperienced software developers (recently employed graduates) and SE exam past 

papers. The three questionnaires details are provided in the appendix (refer to appendix C). 

Activity 2a: Secondary Data 

After carefully searching for a dataset that would suit the purpose of this method, AMEO2015, one 

of the datasets listed by Aggarwal et al. (2015) was selected as baseline to validate our method. The 

dataset was downloaded from the web link http://research.aspiringminds.com/resources/. The dataset 

contains data related to entry level engineers, including software engineers. The dataset has 38 
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attributes and 3998 instances. AMEO2015 is a dataset comprising cognitive skills test scores 

(AMCAT test scores), biodata details and employability outcomes of job seekers.  

AMEO is an acronym for Aspiring minds Employability Outcomes which is a research affiliated 

group with the following research objectives: 1) to determine combination of skills needed for 

various jobs in the market, 2) to provide feedback to candidates on their job suitability, gaps in their 

skill set for a particular job, and ways for them to improve upon, 3) to provide job credentials to 

candidates to signal employability, 4) to provide an easy way for companies to filter high quality 

candidates and provide interview opportunities for them. 

In our study, the dataset was carefully analyzed to produce a benchmark dataset.  This included the 

following steps: 

1) Filtering out all non-software engineers‘ data records. Specialization column of the data set was 

used where all non-Computer Science and non-Information Technology data records were 

removed. 

2)  Filtering out all trainees and senior software engineers‘ data record. Designation column was 

used to remove any data record that implied a trainee or senior software developer/engineer.  

3) Filtering out columns or attributes that were not relevant to our study, such as date of joining, 

job city, personality attributes, salary, etc. Attributes that correlated to our data collection 

variables in the questionnaire were retained. 

4) Deriving data values for variables that were not directly represented in the dataset, such as age 

was derived from date of birth and date of joining columns, Relevant content knowledge was 

derived from domain column, cognitive skills was derived from average of English, Logical, and 

Quant columns, Technical skills was derived from computer programming column, academic 

Capacity was derived from average of 12percentage (High school exam grade) and collegeGPA 

columns. 

5) Selecting industry roles whose names clearly indicated a well defined software engineer‘s role. 

General names such as software engineers and software developers were ignored. 

6) Computing the weights for each of the independent variables for all the industry roles selected.    

Findings 2a: Secondary Data 

A total of 13 variables were derived from the dataset with 279 data records (instances) and 12 well 

defined industry roles. Figure 3.5.2b shows a snapshot of the benchmark dataset where the codes  
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Figure 3.5.2b: SE Benchmark dataset 

adopted in the class columns represented the following industry roles extracted: 1:ios developer(9), 

2:data analyst (14), 3:android developer(23), 4:java developer(40), 5:programmer(12), 6:software 

test engineer(42), 7:systems administrator(9), 8:network engineer(8), 9:php developer(19), 10:web 

developer(32), 11:programmer analyst(51), 12:test engineer(19). Table 3.5.2a describes the main 

sources of the benchmark dataset attributes relative to the original secondary dataset. 

Activity 2b: Entry level Employee’s Questionnaire 

A survey Questionnaire with 17 items was used to collect data from 113 software engineers in the 

industry (after data management process). Table 3.5.2b describes the structural characteristic of the 

employee‘s questionnaire. 

Table 3.5.2a: Description of the benchmark dataset 

 

 

NO. ATTRIBUTES DESCRIPTION   SOURCE (Column name in the original dataset) 

1 GENDER Gender GENDER 

2 AGE Age DOB (Date of Birth) 

3 LOLE Place of O-level Study CollegeCityTier (2=1, 0=1) 

4 GSOLE Grading System of O-level 12 Grade Exam Board (High School Exam. Board) 

5 ROLE Results for O-level 12 Grade Exam Results (High School Results- 4 classes) 

6 BDGREE Type of Bachelor‘s  Degree Specialization 

7 UNIVERSITY University of Study for Bachelors CollegeID 

8 GSBDEGREE Grading System for Bachelors CollegeTier 

9 RBACHELORS Results for Bachelors CollegeGPA (grouped into 4 classes) 

10 R Relevant  Content Knowledge  Domain (converted to out of 12 points = x12) 

17 D Cognitive Skills  Average (Logical, English, Quant) X12/1000 

12 A Technical skills ComputerProgramming  (X12/1000) 

13 C Intellectual Capacity Average (12 Grade Exam Result, CollegeGPA) 

14 Class Target Industry Role Designation (Job title) 
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Table 3.5.2b: characteristics of employee’s questionnaire 

1) Data Pre-processing 

Data collected through the questionnaires was pre-processed and stored in four separate files under 

the variables described in section 3.4.2. To demonstrate the applicability of this method, SE was used 

as a case study where SWEBOK content, Bloom‘s taxonomy, Surakka‘s technical skills, and Student 

GPA were used as reference framework as follows: 

1) Content knowledge: SWEBOK content‘s topics were used to calculate the index as shown 

in table 3.12. (for detailed description refer to section 3.4.1 and Table 3.4) 

Table 3.12: Computing the Content knowledge Index for the case study) 

SE role: SWEBOK Content 

Requirements Topic 1 Topic 2 Topic 3 ---------------- Topic n 

a      

b      

Possible Total(T)      

Calculated total(t)      

r=t*12/T      

 

NO ATTRIBUTES VALUES DESCRIPTION 

1 GENDER {Male, Female} Gender 

2 AGE {20-24, 25-29, 30-34, 35-39,  40 and above} Age 

3 LOLE { Local, Abroad} Place of O-level Study 

4 GSOLE {Grades, Points, Marks} Grading System of O-level 

5 ROLE {Less than 4, 5-7, 8-10, 11 and above } Results for O-level 

6 BDGREE 

{Computer Science, Information Technology, 

 Software Engineering, Other} Type of Bachelor‘s  Degree 

7 UNIVERSITY 

{UON, KU, JKUAT, MOI, EGERTON, Strathmore,  

KEMU, Daystar, Nazarene, Maseno, Other} University of Study for Bachelors 

8 GSBDEGREE {Grades, Points, Marks} Grading System for Bachelors 

9 RBACHELORS {Less than 4, 5-7, 8-10, 11 and above } Results for Bachelors 

10 FIRSTJOB 

{Software Architect, Analyst Programmer, Test 

Engineer, Web Programmer, Mobile Programmer, 

System programmer, Project manager, Other } First Appointed Job 

11 CURRENTJOB 

{Software Architect, Analyst Programmer, Test 

Engineer, Web Programmer,  Mobile Programmer, 

System programmer,  Project manager, Other } Current Job 

12 CHANGEDJOB {NO, YES} Current Job Is Different From First Job 

13 ATTRACTOR {Passion, Salary, Ambition, Qualification, Other} Enticing Factor to Current Job 

14 SEEXAM {100%, 75%, 50%, 25%, 0%} Se Content In Exam 

15 Technical Skills {interval value} Index  of Technical Skills Components 

16 

Relevant 

Knowledge {interval value} 

Index  of Content Knowledge 

Components 

17 Cognitive skills {interval value} Index  of Cognitive Skills Components 
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2) Cognitive skills: Bloom‘s taxonomy was used as coding scheme for cognitive skill areas: 

K=Knowledge, C=Competence, A=Application, A=Analysis, S=Synthesis, E=Evaluation as 

shown in Table 3.13. These will be used to compute the index (for detailed descriptions refer to 

section 3.4.1 and Table 3.5). 

Table 3.13: Computing Cognitive Skills Index for the case study 

SE ROLE: Bloom‘s Competence skills 

Role Requirement K C A A S E 

a       

b       

-       

Possible Total(T)       

Calculated total(t)       

r=t*12/T       

 

3) Technical Skills: The Surakka‘s technical skills for software developers were used to compute 

index as shown in Table 3.14 (for detailed descriptions refer to section 3.4.1 and Table 3.6). 

Table 3.14: Computing Technical Skills Index for the case study 

Subjects 

(Technical skills) 

Database 

(skills) 

Networking 

(skills)  

Distributed         

(skills) 

Programming 

(skills) 

Platform  

(skills) 

Grades      

value      

 

4) Academic Capacity: Student capacity for each role was derived from both high school and 

undergraduate Grade Point Average (GPA) as shown in Table 3.15 (for detailed descriptions 

refer to section 3.4.1 and Table 3.7). 

Table 3.15: Computing Capacity Index for the case study100 =204) 

 High school GPA  Undergraduate GPA 

Grades   

Value    

 

2) Demographic characteristics of SE sample 

Figure 4.1.2 in chapter four reveals the results for this stage where seven software engineers‘ roles 

were identified as software architect, analyst programmer, test engineer, web programmer, mobile 

programmer, system administrator, and project manager.  
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Activity 2c: Domain exam past papers 

The purpose of this activity was to identify undergraduate programs through which domain 

professionals were trained and identify exams past papers for the domain core subject. Descriptive 

survey methods, especially data collection method using questionnaires was used to collect content 

knowledge and cognitive skills transferred during learning through a selected set of exam past 

papers. This stage was achieved through data collection on population 2: Exams past papers. Table 

3.5.2b describes the structural characteristic of the exam past papers‘ questionnaire. 

Table 3.5.2c: characteristics of exam past papers questionnaire 

NO. ATTRIBUTES VALUES DESCRIPTION 

1 EXAMCODE {Numeric} Exam Paper Code 

2 
DEGREENAME 

{Computer sciences, Information technology, 

Software engineering, other} Degree Name 

3 

UNIVERSITY 

{UON, KU, JKUAT, MOI, EGERTON, 

Strathmore,  

KEMU, Daystar, Nazarene, Maseno, Other} University Name 

4 EXAMYEAR {2009,2010,2011,2012,2013,2014, other} Exam Calendar Year 

5 EXAMDURATION {1,2,3,4,5 or more} Exam Durations In Hours 

6 STUDYYEAR {1st,2nd,3rd,4th,5th} Year Of Study 

7 EXAMQUESTIONS {3,4,5,6,7 or more} Exam No Of Questions 

8 TOTALMARKS {interval value} Exam Total Marks 

9 SR {interval value} Software Requirements 

10 SD {interval value} Software Design 

11 SP {interval value} Software Processes 

12 ST {interval value} Software Testing 

13 SCONF {interval value} Software Configuration 

14 SMAINT {interval value} Software Maintenance 

15 SI {interval value} Software Infrastructure 

16 SQ {interval value} Software Quality 

17 SMGT {interval value} Software Management 

18 SCONS {interval value} Software Construction 

19 KNOWLEDGE {interval value} Knowledge 

20 COMPREHENSION {interval value} Comprehension 

21 APPLICATION {interval value} Application 

22 ANALYSIS {interval value} Analysis 

23 SYNTHESIS {interval value} Synthesis 

Activity 3a: Analysis of Role Boundaries and Trends 

The purpose of this activity was not only to identify various entry level job titles that referred to the 

occupational domain area but also their boundaries and trends or bias in the academia towards 
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industry roles. Their boundaries along each meaningful attribute were important characteristic in 

distinguishing unique industry roles while their trends in academia were important characteristic in 

distinguishing bias of graduates‘ skills from various academia institutions. Descriptive survey 

methods were used to analyze content knowledge, cognitive skills, technical skills and academic 

capability requirements for each job title and establish distinction among industry roles.  

For each industry role a minimum (Mn) and maximum (Mx) value under each variable was 

established, then an average (IV) was calculated for each variable before it was ranked (IR) against 

other roles. Table 4.1.4b in chapter four presents results for this activity. 

Further, descriptive statistics analyses were conducted to reveal the central tendency and dispersion 

values of each independent variable for all industry roles. The most important aspect of this activity 

was to determine boundaries among revealed industry roles and to test whether class differences 

between these industry roles was significant. To achieve this purpose a research hypothesis was 

defined and investigated as follows: 

H02A: There are no significant boundary differences between industry roles/potential target 

classes 

To approach this research hypothesis, the four main qualitative variables were classified into two 

different ways with the help of a 2 by 2 matrix as shown in Table 3.5.2d. One way classified them as 

either knowledge (content knowledge & academic capacity) or skill type (technical skills & 

cognitive skills), and the other way classified them as either domain specific (content knowledge & 

technical skills) or domain general (academic capacity & cognitive skills). Table 3.5.2d shows a two 

way classification of the independent variables. After which, four research hypotheses were defined 

and investigated in order to answer this research question as follows: 

Table 3.5.2d: Two way classification of independent variables 

Variable type Knowledge Skill 

Domain specific Content Knowledge Technical skills 

Domain general Academic capacity Cognitive skills 

 

Hypothesis 1(H01): 

H0: There are no significant domain specific knowledge differences between industry roles in the 

same occupation 
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Ha: There are significant domain specific knowledge differences between industry roles in the 

same occupation 

For this hypothesis, content knowledge variable was used as the test variable and we reject the null 

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept 

the null hypothesis.  

Hypothesis 2(H02): 

H0: There are no significant domain general knowledge differences between industry roles in the 

same occupation 

Ha: There are significant domain general knowledge differences between industry roles in the 

same occupation 

For this hypothesis academic capacity variable was used as the test variable and we reject the null 

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept 

the null hypothesis.  

Hypothesis 3(H03): 

H0: There are no significant domain specific skill differences between industry roles in the same 

occupation 

Ha: There are significant domain specific skill differences between industry roles in the same 

occupation 

For this hypothesis technical skills variable was used as the test variable and we reject the null 

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept 

the null hypothesis.  

Hypothesis 4(H04): 

H0: There are no significant domain general skill differences between industry roles in the same 

occupation 

Ha: There are significant domain general skill differences between industry roles in the same 

occupation 

For this hypothesis cognitive skills variable was used as the test variable and we reject the null 

hypothesis when the test statistic value (P) is less than significance value (.05), otherwise we accept 

the null hypothesis. Finally, the hypothesis testing results were appended in the two way 

classification table and interpreted accordingly. 
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Equally, in this activity descriptive survey methods were used to analyze content knowledge, and 

cognitive skills administered in the domain core subject exam past papers for each selected academia 

institution and establish trends/bias towards industry roles. Descriptive statistics analyses were 

conducted to reveal the central tendency and dispersion values of each of the two independent 

variables for all institutions and compared these values relative to industry roles revealed. The core 

aim was to show how different academia institutions were biased towards these industry roles 

requirements. Table 4.1.6 in chapter presents a summary of the counts of the trending industry roles 

in each university as revealed by analysis results in chapter four. 

3.5.3 Data Preparation 

Before the process of building the machine learning model was started a thorough cleaning activity 

was conducted to put the data into the appropriate shape that promised optimal and reliable results. 

This involved addressing the following issues: 1) missing data 2) categorical data 3) standard scale 

for all features 4) selecting meaningful features 5) hierarchical mapping of target classes. 

1) Missing data  

Two ways for handling missing data according to Raschka (2015) are: 1) eliminating sample 

instances or data features with missing values and, 2) imputing missing values. The former has 

several disadvantages such as by removing either many instances ends with reducing the sample size 

and thus affecting the reliability of the results or too many features we lose valuable information that 

the classifier model to discriminate between classes. The later is often used where the missing value 

is estimated using a number of interpolation techniques such as mean imputation. Mean imputation is 

an interpolation technique where the mean value of the entire feature column is used to replace the 

missing values of that column. The most convenient way to achieve this in python is to use the 

imputer class of scikit-learn and is implemented as shown below (Raschka, 2015).   

>>> from sklearn.preprocessing import Imputer 

>>> imr = Imputer(missing_values='NaN', strategy='mean', axis=0) 

>>> imr = imr.fit(df) 

      >>> imputed_data = imr.transform(df.values) 

In the current study, some feature columns had missing values as well as the target class column. 

This was as a result of unfilled values in some questionnaires where some employees did not fill 

simply because they did not have adequate information about the questionnaire item or simply an 
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error of omission during the filling process. To cope up with this problem, the researcher removed all 

records whose target class values were missing and it was concluded that they were incomplete while 

for the other feature columns the imputation technique described above was applied. 

2) Categorical features  

Categorical features have their data values in discrete group or categories. Categorical data values 

can be nominal (unordered set) or ordinal (ordered set). To ensure that the learning algorithms 

interpreted categorical data values correctly, we needed to map categorical data and class labels to 

integers (Raschka, 2015). As observed under the data collection section, most of the features were 

categorical and therefore they needed some transformation to integer values. In the current study, this 

was conducted manually.  

3) Standard scale for all features 

Majority of the machine learning and optimization algorithms work well when features are put on the 

same scale (Raschka, 2015). However, decision trees and random forests are the only machine 

learning techniques that do not care for feature scaling. Two common approaches for scaling features 

observed in literature were normalization and standardization. Normalization refers to scaling all 

features to a range of 0 to 1. To normalize data a min-max scaling formula that could be applied to 

each feature is as shown below: 

 

             Eqn(16) 

  

 

Where X
i
norm is the new normalized value of an instance value X

i
 in a feature column where Xmin  is 

the minimum and X
 

max  is the maximum value. The min-max scaling procedure could be 

implemented as follows: 

>>> from sklearn.preprocessing import MinMaxScaler 

>>> mms = MinMaxScaler() 

>>> X_train_norm = mms.fit_transform(X_train) 

     >>> X_test_norm = mms.transform(X_test) 

On the other hand, standardization is a way of centering the feature around the mean 0 and standard 

deviation 1 so that the feature column values take the form of a normal distribution which makes it 

Xi
norm        =    

Xi
 -    Xmin 

X 
max -    Xmin 
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easier to learn the weights (Raschka, 2015). Therefore, unlike normalization, standardization was 

likely to maintain useful information about outliers and make the learning algorithm less sensitive to 

it. To standardize any instance value Xi 
the formula below was applied: 

 

            Eqn(17) 

 

 Where Xi
std   is the new standardized value while μx  and σx are the feature column mean and 

standard deviation respectively. The standardization procedure was implemented as follows 

(Raschka, 2015): 

>>> from sklearn.preprocessing import StandardScaler 

>>> stdsc = StandardScaler() 

>>> X_train_std = stdsc.fit_transform(X_train) 

      >>> X_test_std = stdsc.transform(X_test) 

In the present study, preliminary results indicated scaling through standardization produced better 

results than scaling using normalization. As a result, scaling through standardization was adopted. 

4) Hierarchical mapping of target classes. 

The goal of this stage was to map the industry roles into the proposed taxonomic structure. Mapping 

the industry roles to the proposed taxonomic structure involved merging duplicate industry roles or 

separating industry roles with similar names but different requirements. As result of variation of 

definition of industry roles in various industry firms, some roles may have elements from more than 

one role and this might endanger intra-class similarity and inter-class dissimilarity which is an 

important requirement in classification (Chien & Chen, 2008).  

To improve on this, a procedure was devised to divide the dataset into several classes in which the 

intra-class similarity was maximized while the inter-class similarity was minimized (Chien & Chen, 

2008). The original employees‘ data that contained, among other attributes describing the industry 

roles, first appointed role after attaining university bachelor‘s degree as well as current role of the 

employee was vital in achieving this. This procedure helped also to harmonize role names and 

boundaries derived from various firms. The procedure was conducted in three steps as described 

below. 

Xi
std        =    

X
i
 -    μx 
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Step 1: Branch Mapping  

The aim was to identify industry roles as set members with almost similar characteristics and isolate 

them into separate branches. Figure 3.5.3a presents a summary of this procedure. First, the mean was 

calculated for all the features that were core in describing the industry roles. Along each feature, 

industry roles were partitioned into two sets based on each feature‘s mean to give two partition sets 

of industry roles i.e. upper and lower sets. The two sets (i.e. upper or lower) for all the features were 

listed to get a list of sets. Each set in the list was cross-examined against each feature‘s two partition 

sets (i.e. upper or lower) to check whether all role members of the list set were contained jointly in 

the feature‘s partition sets. If all members were contained in either one of the feature‘s partition sets 

then a score of 1 was noted otherwise 0. This process was repeated for each listed set across all 

features, and a sum was calculated by adding the scores for all the features.  

Therefore, role members of a listed set that occurred frequently and consistently in majority of 

feature partition sets would constitute a possibly separate branch and was evidenced by high sum of 

scores. If two or more sets tied with highest score each was noted as candidate for isolation into a 

branch set only if the sets were disjoint, else only the one with the highest total sample size was 

isolated.  

This process was repeated after removing the isolated branch set from the listed sets and all its 

members from the remaining listed sets. However, any of the subsequent candidates must have both 

their set cardinalities and highest scores exceed both the cardinality and highest score of the original 

set. This was to minimize chances of many branches with very few industry roles. The process was 

optimal if all remaining listed sets‘ cardinalities were less than the cardinality of the original branch 

set. This process revealed new branches and appropriate names were identified for each branch. 

Step 2: Mapping Instances to Proposed Taxonomy’s Branches 

The aim of this step was to identify and isolate instances of the dataset into specific branches based 

on first and current appointment role values. Figure 3.5.3b shows a summary of this procedure. 

Before isolation procedure, cross-tabulation of values of the first and current appointment roles was 

conducted and the following assumptions were noted when doing the isolation using the cross-

tabulation technique:  

1) employees originally holding industry roles (as first role) belonging to one branch and were still 

holding those roles currently (as current roles) in the same branch were considered permanently 



 

   107 

 

affiliated to that branch while those converted to other roles  in a different branch may be considered 

to have left permanently  

2) Employees who converted from previous roles in one branch and were currently holding industry 

roles belonging to another second branch were now affiliated towards that second branch  

3) If one of the first appointment roles in a branch overlapped or coincided with the branch name 

then it was removed as a possible name of industry role and its employees who converted to other 

roles in a different branch were assumed to still belong to the original branch and were redistributed 

to the original branch roles accordingly. 

 

Figure 3.5.3a: Branch Mapping Framework  

Step 3: Mapping to Proposed Taxonomy’s Hierarchies 

The aim was to categorize industry roles into levels in the hierarchy. First, with the help of domain 

experts, the levels in the hierarchy were identified based on superiority of functionality in the 

domain, with the most superior at the top and the least superior at the bottom. Secondly, the industry 

roles were categorized along the levels and their count scores extracted from the cross-tabulation 
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described in step 2. A two by two table was used to relate industry roles in each level with branches 

by splitting each first appointment role total in the cross-tabulation into respective branches based on 

the assumptions.  

 

Figure 3.5.3b: Instances Mapping Framework  

1) Mapping software engineers raw data to the proposed taxonomy 

This procedure was applied to raw data with the original seven industry roles and resulted into 

twelve distinct industry roles.  Fig. 4.2.1 in chapter four illustrates the mapping of 12 industry roles 

for software engineers into the proposed taxonomic structure using our method. The 12 distinct 

industry roles have been coded as follows: 1: mobile system manager, 2: mobile project manager, 3: 

mobile architect designer 4: mobile web designer 5: mobile analyst programmer 6: mobile test 

programmer 7: desktop system manager 8: desktop project manager 9: desktop architect designer 10: 

desktop web designer 11: desktop analyst programmer 12: desktop test programmer.  
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5) Selecting meaningful features 

This was one of the most common and important methods applied to data preprocessing so as to 

improve the performance of the classifier model (Chang, 2009). Real-world classification tasks 

contain irrelevant or redundant features that may compromise the accuracy of the classifier model. 

As a result, many feature subset selection approaches were developed to help reduce dimensionality 

problem (Raschka, 2015). Feature subset selection, as a process of removing irrelevant or redundant 

features from the original feature set, offered many benefits such as reducing the cost of gathering 

data for training or testing or even reducing the time for creating the classification model (Chang, 

2009).  

In the current study, so as to ensure a specific feature subset was optimal, an evaluation strategy was 

needed. As a result, feature subset selection process was approached as a search problem and was 

conducted in four stages: 1) starting point for the search space, 2) a generation rule with search 

strategies to generate the next candidate feature subset, 3) an evaluation function to evaluate the 

generated feature subset, 4) stopping criterion to determine when to stop the selection process 

(Chang, 2009). Figure 3.5.3c illustrates the procedure for feature selection. 

 

 

 

 

 

 

 

Figure 3.5.3c: Selecting meaningful features 

Activity 1a: Search starting point 

At the search starting point, a decision was made whether to start with zero features (sequential 

forward selection method, where features are added successively as evaluation progresses) or start 

with all the features (sequential backward method, where features are eliminated from the original 

feature set successively as evaluation progresses). Sequential backward method was selected because 

it is simple and widely used in machine learning pattern classification methods and, most 

importantly, previous studies have shown that the technique produces better classification accuracy 
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than sequential forward method (Witten & Frank, 2005). The simple steps for sequential backward 

method were outlined as follows (Raschka, 2015): 

1. Initialize the algorithm with k = d, where d is the dimensionality of the full feature space 

Xd. 

2. Determine the feature x− that maximizes the criterion x− =kargmaxJ(Xx−x) where xє Xk. 

3. Remove the feature x− from the feature set: Xk – 1 = Xk – 1 = Xx− x−, k=k-1 

4. Terminate if k equals the number of desired features, if not, go to step 2. 

 

Activity 1b: Generation rule 

A rule that generated a subset of features to be assessed based on a certain search strategy was to be 

selected. Common search strategies for the subsets in the feature space are: 1) exhaustive search 

(search all possible subsets, becomes difficult as the number of attributes increases), 2) greedy search 

(search that begins in one direction, top or bottom, and progresses by adding or eliminating a feature 

to or from the current subset, search terminates when no feature improves on the current subset), 3) 

best first search (search that keeps a list of subsets evaluated so far and sorted in order of 

performance measure) , 4) beam search (like best first search but truncates its list to a specified fixed 

number), 5) genetic algorithm search (search based on evolution or natural selection theory). In the 

present study, our approach used sequential backward method whose search strategy was greedy 

search (Witten & Frank, 2005). 

Activity 1c: Evaluation function 

When selecting a good feature subset, two fundamentally different evaluation approaches that we 

came across were: independent assessment based on the general characteristics of data and 

assessment using machine learning algorithm that would be used for the learning of the classifier 

model (Witten & Frank, 2005). The former are called filters while the later wrappers. Filter approach 

was used in the current study. Filters assess the features according to their prediction ability using 

two approaches: ranking method (ranking features according to some predictive measure then the 

best subset is made of high ranking features) or space search method (maximizing a predetermined 

cost function where features that maximize this function make up the optimal subset). 

Features were selected that other evidence, including more general models fitted into the full dataset, 

suggest would be important predictors of industry roles as applied by Clive & Joan (2000). The same 

approach was used successfully elsewhere (Ramaswami and Bhaskaran, 2009; Mgala, 2016) and this 
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informed our decision to use it. However, Mgala (2016) used Information Gain, ReliefF, and Gain 

Ratio filter algorithms for feature selection where their technique was ranking and comparison across 

the three algorithms. This was slightly different from current study where Logistic Regression (LR), 

K-Nearest Neighbor (KNN) and Support Vector Machines (SVM) were preferred. Instead of feature 

ranking, however, the current study used space search where each algorithm searched for the best 

feature combination subsets that produced the best performance level.  

The best feature subsets results from each algorithm were compared to determine features that were 

widely selected. This approach, unlike elsewhere (Mgala, 2016), ensured that each feature was 

popular among the participating algorithm where simple majority was used as a criterion for 

popularity. Unpopular features were removed. In case of more than one candidate feature subsets, 

evaluation was conducted with each subset and the one that gave better results was selected as the 

best feature subset for that particular algorithm. This procedure was conducted with one dataset, 

namely SE benchmark dataset, through an experimental procedure whose objective was clearly 

stated as shown below: 

 

 

 

 

 

 

 

 

 

Activity 2a: Stopping criterion 

The criteria of removing a feature at each iteration was defined as ―Remove the feature that 

maximized the difference in performance of the classifier model after and before the removal of this 

particular feature‖. 

Findings 2b: Optimal Features 

Section 4.2.6.1 presents results for the current activity of selecting meaningful features. The optimal 

number of features from the original 13 feature set was then concluded as 5 features. The aim was to 

Objective: To select valuable feature subset likely to induce optimal accuracy to the model 

Procedure: 

 Split (ratio 80:20) dataset into 2: train, test sets 

 Divide features into subsets using combinations of 2 to all features 

 Train and test 3 filter algorithms on each subset 

 Get the best subset for each algorithm 

 Select features that appear in at least two of these 3 best subsets 
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determine optimal features that generated optimal performance to the classifier model with the 

ultimate focus to investigate appropriate features that enabled the model achieve appropriate 

performance to serve its purpose. In order to investigate whether these generated features were likely 

to induce optimal performance significantly to our classifier model a research hypothesis was 

defined to be tested as follows: 

  H01A: All features are equally relevant for better performance of the classifier model   

3.5.4 Modeling and Selecting the best classifier model using the best feature subsets 

This phase involved building the machine learning model and ensuring the model was appropriate to 

serve its purpose. The phase was vital in providing answer to the third research question : how do we 

build an appropriate machine learning model for mapping graduates‘ skills to hierarchically 

structured occupational industry roles?  To answer this question it required the following three 

activities:  

1) Design of machine learning algorithm,  

2) Algorithm optimization through induction algorithm and parameter selection 

3) Model evaluation through estimation of its generalization performance.  

Generally, overall implementation of the classifier was achieved using python technology due to its 

richness in ML resources and simplicity. Fig. 3.5.4a illustrates a typical work flow diagram for using 

machine learning in predictive modeling.  
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Figure 3.5.4a: Workflow framework for predictive modeling using machine learning (adapted 

from Raschka, 2015) 

3.5.4.1. Design of Machine learning algorithm for the classifier model 

Design and building of such a computational model that learns from observations required three 

considerations, namely: input, feedback process, and output (Lavesson, 2006). Thus, the design 

architecture of the classifier model consists of three elements: 1) input, the various materials or 

resources that the model requires to accomplish its purpose and these constitutes three items: 

employee‘s data, occupational domain‘s roles, and the taxonomic structure.  

As revealed in Fig. 2.9b f represents features or knowledge and skills attributes of industry roles 

whose data values, for the purpose of building the classifier objects of the model, were derived from 

graduate employees in the industry holding various roles through data collection stage as emphasized 

in Fig. 3.5.4a.  2) process, the ML logic that the model applies to transform the input materials or 

resources into required form and this comprises the ML architecture as given in Fig. 2.9a, 3) output, 

the prediction result generated by the process. Fig. 3.5.4b outlines the design architecture for the 

classifier model. This design architecture was eventually converted into a design algorithm.  
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Figure 3.5.4b: Design architecture  

Building of the classifier model‘s algorithm was conducted using meaningful features that were 

selected in section 3.5.3.  

3.5.4.2. Algorithm optimization 

This process helped to validate the classifier model by ensuring it had appropriate valid properties to 

serve its purpose. 

a) Through selection of appropriate induction algorithm 

This activity involved selecting appropriate machine learning technique for the classifier model. 

Raschka (2015) observes that choosing an induction algorithm for a particular classification problem 

required experience because each algorithm has its own quirks and is based on certain assumptions. 

As a result, it is recommended to compare performance of at least two learning algorithms before 

selecting the best classifier model for the problem (Drummond, 2006).  

In the present study, two machine learning techniques, naïve Bayes and support vector machines 

were selected in the construction of the classifier algorithm to implement the architecture and learn 

the model. Section 2.7.7.5 describes the criteria for choosing the two algorithms. Evaluation 

experiments were conducted with each of the induction algorithms on the classifier model where 

generalization performance of each was determined. An induction algorithm that induced better 
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performance was selected as the best induction algorithm. This procedure was conducted with two 

datasets, namely SE benchmark and SE field datasets, through an experimental procedure whose 

objective was clearly stated as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to investigate whether the induced performance of our model by each induction algorithm 

was significantly better than the other, a research hypothesis was defined and tested as follows: 

H03A: All induction algorithms induce equal generalization performance to the model  

b) Through parameter tuning  

This was achieved through parameter tuning using validation curves. Only one algorithm was 

involved in this, namely as per the results of selection of the best induction algorithm in (a) above. 

The aim was to determine parameter values that generated better performance to the classifier model 

with the ultimate focus to investigate appropriate values that enabled the model achieve appropriate 

performance to serve its purpose.  

To investigate this, a research hypothesis was defined as follows: 

  Ho3B: Any parameter value induces better performance to the model 

Objective: To select induction algorithm likely to induce optimal accuracy to the model 

Procedure: 5-fold cross-validation 

 Split dataset into 2: train, test sets 

 Divide train set into samples of increasing size intervals of 20% 

  Split each sample into 2: train, test sets 

 Train and test induction algorithms on each sample 

 Plot the train and test accuracy of respective samples  

 Observe the behavior of accuracy difference as the sample grows 

 Split train set into five folds 

 Alternately, train with 4 folds and test with 1 fold both induction algorithms 

simultaneously and ten times 

 Get the means in each test fold 
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Three trials of an experiment were conducted under each dataset whose findings were important in 

selecting the best parameter values of the classifier model. Figure 3.5.4c illustrates the parameter 

tuning procedure that was adopted in the experiment. 

 

Figure 3.5.4c: Algorithm optimization through validation curve 

3.5.4.3. Model validation  

This was conducted through a number of experiments and the focus was to estimate the 

generalization performance of the classifier model. In supervised learning, classification is conducted 

in two phases, namely training and prediction phase. In the training phase, a learning algorithm trains 

by observing known data then generates the best classifier that is used to classify new data of same 

kind. In the present study, this was achieved through cross-validation technique where the best 

performing model was selected, and this involved a number of activities as described in the diagram 

below. Fig. 3.5.4d illustrates the model validation process as adopted from Care & King (2003). 
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Figure 3.5.4d: Model validation & Evaluation (adapted from Clare & King (2003)) 

Activity 1a: Splitting Dataset 

This involved partitioning the dataset into three sets: training set and testing set where the most 

common practice is to split in the ratio of 60:40, 70:30. 80: 20, and 90: 10 (Raschka, 2015). It was 

noted that splitting the dataset amounts to withholding valuable information which could otherwise 

be beneficial to the learning algorithm while at the same time the smaller the test size the more 

inaccurate the generalization error (Raschka, 2015).  

In order to balance this trade-off, stratified random sampling was adopted to ensure each target class 

was maintained in either of the two splits to safeguard against poor generalization error. Further, to 

ensure little information was withheld in the test set which could be valuable to our learning 

algorithm, a split ratio of 80:20 was selected. In practice, 80:20 split ratio is beneficial to large 

datasets, however, in case of smaller datasets, as is the case in the current study, cross-validation 

technique guarantees better results (Raschka, 2015). Consequently, in the current study, 5-fold cross-

validation technique was applied to split further the training set into two, train (64%) and validate set 

(16%), so that together with test set (20%) we got a total of three split sets.  



 

   118 

 

Although 10-fold splitting is recommended, 5-fold was adopted as a result of smaller frequencies of 

less than 10 in some target classes. While the training set was used to fit the data and learn various 

classifier models, validate set was used to select the best performing classifier model, and the test set 

was used as an ultimate test to the model before it was ready to release in the real world. Fig 3.5.4e 

describes the dataset splitting process. 

 

 

 

 

 

 

Figure 3.5.4e: Splitting datasets (adapted from Raschka, 2015) 

Activity 2a: Generating Model 

The classifier model was generated through two learning algorithms, namely naïve Bayes and SVM. 

Raschka (2015) provided a guiding principle used to select the two learning algorithms, that no 

single classification model enjoys superiority over others since each classification algorithm used to 

generate the model has its own inherent biases and assumptions. The best practice is to make 

assumption about the classification task and use a handful of classification algorithms for 

comparative analyses.  

Each candidate classification algorithm selected to generate the model correlates closely with the 

main classification assumption made in the present study that occupational industry roles are distinct 

to each other and their predictors are independently identical. Consequently, the element of 

independence of identical predictors is the basis of naïve Bayes while the element of distinct classes 

that are separable is the basis of SVM. Choice criteria for the two algorithms was given in 2.7.7.5. 

Generation of the model involved training and tuning iterative processes. Training involved making 

the learning algorithms learn a map function from features to target classes by analyzing data in the 

feature set. Tuning involved making the learning algorithms find optimal hyperparameter values that 

generated satisfactory generalization performance (Raschka, 2015). These twin iterative processes 

were conducted under well designed experiments and generated a variety of models with different 

performance levels that demanded careful evaluation strategy. This is because in each iteration the 

Original dataset (100%) 

Training (80%) 

Train (64%) 

Test(20%) 

Validate(16%) 

dataset 

Test(20%) 

1st split sets 

2nd  split sets 
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learning algorithms improved their performance of classification as a result of the learning 

experience derived from data and the result would be a new candidate classifier model.  

Activity 2b: Evaluate Model with validate set 

In the current study, evaluation of each candidate classifier model was important in three ways: 1) to 

assess the extent to which the type of parameter tuning affected performance of generated model, 2) 

to assess generalization performance of individual candidate classifier models with respect to their 

generalization error, 3) to enable compare performance between various candidate classifier models. 

A widely used measure of performance, namely accuracy where number of correctly classified 

samples are determined, was selected (Raschka, 2015). The aim was to evaluate performance of each 

individual candidate classifier generated at each iteration of training using validate set.  

However, performance of a classifier may be affected by the bias in partitioning dataset into training 

set and validate set. Practically, in k-fold cross-validation one fold is set aside as a validation set and 

whose choice may affect performance estimate of the candidate model. To ensure an estimate 

performance that is less sensitive to partitioning and choice of validation set effect, repeated k-fold is 

recommended (Raschka, 2015). As a result of  activity 1a (splitting dataset), the current work 

adopted repeated 5-fold cross-validation where each fold was used as a validation set alternately thus 

amounting to five iterations. The classification accuracy for each fold used as a validation set in each 

iteration were then used to calculate the average performance of each candidate model (Raschka, 

2015).  

Activity 3a: Select the Best Model 

The question we should ask is, how do we know which model performs well on the final test dataset 

and real world data? Each classification algorithm is based on certain assumptions which may differ 

from algorithm to algorithm in terms of number of features or samples, amount of noise in the 

dataset, and whether the target classes are linearly separable or not (Raschka, 2015). Further, each 

algorithm may have different classifiers depending on its different configurations (Lavesson, 2006).  

An experimental comparison between classifiers of the selected algorithm, was conducted.  

Activity 3b: Evaluate Model with Test set 

To determine whether the model would perform well  in the real world data, a test set, that had not 

been seen by the model before  was adopted. 
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3.5.5. Model Evaluation 

Model evaluation was conducted to establish generalization suitability and validity of the model. In 

the present study, experimental approach was adopted for evaluation where two questions guided the 

process: 1) what is the performance of the model in mapping graduates‘ skills to industry roles? 2)  

How do we ensure the validity of the results? Answers from these experimental questions enabled 

the researcher to provide answers to the last research question: how do we evaluate performance and 

validity of the mapping model?  

To investigate this question a research hypothesis was defined as follows: 

  Ho4A: There is no significant performance difference of the model in different industry 

domains 

The findings from a number of experimental trials helped to investigate the above hypothesis. 

Sokolova & Lapalme (2009) provided source for performance measures for evaluating classifier 

models where apart from accuracy and miscalculation errors, precision, recall, and f1-score were 

adopted. Classification accuracy was preferred in this study because it has been reported widely in 

many machine learning studies (Raschka, 2015).  

However, Raschka (2015) notes that a lot of caution has to be taken because model accuracy is only 

a useful metric to quantify performance of the model in general. In light of this fact, there was a 

desire to use performance measures that would provide insight into the quality of the model in terms 

of committing more serious errors, such as precision, recall, and f-score as elaborated by Sokolova & 

Lapalme (2009). To achieve this kind of evaluation a prototype software system  for mapping 

graduates‘ skills to industry roles based on the model was developed. This helped to not only 

evaluate the model‘s performance but also compare its performance with other models in literature.  

3.6. Summary 

This chapter has presented a detailed analysis and design of the research methodology adopted in this 

study, ranging from research philosophy, research strategies, research designs and methods. The 

research philosophy was selected based on two philosophical assumptions: epistemology and 

ontology. Philosophical assumptions helped to locate the philosophical paradigm, positivism, in 

which the research methodology was placed. A carefully selected approach was used to design a 

research strategy for each research question before finally deciding on the appropriate research 

design for each.  
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The first specific research question was approached using literature review and experimental designs 

which provided important concepts that formed the basis of data collection and analyses in the 

second question. The second research question was largely approached using descriptive survey 

design where data was collected and analyzed to reveal either boundaries between concepts used as 

target classes or whether the classes are separable as required in machine learning classification. 

Research questions three and four were both largely approached using experimental design where 

evaluation of classifier model performance and validity was necessary.  

A framework to operationalize the research process was designed where a number of hypotheses 

were defined. In summary, five research hypotheses were placed at the center of investigation where 

a concrete research methodology was put into action to provide proof to either accept or reject the 

hypotheses. Table 3.6 presents a summary of how research was operationalized. 

Table 3.6: Operationalization of research methodology( 

Research Question Research hypothesis Research methodology 

 

RQ1: What concepts are appropriate 

as machine learning attributes for 

mapping graduates‘ skills to 

occupational industry roles? 

 H01A: All features are equally relevant for  inducing 

better performance to the classifier model 

 

Literature Review/Analysis 

Experimental Design 

 

RQ2: What is the structural 

characteristic of  concepts that 

correctly reflect the hierarchy of 

industry roles required as target 

classes for machine learning? 

H02A: There is no significant boundary differences 

between industry roles/potential target classes 

 

Descriptive Survey Design 

RQ3: How do we build, using these 

concepts, an appropriate machine 

learning model for mapping 

graduates‘ skills to hierarchically 

structured occupational industry 

roles? 

Ho3B: Any parameter value induces better performance in 

the model 

Ho3C:All induction algorithms induce equal generalization 

performance to the model 

Experimental Design 

RQ4: How do we evaluate the 

performance and validity of the 

machine learning model? 

H04A: There is no significant performance difference of 

the model in different industry domains 

Literature Review/Analysis 

Experimental Design 
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CHAPTER 4: MODELING RESULTS AND FINDINGS 

4.0. Introduction 

Data analysis results have been grouped into sections. Section 4.1 presents descriptive analysis 

results while section 4.2 presents experiments analysis results. Discussion provides interpretation of 

the results and is presented in section 4.3. 

4.1. Descriptive Results and Findings  

4.1.1 Population description 

Tables 4.1.1a and 4.1.1b describe the demographic characteristics of exam past papers‘ sample and 

employees‘ sample. 

Table 4.1.1a: Demographic characteristics of exam past papers sample 

Variable Category Frequency Percentage (%) 

1. Degree program BSc. Computer science 15 62.5% 

 BSc. IT 9 37.5% 

2. Year studied Second year 4 16.7% 

 Third year 10 47.7 

 Fourth year 5 20.8% 

 Second and third year 5 20.8% 

3. Number of questions Four 5 20.8% 

 Five  14 58.3% 

 Eight  1 4.2% 

 Ten  4 16.7% 

4. Total exam marks 90 5 20.8% 

 110 14 58.3% 

 160 3 12.5% 

 170 1 4.2% 

 180 1 4.2% 

 

4.1.2. Proportions of job entry industry roles  

Figure 4.1.2 presents pie chart results showing common industry roles undertaken by software 

engineers in the industry at job entry level after graduation and their proportions (%) as revealed by 

the survey.  

Findings #1: 

Figure 4.1.2 reveals that while ‗web programmer [WP]‘ (25.66%) and ‗analyst programmer [AP]‘ 

(23.39%) were very popular at job entry level ‗project manager [PM]‘ (3.54%) was not. The 
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assumption behind this is that experience is highly demanded in this position than the rest and yet 

this experience may not be available to entry level graduates. 

Table 4.1.1b: demographic characteristics of employees’ sample  

Variable Category Frequency Percentage (%) 

1. Gender Male  77 68.1% 

 Female  36 31.9% 

2. Bachelor‘s degree BSc. Computer science 32 28.3% 

 BSc. IT 55 48.7% 

 BSc. Software engineering 22 19.5% 

 Others  4 3.5% 

3. Attractor to job Passion  31 27.4% 

 Salary   33 29.2% 

 Ambition   33 29.2% 

 Qualification   7 6.2% 

 Other  9 8.0% 

4. % of classroom learnt 

content tested in exam 

100% 4 3.5% 

 75% 73 64.6% 

 50% 33 29.2% 

 25% 2 1.8% 

 0% 1 9.0% 

 

Figure 4.1.2: industry roles for software engineers 

4.1.3. Proportions of job entry level role performance activities  

Figure 4.1.3 presents a bar graph showing frequency analysis results of a total of 17 role performance 

activities (RPA) performed by software engineers in various industry roles at job entry level as 

revealed by the survey. The results reveal RPA ‗design data base‘ is the highest performed (11%) 

while ‗manage project workflows‘ is the least (2%). Table 4.1.3 presents results showing two types 

of competences for software engineers as main competences and specialization area for specific 
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competences. Three main competences are ‗Design [D]‘, ‗Coding [P]‘, and ‗Manage [M]‘ and their 

prevalence proportions (%) indicated for each industry role. The results indicate, for example in 

‗Software Architecture [SA], design competence is more demanded (prevalence of 50%) than coding 

(prevalence of 33.2%) and manage (prevalence of 16.8%). Two specialization areas of specific 

competences are ‗Mobile Developer‘ and ‗Desktop Developer‘ and their proportion numbers in the 

sample data are indicated for each industry role. The results indicate out of 19 ‗Software Architecture 

[SA] for example, 4 have specialized as ‗Mobile Developers‘ and  15 as ―Desktop Developers‘. The 

results also indicate that the overall software engineers‘ demand for ‗Coding [P]‘ is higher 

(prevalence of 42.72%) than ‗Design [D]‘ (prevalence of 36%) and ‗Manage‘ (prevalence of 

21.2.8%).  

 

Figure 4.1.3: Role performance activities for software engineers’ industry roles 

Table 4.1.3: Prevalence of competences in each industry role  

 

Findings #2: 

Figure 4.1.3 and Table 4.1.3 reveal that occupational industry roles have similar job performance 

activities/competences but different levels of emphasis where some are more emphasized in one role 

but less emphasized in other roles. Also, software engineers demand more of programming than 

management skills. 
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4.1.4. Central tendency measures 

Both mean and mode were used to describe the central tendency of the independent variables. 

However, before further analyses were conducted, reduction of data redundancy using principle 

component analysis method was performed on the study‘s data file. Table 4.1.4a presents a rotated 

component matrix result indicating the uncorrelated factors of the data. A total of 24 original sub-

variables for analysis were reduced to 13 components or factors, hence considerably reducing data 

complexity with little loss of accuracy information of only 13.71%. The 13 components represent 13 

sub variables that were used to assess respondents‘ perception on the four factors that could be used 

to determine graduates suitability for various industry roles as indicated in the research model‘s input 

variables and as described in this section.  

Table 4.1.4a: Rotated Component Matrix for principle component analysis 

 

Table 4.1.4b presents summarized results showing the calculated index vector for each industry role 

where Mn, Mx, Iv, and IR represent minimum index value, maximum index value, average index 

value, and relative index value. 
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Table 4.1.4b: Class boundaries for various industry roles 

Role 

category 

name 

Content Knowledge 

(Relevance Index) 

Cognitive skills 

(Durability Index) 

Technical skills (Accuracy 

Index) 

Academic capacity 

(Capacity Index) 

Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR Mn Mx IV IR 

Project 
Manager (PM) 

8.44 8.51 8.5 3 9.06 9.51 9.5 2 0 9.53 9.525 7 8.84 above 9 1 

Mobile 
Programmer 
(MP) 

8.06 8.08 8.074 6 9.51 above 9.815 1 10.01 10.03 10.022 3 8.77 8.84 8.833 2 

System 
Administrator 
(SAD) 

8.58 above 8.718 1 8.99 9.06 9.051 3 10.06 above 10.342 1 8.26 8.77 8.769 3 

Test Engineer 
(TE) 

8.08 8.43 8.429 5 less 8.01 8 7 9.88 10.01 10 4 8.07 8.26 8.25 4 

Web 
Programmer 
(WP) 

less 8.06 8.057 7 8.01 8.25 8.241 6 9.55 9.88 9.876 5 7.56 8.07 8.069 5 

Analyst 
Programmer 
(AP) 

8.43 8.44 8.436 4 8.25 8.49 8.487 5 10.03 10.06 10.058 2 7.09 7.56 7.558 6 

Software 
Architect (SA) 

8.51 8.58 8.574 2 8.49 8.99 8.981 4 9.53 9.55 9.545 6 0 7.09 7.083 7 

 

Independent Variable1 – Relevant content knowledge that promotes enhanced performance in 

the industry role.  

Out of the original 10 sub-variables only three are uncorrelated i.e. 1) software requirement 2) 

software configuration, and 3) software quality. Figures 4.1.4a, 4.1.4b, and 4.1.4c present bar graph 

results showing comparison of average content required of various knowledge areas to perform each 

industry role. Mode has been used as the measure of central tendency and the results reveal 

knowledge content type ‗software requirements‘ and ‗software quality‘ are least relevant to ‗analyst 

programmer‘ while ‗software configuration‘ is least relevant to ‗project manager‘. However, 

‗software requirements‘ and ‗software configuration‘ are highly relevant to ‗systems administrator‘ 

while ‗software quality‘ is most relevant to ‗test engineer‘.  

Finally, the content knowledge index has been calculated by getting the average of the three sub-

variables and the mean has been used as the measure of central tendency. Figure 4.1.4d presents bar 

graph results showing comparison of the means for the content knowledge index of the various 

industry roles. Y axis of this figure represents the average of the three subvariables referred in this 
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section and denoted as meanR. The results indicate ‗systems administrator‘ has the highest content 

knowledge index (8.718) while ‗web programmer‘ has the least content knowledge index (8.057). 

 

 

Figure 4.1.4d: Average Content knowledge index for each industry role 

Independent Variable2 – Cognitive skills that promote prolonged retention of relevant 

knowledge required to perform the industry role.  

Out of the original 6 sub-variables only three are uncorrelated i.e. 1) concept understanding 2) 

concept application, and 3) concept judgment. Figure 4.1.4e, 4.1.4f, and 4.1.4g present bar graph 

results showing comparison of average level required of various types of cognitive skills to perform 

each industry role. Again, mode has been used as the measure of central tendency and results 

indicate industry role ‗analyst programmer‘  demands highest levels of skill type ‗concept 
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understanding‘ and ‗concept application‘, while ‗test engineer‘ and ‗project manager‘ demand levels 

for these skill types are the lowest.  

 

However, ‗concept judgment‘ demand levels are very high for ‗software architect‘ and very low to 

‗systems administrator‘. Finally, the cognitive skills index has been calculated by getting the average 

of the three sub-variables and the mean has been used as the measure of central tendency. Figure 

4.1.4h presents bar graph results showing comparison of the means for the cognitive index of the 

various industry roles. Y axis of this figure represents the average of the three sub-variables referred 

in this section and denoted as meanD. The results indicate ‗mobile programmer‘ have the highest 

cognitive skills index (9.815) while ‗test engineer‘ have the least cognitive skills index (8.0). 

 

Figure 4.1.4h: Average cognitive skills index for each industry role 

Independent Variable3 – Technical skills that promote precision of performance results in the 

industry role.  

Out of the original 6 sub-variables five are uncorrelated i.e. 1) SE project 2) database skills 3) 

programming skills 4) networking skills, and 5) distributed skills. Figure 4.1.4i presents bar graph 
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results showing comparison of average level required of various types of technical skills to perform 

each industry role. Again, mode has been used as the measure of central tendency and results 

indicate industry roles ‗analyst programmer‘, ‘test engineer‘, ‗web programmer‘, and ‗mobile 

programmer‘ have similar demand levels of all skill types while the rest reveal some variations. 

Finally, the technical skills index has been calculated by getting the average of the five sub-variables 

and the mean has been used as the measure of central tendency. Figure 4.1.4k presents bar graph 

results showing comparison of the means for the technical skills index of the various industry roles. 

The results indicate ‗systems administrator‘ has the highest technical skills index (10.342) while 

‗project manager‘ has the least technical skills index (9.525).   

 

Figure 4.1.4i: Average Technical skills required to perform each industry role 

Independent Variable4 – Intellectual content that promotes capacity to perform the industry 

role  

All the two original sub-variables are uncorrelated i.e. ‗O‘ level Aggregate points and Bachelors final 

grade. Figure 4.1.4j presents bar graph results showing comparison of average level required of 

various types of intellectual content to perform each industry role. Again, mode has been used as the 

measure of central tendency and results indicate only industry roles ‘test engineer‘ and ‗web 

programmer‘ have their content type values paired different  while the rest reveal their pairs are 

tying. However, it is important to note that there are two blocks of ties, lower and upper. Industry 

roles ‗software architect‘ and ‗analyst programmer‘ have the lowest similar tie, while ‗project 

manager ‘,‘ systems administrator and ‘mobile programmer‘ have the highest similar tie.  

Finally, the academic capacity index has been calculated by getting the average of the paired sub-

variables and the mean has been used as the measure of central tendency. Figure 4.1.4l presents bar 
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graph results showing comparison of the means for the academic capacity index of the various 

industry roles. The results indicate ‗project manager‘ have the highest academic capacity index (9.0) 

while ‗software architect‘ have the least academic capacity index (7.083).   

 

Figure 4.1.4j: Average Intellectual capacity required to perform each industry role 

 

4.1.5.  Hypothesis Testing Results 

Table 4.1.5a: presents results of validity test to data that indicates normality of data and homogeneity 

of group variance in the data. Two types of data (actual values based data and factor values based 

data) have been scrutinized for validity before they could be adopted in subsequent analysis. The 

findings in Table 4.1.5a reveal while all the variables of factor based data pass the test for 

homogeneity of variance, most test variables of actual data do not pass the test. Moreover, both types 

of data do not meet all the three conditions of normality.  Therefore, the tests in this section were 

conducted with the later data type. Table 4.1.5b: presents results of non-parametric test for multiple 

independent samples that have been conducted using factor values derived during data redundancy 

process, to test the research hypotheses. 
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Table 4.1.5a: Tests of data validity 

       
Type of 

validity 

Type of test Type of 

data 

content 

knowledge 

Cognitive 

skills 

Technical 

skills 

Academic 

capacity 

1.Homogeneity 

of group 

variances 

 

Accept if >0.1 

(Levene test) 

(Equality of variances) 

Hypothesis: 
Are variances between 

the groups  equal? 

Actual 0.172 0.054 0.804 0.077 

yes no yes no 

Factors 0.364 0.265 0.432 0.159 

yes yes yes yes 

2.Normality of 

data 

 

Accept if 

difference not 

more than 1 

 

 

Accept if when 

rounded is 0 

 

 

Accept if greater 

than 0.05 

 (mean ≈ trimmed 

mean≈ median)   

Hypothesis: 

Which groups test 

positive? 

Actual all all all all 

Factors all all all all 

(Skewness ≈ kurtosis ≈ 

0)  

Hypothesis: 

Which groups test 

positive? 

Actual SAD none TE, AP WP 

Factors none WP,TE none none 

(kolmogorov-smirnov 

test)   

Hypothesis: 

Is this data a good fit 

to a normal 

distribution? 

Actual 0.146 0.607 0.150 0.003 

yes yes yes no 

Factors 0.995 0.466 0.966 0.903 

yes yes yes yes 

Table 4.1.5b presents significance test results for the first set of four hypotheses defined in the 

research design as given chapter3 section 3.5.2) and restated below: 

Hypothesis 1(H01): 

H0: There are no significant domain specific knowledge differences between industry roles in the 

same occupation 

Ha: There are significant domain specific knowledge differences between industry roles in the 

same occupation 

Hypothesis 2(H02): 

H0: There are no significant domain general knowledge differences between industry roles in the 

same occupation 

Ha: There are significant domain general knowledge differences between industry roles in the 

same occupation 

Hypothesis 3(H03): 

H0: There are no significant domain specific skill differences between industry roles in the same 

occupation 
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Ha: There are significant domain specific skill differences between industry roles in the same 

occupation 

Hypothesis 4(H04): 

H0: There are no significant domain general skill differences between industry roles in the same 

occupation 

Ha: There are significant domain general skill differences between industry roles in the same     

occupation 

Table 4.1.5b: Tests
b
 of hypotheses results 

 Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 

N 109 109 109 109 

Median .0279 -.0525 .0464 -.0005 

Chi-Square 2.441 16.151 1.866 13.109 

df 6 6 6 6 

Asymp. Sig. .875 .013 .932 .041 

b. Grouping Variable: FIRST APPOINTED JOB 

The results indicate while Hypothesis 1 results (χ
2
=2.441, p=0.875) and Hypothesis 3 results 

(χ
2
=1.866, p=0.932) imply we accept the null hypotheses, Hypothesis 2 results (χ

2
=16.151, p=0.013) 

and Hypothesis 4 results (χ
2
=13.109, p=0.041) imply we reject the null hypotheses. Table 4.1.5c 

presents a cross tabulation of the hypothesis testing results. 

 Table 4.1.5c: Hypothesis decision results 

Variable type KNOWLEDGE SKILL 

DOMAIN SPECIFIC Hypothesis 1 = Accept Hypothesis 3 = Accept 

DOMAIN GENERAL Hypothesis 2 = Reject Hypothesis 4 = Reject 

 

Findings #3: 

Table 4.1.5c reveals that domain specific knowledge and skills for occupational industry roles were 

similar while their domain general knowledge and skills were different in each role. 

4.1.6. Trend analysis results 

Figure 4.1.6a presents bar graph results showing comparison of average content knowledge Index 

values while Figure 4.1.6b presents bar graph results showing comparison of average cognitive skills 
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index values for various universities in the academia both derived from their exam past papers. 

Results reveal although ‗KCA‘ university has the highest content knowledge index value, its 

cognitive skills index value is the lowest. While ‗UON‘ university has the highest cognitive skills 

index value, ‗JKUAT‘ university has the lowest content knowledge index value.    

 

Figure 4.1.6c shows box-plot results of the content knowledge index value requirements for various 

industry roles represented using boxes and content knowledge index values for various universities 

represented using reference lines. The reference line represents the minimum content knowledge 

index values expected by various universities. The results reveal that while universities ‗KCA‘ and 

‗UON‘ are trending in all industry roles, ‗JKUAT‘ is only trending in only three industry roles i.e. 

‗software architect‘, ‗mobile programmer‘, and ‗project manager‘. 

 

Figure 4.1.6c: Comparison of Average Content Knowledge Index of Academia and Industry 

roles 
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Figure 4.1.6d shows box-plot results of the cognitive skills index value requirements for various 

industry roles and cognitive skills index values for various universities represented using reference 

lines. The results reveal that only ‗UON‘ is trending in all industry roles, while ‗KCA‘ and 

‗EGERTON‘ are only trending in only one and two industry roles respectively i.e. ‗analyst 

programmer‘ for ‗KCA‘, while for  ‗EGERTON‘ are ‗analyst programmer‘, and ‗web programmer‘. 

 

Figure 4.1.6d: Comparison of Average Cognitive Skills Index of Academia and Industry roles 

Table 4.1.6 presents a summary of the counts of the trending industry roles in each university as 

revealed by figure 4.1.6a and 4.1.6b analysis results. 

Table 4.1.6: Summary of trending industry roles in the academia 

University name Counts of roles in 

Content knowledge Index  

Counts of roles in 

Cognitive skills Index  

Average counts 

per university 

Percentage 

(%)  

1. UON 7 7 7 100% 

2. JKUAT 3 3 3 42.9% 

3. Kabarak 6 3 4.5 64.3% 

4. Egerton 5 2 3.5 50% 

5. KCA 7 1 4 57.1% 

Average counts per 

variable 

5.6 3.2   

Percentage (%)  80% 45.7%  62.86% 

Findings #4: 

Table 4.1.6 reveals that academia was able to meet knowledge requirements of 80% of industry roles 

while only 45% of industry roles had their skills requirements fulfilled. Academia institutions had 

different biases towards industry roles‘ requirements. 
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4.2. Experimental Results and Findings for Feature Selection and Algorithm Selection 

4.2.1 Introduction  

Three types of datasets with known demographic descriptions were used i.e. research (dataset1), 

benchmark (dataset2), and validation (dataset3). Hypotheses for experimental analyses were tested 

for significance using either analysis of variance (ANOVA) or paired sample T tests. Significance 

level of 0.05 was used. Three ML algorithms used for the feature selection experiments were 

Logistic Regression (LR) whose parameter was (c = 1.0), K-Nearest Neighbor (KNN) whose 

parameter was (k = 4),  and  Support Vector Machines (SVM) whose parameters were 

(kernel='gamma=0.0', C=1.0, random_state=0). The parameters were selected through preliminary 

trials that produced the best training results. Two ML algorithms used for the algorithm selection 

experiments were naïve Bayes and SVM whose parameter tuning was explicitly determined. 

4.2.2 Taxonomic description of Software Engineers’ Industry roles (dataset1)  

Figure 4.2.1 illustrates mapping of 12 roles for software engineers from Table 4.1.3 into the 

proposed taxonomic structure using our method. The 12 roles have been coded as follows: 1: mobile 

system manager, 2: mobile project manager, 3: mobile architect designer 4: mobile web designer 5: 

mobile analyst programmer 6: mobile test programmer 7: desktop system manager 8: desktop project 

manager 9: desktop architect designer 10: desktop web designer 11: desktop analyst programmer 12: 

desktop test programmer.  

 

Figure 4.2.1: The Taxonomy for Software Engineers’ Industry roles  
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4.2.3 Taxonomic description of Academic Librarians’ Industry roles (dataset3) 

Figure 4.2.2 illustrates the mapping of 7 industry roles for academic librarians into the proposed 

taxonomic structure using our method. The 7 distinct industry roles have been coded as follows: 1: 

Reference librarian, 2: Circulation librarian, 3: Digital media librarian 4: Multi-service librarian 5: 

Acquisition & cataloguing librarian 6: Africana librarian 7: Information literacy librarian.  

 

Figure 4.2.2: The Taxonomy for Academic Librarians’ roles 

Findings #5: 

Figures 4.2.1 and 4.2.2 reveals that entry level occupational industry roles were both branched into 

functional areas and each functional branch was hierarchical with different levels of skills demand 

(proficiency) and different types of skills at various levels. 

4.2.4 Experiment Datasets Description 

Table 4.2.4 describes the demographic characteristics of the three datasets that have been used for 

experimental purpose. Dataset1 represents software engineering employees‘ profile data while 

dataset2 represents extract of the AMEO2015 data that has been used as a benchmark and dataset3 

represents academic librarians‘ profile data that has been used for model validation.  

Table 4.2.4: Demographic characteristics of experiment datasets 

Dataset Attributes  Instances  Classes  Levels  

1. Dataset1 18 113 12 3 

2. Dataset2 18 279 12 3 

3. Dataset3 14 50 7 3 
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4.2.5 Class Sizes in the Experiment Datasets  

Table 4.2.5 presents table results showing distribution of class instances in the three datasets as 

revealed by the experiment. While in dataset1 class number 10 has the largest number of instances of 

16 and the lowest number of instances in a class is 1, in dataset2 class number 9 has the highest 

number of instances of 75 and 10 is the lowest number of instances in a class. In dataset3, classes 

number 1 and 5 have the highest number of instances of 9, 4 is the lowest number of instances in a 

class. 

Table 4.2.5: Distribution of class instances in the datasets 

Class-codes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total 

Instances 

(dataset1) 

1 1 5 15 14 8 12 6 14 16 15 6 - - - - - - 113 

Instances 

(dataset2) 

9 14 23 40 13 42 9 8 19 32 51 19       279 

Instances 

(dataset3) 

9 8 7 7 9 4 6 - - - - - - - - - - - 50 

 

Findings #6: 

Table 4.2.5 reveals that dataset1 had classes with smaller sizes such as class 1 and class 2 whose 

sizes were both one.  Such class sizes would not be useful for machine learning that required the 

class instances to be partitioned into training and test set. Therefore such classes were eliminated in 

the subsequent experiments with this dataset. 

4.2.6 Model Building Results and Findings 

A total of three experiments were conducted with an overall aim of building the best model. The 

aims and design elements of the individual experiments have been summarized as shown in Table 

4.2.6.1a: 

1) Experiment A: To select meaningful features for the model  

Three algorithms (Logistic Regression, K-Nearest Neighbors, and SVM) were used experimental 

subjects. Out of the features generated by each of the three algorithms, features that appeared in 

at least two of these algorithms were selected. 

2) Experiment B: To select parameter values for the model. 

A range of parameter values was purposively chosen for the algorithm selected in experiment C. 

Out of the range select a parameter value that renders the model the best performance 

3) Experiment C: To select the best model with the smallest generalization error 
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Two induction algorithms (Naïve Bayes and SVM) were used as experimental subjects. Out of 

the two induction algorithms used, algorithm that gave the smallest generalization error was 

selected. 

Table 4.2.6.1a presents the planning of the experiments while the detailed results for these 

experiments have been presented in sections 4.2.6.1, 4.2.6.2, and 4.2.6.3 respectively. 

Table 4.2.6.1a: Model Building Experiments’ Designs  

 Experiment A Experiment B  Experiment C 

Conception/Objective To select valuable features 

for the model 

To select relevant parameter 

values for the model 

To estimate generalization 

error of the model 

Design  

1.Experimental units 

2.Experimental 

subjects 

3.Dependent variable 

4.Independent Variable 

1. Graduate employees skills 

2.ML model‘s Algorithms 

3.Performance (accuracy) 

4.Number of features 

1. Graduate employees skills 

2.ML model‘s Algorithms 

3.Performance (accuracy) 

4.Parameter values 

1. Graduate employees skills 

2.ML model‘s Algorithms 

3.Performance (accuracy) 

4.Sample size 

Preparation & 

Execution 

1.Split dataset into three: 

Training set, Validation set, 

Testing set 

2.apply 5-fold cross 

validation 

3.Select features using 

Sequential backward 

selection method 

1.Split dataset into three: 

Training set, Validation set, 

Testing set 

2.Apply 5-fold cross 

validation 

3.Apply purposive sampling 

to values 

1.Split dataset into three: 

Training set, Validation set, 

Testing set 

2.Apply 5-fold cross 

validation 

3.Apply progressive sampling 

 

Analysis Compare features that give 

the best accuracy for the 

model 

Compare parameter values 

that give the best accuracy 

for the model 

Compare generalization 

performance of the model by 

the two induction algorithms 

Criteria of selection Out of the features generated 

by each of the three 

algorithms, select the one 

that appears in at least two 

of these algorithms 

Out of a range purposively 

chosen, select a parameter 

value that renders the model 

higher performance 

Out of the two induction 

algorithms used, select 

algorithm that gives the 

smallest generalization error 

 

4.2.6.1 Feature Selection using SE Benchmark Dataset (Experiment A) 

Initially, benchmark dataset (dataset2) had a total of 13 features excluding the class feature after 

which feature selection was applied and reduced the features to 5. Initially, features were selected 

that other evidence, including more general models fitted into the full dataset, suggest would be 

important predictors of industry roles as applied by Clive & Joan (2000). In the present study, three 

machine learning algorithms, namely logistic regression (LR), K-Nearest Neighbor (KNN) and 

Support Vector Machines (SVM) were used for this process. Through sequential backward selection 

method the three algorithms, namely logistic regression (LR), KNN, and SVM(kernel='gamma', 

C=1.0, random_state=0)  functions were applied on the benchmark dataset (see Figure: 
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4.2.6.1a,b,&c) and resulted into a range of 4 feature subsets for each of the respective algorithms that 

gave an optimal performance accuracy (validation =0.80%, test=0.78%) , (validation =0.84%, 

test=0.71%) and (validation =0.90%, test=0.85%) respectively. Therefore, the best features that gave 

optimal results to each algorithm as evidenced by Figures 4.2.6.1a,b,&c, in increasing order of 

importance, were: 

Logistic regression = {Age, D, A, C}; KNN = { Age, R, D, A, }; SVC = { R, D, A, C} 

 

Figure 4.2.6.1a: Logistic Regression algorithm run results                                    

Figure 4.2.6.1b: K-Nearest Neighbor algorithm run results                                    
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Figure 4.2.6.1c: SVM algorithm run results                                     

In the present study, comparison was conducted and features that were popular in at least two 

algorithms were selected as true candidates for the best features while the rest were marked as false. 

Table 4.2.6.1b presents results of comparative analysis of features‘ subsets for the three algorithms 

where Y (yes) was used to mark a feature selected by an algorithm, otherwise a dash (-). A true/false 

score was used to analyze the features along the columns where a feature with at least two Ys was 

scored true otherwise false.  

Those algorithms whose features had been scored false, hence marked for removal, were further 

analyzed to study performance impact of removing each feature both in isolation and in combination. 

Caution was taken to ensure core features of the model were carefully removed and analysis was 

conducted on the impact of adding a feature in other algorithms where it was not selected, especially 

the core features marked for removal. Popular features that did not exist in other algorithms, were 

added unconditionally into the subsets of these algorithms. In the present study, all three algorithms 

were affected through adding popular features, namely LR (feature ‗R‘), KNN (feature ‗C‘) and 

SVM (feature ‗age‘). The overall impact in performance for removing or adding new features was 

determined.   

For logistic regression (LR), the impact of adding ‗R‘ was a loss in performance of  -0.01 (0.78 to 

0.77). For KNN, the impact of adding ‗C‘ was a gain in performance of +0.12 (0.71-0.83) . For SVC, 

the impact of adding ‗age‘ was 0.00 (0.85-0.85) . In conclusion, the addition of these popular features  

would result to a total gain in performance of +0.11 as shown in Table 4.2.6.1b. As a result, a total of 

five features from the original 13 were selected as optimal features for further analyses, namely: age, 

R (relevant knowledge), D (cognitive skills), A (technical skills), C (capacity). Table 4.2.6.1b shows 

cross analysis of features selected by the three algorithms.  

Figure 4.2.6.1d shows general performance behavior of each algorithm when fitted with the selected 

four feature dataset while Figure 4.2.6.1e shows general performance behavior of our model under 

each induction algorithm when fitted with the all features dataset where the result seem to be 

consistent with previous observations. 
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Figure 4.2.6.1d: Sequential Backward Selection of features (LR, KNN, SVM ) in SE 

benchmark dataset. 

Table 4.2.6.1b: Analysis of relevant features in SE benchmark dataset 

 

Further experiments were conducted using our model on all, and 5 features and the results were as 

shown in Table 4.2.6.1c. Further analysis was conducted to test whether model‘s performance 

difference was significant. 

 

Figure 4.2.6.1e: Selection of features using our model in SE benchmark dataset. 
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Table 4.2.6.1c: Model performance with all and only selected features in SE benchmark 

dataset 

 Validation Test (naïve Bayes)  % Validation Test (SVM) % 

 All features (ta) Selected features (ts) All features (ta) Selected features (ts) 

Fold1 36.59 85.37 75.61 85.37 

Fold2 51.43 74.29 74.29 88.57 

Fold3  38.24 79.41 85.29 88.24 

Fold4  40.63 75.00 87.50 87.5 

Fold5 53.33 80.00 93.33 93.33 

Mean  44.04 78.81 83.20 88.60 

Testing whether the difference of group means (folds) was significant using ANOVA: 

Table 4.2.6.1c presents validation test results showing a trade-off between model‘s performance with 

all features and selected features both under naïve Bayes and SVM based constructs of the model. 

Two groups were defined, namely all features‘ and selected features‘ groups. The results reveal a 

possible difference between the two scenarios under both constructs of the model.  The mean 

difference under naïve Bayes construct of the model was 34.77 (78.81-44.04) while under SVM was 

5.4 (88.60-83.20). To be sure the difference was not due to any other factor but only difference in 

number of features, ANOVA test was conducted to rule out the effect of group(fold) to group (fold). 

For this type of test to be valid, conditions for ANOVA that must be satisfied, homogeneity of group 

variance and normality of data, were checked.  

Table 4.2.6.1d presents results for ANOVA analysis for both kinds of model constructs investigated 

through 10 trials of 5-fold cross-validation experiments. The results indicate the feature sets 

variances were equal for naïve Bayes based model while not equal for SVM based model and, in 

fact, means of the two feature sets scores were different in either case and, therefore, the seemingly 

difference between the two models in Table 4.2.6.1c was real, was due to effect of variation of 

feature set. For SVM based model Welch and Brown-Forsythe values are 0.000 for both. 

Table 4.2.6.1d: ANOVA results (effect of feature selection ) in SE benchmark dataset 

Type of validity Type of test Model  p-value  Decision 

1.Homogeneity of 

group variances 

Accept if  p>0.1 

(Levene test - Equality of variances) 

Hypothesis: Are variances between the 

groups equal? 

naiveBayes 0.250 ACCEPT 

SVM 0.021 REJECT 

2.Difference of group 

means  

Accept if  p>0.05 

(F test - Equality of group means)  

Hypothesis: Are group means equal? 
naiveBayes 0.000 REJECT 

SVM 0.000 REJECT 
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Findings #7: 

Table 4.2.6.1d reveals that reduction of features improved the performance of our model. The change 

in performance was significant. Slightly better performance could be achieved with fewer features, 

hence reducing the computational demand in terms of time and computational power. For this 

dataset, out of 13 features only 5 features produced optimal results, namely Age, R, D, A, C. 

4.2.6.2 Selecting Parameter values using SE BenchMark Dataset (Experiment B) 

Table 4.2.6.2a presents results of our model performance under various combination of gamma and 

complexity parameter, while kernel parameter was held constant at value equal ‗Gaussian‘. The 

findings reveal that the model was optimal at gamma value at most 0.01 and complexity value at 

least 100. Gamma parameter was varied at intervals of 10
n
 in the range of n (-5 to 0) while 

complexity was varied at intervals of 10
n
 in the range of n (-5 to 3).  This gave us insight into the 

relevant values of gamma and complexity for our experiment to select the right values. Figure 4.2.6.2 

presents graphical results showing validation curves for the SVM model under various gamma 

parameter settings in the range of { 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0} for two relevant values of 

complexity, namely complexity = 1000 and gamma = 10000. These results indicate that our model 

showed very little improvement under complexity greater than 1000 while the optimal value gamma 

was 0.001.  

Table 4.2.6.2b presents experimental results with various parameter values for gamma and 

complexity to show a trade-off between relevant and non-relevant parameter values. Further analysis 

was conducted to determine whether model‘s performance difference was significant between model 

with relevant and non-relevant parameter values.   

Table 4.2.6.2a: Analysis of relevant parameter values using SE benchmark dataset 

 
Complexity 

 gamma 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 

0.00001 18.3 18.3 18.9 17.6 20.3 18.9 20.2 18.9 44.1 66.7 

0.0001 17.6 20.8 19.6 18.9 18.9 18.3 20.8 44.7 66.1 89.5 

0.001 18.3 20.2 20.8 17.6 20.3 18.9 45.4 66.6 87.0 87.4 

0.01 24.0 24.0 23.4 24.0 24.0 43.0 64.8 87.1 87.6 87.2 

0.1 24.0 24.0 24.0 24.0 36.9 65.1 84.7 86.3 84.3 82.7 

1 23.4 23.4 23.4 23.4 43.7 79.9 82.9 78.4 79.1 79.2 
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Figure 4.2.6.2: Validation curve for SVM model in SE benchmark dataset 

Table 4.2.6.2b: Model performance under various relevant parameter values. 

 Non-Relevant gamma and 

complexity values 

Relevant gamma and complexity 

values  

 C =0.1, gamma = 0.1  C=1000, gamma=0.001 

F1 31.71 80.49 

F2 31.43 85.71 

F3 38.24 82.35 

F4 34.38 81.25 

F5 36.67 90.0 

Mean 34.48 83.96 

Testing whether the difference was significant using ANOVA procedure 

Table 4.2.6.2b presents validation test results showing a trade-off between model‘s performances 

under various parameter values under SVM based constructs of the model. The focus of this test was 

between relevant and non-relevant parameter values, hence two groups. The results reveal a possible 

difference between the two scenarios under this constructs of the model.  The mean difference of the 

model was 49.48 (83.96-34.48). To be sure the difference was not due to any other factor but only 

difference in parameter values, ANOVA test was conducted. For this type of test to be valid, 

conditions for ANOVA were checked (homogeneity of group variance and normality of data). Two 

models, one treated with non-relevant parameter values (gamma = 0.1 and complexity = 0.1) and 

another with relevant parameter values (gamma = 0.001 and complexity =1000) were used in the 

investigation.  
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Table 4.2.6.2c presents results for ANOVA analysis for 10 iterations of 5-fold cross-validation 

experiments that were conducted to investigate performance change. The results indicate the 

,model‘s performance variances were equal across parameter set values and, in fact, the average 

model performance scores under the two parameter sets were different. Therefore, the seemingly  

Table 4.2.6.2c: ANOVA results (effect of parameter values) in SE benchmark dataset 

Type of validity Type of test Model  p-value  Decision 

1.Homogeneity of 

group variances 

Accept if  p>0.1 

(Levene test - Equality of variances) 

Hypothesis: Are variances between the 

groups equal? 

   

SVM 0.760 ACCEPT 

2.Difference of group 

means  

Accept if  p>0.05 

(F test - Equality of group means)  

Hypothesis: Are group means equal? 
   

SVM 0.000 REJECT 

difference between the two models in Table 4.2.6.2b was real, which means it was not due to effect 

of any other factor but parameter variations in the model. 

Findings #8: 

Table 4.2.6.2c reveals that parameter values of SVM improved performance of our model, especially 

when gamma was at 0.001 and complexity was at least 1000. The change in performance was 

significant at p=0.05.  

4.2.6.3 Estimating generalization error of model using SE Benchmark dataset (Experiment C) 

Figure 4.2.6.3a presents graphical results showing learning curves for the two models under various 

sample sizes starting from sample size of 20. The results reveal that while training and test accuracy  

 

Figure 4.2.6.3a: Learning Curves for Naïve Bayes and SVM models in SE benchmark dataset  
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curves for SVM were almost converging as sample sizes increased, for naïve Bayes model the gap 

between the two curves still remained large. The results also indicate SVM model required a sample 

size, of about 190 to achieve optimal performance and smaller generalization error, while naive 

Bayes with sample size less than 120 readily achieved optimal performance. The results also indicate 

SVM has the smallest generalization error compared to naïve Bayes model at their optimal 

performance levels.  

To investigate this behavior further the two models were experimented under similar conditions then 

the results were compared. This involved fitting and testing both models with similar training and 

validate sets respectively through 10 iterations of 5-fold cross-validation. Table 4.2.6.3a presents 

results of this experiment that indicated there was a difference in mean performance between SVM 

(78.77) and naïve Bayes (63.93) models which suggested that SVM model was better than naïve 

Bayes. Further investigation was conducted to test whether the difference (14.84) was real and 

significant. This test was conducted using paired sample T test procedure. 

Table 4.2.6.3a: 10 iterations of 5-fold cross validation tests in SE benchmark dataset 

Test fold 

 

5-Fold cross validation accuracy tests (%) 

   Naïve Bayes SVM 

Fold_1 Mean 60.81 73.30 

  N 10 10 

  Std. Deviation 3.38 3.65 

Fold_2 Mean 63.00 77.78 

  N 10 10 

  Std. Deviation 3.70 4.21 

Fold_3 Mean 66.69 80.18 

  N 10 10 

  Std. Deviation 5.92 6.04 

Fold_4 Mean 63.35 81.90 

  N 10 10 

  Std. Deviation 5.49 2.63 

Fold_5 Mean 65.79 80.70 

  N 10 10 

  Std. Deviation 6.18 5.81 

Total Mean 63.93 78.77 

  N 50 50 

  Std. Deviation 5.30 5.42 
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Testing whether the difference was significant using Paired Sample T test procedure 

Table 4.2.6.3a presents validation test results showing a trade-off between model‘s performance 

under both naïve Bayes and SVM based constructs. The focus of this test was between naïve Bayes 

and SVM, hence two paired variables. Table 4.2.6.3a indicates a potential difference of 14.84 (78.77-

63.93) in the overall mean performance  A paired sample T test was conducted to test the hypothesis 

that model performance difference was not significant. For this type of test to be valid, conditions for 

tests were checked (homogeneity and normality of data).  Table 4.2.6.3b presents results based on 10 

iterations of 5-fold cross-validation tests. The results indicate the difference was real and significant.  

Table 4.2.6.3b: Paired Sample T Tests for Model selection using SE benchmark dataset  

 Pair Paired differences t df Sig(2

-

tailed

) 

RESULT 

Mean Std. dev. Std. 

error 

mean 

95% confidence 

interval for 

difference 

lower upper 

Paired naiveBayes-

svm 

-14.84 6.988 .988 -16.83 -12.86 -15.02 49 .000 REJECT 

Findings #9: 

General performance indicated that SVM model (78.77%) was better than naïve Bayes model 

(63.93%), this was revealed by cross-validation results in Table 4.2.6.3a. Table 4.2.6.3b confirmed 

that the performance difference was real and significant at p=0.05. 

4.2.6.4 Selecting Parameter values using SE Field Dataset (Experiment B) 

Table 4.2.6.4a presents results of our model performance under various combination of gamma and 

complexity parameter, while kernel parameter was held constant at value equal ‗Gaussian‘. The 

findings reveal that the model was optimal at gamma value at least 0.1 and complexity value at least 

10. Gamma parameter was varied at intervals of 10
n
 in the range of n (-5 to 0) while complexity was 

varied at intervals of 10
n
 in the range of n (-5 to 3).  This gave us insight into the relevant values of 

gamma and complexity for our experiment to select the right values.  

Figure 4.2.6.4 presents graphical results showing validation curves for the SVM model under various 

complexity parameter settings in the range of { 0.001, 0.01, 0.1, 1.0, 10.0, 100.0 } for both relevant 

values of gamma, namely gamma = 0.1 and gamma = 1.0. These results indicate that our model 

shows better results under gamma = 0.1 than when gamma = 1.0 and we experimented further with 

all relevant values of  
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Table 4.2.6.4a: Analysis of relevant parameter values using SE field dataset 

 
Complexity 

 gamma 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 

0.00001 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 37.8 

0.0001 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 55.1 

0.001 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 57.8 

0.01 57.8 57.8 57.8 57.8 57.8 57.8 60.2 60.4 60.4 

0.1 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 

1 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4 

complexity parameter where gamma = 0.1. Table 4.2.6.4b presents experimental results with various 

parameter values for gamma and complexity to show a trade-off between relevant and non-relevant 

parameter values. Further analysis was conducted to determine whether model‘s performance 

difference was significant between model with relevant and non-relevant parameter values.   

  

Figure 4.2.6.4: Validation curve for SVM model using SE field dataset 

Table 4.2.6.4b: Model performance under various relevant parameter values. 

 Non-Relevant(at gamma = 0.0001) Relevant Complexity values (at gamma = 0.1) 

 C =0.0001 C =10 C = 100 C = 1000 

F1 11.7 64.7 52.9 58.8 

F2 12.5 56.2 68.7 50.0 

F3 13.3 53.3 53.3 53.3 

F4 18.1 63.6 63.6 54.5 

F5 37.5 87.5 62.5 75.0 

Mean 18.6 65.0 60.2 58.3 

Testing whether the difference was significant using ANOVA procedure 

Table 4.2.6.4b presents validation test results showing a trade-off between model‘s performance 

under various parameter values under SVM based constructs of the model. The focus of this test was 
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between relevant and non-relevant parameter values, hence two groups. The results reveal a possible 

difference between the two scenarios under this constructs of the model.  The mean difference of the 

model was 46.6 (65.0-18.6) to 39.7 (58.3-18.6). To be sure the difference was not due to any other 

factor but only difference in parameter values, ANOVA test was conducted. For this type of test to 

be valid, conditions for ANOVA were checked (homogeneity of group variance and normality of 

data). Two models, one treated with non-relevant parameter values (gamma = 0.0001 and complexity 

= 0.0001) and another with relevant parameter values (gamma = 0.1 and complexity =10) were used 

in the investigation.  

Table 4.2.6.4c presents results for ANOVA analysis for 10 iterations of 5-fold cross-validation 

experiments that were conducted to investigate performance change. The results indicate the 

,model‘s performance variances are equal across parameter set values and, in fact, the average model 

performance scores under the two parameter sets are different. Therefore, the seemingly difference 

between the two models in Table 4.2.6.4b was real, was not due to effect of any other factor but 

parameter variations in the models. 

Table 4.2.6.4c: ANOVA results (effect of parameter values) in SE field data  

Type of validity Type of test Model  p-value  Decision 

1.Homogeneity of 

group variances 

Accept if  p>0.1 

(Levene test - Equality of variances) 

Hypothesis: Are variances between the 

groups equal? 

   

SVM 0.673 ACCEPT 

2.Difference of group 

means  

Accept if  p>0.05 

(F test - Equality of group means)  

Hypothesis: Are group means equal? 
   

SVM 0.000 REJECT 

Findings #10: 

Table 4.2.6.4c reveals that parameter values of SVM improved performance of our model, especially 

when gamma was at least 0.1 and complexity was at least 10. The change in performance was 

significant at p=0.05.  

4.2.6.5 Estimation of generalization error of the model using SE Field dataset (Experiment C) 

Figure 4.2.6.5a presents graphical results showing learning curves for the two models under various 

sample sizes starting from sample size of 20. The results reveal that while training and test accuracy 

curves for naïve Bayes were almost converging as sample sizes increased, for SVM model the gap 

between the two curves still remained large. The results also indicate SVM model required a bigger 

sample size, i.e. greater than 100, to achieve optimal performance and smaller generalization error, 

while naive Bayes with sample size less than 100 readily achieved optimal performance.  
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Figure 4.2.6.5a: Learning Curves for Naïve Bayes and SVM models  in SE field data 

To investigate this behavior further, the two models were experimented under similar conditions then 

the results were compared. This involved fitting and testing both models with similar training and 

validate sets respectively through 10 iterations of 5-fold cross-validation. Table 4.2.6.5a presents 

results of the experiment that indicate there was a difference in mean performance between the two, 

Table 4.2.6.5a: 10 iterations of 5-fold cross validation tests in SE field dataset 

Test fold 

 

5-Fold cross validation accuracy tests (%) 

   Naïve Bayes SVM 

Fold_1 Mean 49.51 55.86 

  N 10 10 

  Std. Deviation 7.54 9.59 

Fold_2 Mean 48.89 59.41 

  N 10 10 

  Std. Deviation 11.37 4.99 

Fold_3 Mean 56.22 58.09 

  N 10 10 

  Std. Deviation 7.22 10.65 

Fold_4 Mean 51.22 53.11 

  N 10 10 

  Std. Deviation 10.54 8.46 

Fold_5 Mean 56.84 57.48 

  N 10 10 

  Std. Deviation 13.97 12.70 

Total Mean 52.54 56.79 

  N 50 50 

  Std. Deviation 10.56 9.48 
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SVM (56.7) and naïve Bayes (52.5) models, which suggested that SVM model was better than naïve 

Bayes. Further investigation was conducted to test whether the difference was real and significant. 

This test was conducted using paired sample T test procedure. 

Testing whether the difference was significant using Paired Sample T test procedure 

Table 4.2.6.5a presents validation test results showing a trade-off between model‘s performance 

under both naïve Bayes and SVM based constructs. The focus of this test was between naïve Bayes 

and SVM, hence two paired variables. Table 4.2.6.5a indicates a potential difference of 4.25 (56.79-

52.54) in the overall mean performance  A paired sample T test was conducted to test the hypothesis 

that model performance difference was not significant. For this type of test to be valid, conditions for 

tests were checked (homogeneity and normality of data).  Table 4.2.6.5b presents results based on 10 

iterations of 5-fold cross-validation tests. The results indicate the difference was real and significant.  

Table 4.2.6.5b: Paired Sample T Tests for Model selection using SE field dataset  

 Pair Paired differences t df Sig(2

-

tailed

) 

RESULT 

Mean Std. dev. Std. 

error 

mean 

95% confidence 

interval for 

difference 

lower upper 

Paired naiveBayes-

svm 

-4.254 14.39 2.03 -8.34 -.163 -2.09 49 .042 REJECT 

Findings #11: 

General performance indicated that SVM model (56.79%) was better than naïve Bayes model 

(52.54%), this was revealed by cross-validation results in Table 4.2.6.5a. Table 4.2.6.5b confirmed 

that the performance difference was real and significant at p=0.05.   

4.3. Discussion of Modeling Findings 

Descriptive results and findings were crucial in providing foundation for building the classifier 

model while experimental results and findings were crucial in building the classifier model. They 

both provided crucial information that was needed to execute those two processes respectively. 

Besides, they were both vital in answering research questions under investigation, namely research 

question 1, 2 and 3. 
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4.3.1. Discussion of Descriptive Findings 

4.3.1.1. Concepts as target classes for machine learning process 

Findings#1, #2 and #6 were crucial in discovering industry roles concepts that formed the basis of 

creating target classes for machine learning. While findings#1 & #2 revealed the concepts  as raw 

which were initially 7, findings#6 later on revealed the refined form of these concepts as 12. 

Finding#6 also revealed the distribution of these concepts that was important in deciding how to 

handle class imbalances during training process of machine learning. 

4.3.1.2. Characteristics of target classes for machine learning process 

The choice and design of machine learning methodology depends on: 1) structure of the problem and 

2) assumptions about the learning problem (Kotsiantis, 2007; Silla & Freitas, 2011; Merschamann & 

Freitas, 2013). As a result, findings#2 was crucial in discovering that these concepts had similar 

structural elements (job activities/skills) but different levels of emphasis. Further, findings#5 

discovered the structural relationship among these concepts that was crucial in deciding the machine 

learning approach suitable for building the classifier model, in this case hierarchical classification 

approach.  

The fundamental assumption in the present study that occupational industry roles have different 

requirements for problem solving skills was put in the form of a hypothesis under research question 

2: H02A: There is no significant boundary differences between concepts to be used as potential 

target classes for machine learning. Findinsgs#3 was crucial in rejecting this hypothesis. 

Finding#4 was important in revealing that learning institutions have different biases towards these 

concepts. This was crucial in designing the prototype software to handle graduates from different 

learning institutions differently when deployed in the real world.   

4.3.2. Discussion of Experimental Findings 

4.3.2.1. Selection of meaningful features 

Findings#7 was related to determination of not only the number of features that would maximize 

performance of the classifier model but also whether the improved performance was significant. 

Findings #7 revealed 5 features out of 13 were able to induce better performance results for the 

classifier model equivalent to  performance that could be achieved with 13 features. Besides, there 

was significant improvement in performance leading to a conclusion that reduction of features has a 
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number of benefits to the classifier model, including lowering demand for computational resources 

and reducing the processing time. The findings revealed R (Relevant content), D (Cognitive skills), 

A (Technical skills), C (Intellectual Capacity) and ‗Age‘  as the only 5 features out of 13 which were 

able to induce optimal performance to the classifier model and this performance improvement was 

significantly better than that of 13 feature model.  

The implication of these findings provided insight not only into which features should be included in 

the subsequent investigations but also to accept or reject the hypothesis posed in research question 1: 

H01A: All features are equally relevant for inducing better performance in the classifier model. 

The outcome based on these findings was to reject the hypothesis at significance level, p=0.05. 

These findings‘ explanation was that when more than five features were used, the summary feature 

space dimension became too large causing performance of the model to start decreasing and while 

when less than five features were used essential information was lost that caused accuracy to decline 

(Barbedo & Lopes, 2006). 

4.3.2.2. Selection of the best induction algorithm for the model 

The main focus of this experiment was to estimate the generalization performance of each of the two 

models generated by each machine learning algorithm and select the best. Both findings#9 and #11 

were key in revealing this fact where both concurred that the general performance of the SVM 

classifier model was much better than that of naïve Bayes and in fact the difference between the two 

was significant. Based on these findings, SVM was more likely to generalize its performance to 

unseen data in the real world better than naïve Bayes classifier model. As a result, it was selected as 

the best induction algorithm for classifier model. Also, the two findings were in concurrency in 

rejecting a hypothesis posed in the research question 3 that: Ho3C: All induction algorithms induced 

equal generalization error. 

4.3.2.3. Selection of the best parameter values 

Both finding#8 and finding#10 were related to investigation towards parameter tuning, although 

through different datasets with different landscapes. Coincidentally, both findings agreed that 

parameter tuning of SVM improved performance of the classifier model significantly. However, 

parameter values that induced the best performance of the classifier model were dataset dependent. 

The implication of these findings in this investigation suggested that in every different dataset we 

needed to tune the parameter values for the best performance. Also, these findings provided key 
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evidence that was used to reject the hypothesis paused in research question 3 that: Ho3B: Any 

parameter value induces optimal performance in the model. 

4.3.3. Discussions Conclusion of Modeling Findings 

The conclusion relates to the research questions which were subject to investigation, namely research 

questions 1, 2 and 3. 

RQ1: What concepts are appropriate as machine learning attributes for mapping graduates’ 

skills to occupational industry roles? 

Based on the findings in the present study, it is important to note when developing classifier models 

for mapping skills to industry roles that appropriate attributes that are valid for machine learning are 

content knowledge, cognitive skills, technical skills, academic capacity, and age. Table 4.3a 

illustrates method followed to arrive at the findings. 

Table 4.3a: Method followed to answer research question 1 

METHOD   FINDINGS 

1. Literature analysis Obtained 13 concepts: 

1. Independent factors (4 concepts) 

2. Confounding  factors (9 concepts) 

2. Evaluation  of  three filter algorithms 

using benchmark dataset [Experiment] 

Obtained meaningful concepts under each algorithm 

3. Analysis of three algorithms’ results for 

relevant concepts 

Established 5 relevant concepts appearing in at least 

two results of the three algorithms: 

1. Independent factors (4 concepts) 

2. Confounding  factors (1 concepts) 

4. Use the relevant concepts to develop 

the conceptual model  

Obtained a validated conceptual model (OUTCOME) 

 

RQ2: What is the structural characteristic of concepts required as target classes for machine 

learning process of mapping graduates’ skills to industry roles? 

Based on the findings in the present study, it is important to note when developing classifier models 

for mapping skills to industry roles that target classes for machine learning are industry roles 
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concepts which are distinct, and therefore, should be approached using supervised classification 

approach. Class distributions of these concepts are imbalanced, and therefore, they need stratified 

sampling during machine learning process of building the classifier model.  

Besides, structural relationship among these concepts is hierarchical, and therefore, the process of 

building the classifier model should be approached using hierarchical machine learning approach. 

Finally, when designing software to deploy for real world use, the underlying biases of different 

learning institutions towards these concepts should be known so that the software can handle 

graduates from different institutions differently. Table 4.3b illustrates method followed to arrive at 

the findings. 

Table 4.3b: Method followed to answer research question 2 

METHOD   FINDINGS 

1. Literature analysis Obtained three dimensions: 

1. Main competence 

2. Specific competence 

3. Proficiency  

2. Analysis of data collected [Descriptive] Established relationships between industry roles 

1. Main roles [Programmer, Designer, Manager] 

2. Specific roles within main roles [total of 12] 

3. Skill levels among main roles [3 levels] 

3. Graphically represent relationships  Obtained hierarchical structure (OUTCOME) 

 

RQ3: How do we build an appropriate machine learning model for mapping graduates’ skills 

to hierarchically structured occupational industry roles?  

Based on the findings and outcomes of research hypotheses that were tested, three things are key in 

building machine learning model for mapping graduates skills to industry roles, namely selection of 

appropriate features, tuning parameters of the model to appropriate values, and selecting induction 

algorithm that induces appropriate generalization performance to the model. These three are key 

determinants of the final performance of the model. Table 4.3c illustrates method followed to arrive 

at the findings. 
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Table 4.3c: Method followed to answer research question 3 

METHOD   FINDINGS 

1. Data collection [Survey] Obtained 78.9% response rate 

- Out of 190 questionnaires 150 were returned 

2. Data preprocessing Obtained cleaned and scaled data 

- Out  of 150 records, 37 with missing values removed 

- Out of 17 variables, 11 were digitized 6 discretized 

- All variables were standardized 

3. Construction  Obtained design of mapping model 

- Design architecture 

- Design of Algorithm  

4. Evaluation  of  two induction algorithms 

using data collected and benchmark 

dataset [Experiment] 

Established  the best induction algorithm for the model  

- SVM 

5. Evaluation of parameter values of the 

best induction algorithm [Experiment] 

Established the best parameter values for the model 

[Kernel = gamma (values>0.1), complexity = 0.0001 to 1000] 

6. Building model using the best induction 

algorithm and the best parameter 

values  

Obtained the ML mapping model (OUTCOME) 

 

4.4. Summary  

This chapter has presented results of the study, both descriptive and experimental, and a detailed 

discussion of the major research findings. For purpose of clarity, the results have been presented 

using not only tables and but also graphs. The statistical analysis procedures have been carefully 

selected based on preliminary tests results for data validity. The final research findings have been 

carefully drawn from both descriptive and experimental results after detailed discussion of the 

results.  

In summary, the results findings discussed in this chapter have literally provided answers to three 

research questions posed in this study. What concepts are appropriate as machine learning attributes 

for mapping graduates‘ skills to occupational industry roles? This was the first research question 

which was answered through experiment A where five features were selected as relevant for the ML 
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model. What is the structural characteristic of concepts that correctly reflects the hierarchy of 

industry roles required as target classes for machine learning purpose? This was the second research 

question which was answered through descriptive analysis where the hierarchical structure was 

conceptualized and described. How do we build using these concepts an appropriate machine 

learning model for mapping graduates‘ skills to hierarchically structured industry roles? This was the 

third research question which was answered through experiment C and B. whereas experiment C 

provided the appropriate induction algorithm to use when building the ML model, experiment B 

provided appropriate parameter values for that induction algorithm.  
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CHAPTER 5: PROTOTYPE DESIGN AND IMPLEMENTATION 

5.0. Introduction 

Design and implementation of a software prototype can be a complex task, especially, if an 

organized approach is not followed. This chapter presents an elaborate description of the design and 

implementation aspects of the software prototype for the skills mapping model. The chapter is 

organized into three sections as follows: section 5.1 discusses the background and details of 

prototype development methodology, section 5.2 highlights the computing resources utilized, and 

section 5.3 closes the chapter with a summary.  

5.1. Prototype Development Methodology 

Prototype development methodology, as applied in this study, is a reference model for software 

development process that provides a common basis for standards, description of major functions 

involved in the software development, and an insight into important features necessary for common 

understanding and focus.  

Ideally, software prototype development is part of a broader field known as software engineering 

where several software development process models are presented, such as waterfall, prototyping, 

Rapid Application Development (RAD) and evolutionary models. Generic software engineering 

activities which are executed within different software development models include requirements 

specification, software design, software implementation, software validation. These activities may be 

carried out linearly, or iteratively, or cyclically, or a combination of these, depending on the 

assumptions behind the software development methodology adopted. 

5.1.1. Choice of Prototype Development Methodology 

Since we did not have detailed requirements for the customer, there was need for a customer driven 

model. A process model that generates the first version of the usable product quickly and 

subsequently to be used not only to solicit for more requirements from customers but also to keep the 

customer happy with a working version that keeps them busy as we incrementally improve on it. 

This suggested two important principles in software development, i.e. incrementality and reusability. 

Incrementality principle ensured easier to make small changes to a working system than to rebuild 

the system while reusability ensured standard components that are flexible to changes. 
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As a result the design methodology that promised to fulfill this desire was an incremental model. The 

incremental model combines elements of linear sequential model (applied repetitively) with the 

iterative philosophy of prototyping (Pressman, 2001). It applies linear sequences in a staggered 

fashion to deliver software in small but usable pieces, called ―increments‖. Each increment builds on 

those ―increments‖ that have already been delivered. When an incremental model is used, the first 

increment is often called the ―core product‖, which addresses only the basic requirements, but many 

supplementary features (some known, others unknown) remain undelivered.  

Figure.5.1 presents the stages of the incremental model followed in this study. The model‘s activities 

were done in successive iterations, each of which ended with the delivery of a new version of an 

increment (P) that was usable, until the product‘s final version is delivered. 

 

Figure 5.1: Incremental model adapted from (Pressman, 2001) 

Incremental model includes the following advantages: 1) Customer value can be delivered with each 

increment, so system functionality is available early, 2) Early increments act as a prototype to help 

elicit requirements for later increments, 3) Lower risk of overall project failure, and 4) The highest 

priority system services tend to receive the most testing. Besides, incremental model fulfills all the 

typical characteristics that are commonly used as a criteria for choosing a software process model 

such as: 1) Visibility i.e. easy for an external assessor to determine the progress made, 2) Reliability 

i.e. how good  the process is at detecting errors before they appear in a product, 3) Robustness i.e. 
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how well the process is in coping with unexpected change, 4) Maintainability i.e. easy to change so 

as to take account of changed circumstances, 5) Rapidity i.e. how fast a system can be produced. 

Incremental model is mostly important when staffs are unavailable for a complete implementation by 

the deadline that has been established for the project. The basic idea is, if the core product is well 

received, then additional staff (if required) can be added to implement the next increments where 

early increments can be implemented with fewer people.  

Initially, rapid prototyping was applied where a laboratory prototype was designed and used to 

investigate on the initial set of the skills mapping software requirements. The laboratory prototype 

was then incrementally developed and tested for maturity until it became a field prototype. The field 

prototype was derived by adding a better user interface to the laboratory prototype, before it was 

ready to be tested with the real world data collected from the real environment. After the field 

prototype was successfully tested with the real data, it was then considered as the final requirements 

specification for the production version (Kemboi, 2013).  

The rest of this section highlights each of the Software Engineering activity as applied in the 

software prototype methodology of the current study.  

5.1.2. Requirements Analysis 

This involves an elicitation activity which resulted into an initial set of requirements specifications. 

The initial set was the basis for the design of the preliminary research prototype. The requirements 

specifications were revised every time the research prototype evolved. This version of the 

specifications was the basis for developing the lab prototype. At the end of the lab prototype 

development and testing, the requirements specifications were again revised. This second revision 

was the basis for developing the field prototype. The final requirements specifications were then 

produced after the implementation and testing of the field prototype. The final set of requirements 

specifications were the basis for the production of the software prototype developed.  

Traditionally, the requirements for any software will be manifested by a number of analysis models 

such as data models, functional models, and behavioral models (Pressman, 2001). In the current 

study, the plan section of the research design model in Fig. 3.1 of this study indicates the source of 

requirements where both industry and academia were target grounds for requirements elicitation. As 

a result of analysis of data derived from these two areas, initial data model for the prototype was 

constructed.  
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1) Use case model 

A use case model which describes the function of the system as viewed by its users, developers, and 

testers, was developed as the initial specification of the skills mapping model‘s requirements . Fig. 

5.2 presents the functional model in the form of a use case model.  

 

Figure 5.2: Use Case Model 

The use case model envisaged three kind of users for the model prototype i.e. employer, graduate, 

and university institution. Employers should be able to register industry roles available in various 

sectors in which they operate, clearly indicating their minimum skills and knowledge index values 

requirements. Also, they should be able to view academic sector profiles for various institutions 

based on their knowledge and skills content in the exams each year they examine. Finally, employers 

should be able to evaluate new graduates on industry roles suitability.  

Likewise, institutions should be able to register their academic profiles for sectors in which their 

degree programs are based. Where for each sector, each year they should record knowledge and 

skills indices derived from their exam‘s content administered to students. Also, they should be able 

view industry roles profiles for various sectors based on knowledge and skills minimum indices 

required by industry. Finally, institutions should be able to evaluate their graduates on industry roles 

suitability before they graduate so as to assess themselves against industry requirements.  

Graduates, as well should be able to evaluate themselves against industry roles requirements to 

determine their suitability for employment. They should, also, be able to view industry role 

requirements for various sectors in industry as well as view academic performance profiles in various 

sectors for various institutions.  
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2) Class model  

Also, a data model, which also describes the information requirements of the domain, was developed 

as the initial specification of the skills mapping model. Fig. 5.3 presents the data model in form of a 

class model. 

 

Figure 5.3: Class Model 

5.1.3. Design  

A preliminary design was constructed just after initial set of requirements specifications was 

determined, and a preliminary mapping model was specified. This design was the basis for the 

research prototype which was used to produce the requirements specifications for the lab prototype. 

Another cycle of the design was done after the lab prototype specifications were determined, and 

more elaboration on the mapping model was conducted. This cycle was repeated after the 

implementation and testing of the lab prototype to produce the design of the field prototype. Once 

the field prototype was implemented and tested, the final design of the software system was issued.  

The analysis models produced during requirements specification feed into the design task where four 

design models required to complete the design specification were produced. The four design models 

are architectural design, data design, interface design, and component design (Pressman. 2001). A 

wireframe design was produced to guide the overall design process of the four design models. Fig. 

5.3b illustrates the wire-design for the software prototype where interfaces were defined for the 

following types of users, namely EMP= Employer, GRAD = Graduate, COLL= college institution, 

ADM = Administrator for the software, and RESU= Results for all users. 
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Figure 5.3b: Wire-frame for the Prototype software Design 

1) Architectural design 

Architectural design defines the relationship between major structural elements of the software and 

the design pattern that is appropriate to achieve the requirements. Layering is a strategy that is often 

used to divide a system into subsystems where two approaches used to guide the layering styles are 

either responsibility or reuse driven (Ojo & Estevez, 2005). In the current study, a preliminary 

architectural design of the research prototype was based on responsibility driven layering of the basic 

system elements i.e. input, process, and output. Thus, each layer was designed to fulfill a specific 

role.  

The input component was designed as a data source system to provide input data to the prototype 

while the output component was designed as a dashboard subsystem that presents the results of the 

prototype to the user. The process component is the core function of the prototype and was designed 

as a machine learning subsystem that provides transformative function for mapping skills to industry 
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roles. Each layer makes use of the services provided by the lower layers. Fig. 5.4 presents the 

skeleton for the architectural design of the research prototype. 

5.1.3.1. Data Source Subsystem 

The data source consists of two components: a) Database and b) Dataset. The two components 

realize or implement an interface that they export for the other subsystems to access them i.e. 

Sinterface and Dinterface. Fig. 5.5 presents the high level design of the subsystem. 

 

Figure 5.4: Architectural design model for the prototype 

 

Figure 5.5: Components of the data source subsystem 
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i) Database  

A database is an organized collection of central data and was used in this study to store user-centered 

data generated at the dashboard, as well as a source of data to feed into the machine learning model 

to produce predictions. The database was designed based on the class model identified during data 

requirements analysis and variables of the conceptual mapping model shown in Fig.2.6. Relational 

data model was selected as a basis of deriving the database design whose main components are 

related tables storing industry-academia requirements data, such as sectors‘ table, roles‘ table, 

institutions‘ table, institution/sector index table, and dataset table as shown in Fig.5.6.  

Fig.5.6 was derived from the class model in Fig.5.3 by removing ‗Graduate‘ and ‗Employer‘ classes 

in the model and also resolving the many to many relationship between ‗Industry sector‗ and 

‗Institution‘ by creating an extra class ‗Institution sector indices‘ to store sector indices derived from 

academic institutions. The decision to remove was arrived at after an assumption that they are both 

external actors whose data may not be needed to be stored in the system as indicated by the use case 

model. However, although ‗Institution‘ is also an external actor, it is quite important to store its data 

because each academic sector registered in the system would be associated with a particular 

institution and it is important to store academic institutions‘ indices for various industry sectors.   

The complete set of attributes for the database was determined using the data collected and analyzed 

during descriptive analysis stage.  

 

Figure 5.6: Database Model 

Table 5.1 shows the detailed description of each table indicating the purpose, fields, data type, data 

width, and primary key. 
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Table 5.1: Detailed description for database model tables 

Table Purpose Fields Data type (Data Width) Primary/ 

Foreign Key 

Sector To store academia 

subject details for 

each industry 

sector. 

ID Integer(AutoIncrement), NAME 

CHAR(50), SUBJECT1 CHAR(50), 

SUBJECT2 CHAR(50), SUBJECT3 

CHAR(50), SUBJECT4 CHAR(50), 

SUBJECT5 CHAR(50), SUBJECT6 

CHAR(50), SUBJECT7 CHAR(50) 

ID  (Primary Key) 

Role To store index 

details for each 

sector in the 

industry 

ROLEID INTEGER (AUTOINCREMENT), 

NAME  CHAR(50, SECTORID  INTEGER, 

RI CHAR(10), DI CHAR(10), AI CHAR(10), 

CI CHAR(10), FOREIGN KEY(SECTORID) 

REFERENCES SECTOR(ID) 

ROLEID – Primary 

Key 

SECTORID – 

Foreign Key 

Institution To store name 

details for 

institutions in the 

academia 

ID INTEGER(AUTOINCREMENT), NAME  

CHAR(50)  
ID – Primary Key 

Institution/ 

sector Index 

To store 

institutions‘ 

yearly indexes for 

each sector in the 

academia 

ID INTEGER (AUTOINCREMENT), 

INSTID INTEGER, SECTORID INTEGER, 

YEAR CHAR(10), RI CHAR(10), DI 

CHAR(10), FOREIGN KEY(INSTID) 

REFERENCES INSTITUTION(ID), 

FOREIGN KEY(SECTORID) 

REFERENCES SECTOR(ID) 

ID – Primary Key 

INSTID- Foreign 

Key 

SECTORID- 

Foreign Key 

Dataset To store training 

dataset for each 

sector in the 

industry  

ID INTEGER (AUTOINCREMENT), NAME  

CHAR(50), PATH CHAR(50), SECTORID 

INTEGER, FOREIGN KEY(SECTORID) 

REFERENCES SECTOR(ID) 

ID- Primary Key 

SECTORID- 

Foreign Key 

ii) Dataset 

A dataset, which is a collection of data that is stored in a specific format, was used for the purpose of 

learning and evaluating the machine learning model. The data set was used as input to the machine 

learning subsystem where a machine learning model is generated. In the current study, the data set 

was derived from the data collected after pre-processing. The pre-processing was conducted using 

Ms Excel spreadsheet where the predictors‘ and class values were defined before getting converted 

into a .csv text file. Originally, the structure of the dataset consisted of attributes derived both from 

the questionnaire and some computed attributes. Table 5.2 shows the original set of the dataset 

attributes. 
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Table 5.2: original set of the dataset attributes 

5.1.3.2. Machine learning subsystem 

This is the transformative function and core component that forms the predictive engine of the 

prototype. While the transformative function involves mapping skills to industry roles, two main 

activities involved to achieve this were learning and classification. Therefore, design of this 

component involved designing the algorithm for machine learning and classification. Fig.5.7 presents 

the design model for machine learning and classification. This was derived from a section of the 

class model in Fig.5.3 where the section consisting of ‗Industry sector‘, ‗Role‘, and ‗Dataset‘ classes 

was extracted as the main classes in the interaction. In order to align the classes with respect to the 

new roles they were to play, some of the classes were renamed, such as ‗Industry sector‘ was 

renamed as ‗Algorithm‘, while ‗Dataset‘ as ‗Model‘.  

NO. ATTRIBUTES VALUES DESCRIPTION 

1 GENDER {Male, Female} Gender 

2 AGE {20-24, 25-29, 30-34, 35-39,  40 and above} Age 

3 LOLE { Local, Abroad} Place of O-level Study 

4 GSOLE {Grades, Points, Marks} Grading System of O-level 

5 ROLE {Less than 4, 5-7, 8-10, 11 and above } Results for O-level 

6 BDGREE 

{Computer Science, Information Technology, 

 Software Engineering, Other} Type of Bachelor‘s  Degree 

7 UNIVERSITY 

{UON, KU, JKUAT, MOI, EGERTON, Strathmore,  

KEMU, Daystar, Nazarene, Maseno, Other} University of Study for Bachelors 

8 GSBDEGREE {Grades, Points, Marks} Grading System for Bachelors 

9 RBACHELORS {Less than 4, 5-7, 8-10, 11 and above } Results for Bachelors 

10 FIRSTJOB 

{Software Architect, Analyst Programmer, Test 

Engineer, Web Programmer, Mobile Programmer, 

System programmer, Project manager, Other } First Appointed Job 

11 CURRENTJOB 

{Software Architect, Analyst Programmer, 

TestEngineer,  

Web Programmer, Mobile Programmer, System 

programmer, 

 Project manager, Other } Current Job 

12 CHANGEDJOB {NO, YES} 

Current Job Is Different From First 

Job 

13 ATTRACTOR {Passion, Salary, Ambition, Qualification, Other} Enticing Factor to Current Job 

14 SEEXAM {100%, 75%, 50%, 25%, 0%} Se Content In Exam 

15 R {interval value} 

Index  of Content Knowledge 

Components 

16 D {interval value} 

Index  of Cognitive Skills 

Components 

17 A {interval value} 

Index  of Technical Skills 

Components 

18 C {interval value} 

Index  of Academic Capacity  

Components 
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Moreover, two machine learning techniques, naïve Bayes and support vector machines were adopted 

as the basis for designing the algorithms to implement the architecture and learn the model. This is 

because of their good incremental learning ability and assurance of high accuracy in either cases of 

small or large dataset where each of them is good at. Further, these techniques are widely used in 

supervised learning and belong to two different families of learning algorithms i.e. instance-based 

and kernel machines, as described in Table 2.4 in the literature review. As a result, two classes, 

‗SVM‗ and ‗naiveBayes‘, were introduced in a generalization relationship with  the ‗Algorithm‘ 

class in the design. Other classes in this subsystem include ‗Model‘ class that stores the model object 

generated by the ‗ML Algorithm‘ class and ‗Role‘ class that stores the hierarchical structure of 

industry roles of each sector. 

 

Figure 5.7: Design model for machine learning subsystem 

Fig.5.7 illustrates the design model for the algorithms that was adopted to learn the model. This 

subsystem relies on an interface, ‗Sinterface‘, created by the data source subsystem to realize its 

behavior and implements an interface, ‗Minterface‘, which it exports for other subsystems to use. 

The ‗Minterface‘ enables the learned model to be accessed and used by other subsystems, such as the 

Dashboard subsystem, while ‗Sinterface‘ enables the machine learning subsystem to access the 

dataset to be used for learning the model.  

Basically, the ML algorithm was designed such that there were two core methods, ‗fit‘ and ‗predict‘. 
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1) Fit Algorithm explanation 

This method is responsible for fitting the data into the model to learn or estimate the parameters. Fig. 

5.7a  outlines algorithm of the ‗fit‘ method. This algorithm takes in the taxonomic tree in which the 

industry roles are organized and the dataset containing graduate employees details to be learned. The 

algorithm is able to group the dataset content based on their dependent values according to the 

various sections of the taxonomic tree such as sub-tree, non-leaf nodes, leaf nodes, or tree heights. 

The algorithm is able to learn how items of the dataset belonging to various leaf nodes look like, if 

they belong to known non-leaf nodes and various non-leaf nodes are distinguished by their height 

levels in the tree or sub-trees. Finally, the algorithm is able to store the learned knowledge rules for 

that particular dataset. Therefore, the key aspects of this algorithm are: 1) input 2) learning 3) storing 

the learned knowledge rules.  

Fit(taxonomy_tree, dataset)   

 1_Get taxonomy_tree’s height/levels 

 1_Get subtrees/functions 

 1_For each subtree/function 

 2_Get subtree’s leaf nodes/classes 

 2_Get other subtrees’ leaf nodes/classes 

 2_Create subtree’s (function) classifier object 

 1_For each subtree’s non-leaf nodes/proficiencies 

 2_Get leaf children 

 2_Get other non-leaf nodes’ leaf children 

 2_Create non-leaf node’s (proficiency) classifier object 

 1_For each subtree’s leaf nodes/specialties 

 2_Get leaf node/class 

 2_Get siblings 

 2_Create leaf node’s (specialty) classifier object 

 1_Store classifier objects in a data structure object  

   1:Function objects 

    2:Proficiency objects (ordered by taxonomic_tree’s height/levels) 

    2:Specialty objects (ordered by taxonomic_tree’s height/levels) 

Figure 5.7a: Fit Method’s Algorithm 
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2) Predict Algorithm explanation 

This method is responsible for the prediction function of the model. Fig. 5.7b outlines the algorithm 

of the ‗predict‘ method. The algorithm takes in an instance of unemployed graduate‘s data and 

taxonomic tree for industry roles in which the graduate is seeking for employment. The algorithm 

uses the knowledge rules generated by the ‗fit‘ algorithm to decide the role for which the graduate is 

suitable. The key aspects for this algorithm are: 1) input tree and graduate data 2) load the knowledge 

rules from the store 3) search for the appropriate knowledge rules to process the graduate data 4) use 

the rules to decide the industry role suitable for the graduate. 

 

Predict(taxonomy_tree, data) 

1_Load classifier objects 

1_Get taxonomy_tree’s width/subtrees/functions 

1_For each subtree/function 

 2_Get function classifier objects 

 2_Predict data’s function 

 2_Select function of classifier object that predicts +ve 

1_For each subtree’s non-leaf nodes/proficiencies ordered in ascending order of levels  

 2_Get corresponding order’s proficiency classifier objects 

 2_Predict data’s proficiency 

 2_Select proficiency of classifier object that predicts +ve 

1_Get current non-leaf node’s specialty classifier objects 

 2_ Get specialty classifier object 

 2_Predict data’s specialty 

 2_Select specialty of classifier object that predicts +ve 

1_Report industry role = function+specialty+proficiency  

Figure 5.7b: Predict Method’s Algorithm 

5.1.3.3. Dashboard Subsystem 

The main purpose of this is to link the user of the prototype with the prediction engine using 

interactive user interfaces. This was based on a class model in Fig.5.3 where the ‗Graduate‘ and 

‗Employer‘ classes were used to design two categories of user interfaces. While ‗Graduate‘ class was 

used to produce ‗GraduateUI‘ class, ‗Employer‘ class was used to produce ‗EmployerUI‘ class. Fig 
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5.8 presents the design model for the dashboard subsystem. These two have all their functionalities 

similar except for only two, ‗RegisterIndustryRoles‘ and ‗RegisterAcademicSectors‘. Fig.5.9 

presents design model for the user interfaces.  The dashboard subsystem uses two interfaces, 

‗Minterface‘ from the machine learning subsystem and ‗Dinterface‘ from the data source subsystem. 

‗Dinterface‘ enables this subsystem to access and use the database while ‗Minterface‘ enables the 

subsystem to access and use the mapping model. 

 

Figure 5.8: Design model for the Dashboard Subsystem.  

 

Figure 5.9: Design model for user interfaces  

5.1.4. Implementation and Testing 

The implementation process of the prototype for the mapping model was conducted by first 

reviewing and evaluating existing machine learning techniques and this resulted into choosing the 

most generally applicable techniques that would be suitable to support the building of the research 

prototype. Further, python was identified as the most common platform for machine learning 

implementations and was reviewed to determine how it could be used with additional technologies to 

implement the prototype. Finally, the construction of the prototype was implemented using python 

technology and as WEMA (Where Employers Meet Academia) platform being the preferred name 
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for the prototype. The WEMA platform was tested and validated using data collected, and a 

presentation of how it operates including analysis of its performance was conducted. Fig.5.10 shows 

the welcome screen of the prototype implementation. 

 

Figure 5.10: welcome screen for the prototype implementation 

A number of system elements designed in the previous section were eventually implemented as 

describe below:  

5.1.4.1. Implementation of Data source subsystem 

(1) Database Class 

The database design was implemented using SQL Technology that is already integrated in python as 

SQLite. This involved implementing the SQLite class where several of its methods were used. The 

connection method of the SQLite class is a very useful method for accessing the implemented 

database and, therefore, was used to implement the ‗Dinterface‘. Fig. 5.11 presents a snapshot of the 

code that was used to implement the database class.  

Code segment explanation 

The code illustrates that the model uses a number of concepts that are key to its operations. These 

concepts are stored in a number of tables that are related and sqlite technology was used to 

implement and store this relationship in a database object. The database object was defined using 

object-oriented concept known as class. Therefore, the key aspects of this code are: 1) class 2) sqlite 

3) tables 4) relationships. 
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Figure 5.11: Database class code segment 

(2) Dataset class 

The dataset was implemented directly as a text file and to be stored as .csv format where the python 

csv class was used for implementation. The read method of the csv class was used to access and 

retrieve the dataset and, therefore was used as the implementation of the ‗Sinterface‘. 

5.1.4.2. Implementation of Machine learning subsystem 

(1) Role class 

The implementation involved coding classes mapped on the taxonomic structure. Classes on the leaf 

nodes were coded with non-negative integers while internal nodes were coded serially with negative 

integers. The levels of the taxonomic structure were coded from 0 as topmost and downwardly. Then 

the whole taxonomic structure was represented using a python data dictionary noting the structural 

relationships in terms of level, parent class, and child classes. Fig.5.12 presents a segment of the 

dictionary data structure that was used to implement the taxonomic structure and its implementation 

code. 

Code segment explanation 

This code segment illustrates how the taxonomic tree mentioned in Fig.5.7a&b was implemented 

using data structure in python technology called data dictionary. The structure contains a number of 

data items that represent codes for industry roles which were arranged methodically according to 

order described by the following structure:  

{classCode:[[levelcode], [parentClasscode], [childsClasscodes]], classCode:[[levelcode], 

[parentClasscode], [childsClasscodes]],……….}. 
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Figure 5.12: Role class code segment 

(2) ML algorithm class 

The overall implementation of this class‘s generalization relationship was achieved using the concept 

of polymorphism. The ‗fit‘ method was implemented as ‗classify‘ method while the ‗predict‘ method 

was implemented as ‗classifyinstance‘ method in two separate classes. The two classes are 

‗svmRootclassfier‘ and ‗naiveRootclassifier‘ for svm and naïveBayes algorithms respectively. Fig. 

5.13a presents segment codes of the ‗svmRootclassfier‘classes' . A number of python technologies 

were plugged in to realize the purpose of the code such as svmpy, numpy, pickle. The final 

implementation of the algorithm was then trained or fitted with data to learn the mapping model.  

Code segment explanation  

The code segment illustrate how the ‗Fit ‗  and  ‗Predict‘ algorithms mentioned in Fig. 5.7a&b were 

implemented and most importantly the algorithm for the model as described in 3.5.4b. The important 

aspect of this code is to show how ‗Fit‘ algorithm was implemented using class method called 

‗classify‘ while ‗Predict‘ algorithm using ‗classifyinstance‘ method. Besides, the code illustrates that 

the model algorithm was implemented as ‗SVMclassifier‘ object that was defined using classs 

concept of python technology. 
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Figure 5.13: ML Algorithm class code segment 

(3) Model class 

The pickle class was used to implement this class directly where its damp method was used to store 

the model object while its load method was used to retrieve the object. Thus, the load method of 

pickle class was used as the implementation of ‗Minterface‘ for making the model accessible to other 

subsystems. Fig. 5.14a &b presents the code segments for store and retrieve methods of the model 

class. 

Code segment explanation 

This code illustrates how the classifier object generated by the ‗Fit‘ algorithm is stored (Fig. 5.14a)  

in a folder using the pickle class of the python technology. This enables this classifier to be copied 
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and used elsewhere away from the training dataset environment. Hence Fig. 5.14b is a code segment 

that illustrates how the ‗Predict‘ algorithm loads the classifier object from store. 

 

Figure 5.14a: Model class store code segment 

 

 

Figure 5.14b: Model class retrieve code segment 

5.1.4.3. Implementation of Dashboard subsystem 

This provides a simplified mode for the user to interact with the system. Its implementation was 

conducted using a python graphical user interface class called tkinter. Tkinter is a python module for 

creating a rich graphical user interface. Two separate user interface classes indicated on the design 

were implemented in such a way to suit the requirements of three primary users of the system as 

illustrated in the use case model presented in Fig.5.2, and these are academia institutions, industry 

employers, and graduates. To address these needs, their functions as indicated in the use case model 

were portioned into primary and secondary ones, where ‗RegisterAcdemicSector‘ and 

‗RegisterIndustryRole‘ are primary to ‗Institution‘ and ‗Employer‘ users respectively while the rest 

are secondary functions to all users.  

Primary functions can only be executed by the specific target users while secondary any user can 

execute. Tabbed windows were adopted in the implementation of the multi-user interface where 

there is a tab window for each primary user and two subsidiary windows for viewing prediction 

results and learning/selecting the learning model. Fig 5.15a presents segment code for the 

implementation of the systemUI class as ‗gui‘ class while Fig. 5.15b to 5.15f presents sample views 

windows of various user interfaces. 

Code segment explanation 

The code segment illustrates how the user interface of the model prototype was implemented. A 

tabbed window was implemented using GUI technology in python known as ‗tkinter‘ also ‗ttk‘. The 

tabs were created using several layered ‗frames‘ of ‗ttlinter‘. Each user of the prototype was given 

access to the model through a specific tab. 
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Figure 5.15a: GUI class code segment 
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1) Employer user Interface 

Employer is the primary user of this user interface while the rest of the users are secondary users. 

The primary function is ‗RegisterIndustryRoles‘ which was implemented through a number of menu 

items indicated on the screen shot. The rest of the users can only scroll through by clicking sector 

names and industry roles to view the underlying details. 

2) Institution user Interface 

Institution is the primary user of this user interface while the rest of the users are secondary users. 

The primary function is ‗RegisterAcademicSectors‘ which were implemented through a number of 

menu items indicated on the screen shot. The rest of the users can only scroll through by clicking 

sector names, academic institutions and academic years to view the underlying details. 

 
Figure 5.15b: Employer user interface 

 
Figure 5.15c: Institution user interface 
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3) Graduate user interface 

All are secondary users of this user interface. This is part of the secondary function of 

‗EvaluateGraduate‘ which was implemented through a number of menu items indicated on the screen 

shot. All the users can interact with this interface using the commands indicated on the screenshot. 

 

Figure 5.15d: Graduate user interface 

4) Training and model selection user interface 

This user interface was created specifically for system administrator as the primary user where the 

primary function is to ‗RegisterIndustrySectorDatasets‘ implemented through menu items indicated 

on the screenshot. System administrator may be an employer regulator in the industry market. All 

other users of this user interface are secondary users. However, all the users can interact with this 

interface through clicking both sectors and training algorithms to select as well as using the ‗train‘ 

commands indicated on the screenshot. 
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Figure 5.15e: Training and model selection user interface 

5) Prediction results  

All are secondary users of this user interface. This is part of the secondary function of 

‗EvaluateGraduate‘ which was implemented through a number of menu items indicated on the screen 

shot. All the users can interact with this interface using the commands indicated on the screenshot. 

 

Figure 5.15f: Prediction results user interface 

Finally, a number of python libraries were used in the implementation of the user interface. 

Visualization system that is capable of representing the data using graphical symbols was adopted 

and was implemented using a python library known as matplotlib. Matplotlib is a python module for 

data visualization capable of creating most kinds of charts, plots, and graphs and also rendering them 



 

   181 

 

on the screen using a canvas system. Data analysis feature that was capable of modeling the data was 

also adopted and was implemented using python library known as pandas. Pandas is a python 

module for data analysis which at the core of its data analysis has a powerful datasheet known as 

dataframe that is capable of modeling the data into rows and columns.  

5.2. Computing and Development Resources 

A number of computing resources were adopted and applied to produce the implementation of the 

software prototype at various points of design. 

1) Hardware platform 

Hewlett-Packard computer was used for the project and whose processor and memory specifications 

were Intel Core i5 CPU, 2,53 GHz speed and 4.0 GB of memory size. 

2) Software operating system platform 

A 64-bit Microsoft window‘s operating software version 7 was the driving force behind the 

development platform providing the necessary computing resources such as storage. 

3) Software development environment 

A 64-bit Python software version 3.4.3 provided the development environment where both 

programming and database activities were realized ranging from the overall code editor, debugging, 

to testing. Python was identified as one of the most common platform for machine learning 

implementations with rich programming resources and was reviewed to determine how it could be 

used with additional technologies to implement the prototype. The following were some of the many 

python resources exploited during the development. 

a. SQLite module was used to implement the database component of the prototype. SQLite is a 

version of SQL Technology that is already integrated in python as sqlite3 library class 

module. The sqlite3 class has several of its methods used, such as the connection method is a 

very useful in creating and accessing the implemented database  

b. Python‘s csv class module was used for implementation of the dataset for machine learning. 

The read method of the csv class was used to access and retrieve the dataset. 

c. Python‘s dictionary data structure was very useful in implementing the proposed taxonomical 

structure for the machine learning architecture. 

d. Python‘s svmpy class was used to implement  SVM machine learning technique. 
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e. Python‘s numpy was very useful in implementing the naïve Bayes machine learning 

technique. This is a library for processing n-dimensional arrays. 

f. Python‘s pickle library class was very useful in implementing the storage and retrieval of  the 

generated machine learning models‘ objects. 

g. Python‘s tkinter library class was used to implement the graphical user interface for the 

prototype. 

h. Python‘s pandas‘ library class was used for numerical and statistical data analyses. 

i. Python‘s sklearn library was used for both data preprocessing, feature selection and feature 

extraction purposes during machine learning. This library provided a number of essential 

algorithms that were key in implementing machine learning techniques such as cross-

validation, naïve Bayes, support vector machines, Linear discriminant analysis, principal 

component analysis, scaler and many other algorithms. 

j.  Python‘s matplotlib library class was used for graphical data analyses especially in the 

production of high quality 2D graphics. 

5.3. Summary 

This chapter has outlined the methodology and software processes adopted in building the software 

prototype for the mapping model. An incremental methodology was adopted where four basic 

software processes were iteratively applied to generate the final prototype. The outcome of each 

process was emphasized with diagrams that illustrated the important aspects of the prototype. In 

summary, the chapter has  demonstrated using the prototype that a prediction model for mapping 

graduates skills to industry roles in a practical way is feasible. Table 5.3 presents a summary of the 

main aspects of the mapping model‘s prototype and their implementation implication. 

Table 5.3: Model ‘s design and implementation summary 

Model’s components  and Design Design Implementation Software Development Resource 

1.Data source subsystem 

-Database design model 

-Dataset design structure 

- Database class 

- Dataset file 

- python sqlite3 class 

- python‘s csv library class 

2.Machine learning subsystem 

- Machine learning design model 

- ML Algorithm class 

- Models class 

- Role class 

- python‘s pandas, sklearn, matplotlib, 

svmpy, numpy library classes 

- python‘s pickle library class 

- Python‘s data dictionary 

3.Dashboard subsystem 

- Dashboard design model 

- User Interface design model 

- Gui class - python‘s tkinter library class 
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CHAPTER 6: MODEL EVALUATION AND DISCUSSIONS 

6.0. Introduction 

This chapter presents a comprehensive description of evaluation results and discussion of the 

findings. The chapter has been organized into four sections as follows: Section 6.1 presents 

background to evaluation methods. Section 6.2 presents evaluation results using Research dataset 

(SE field data). Section 6.3 presents evaluation results using Benchmark dataset (SE literature data). 

Section 6.4 presents evaluation results using Validation dataset (AL field data). Section 6.5 provides  

a discussion and interpretation of the research findings. Finally, Section 6.5 concludes the chapter 

with a summary. 

6.1. Background to Evaluation Methods 

Evaluation in machine learning is needed to evaluate not only the ability of a classifier model 

(Lavesson, 2006) but also its generalization performance (Kahavi, 1995). There are many evaluation 

methods which have been categorized as either empirical (evaluate classifiers using portions of 

known data which have not been seen before by the classifier) or theoretical (evaluate classifiers 

using training data only or combined with other theoretical measures of generalization performance). 

We aimed to evaluate whether the model would perform well  in the real world, and this required a 

portion of known data which had not been seen before by the classifier to provide a test situation that 

emulated the real world data.  

As a result, our evaluation focused on empirical evaluation methods. Empirical methods divide the 

data into two subsets, training and test set, where training set is used to learn or generate the model 

while test set is used for evaluation its performance. Hence, we used training set to generate the 

classifier model and test set to test its performance. However, performance could be determined 

through a number of metrics. And, therefore, the type of performance metric used depends on the  

specific evaluation method employed (Lavesson, 2006).  

We consider briefly some of the candidate evaluation methods and their types of performance 

metrics. 

1) Vapnik Chervonenkis (VC) Evaluation Method 

This is an evaluation method for algorithm that consists of a combination of theoretical measures of 

algorithm‘s capacity to select the best classifier based on its inductive bias (also known VC 
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dimension) and training error of a classifier generated by the algorithm (also known as empirical 

risk). This combination is called the VC bound which is the actual or expected risk, namely an 

estimate of the classifier‘s error  on unseen instances of test data. This evaluation method is 

theoretical and depends on an algorithm with particular configurations. According to this method all 

algorithms have theoretical values calculated for VC dimension (Lavesson, 2006). Therefore, the 

evaluation metric for this method is VC bound. 

2) Minimum Description Length (MDL) Evaluation Method  

This is an evaluation method based on theoretical measure of classifier‘s complexity or simplicity 

which is related to classifiers length. Classifiers length is a theoretical indicator of existence of 

regularities in data that have been compressed using fewer symbols by the classifier than the symbols 

needed to describe the data literally. It is not only difficult to calculate the length of a classifier but 

also there is no guarantee that MDL will choose the most accurate classifier (Lavesson, 2006). 

Therefore, the evaluation metric is classifier‘s length. 

3) Structural Risk Minimization (SRM) Evaluation Method  

This is an algorithm evaluation method that is classifier dependent and based on VC dimension. The 

aim of SRM is to find a classifier with minimal empirical risk and low VC bound from a series of 

classifiers organized in structured subsets. The use of SRM is limited to algorithms with which one 

can create nested subsets of classifiers (Lavesson, 2006).    

4) Bootstrap (BS) Evaluation Method 

This is a classifier evaluation method that is based on statistical method of sampling with 

replacement where instances are sampled from the data to create the training set. To create a training 

set of size n involves sampling with replacement from the data n times. The instances that were never 

sampled are set aside for evaluation purposes. It is possible to have some instances repeated in the 

training set. This method is only suitable with large datasets. The main evaluation metric is the 

measure of performance, accuracy. 

5) Cross Validation (VC) Evaluation Method. 

This is an evaluation method that focuses on partitioning data into two mutually exclusive subsets, 

namely training and test set. The main evaluation metrics are measures of performance 
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(accuracy/error) and measures of cost of misclassification (precision, recall, f1_score). There are 

several variants of CV, namely hold-out, leave-one-out(Jack-Knife), and k-fold cross-validations. 

6.1.1. Choice of Evaluation Metrics and Method 

According to Lavesson (2006), there are many evaluation metrics for measuring a variety of quality 

measures of a classifier, such as metrics for measuring performance (accuracy, errors), metrics for 

measuring complexity (VC dimensions), metrics for measuring similarity and misclassification cost 

(precision, recall, f1_score) or metrics for measuring sensitivity. Our choice of evaluation metric was 

based on the assumption that effective evaluation for job suitability of a graduate before employment 

improves not only performance but also productivity in the job.  

Since misplacement of people in the job results into a negative impact such as low job satisfaction 

hence low productivity and high employee turnover, our aim was to get a model that should be able 

to place the right people in the right job (also known as accuracy). Therefore, our focus was to 

measure not only the classification accuracy but also misclassification cost of the classifier model.  

The risk or cost associated with misclassification errors can greatly harm not only the organization‘s 

productivity but also graduate‘s performance. Misclassification errors include placing either the right 

people in the wrong job (also known as false negative) or wrong people in the right job (also known 

as false positive). As a result our desired metrics for performance evaluation were accuracy, 

precision, and recall.   

A number of evaluation methods were reviewed but only two turned out to be empirical, namely 

cross validation (CV) and bootstrap (BS). CV and BS have been studied widely and conclusions 

drawn indicate that while BS has high bias and low variance, CV has low bias and high variance 

which is the opposite of BS (Lavesson, 2006). High bias implies our model will not be complex 

enough to capture well the underlying pattern in the training data and hence will suffer from low 

performance on unseen data. CV provides a better technique for finding an acceptable bias-variance 

tradeoff than BS (Raschka, 2015). 

The recommendation in literature has been CV with 10-folds as the standard (Kohavi, 1995). 

However, in situations where there is unequal class proportions stratified k-fold CV is better than the 

standard CV with 10-folds in yielding better bias-variance trade-off. Besides, stratified k-fold CV 

applies a resampling technique without replacement on the dataset that renders it the advantage of 

yielding a lower variance estimate of the model performance than other variants of CV. Since our 
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focus was a model with low bias and low variance, and all our datasets had unequal class proportions 

then stratified 5-fold CV was a better option. 5-fold was adopted so as to ensure each class was 

represented in each fold through stratification in the data set where some classes had frequencies as 

low as 5.  

6.1.2. Stratified K-fold Cross-Validation Evaluation Method 

The method is appropriate where we have unequal class proportions in the dataset. It is a special 

form of K-fold CV method that uses a resampling technique without replacement to partition the 

dataset into several mutually exclusive subsets where all are used for learning the classifier except 

one subset that is used for evaluation purposes. The training and evaluation are repeated until all 

subsets have been used once for evaluation purposes. Each subset is called a fold and to ensure that 

each class is properly represented in each fold a special configuration called stratified folds is 

employed.  It is widely used in machine learning due to its ability to yield better bias-variance trade-

off. Its main evaluation metrics are measures of performance (accuracy/error) and measures of cost 

of misclassification (precision, recall, f1_score). 

6.1.3. Evaluation Metrics 

One important source of information for deriving accuracy, precision and recall values was noted as 

the confusion matrix. A confusion matrix was defined as an n by n matrix, where n is the number of 

classes, which displays the number of correct and incorrect predictions made by the model compared 

with the actual classification in the test data. 

6.1.3.1. Accuracy 

This is the probability of a classifier to correctly classify a randomly selected instance (Kohavi, 

1995). It is the most widely used measure for performance currently in practice (Lavesson, 2006). In 

the present study, accuracy was used to capture the average and the best performance of the classifier 

model under cross validation evaluation. A single accuracy estimate is meaningless without  

confidence (Kohavi, 1995) about quality of its performance. In the present study, accuracy was used 

to measure performance of classifier model generated. 

6.1.3.2. Precision  

The precision is the ratio TP/(TP + FP) where TP is the number of true positives and FP the number 

of false positives. The precision is intuitively the ability of the classifier not to label as positive a 
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sample that is negative. The best value is 1 and the worst value is 0. In the present study, precision 

was used to conduct further investigation to reveal the performance quality of the model. 

6.1.3.3. Recall  

The recall is the ratio TP/(TP + FN) where TP is the number of true positives and FN the number of 

false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. 

The best value is 1 and the worst value is 0. In the present study, recall was used to conduct further 

investigation to reveal the performance quality of the model. 

6.1.3.4. F1-score 

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score 

reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the 

F1 score are  equal. The formula for the F1 score is: 

        F1 = 2 * (precision * recall) / (precision + recall) 

In the multi-class and multi-label case, this is the weighted average of  the F1 score of each class. 

In the present study, f1_scores were used to conduct further investigation to reveal the performance 

quality of the model. 

6.2. Experimental Evaluations Results 

We adopted stratified 5-fold cross validation. The aim was to evaluate whether the model would 

perform well  in the real world, and this required a portion of known data which had not been seen 

before by the classifier to provide a test situation that emulated the real world data. As a result, using 

accuracy alone as the performance metric would have only indicated the general performance of the 

model to correctly predict class labels over all predictions, but would not have given enough 

information on the quality of the model towards critical or important classes. And that was why 

precision, recall, and f1_score were used to conduct further investigation to reveal the performance 

quality of the model. 

One experiment was repeated on three datasets to evaluate performance of the model. Although our 

main focus was to evaluate the SVM model selected in chapter 4, we felt necessary to further 

monitor its behavior by comparing with the naïve Bayes model. This was to confirm beyond 

reasonable doubt about its capacity. Table 6.1 illustrates the planning of the experiment while the 

sections that follow present details of evaluation results. 
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Table 6.1: Evaluation Experiment design  

 Conception/ 

Objective 

Design Preparation & 

Execution 

Analysis 

Experiment 

D 

To evaluate 

performance 

and validity of 

the machine 

learning model 

1.Experimental units: 

Graduate Employees‘ skills 

2.Experimental subjects: 

ML models 

3. Dependent variable: 

accuracy,precision,recall,f1-

score 

4. Independent variables:  

feature subsets 

1.Split dataset into 

three: Training set, 

Validation set, 

Testing set 

2.Apply 5-fold cross 

validation 

3.Apply 6-10 

iterations 

Evaluate model using three 

datasets 

-compare performance, per 

class, per level and across 

other models in literature 

Approach : Hypothesis 

testing 

Technique : Paired sample T 

Test 

Test variable: Machine 

learning technique 

Significance value: 0.05 

 

6.2.1.   Experimental Evaluation using Software Engineers Field Data (Research Dataset) 

Initially, the dataset had 113 instances but two classes (1 & 2) had sizes of only one, so they were 

dropped. The remaining 111 instances were split into two, training and test set, in the ratio of 80:20. 

Stratified random sampling was applied to ensure each was represented. This resulted with a test set 

size of 28 instances (about 25%). Table 6.2.1a presents the class distribution of the test set derived 

from the Research dataset (SE field data). From Table 6.2.1a it is clear that class sizes were 

imbalanced in the original dataset. The training set was subjected to 5-fold cross-validation where 5 

instances of classifier models were generated. One instance of classifier model with the best training 

results was selected for subsequent evaluation that generated a confusion matrix for the model.  

From the confusion matrix various performance metrics‘ values were extracted such as accuracy, 

precision, recall, and f1_score. This experiment was repeated for each induction algorithm, namely 

naïve Bayes and SVM, hence two models. Fig. 6.2.1a presents graphical results showing confusion 

matrix for the two models while Fig.6.2b presents bar graph results showing comparative analysis of 

the performances of the two classifier models along the four evaluation metrics. For both models‘ 

results accuracy and recall values seemed to be equal. However, SVM classifier model was in all 

aspects better than naïve Bayes model as expected and in fact its precision seemed to be the highest. 

Further analysis was conducted to confirm whether these performance differences between the two 

models were significant.  
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Table: 6.2.1a Class distribution of test set for the SE field dataset (Research dataset) 

Class 3 4 5 6 7 8 9 10 11 12 TOTAL 

Size 1 3 3 2 3 2 3 4 3 2 28 

 

Figure 6.2.1a: Confusion matrices for Naïve Bayes and SVM models using (Research dataset) 

dataset1  

The confusion matrix for each model in Fig. 6.2.1a shows classes that were correctly classified along 

the principal diagonal while the classes below were falsely classified as correct and the classes above 

were falsely classified as incorrect.   

 

Figure 6.2.1b: Bar graph comparative analysis of the two models using (Research dataset) 

dataset1  

Testing whether the differences between the two models were significant 

The aim of this investigation was to find out whether performance difference between the two 

models was real. Therefore, the focus of this test was between naïve Bayes and SVM, hence two 

paired variables. Fig.6.2.1b indicates a potential difference between the two along all performance 

metrics.  A paired sample T test was conducted to test the hypothesis that model performance 
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difference was not significant. For this type of test to be valid, conditions for tests were checked 

(homogeneity and normality of data).  Table 6.2.1b presents results based on 10 iterations of 5-fold 

cross-validation evaluation where we rejected the hypothesis at p=0.05. The results indicate the 

difference was real and significant.  

Table 6.2.1b:Paired Sample T Tests for Model Evaluation using SE field dataset (Research) 

 Pair Paired differences t df Sig(2

-

tailed

) 

RESULT 

Mean Std. 

dev. 

Std. 

error 

mean 

95% confidence 

interval for 

difference 

lower upper 

Pair

1 

accuracyNB_R - 

accuracySVM_R 

-.017 .14135 .04470 -.1181 .0841 -.380 9 .713 REJECT 

Pair

2 

precisionNB_R - 

precisionSVM_R 

-.077 .17366 .05492 -.2012 .04723 -1.402 9 .194 REJECT 

Pair

3 

recallNB_R - 

recallSVM_R 

-.017 .14135 .04470 -.1181 .08411 -.380 9 .713 REJECT 

Pair

4 

fscoreNB_R - 

fscoreSVM_R 

-.057 .15370 .04860 -.1669 .05295 -1.173 9 .271 REJECT 

Based on these results it was clear that SVM model was the best as expected. Further analysis of its 

performance per class was also investigated. Fig.6.2.1c presents bar graph results showing 

performance per class of the selected classifier model. 

 

Figure 6.2.1c: Class performance accuracies of the selected model using (Research dataset) 

dataset1 
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Findings #12 

Fig.6.2.1b reveals that SVM classifier model was significantly the best (accuracy=59.2% against 

43.8% for naïve Bayes) for this dataset (as expected from chapter 4) and its performance per class 

was fairly good in some classes (class7 =93.4%) and fairly poor in other classes (class3=10%). 

However, its ability not to label negative classes as positive was more or less the same as its ability 

to find all positive classes correctly (precision =.61.8%, recall = 59.2%).  

6.2.2.   Experimental Evaluation using Software Engineers Benchmark Dataset (Literature) 

The dataset had 279 instances which were split into two, training and test set, in the ratio of 80:20. 

Stratified random sampling was applied to ensure each class was represented. This resulted with a 

test set size of 60 instances (about 21%). Table 6.2.2a presents the class distribution of the test set 

derived from the Benchmark dataset (SE literature data). From Table 6.2.2a  it is clear that class sizes 

were also imbalanced in the original dataset. The training set was subjected to 5-fold cross-validation 

where 5 instances of classifier models were generated.  

One instance of classifier model with the best training results was selected for subsequent evaluation 

that generated a confusion matrix for the model. From the confusion matrix various performance 

metric values were extracted such as accuracy, precision, recall, and f1_score. This experiment was 

repeated for each inducer algorithm, namely naïve Bayes and SVM, hence two models.  Fig.6.2.2a 

presents graphical results showing confusion matrix for the two models while Fig.6.2.2b presents bar 

graph results showing comparative analysis of the performances of the two classifier models along 

the four evaluation metrics.  

For both models‘ results, accuracy and recall values seemed to be equal. However, SVM classifier 

model was in all aspects similar as naïve Bayes model. In fact, further analysis was conducted to 

confirm whether this observation between the two models was significant. 

Table: 6.2.2a Class distribution of test set for the Benchmark dataset 

Class 1 2 3 4 5 6 7 8 9 10 11 12 TOTAL 

Size 2 3 5 8 3 9 2 2 4 7 11 4 60 

 

The confusion matrix for each model in Fig. 6.2.2a shows classes that were correctly classified along 

the principal diagonal while the classes below were falsely classified as correct and the classes above 

were falsely classified as incorrect.   
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Figure 6.2.2a: Confusion matrices for Naïve Bayes and SVM models using Benchmark dataset 

(dataset2)  

 
Figure 6.2.2b: Bar graph comparative analysis of the two models using (Benchmark dataset) 

dataset2  

Testing whether there were any significant differences between the two models 

The aim of this investigation was to find out whether there was any performance difference between 

the two versions of the model. Therefore, the focus of this test was between naïve Bayes and SVM, 

hence two paired variables. Fig.6.2.2b indicates a potential of no difference between the two along 

all performance metrics.  A paired sample T test was conducted to test the hypothesis that model 

performance difference was not significant. For this type of test to be valid, conditions for tests were 

checked (homogeneity and normality of data).  Table 6.2.2b presents results based on 10 iterations of 

5-fold cross-validation tests where we accepted the hypothesis at p=0.05. The results indicate there 

was no difference that was significant.  
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Based on these results the model selected in chapter 4, namely SVM model, was further analyzed of 

its performance per class in the current dataset. Fig.6.2.2c presents bar graph results showing 

performance per class of the selected classifier model under the current dataset. 

Table 6.2.2b:Paired Sample T Tests for Model Evaluation using Benchmark dataset 

 Pair Paired differences t df Sig(2

-

tailed

) 

RESULT 

Mean Std. dev. Std. 

error 

mean 

95% confidence 

interval for 

difference 

lower upper 

Pair 1 accuracyNB - 

accuracySVM 

-.130 .03333 .01054 -.1538 -.1061 -12.33 9 .000 ACCEPT 

Pair 2 precisionNB - 

precisionSVM 

-.140 .05312 .01680 -.1780 -.1020 -8.334 9 .000 ACCEPT 

Pair 3 recallNB - 

recallSVM 

-.130 .03333 .01054 -.1538 -.1061 -12.33 9 .000 ACCEPT 

Pair 4 fscoreNB - 

fscoreSVM 

-.152 .04492 .01420 -.1841 -.1198 -10.70 9 .000 ACCEPT 

 

Figure 6.2.2c: Class performance accuracies of the selected model using (Benchmark dataset) 

dataset1  

Findings #13 

Fig.6.2.2c reveals the performance per class of the selected model, namely SVM model, was 

excellently good in some classes (100% accuracy for 4 classes) and fairly poor in other classes (5% 

accuracy for class7). However, its ability not to label negative classes as positive was more or less 

the same as its ability to find all positive classes correctly which were equally excellent 

(precision=83%, recall=85%).  
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6.2.3.   Experimental Evaluation using Academic Librarians’ Field Data (Validation Dataset) 

The aim of this investigation was to find out the behavior of our classifier model in other related 

areas different from SE with an ultimate goal to evaluate its applicability across domains. Table 

6.2.3a presents 5-fold cross-validation tests results of  the model performance in the current dataset 

where SVM model was run with parameter settings adopted in dataset1 (section 6.2.1). However, 

SVM model needed parameter tuning within the current dataset.  

Table 6.2.3a: Model Evaluation performance using AL dataset  

 Naïve Bayes SVM (0.1,1000) 

 5-feature 5-feature 

F1 62.5 62.5 

F2 71.4 71.5 

F3 66.6 50.0 

F4 33.3 66.6 

F5 50.0 50.0 

Mean 56.7 60.1 

 

Findings #14 

Table 6.2.3a reveals that in the current dataset (validation dataset) 5 feature subset, similar to the 

ones selected in dataset2 (benchmark), SVM induced the best results for the model (60.1%) as 

expected. 

6.2.3.1.   Parameter Selection using Academic Librarians’ Dataset (Experiment B) 

Both gamma and complexity values were varied in a range of {0.00001 to 1} and {0.00001 to 

10000} incrementally in multiples of 10. Table 6.2.3b indicates gamma value of 0.1 and complexity 

values of at least 10 appeared to be optimal. Fig.6.2.3a presents results of a validation curve(a) that 

confirmed these findings. 

Finding #15 

Table 6.2.3b reveals that in the current dataset parameter settings that induced the best performance 

in the model (63.4%) were gamma=0.1 and complexity of at least 10. 
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Table 6.2.3b: Analysis of relevant parameter values in AL dataset 

 
Complexity 

 gamma 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 

0.00001 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 45.2 

0.0001 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 41.9 60.1 

0.001 27.3 27.3 27.3 27.3 27.3 27.3 27.3 39.4 60.1 53.9 

0.01 27.3 27.3 27.3 27.3 27.3 27.3 39.4 60.1 63.4 60.1 

0.1 27.3 27.3 27.3 27.3 27.3 39.4 63.4 63.4 63.4 63.4 

1 27.3 27.3 27.3 27.3 27.3 42.2 45.5 42.2 50.5 51.4 

 

6.2.3.2. Estimating generalization error of the model using Academic Librarians’ Dataset 

(Experiment C) 

Generalization performance of the model was studied using different dataset sizes at increments of 

10. Fig.6.2.3a presents results of a learning curve (b) that indicate the generalization error of the 

selected model, namely SVM model, progressively reduced as sample size increased. This was an 

indication that the classifier model was able to generalize its performance very well in the current 

dataset. 

 

Figure 6.2.3a: Learning performance behavior of selected model using (Academic Librarians’ 

dataset) dataset3  

6.2.3.3.   Evaluating model using Academic Librarians’ Test set (Experiment D) 

The evaluation dataset had 50 instances which were split into two, training and test set, in the ratio of 

80:20. Stratified random sampling was applied to ensure each class was represented. This resulted 

with a test set size of 13 instances (about 26%). Table 6.2.3a presents the class distribution of the test 
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set derived from the Validation dataset (Academic Librarians‘ field data). From Table 6.2.3a it is 

clear that class sizes were also imbalanced in the original dataset. The training set was subjected to 5-

fold cross-validation where 5 instances of classifier models were generated.  

One instance of classifier model with the best training results was selected for subsequent evaluation 

that generated a confusion matrix for the model. From the confusion matrix various performance 

metric values were extracted such as accuracy, precision, recall, and f1_score. This experiment was 

repeated for each induction algorithm, namely naïve Bayes and SVM, hence two models. Fig.6.2.3a 

presents graphical results showing confusion matrix (c) for the two models while Fig.6.4b presents 

bar graph results showing comparative analysis of the performances of the two classifier models 

along the four evaluation metrics. For both models‘ results, accuracy and recall values seemed to be 

equal. However, SVM classifier model was in all aspects similar as naïve Bayes model. This 

behavior of the models was also observed when evaluating with the benchmark dataset.   

Table: 6.2.3c Class distribution of test set for the AL dataset 

Class 1 2 3 4 5 6 7 TOTAL 

Size 2 2 2 2 2 1 2 13 

 

Figure 6.2.3b: Class performance accuracies of the selected model using (AL dataset) dataset3  

Findings #16 

Fig.6.2.3b reveals that the two models seemed to be equally the same along most performance 

metrics except precision where SVM model (0.542) seemed to outdo naïve Bayes model (0.528) as 
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expected. The performance per class of the selected model, namely SVM model, was excellently 

good in some classes (100% for classes1&5) and fairly poor in other classes (5% for classes 2&7). 

However, its ability not to label negative classes as positive was not as good as its ability to find all 

positive classes correctly which was equally good (precision = 54.2%, recall = 64.5%).  

6.3. Comparative analysis 

Comparative analysis was necessary to reveal not only the dataset in which the model performed best 

but also hierarchical level as well as class where the model performed best. Table 6.3a presents 

performance results across the three datasets while Table 6.3b presents performance results along 

hierarchical levels across the three datasets. In each case, the model reported equal performance in 

both accuracy and recall. On average, model performance seemed to improve upward the hierarchy 

levels.  

Table 6.3a: Comparison of performance across three datasets 

Performance Metric Research 

Dataset 

Benchmark 

Dataset 

Validation 

Dataset 

Mean  

accuracy 0.59 0.85 0.65 0.69 

precision 0.62 0.83 0.54 0.66 

recall 0.59 0.85 0.65 0.69 

F1_score 0.57 0.83 0.56 0.65 

 

Table 6.3b: Comparison of performance along hierarchical levels across datasets 

 Research Dataset  Benchmark Dataset Validation Dataset   

level classes average classes average classes average Mean  

1 7,8 0.79 1,2,7,8 0.53 4,5 0.98 0.77 

2 3,4,9,10 0.41 3,4,9,10 0.95 3,6 0.73 0.69 

3 5,6,11,12 0.43 5,6,11,12 0.82 1,2,7 0.37 0.54 

Mean  0.54  0.77  0.69 0.67 

 

Model‘s performance seemed to be very high in the benchmark dataset as a result of having more 

instances whose classes had very high accuracies (class 10 & 11) and fewer instances whose classes 

had very low accuracies (class 7 & 8). This was not the case with other two datasets where a 

distribution difference of classes with very high and very low accuracies was not high. Explanation 

behind this could be differences in sources of data and their data collection techniques. While our 



 

   198 

 

data was collected through questionnaires and from the Kenyan population, the benchmark data was 

collected through a carefully designed assessment tool that improves the accuracy of the data. 

Table 6.3c: Reported performance across other related models in literature  

Performance accuracy Current (2017) 

{Industry roles} 

Clare & King (2003) 

{Proteins} 

Barbedo & Lopes (2006) 

{Music} 

Type of model SVM Decision Tree K-NN 

Number of datasets 

experimented with 

3 12 1 

Reported performance 

accuracy 

   

Level 1 77 56.4 87 

Level 2 69 46.3 80 

Level 3 54 23.1 72 

Level 4 - 7.9 61 

Average per level 67 33.4 75 

Reported evaluation  69 53.3 61 

 

Findings #17 

Table 6.3b reveals that model performance depends on the distribution differences in the dataset of 

class instances with very high and very low accuracies. In Benchmark dataset where performance 

was 85%, high accuracy (100%) class (class11) had the highest number of instances (size=11) while 

low accuracy (5%) class (class7) had the lowest number of instances (size=2). In Research dataset 

where performance was 59%, high accuracy (93.4%) class (class7) had moderate number of 

instances (size=3) while low accuracy (5%) class (class3) had moderate number of instances 

(size=1). In Validation dataset where performance was 65%, high accuracy (100%) class (class1&5) 

had moderate number of instances (size=2) while low accuracy (5%) class (class2&7) had moderate 

number of instances (size=2).  

Model performance in both Research and Validation datasets seemed to be fairly good (59% and 

65% respectively). Model performance seemed to improve upward in the hierarchical levels of the 

taxonomy consistent with other related models in literature. 

6.4. Discussion of Evaluation Findings 

Evaluation results and findings were crucial not only in establishing the best generalization 

performance and the best classifier model but also in understanding the behavior of the classifier 
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model from what was expected and how it compared with other models in literature. Besides, these 

findings were eventually used to answer the last research question: how do we evaluate performance 

and validity of the mapping model?  

6.4.1. The best generalization performance of the classifier model 

Findings #12, #13, #14, & #15 were crucial in establishing the best generalization performance of the 

classifier model using the selected inducer algorithm. According to findings #13 & #14 the best 

classifier model seemed to show excellent performance behavior (along all four performance metrics 

adopted) in all the three datasets. However, it performed differently in the first dataset (research) and 

approximately similar performance behavior in the second (benchmark) and third (validation) 

datasets. This could possibly be attributed to class distribution differences where dataset2 and 3 have 

more or less similar distribution of ‗bad‘ (less) and ‗good‘ (more) classes, unlike in dataset 1 where 

‗bad‘ classes are more than ‗good‘ classes. In this case, classes with very high accuracies are ‗good‘ 

while classes with very low accuracies are ‗bad‘.  

The best generalization performance was calculated as an average performance across the three 

datasets as indicated in Table 6.3a&b. In this case, along hierarchical levels the best average 

accuracy performance of the model was 67% and, therefore, we can confidently claim that the best 

performance of our model was 67%.  

6.4.2. To compare model performance under two industry domains 

Likewise, to compare model‘s performance findings 12# and #16 equally played an important role. 

The two results of the classifier model seemed to show more or less similar performance behavior 

(along all four performance metrics adopted). Precision as a measure of the ability of the model not 

to label a negative outcome as positive is a very crucial measure of the classifier model. This is 

because the original goal of the study was to build a model that would improve productivity and 

performance in the job.  

Table 6.4 presents comparative results for the model contrasting the two cases as extracted from 

SVM model results in Fig. 6.2.1b and 6.2.3b. These results indicate that in both cases the precision 

values were good (SE case precision = 61%; AL case precision = 54%). The two findings signal 

strongly the confirmation and acceptance of the hypothesis posed in research question four:  H04A: 

There is no significant performance difference of the model in different industry domains 
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Low precision would have meant the model would be prone to act against this objective. This was 

enough reason to confirm SVM model as the best classifier.  

Besides, along the three datasets SVM model was able to show a consistent superior performance 

over naïve Bayes model along all the performance metrics. There was clear evidence that SVM 

model performance per class was 100% accurate for about 30% of the target classes in a dataset, 

namely 28% in dataset2 (2 out of 7 classes) and 33% in dataset3 (4 out of 12 classes). 

Table 6.4: Comparison of performance measures in each Case in the study 

Variable Case 1: Software Engineers Case 2: Academic Librarians 

Accuracy 0.59 0.64  

Precision score 0.61 0.54 

Recall score 0.59 0.64 

F-score 0.59 0.56 

 

6.4.3. Performance Comparison with other Classifier Models in Literature  

Our model seemed to compare well with other hierarchical classifier models in literature. Model 

performance seemed to improve upward in the hierarchical levels of the taxonomy consistent with 

other models in literature (Clare & King, 2003; Barbedo & Lopes, 2006). Based on the model‘s 

performance as revealed in findings #17, average level performance across the three datasets was 

better than average level performance of Clare & King‘s model (2003) across 12 datasets. However, 

the model‘s average level performance was slightly lower compared to Barbedo & Lopes‘s model 

(2006). Although, Barbedo & Lopes‘s model results (2006) were based on only one dataset which 

we did not know its distribution.  

Nevertheless, in the present study the best average performance achieved by the model was in 

dataset2 (benchmark) whose results were much better compared to Barbedo & Lopes‘s model 

(2006). Although there was no evidence whether there was use of hierarchical approach, Shashidhar 

et al. (2015) built a classifier model using the same Benchmark dataset and achieved a performance 

of 82%  which was slightly lower compared to the performance level achieved using the same 

Benchmark dataset (85%) by the classifier model produced in the current study. 
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6.5. Discussions Conclusion of Evaluation Findings  

The main focus of this discussion was not only to demonstrate the appropriateness of  the classifier 

model to serve its purpose by evaluating its performance but also to assess the validity of the 

classifier model by comparing its evaluation results across other related models in literature. From 

this discussion it was clear that the appropriate performance of was achieved using SVM model at an 

average accuracy of 67% across three datasets. Its performance on three datasets was fairly good 

59% (SE field data), 65% (AL dataset) and 85% (Benchmark dataset was better) 

The validity of the model was demonstrated experimentally where the results of the model 

performance under different industry domains were compared. Lastly, the discussion also clearly 

demonstrated comparative performance of the classifier model against other literature models, 

especially hierarchical models, was considerably better than most of them.  These findings were 

crucial in providing answer to the fourth research question: RQ4: How do we evaluate 

performance and validity of the mapping model?  

Table 6.5 presents a summary of the outline research method that contributed towards answering the 

research. 

Table 6.5: Method followed to answer research question 4 

METHOD FINDINGS 

1. Building model’s prototype Obtained prototype of the mapping model 

2. Evaluation  of  prototype using data 

collected and benchmark dataset 

Obtained average generalization performance of 67% 

for the model 

3. Evaluation  of  prototype using only 

benchmark dataset [Experiment] 

Obtained average generalization performance of 85% 

for the model 

4. Comparison of  prototype results on 

benchmark dataset with related models 

results on same benchmark dataset 

Obtained better results :85% (current model) against 

82% (related model)   (OUTCOME) 

5. Reporting  related performance in 

other non-industry role domains 

Obtained : 53.3% on protein dataset (Clare & Kings, 

2003) and 61% on music dataset (Barbedo & Lopes, 

2006)   (OUTCOME) 
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6.6. Discussion of Results Validity  

The results presented for discussion in this section have been carefully planned and generated under 

the assumption that credibility of any study and its findings depends on not only the research 

methodology applied but also the validity of its results. Therefore, it would be improper to discuss 

the results without assessing how valid the results are. Wohlin et al (2003) highlights four types of 

results validity concerns and observes that it is important to assess how valid the results are before 

they are presented for discussion. The four types are internal validity, external validity, construct 

validity and conclusion validity. This section outlines each one of them and how they have been 

addressed in the current study. 

6.6.1. Internal Validity 

This kind of validity was concerned with factors that might have affected the dependent variable 

without the researcher‘s knowledge (Wohlin et al.,2003). In the current study, several factors that 

would have affected the results outside the original four dependent variables considered in the 

conceptual framework were noted during the experiments. These included ‗age‘ (this refers to age of 

the graduate), ‗university‘ (this refers to the University of Study for the graduate), and ‗bachelor ‘s 

degree‘ (this refers to the type of degree program the graduate enrolls).  

However, one more factor that would have affected the results adversely was variation of industry 

roles‘ definition in various industry firms where some roles‘ definitions would have either similar 

names but different requirements or requirements elements from more than one role (Chien & Chen, 

2008). To address this issue, two frameworks (Fig.3.5,3a & 3.5.3b in section 3.5) that were designed 

to harmonize role names and role boundaries were adopted and are part of the contribution of this 

study. Before the frameworks were applied as described in section 3.5 of research methodology, 

there was need to maximize intra-role similarity and minimize inter-class similarity with the aim to 

avoid the model under-fitting the data (Raschka, 2015; Chien & Chen, 2008).  

A case is comparative in nature where there is contrasting of results generated from either case. To 

avoid bias and ensure internal validity, a valid basis for assessing the results was adopted and this 

involved organizing the study in a way that facilitated comparison of results. Three common 

strategies for organizing a study to facilitate this comparisons consists of comparing results using 1) 

sister projects, 2) company baseline projects, and 3) differently treated components of a single 

project (Kitchenham & Lesley, 1995). Alternative occupational domains and benchmark studies in 
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literature were closely related to these strategies, and thus the present study employed strategy 1&2 

to facilitate comparative analysis of results. Table 6.4 presents comparative results for the model 

contrasting the two cases as extracted from SVM results in Fig. 6.2.1b and 6.2.3b. 

6.6.2. External validity 

This was concerned with ability to generalize results of the experiments over the entire target 

population. Again, Wohlin et al. (2003) raises concerns that the problem and the participants in the 

study have to be representative of the target population for the results to reach the threshold for 

generalization. Clearly, this was an issue of research design. The overall research question of this 

study was answered through a case study research design. Case studies have been known to be 

generalizable to theoretical propositions and not to population universes, because they do not 

represent a sample (Yin, 1994).  

However, the choice for this design was driven by not only the explanatory nature of the question but 

also the contemporary nature of the event where the relevant behaviors could not be manipulated. To 

address this issue, multiple cases approach was adopted where a case of software engineers was used 

as the primary case to produce the research dataset while a case of academic librarians was used as a 

secondary case to generate the validation dataset. In the present study, multiple case approach 

offered greater validity to the case study findings because each case was considered as a replication 

that was used to confirm the findings consistency for generalization (Easterbrook et al., 2007). The 

adoption of case approach was also important in avoiding the scale-up problem (Kitchenham & 

Lesley, 1995).  

The biggest challenge was in the selection of the cases, because case samples are not based on 

variables that are manipulated but on variables that represent typical situations and this was central 

to the issue of external validity for this study (Kitchenham & Lesley, 1995). Common approach 

adopted consisted of describing cases based on significant characteristics and using these as state 

variable information to select a case. Demographic characteristics results of Table 4.1.1a and Table 

4.2.4 helped to identify four characteristics to represent typical cases, namely gender (variation), 

bachelors degree (several types), University of study (at least one) , and industry roles (several). 

Table 6.6.1 presents description of the two typical cases. 

    



 

   204 

 

6.6.3.          Construct validity 

This was concerned with the relationship between the concepts and theories behind the study and 

what was measured and affected (Wohlin et al., 2003). Construct validity tried to establish correct 

operational measures for the concepts being studied (Yin, 1994). This involved defining concepts 

clearly before measurements were conducted and justifying measures adopted for such concepts. 

This study derived its concepts from three existing models for training evaluation that served as its 

theoretical framework as explained in section 2.7. The justification of each framework used as 

measure for each concept was clearly illustrated and summarized in Table 2.2. 

Table 6.6.1: Description of Typical Situation in each Case  

 Case 1: Software Engineers Case 2: Academic Librarians 

Variable Category Frequency Percent Category Frequency Percent 

1. Gender Male  77 68.1% Male  18 36.0% 

 Female  36 31.9% Female  32 64.0% 

2. Bachelor‘s 

degree 

BSc. Computer 

science 

32 28.3% BSc. Library science 3 6.0% 

 BSc. IT 55 48.7% BSc. Information science 13 26.0% 

 BSc. Software 

engineering 

22 19.5% BSc. Library & 

Information 

science 

27 54.0% 

 Others  4 3.5% Others  7 14.0% 

3. Industry 

roles 

Software Architect 18 15.9% System Librarian 1 2.0% 

 Analyst 

Programmer 

26 23.0% Reference Librarian 9 18.0% 

 Test Engineer 14 12.4% Information Literacy 

Librarian 

6 12.0% 

 Web Programmer 29 26.7% Circulation Librarian 8 16.0% 

 Mobile 

Programmer 

9 7.9% Africana Librarian 3 6.0% 

 Systems 

Administrator 

13 11.5% Digital Media Librarian 7 14.0% 

 Project Manager 4 3.5% Multi-Purpose Librarian 7 14.0% 

    Other 9 18.0% 

4. University UoN 14 12.4% UoN 5 10.0% 

 Kenyatta 9 8.0% Kenyatta 21 42.0% 

 Moi 4 3.5% Moi 11 22.0% 

 Egerton 9 8.0% Egerton 1 2.0% 

 KEMU 11 9.7% KEMU 1 2.0% 

 Daystar 10 8.8% Daystar 1 2.0% 

 Maseno 1 0.9% Other 10 20.0% 

 JKUAT 27 23.9%    

 Strathmore 8 7.1%    

 Nazarene 12 10.6%    

 Other 8 7.1%    
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6.6.4. Conclusion validity 

This kind of validity related to the possibility to draw correct conclusions regarding the relationship 

between treatments (independent variable) and outcome of an experiment (dependent variable) 

(Wohlin et al., 2003). This tried to establish the power of the tests and the reliability of the 

measurements. The aim was to reduce errors and biases in the study so that if the same procedure 

was repeated by a second investigator would be able to arrive at the same findings and conclusion 

(Yin, 1994). One approach adopted was to make research methodology steps as operational as 

possible as evidenced in the research design (refer to section 3.3) and the verification of conditions 

for each statistical test procedure. 

6.7. Summary  

This chapter has presented experimental evaluation results of the study, and a detailed discussion of 

the major research findings. The climax of this discussion has culminated with validation of the 

mapping model through not only a holistic multi-case design but also a theoretical replication 

approach. For purpose of clarity, the results have been presented using not only tables and but also 

graphs. The statistical analysis procedures have been carefully selected based on preliminary tests 

results for data validity. The final research findings have been carefully drawn from both descriptive 

and experimental results after details discussion of the results and findings. In summary, the results 

and findings discussed in this chapter have provided answers to the fourth research question posed in 

this study.   
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CHAPTER 7:  CONCLUSIONS AND RECOMMENDATIONS 

7.0 Introduction 

This chapter has been structured into sections: Section 7.1 presents the conclusion and future 

research. Section 7.2: highlights the research contributions. Section 7.3: presents the research 

limitations. Section 7.4: outlines the benefits and achievements of the study. Finally, section 7.5: 

highlights relevant research publications generated by this study.  

7.1 Conclusion and Future Research 

7.1.1 Conclusion 

This study set out to investigate whether skills profile from employed graduates could be used to 

develop a machine learning model to map graduates‘ skills to industry roles that are hierarchically 

structured and the applicability of machine learning techniques in improving prediction of graduates‘ 

performance and productivity towards industry jobs.  This was as a result of not only the glaring risk 

that graduates were facing of long term unemployment but also the growing dissatisfaction by 

industry over graduates‘ productivity as a result of poor evaluation of graduates‘ skills vis-à-vis 

industry job competence requirements in a practical way. To address this problem an investigation 

was launched to build a model for mapping graduate‘s skills to matching industry roles using 

machine learning techniques. The challenges towards this study were: 

1) Lack of appropriate concepts to be used as machine learning attributes to predict performance of 

new graduates towards industry roles 

2) Lack of understanding of characteristics of relevant concepts to be used as target classes for 

machine learning process for mapping graduates‘ skills to industry roles 

3) Lack of a valid and effective machine learning model for predicting graduates‘ performance 

towards industry roles 

The above challenges formed the basis of the research objectives which were operationalized 

through research questions and hypotheses to be answered. Initially, relevant literature was reviewed 

to understand the problem and its domain. A number of systematic questions, such as: what learning 

outcomes are looked for in the job industry; what learning outcomes enhance performance in the job;  

how we evaluate learning outcomes; what evaluation approaches are commonly used in related work. 

The literature derived from these questions was reviewed where three theories that are commonly 

used to evaluate learning outcomes were jointly analyzed to produce the conceptual framework while 
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literature on related work was used to refine the final research questions in an attempt to achieve 

each of the corresponding objective. 

We consider each of the objectives and the extent to which they were achieved. 

1) To establish concepts appropriate as machine learning attributes for  mapping graduates 

skills to occupational industry roles 

Initially, the investigation to answer this research question was launched through literature review 

and analysis before empirical analysis refined these concepts. The main focus of literature review 

and analysis was to review and analyze literature so as to identify: 1) theories for evaluating learning 

outcomes, 2) underlying concepts of these theories that promote performance in the job, 3) suitable 

cognitive frameworks that could be used to assess these concepts in the academia. Three theoretical 

models for evaluating learning outcomes were identified, namely Kirkpatrick model, CRESST 

model, and Kraiger‘s model. Their underlying concepts were analyzed to reveal ones that promoted 

performance in the job, and their relationships were represented in the conceptual model (Fig.2.6). 

The proposed concepts in the conceptual model were operationalized using frameworks that 

provided indicators used to derive the variables for collecting data as shown in Table 2.5.  

i) Selecting meaningful features for building the model 

Findings #7 was related to determination of not only the number of features that would optimize 

performance of the classifier model but also whether the improved performance was significant. 

Findings #7 revealed 5 features out of 13 were able to induce the best performance results for the 

classifier model equivalent to  performance that could be achieved with 13 features. Reduction of 

features had a number of benefits to the classifier model, including lowering demand for 

computational resources and reducing the processing time. The 5 features out of 13 were able to 

induce best performance of the classifier model and this performance improvement was significantly 

better than that of 13 feature model.  

The findings revealed the number of valuable features as, namely R (Relevant content knowledge), D 

(Cognitive skills), A (Technical skills), C (Intellectual Capacity) and ‗Age‘. The implication of this 

findings provided insight not only into which features should be included in the subsequent 

investigations but also to accept or reject the hypothesis posed in research question 1: H01A: All 

features are equally relevant for better performance of the classifier model. The outcome based 

on these findings was to reject the hypothesis at significance level, p=0.05. These findings‘ 
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explanation was that when more than five features were used, the summary feature space dimension 

became too large causing performance of the model to start decreasing while when less than five 

features were used essential information was lost that caused accuracy to decline. These findings 

concurred with others in literature (Barbedo & Lopes, 2006). 

2) To establish characteristics of concepts required as target classes for hierarchical machine 

learning purpose 

Descriptive survey research design was adopted to answer this research question where the main 

focus was: 1) to establish concepts to be used as target classes for the machine learning process 2) to 

establish characteristics of these concepts in terms of their structural elements, structural relationship 

amongst them and relationship of academia towards these concepts. These issues were important to 

understand not only to help select the appropriate approach for building the machine learning model 

and design appropriate features for the prototype to handle new graduates from diverse institutions of 

academia but also to verify the research assumption that occupational industry roles were unique and 

hierarchical.  To verify research assumption a hypothesis was defined, tested and provided results to 

answer the question. The findings towards this research question were organized according to the 

two main focuses as summarized below: 

i) Establishing concepts to be used as target classes for machine learning process 

Findings#1 and #6 were crucial in discovering industry roles concepts that formed the basis of 

creating target classes for machine learning. While findings#1 revealed the concepts  as raw which 

were initially 7, findings#6 later on revealed the refined form of these concepts as 12. Finding#6 also 

revealed the distribution of these concepts that was important in deciding how to handle class 

imbalances during training process of machine learning for building the model. 

ii) Establishing characteristics of target classes for machine learning process 

The choice and design of machine learning methodology depends on: 1) structure of the problem and 

2) assumptions about the learning problem (Kotsiantis, 2007; Silla & Freitas, 2011; Merschamann & 

Freitas, 2013). As a result, findings#2 was crucial in discovering that these concepts had similar 

structural elements (job activities/skills) but different levels of emphasis. Further, findings#5 

discovered the structural relationship among these concepts that was crucial in deciding the machine 
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learning approach suitable for building the classifier model, in this case hierarchical classification 

approach.  

The fundamental assumption in the present study that occupational industry roles have different 

requirements for problem solving skills was put in the form of a hypothesis: H02A: There is no 

significant boundary differences between concepts to be used as potential target classes for 

machine learning. Findinsgs#3 was crucial in rejecting this hypothesis. Hypothesis results 

suggested that occupational industry roles were unique and demanded a unique capacity to apply 

content knowledge learned during training. These results concurred with other findings that industry 

roles were becoming more and more diversified and therefore workers were required to be 

empowered to apply domain specific knowledge and skills differently in different industry roles 

(Chien & Chen, 2008).   

Findings#4 was important in revealing that learning institutions have different biases towards these 

concepts. This was crucial in designing the model‘s prototype software to handle graduates from 

different learning institutions differently when deployed in the real world. Findings#4, concurred 

with other studies that, either methods used during training were only able to impart theoretical 

knowledge to the learners hence denying them application of knowledge and skills through practical 

training (Shaw, 2000, McCowan et al., 2016) or some areas were prescribed very little time, or were 

taught in more depth than others (Lethbridge et al, 2000; Kichenham et al 2005; Surakka, 2007).  

Based on the findings in the study, it is important to note that, when developing classifier models for 

mapping skills to industry roles, target classes for machine learning are industry roles concepts 

which are distinct, and therefore, should be approached using supervised classification approach. 

Class distributions of these concepts could be imbalanced, and therefore, they may need stratified 

sampling during machine learning process of building the classifier model. Besides, structural 

relationship among these concepts is hierarchical, and therefore, the process of building the classifier 

model should be approached using hierarchical machine learning approach.  

Finally, when designing software for the model to deploy for real world use, the underlying biases of 

different learning institutions towards these concepts should be known so that the model could 

handle graduates from different institutions differently.   
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3) To build using these concepts a machine learning model that maps graduates’ skills to 

hierarchically structured industry roles  

Experimental research design was adopted to answer the research question where the model was 

built through training and testing experimental processes. The main focus of these experimental 

processes was: 1) to select appropriate machine learning algorithm required to build the model 2) to 

select appropriate parameter values for the machine learning algorithm,. These two issues were key 

in building the machine learning model for mapping graduates skills to industry roles and were used 

as experimental objectives in the experiment design.  

Because the nature of true experiments should not only be objective and repeatable but also be 

characterized by testing claims. Two hypotheses each for the two experimental objectives were 

defined, tested and their results utilized to answer the research question. Again, the findings towards 

this research question were organized according to the two main focuses as summarized below: 

i) Selecting the best machine learning algorithm for building the model 

This main focus of this experiment was to estimate the generalization performance of each of the two 

models generated by each machine learning algorithm and possibly help select the best induction 

algorithm. Both findings#9 and #11 were key in revealing this where both concurred that the general 

performance of the SVM classier model was much better than that of naïve Bayes and in fact the 

difference between the two was significant. Based on these findings, SVM was more likely to 

generalize its performance to unseen data in the real world better than naïve Bayes classifier model. 

As a result, it was selected as a candidate for the best classifier model.  

Also, the two findings were key in rejecting a hypothesis posed in the research question that: Ho3C: 

All induction algorithms induce equal generalization performance to the model. These findings 

concur with  other findings in literature that prediction performance of a classification methodology 

applied on a particular problem depends on the data, the induction algorithm for the model, and the 

expected results of analysis (Bedzek, 1981). Also, classifiers behave differently in many different 

datasets because induction algorithms that generated them have different internal biases and imposed 

different assumptions about the data (Raschka, 2015), but can be proved equivalent when applied on 

certain datasets (Mitchell, 2006). 
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ii) Selecting best parameter values for building the model 

Both finding#8 and finding#10 were related to investigation towards parameter tuning, although 

through different datasets with different landscapes. Coincidentally, both findings agreed that 

parameter tuning of SVM improved performance of the classifier model significantly. However, 

parameter values that induced optimal performance of the classifier model were dataset dependent. 

The implication of these findings in this investigation suggested that in every different dataset we 

needed to tune the parameter values for optimal performance.  

Also, these findings provided key evidence that was used to reject the hypothesis paused in the 

research question that: Ho3B: Any parameter value produces better performance in the model. 

These findings concurred with observations in literature that default parameter values in the libraries 

of induction algorithms may not induce better performance of a model (Raschka, 2015). Besides, 

parameter tuning is sometimes more important than even choosing an induction algorithm 

(Lavesson, 2006). 

Based on the findings and outcomes of research hypotheses that were tested, two things  (among 

others) were key in building machine learning model for mapping graduates skills to industry roles, 

namely selecting induction algorithms that induce appropriate generalization performance and tuning 

parameters of the model to appropriate values, and. These two were among the key determinants of 

the final performance of the model.  

4) To evaluate the validity of the model  

To answer this question, experimental research design and literature analysis were adopted where the 

model was evaluated through training and testing experimental processes then its results compared 

with other similar models in literature. The main focus of these processes was:1) to determine the 

generalization performance of the best classifier model selected for mapping graduates‘ skills to 

industry roles, 2) to compare performance of the classifier model with other models in literature. The 

two issues were important in understanding the properties or behavior of the classifier model from 

what was expected and how it compared with other models in literature.  

But one that was key was experimental evaluation to establish the generalization performance of the 

best classifier model. Thus, it was handled as a true experiment and characterized by a testing claim, 

where a hypothesis was defined, tested and results utilized to answer the research question. 

Performance of the model on carefully selected benchmark was compared with performance of other 
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models on the same dataset, while comparison was also made with other models using same 

approach and not necessarily on the same dataset. Again, the findings towards this research question 

were organized according to the two main focuses as summarized below: 

i) To establish the generalization performance of the best classifier model 

Findings #12, #13, & #14 were crucial in establishing the generalization performance of the best 

classifier model using best induction algorithm. According to findings #12, #13 & #14 the best 

classifier model seemed to show excellent performance behavior (along all four performance metrics 

adopted) in all the first, second, and third datasets where the average accuracy performance was 

67%/. Along the three datasets, SVM model was able to show a consistent performance over naïve 

Bayes model (that was dropped in chapter 4) as expected along all the four performance metrics. Its 

performance per class was 100% accurate for about 30% of the target classes in a dataset (2 out 7 

classes (28%) in dataset2 and 4 out of 12 classes (33%) in dataset3).  

Besides, our model seemed to perform equally better in both dataset2 (SE field data) and datset3 (AL 

field data) and yet they belong to different occupational domains. This was a clear indicator of the 

ability of the classifier model to generalize in other occupational domains not covered in the study. 

The findings#12 & #16 and Table 6.4 were key in signaling acceptance of a hypothesis posed in the 

research question that: Ho4A: There is no significant performance difference of the classifier 

model in different industry domains. 

In the present study, the best generalization performance was calculated as an average performance 

across the three datasets as indicated in Table 6.3a&b. In this case, along hierarchical levels the best 

average performance of the model was 67% and, therefore, we can confidently claim that the best 

accuracy performance of our model was 67%.  

ii) To compare performance of the best classifier model with other models in literature  

Our model seemed to compare well with other hierarchical classifier models in literature. Model 

performance seemed to improve upward in the hierarchical levels of the taxonomy consistent with 

other models in literature (Clare & King, 2003; Barbedo & Lopes, 2006). Based on the model‘s 

performance as revealed in findings #18, average level performance (67%) across the three datasets 

was better than average level performance (33.5%) of Clare & King‘s model (2003) across 12 

datasets. However, the model‘s average level performance was slightly lower compared to 75% that 

of  Barbedo & Lopes‘s model (2006). Although, Barbedo & Lopes‘s model results (2006) were 
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based on only one dataset which we did not know its distribution. Nevertheless, in the present study 

the best average performance achieved by the model was in dataset2 (benchmark) whose results were 

much better compared to Barbedo & Lopes‘s model (2006).  

Although there was no evidence whether there was use of hierarchical approach, Shashidhar et al. 

(2015) built a classifier model using the same SE Benchmark dataset and achieved a performance of 

82%  which was slightly lower compared to the performance level achieved using the same 

Benchmark dataset (85%) by the classifier model produced in the current study. Assuming their 

classifier model was flat then our model was evidence that hierarchical models are more accurate 

than flat models as claimed in literature and hence concurs with other findings (Silla & Freitas, 2011; 

Merschamann & Freitas, 2013). To the best of our knowledge this was the first classifier model to 

pose skills mapping to industry roles problem as a hierarchical multiclass classification problem that 

was solved successfully. 

7.1.2 Future Research 

This model will greatly help to alleviate the risks facing graduates and employers due to effects of 

industry academia gap, such as employing graduates who do not match their needs, and taking longer 

to search the ever growing pool of new graduates with qualification mix. SVM and naïve Bayes were 

used to extract the rules for the model. SVM was adopted due to its high level of accuracy while 

naïve Bayes was chosen due to its ability to produce good results quickly while both of them are 

widely used in skills mapping. However, in order to improve on the reliability of the model, the 

following future research is highly recommended. 

1) Testing this approach using other alternative machine learning techniques such as decision 

trees and neural networks.  

2) Although the applicability of this approach in other alternative industry domains has been 

implied, it is important future research is conducted in these domains to confirm this so that 

more experiments to be performed with cases in other domains. 

3) To ensure a good match between skills acquired in education and those required in the labor 

market, more investigation is needed to identify both individual and training attributes that 

predict transfer of learning. 
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7.2 Research Contributions 

The key objective of this thesis was to investigate a model for mapping graduate‘s skills to industry 

roles using machine learning techniques so as to improve prediction performance for both 

employability and productivity. This was approached by using employees‘ data to model the 

relationship between employees‘ academic profile and work requirements. Useful strategies were 

applied in designing the model which would possibly accrue numerous benefits not only to the 

evaluation and recruitment processes of both academia and industry but also to the whole fraternity 

of researchers. These useful strategies culminated in making a significant contribution to the world 

of research.  

Making a significant contribution implies adding to knowledge or contributing to the discourse by 

providing evidence to substantiate a conclusion that‘s worth making (Petre & Rugg (2010).  

Wobbrock & Kientz (2016) outlined seven types of research contributions in computing and these 

are theoretical, empirical, methodological, dataset, artifact, survey, and opinion. 

The rest of this section presents the main contributions of this study as per Wobbrock & Kientz 

(2016) model. 

7.2.1 Theoretical contributions 

Theoretical contribution may be in the form of new or improved models, frameworks, concepts or 

principles that inform what we do, why we do it, and what we expect from it. They are evaluated 

based on their novelty, soundness, and power to describe, predict and explain (Wobbrock & Kientz , 

2016). Based on this observation, this study has made the following theoretical contributions whose 

contribution  to knowledge was analyzed using Whetten framework (1989): 

1) Conceptual framework 

Conceptual framework for studying skills mapping to industry roles problem was one of the major 

theoretical contributions. The framework identified factors that were appropriate to predict 

performance in the job and indicated the logical relationship between them (refer to chapter 2, Figure 

2.6). The need for this framework was as a result of a missing tool for training evaluation that 

enhances both employability of graduates and performance in the job. For purposes of graduate 

employability, the conceptual framework was applied in understanding both factors that were key in 

differentiating between occupational industry roles from the academic point of view and the trends or 

biases in the academia towards these occupational industry roles.  
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The former was important especially in the design and implementation of the curriculum where there 

is need to identify core factors that target general aspects of occupational industry roles and the 

factors that target specific aspects of industry roles. The later was important especially to the 

academic institutions in evaluating their progress in enhancing graduates employability towards 

occupational industry roles.  

The findings derived from analyses based on this framework have not only important significance to 

theory especially in explaining why we have qualification mismatch among graduates of same 

bachelor‘s degree program whether from same or different universities but also  several implications 

both to the academia and industry in terms of: 1) coverage of domain specific knowledge and skills; 

2) approval of curriculum by domain experts and stakeholders; 3) selection of undergraduate 

students; 4) emphasis of the right levels of thinking skills.  

In summary, for many years the researchers and stakeholders both in academia and industry have 

been struggling to come up with a framework that could describe, explain, and bridge the gap 

between industry and academia. This is what this conceptual framework has done theoretically and is 

a contribution that is significant to skills mapping researchers who would want to describe, explain, 

and bridge industry academia gap by using this conceptual framework as a research model.  

 

2) Taxonomic structure 

Taxonomic structure that is  not only friendly to bottom-up classification methodology but also based 

on functional organizational structure was developed. This indicated the logical and hierarchical 

relationship between nodes that reduced multiple label prediction problem (refer chapter 2, Figure 

2.8). This approach where the classification taxonomic structure was derived from functional 

organizational structure has not been applied anywhere in machine learning literature. The approach 

renders skills mapping to industry roles practically relevant and reliable, where skills mapping is 

performed according to not only the natural structure of industry roles but also the natural mobility of 

employees in the organizational structure, and this promotes single label prediction.  

The significance of this approach lies in partitioning the industry roles in three natural dimensions 

adopted in many organizations (i.e. functional, proficiency, and specialty) when considering 

employability of personnel. In summary, this is a positive contribution to the body of knowledge in 

machine learning based skills mapping where none had existed. The significance of this contribution 

extends to researchers in skills mapping to industry roles who can use this taxonomic structure to 
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organize classes as required in supervised machine learning. The implication of this finding is that 

for relevant and reliable results in  skills mapping, this kind of taxonomic structure is vital. The 

original class taxonomy for hierarchical classification was defined by Wu et al. (2005) as a tree 

structure with two properties, anti-reflexive and transitive. Further, Silla & Freitas (2011) extended 

the definition to include asymmetric properties.  

However, these properties by both are biased towards top-down approach to hierarchical multi-class 

classification where the assumption is a child node naturally belongs to not only the immediate 

parent node but also all other ancestor nodes up the hierarchy. This makes it difficult to apply 

bottom-up navigation without leading to multiple labels. As a result, to make the class taxonomy 

compatible with the currently proposed bottom-up method so as to promote integrity and validity of 

this method, transitive property of the taxonomy was reviewed as follows: For every class ci; cj ; ck є 

C; ci is related to cj and cj is related to ck does not imply ci is related to ck. 

 

Figure 2.8: Bottom-up friendly taxonomic structure (repeat) 

Figure 2.8 illustrates hierarchical structure with two branches (may be more), each branch with three 

levels, a total of twelve leaf node classes (C1.5, C1.6, C1.1.3, C1.2.4, C1.2.1, C1.2.2, C2.5, C2.6, 

C2.1.3, C2.1.4, C2.2.1, and C2.2.2), and a total of six parent nodes (1, 1.1, 1.2, 2, 2.1, and 2.2), and 

root node (R). Leaf nodes represent specialized individual roles while the upward arrow indicates the 

direction of employees‘ occupational mobility with time.  

In the context of skills mapping, the above proposed taxonomic structure represents the hypothetical 

structural organization of occupational industry roles‘ problem, and reflects not only the natural 

mobility of employees upward the occupational ladders but also promises effective bottom-up 

mapping of graduate skills to industry roles that does not result to multiple label prediction problem. 

As per the assumptions of the current skills mapping problem, each branch represents an 
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occupational function which refers to a skills category, each level or non-leaf node represents a skills 

proficiency which refers to a skills level, while each leaf node represents specialty of industry role 

which refers to a skills type. However, while each specialty is a member of a proficiency category, 

relationship between proficiency categories is one of peer to peer where one category follows the 

other.  

The main difference between the proposed taxonomic structure and the traditional tree structure is 

eminent at the levels/non-leaf nodes where the former adopts peer-to-peer and the later adopts 

parent-child relationships. While in the traditional structure lower level parents are decompositions 

of higher level parents, this is not the case in the proposed structure as each level is a category that 

indicates superiority of skills proficiency. However, to be able to explore the proposed taxonomic 

structure from bottom to top as it is natural with employee mobility in the organizational hierarchy, 

there was need of a special type of architecture for the skills mapping model, which was clearly 

another contribution in the study. 

3) Architecture of the ML based model for skills mapping 

Architecture of the machine learning based model for mapping graduates‘ skills to industry roles was 

another theoretical contribution (refer to chapter 2, section 2.7.5, Figure 2.8a&b). This architecture 

was significant for the machine learning model to not only browse the taxonomic structure but also 

produce single-label prediction results. This architecture has been and will be the backbone for 

producing software prototype as revealed in chapter 5. The need for this architecture was as a result 

of a missing model for training evaluation that predicts both employability of graduates and 

performance in the job without multiple label results. Figure 2.9a illustrates the building blocks of 

the bottom-up machine learning architecture of the model. 

 

Figure 2.9a: Machine Learning Architecture for the Model (repeat) 
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4) Theoretical Knowledge 

Besides, Whetten (1989) provided a comprehensive elaboration of a framework for analyzing what a 

theoretical contribution to knowledge was, and this was based on four elements of a theory: 1) 

Element that relates to the factors that should be considered as part of the explanation of a 

phenomena of interest (what), 2) Element that relates to relationship between factors that describe 

casual nature of the theory (how), 3) Element concerned with the justification of the selection of 

factors and their proposed casual relationship (why) and 4) Element concerned with the range of the 

theory in terms of the limitations placed on the propositions generated from the theoretical model 

(who,where,when). Each of these elements can be evaluated against a certain criteria to establish 

their correctness, practicality, reasonableness, and generalizability respectively. Fig.7.2 summarized 

the analysis to knowledge contribution. 

 

Figure 7.2: Analysis of contribution to knowledge 

In the present study, the existing theory under investigation was on prediction of job performance 

originally by Schmidt & Hunter (1992). Using Whetten (1989) framework, analysis was conducted 

to bring out clearly the contribution to theoretical knowledge and was guided by two themes or 

arguments or lines of thoughts that justify a new and valid contribution: 1) How factors either added 

as new or removed as redundant in existing models affected accepted relationship between variables, 

and 2) The reason why a theory either does not work in a new setting or does work when it was not 

expected to. The main independent variables in the present hierarchical mapping model  for skills 

mapping were content knowledge, cognitive skills, technical skills, and academic capacity.  
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There is compelling evidence in the body of literature suggesting personality traits, language, 

cognitive skills, domain skills, and job knowledge are important attributes for predicting job 

suitability for a job seeker (Schmidt & Hunter, 1992, Chang & Xi, 2009, Shashidhar et al, 2015). 

However, it was not known or expected whether 1) these factors would remain valid in a new setting 

where industry roles were considered as structured hierarchically 2) how new sub-variables of each 

category would affect this known relationship between these main factors.  

A slightly similar empirical study by Shashidhar was based on two categories of four sub-variables: 

cognitive skills (English comprehension, logical ability, Quantitative ability) and  domain skills 

(Programming skills), different sub-variables from the ones used in this study. Table 7.1 has 

summarized the results. The observation reveals as the number of sub-variables increases, the 

strength of relationship between these factors slightly improved as indicated. The improvement was 

attributed to the hierarchical approach applied and was expected. However, the addition of new sub 

variables that were easy to work with in academia did not compromise the relationship that describe 

the casual nature of the theory, and was the greatest contribution to theoretical knowledge of the 

study. We therefore, conclude that our contribution to knowledge was a hierarchical mapping model 

for skills mapping to industry roles. 

Table 7.1: Summary of analysis of theoretical knowledge impact 

 What factors Results 

 Cognitive skills Domain skills Knowledge Academic capacity  

Shashidhar et al, 

2015 

-English, 

-logical ability 

-Quantitative 

ability 

- Programming 

skills 

  80-82% 

Current study -Recall 

-Comprehension 

-Application 

-Analysis 

-Synthesis 

-Evaluation 

 

-Programming 

-Database 

-Operating 

systems 

-Networking 

-Distributed 

-Reqments Analy. 

-Sys. Design 

-Dev. Process 

-Project Mgt 

-Configuration 

mgt 

-High School GPA 

-College GPA 

83-85% 

Change  addition addition addition Addition improve 

   

7.2.2 Methodological contributions 

Methodological contribution were in the form of new or improved methods that inform how we 

discover, measure, analyze, create or build things. They improve research or practice and are 
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evaluated based on their utility, reproducibility, reliability, and validity (Wobbrock & Kientz , 2016). 

Based on this observation, this study has made the following contributions:  

1) Research framework for operationalizing the study (refer to chapter 3, section 3.3, Figure 3.1) 

2) Mapping frameworks for grouping roles into logical classes based on their underlying functional 

requirements and promoting maximum intra-class similarity and minimum inter-class similarity 

(refer to chapter 3). 

7.2.3 Dataset contributions 

Dataset contribution was in the form of new and useful corpus, accompanied by an analysis of its 

characteristics that would enable the research community to perform evaluations against shared 

benchmarks by new algorithms or systems or methods (Wobbrock & Kientz , 2016).  They are 

valued based on the extent they supply useful and representative corpus against which to test and 

measure. As a result, this study was able to generate three types of datasets for hierarchical multi-

class classification problems whose characteristics were well described (refer to chapter 3&4). 

1) Research dataset (dataset1) stores data for software engineers‘ field 

2) Benchmark dataset (dataset2) is an extract from AMEO2015 dataset which is an Engineers 

dataset that is famous in the machine learning industry  

3) Validation dataset (dataset3) stores data for academic librarians‘ field data 

7.2.4 Empirical contributions 

Empirical contributions were in the form of findings based on systematically observed data both 

from experiments and data collection (Wobbrock & Kientz , 2016). These were evaluated based on 

the importance of their findings and soundness of their methods. In this case, the study revealed very 

compelling findings that are relevant to the contemporary problem facing both the academia and 

industry. The discussion of these findings were well supported with validity claims (refer to section 

6.6) 

1) Research findings in research question #1 revealed there is significant difference in both 

knowledge and skills among occupational industry roles. 

2) Research findings in research question #2 revealed that the trends towards industry roles were not 

uniform among universities 

3) Research findings in research question #3 revealed that prediction performance of the mapping 

model was affected by both machine learning technique used for the model induction. 
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4) Research findings in research question #4 revealed that indeed generalization of the mapping 

model across industry domains was practically feasible and valid 

7.2.5 Artifact contributions 

Artifact contributions were inventions in the form of systems, tools, techniques, or architectures that 

showed how to accomplish either new things formerly impossible or things formerly possible but 

now more easily (Wobbrock & Kientz , 2016). These enabled to make new explorations or facilitate 

new insights. In this study, the main artifact produced was a software prototype for mapping 

graduates‘ skills to industry roles. 

1) Software prototype in the name of WEMA (Where Employers Meet Academia) was developed 

as a platform where employers and academia (students and university administrators) meet to 

interact with the mapping model. 

7.2.6 Survey contributions 

Survey contribution was in the form of review and synthesis conducted in a research field with the 

goal to reveal trends, themes, and gaps in literature. In this study a thorough literature review was 

conducted and was able to reveal the gap, namely ineffectiveness of hierarchical classifiers to map 

graduates‘ skills to industry roles.  

7.3 Research Limitations 

Although this approach has numerous benefits it has the following limitations. 

1) It depends on evaluation of the currently employed graduates. The skill requirements of the 

industry roles derived from incumbents may not correspond exactly to the levels they are 

holding, with some being overqualified or under qualified, or due to change in entry 

requirements for the occupation after they were employed.  

7.4 Benefits  and Achievements 

Skills mapping as a mechanism that links industry job (entry-level or on-demand) with a highly 

skilled workforce (Johnson, C. & Simpson, T., P-Tech Brooklyn) was directly informed by actual 

job requirements and was the lynchpin for connecting the best employment opportunities to a series 

of rigorous classroom learning objectives. It reduces the risk of hiring overqualified or under-

qualified graduate employees. Hiring overqualified or under-qualified workers may result into: 1) 

industry compensating these positions at a higher rate than necessary, 2) workers likely to leave if 
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they find a more appropriate position, 3) high potential graduates likely to be left out of 

consideration for jobs they could perform brilliantly.  

As a result, the mapping model generated by this study has numerous benefits not only to evaluation 

processes of academia but also recruitment processes of industry as outlined here.  

1) The approach lowers the cost of hiring by empowering employers to practice direct hiring, rather 

than hiring through recruitment agencies which can sometimes be very expensive.  

2) This approach, also, focuses to reduce evaluation time wasted during recruitment. Matching of 

the vector of characteristics employers seek against characteristics of new graduates or applicants 

will make possible to predict probability of success of the worker within few seconds of waiting 

rather than long interviews.  

3) In addition, it provides a standard way of graduate assessment by promoting evidence based 

decision making rather than the employer using duration of unemployment as a signal of the 

quality of the worker.  

4) This approach can, also, promote improvement of job search strategies followed by new 

graduates, by increasing search intensity and efficiency. Large database of up-to-date job 

requirements can be searched and analyzed online.  

The following achievements have evidently marked the success of this study: 

1) A hierarchical method that uses fewer classifiers (K-1) than popular methods, such as one against 

one approach (K(K-1))/2 and one against all approach (K classifiers). 

2) A hierarchical method that registers fairly better performance accuracy (65-67%) than the 

benchmark method (61%)  

3) Empirical findings to be used as a basis of deciding in future the methods, tools, and techniques 

to apply when developing an automatic skills mapping to industry roles software. 

4) Extension of the list provided by Silla & Freitas (2011) on taxonomic structures for hierarchical 

classification. 
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APPENDIX A: TIME SCHEDULE & BUDGET 

Proposed Research Time Frame 

  

TIME IN MONTHS 

S/N

O 
ACTIVITY 

Sept-

2014-

Marc

-2015 

Apr-

2015 

July-

2015 

Aug-

2015- 

Sept.

-2015 

Oct-

2015-

Jan.-

2016 

Febt-

2015 -

Marc

-2016 

Apr.-

2016- 

May.-

2016 

June-

2016-

Aug.-

2016 

Sept-

2016-

Dec-

2016 

Jan.-

2017- 

Apr.-

2017 

May-

2017-

June.-

2017 

TOTAL(

MONT

HS) 

1 Proposal Writing/ 

Approval 

        

              

2 DEVELOP initial 

MODEL 

        

              

3 Data collection for 

industry roles 

        

              

4 Analyzing job title/roles‘ 

specs & DIFFERENCES 

        

              

5 Data collection for degree 

programs 

          

            

6 Analyzing  academia 

TRENDS   

        

  

  

          

7 Prototyping MODEL         
    

  
        

8 Phase 1:  EVALUATE  

MODEL 

        

      

  

      

9  Phase 2:  EVALUATE  

MODEL 

        

        

  

    

10 Report Writing/ 

Presentation  

        

          

  

  

  DURATION 

(MONTHS) 
7 4 2 4 2 2 3 4 4 2 

34 

 

Budget (Kenya Shillings (KSh.)) 

NO. ITEM QUANTITY UNIT COST TOTAL COST 

1. Laptop 1 80,000 80,000 

2. Stationery Rim 20 500 10,000 

3. Internet Modem 2 5,000 10,000 

4. Internet data bundle(1GB) 100 1,000 100,000 

5. Printing copies 1000 30 30,000 

6. Binding (copy) 8 5000 40,000 

7. Transport( trips) 10 100,000 1,000,000 

8. Tuition Fee   838,000 

 TOTAL   2,088,000 
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APPENDIX B: LETTER TO THE RESPONDENTS 

 

University of Nairobi,  

School of Computing and Informatics,  

P.O Box 30197,  

Nairobi.  

4th June, 2015.  

Dear Respondent,  

COLLECTION OF RESEARCH DATA 

I am a PhD student at the University of Nairobi, School of Computing and Informatics.  

In order to fulfill the degree requirement, I am undertaking a research study in the area of Software 

Engineering. You have been selected to form part of this study. This is therefore to kindly request 

you to assist me collect the data by filling out the accompanying questionnaire, which I will collect 

from your premises.  

The information provided will be used exclusively for academic and research purposes only. This 

will be kept in strict confidence. Kindly answer all questions. In case of any queries pertaining to this 

research, please do not hesitate to contact me on mobile phone: 0725-133-239 or email: 

mwakondopoly@gmail.com. 

  

Thank you for your help.  

Fullgence M. Mwakondo  Dr. Lawrence Muchemi    Prof. Elijah Omwenga  

Candidate      Supervisor                           Supervisor 

 

 

 

 

 

 

 

mailto:mwakondopoly@gmail.com
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APPENDIX C: QUESTIONNAIRES 

Analysis Questionnaire A (for Exam Past Paper) 

PART A: EXAMINATION INFORMATION 

Please respond by ticking in the appropriate boxes or providing the appropriate information required. 

1. What is the university name of the examination paper? 

Nairobi  Kenyatta     JKUAT                        Moi   

Egerton  Strathmore    KEMU        Daystar 

     If other, specify_________________________________ 

2. What is the administration year of the examination paper? 

2014  2013  2012  2011  2010  2009 

   If other, specify_________________________________ 

3. What is the time duration allocated for the examination paper? 

    1                          2                          3                         4                      5 or more 

   If other, specify_________________________________ 

4. What is the total mark allocated for the examination paper? 

  60                         70                        80                      90                      100 

   If other, specify_________________________________ 

5. Which year of study is the examination paper administered?  

       First                  Second                    Third               Fourth                Fifth 

6. What is the name of the undergraduate programme for which the examination was administered? 

Please specify_________________________________ 

7. What is the number of the main questions in the examination paper? 

    3                          4                          5                         6                      7 or more 

   If other, specify_________________________________ 
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PART B: EXAMINATION CONTENT (KNOWLEDGE AND SKILLS WEIGHTS) 

8. For each question in the exam paper fill in the marks allocated to each of its sections against the 

software development area tested. 

Questions Details Software development areas marks allocated 

Question number 

Question 

sections S
o
ft

w
ar

e 

R
eq

u
ir

em
en

ts
 

S
o
ft

w
ar

e 

D
es

ig
n

 

S
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ft

w
ar

e 

P
ro
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ft
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n
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an
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t 

S
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w
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e 

M
ai
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n
an

ce
 

S
o
ft

w
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e 

In
fr
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ct

u
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S
o
ft

w
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Q
u
al

it
y

 

S
o
ft

w
ar

e 

M
an

ag
em

en
t 

S
o
ft

w
ar

e 

C
o
n
st

ru
ct

io
n

 

Q1 

P1           

P2           

P3           

P4           

Q2 

P1           

P2           

P3           

P4           

Q3 

P1           

P2           

P3           

P4           

Q4 

P1           

P2           

P3           

P4           

Q5 

P1           

P2           

P3           

P4           

If others, specify 

below and rate 

accordingly 
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9. For each question in the exam paper fill in the marks allocated to each of its sections against the 

mental activities tested. 

Question number Mental activities Question sections marks allocated 

Q1 

Question sections P1 P2 P3 P4 P5 P6 

M
en

ta
l 

ac
ti

v
it

ie
s Knowledge        

Comprehension        

Application        

Analysis        

Synthesis        

Evaluation        

Q2 

Question sections P1 P2 P3 P4 P5 P6 

M
en

ta
l 

ac
ti

v
it

ie
s Knowledge        

Comprehension        

Application        

Analysis        

Synthesis        

Evaluation        

Q3 

Question sections P1 P2 P3 P4 P5 P6 

M
en

ta
l 

ac
ti

v
it

ie
s 

Knowledge        

Comprehension        

Application        

Analysis        

Synthesis        

Evaluation        

Q4 

Question sections P1 P2 P3 P4 P5 P6 

M
en

ta
l 

ac
ti

v
it

ie
s 

Knowledge        

Comprehension        

Application        

Analysis        

Synthesis        

Evaluation        

Q5 

Question sections P1 P2 P3 P4 P5 P6 

M
en

ta
l 

ac
ti

v
it

ie
s 

Knowledge        

Comprehension        

Application        

Analysis        

Synthesis        

Evaluation        
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REFERENCE LIST 

Knowledge Examples: list, define, tell, identify, label, collect, tabulate, quote, name, state 

 

Comprehension Examples: summarize, describe, interpret, contrast, associate, distinguish, 

estimate, discuss 

 

Application Examples: apply, calculate, complete, illustrate, solve, modify, relate 

 

Analysis Examples: separate, order, explain, classify, arrange, divide, compare, select 

 

Synthesis Examples: combine, integrate, modify, rearrange, substitute, plan, create, design, 

invent, compose, formulate, rewrite, develop 

 

Evaluation Examples: assess, choose, rank, grade, recommend, select, judge, support, conclude 
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Questionnaire B (for Employed Software developers) 

 

QUESTIONNARE 

Questionnaire (for Employed Software developers)  

This questionnaire is part of a study on Software development companies in Nairobi County. Your 

participation in this study is voluntary. The questions will purely be used to satisfy an academic 

requirement only, and not for any statistical study. We will not identify you as an individual. The 

researcher would be most grateful if you give your views by answering the questions below. Please, 

first answer the background questions and then complete the rest of the survey. Be assured that 

Confidentiality of information solicited is guaranteed.  

Thank you  

Instructions: Please read the questions and answer them by either filling in the blank 

Spaces or ticking the check boxes [/] or tables 

PART A: PERSONAL BACKGROUND INFORMATION 

Please respond by ticking in the appropriate boxes or providing the appropriate information required. 

1. What is your gender? 

       Male        Female 

2. Which of the following brackets does your age fall (in years)? 

 20-24    25-29     30-34                35-39  40 or more      

3. Where did you study for your ‗O‘ level education? 

         Local                              Abroad 

4. Which system was used to grade your ‗O‘ level results? 

Grades                                      Points                                           Marks 

5. Which of the following brackets does your overall ‗O‘ level education result fall?  

If Grades, 

  Less or equal D+                    C- to C+                         B- to B+                         A- and above 

If Points, 

 Less or equal  4       5 to 7           8 to 10                     11 and above 

If marks, 

Less or equal 44%                45% to 59%                 60% to 74%            75% and above 
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         If other, specify_________________________________ 

6. What is the area of your undergraduate degree? 

        Computer Science                  Information Technology                 Software Engineering 

        If other, specify___________________________ 

7. What is the university name of your undergraduate degree? 

  Nairobi         Kenyatta     JKUAT              Moi   

  Egerton       Strathmore    KEMU          Daystar 

     If other, specify_________________________________ 

8. What is the graduation year for your Bachelor‘s degree? 

2014  2013  2012  2011  2010  2009 

   If other, specify_________________________________ 

9. Which system was used to grade your undergraduate degree final result? 

Grades                                     Points                                            Marks 

10. Which of the following brackets does your overall bachelor‘s degree final result fall? 

If Grades, 

  Less or equal D+                  C- to C+                             B- to B+                     A- and above 

 If Points, 

 Less or equal 4     5 to 7             8 to 10                     11 and above 

If marks, 

Less or equal 44%          45% to 59%                    60% to 74%           75% and above 

           If other, specify_________________________________ 

11. What is the title of your first (entry-level) Software development job appointment in the industry after graduating 

and current job title? Select from the table, or specify, and fill years of appointment for both. 

 Tick only job categories that apply to you 

 

Tick 

 

 

 

Appointment types and dates 

S
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P
ro
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 m
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 Others, specify 

   

A First Software Development job category 

appointment (Tick only one) 

          

B Year of Appointment in A, specify in cell           

C Current Software Development job           

V 
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category appointment (Tick only one) 

D Year of Appointment in B, specify in cell           

12. What inspired you to join the current Software development job? 

      Passion                  Salary                     Ambition                       Qualification                 If other, specify_______ 

PART B:  SOFTWARE DEVELOPMENT BACKGROUND INFORMATION 

Please respond by ticking in the appropriate boxes or providing the appropriate information required. 

13.  Which year of your study did you study Software Engineering subject?  

       First                     Second                       Third                 Fourth                  Fifth 

       Specify the year___________________________ 

14.  To what extend do you think the software engineering exam paper reflected the content covered in class during 

training?  

       100%                         75%                          50%                       25%                     0% 

15.  What grade did you score in the following Software development related subjects? 

 O = One unit T = Two units M = More than 2 X=unit not done 

Subject taught in one 

unit 

Subject taught in two unit 

e.g. I, II, or advanced 

Subject taught in more 

than two units 

Subject not taught at all 

Subject 

Name 

No. 

of 

units 

Mark one grade for 

each unit 

 Subject Name No. 

of 

units 

Mark one grade for 

each unit 

Unit

1 

Unit 

2 

Other 

units 

 Unit 

1 

Unit 

2 

Other 

units 

Software 

Development 

Project 

    O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

  Operating Systems     O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

 

Database     O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

  Structured 

Programming 

    O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 
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Distributed 

Systems 

    O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

  Object Oriented 

Programming 

    O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

 

Networking     O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

  Web-based 

Programming 

    O 

    T 

    M 

    X 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

 

16. Which of the following activities is associated with your current job title? On a scale of 1=(less important) to 12= 

(most important), rate the relative importance of each of the following Software development areas on each of your 

job activities ticked.  

Choose and tick job activities Software development areas (fill their rated values along column) 

Tick 

 

Job activities below 
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1 Gathering and analyzing requirements           

2 Modeling and simulating software           

3 Designing database           

4 Designing systems           

5 Software Programming           

6 Integrating software           

7 Documenting programs           

8 Deploying software           

9 Testing software           

 10 Training users           

 11 Preparing manuals and user guides           

 12 Documenting  workflows           

 13 Managing project workflows            

 14 Coordinating project deliverables           

 15 Ensuring software quality            

 16 Providing customer and system support           

 17 Upgrading and reviewing systems           

 If others, specify and rate accordingly:           
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_________________________________ 

17. On a scale of 1=(less thinking demand) to 12= (very high thinking demand), rate the relative mental demand for each 

of your job activities (selected above) in terms of the following mental activities.  

Tick only job activities as selected above Mental activities (fill their rated values) 

Tick 

 

Job/Role Activities 
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1 Gathering and analyzing requirements       

2 Modeling and simulating software       

3 Designing database       

4 Designing systems       

5 Software Programming       

6 Integrating software       

7 Documenting programs       

8 Deploying software       

9 Testing software       

 10 Training users       

 11 Preparing manuals and user guides       

 12 Documenting  workflows       

 13 Managing project workflows        

 14 Coordinating project deliverables       

 15 Ensuring software quality        

 16 Providing customer and system support       

 17 Upgrading and reviewing systems       

 If others, specify below and rate accordingly:       
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Questionnaire C (for Industry Experts) 

 

 

QUESTIONNARE 

Questionnaire (for Software Development Head of Section)  

This questionnaire is part of a study on Software development companies in Nairobi County. Your 

participation in this study is voluntary. The questions will purely be used to satisfy an academic 

requirement only, and not for any statistical study. We will not identify you as an individual. The 

researcher would be most grateful if you give your views by answering the questions below. Please, 

first answer the background questions and then complete the rest of the survey. Be assured that 

Confidentiality of information solicited is guaranteed.  

Thank you  

Instructions: Please read the questions and answer them by either filling in the blank 

Spaces or ticking the check boxes [/] or tables 

PART A: SOFTWARE FIRM BACKGROUND INFORMATION  

Please respond by ticking in the appropriate boxes or providing the appropriate information required. 

1. What is the ownership status of your firm? 

       Local                                  Foreign                                              Both 

2. What is the number of software development staff in your firm in Kenya? 

1-5                       6-10                  11-15                 16-20                    20 or more 

3. What is the number of job title categories for software development in your firm in Kenya? 

    1                          2                          3                         4                      5 or more 

4. What type of software products or service does your firm provide? 

                     Mobile applications                    Desktop applications                 Web applications 

                     Multipurpose applications          if others, specify___________________________        
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5. Which of the following ICT job categories are offered as graduate level in your firm? 

 Tick only job category offered in your firm ( one or many) 

Tick 
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o
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ar
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er
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p
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/p
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 If
 o

th
er

s,
 s

p
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_
_

_
_
_

_
_
_

_
_

 

REQUIRMENT 

TYPE 

MINIMUM ENTRY REQUIRMENTS (Tick for each selected job category above) 

Type of entry 

GE=Graduate Entry 

GP=Graduate 

Promotion 

X=Non-graduate  

      GE 

      GP 

      X 

      GE 

      GP 

      X 

      GE 

      GP 

      X 

      GE 

      GP 

      X 

      GE 

      GP 

      X 

      GE 

      GP 

      X 

      GE 

      GP 

      X 

      GE 

      GP 

      X 

Secondary school 

grade ( 

A = A- and Above 

B = B-, B, B+ 

C = C-, C, C+ 

D = D-, D, D+ 

E = E and Below) 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

    A 

    B 

    C 

    D 

    E 

Bachelors degree type 

( 1 = Computer Science 

  2 = IT, 

  3 = Any of the above, 

  4 = Any degree type     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

    1 

    2 

    3 

    4     

Degree Grade 

( F = First class, 

  U = second Upper, 

  L = second Lower, 

  P = Pass, 

  A = Any of the above 

) 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

    F 

    U 

    L 

    P 

    A 

Grade Quality 

(S = Strong, 

 W= Weak) 

    S 

    W 

    S 

    W 

    S 

    W 

    S 

    W 

    S 

    W 

    S 

    W 

    S 

    W 

    S 

    W 
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6. Which of the following job activities are associated with each of the job categories offered in your firm? Tick cells 

below the job category offered. 

Tick 

 

Tick only job categories that apply in your firm as selected above 

        

 

 

 

 

 

Tick Job activities below that apply to the 

selected job category S
o
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w
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P
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Others 

   

1 Gathering and analyzing 

requirements 

          

2 Modeling and simulating software           

3 Designing database           

4 Designing systems           

5 Software Programming           

6 Integrating software           

7 Documenting programs           

8 Deploying software           

9 Testing software           

 10 Training users           

 11 Preparing manuals and user guides           

 12 Documenting  workflows           

 13 Managing project workflows            

 14 Coordinating project deliverables           

 15 Ensuring software quality            

 16 Providing customer and system 

support 

          

 17 Upgrading and reviewing systems           

 If others, specify and rate           

7. On a scale of 1=(less important) to 12= (most important), rate the relative importance of each of the following 

software development areas on each of the job categories offered in your firm.  

 

 

      Tick Job categories below as they  

          apply in your firm. 

Software development areas 
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1 Software architect/developer           

2 Analyst/ programmer           

3 Test analyst/ engineer           

4 Web developer/ programmer           
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5 Mobile application 

developer/programmer 

          

6 Systems admin/ programmer           

7 Project manager           

 If others, specify below and 

rate accordingly: 

          

8. On a scale of 1=(less thinking demand) to 12= (very high thinking demand), rate the relative mental demand of each 

of the following mental activities for each of the job categories offered in your firm. 

 

           

          Tick Job categories below as they  

          apply in your firm. 

Mental activities 
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1 Software architect/developer       

2 Analyst/ programmer       

3 Test analyst/ engineer       

4 Web developer/ programmer       

5 Mobile application developer/programmer       

6 Systems admin/ programmer       

7 Project manager       

 If others, specify below and rate accordingly:       

9. On a scale of 1=(less thinking demand) to 12= (very high thinking demand), rate the relative importance of each of 

the following skills for each of the job categories offered in your firm. 

 

 

 

 

           

          Tick Job categories below as they  

          apply in your firm. 

Software development skills 

D
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e 

sk
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N
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Others, specify 

   

1 Software architect/developer         

2 Analyst/ programmer         

3 Test analyst/ engineer         

4 Web developer/ programmer         

5 Mobile application developer/ 

programmer 

        

6 Systems admin/ programmer         

7 Project manager         

 If others, specify and rate:         
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10. Is there a hierarchical organization structure that describes the software development job categories in your firm?             

Yes                                   No 

       If Yes, provide the structure by sketching below or attach printed copy. 
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APPENDIX D: SE EXAMS PAST PAPERS SAMPLING FRAME 

ACCREDITED UNIVERSITIES AND ACADEMIC PROGRAMMES 

  Sunday, February 01, 2015 

N

o. 

INSTITUTION 

DETAILS OF SOFWARE ENGINEERING OFFERRING DEGREE 

PROGRAMMES 

  

    No. DEGREE PROGRAMMES 

1 UNIVERSITY OF NAIROBI 1 Bachelor of Science in Computer Science  

2 MOI UNIVERSITY 2 Bachelor of Science  (Computer Science)  

    3 Bachelor of Science  (Information sciences)  

    4 Bachelor of science in Computer Engineering  

    5 Bachelor of Science  (Informatics)  

3 KENYATTA UNIVERSITY 6 Bachelor of Science in Computer Science  

    7 Bachelor of science in Computer Engineering  

    8 Bachelor of Science in Information Technology  

    9 Bachelor of Information Technology  

4 EGERTON UNIVERSITY 10 Bachelor of Science in Applied Computer Science  

   11 Bachelor of Science in Computer Science  

    12 Bachelor of Science in Software Engineering  

5 JKUAT 13 Bachelor of Business Information Technology 

    14 Bachelor of Science in Computer Science  

    15 Bachelor of Science in Computer Technology  

    16 Bachelor of Science in Information Technology  

6 MASENO UNIVERSITY 17 Bachelor of Science in Computer Science  

    18 Bachelor of Science in Information Technology  

7 MASINDE MULIRO UNIVERSITY OF SCIENCE 

AND TECHNOLOGY 19 Bachelor of Science in Information Technology  

    20 Bachelor of Science in Computer Science  

8 DEDAN KIMATHI UNIVERSITY OF 

TECHNOLOGY 21 Bachelor of Business Information Technology 

    22 Bachelor of Science in Computer Science  

    23 Bachelor of Science in Information Technology  

9 CHUKA UNIVERSITY 24 Bachelor of Science (Computer Science)  

10 TECHNICAL UNIVERSITY OF KENYA 25 Bachelor of Technology (Business Information Technology)  

    26 Bachelor of Technology (Information Technology) 

    27 Bachelor of Technology (Computer Technology)  

11 TECHNICAL UNIVERSITY OF MOMBASA 28 Bachelor of  Mathematics & Computer Science 

    
29 Bachelor of Science in Information Technology 

    30 Bachelor Technology in Inform. & Communication Technology 

12 PWANI UNIVERSITY 31 Bachelor of Science (Computer Science) 

13 KISII UNIVERSITY 
32 Bachelor of Applied Computer Science 

    
33 Bachelor of Computer Science 

    
34 Bachelor of Business Information Management 

    
35 Bachelor of Software Engineering 

14 UNIVERSITY OF ELDORET 
36 Bachelor of Science in Computer Science  

    
37 Bachelor of Science in Informatics 

    38  Bachelor of Science in Information Technology  

15 MAASAI MARA UNIVERSITY 
39 Bachelor of Science (Computer Science)  

16  JARAMOGI OGINGA ODINGA UNIVERSITY OF 

SCIENCE AND TECHNOLOGY 40 

Bachelor of Science (Business Information Systems) 

    41 Bachelor of Science (Information Communication Technology) 

17 LAIKIPIA UNIVERSITY 42 Bachelor of Science (Computer Science) 

18 SOUTH EASTERN KENYA UNIVERSITY 43 Bachelor of Information Technology  

    44 Bachelor of Science (Computer Science)  
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19 MERU UNIVERSITY OF SCIENCE AND  

TECHNOLOGY 45 

Bachelor of Business Information Technology 

    46 Bachelor of Science in Computer Science 

    47 Bachelor of Science in Computer Technology 

    48 Bachelor of Science in Information Technology 

    49 Bachelor of Science in Mathematics and Computer Science 

20 MULTIMEDIA UNIVERSITY OF KENYA 50 Bachelor of Information Technology 

    51 Bachelor of Science and Business  Information Technology  

    52 Bachelor of Science and Information Technology  

    53 Bachelor of Science Computer Science  

    54 Bachelor of Science Computer Technology  

    55 Bachelor of Science Mathematics & Computer  

21 UNIVERISTY OF KABIANGA 56 Bachelor of Science in Computer Science  

22 KARATINA UNIVERSITY 57 Bachelor of Science in Computer Science  

    58 Bachelor of Science in Information Technology  

23 UNIVERSITY OF EASTERN AFRICA BARATON 59 Bachelor of Business Information Technology 

    60 Bachelor of Science in Software Engineering 

24 CATHOLIC UNIVERSITY OF EAST AFRICA 61 Bachelor of Science in Computer Science  

25 DAYSTAR UNIVERSITY 62 Bachelor of Science in Applied Computer Science 

26 UNITED STATES INTERNATIONAL UNIVERSITY 63 Bachelor of Science in Information Science and Technology 

27 AFRICA NAZARENE 64 Bachelor of Science in Computer Science 

    65 Bachelor of Business and Information Technology 

28 KENYA METHODIST UNIVERSITY 66 Bachelor of Science in Mathematics and Computer Science 

    67 Bachelor of Business Information Technology 

29 ST PAUL’S UNIVERSITY 68 Bachelor of Business Information Technology 

    69 Bachelor of Science in Computing and Information Systems 

30 STRATHMORE UNIVERSITY 70 Bachelor of Science in Informatics 

    71 Bachelor of Business Information Technology 

31 KABARAK UNIVERSITY 72 Bachelor of Science in Computer Science 

    73 Bachelor of Business and Information Technology 

    
74 Bachelor of Science in Information Technology 

32 MOUNT KENYA UNIVERSITY 75 Bachelor of Business Information Technology 

34 KCA UNIVERSITY 76 Bachelor of Science in Information Technology 

    77 Bachelor of Business Information Technology 

35 KIRIRI WOMEN’S UNIVERSITY OF SCIENCE 

AND TECHNOLOGY 78 

Bachelor of Science in Computer Science 

36 GRETSA UNIVERSITY 
79 Bachelor of Science in Computer Science 

37 PRESBYTERIAN UNIVERSITY OF EAST AFRICA 
80 Bachelor of Science in Computer Science 

38 INOORERO UNIVERSITY 
81 Bachelor of Information and Communication Technology 

39 THE EAST AFRICAN UNIVERSITY 82 Bachelor of Computer Science and Information Technology 

    83 Bachelor of Business Information Technology 

40 RIARA UNIVERSITY 84 Bachelor of Science in Computer Science 

41 PIONEER UNIVERSITY 85 Bachelor of Science in Information Technology 

42 UMMA UNIVERSITY 86 Bachelor of Science in Computer Science 

43 ZETECH UNIVERSITY 87 Bachelor of Science in Information Technology 

TOTAL OF 43 UNIVERSITIES  87  PROGRAMMES 
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APPENDIX E: SOFTWARE DEVELOPERS’ SAMPLING FRAME 

Software Houses in Kenya   (source: www.softkenya.com) 

S/

N

O 

COMPANY NAME TELEPHONE FAX/MOBILE EMAIL 

1 Abacus Computer Systems Ltd.  – 2 – 213740/ 214450/ 312491 215 – 2 – 221321 sales@abacuscom.com 

2 Afritech Solutions Ltd.  +254 020-2129035     

3 Alphabit Technologies  020 2470510 0750220736 info@alphabitkenya.com 

4 Andest Bites 254-020-2394420 254-0733720619,0724164346 info@andestbites.com 

5 Bridge Ict   0726178724   

6 Bunduz Creative   254723571032 fraogongi@yahoo.co.uk 

7 Compulynx  +254-20-3747060 + 254-20-3747280 sales@Lynxafrica.com 

8 Copycat Limited +254 20 3970000/ +254 20 

534008-15/ +254 20 3970000 

+254 20 652276/ 554249 info@copycatltd.com 

sales@copycatltd.com 

9 Daniche Solutions 0202605564   info@daniche.co.ke 

10 Designjobs Interactive Media +254 020 245 3230     

11 Digital Horizons Ltd  +254 20 2062457, +254 722 305680 info@dhkenya.com 

12 East Africa Data Handlers Ltd  +254-20-3751400/ 3751402 +254-722435163, +254-720-

776840 / +254-726-643116 Fax: 
+254-20-3751400/ 3751402 

info@datarecovery.co.ke 

13 Ebits Online  (254) 20 2384022  (254) 721 985408 (254) 738 

168248 

Email: info@ebitsonline.com 

14 Empire Microsystems Ltd  254-(020)-352 5210 , 254-

(020)-247 2011 

 (+254) 723 782 505 (+254) 721 

815 466 (+254) 727 709 772 

info@empire.co.ke 

15 Endeavour Africa Kenya  +254 (20) 375 2451 / 239 4959 +254 (734) 446 600 / (714) 446 

600 Fax: +254 (20) 375 2458 

info@endeavourafrica.com 

16 Enfinite Solutions Limited 020-2603710     

17 Enterprise Information Management 

Solutions (EIM) 

+254-20-2730900 +254-20-2731058 info@eimsolutions.co.ke 

18 ESRI Eastern Africa  +254 (0) 20 2713630, 

2713631, 2713632 

+254 (0) 722 521341, 733 568381 

Fax: +254 (0) 20 2713633 

sales@esriea.co.ke 

19 Extend Limited Tel: 0202329194, 0202329195   info@extend.co.ke 

20 Footprint Computer Solutions Limited  254 020 2727510/2727511 254 020 2727512 info@footprintebusiness.com 

21 Freelance Web Developer  +254733438933     

22 Freepac Tech  +254-20-4452691 0720 405 201 ,0721 617049 :info@frepactech.com,Sales@fr

epactech.com 

23 Gem Multimedia Ltd  +254 721 818 345 / 254 202 
777 847 

  info@gem.co.ke 

24 MAGNUM 254724348990     

25 Octagon Data System +254-020-2719733/2738708, +25420-2730675 info@octagon.co.ke 

26 Octopus ICT Solutions Ltd. 0206007423   info@octopusict.com 

27 Passive Software Technologies 
Limited 

+ 254 020 2485696   sales@softwares.co.ke 

28 Peak and Dale Solutions Ltd 020 2216522 0722216522 info@peakanddale.com 

29 Pinecrest Studios  0727163765 Emungai@pinecrest.co.ke 

30 Rapid Applications Developers 0206760918   info@rad.co.ke 

31 Snettscom | innovative web solutions  0723934017, 0725562184 info@snetts.com 

32 Softlink Options +254 (020) 3559522 +254 – 0722810084 felista@softlinkoptions.com 

33 Software Technologies Ltd + 254 20 7122971/2/3  Fax: + 

254 20 7122991 

 marketing@stl-horizon.com 

34 Symbiotic Media Consortium +254 20 359 6305   business@symbiotic.co.ke 

35 Symphony  (+254) 20 – 4455000  (+254) 722 – 205456/7, (+254) 
733 – 605739/40  Fax: (+254) 20 – 

4453067/8 

info@symphony.co.ke (General) 
enquiries@symphony.co.ke ( 

36 Synfotech Technologies Kenya   0722270423   

http://softkenya.com/it/abacus-computer-systems-ltd/
http://softkenya.com/it/afritech-solutions-ltd/
http://softkenya.com/it/alphabit-technologies/
http://softkenya.com/it/andest-bites/
http://softkenya.com/it/bridge-ict/
http://softkenya.com/it/bunduz-creative/
http://softkenya.com/it/compulynx/
http://softkenya.com/it/copycat-limited/
http://softkenya.com/it/daniche-solutions/
http://softkenya.com/it/designjobs-interactive-media/
http://softkenya.com/it/digital-horizons-ltd/
http://softkenya.com/it/east-africa-data-handlers-ltd/
http://softkenya.com/it/ebits-online/
http://softkenya.com/it/empire-microsystems-ltd/
http://softkenya.com/it/endeavour-africa-kenya/
http://softkenya.com/it/enfinite-solutions-limited/
http://softkenya.com/it/enterprise-information-management-solutions-eim/
http://softkenya.com/it/enterprise-information-management-solutions-eim/
http://softkenya.com/it/esri-eastern-africa/
http://softkenya.com/it/extend-limited/
http://softkenya.com/it/footprint-computer-solutions-limited/
http://softkenya.com/it/freelance-web-developer/
http://softkenya.com/it/freepac-tech/
http://softkenya.com/it/gem-multimedia-ltd/
http://softkenya.com/it/symbiotic-media-consortium/
http://softkenya.com/it/symphony/
http://softkenya.com/it/synfotech-technologies-kenya/
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37 Techbiz Ltd  +254-20-2724916 +254-20-2724919 info@technic.co.ke 

38 TK Professional Computer Services 0602030707 0725417111 tkcomputersp@gmail.com 

39 Track and Trace Kenya Ltd. 254 20 2042628 254 720 844 638 Fax: 254 20 
2250969 

info@trackntrace.co.ke 

40 Web Professional Services  0726-476-620 0726-476-620 gsimiy@gmail.com 

41 WebSoft Development  254 (20) 249 2470 254 722 407 837 info@websoftdevelopment.com 

42 WebSpaceKenya IT Solutions 254202384600 254-724-557 399 info@webspacekenya.com 

43 ZeboTech Business Solutions  (254) 02-2177372  (254)771047405 ict@zebotech.co.ke 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://softkenya.com/it/techbiz-ltd/
http://softkenya.com/it/tk-professional-computer-services/
http://softkenya.com/it/track-and-trace-kenya-ltd/
http://softkenya.com/it/web-professional-services/
http://softkenya.com/it/websoft-development/
http://softkenya.com/it/webspacekenya-it-solutions/
http://softkenya.com/it/zebotech-business-solutions/
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APPENDIX F: RESEARCH PERMIT 
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APPENDIX G: TURNIT REPORT 
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APPENDIX H: SE BENCHMARK DATASET 

'GENDER' 'AGE' 'LOLE' 'BDGREE' 'ROLE' 'GSOLE' 'GSBDEGREE' 'UNIVERSITY' 'RBACHELORS' 'R' 'D' 'A' 'C' 'CLASS' 
2 2 2 1 3 2 44 2 3 11 1.3 6.7 9 1 
2 1 2 2 3 2 51 2 4 10.1 1 7.3 10.5 1 
2 2 2 1 3 1 1621 2 4 7.5 1.2 5.9 10.5 1 
2 2 2 2 3 2 8297 2 4 10.9 1.4 5.3 10.5 1 
2 2 2 1 3 1 8350 2 3 1 1.1 5.6 9 1 
2 2 2 2 4 1 9737 2 4 11.4 1.1 6.2 12 1 
2 2 2 1 3 1 10185 2 4 12 1.3 8.8 10.5 1 
2 2 2 1 3 1 10932 2 3 1.7 1 4.9 9 1 
2 2 2 1 4 1 13344 2 4 11 1.5 6.7 12 1 
2 2 2 1 3 2 350 2 3 1.9 1.9 1.1 4.5 2 
2 2 2 7 4 1 893 2 3 3 2.3 1.5 5.3 2 
2 2 2 0 4 2 3838 2 3 2.7 1.8 1.3 5.3 2 
1 2 2 2 4 1 4973 2 4 0.1 1.5 1 6 2 
2 2 2 1 3 1 5147 2 3 2.6 2.5 1.3 4.5 2 
1 1 2 2 2 2 5508 2 4 2.7 2.1 0.8 4.5 2 
2 2 2 16 2 2 6567 2 3 1.5 1.7 1 3.8 2 
2 2 2 1 4 1 6907 2 3 3 2.8 1.5 5.3 2 
2 2 2 7 3 2 7134 2 3 0.3 1.8 0.7 4.5 2 
2 2 2 1 3 2 7626 2 3 1.5 2.1 0.8 4.5 2 
1 2 2 2 3 1 9128 2 3 1.1 1.9 1.1 4.5 2 
1 2 2 1 3 2 9256 2 2 2.7 2.5 1 3.8 2 
1 2 2 2 4 1 9769 2 3 1.5 2 1 5.3 2 
2 2 2 4 3 2 11759 2 3 2.4 2.2 1.2 4.5 2 
2 2 2 2 3 2 55 2 3 1.5 0.6 1.3 3 3 
1 1 2 2 4 2 137 2 3 2.4 0.6 1.3 3.5 3 
2 2 2 1 3 2 172 2 3 1.8 0.6 1.6 3 3 
2 2 2 1 3 1 184 2 3 1.4 0.7 1.4 3 3 
2 2 2 2 3 1 184 2 3 1.2 0.5 1.5 3 3 
2 2 2 2 4 2 236 2 3 0.6 0.6 1.7 3.5 3 
2 2 2 25 2 2 272 2 3 1.4 0.6 1.3 2.5 3 
1 2 2 1 4 2 429 2 4 2.1 0.8 1.6 4 3 
2 2 2 2 3 1 982 2 3 0.6 0.5 1.4 3 3 
2 2 2 2 4 2 3725 2 3 2 0.7 1.3 3.5 3 
2 2 2 1 3 1 5904 2 3 1.4 0.6 1.3 3 3 
2 1 2 1 3 2 5904 2 3 0.9 0.6 1.3 3 3 
1 2 2 2 3 2 6294 2 3 1.5 0.5 1.3 3 3 
2 2 2 1 2 1 6741 2 3 2.2 0.6 1.7 2.5 3 
2 2 2 1 2 2 7376 2 3 1.3 0.7 1.3 2.5 3 
1 2 2 4 4 2 10051 2 3 1.5 0.7 1.3 3.5 3 
2 2 1 1 4 1 11127 1 3 2.2 0.8 1.9 3.5 3 
1 2 2 2 4 1 11516 2 3 0.9 0.7 1.5 3.5 3 
2 2 2 2 3 2 11664 2 4 1.5 0.5 1.1 3.5 3 
1 1 1 1 4 1 12232 1 3 1.3 0.8 1.3 3.5 3 
2 2 2 2 3 1 13147 2 4 1.8 0.7 1 3.5 3 
2 2 2 2 4 1 15401 2 3 1.8 0.7 1.6 3.5 3 
2 2 2 1 3 1 16347 2 4 2.2 0.8 1.6 3.5 3 
2 2 1 1 4 1 47 1 4 3.8 0.9 2.3 3 4 
2 2 1 1 4 1 47 1 4 3.7 0.9 2.2 3 4 
2 2 2 2 4 1 52 2 3 3.4 0.8 2.1 2.6 4 
2 2 2 1 3 2 96 2 3 1.4 0.7 1.9 2.3 4 
2 2 2 2 4 1 108 2 4 4 0.9 2.6 3 4 
2 2 2 0 3 1 220 2 3 0.3 0.5 1.4 2.3 4 
2 1 2 2 4 1 272 2 4 3.8 0.8 2.3 3 4 
2 2 2 2 4 2 315 2 3 3.5 0.7 2.1 2.6 4 
2 1 2 2 4 1 434 2 4 1.4 0.5 1.3 3 4 
2 2 2 2 3 1 439 2 3 1.5 0.7 1.5 2.3 4 
2 2 2 4 4 1 485 2 4 3.9 0.9 2.5 3 4 
1 2 2 14 4 2 974 2 3 2.9 0.7 1.9 2.6 4 
2 2 2 2 4 1 1111 2 4 3.4 0.7 1.9 3 4 
2 2 2 2 3 1 1219 2 3 3 0.7 2 2.3 4 
2 2 2 1 3 2 1995 2 2 3.1 1 1.9 1.9 4 
2 2 2 2 4 1 3668 2 3 3.9 0.6 1.7 2.6 4 
2 2 2 12 3 1 3741 2 3 3.8 0.9 2.3 2.3 4 
1 1 2 2 4 1 3931 2 4 3.9 0.8 2.5 3 4 
2 2 2 2 3 2 4793 2 3 3.6 0.5 2 2.3 4 
2 2 2 2 4 2 5338 2 3 3 0.8 2.1 2.6 4 
2 2 2 1 3 1 5400 2 3 3.1 0.7 1.9 2.3 4 
1 2 2 1 4 1 6874 2 4 3 0.8 2.2 3 4 
1 2 2 2 4 1 7269 2 4 3.5 0.8 2.1 3 4 
2 2 2 1 3 1 7376 2 3 1.1 0.7 1.4 2.3 4 
2 2 2 1 2 1 7564 2 3 3.5 0.7 2.1 1.9 4 
2 2 2 7 2 2 7627 2 3 3.3 0.8 2 1.9 4 
1 1 2 2 4 1 9198 2 4 3.4 0.8 1.9 3 4 
1 2 2 2 3 1 11000 2 3 1.9 0.6 1.6 2.3 4 
2 1 2 2 3 1 11630 2 3 3.4 0.7 1.4 2.3 4 
2 2 2 1 4 1 11759 2 3 3.4 0.7 2.1 2.6 4 
1 2 2 2 4 1 11788 2 3 0.6 0.5 1.4 2.6 4 
2 1 2 2 3 1 12515 2 3 0.2 0.5 2 2.3 4 
2 2 2 20 3 1 12515 2 3 0.6 0.7 1.8 2.3 4 
2 1 2 2 4 1 12867 2 3 1 0.7 2 2.6 4 
2 2 2 1 3 1 13543 2 3 1.8 0.7 1.6 2.3 4 
2 2 2 2 3 1 13697 2 4 2.7 0.6 1.8 2.6 4 
2 2 2 2 3 2 14587 2 3 3.4 0.7 1.8 2.3 4 
2 2 2 2 3 2 15041 2 3 2.1 0.7 1.7 2.3 4 
2 2 2 2 3 1 15863 2 3 3.5 0.8 2.1 2.3 4 
1 1 2 2 4 1 16183 2 3 1.9 0.5 1.7 2.6 4 
2 2 2 1 3 2 350 2 3 1.7 1.6 0.9 1.8 5 
2 2 2 2 3 2 431 2 3 0.8 1.1 0.7 1.8 5 
2 2 2 1 3 2 914 2 3 1.4 2.2 0.8 1.8 5 
2 2 2 23 2 2 993 2 2 0.6 1.3 0.6 1.2 5 
2 2 2 2 4 2 1111 2 3 1 1.1 0.5 2.1 5 
2 1 2 2 3 1 1282 2 2 1 1.5 0.7 1.5 5 
2 1 2 2 4 1 1759 2 4 1.5 1.9 1 2.4 5 
2 3 2 1 3 1 2673 2 3 1 1.6 0.7 1.8 5 
2 2 2 2 3 1 4795 2 3 2 1.7 1.1 1.8 5 
2 2 2 2 4 1 5752 2 3 1.3 1.3 0.9 2.1 5 
1 2 2 2 4 1 6996 2 3 0.4 1.5 0.5 2.1 5 
2 2 2 1 2 1 7428 2 3 1.3 1.5 0.8 1.5 5 
2 2 2 1 3 2 8310 2 3 1.5 1.8 0.8 1.8 5 
2 2 2 28 3 2 44 2 3 0.4 0.7 0.5 1.5 6 
2 2 2 1 3 1 53 2 3 0.5 0.9 0.5 1.5 6 
2 2 2 27 4 2 64 2 3 0.3 0.9 0.5 1.8 6 
2 2 2 2 3 1 67 2 3 1 1 0.6 1.5 6 
1 2 2 1 4 2 165 2 4 0.5 0.8 0.6 2 6 
2 2 2 4 3 2 172 2 3 0.7 0.9 0.7 1.5 6 
2 2 2 1 3 2 255 2 3 0.5 0.9 0.5 1.5 6 
2 2 2 1 4 1 272 2 3 0.8 0.9 0.6 1.8 6 
1 2 2 1 3 1 387 2 3 0.9 0.8 0.7 1.5 6 
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2 2 2 1 3 1 387 2 3 0.3 0.8 0.5 1.5 6 
2 2 2 0 4 2 429 2 4 0.5 0.8 0.5 2 6 
2 2 2 6 3 2 547 2 3 0.7 0.7 0.6 1.5 6 
1 2 1 1 4 1 849 1 4 0.5 1.1 0.9 2 6 
2 3 2 1 2 1 1228 2 2 0.7 1 0.6 1 6 
2 1 2 2 4 1 1843 2 3 0.2 0.8 0.6 1.8 6 
2 2 2 24 3 2 2774 2 3 0 0.7 0.5 1.5 6 
1 2 2 2 3 2 3579 2 3 0.2 0.7 0.4 1.5 6 
2 2 2 0 4 2 3666 2 3 0.4 0.8 0.5 1.8 6 
2 3 2 1 3 2 4023 2 3 0.7 0.9 0.6 1.5 6 
2 2 2 18 3 2 4042 2 3 0.3 0.9 0.5 1.5 6 
2 1 2 2 4 2 4805 2 3 0.7 0.8 0.5 1.8 6 
1 2 2 1 2 2 6741 2 3 0.3 0.7 0.4 1.3 6 
2 2 2 2 2 2 6835 2 3 0.5 0.7 0.4 1.3 6 
1 2 2 1 3 2 7770 2 4 0.5 1 0.5 1.8 6 
2 2 2 2 4 2 8011 2 3 0.3 0.5 0.5 1.8 6 
2 2 2 7 3 1 8718 2 2 0.5 0.8 0.5 1.3 6 
2 2 2 2 4 1 9122 2 3 0.5 1 0.5 1.8 6 
2 1 2 2 4 2 9748 2 3 0.8 0.8 0.6 1.8 6 
2 2 2 2 4 1 9803 2 4 0.2 0.8 0 2 6 
1 2 2 1 3 1 9837 2 4 0.1 0.9 0.5 1.8 6 
2 1 2 1 3 1 10971 2 3 0.5 0.8 0.6 1.5 6 
1 2 2 17 3 2 11637 2 3 1 0.7 0.7 1.5 6 
2 1 2 1 3 1 11759 2 4 0.5 0.9 0.7 1.8 6 
2 2 2 2 4 1 11852 2 3 1 0.9 0.7 1.8 6 
1 1 2 1 4 2 12061 2 3 0.5 0.8 0.5 1.8 6 
2 1 2 2 3 2 12497 2 3 0.7 0.8 0.5 1.5 6 
2 2 2 2 3 1 13473 2 3 0.8 1 0.6 1.5 6 
1 2 2 1 4 2 13478 2 4 0.7 1 0.6 2 6 
2 2 2 2 3 2 14662 2 3 0.2 0.8 0.4 1.5 6 
2 2 2 2 4 2 16097 2 3 0.6 0.7 0.6 1.8 6 
1 2 2 2 2 1 17168 2 3 0.7 0.7 0.6 1.3 6 
2 2 2 1 4 1 17205 2 2 0.4 0.8 0.6 1.5 6 
2 2 2 2 3 2 279 2 3 1.1 0.5 0.5 1.3 7 
1 2 2 0 3 2 1019 2 4 0.3 0.4 0.4 1.5 7 
2 2 2 0 3 2 1802 2 3 0.8 0.6 0.5 1.3 7 
2 2 2 2 4 1 4557 2 3 0.5 0.5 0.3 1.5 7 
1 2 2 1 4 1 6874 2 4 1.3 0.6 0.4 1.7 7 
1 2 2 0 4 2 8011 2 3 0.4 0.6 0.4 1.5 7 
2 2 2 1 4 1 11154 2 4 1.3 0.8 0.6 1.7 7 
1 1 2 2 4 2 11788 2 4 0.5 0.6 0.4 1.7 7 
2 2 2 1 4 2 13543 2 3 0.3 0.6 0.3 1.5 7 
2 2 2 26 3 2 129 2 3 0.4 0.4 0 1.1 8 
2 3 2 2 3 2 1995 2 2 0.2 0.4 0.3 0.9 8 
1 2 2 24 3 2 4501 2 3 0.3 0.5 0.4 1.1 8 
2 2 2 2 4 2 4566 2 3 0.2 0.4 0.3 1.3 8 
1 2 2 2 4 2 7500 2 4 0.5 0.4 0.5 1.5 8 
2 2 2 2 4 1 9129 2 3 0.6 0.5 0.4 1.3 8 
1 2 2 0 3 2 11425 2 3 0.8 0.4 0.5 1.1 8 
2 2 2 1 4 1 17935 2 3 0.5 0.6 0.5 1.3 8 
1 2 1 1 4 2 34 1 3 1.3 0.6 0.6 1.2 9 
1 2 2 2 3 1 51 2 3 0.8 0.5 0.5 1 9 
2 1 2 1 3 1 184 2 3 0.4 0.5 0.6 1 9 
2 2 2 2 3 2 184 2 3 0.5 0.5 0.4 1 9 
2 2 2 1 2 1 429 2 3 0.7 0.5 0.5 0.8 9 
2 2 2 1 4 1 527 2 3 1.2 0.6 0.6 1.2 9 
2 2 2 2 3 1 2921 2 3 1 0.6 0.6 1 9 
2 2 2 2 3 1 4217 2 2 1.1 0.4 0.3 0.8 9 
1 1 2 2 4 1 5812 2 4 1.4 0.6 0.6 1.3 9 
2 2 2 2 2 1 6545 2 2 0.5 0.4 0.4 0.7 9 
2 2 2 2 3 2 7299 2 4 1.1 0.5 0.6 1.2 9 
1 1 2 7 3 1 8718 2 4 1.4 0.5 0.6 1.2 9 
2 2 2 4 3 2 8776 2 3 0.5 0.7 0 1 9 
2 2 2 1 3 1 10859 2 3 0.5 0.5 0.6 1 9 
2 1 2 2 3 1 11659 2 4 0.5 0.5 0.4 1.2 9 
2 2 2 2 3 1 11759 2 4 1 0.5 0.6 1.2 9 
2 2 2 2 4 1 12187 2 4 0.6 0.5 0.5 1.3 9 
1 2 2 1 3 1 14351 2 4 0.9 0.6 0.5 1.2 9 
2 1 2 2 3 2 16213 2 3 0.5 0.4 0.5 1 9 
2 2 2 2 3 2 55 2 3 0.2 1 0.9 0.9 10 
1 1 2 1 3 2 57 2 3 0.6 1 0.8 0.9 10 
2 2 2 28 3 1 64 2 3 1.1 1 1.1 0.9 10 
2 2 2 22 2 1 175 2 4 0.5 0.9 0.8 0.9 10 
2 2 2 1 3 2 314 2 3 1.1 1.3 1.1 0.9 10 
2 2 2 1 3 2 350 2 2 1.1 1.1 1.2 0.8 10 
2 2 2 1 3 2 382 2 3 0.4 0.8 0.7 0.9 10 
1 2 2 1 4 1 485 2 3 0.1 1.2 0.9 1.1 10 
2 2 2 2 4 2 1018 2 3 1.2 1.1 1 1.1 10 
2 2 2 1 3 1 1759 2 4 0.9 0.9 1.2 1.1 10 
2 2 2 1 3 1 1940 2 3 1.1 1.1 1 0.9 10 
2 1 2 1 3 1 2783 2 3 0.2 0.9 0.7 0.9 10 
1 1 1 2 4 1 2988 1 4 0.2 1.2 0.9 1.2 10 
1 2 2 2 3 1 3717 2 3 1 1.1 1 0.9 10 
2 2 2 7 3 2 4043 2 1 0.8 1 0.9 0.6 10 
2 2 2 1 3 2 4319 2 4 0.2 1.1 1.1 1.1 10 
2 2 2 2 2 2 4417 2 4 0.3 0.8 0.8 0.9 10 
2 2 2 1 3 1 4501 2 3 0.9 1.1 1 0.9 10 
2 2 2 2 3 1 5081 2 3 0.3 0.8 0.7 0.9 10 
2 2 2 2 4 1 5815 2 3 0.7 1 0.9 1.1 10 
1 2 2 1 4 2 5904 2 3 0.9 1.3 1 1.1 10 
1 2 2 22 2 2 6345 2 3 0.5 0.6 0.8 0.8 10 
2 2 2 1 4 1 6545 2 3 1.1 1.2 1.1 1.1 10 
2 2 2 1 3 1 6624 2 3 0.4 0.7 0.7 0.9 10 
2 2 2 2 3 1 7783 2 3 0.8 0.9 1 0.9 10 
2 2 2 2 3 1 8203 2 2 0.7 0.9 0.9 0.8 10 
2 2 2 2 2 1 8949 2 3 0.9 1 1 0.8 10 
2 2 2 1 4 2 10930 2 3 0.4 1 1.2 1.1 10 
2 2 2 2 4 2 11603 2 3 -1.2 1.1 0 1.1 10 
2 2 2 1 3 1 11759 2 3 0.8 1.1 1.2 0.9 10 
2 2 2 1 2 1 14720 2 3 1 0.9 1 0.8 10 
2 2 2 2 3 2 16687 2 3 0.3 0.9 0.7 0.9 10 
2 2 2 1 3 1 28 2 3 5.8 6.7 3.6 0.8 11 
2 3 2 4 4 2 137 2 3 3.8 5.5 2.7 1 11 
1 2 2 1 3 1 184 2 4 3.6 5.4 2.6 1 11 
2 2 2 0 3 2 252 2 4 3.4 5.3 2.6 1 11 
2 2 2 1 3 1 272 2 4 5.2 7.1 3.2 1 11 
1 2 2 4 4 1 272 2 3 2.2 7.9 3.2 1 11 
2 1 2 1 4 1 272 2 4 5.9 6.8 3.7 1.1 11 
2 1 2 1 4 1 272 2 4 5.7 6.9 3.2 1.1 11 
2 1 2 1 4 1 272 2 4 6 6.3 3.4 1.1 11 
2 2 2 24 4 1 462 2 3 5.5 6.3 3.2 1 11 
1 2 2 0 4 2 501 2 3 3.4 7 2.6 1 11 
2 1 2 2 4 1 883 2 3 5.1 6.5 3.2 1 11 
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2 2 2 2 3 2 1087 2 3 2.7 6.6 2.4 0.8 11 
2 1 2 22 4 1 1237 2 4 2.2 6.8 2.5 1.1 11 
1 2 2 2 4 2 1428 2 3 2.9 5.6 2.2 1 11 
1 2 2 22 4 2 1764 2 4 3.6 5.6 2.6 1.1 11 
2 2 2 4 4 1 1906 2 4 5.4 8.4 3.3 1.1 11 
2 2 2 2 3 2 1906 2 4 4.8 7.2 3 1 11 
2 2 2 1 3 1 2009 2 4 1.5 5.6 3.1 1 11 
1 1 2 2 3 1 2041 2 3 2.9 3.6 2.4 0.8 11 
1 2 2 1 4 1 2925 2 4 5.9 5.1 3.9 1.1 11 
1 2 2 0 4 2 3076 2 4 5.6 6.4 3.4 1.1 11 
2 2 2 11 4 2 3076 2 4 5.7 6.2 3.5 1.1 11 
1 2 2 0 4 2 3076 2 4 5.3 6.3 3.2 1.1 11 
2 2 1 2 3 2 3136 1 3 5.5 5.8 3.4 0.8 11 
2 2 2 1 3 1 3449 2 3 4.9 6.1 3.1 0.8 11 
1 2 2 0 4 2 3670 2 4 1.5 5.5 2 1.1 11 
2 2 2 1 3 1 3905 2 3 4.5 5.7 3.2 0.8 11 
2 2 2 4 3 2 4439 2 3 3.8 7.1 2.6 0.8 11 
2 2 2 7 3 2 4439 2 3 4.8 7 3 0.8 11 
2 2 2 1 4 1 4971 2 3 5.1 7.3 3.4 1 11 
2 2 2 1 3 1 5056 2 4 4.5 7.5 3.7 1 11 
2 3 2 0 3 2 5400 2 3 5.5 6.7 3.4 0.8 11 
2 2 2 1 4 2 5400 2 3 5.9 6.9 3.7 1 11 
1 2 2 1 4 2 5812 2 4 5.7 7.7 3 1.1 11 
2 2 2 17 4 2 6857 2 3 0.5 4.2 2 1 11 
2 2 2 2 4 2 6884 2 4 2.2 6 3.5 1.1 11 
1 2 2 2 4 1 6948 2 4 2.9 6.6 2.9 1.1 11 
2 2 2 2 3 2 8116 2 3 5.7 6.4 2.7 0.8 11 
2 2 1 1 3 2 8195 1 4 4.4 6.4 2.9 1 11 
1 2 1 1 4 2 8351 1 3 5.1 8.2 3.4 1 11 
2 2 2 21 4 2 8818 2 3 5.4 6.2 3.3 1 11 
2 1 2 2 4 1 9173 2 4 2.2 7.2 2.9 1.1 11 
2 2 2 2 3 1 9508 2 3 5.7 6.7 2.8 0.8 11 
1 2 2 1 3 2 11302 2 2 1.3 5.2 2 0.7 11 
2 2 2 2 4 2 11651 2 3 5.5 6.6 3 1 11 
1 2 2 1 4 1 12289 2 4 3.6 5 2.6 1.1 11 
2 2 1 2 4 1 15022 1 3 3.8 5.6 2.6 1 11 
2 2 1 2 4 1 15022 1 3 3.8 6.9 3.1 1 11 
1 2 2 1 4 1 15645 2 4 3.8 6.4 3.5 1.1 11 
2 2 2 2 3 1 17470 2 3 2.9 4.7 2 0.8 11 
2 1 2 1 3 2 387 2 3 1.3 2.3 0.5 0.8 12 
2 2 2 1 3 1 1155 2 3 1.4 2.7 0.6 0.8 12 
2 2 2 2 2 2 1618 2 3 0.4 2.3 0.7 0.6 12 
2 2 2 2 4 1 1754 2 3 1.3 3.5 0.6 0.9 12 
1 2 2 14 3 2 4056 2 2 1.3 2.4 0.7 0.6 12 
2 2 2 2 4 2 4554 2 3 1.1 4 0.7 0.9 12 
1 2 2 2 4 1 4569 2 3 1.2 2.6 0.7 0.9 12 
2 2 1 1 4 1 6290 1 3 1.7 3.9 0.7 0.9 12 
1 2 2 1 3 2 6874 2 3 0.4 3.8 0.7 0.8 12 
2 2 2 1 3 1 7557 2 3 1.1 3.7 0.9 0.8 12 
1 2 2 4 4 1 8161 2 4 1.6 3.1 0.9 1 12 
2 2 2 1 3 2 8350 2 3 1.4 3.4 0.7 0.8 12 
2 2 2 2 3 1 8888 2 3 0.2 2.4 0.4 0.8 12 
1 2 2 2 3 2 9141 2 3 1.1 3 0.7 0.8 12 
2 1 2 1 4 1 10932 2 3 1.1 3.3 0.8 0.9 12 
2 2 1 1 4 1 11127 1 4 0.8 3.8 0.8 1 12 
2 2 2 2 3 1 11467 2 3 1.7 2.8 0.6 0.8 12 
2 2 2 19 3 1 12289 2 3 0.6 3 0.6 0.8 12 
2 2 2 2 3 1 15051 2 4 1.6 3.4 0.9 0.9 12 
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APPENDIX I: SE FIELD DATASET 

'GENDER' 'AGE' 'LOLE' 'BDGREE' 'ROLE' 'GSOLE' 'GSBDEGREE' 'UNIVERSITY' 'RBACHELORS' 'R' 'D' 'A' 'C' 'CLASS' 
2 1 1 1 2 1 1 2 2 3.9 1.9 1.8 0.9 3 
2 1 1 1 2 2 2 2 2 4.7 2.2 1.4 0.9 3 
1 3 2 2 3 3 3 2 2 5.2 2 1.6 1.1 3 
2 2 1 1 2 1 9 1 2 5.7 2.9 1.7 0.9 3 
1 4 1 3 2 1 7 3 3 1.5 9.7 3.4 3.8 3 
2 1 1 1 2 2 4 2 2 1 1 2.1 1.2 4 
1 1 1 1 4 3 2 1 4 1 1.7 2.1 2.4 4 
2 2 1 1 2 2 3 1 3 0.9 1 1.8 1.5 4 
2 1 1 1 3 2 3 1 3 1 1.2 1.9 1.8 4 
2 1 1 1 2 1 1 2 3 1.4 1.4 2.1 1.5 4 
2 3 1 1 2 2 3 1 3 1.7 1.5 2.2 1.5 4 
1 1 1 1 4 3 3 2 2 1.3 1 2 1.8 4 
2 1 1 1 2 1 1 1 4 1.7 2 1.8 1.8 4 
2 1 1 1 3 1 9 2 3 1.5 1.6 2.1 1.8 4 
2 2 1 2 2 3 10 1 2 1.4 1.6 1.9 1.2 4 
2 2 1 1 2 1 9 1 2 0.6 2 2 1.2 4 
2 2 2 1 3 1 10 2 3 1.3 1.8 1.8 1.8 4 
1 4 1 1 3 3 7 3 3 1.3 1.5 1.9 1.8 4 
1 2 1 1 2 3 7 1 3 1.5 8.7 3.4 3.8 4 
1 3 1 2 3 3 8 3 3 0.9 8 3.5 4.5 4 
1 3 1 1 3 2 2 1 2 1.6 1.7 4.8 1.3 5 
2 3 1 2 2 3 3 2 2 1.5 1.3 5.3 1 5 
2 2 1 1 2 3 7 2 3 1.9 2.3 4.4 1.3 5 
2 3 1 2 2 1 8 3 2 2.8 2.1 4.8 1 5 
2 2 1 3 2 3 7 2 2 2.1 1.7 4.8 1 5 
1 4 1 2 2 2 4 2 3 1.8 1.4 5.3 1.3 5 
2 1 1 1 2 1 1 1 4 3 2.4 4.5 1.5 5 
2 2 1 2 2 2 4 2 3 1.8 1.5 4.8 1.3 5 
2 3 1 3 3 2 8 3 3 1.6 1.1 5.4 1.5 5 
1 2 1 3 3 2 3 3 3 1.8 1.1 5.1 1.5 5 
2 2 1 2 3 2 2 2 2 1.8 0.9 5.3 1.3 5 
2 2 1 2 3 2 10 2 3 1.5 10 3.2 4.5 5 
2 3 2 1 4 1 10 1 3 1.5 8.7 3.7 5.3 5 
2 2 1 1 4 1 11 3 3 0.8 12 3.4 5.3 5 
1 3 1 2 2 3 5 2 2 2.2 1.4 2.3 1.5 6 
1 3 1 2 2 3 8 2 2 1.5 1.2 2.3 1.5 6 
2 2 1 1 3 2 3 1 3 1.3 1 2.5 2.3 6 
2 2 1 3 2 2 5 1 3 2.1 1.5 2.7 1.9 6 
1 3 1 1 2 3 6 2 3 1.8 1.1 2.5 1.9 6 
2 2 1 1 3 3 8 3 2 2.1 0.7 2.4 1.9 6 
1 4 1 2 2 1 8 2 2 2.1 1.4 2.4 1.5 6 
2 3 1 2 3 1 5 2 3 1.5 1 2.7 2.3 6 
1 1 1 2 3 2 10 1 3 9.7 2.2 11.5 3 7 
2 1 1 1 2 2 9 2 2 7.3 2.6 9.6 2 7 
2 1 1 1 4 2 3 1 2 8.7 3.2 10.5 3 7 
2 1 1 1 4 3 3 1 2 10 2.9 10.7 3 7 
2 3 1 1 2 1 9 1 3 7.7 2.9 11.1 2.5 7 
2 3 1 1 3 2 10 1 3 9.3 3.3 9.8 3 7 
2 2 1 1 4 2 6 1 3 7 3.1 10.8 3.5 7 
2 4 1 3 3 2 10 2 4 8.7 2.9 10.1 3.5 7 
2 2 1 1 2 2 6 1 1 5.7 3.1 10 1.5 7 
1 5 1 2 4 2 3 2 4 7.7 3.8 9.9 4 7 
2 2 1 1 3 1 3 1 2 8.7 2.9 9.2 2.5 7 
2 2 1 1 3 1 3 1 4 12 3.7 10 3.5 7 
2 4 1 1 3 2 3 1 3 2.2 3.9 1.5 9 8 
1 2 1 1 3 1 5 1 3 3.8 5.9 1.3 9 8 
2 1 1 1 3 1 1 1 3 3.7 5.2 1.4 9 8 
2 1 1 1 3 4 1 1 3 1.7 4.2 1.3 9 8 
2 1 1 1 2 2 3 1 3 1.7 12 2.9 3.8 8 
2 1 1 1 3 2 3 2 3 1.7 10.7 3.1 4.5 8 
2 2 1 2 3 2 2 3 3 2.7 1.9 1.8 1.3 9 
2 2 1 2 2 3 7 2 2 2.4 2.7 1.5 0.9 9 
2 2 1 3 3 1 1 3 3 3.2 1.6 1.7 1.3 9 
2 3 1 2 2 3 5 2 2 3 1.6 1.7 0.9 9 
1 3 1 1 2 2 3 2 2 3.5 1.9 1.5 0.9 9 
1 1 1 1 2 2 9 1 3 4.9 2.1 1.5 1.1 9 
2 1 1 1 2 1 1 1 2 4.5 2.5 1.8 0.9 9 
1 3 1 1 2 2 6 1 2 5.5 2.3 1.7 0.9 9 
2 1 1 3 2 2 7 1 2 4 2.1 1.5 0.9 9 
2 3 1 1 2 4 9 1 3 6 3 1.6 1.1 9 
2 1 1 1 3 1 1 1 3 3 1.7 1.2 1.3 9 
1 1 2 1 4 1 10 1 2 6 2.9 1.6 1.3 9 
2 1 1 1 2 1 1 1 3 5.5 3 1.6 1.1 9 
2 2 1 1 2 2 7 1 3 3.9 2.3 1.6 1.1 9 
2 1 2 1 2 2 9 2 1 1.4 1.8 1.8 0.9 10 
2 2 1 1 2 2 3 3 3 1.1 1.3 2 1.5 10 
2 2 1 3 4 2 3 3 3 1.1 1.5 2.1 2.1 10 
2 1 1 3 3 2 9 3 4 0.9 1.3 2.2 2.1 10 
2 2 1 2 2 3 3 2 3 1 1.2 1.8 1.5 10 
1 3 1 2 2 2 3 2 2 1.4 1.7 1.7 1.2 10 
2 2 1 2 2 2 5 2 3 1 1.2 2.1 1.5 10 
2 3 1 1 4 1 2 3 3 0.8 1 2 2.1 10 
2 2 1 1 2 3 8 1 2 1.4 2 2.2 1.2 10 
2 3 1 3 4 1 2 3 2 1.4 1.6 2.1 1.8 10 
1 2 1 1 2 2 3 1 2 1 0.9 1.9 1.2 10 
2 2 1 1 4 1 4 3 3 1.1 1.1 1.9 2.1 10 
2 3 1 2 3 2 2 2 3 1 1.1 2.1 1.8 10 
2 1 1 1 2 4 1 2 3 0.9 1.1 1.6 1.5 10 
1 2 2 2 3 2 6 2 2 0.9 0.8 2.1 1.5 10 
1 3 2 2 2 2 8 2 3 1 1.2 2.1 1.5 10 
2 2 1 2 3 2 5 1 2 1.7 1.4 5.2 1.3 11 
2 1 1 1 3 1 1 1 4 2.2 1.3 5.6 1.8 11 
1 1 1 1 3 1 3 1 3 1.6 1.5 5.4 1.5 11 
2 3 1 2 1 3 3 2 2 2.6 1.7 4.5 0.8 11 
2 3 1 1 2 2 7 2 3 2.6 2.3 5 1.3 11 
1 2 1 2 3 2 9 2 2 2.5 1.9 4.2 1.3 11 
2 1 1 2 3 1 1 1 3 2 1.9 5.4 1.5 11 
1 2 1 2 2 3 7 1 2 2.4 2.3 4.9 1 11 
1 2 1 2 2 2 6 2 2 2.3 2.3 5.4 1 11 
1 2 1 1 2 2 3 2 3 1.6 1.1 5 1.3 11 
1 2 1 2 2 1 1 2 2 2.4 2.3 4.1 1 11 
2 1 1 1 2 2 6 1 2 2.5 1.6 5.7 1 11 
2 3 1 1 2 2 7 1 3 1.8 1.3 5.1 1.3 11 
2 2 1 1 4 2 3 1 4 3 2.4 5.9 2 11 
1 1 1 1 3 2 8 2 2 2.3 1.3 5.5 1.3 11 
2 2 1 2 3 2 8 2 3 1.3 1.5 2.5 2.3 12 
2 1 1 3 4 2 6 1 4 1.7 1.1 2.9 3 12 
2 2 1 1 3 2 2 2 3 1.1 0.7 2.6 2.3 12 
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1 1 1 1 4 2 9 1 4 1.9 1.3 2.1 3 12 
1 3 1 2 3 1 5 2 3 1.1 1 2.7 2.3 12 
1 1 1 1 2 4 9 2 2 1.7 1.1 2.6 1.5 12 
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APPENDIX J: ACADEMIC LIBRARIANS FIELD DATASET 

'GENDER' 'AGE' 'LOLE' 'BDGREE' 'ROLE' 'GSOLE' 'GSBDEGREE' 'UNIVERSITY' 'RBACHELORS' 'R' 'D' 'A' 'C' 'CLASS' 
1 4 1 1 3 3 2 1 3 3 4 1 2 3 
1 4 1 3 2 2 4 1 2 1 1 1 1 7 
1 3 1 1 2 3 2 1 2 8 1 9 1 1 
2 2 1 1 2 2 4 1 3 1 3 2 1 2 
1 2 1 1 3 3 2 3 3 3 4 1 2 3 
1 5 1 1 2 3 2 1 2 2 2 1 1 7 
1 3 1 1 3 3 2 1 3 3 3 1 2 3 
1 5 1 1 3 3 2 3 3 8 1 9 1 1 
1 2 1 1 2 3 2 2 3 9 0 11 1 1 
1 3 1 2 2 2 2 2 2 2 2 1 1 7 
2 3 1 1 2 2 4 1 2 9 0 11 1 1 
1 3 1 1 3 3 10 2 2 3 1 1 2 3 
1 3 1 1 2 3 4 1 2 1 1 1 1 7 
1 3 1 1 2 3 2 3 3 10 1 9 1 1 
2 5 1 1 1 3 2 1 3 2 2 1 1 7 
1 2 1 1 3 3 2 1 3 2 2 5 5 5 
1 2 1 1 3 3 2 3 3 2 1 5 5 5 
1 2 1 1 3 3 2 1 3 3 3 1 2 3 
1 5 1 1 3 2 10 1 3 1 2 2 2 2 
1 5 1 1 3 4 1 1 3 3 3 1 2 3 
1 5 1 1 4 1 10 1 4 1 1 1 2 7 
1 2 1 1 2 2 10 1 3 1 2 3 1 2 
1 5 1 1 2 3 10 3 3 1 2 2 1 2 
2 2 1 1 3 3 2 1 3 10 1 11 1 1 
2 4 1 1 3 2 4 1 3 3 1 4 5 5 
2 4 1 1 2 3 4 1 3 1 2 2 1 2 
2 4 1 1 2 2 2 3 2 4 1 3 2 4 
2 4 1 1 3 3 4 1 3 4 1 4 3 4 
1 2 1 2 3 3 2 1 3 4 1 3 3 4 
2 5 1 1 2 4 10 1 3 2 2 2 1 2 
1 5 1 2 4 4 1 3 3 1 3 2 2 2 
1 1 1 2 2 1 2 2 2 8 1 9 1 1 
2 5 1 1 3 2 4 3 3 2 2 5 5 5 
2 5 1 2 3 4 1 3 3 2 2 5 5 5 
1 5 1 2 4 4 1 3 3 3 0 5 5 5 
1 2 1 1 3 3 5 1 3 12 1 11 1 1 
1 4 1 2 4 2 4 3 3 1 1 4 5 5 
2 5 1 2 4 4 1 1 2 1 2 3 2 2 
2 5 1 2 4 4 8 2 2 1 5 2 2 6 
1 4 1 2 2 3 2 1 3 3 2 2 2 3 
1 5 2 2 4 2 10 3 3 9 1 10 2 1 
2 5 1 2 3 3 2 2 3 1 5 2 2 6 
1 3 1 1 3 2 7 2 3 5 1 4 3 4 
1 2 1 1 3 3 2 2 3 5 1 3 3 4 
2 5 1 2 4 3 2 2 3 2 1 3 5 5 
2 3 1 1 4 2 4 3 3 1 10 2 11 6 
1 5 2 2 2 3 10 2 3 1 5 1 2 6 
2 5 1 2 4 3 4 3 3 4 1 3 4 4 
1 5 2 2 2 1 10 2 3 5 1 3 3 4 
2 5 2 1 3 3 10 3 3 3 2 6 5 5 
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APPENDIX K: PYTHON SAMPLE CODE FOR THE PROTOTYPE 

import tkinter.filedialog 
from tkinter import * 
#from ScrolledText import * 
import tkinter.ttk as ttk 
import pandas as pd 
import dill as pickle 
#import pickle 
import random 
import sqlite3 
import svmpy 
import logging 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
import itertools 
import argh 
import csv 
import decimal 
import math 
import copy 
import time 
import threading 
import matplotlib 
matplotlib.use("TkAgg") 
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg 
from matplotlib.figure import Figure 
from sklearn.preprocessing import StandardScaler 
splitRatio = 0.80 
splitRatio2 = 0.10 
#THIS CLASS IS FOR SVM CLASSIFIERS ONLY                      
class SVMRootclassifier(): 
        def __init__(self): 
                    #self.master = master 
                    self.value = None 
             
        def loadCsv(self,filename): 
                    self.filename=filename 
                    lines = csv.reader(open(filename, "r")) 
                    dataset = list(lines)                     
                    for i in range(len(dataset)):                     
                              dataset[i] = [float(x) for x in dataset[i]]              
                    return dataset 
                 
        def splitDataset2(self, dataset, splitRatio):# splits the dataset into two: training and test dataset 
                    self.dataset=dataset 
                    self.splitRatio=splitRatio 
                    freq = self.getClassDistribution(dataset) 
                    trainSet = [] 
                    copy = [] 
                    #print('key','frequency','trainsize') 
                    for keys,frequency in freq.items(): 
                            trainSize = int(frequency * splitRatio)                             
                            #print(keys,  frequency,  trainSize) 
                            fold = [] 
                            trainFold = [] 
                            for k in range(len(dataset)): 
                                    vector1=dataset[k]                                     
                                    if (vector1[-1]==keys): 
                                            fold.append(vector1)                                             
                            #print('frequency:len(fold):trainSize', frequency,len(fold),trainSize) 
                            while len(trainFold) < trainSize: 
                                    index = random.randrange(len(fold)) 
                                    trainFold.append(fold.pop(index)) 
                                    #print('fold',  fold) 
                            #trainSet.append(trainFold) 
                            trainSet= trainSet + trainFold 
                            #copy.append(fold) 
                            copy = copy + fold 
                            #print('copy',  copy) 
                    return [trainSet, copy] 
 
        def splitDataset(self, dataset, splitRatio):# splits the dataset into two: training and test dataset 
                    self.dataset=dataset 
                    self.splitRatio=splitRatio 
                    trainSize = int(len(dataset) * splitRatio)                     
                    trainSet = [] 
                    copy = list(dataset) 
                    while len(trainSet) < trainSize: 
                              index = random.randrange(len(copy)) 
                              trainSet.append(copy.pop(index)) 
                    return [trainSet, copy] 
                 
        #TAKES IN REQUIRED CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE         CLASSES   
        def refineDataset(self, dataset, mergeclasses):# removes unwanted classes from dataset 
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                    self.dataset=dataset 
                    self.classValue = mergeclasses 
                    dataset2 = []                                                                      
                    for i in range(len(dataset)):                     
                                vector1=dataset[i] 
                                if vector1[-1] in mergeclasses:                                         
                                        dataset2.append(vector1)                                               
                    return dataset2 
                 
        #CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES  
        def getClassDistribution(self,dataset):     
                    self.dataset = dataset 
                    #distinctcopy = list(dataset)                                         
                    dataset2 = {}  
                    counts = {}                                                   
                    #print('trainSet',  dataset)                     
                    for i in range(len(dataset)): 
                              vector1 = dataset[i] 
                              #print('vector1',vector1) 
                              #print('vector1[-1]',vector1[-1])                              
                              if (vector1[-1] in counts): 
                                        counts[vector1[-1]] += 1                                                                                 
                              else: 
                                        counts[vector1[-1]]=1                                          
                    return counts 
 
        def getClassAccuracy(self,testFile,correctClassified,incorrectClassified): 
                    self.testFile = testFile 
                    self.correctClassified = correctClassified 
                    self.incorrectClassified = incorrectClassified         
                    classAccuracy = {} 
                    for classValue,freq in testFile.items(): 
                            if classValue in correctClassified: 
                                n = freq 
                                x = correctClassified[classValue] 
                                y = x * 100/n 
                            else: 
                                y = 0.0 
                            classAccuracy[classValue] = y         
                    return classAccuracy         
 
        def getClassCodes(self,dataset,parentclass):             
                    self.dataset=dataset 
                    dataset2 = [] 
                    self.parentclass = parentclass 
                    #print('parentclass',parentclass)             
                    for i in range(len(dataset)): 
                              vector1 = dataset[i] 
                              vector = dataset[i]                               
                              value = float(parentclass) 
                             # print('parentclass',type(value),type(vector1[-1])) 
                              if (vector1[-1] == value): 
                                        #print(i,'class for 1',vector1[-1],value) 
                                        vector1[-1] = 1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)                                         
                              else: 
                                        #print(i,'class for -1',vector1[-1],value) 
                                        vector1[-1] = -1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)                                           
                    return dataset2                     
                                            
        def separateByRootClass(self,dataset,mergeclass,parentclass):# merges and then separates instances 
                    #into distinct classes  
                    self.dataset=dataset 
                    self.mergeclasses = mergeclass 
                    self.parentclass = parentclass 
                    separated = {}  
                    dataset2 = [] 
                    dataset3 = [] 
                    #print('parentclass,mergeclass,dataset',parentclass,mergeclass) 
                    positives = mergeclass[1] 
                    negatives = mergeclass[-1]  
                    #print('positives=:',positives) 
                    #print('negatives=:',negatives)                                                 
                    for k in range(len(dataset)): 
                                vector1=list(dataset[k])                         
                                if vector1[-1] in negatives:                                               
                                        vector1[-1] = -1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1) 
                                if vector1[-1] in positives:                                               
                                        vector1[-1] = 1         
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)                                     
                    return dataset2 
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        def svmTrainer(self,data,num_samples, num_features,para): 
                    #self.k = k 
                    self.data = data 
                    self.num_samples=num_samples 
                    self.num_features=num_features 
                    samples = [] 
                    value = [] 
                    labels = [] 
                    k = num_features 
                    #print('num_features',num_features)  
                    #print('data',data) 
                    #THIS SEPARATES SAMPLE CASES AND LABELS 
                    for i in range(len(data)): 
                              vector = data[i] 
                              #print('data,class',data[i],vector[-1]) 
                              value = vector[-1] 
                              #samples.append(vector[0:77])#THIS STANDS FOR RANGE OF ATTRIBUTES 
                              #samples.append(vector[0:19])#THIS STANDS FOR RANGE OF ATTRIBUTES 
                              samples.append(vector[0:k])#THIS STANDS FOR RANGE OF ATTRIBUTES 
                              labels.append(value)                     
                    #print('size',num_samples,num_features)                     
                    sample = np.matrix(samples).reshape(num_samples,num_features)                
                    label = np.matrix(labels).reshape(-1,1) 
                    #print('label',label)                     
                    #trainer = svmpy.SVMTrainer(svmpy.Kernel.linear(), para) #this is training with linear kernel 
                    #trainer = svmpy.SVMTrainer(svmpy.Kernel.gaussian(0.1), para) #this is training with linear kernel 
                    trainer = svmpy.SVMTrainer(svmpy.Kernel.gaussian(1.0), para) #this is training with linear kernel  
                    #trainer = svmpy.SVMTrainer(svmpy.Kernel._polykernel(0.1,1.0), para) #this is training with linear kernel                     
                    #print('trainer',trainer) 
                    #print('label1') 
                    predictor = trainer.train(sample, label) 
                    #print('label2') 
                    #print('predictor') 
                    return predictor 
 
        def Predict(self,predictor, X):             
                    self.predictor = predictor 
                    self.X = X              
                    #print('X',X,predictor) 
                    #print('predictor',predictor) 
                    result = []  
                    #vector = X[0:len(X)-1]  
                    vector = X                         
                    result.append(predictor.predict(vector))    
                    #result.append(svmpy.SVMPredictor.predict(vector))                    
                    return result                     
                 
        def getPredictions(self, predictor, testdata): 
                    self.predictor = predictor# summary of mean and std dev of each atribute in each class 
                    self.testdata = testdata 
                    predictions = [] 
                    test = []                     
                    for i in range(len(testdata)): 
                              #test = testSet[i] 
                              test.append(testdata[i])                               
                    #print('The testset is:',testdata) 
                    for i in range(len(test)): 
                              vector = test[i] 
                              result = self.Predict(predictor, vector) 
                              #print('Testset prediction is:',test[i],result) 
                              predictions.append(result) 
                    return predictions             
 
        def getAccuracy(self, testdata, predictions): 
                    self.testdata=testdata 
                    self.predictions=predictions 
                    correct = 0 
                    #print('Testset prediction is:',testdata,predictions) 
                    for i in range(len(testdata)): 
                              #print('Testset prediction is:',testdata[i],predictions[i]) 
                              vector = testdata[i] 
                              value1= predictions[i] 
                              value2 = vector[-1] 
                              #print('Testset prediction is:',value1[0],value2) 
                              if (value1[0] == value2): 
                                        #print('Testset prediction is:',vector[-1],predictions[i]) 
                                        correct += 1 
                    return (correct/float(len(testdata))) * 100.0 
                 
        def getLevelNodes(self, classTree,level): 
                    self.classTree = classTree 
                    self.level = level 
                    parent = [] 
                    childs = []                      
                    levelNodes = {} 
                    for classValue,instances in classTree.items(): 
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                             for i in range(len(instances)): 
                                       classlev = instances[0] 
                                       classlevel = classlev[0] 
                                       parent = instances[1] 
                                       childs = instances[2] 
                                       if (classlevel == level): #only for this level                        
                                              levelNodes[classValue] = [parent,childs] 
                    return levelNodes 
           
        def getTreeDepth(self, classTree): 
                    self.classTree = classTree                     
                    depth = 0                                         
                    for classValue,instances in classTree.items(): 
                             for i in range(len(instances)): 
                                       classlevel = instances[0] 
                                       level = classlevel 
                                       if(len(level) > 0): 
                                                 #print(type(level[0]),type(depth)) 
                                                 #print(level[0],depth) 
                                                 if (int(level[0]) > depth): #check leve of the current node 
                                                           depth = level[0]                                
                                    
                    return depth 
           
        def getChildrenOf(self, classvalue,classTree): 
                    self.classvalue = classvalue 
                    self.classTree = classTree 
                    childs = [] 
                    #print('class value is',classvalue)                     
                    for classValue,instances in classTree.items(): 
                             #print('classValue,classvalue',classValue,classvalue) 
                             if (classValue == classvalue): 
                                       #print('instances',instances) 
                                       #for i in range(len(instances)): 
                                                 #parent = instances[1] 
                                                 childs = instances[2] 
                                                 #print('instances',instances[2]) 
                    #print('childs',childs)                    
                    return childs 
           
        def getSubTrees(self, classTree):                     
                    self.classTree = classTree 
                    childs = []                     
                    subTrees = {} 
                    height = self.getTreeDepth(classTree) 
                    top = 0  
                    if (height > 0):                     
                             topNodes= self.getLevelNodes(classTree,top) 
                             #print('THESE ARE TOPNODES',topNodes) 
                             for classValue,instances in topNodes.items(): 
                                       if (classValue < 0): 
                                                 nextparent = classValue 
                                                 #print('nextparent,classvalue',nextparent,classValue) 
                                                 #childs = self.getChildrenOf(nextparent,classTree) 
                                                 while nextparent<0:                                                         
                                                        classes = [] 
                                                        childs = self.getChildrenOf(nextparent,classTree) 
                                                        #print('childs of: ',nextparent,'are:',childs) 
                                                        nextparent = 0 
                                                        for i in range(len(childs)): 
                                                                if (childs[i]>0): 
                                                                        classes.append(childs[i])     
                                                                else: 
                                                                        nextparent=childs[i]                                                          
                                                        if classValue not in subTrees: 
                                                                subTrees[classValue] = [] 
                                                        subTrees[classValue].append(classes)                                                      
                    return subTrees 
                 
        def getMainTrees(self, classTree):                     
                    self.classTree = classTree 
                    childs = [] 
                    mainTree = {}                                          
                    Tree = {} 
                    for classValue,instances in classTree.items(): 
                             #if (classValue < 0):                                          
                             maintreeid = instances[3] 
                             #print('maintreeid:',maintreeid) 
                             if maintreeid[0]>0:                                                         
                                    if maintreeid[0] not in mainTree: 
                                            mainTree[maintreeid[0]] = [] 
                                            Tree = {} 
                                            classes = [] 
                                            classes = [instances[0],instances[1],instances[2]]   
                                            Tree[classValue] = [] 
                                            Tree[classValue] = classes 
                                            mainTree[maintreeid[0]] = Tree 
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                                    else: 
                                            classes = []                                     
                                            classes = [instances[0],instances[1],instances[2]]                             
                                            Tree = mainTree[maintreeid[0]] 
                                            if classValue not in Tree: 
                                                    Tree[classValue] = [] 
                                            Tree[classValue] = classes  
                                            mainTree[maintreeid[0]] = Tree                                               
                                    #print('maintree:',mainTree)                            
                    return mainTree 
                 
        def orderByParents(self, classNodes): 
                    self.classNodes = classNodes 
                    print(classNodes)                    
                    orderedByParent = {}                      
                    parentList = []                    
                    for classValue,instances in classNodes.items():                              
                               #for i in range(len(instances)): 
                               parent = instances[0] 
                               #print('parent',parent[0]) 
                               if(len(parent)!=0):                                                                              
                                        if parent[0] not in orderedByParent: 
                                                    #parentList = classValue 
                                                    orderedByParent[parent[0]]=[]                                         
                                        parentList=orderedByParent[parent[0]] 
                                        #print('parentList',parentList) 
                                        if classValue not in parentList:                                                                                                     
                                                    if (len(parentList)==0): 
                                                            parentList = [classValue] 
                                                    else: 
                                                            parentList.append(classValue)                                                         
                                                    #print('classValue',classValue)                                                     
                                                    #print('parentList',parentList) 
                                                    orderedByParent[parent[0]] = parentList 
                                                    #print('orderedByParent',orderedByParent)                                                 
                    return orderedByParent 
           
        def getParentNode(self, childnode,classTree): 
                    self.childnode = childnode 
                    self.classTree = classTree 
                    parent = [] 
                    for classValue,instances in classTree.items(): 
                             if (childnode in instances): 
                                   parent = [classvalue] 
                                   continue     
                    return parent 
         
        #THIS CREATES A HIERARCHICAL MULTI-CLASSIFIER                                                      
        def classify(self,mainTree,trainingSet,para): 
               svm = SVMRootclassifier() 
               TreePredictors = {}  
               self.para = para 
               self.trainingSet = trainingSet 
               self.mainTree = mainTree       
               trainset = [] 
               trainset = list(trainingSet) 
               #Trainfile = list(trainingSet 
               maintrees = svm.getMainTrees(mainTree) 
               mKey = maintrees.keys() 
               otherTrees = [] 
               AllTrees = [] 
               value = [] 
               mainTreePredictor = {}        
               for mKeys, classTree in maintrees.items(): 
                            for mK, trees in classTree.items(): 
                                  value = mK 
                                  #print('mK:',mK) 
                                  if mK > 0: 
                                        value =[mK] 
                                        AllTrees = AllTrees + value                     
                                        otherTrees = otherTrees + value 
               #print('ALLTREES and mKey :',AllTrees,mKey) 
               treeno = 0 
               #FOR EACH MAIN TREE  
               for mKeys, classTree in maintrees.items():             
                          #print('CLASSTREES:',classTree) 
                          #COUNT MAIN TREES 
                          treeno = treeno + 1          
                          depth = svm.getTreeDepth(classTree)#GET DEPTH/HEIGHT OF EACH MAIN TREE 
                          subtrees = svm.getSubTrees(classTree)#GET SUBTREES/BRANCHES OF EACH MAIN TREE                           
                          Key = list(subtrees.keys())#GET THE SUBTREE ID'S 
                          #print('SUBTREES and Key:',subtrees,Key)                           
                          trainset = list(trainingSet) 
                          Allclasses = [] 
                          otherClasses = []                   
                          TreePredictorTree = {} 
                          CellPredictorTree = {} 
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                          NodePredictorTree = {} 
                          #''' 
                          #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET ALL THE CLASSES 
                          for Keys, cells in subtrees.items(): 
                                    for i in range(len(cells)): 
                                            Allclasses = Allclasses + cells[i]                     
                                            otherClasses = otherClasses + cells[i] 
                          #print('ALL CLASSES SET :',Allclasses,type(otherClasses)) 
                          order = 0 
                          #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET NODE AND CELL CLASSIFIERS 
                          for Keys, cells in subtrees.items(): 
                                    if len(Key)>1: 
                                        order = order + 1#COUNT SUBTREES/BRANCHES                                        
                                    cell1 = [] 
                                    cellorder = 0 
                                    CellPredictorTree = {} 
                                    NodePredictorTree = {}                             
                                    #'' 
                                    #IN EACH SUBTREE/BRANCH CELL 
                                    #trainingSet3=trainset 
                                    #print('len(trainingSet3):len(trainingSet3[0])-1',len(trainingSet3),len(trainingSet3[0])-1) 
                                    for i in range(len(cells)):          
                                            cellorder = cellorder + 1#COUNT CELLS IN EACH SUBTREE 
                                            nodes = cells[i] 
                                            #CREATE NODE PREDICTOR                                            
                                            #print('NODES:',nodes) 
                                            if len(nodes) == 2:#IF ONLY TWO LEAF NODES IN EACH CELL CREATE NODE CLASSIFIER FOR EACH 
                                                    #trainset = svm.loadCsv(filename)                                                     
                                                    #trainset = list(Trainfile) 
                                                    trainingSet3=list(trainset)  
                                                    #print('len(trainingSet3)',len(trainingSet3)) 
                                                    currentnode = [] 
                                                    othernode = []                                     
                                                    currentnode = [nodes[0]] 
                                                    othernode = [nodes[1]] 
                                                    mergeclass = {1:currentnode,-1:othernode} 
                                                    #print('1:currentnode,-1:othernode',currentnode,othernode) 
                                                    trainingSet3, testSet3 = svm.splitDataset2(trainingSet3, splitRatio)                                                     
                                                    trainingSet3 = svm.separateByRootClass(trainingSet3,mergeclass,nodes[0])                                             
                                                    if len(trainingSet3) > 0: 
                                                            testSet3 = svm.separateByRootClass(testSet3,mergeclass,nodes[0]) 
                                                            #print('len(trainingSet3)',len(trainingSet3)) 
                                                            cases = len(trainingSet3) 

                                                            #print('len(trainingSet3):len(trainingSet3[0])',len(trainingSet3),len(trainingSet3[0])) 
                                                            features = len(trainingSet3[0])-1 
                                                            predictor = svm.svmTrainer(trainingSet3,cases,features,para) 
                                                            dataframe = pd.DataFrame(testSet3) 
                                                            array1 = dataframe.values 
                                                            X = [] 
                                                            X = array1[:,0:features] 
                                                            predictions3 = svm.getPredictions(predictor,X) 
                                                            accuracy3 = svm.getAccuracy(testSet3, predictions3)                                                         
                                                            NodePredictor = {currentnode[0]:[currentnode+othernode,predictor,accuracy3]} 
                                                    #print('PREDICTION ACURACY FOR NODES:',nodes,accuracy3) 
                                            else:#IF ONLY ONE LEAF NODE IN EACH CELL CREATE NODE CLASSIFIER FOR ONLY ONE NODE 
                                                    predictor=[] 
                                                    accuracy3='100%' 
                                                    NodePredictor = {nodes[0]:[nodes,predictor,accuracy3]}                                     
                                                    #print('PREDICTION ACURACY FOR NODES:',nodes[0],': IS:',accuracy3) 
                                            #print('THE NODE PREDICTOR :',NodePredictor) 
                                            if (order not in NodePredictorTree): 
                                                            NodePredictorTree[order] = []                                                                                                     
                                            NodePredictorTree[order].append(NodePredictor)#STORE NODE CLASSIFIERS   ACCORDING TO THEIR CELL NUMBER 
                                            #print('NODE PREDICTOR TREE:',NodePredictorTree)                                             
                                            #CREATE HIERARCHICAL CELL CLASSIFIERS 
                                            CellPredictor = [] 
                                            if cellorder<=len(cells)-1:#CREATE ONE AGAINST ALL(REMIANING CELLS) CELL CLASSIFIERS 
                                                    #trainset = svm.loadCsv(filename) 
                                                    #trainset = list(Trainfile) 
                                                    #trainset = copy.copy(Trainfile) 
                                                    trainingSet2=list(trainset) 
                                                    othercells = cell1 + cells[i] 
                                                    currentcell = cells[i+1] 
                                                    cell1 = cells[i]                                                                                                                           
                                                    mergeclass = {1:currentcell,-1:othercells}                
                                                    trainingSet2, testSet2 = svm.splitDataset2(trainingSet2, splitRatio)                                                  
#print('getClassDistribution:trainset2',svm.getClassDistribution(trainingSet2),mergeclass)                                                   
                                                    #print('getClassDistribution:cellsTrainfile',svm.getClassDistribution(Trainfile)) 
                                                    trainingSet2 = svm.separateByRootClass(trainingSet2,mergeclass,i) 
                                                    #print('getClassDistribution:cellsTrainfile',svm.getClassDistribution(Trainfile)) 
                                                    testSet2 = svm.separateByRootClass(testSet2,mergeclass,i) 
                                                    cases = len(trainingSet2) 
                                                    features = len(trainingSet2[0])-1                               
                                                    predictor = svm.svmTrainer(trainingSet2,cases,features,para) 
                                                    dataframe = pd.DataFrame(testSet2) 
                                                    array1 = dataframe.values 
                                                    X = [] 
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                                                    X = array1[:,0:features] 
                                                    predictions2 = svm.getPredictions(predictor,X) 
                                                    accuracy2 = svm.getAccuracy(testSet2, predictions2) 
                                                    CellPredictor ={len(cells)-cellorder:[currentcell,othercells,predictor,accuracy2]} 
                                                    #print('ACCURACY FOR CELL PREDICTION',currentcell,' IS: %=', accuracy2)                                             
                                            #print('THE CELL PREDICTOR IS:',CellPredictor) 
                                            if (order not in CellPredictorTree): 
                                                    CellPredictorTree[order] = []                                                                                                     
                                            if len(CellPredictor) > 0: 
                                                    CellPredictorTree[order].append(CellPredictor)                                                         
                                            #print('CELL PREDICTOR TREE:',CellPredictorTree)                     
                                            #'' 
                                    #CREATE SUBTREE CLASSIFIERS                                     
                                    if (order<=len(Key)-1):                            
                                            #trainset = svm.loadCsv(filename) 
                                            #trainset = Trainfile 
                                            trainingSet1= list(trainset)                             
                                            currentTree = []                             
                                            for i in range(len(cells)): 
                                                    currentTree = currentTree + cells[i]                       
                                            for i in range(len(currentTree)):                                     
                                                    otherClasses.remove(currentTree[i])                                                         
                                            others = [] 
                                            for j in range(len(otherClasses)):  
                                                    others.append(otherClasses[j]) 
                                            ThisLevelmergeclass = {1:currentTree,-1:others}                                   
                                            trainingSet1, testSet1 = svm.splitDataset2(trainingSet1, splitRatio) 
                                            trainingSet1 = svm.separateByRootClass(trainingSet1,ThisLevelmergeclass,Keys) 
                                            testSet1 = svm.separateByRootClass(testSet1,ThisLevelmergeclass,Keys) 
                                            cases = len(trainingSet1) 
                                            features = len(trainingSet1[0])-1                             
                                            predictor = svm.svmTrainer(trainingSet1,cases,features,para) 
                                            dataframe = pd.DataFrame(testSet1) 
                                            array1 = dataframe.values 
                                            X = [] 
                                            X = array1[:,0:features] 
                                            predictions1 = svm.getPredictions(predictor,X) 
                                            accuracy1 = svm.getAccuracy(testSet1, predictions1) 
                                            TreePredictor = {1.0:currentTree,-1.0:others,0.0:[predictor,accuracy1],} 
                                            #print('ACCURACY FOR SUBTREE PREDICTION',currentTree, 'IS: %=', accuracy1) 
                                            #print('THE SUBTREE PREDICTION:',TreePredictor) 
                                    if (order not in TreePredictorTree): 
                                                        TreePredictorTree[order] = []                                                                                                     
                                    TreePredictorTree[order].append([TreePredictor,CellPredictorTree,NodePredictorTree])  
                          #'''                                   
                          #print('TreePredictorTree:',TreePredictorTree) 
                           
                          #CREATE TREE CLASSIFIERS 
                          if (treeno<=len(mKey)-1): 
                                    #trainset = svm.loadCsv(filename) 
                                    #trainset = Trainfile 
                                    trainingSet1=list(trainset)                             
                                    currentMainTree = []                             
                                    for mK, trees in classTree.items(): 
                                            if mK > 0: 
                                                    value = [mK] 
                                                    currentMainTree = currentMainTree + value                 
                                    for i in range(len(currentMainTree)):                              
                                            otherTrees.remove(currentMainTree[i])                                                                
                                    others = [] 
                                    for j in range(len(otherTrees)):  
                                            others.append(otherTrees[j])           
                                    ThisLevelmergeclass = {1:currentMainTree,-1:others}        
                                    trainingSet1, testSet1 = svm.splitDataset2(trainingSet1, splitRatio) 
                                    trainingSet1 = svm.separateByRootClass(trainingSet1,ThisLevelmergeclass,mKeys) 
                                    testSet1 = svm.separateByRootClass(testSet1,ThisLevelmergeclass,mKeys) 
                                    cases = len(trainingSet1) 
                                    features = len(trainingSet1[0])-1                             
                                    predictor = svm.svmTrainer(trainingSet1,cases,features,para) 
                                    dataframe = pd.DataFrame(testSet1) 
                                    array1 = dataframe.values 
                                    X = [] 
                                    X = array1[:,0:features] 
                                    predictions2 = svm.getPredictions(predictor,X) 
                                    accuracy2 = svm.getAccuracy(testSet1, predictions2) 
                                    mainTreePredictor = {1.0:currentMainTree,-1.0:others,0.0:[predictor,accuracy2],} 
                                    #print('ACCURACY FOR MAIN TREE PREDICTION IS:', accuracy2) 
                          else: 
                                    #print('TWIN1 IS:treeno,len(mKey)',treeno,len(mKey) ) 
                                    if (len(mKey)==1): 
                                            predictor=[] 
                                            accuracy2='100%' 
                                            mainTreePredictor = {1.0:[],-1.0:[],0.0:[accuracy2],} 
                                            #mainTreePredictor = {mKeys:[predictor,accuracy2]}                                                                     
                          #print('MAIN TREE PREDICTOR IS:', mainTreePredictor)           
                          #''' 
                          if (mKeys not in TreePredictors): 
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                                            TreePredictors[mKeys] = []                                                                                                     
                          TreePredictors[mKeys].append([mainTreePredictor,TreePredictorTree])                            
               #print('ALL MAIN TREES PREDICTORS ARE:', TreePredictors) 
               ''' 
               for tree, trees in TreePredictors.items(): 
                          TreePredictorList = trees[0] 
                          mainTreePredictor =  TreePredictorList[0]                          
                            
                          mainPredictors = mainTreePredictor[1]                                        
                          print('Key: 1.0', tree,mainPredictors) 
                          mainPredictors = mainTreePredictor[-1]                                        
                          print('Key: -1.0', tree,mainPredictors) 
               ''' 
               #pickle_out = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\multiclassifier.pickle','wb') 
               #pickle.dump(TreePredictors,pickle_out) 
               #pickle_out.close() 
               return TreePredictors                 
        #THIS CLASSIFIES A WHOLE DATASET 
        def classifyInstance(self,classifier,classTree,data): 
                    svm = SVMRootclassifier()                     
                    self.classifier = classifier 
                    self.classTree = classTree 
                    self.data = data                                 
                    tree = classTree 
                    testdata = data             
                    #mKey =list(TreePredictors.keys()) 
                    #print('TreePredictors keys:',mKey) 
                    mKey =list(classifier.keys()) 
                    #print('TreePredictors keys:',mKey)   
                    #TreePredictorTree = {}            
                    CellPredictorTree = {} 
                    NodePredictorTree = {}                            
                    #predictiondata = data 
                    predictiondata = []                     
                    correctClassified = {}  
                    incorrectClassified = {}  
                    predictionresult = -1                     
                    for i in range(len(testdata)): 
                                      X = testdata[i]                                       
                                      vector = X[0:len(X)-1] 
                                      #print('testdata[i]',testdata[i]) 
                                      T = 0 
                                      while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS 
                                               treeno = mKey[T]#GET CLASSIFIER NUMBER 
                                               #mainTreePredictorList = TreePredictors[treeno] 
                                               mainTreePredictorList = classifier[treeno]  
                                               mainTreePredictor =  mainTreePredictorList[0]                            
                                               #print('mainTreePredictor[0]', mainTreePredictor[0])                                        
                                               mainPredictors = mainTreePredictor[0][0.0]                                        
                                               if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE 
                                                               mainPredictor = mainPredictors[0]                                        
                                                               mainTreeResult =  svm.Predict(mainPredictor,vector)#MAKE PREDICTION                                                     
                                                               if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER                                              
                                                                     TreePredictorTree = mainTreePredictor[1]                                        
                                                                     #print('FOR MAINTREE NO:', treeno)      
                                                                     T = len(mKey)+1#END THE LOOP 
                                                               else:#IF -1  
                                                                     if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS SECOND LAST 
                                                                            treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP 
                                                                            #mainTreePredictorList = TreePredictors[treeno] 
                                                                            mainTreePredictorList = classifier[treeno] 
                                                                            mainTreePredictor =  mainTreePredictorList[0]   
                                                                            #print('mainTreePredictor[0]', mainTreePredictor[0]) 
                                                                            TreePredictorTree = mainTreePredictor[1]  
                                                                            #print('(this is second last)FOR MAINTREE NO:', treeno)                                                                
                                                                            T = len(mKey)+1 #END THE LOOP 
                                                                     else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2) 
                                                                            T = T + 1 #LOOP AGAIN   
                                               else:#CASE OF ONLY ONE TREE 
                                                                TreePredictorTree = mainTreePredictor[1] 
                                                                T = len(mKey)+1 #END THE LOOP 
                                      Key = list(TreePredictorTree.keys()) 
                                      N = len(Key) 
                                      #print('TreePredictorTree', TreePredictorTree) 
                                      K = 0 
                                      while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS 
                                                subtreeno = Key[K] 
                                                TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE                                         
                                                TreePredictorTr  = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]                                         
                                                TreePredictor  = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR                                         
                                                CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS                                        
                                                NodePredictorList  = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS                                          
                                                CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS                                         
                                                Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE                                          
                                                #print('Trpredictor[0]',Trpredictor[0]) 
                                                result1 = svm.Predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                                                #print('subtree result1',result1) 
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                                                if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES 
                                                    #GET CELL PREDICTORS                                             
                                                    X = len(CellPredictors) 
                                                    #print('CellPredictor:for result1=1',CellPredictors) 
                                                    if (X>0):#IF THERE ARE CELL PREDICTORS 
                                                            cellpredictorskeys = [] 
                                                            cellpredictor = {} 
                                                            i=0                                            
                                                            while i<X:#WHILE THERE ARE CELL PREDICTORS 
                                                                predictor = CellPredictors[i] 
                                                                for Keys, cells in predictor.items(): 
                                                                    predictorkey = Keys 
                                                                    cellpredictorskeys.append(predictorkey)                                                             
                                                                    cellpredictor[predictorkey] = [] 
                                                                    cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                                                i=i+1                                             
                                                            cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON                                                     
                                                            count=X 
                                                            for Keys, cells in cellpredictor.items(): 
                                                               count=count-1 #COUNT CELL PREDICTORS BOTTOM UP  
                                                               #print('Cell:',cells) 
                                                               cell = cells[0] 
                                                               currentcell = cell[0] 
                                                               othercells = cell[1] 
                                                               cellpredictor = cell[2] 
                                                               accuracy2 = cell[3] 
                                                               result2 =  svm.Predict(cellpredictor,vector) 
                                                               #print('Cell result2',result2[0]) 
                                                               if (result2[0] == 1.0):  #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS                                                     
                                                                   #GET NODE PREDICTOR FOR THIS SUBTREE                                                    
                                                                    NodePredictors = NodePredictorList[subtreeno]                                                     
                                                                    #print('NodePredictors',NodePredictors) 
                                                                    X = len(NodePredictors) 
                                                                    nodepredictorskeys = [] 
                                                                    nodepredictor = {} 
                                                                    i=0                                            
                                                                    while i<X: 
                                                                        predictor = NodePredictors[i] 
                                                                        for Keys, nodes in predictor.items(): 
                                                                            predictorkey = Keys 
                                                                            nodepredictorskeys.append(predictorkey)                                                                     
                                                                            nodepredictor[predictorkey] = [] 
                                                                            nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                        i=i+1                                             
                                                                    nodepredictorskeys.sort()                                                            
                                                                    #print('nodepredictor',nodepredictor)                                                     
                                                                    nodes = nodepredictor[currentcell[0]] 
                                                                    #print('nodes',nodes)  
                                                                    node = nodes[0] 
                                                                    nodepair = node[0] 
                                                                    if len(nodepair)==2: 
                                                                        nodepredictor = node[1] 
                                                                        accuracy = node[2] 
                                                                        result3 =  svm.Predict(nodepredictor,vector) 
                                                                        #print('Node result',result3[0])  
                                                                        if (result3[0] == 1.0):  
                                                                            predictionresult = nodepair[0] 
                                                                        else: 
                                                                            predictionresult = nodepair[1]              
                                                                    else: 
                                                                            predictionresult = nodepair[0]                                             
                                                                    #print('Node result(+ve)',vector,predictionresult)  
                                                                    break 
                                                               else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES 
                                                                   if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE 
                                                                        if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL 
                                                                           predictionresult = othercells[0]                                                  
                                                                        else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL 
                                                                           NodePredictors = NodePredictorList[subtreeno]                                                
                                                                           X = len(NodePredictors) 
                                                                           nodepredictorskeys = [] 
                                                                           nodepredictor = {} 
                                                                           i=0                                            
                                                                           while i<X: 
                                                                                predictor = NodePredictors[i] 
                                                                                for Keys, nodes in predictor.items(): 
                                                                                    predictorkey = Keys 
                                                                                    nodepredictorskeys.append(predictorkey)                                                                             
                                                                                    nodepredictor[predictorkey] = [] 
                                                                                    nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                                i=i+1                                             
                                                                           nodepredictorskeys.sort()                                                                     
                                                                           nodes = nodepredictor[othercells[0]] 
                                                                           #print('nodes',nodes)  
                                                                           node = nodes[0] 
                                                                           nodepair = node[0] 
                                                                           if len(nodepair)==2: 
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                                                                                nodepredictor = node[1] 
                                                                                accuracy = node[2] 
                                                                                result3 =  svm.Predict(nodepredictor,vector) 
                                                                                #print('Node result',result3[0])  
                                                                                if (result3[0] == 1.0):  
                                                                                    predictionresult = nodepair[0] 
                                                                                else: 
                                                                                    predictionresult = nodepair[1]                                                     
                                                                           else: 
                                                                                    predictionresult = nodepair[0]                                             
                                                                           #print('Node result(+ve)',vector,predictionresult)  
                                                                           break  
                                                            K = N 
                                                    else:#IF THERE ARE NO CELL PREDICTORS 
                                                            #GET NODE PREDICTORS 
                                                                    NodePredictors = NodePredictorList[subtreeno]                                       
                                                                    X = len(NodePredictors) 
                                                                    nodepredictorskeys = [] 
                                                                    nodepredictor = {} 
                                                                    i=0                                            
                                                                    while i<X: 
                                                                        predictor = NodePredictors[i] 
                                                                        for Keys, nodes in predictor.items(): 
                                                                            predictorkey = Keys 
                                                                            nodepredictorskeys.append(predictorkey)                                                                     
                                                                            nodepredictor[predictorkey] = [] 
                                                                            nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                        i=i+1                                             
                                                                    nodepredictorskeys.sort()                                                             
                                                                    currentcell = nodepredictorskeys[0] 
                                                                    #print('currentcell',currentcell)                                                     
                                                                    nodes = nodepredictor[currentcell] 
                                                                    #print('nodes',nodes)  
                                                                    node = nodes[0] 
                                                                    nodepair = node[0] 
                                                                    if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL 
                                                                        nodepredictor = node[1] 
                                                                        accuracy = node[2] 
                                                                        result3 =  svm.Predict(nodepredictor,vector)#PREDICT ONE OF THE NODES 
                                                                        #print('Node result',result3[0])  
                                                                        if (result3[0] == 1.0):  
                                                                            predictionresult = nodepair[0] 
                                                                        else: 
                                                                            predictionresult = nodepair[1] 
                                                                        K = N 
                                                                        break                                                       
                                                                    else:#IF THERE IS ONLY ONR NODE IN A CELL 
                                                                            predictionresult = nodepair[0] 
                                                                            K = N                                                                  
                                                else:#IF CURRENT SUBTREE NOT PREDICTED 
                                                            if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING 
                                                                subtreeno = Key[K] 
                                                                TreePredictorList = TreePredictorTree[subtreeno]                                                 
                                                                TreePredictorTr  = TreePredictorList[0]                                                 
                                                                TreePredictor  = TreePredictorTr[0]                                                 
                                                                CellPredictorList = TreePredictorTr[1]                                         
                                                                NodePredictorList  = TreePredictorTr[2]                                                 
                                                                CellPredictors = CellPredictorList[subtreeno] 
                                                                X = len(CellPredictors)                                                    
                                                                cellpredictorskeys = [] 
                                                                cellpredictor = {} 
                                                                i=0                                            
                                                                while i<X: 
                                                                    predictor = CellPredictors[i] 
                                                                    for Keys, cells in predictor.items(): 
                                                                        predictorkey = Keys 
                                                                        cellpredictorskeys.append(predictorkey)                                                                 
                                                                        cellpredictor[predictorkey] = [] 
                                                                        cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                                                    i=i+1                                             
                                                                cellpredictorskeys.sort()                                                         
                                                                count=X 
                                                                for Keys, cells in cellpredictor.items(): 
                                                                   count=count-1  
                                                                   #print('if current subtree not predicted,Cell:',cells) 
                                                                   cell = cells[0] 
                                                                   currentcell = cell[0] 
                                                                   othercells = cell[1] 
                                                                   cellpredictor = cell[2] 
                                                                   accuracy2 = cell[3] 
                                                                   result2 =  svm.Predict(cellpredictor,vector) 
                                                                   #print('if current subtree not predicted,Cell result2',result2[0]) 
                                                                   if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE                                                      
                                                                       #GET NODE PREDICTOR                                                         
                                                                        NodePredictors = NodePredictorList[subtreeno]                                                  
                                                                        X = len(NodePredictors) 
                                                                        nodepredictorskeys = [] 
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                                                                        nodepredictor = {} 
                                                                        i=0                                            
                                                                        while i<X: 
                                                                            predictor = NodePredictors[i] 
                                                                            for Keys, nodes in predictor.items(): 
                                                                                predictorkey = Keys 
                                                                                nodepredictorskeys.append(predictorkey)                                                                         
                                                                                nodepredictor[predictorkey] = [] 
                                                                                nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                            i=i+1                                             
                                                                        nodepredictorskeys.sort()                                                                                                                     
                                                                        nodes = nodepredictor[currentcell[0]] 
                                                                        #print('if current subtree not predicted,nodes',nodes)  
                                                                        node = nodes[0] 
                                                                        nodepair = node[0] 
                                                                        if len(nodepair)==2: 
                                                                            nodepredictor = node[1] 
                                                                            accuracy = node[2] 
                                                                            result3 =  svm.Predict(nodepredictor,vector) 
                                                                            #print('if current subtree not predicted,Node result',result3[0])  
                                                                            if (result3[0] == 1.0):  
                                                                                predictionresult = nodepair[0] 
                                                                            else: 
                                                                                predictionresult = nodepair[1]                                                          
                                                                        else: 
                                                                                predictionresult = nodepair[0]                                             
                                                                        #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)  
                                                                        break 
                                                                   else:#IF CELL PREDICTION IS FALSE 
                                                                       if (count==0): 
                                                                            if len(othercells)==1: 
                                                                               predictionresult = othercells[0]                                                            
                                                                            #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)  
                                                                            break  
                                                                K = N                                                        
                                                            else: 
                                                                K = K + 1                                      
                                      #print('Prediction result for this vector:',vector,predictionresult) 
                                      y = float(predictionresult)                   
                                      predictiondata.append([y])  
                                      #predictiondata[i][-1] = float(predictionresult) 
                                      #print('len(testdata),len(predictiondata):',len(testdata),len(predictiondata)) 
                                      if vector[-1] == y:                                             
                                            if (vector[-1] in correctClassified): 
                                                    #print('count before is:',correctClassified[vector[-1]]) 
                                                    count=correctClassified[vector[-1]] 
                                                    correctClassified[vector[-1]] = count+1 
                                                    #print('count after is:',correctClassified[vector[-1]]) 
                                                    #print('Yes1')  
                                            else: 
                                                    correctClassified[vector[-1]] = 1 
                                                    #print('Yes2') 
                                      else: 
                                            if (vector[-1] in incorrectClassified): 
                                                    count=incorrectClassified[vector[-1]] 
                                                    incorrectClassified[vector[-1]] = count+1  
                                                    #print('No1')    
                                            else: 
                                                    incorrectClassified[vector[-1]] = 1 
                                                    #print('No2')                                                                                     
                    #print('correctClassified:',correctClassified) 
                    #print('incorrectClassified:',incorrectClassified)  
                    testFileDistribution = svm.getClassDistribution(testdata) 
                    classAccuracy = svm.getClassAccuracy(testFileDistribution,correctClassified,incorrectClassified)                       
                    #print('classAccuracy is:',classAccuracy)            
                    overallaccuracy = self.getAccuracy(testdata,predictiondata)                            
                    #print('THE ACCURACY FOR THIS CLASSIFICATION IS=%:',svm.getAccuracy(testdata,predictiondata)) 
                    return overallaccuracy      
        #THIS CLASSIFIES ONE INSTANCE AT A TIME USING A STORED TRAINED CLASSIFIER LOADED FROM PICKLE  
        def classifyOneInstance(self,classifier,classTree,data):                     
                    self.classTree = classTree 
                    self.data = data 
                    self.classifier = classifier                                                    
                    tree = classTree 
                    testdata = data                     
                    ''' 
                    #RETRIEVE THE CLASSIFIER 
                    pickle_in = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\SVMclassifier.pickle','rb') 
                    tp=pickle.load(pickle_in)                   
                    TreePredictors = tp 
                    ''' 
                    TreePredictors = classifier    
                    mKey =list(TreePredictors.keys())             
                    CellPredictorTree = {} 
                    NodePredictorTree = {} 
                    TreePredictorTree = {}        
                    #predictiondata = data 
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                    predictiondata = []  
                    svm = SVMRootclassifier() 
                    vector = testdata 
                    T = 0 
                    while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS 
                            treeno = mKey[T]#GET CLASSIFIER NUMBER 
                            mainTreePredictorList = TreePredictors[treeno]  
                            mainTreePredictor =  mainTreePredictorList[0]                                    
                            #print('mainTreePredictor[0]', mainTreePredictor[0])                                        
                            mainPredictors = mainTreePredictor[0][0.0]                                        
                            if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE 
                                            mainPredictor = mainPredictors[0]                                        
                                            mainTreeResult =  svm.predict(mainPredictor,vector)#MAKE PREDICTION                                                     
                                            if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER                                              
                                                    TreePredictorTree = mainTreePredictor[1]                                        
                                                    #print('FOR MAINTREE NO:', treeno)                                                
                                                    T = len(mKey)+1#END THE LOOP 
                                            else:#IF -1  
                                                    if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS  ECOND LAST 
                                                        treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP 
                                                        mainTreePredictorList = TreePredictors[treeno] 
                                                        mainTreePredictor =  mainTreePredictorList[0]   
                                                        #print('mainTreePredictor[0]', mainTreePredictor[0]) 
                                                        TreePredictorTree = mainTreePredictor[1]  
                                                        #print('(this is second last)FOR MAINTREE NO:', treeno) 
                                                        T = len(mKey)+1 #END THE LOOP 
                                                    else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2) 
                                                        T = T + 1 #LOOP AGAIN   
                            else:#CASE OF ONLY ONE TREE 
                                            TreePredictorTree = mainTreePredictor[1] 
                                            T = len(mKey)+1 #END THE LOOP 
                    Key = list(TreePredictorTree.keys()) 
                    N = len(Key) 
                    #print('TreePredictorTree', TreePredictorTree) 
                    K = 0 
                    while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS 
                            #print('K',K) 
                            subtreeno = Key[K] 
                            TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE                                         
                            TreePredictorTr  = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]                                         
                            TreePredictor  = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR                                         
                            CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS                                        
                            NodePredictorList  = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS                                          
                            CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS                                         
                            Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE                                          
                            result1 = svm.Predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                            #print('Trpredictor[0]',Trpredictor[0]) 
                            #result1 = nB1.getPredictions(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                            #print('subtree result1',result1) 
                            if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES 
                                #GET CELL PREDICTORS                                             
                                X = len(CellPredictors) 
                                #print('CellPredictor:for result1=1',CellPredictors) 
                                if (X>0):#IF THERE ARE CELL PREDICTORS 
                                        cellpredictorskeys = [] 
                                        cellpredictor = {} 
                                        i=0                                            
                                        while i<X:#WHILE THERE ARE CELL PREDICTORS 
                                            predictor = CellPredictors[i] 
                                            for Keys, cells in predictor.items(): 
                                                predictorkey = Keys 
                                                cellpredictorskeys.append(predictorkey)                                                             
                                                cellpredictor[predictorkey] = [] 
                                                cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                            i=i+1                                             
                                        cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON                                                     
                                        count=X 
                                        for Keys, cells in cellpredictor.items(): 
                                            count=count-1 #COUNT CELL PREDICTORS BOTTOM UP  
                                            #print('Cell:',cells) 
                                            cell = cells[0] 
                                            currentcell = cell[0] 
                                            othercells = cell[1] 
                                            cellpredictor = cell[2] 
                                            accuracy2 = cell[3] 
                                            result2 =  svm.Predict(cellpredictor,vector) 
                                            #print('Cell result2',result2[0]) 
                                            if (result2[0] == 1.0):  #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS                                                     
                                                #GET NODE PREDICTOR FOR THIS SUBTREE                                                    
                                                NodePredictors = NodePredictorList[subtreeno]                                                     
                                                #print('NodePredictors',NodePredictors) 
                                                X = len(NodePredictors) 
                                                nodepredictorskeys = [] 
                                                nodepredictor = {} 
                                                i=0                                            
                                                while i<X: 
                                                    predictor = NodePredictors[i] 
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                                                    for Keys, nodes in predictor.items(): 
                                                        predictorkey = Keys 
                                                        nodepredictorskeys.append(predictorkey)                                                                     
                                                        nodepredictor[predictorkey] = [] 
                                                        nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                    i=i+1                                             
                                                nodepredictorskeys.sort()                                                            
                                                #print('nodepredictor',nodepredictor)                                                     
                                                nodes = nodepredictor[currentcell[0]] 
                                                #print('nodes',nodes)  
                                                node = nodes[0] 
                                                nodepair = node[0] 
                                                if len(nodepair)==2: 
                                                    nodepredictor = node[1] 
                                                    accuracy = node[2] 
                                                    result3 =  svm.Predict(nodepredictor,vector) 
                                                    #print('Node result',result3[0])  
                                                    if (result3[0] == 1.0):  
                                                        predictionresult = nodepair[0] 
                                                    else: 
                                                        predictionresult = nodepair[1]                                                           
                                                     
                                                else: 
                                                        predictionresult = nodepair[0]                                             
                                                #print('Node result(+ve)',vector,predictionresult)  
                                                break 
                                            else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES 
                                                if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE 
                                                    if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL 
                                                        predictionresult = othercells[0]                                                      
                                                    else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL 
                                                        NodePredictors = NodePredictorList[subtreeno]                                                
                                                        X = len(NodePredictors) 
                                                        nodepredictorskeys = [] 
                                                        nodepredictor = {} 
                                                        i=0                                            
                                                        while i<X: 
                                                            predictor = NodePredictors[i] 
                                                            for Keys, nodes in predictor.items(): 
                                                                predictorkey = Keys 
                                                                nodepredictorskeys.append(predictorkey)                                                                             
                                                                nodepredictor[predictorkey] = [] 
                                                                nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                            i=i+1                                             
                                                        nodepredictorskeys.sort()                                                                     
                                                        nodes = nodepredictor[othercells[0]] 
                                                        #print('nodes',nodes)  
                                                        node = nodes[0] 
                                                        nodepair = node[0] 
                                                        if len(nodepair)==2: 
                                                            nodepredictor = node[1] 
                                                            accuracy = node[2] 
                                                            result3 =  svm.Predict(nodepredictor,vector) 
                                                            #print('Node result',result3[0])  
                                                            if (result3[0] == 1.0):  
                                                                predictionresult = nodepair[0] 
                                                            else: 
                                                                predictionresult = nodepair[1]                                  
                                  
                                                        else: 
                                                                predictionresult = nodepair[0]                                             
                                                        #print('Node result(+ve)',vector,predictionresult)  
                                                        break  
                                        K = N 
                                else:#IF THERE ARE NO CELL PREDICTORS 
                                        #GET NODE PREDICTORS 
                                                NodePredictors = NodePredictorList[subtreeno]                                       
                                                X = len(NodePredictors) 
                                                nodepredictorskeys = [] 
                                                nodepredictor = {} 
                                                i=0                                            
                                                while i<X: 
                                                    predictor = NodePredictors[i] 
                                                    for Keys, nodes in predictor.items(): 
                                                        predictorkey = Keys 
                                                        nodepredictorskeys.append(predictorkey)                                                                     
                                                        nodepredictor[predictorkey] = [] 
                                                        nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                    i=i+1                                             
                                                nodepredictorskeys.sort()                                                             
                                                currentcell = nodepredictorskeys[0] 
                                                #print('currentcell',currentcell)                                                     
                                                nodes = nodepredictor[currentcell] 
                                                #print('nodes',nodes)  
                                                node = nodes[0] 
                                                nodepair = node[0] 
                                                if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL 
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                                                    nodepredictor = node[1] 
                                                    accuracy = node[2] 
                                                    result3 =  svm.Predict(nodepredictor,vector)#PREDICT ONE OF THE NODES 
                                                    #print('Node result',result3[0])  
                                                    if (result3[0] == 1.0):  
                                                        predictionresult = nodepair[0] 
                                                    else: 
                                                        predictionresult = nodepair[1] 
                                                    K = N 
                                                    break                                                        
                                                else:#IF THERE IS ONLY ONR NODE IN A CELL 
                                                        predictionresult = nodepair[0] 
                                                        K = N                                                   
                            else:#IF CURRENT SUBTREE NOT PREDICTED 
                                        if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING 
                                            subtreeno = Key[K] 
                                            TreePredictorList = TreePredictorTree[subtreeno]                                                 
                                            TreePredictorTr  = TreePredictorList[0]                                                 
                                            TreePredictor  = TreePredictorTr[0]                                                 
                                            CellPredictorList = TreePredictorTr[1]                                         
                                            NodePredictorList  = TreePredictorTr[2]                                                 
                                            CellPredictors = CellPredictorList[subtreeno] 
                                            X = len(CellPredictors)                                                    
                                            cellpredictorskeys = [] 
                                            cellpredictor = {} 
                                            i=0                                            
                                            while i<X: 
                                                predictor = CellPredictors[i] 
                                                for Keys, cells in predictor.items(): 
                                                    predictorkey = Keys 
                                                    cellpredictorskeys.append(predictorkey)                                                                 
                                                    cellpredictor[predictorkey] = [] 
                                                    cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                                i=i+1                                             
                                            cellpredictorskeys.sort()                                                         
                                            count=X 
                                            for Keys, cells in cellpredictor.items(): 
                                                count=count-1  
                                                #print('if current subtree not predicted,Cell:',cells) 
                                                cell = cells[0] 
                                                currentcell = cell[0] 
                                                othercells = cell[1] 
                                                cellpredictor = cell[2] 
                                                accuracy2 = cell[3] 
                                                result2 =  svm.Predict(cellpredictor,vector) 
                                                #print('if current subtree not predicted,Cell result2',result2[0]) 
                                                if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE                                                      
                                                    #GET NODE PREDICTOR                                                         
                                                    NodePredictors = NodePredictorList[subtreeno]                                                  
                                                    X = len(NodePredictors) 
                                                    nodepredictorskeys = [] 
                                                    nodepredictor = {} 
                                                    i=0                                            
                                                    while i<X: 
                                                        predictor = NodePredictors[i] 
                                                        for Keys, nodes in predictor.items(): 
                                                            predictorkey = Keys 
                                                            nodepredictorskeys.append(predictorkey)                                                                         
                                                            nodepredictor[predictorkey] = [] 
                                                            nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                        i=i+1                                             
                                                    nodepredictorskeys.sort()                                                                                                                     
                                                    nodes = nodepredictor[currentcell[0]] 
                                                    #print('if current subtree not predicted,nodes',nodes)  
                                                    node = nodes[0] 
                                                    nodepair = node[0] 
                                                    if len(nodepair)==2: 
                                                        nodepredictor = node[1] 
                                                        accuracy = node[2] 
                                                        result3 =  svm.Predict(nodepredictor,vector) 
                                                        #print('if current subtree not predicted,Node result',result3[0])  
                                                        if (result3[0] == 1.0):  
                                                            predictionresult = nodepair[0] 
                                                        else: 
                                                            predictionresult = nodepair[1]                                                          
                                                    else: 
                                                            predictionresult = nodepair[0]                                             
                                                    #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)  
                                                    break 
                                                else:#IF CELL PREDICTION IS FALSE 
                                                    if (count==0): 
                                                        if len(othercells)==1: 
                                                            predictionresult = othercells[0]                                                            
                                                        #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)  
                                                        break  
                                            K = N                                                        
                                        else: 
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                                            K = K + 1                                         
                    #print('Prediction result for this vector:',vector,predictionresult) 
                    y = float(predictionresult)                              
                    return  y            
------------------------------------------------------------------------------------------------------------------------------------------------ 
import tkinter.filedialog 
from tkinter import * 
#from ScrolledText import * 
import tkinter.ttk as ttk 
import pandas as pd 
import dill as pickle 
#import pickle 
import random 
import sqlite3 
import logging 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
import itertools 
import csv 
import decimal 
import math 
import copy 
import time 
import threading 
import matplotlib 
matplotlib.use("TkAgg") 
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg 
from matplotlib.figure import Figure 
from sklearn.preprocessing import StandardScaler 
splitRatio = 0.80 
splitRatio2 = 0.10 
class naiveRootclassifier(): 
        def __init__(self): 
                    #self.master = master 
                    self.value = None 
             
        def loadCsv(self,filename): 
                    self.filename=filename 
                    lines = csv.reader(open(filename, "r")) 
                    dataset = list(lines)                     
                    for i in range(len(dataset)): 
                              #print(dataset[i]) 
                              dataset[i] = [float(x) for x in dataset[i]]                             
                    return dataset 
         
        def scaler(self,datatrain,datatest):           
                    self.datatrain = datatrain 
                    self.datatest = datatest 
                    stand = StandardScaler()                     
                    dataframe1 = pd.DataFrame(datatrain) 
                    array1 = dataframe1.values 
                    n1 = len(datatrain[0])-1 
                    m1 = [] 
                    set1 = [] 
                    X1 = array1[:,0:n1] 
                    Y1 = array1[:,n1] 
                    X1_std = stand.fit_transform(X1) 
                    count =0 
                    for i in X1_std: 
                              #print("before",i) 
                              #print("before",Y[count]) 
                              m1 = list(i) 
                              m1.append(Y1[count]) 
                              set1.append(m1) 
                              #print("after",m)  
                              count = count+1 
                    dataframe2 = pd.DataFrame(datatest) 
                    array2 = dataframe2.values 
                    n2 = len(datatest[0])-1 
                    m2 = [] 
                    set2 = []                                
                    X2 = array2[:,0:n2] 
                    Y2 = array2[:,n2] 
                    X2_std = stand.transform(X2) 
                    count =0 
                    for i in X2_std: 
                              #print("before",i) 
                              #print("before",Y[count]) 
                              m2 = list(i) 
                              m2.append(Y2[count]) 
                              set2.append(m2) 
                              #print("after",m)  
                              count = count+1 
                    return set1,set2 
         
        def splitDataset2(self, dataset, splitRatio):# splits the dataset into two: training and test dataset 
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                    self.dataset=dataset 
                    self.splitRatio=splitRatio 
                    freq = self.getClassDistribution(dataset) 
                    trainSet = [] 
                    copy = [] 
                    #print('dataset',dataset) 
                    #print('frequency:',freq) 
                    for keys,frequency in freq.items(): 
                            trainSize = int(frequency * splitRatio) 
                            #print(keys,  frequency,  trainSize) 
                            fold = [] 
                            trainFold = [] 
                            for k in range(len(dataset)): 
                                    vector1=list(dataset[k])                                     
                                    if (vector1[-1]==keys): 
                                            fold.append(vector1)                                             
                            #print('frequency:len(fold):trainSize', frequency,len(fold),trainSize) 
                            while len(trainFold) < trainSize: 
                                    index = random.randrange(len(fold)) 
                                    trainFold.append(fold.pop(index)) 
                                    #print('fold',  fold) 
                            #trainSet.append(trainFold) 
                            trainSet= trainSet + trainFold 
                            #copy.append(fold) 
                            copy = copy + fold 
                            #print('copy',  copy) 
                    return [trainSet, copy] 
 
        def splitDataset(self, dataset, splitRatio):# splits the dataset into two: training and test dataset 
                    self.dataset=dataset 
                    self.splitRatio=splitRatio 
                    trainSize = int(len(dataset) * splitRatio) 
                    trainSet = [] 
                    copy = list(dataset) 
                    while len(trainSet) < trainSize: 
                              index = random.randrange(len(copy)) 
                              trainSet.append(copy.pop(index)) 
                    return [trainSet, copy] 
                 
        #TAKES IN REQUIRED CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES   
        def refineDataset(self, dataset, mergeclasses):# removes unwanted classes from dataset 
                    self.dataset=dataset 
                    self.classValue = mergeclasses 
                    dataset2 = []                                                        
                    for i in range(len(dataset)):                     
                                vector1=dataset[i] 
                                if vector1[-1] in mergeclasses:                                         
                                        dataset2.append(vector1)                                               
                    return dataset2 
                 
        #CLASSES AND FILTERS THE DATASET TO REMAIN WITH INSTANCES OF ONLY THESE CLASSES getClassDistirbution 
        def getClassDistribution(self,dataset):                          
                    dataset2 = {}  
                    counts = {}                                                   
                    #print('trainSet',  dataset)                     
                    for i in range(len(dataset)): 
                              vector1 = dataset[i] 
                              #print('vector1',vector1) 
                              #print('vector1[-1]',vector1[-1])                              
                              if (vector1[-1] in counts): 
                                        counts[vector1[-1]] += 1                                                                                 
                              else: 
                                        counts[vector1[-1]]=1                                          
                    return counts 
         
        def getClassAccuracy(self,testFile,correctClassified,incorrectClassified): 
                    self.testFile = testFile 
                    self.correctClassified = correctClassified 
                    self.incorrectClassified = incorrectClassified 
                    classAccuracy = {} 
                    for classValue,freq in testFile.items(): 
                            if classValue in correctClassified: 
                                n = freq 
                                x = correctClassified[classValue] 
                                y = x * 100/n 
                            else: 
                                y = 0.0 
                            classAccuracy[classValue] = y         
                    return classAccuracy 
                                 
        def getClassCodes(self,dataset,parentclass):             
                    self.dataset=dataset 
                    dataset2 = [] 
                    self.parentclass = parentclass 
                    #print('parentclass',parentclass)             
                    for i in range(len(dataset)): 
                              vector1 = dataset[i] 
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                              vector = dataset[i]                               
                              value = float(parentclass) 
                             # print('parentclass',type(value),type(vector1[-1])) 
                              if (vector1[-1] == value): 
                                        #print(i,'class for 1',vector1[-1],value) 
                                        vector1[-1] = 1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)                                         
                              else: 
                                        #print(i,'class for -1',vector1[-1],value) 
                                        vector1[-1] = -1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)   
                    return dataset2 
             
        def separateByClass(self,dataset,mergeclass):#this separates instances into distinct classes i.e isolates class instances  
                    self.dataset=dataset 
                    self.mergeclass = mergeclass                     
                    separated = {}  
                    dataset2 = [] 
                    dataset3 = [] 
                    positives = mergeclass[1] 
                    negatives = mergeclass[-1]                      
                    for k in range(len(dataset)): 
                                vector1=list(dataset[k])                                      
                                #print('vector1=dataset[k]:k',k) 
                                if vector1[-1] in negatives:                                               
                                        vector1[-1] = -1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1) 
                                if vector1[-1] in positives:                                               
                                        vector1[-1] = 1         
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)                                
                    return dataset2 
         
        # merges and then separates instances into two distinct classes                                          
        def separateByRootClass(self,dataset,mergeclass): 
                    #MERGECLASS IS A DICTIONARY CONTAINING TWO KEYS EACH WITH CLASSES BELONGING TO EACH KEY I.E. {1:positivenodes, -1:negativenodes}    
                    self.dataset=dataset 
                    self.mergeclass = mergeclass                     
                    separated = {}  
                    dataset2 = [] 
                    dataset3 = [] 
                    positives = mergeclass[1] 
                    negatives = mergeclass[-1] 
                    for k in range(len(dataset)): 
                                vector1=list(dataset[k])                   
                                if vector1[-1] in negatives:                                               
                                        vector1[-1] = -1 
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1) 
 
                                if vector1[-1] in positives:                                               
                                        vector1[-1] = 1         
                                        vector1[-1]=float(vector1[-1]) 
                                        dataset2.append(vector1)                      
                    for i in range(len(dataset2)): 
                              vector = dataset2[i] 
                              if (vector[-1] not in separated): 
                                        separated[vector[-1]] = [] 
                              separated[vector[-1]].append(vector)                      
                    return separated                                 
                                                                            
        def summarizeByClass(self,dataset,mergeclass):# produces attribute-based means and std. devs for each class in the dataset 
                    self.dataset=dataset 
                    self.mergeclass = mergeclass 
                    separated = self.separateByRootClass(dataset,mergeclass) 
                    summaries = {}                     
                    #separated is a dictionary containing instances grouped into positives and negatives 
                    for classValue, instances in separated.items(): 
                              summaries[classValue] = self.summarize(instances) 
                    #print('summaries are',summaries) 
                    #summaries is a dictionary containing mean and standard deviation of each attribute but grouped according to classes  
                    return summaries  
                 
        def summarize(self,instances):#calculates mean and std. dev. for each attribute in the given instances set  
                    self.instances=instances 
                    summaries = [(self.mean(attribute), self.stdev(attribute)) for attribute in zip(*instances)] 
                    del summaries[-1] 
                    return summaries 
                                             
        def mean(self,numbers): 
                    self.numbers=numbers 
                    #print('attribute values are:',numbers) 
                    return sum(numbers)/float(len(numbers)) 
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        def stdev(self,numbers): 
                    #numbers here is a sequence values of one attribute 
                    self.numbers=numbers 
                    avg = self.mean(numbers)                     
                    if len(numbers) > 1: 
                       variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)                        
                    else: 
                       variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers))  
                    sdt = math.sqrt(variance) 
                    if sdt == 0.0:  
                       #print('numbers:',numbers,'mean is:',avg, 'std is:', sdt,) 
                       sdt = 0.1 
                    return sdt 
                     
        def calculateProbability(self,x, mean, stdev):#calcualates conditional probability of an attribute instance given attribute mean and std dev 
                    self.x=x 
                    self.mean=mean 
                    self.stdev=stdev 
                    #print('The value of x is:',x,'mean is:',mean,'std. dev. is:',stdev) 
                    exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2)))) 
                    prob = (1 / (math.sqrt(2*math.pi) * stdev)) * exponent 
                    return prob 
                     
        def calculateClassProbabilities(self,summaries, instanceVector):#calculates probabilitie of each instance towards each each class 
                    self.summaries=summaries 
                    self.instanceVector=instanceVector 
                    probabilities = {} 
                    #print('summaries :',summaries) 
                    #print('input vector :',inputVector) 
                    for classValue, attributeSummaries in summaries.items(): 
                              #probabilities = {} 
                              probabilities[classValue] = 1 
                              #attributeSummaries is an array of paired mean and std deviation for each attribute 
                              for i in range(len(attributeSummaries)):#FOR EACH ATTRIBUTE 
                                        mean, stdev = attributeSummaries[i] 
                                        x = instanceVector[i]#X IS VALUE OF A GIVEN ATTRIBUTE i                                         
                                        #GET PROBILITY OF THIS ATTRIBUTE AND MULTIPLY BY PROBABILITIES OF OTHER ATTRIBUTES IN EACH CLASS TO GET PROBALITY OF THE CLASS 
                                        probabilities[classValue] = probabilities[classValue]*self.calculateProbability(x, mean, stdev) 
                    #probabilities is  DICTIONARY CLASS PROBABILITIES                     
                    return probabilities         
         
        def predict(self,summaries, inputVector): 
                    self.summaries=summaries 
                    self.inputVector=inputVector 
                    #print('summaries:',summaries) 
                    probabilities = self.calculateClassProbabilities(summaries, inputVector) 
                    #print('The probabilities are:',probabilities) 
                    #print('The input vector is:',inputVector) 
                    bestLabel, bestProb = None, -1 
                    for classValue, probability in probabilities.items(): 
                              if bestLabel is None or probability > bestProb: 
                                        bestProb = probability 
                                        bestLabel = classValue 
                    #print('bestLabel:',bestLabel) 
                    return [bestLabel, bestProb] 
           
        def getPredictions(self, summaries, testSet): 
                    self.summaries=summaries# summary of mean and std dev of each atribute in each class 
                    self.testSet=testSet 
                    predictions = [] 
                    #print('The summary is:',summaries) 
                    #print('len(testSet):',len(testSet)) 
                    #print('testSet:',testSet) 
                    for i in range(len(testSet)): 
                              #print('testSet[i]:',testSet[i]) 
                              result, prob = self.predict(summaries, testSet[i]) 
                              predictions.append(result) 
                    return predictions  
                            
        def getAccuracy(self, testSet, predictions): 
                    self.testSet=testSet 
                    self.predictions=predictions 
                    correct = 0 
                    result = 0 
                    for i in range(len(testSet)): 
                              #print('testSet[i]:predictions[i]',testSet[i],predictions[i]) 
                              if testSet[i][-1] == predictions[i]: 
                                        #print('correct:before',correct) 
                                        correct += 1 
                                        #print('correct:after',correct) 
                              if (len(testSet)>0): 
                                        result = correct/float(len(testSet)) * 100.0         
                    return result 
        ''' 
        def Predict(self,predictor, X):             
                    self.predictor = predictor 
                    self.X = X              
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                    #print('X',X,predictor) 
                    result = []  
                    vector = X[0:len(X)-1]                        
                    result.append(predictor.predict(vector))    
                    #result.append(svmpy.SVMPredictor.predict(vector))                    
                    return result                     
                 
        def getPredictions(self, predictor, testdata): 
                    self.predictor = predictor# summary of mean and std dev of each atribute in each class 
                    self.testdata = testdata 
                    predictions = [] 
                    test = []                     
                    for i in range(len(testdata)): 
                              #test = testSet[i] 
                              test.append(testdata[i]) 
                               
                    #print('The testset is:',testdata) 
                    for i in range(len(test)): 
                              vector = test[i] 
                              result = self.Predict(predictor, vector) 
                              #print('Testset prediction is:',test[i],result) 
                              predictions.append(result) 
                    return predictions             
 
        def getAccuracy(self, testdata, predictions): 
                    self.testdata=testdata 
                    self.predictions=predictions 
                    correct = 0 
                    #print('Testset prediction is:',testdata,predictions) 
                    for i in range(len(testdata)): 
                              #print('Testset prediction is:',testdata[i],predictions[i]) 
                              vector = testdata[i] 
                              value1= predictions[i] 
                              value2 = vector[-1] 
                              #print('Testset prediction is:',value1[0],value2) 
                              if (value1[0] == value2): 
                                        #print('Testset prediction is:',vector[-1],predictions[i]) 
                                        correct += 1 
                    return (correct/float(len(testdata))) * 100.0 
        '''         
        def getLevelNodes(self, classTree,level): 
                    self.classTree = classTree 
                    self.level = level 
                    parent = [] 
                    childs = []                      
                    levelNodes = {} 
                    for classValue,instances in classTree.items(): 
                             for i in range(len(instances)): 
                                       classlev = instances[0] 
                                       classlevel = classlev[0] 
                                       parent = instances[1] 
                                       childs = instances[2] 
                                       if (classlevel == level): #only for this level                                                        
                                                 levelNodes[classValue] = [parent,childs] 
                    return levelNodes 
           
        def getTreeDepth(self, classTree): 
                    self.classTree = classTree 
                    depth = 0                  
                    for classValue,instances in classTree.items(): 
                             for i in range(len(instances)): 
                                       classlevel = instances[0] 
                                       level = classlevel 
                                       if(len(level) > 0): 
                                                 #print(type(level[0]),type(depth)) 
                                                 #print(level[0],depth) 
                                                 if (int(level[0]) > depth): #check leve of the current node 
                                                           depth = level[0]                                    
                    
                    return depth 
           
        def getChildrenOf(self, classvalue,classTree): 
                    self.classvalue = classvalue 
                    self.classTree = classTree 
                    childs = [] 
                    #print('class value is',classvalue)                     
                    for classValue,instances in classTree.items(): 
                             #print('classValue,classvalue',classValue,classvalue) 
                             if (classValue == classvalue): 
                                       #print('instances',instances) 
                                       #for i in range(len(instances)): 
                                                 #parent = instances[1] 
                                                 childs = instances[2] 
                                                 #print('instances',instances[2]) 
                    #print('childs',childs)                    
                    return childs 
           



 

   279 

 

        def getSubTrees(self, classTree):                     
                    self.classTree = classTree 
                    childs = []                     
                    subTrees = {} 
                    height = self.getTreeDepth(classTree) 
                    top = 0  
                    if (height > 0):                     
                             topNodes= self.getLevelNodes(classTree,top) 
                             #print('THESE ARE TOPNODES',topNodes) 
                             for classValue,instances in topNodes.items(): 
                                       if (classValue < 0): 
                                                 nextparent = classValue 
                                                 #print('nextparent,classvalue',nextparent,classValue) 
                                                 #childs = self.getChildrenOf(nextparent,classTree) 
                                                 while nextparent<0:                                                         
                                                        classes = [] 
                                                        childs = self.getChildrenOf(nextparent,classTree) 
                                                        #print('childs of: ',nextparent,'are:',childs) 
                                                        nextparent = 0 
                                                        for i in range(len(childs)): 
                                                                if (childs[i]>0): 
                                                                        classes.append(childs[i])                                                                                                                                     
                                                                else: 
                                                                        nextparent=childs[i]                                                             
                                                                 
                                                        if classValue not in subTrees: 
                                                                subTrees[classValue] = [] 
                                                        subTrees[classValue].append(classes)                                                                                    
                    return subTrees 
                 
        def getMainTrees(self, classTree):  
                    self.classTree = classTree 
                    childs = [] 
                    mainTree = {}                                          
                    Tree = {} 
                    for classValue,instances in classTree.items(): 
                             #if (classValue < 0):                                          
                             maintreeid = instances[3] 
                             #print('maintreeid:',maintreeid) 
                             if maintreeid[0]>0:                                                         
                                    if maintreeid[0] not in mainTree: 
                                            mainTree[maintreeid[0]] = [] 
                                            Tree = {} 
                                            classes = [] 
                                            classes = [instances[0],instances[1],instances[2]]   
                                            Tree[classValue] = [] 
                                            Tree[classValue] = classes 
                                            mainTree[maintreeid[0]] = Tree 
                                    else: 
                                            classes = []                                     
                                            classes = [instances[0],instances[1],instances[2]]                                   
                                            Tree = mainTree[maintreeid[0]] 
                                            if classValue not in Tree: 
                                                    Tree[classValue] = [] 
                                            Tree[classValue] = classes  
                                            mainTree[maintreeid[0]] = Tree                                               
                                    #print('maintree:',mainTree)                            
                    return mainTree 
                 
        def orderByParents(self, classNodes): 
                    self.classNodes = classNodes 
                    print(classNodes)                    
                    orderedByParent = {}  
                    parentList = []                    
                    for classValue,instances in classNodes.items(): 
                               #for i in range(len(instances)): 
                               parent = instances[0] 
                               #print('parent',parent[0]) 
                               if(len(parent)!=0):                                                                                    
                                        if parent[0] not in orderedByParent: 
                                                    #parentList = classValue 
                                                    orderedByParent[parent[0]]=[] 
                                         
                                        parentList=orderedByParent[parent[0]] 
                                        #print('parentList',parentList) 
                                        if classValue not in parentList:                                                                                                     
                                                    if (len(parentList)==0): 
                                                            parentList = [classValue] 
                                                    else: 
                                                            parentList.append(classValue)                                                         
                                                    #print('classValue',classValue)                                                     
                                                    #print('parentList',parentList) 
                                                    orderedByParent[parent[0]] = parentList 
                                                    #print('orderedByParent',orderedByParent)                                                 
                    return orderedByParent 
           
        def getParentNode(self, childnode,classTree): 
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                    self.childnode = childnode 
                    self.classTree = classTree 
                    parent = [] 
                    for classValue,instances in classTree.items(): 
                             if (childnode in instances): 
                                   parent = [classvalue] 
                                   continue     
                    return parent 
         
        #THIS CREATES A HIERARCHICAL MULTI- CLASSIFIER USING NAIVE BAYES APPROACH                                                     
        def classify(self,mainTree,trainingSet): 
               nB1 = naiveRootclassifier() 
               nB2 = naiveRootclassifier() 
               nB3 = naiveRootclassifier() 
               nB4 = naiveRootclassifier()                 
               #TreePredictorTree = {} 
               TreePredictors = {} 
               #mainTreePredictor = {}  
               #TreePredictor = {} 
               self.trainingSet = trainingSet 
               self.mainTree = mainTree                
               trainset = list(trainingSet) 
               #print("trainset:",len(trainset)) 
               maintrees = nB1.getMainTrees(mainTree) 
               mKey = maintrees.keys() 
               otherTrees = [] 
               AllTrees = [] 
               value = []                     
               for mKeys, classTree in maintrees.items(): 
                            for mK, trees in classTree.items(): 
                                  value = mK 
                                  #print('mK:',mK) 
                                  if mK > 0: 
                                        value =[mK] 
                                        AllTrees = AllTrees + value                     
                                        otherTrees = otherTrees + value 
               #print('ALLTREES and mKey :',AllTrees,mKey) 
               treeno = 0 
               #FOR EACH MAIN TREE  
               for mKeys, classTree in maintrees.items():             
                          #print('CLASSTREES:',classTree) 
                          #COUNT MAIN TREES 
                          treeno = treeno + 1          
                          depth = nB1.getTreeDepth(classTree)#GET DEPTH/HEIGHT OF EACH MAIN TREE 
                          subtrees = nB1.getSubTrees(classTree)#GET SUBTREES/BRANCHES OF EACH MAIN TREE                           
                          Key = list(subtrees.keys())#GET THE SUBTREE ID'S 
                          #print('SUBTREES and Key:',subtrees,Key)                           
                          trainset = list(trainingSet)                           
                          #print('TRAIN SET :',len(trainset)) 
                          Allclasses = [] 
                          otherClasses = []                   
                          TreePredictorTree = {} 
                          CellPredictorTree = {} 
                          NodePredictorTree = {} 
                          #''' 
                          #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET ALL THE CLASSES 
                          for Keys, cells in subtrees.items(): 
                                    for i in range(len(cells)): 
                                            Allclasses = Allclasses + cells[i]                     
                                            otherClasses = otherClasses + cells[i] 
                          #print('ALL CLASSES SET :',Allclasses,type(otherClasses)) 
                          order = 0 
                          #FOR EACH SUBTREE/BRANCH OF THE MAIN TREE GET NODE AND CELL CLASSIFIERS 
                          for Keys, cells in subtrees.items(): 
                                    if len(Key)>1: 
                                        order = order + 1#COUNT SUBTREES/BRANCHES                                        
                                    cell1 = [] 
                                    cellorder = 0 
                                    CellPredictorTree = {} 
                                    NodePredictorTree = {}                             
                                    #'' 
                                    #IN EACH SUBTREE/BRANCH CELL 
                                    #trainingSet3=trainset 
                                    #print('len(trainingSet3):len(trainingSet3[0])-1',len(trainingSet3),len(trainingSet3[0])-1) 
                                    for i in range(len(cells)):          
                                            cellorder = cellorder + 1#COUNT CELLS IN EACH SUBTREE 
                                            nodes = cells[i]                                             
                                            #CREATE NODE PREDICTOR                                            
                                            #print('NODES:',nodes) 
                                            if len(nodes) == 2:#IF ONLY TWO LEAF NODES IN EACH CELL CREATE NODE CLASSIFIER FOR EACH 
                                                    nB1 = naiveRootclassifier() 
                                                    #trainset = nB1.loadCsv(filename) 
                                                    trainingSet3=list(trainset) 
                                                    #print("trainingSet3:",len(trainingSet3))                                             
                                                    currentnode = [] 
                                                    othernode = []                                     
                                                    currentnode = [nodes[0]] 
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                                                    othernode = [nodes[1]] 
                                                    mergeclass = {1:currentnode,-1:othernode} 
                                                    #print('len(trainingSet3):',len(trainingSet3))  
                                                    trainingSet3, testSet3 = nB1.splitDataset2(trainingSet3, splitRatio)                                                     
                                                    #trainingSet3 = nB1.separateByRootClass(trainingSet3,mergeclass) 
                                                    #print('len(trainingSet3):',len(trainingSet3))                                                                                         
                                                    testSet3 = nB1.separateByClass(testSet3,mergeclass) 
                                                    #print('getClassDistribution:trainset2',nB1.getClassDistribution(trainingSet3))                                                    
#print('getClassDistribution:trainset2',nB1.getClassDistribution(trainingSet3),mergeclass) 
                                                    summary3 = nB1.summarizeByClass(trainingSet3,mergeclass) 
                                                    #print('len(trainingSet3):',len(trainingSet3))  
                                                    features = len(trainingSet3[0])-1 
                                                    dataframe = pd.DataFrame(testSet3) 
                                                    array1 = dataframe.values 
                                                    X = [] 
                                                    X = array1[:,0:features] 
                                                    predictions3 = nB1.getPredictions(summary3,X) 
                                                    accuracy3 = nB1.getAccuracy(testSet3, predictions3)                                                 
                                                    NodePredictor = {currentnode[0]:[currentnode+othernode,summary3,accuracy3]} 
                                                    #print('PREDICTION ACURACY FOR NODES:',nodes,accuracy3) 
                                            else:#IF ONLY ONE LEAF NODE IN EACH CELL CREATE NODE CLASSIFIER FOR ONLY ONE NODE 
                                                    predictor=[] 
                                                    accuracy3='100%' 
                                                    NodePredictor = {nodes[0]:[nodes,predictor,accuracy3]}                                     
                                                    #print('PREDICTION ACURACY FOR NODES:',nodes[0],': IS:',accuracy3) 
                                            #print('THE NODE PREDICTOR :',NodePredictor) 
                                            if (order not in NodePredictorTree): 
                                                            NodePredictorTree[order] = []                                                                                                     
                                            NodePredictorTree[order].append(NodePredictor)#STORE NODE CLASSIFIERS ACCORDING TO THEIR CELL NUMBER 
                                            #print('NODE PREDICTOR TREE:',NodePredictorTree)                                             
                                            #CREATE HIERARCHICAL CELL CLASSIFIERS 
                                            CellPredictor = [] 
                                            if cellorder<=len(cells)-1:#CREATE ONE AGAINST ALL(REMIANING CELLS) CELL CLASSIFIERS 
                                                    nB2 = naiveRootclassifier() 
                                                    #trainset = nB2.loadCsv(filename) 
                                                    trainingSet2=list(trainset) 
                                                    #print('getClassDistribution:trainset1',nB1.getClassDistribution(trainingSet2)) 
                                                    othercells = cell1 + cells[i] 
                                                    currentcell = cells[i+1] 
                                                    cell1 = cells[i]                                                                                                                           
                                                    mergeclass = {1:currentcell,-1:othercells}                                           
                                                    trainingSet2, testSet2 = nB2.splitDataset2(trainingSet2, splitRatio) 
                                                    #trainingSet2 = nB2.separateByRootClass(trainingSet2,mergeclass) 
                                                    testSet2 = nB2.separateByClass(testSet2,mergeclass) 
#print('getClassDistribution:trainset2',nB1.getClassDistribution(trainingSet2),mergeclass) 
                                                    summary2 = nB2.summarizeByClass(trainingSet2,mergeclass) 
                                                    features = len(trainingSet2[0])-1 
                                                    dataframe = pd.DataFrame(testSet2) 
                                                    array1 = dataframe.values 
                                                    X = [] 
                                                    X = array1[:,0:features] 
                                                    predictions2 = nB2.getPredictions(summary2,X) 
                                                    accuracy2 = nB2.getAccuracy(testSet2, predictions2)                                                     
                                                    CellPredictor ={len(cells)-cellorder:[currentcell,othercells,summary2,accuracy2]} 
                                                    #print('ACCURACY FOR CELL PREDICTION',currentcell,' IS: %=', accuracy2)                                             
                                            #print('THE CELL PREDICTOR IS:',CellPredictor) 
                                            if (order not in CellPredictorTree): 
                                                    CellPredictorTree[order] = []                                                                                                     
                                            if len(CellPredictor) > 0: 
                                                    CellPredictorTree[order].append(CellPredictor)                                                         
                                            #print('CELL PREDICTOR TREE:',CellPredictorTree)                     
                                            #'' 
                                    #CREATE SUBTREE CLASSIFIERS 
                                    #print("order",order) 
                                    if (order<=len(Key)-1):                            
                                            nB3 = naiveRootclassifier() 
                                            #trainset = nB3.loadCsv(filename) 
                                            trainingSet1=list(trainset)                             
                                            currentTree = []                             
                                            for i in range(len(cells)): 
                                                    currentTree = currentTree + cells[i]                                               
                                            for i in range(len(currentTree)):                                     
                                                    otherClasses.remove(currentTree[i])                                                        
                                            others = [] 
                                            for j in range(len(otherClasses)):  
                                                    others.append(otherClasses[j])                                                          
                                            mergeclass = {1:currentTree,-1:others}                                  
                                            trainingSet1, testSet1 = nB3.splitDataset2(trainingSet1, splitRatio) 
                                            #trainingSet1 = nB1.separateByRootClass(trainingSet1,mergeclass) 
                                            testSet1 = nB3.separateByClass(testSet1,mergeclass) 
                                            summary1 = nB3.summarizeByClass(trainingSet1,mergeclass)              
                                            features = len(trainingSet1[0])-1 
                                            dataframe = pd.DataFrame(testSet1) 
                                            array1 = dataframe.values 
                                            X = [] 
                                            X = array1[:,0:features] 
                                            predictions1 = nB3.getPredictions(summary1,X) 
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                                            accuracy1 = nB3.getAccuracy(testSet1, predictions1) 
                                            TreePredictor = {1.0:currentTree,-1.0:others,0.0:[summary1,accuracy1],} 
                                            #print('ACCURACY FOR SUBTREE PREDICTION',currentTree, 'IS: %=', accuracy1) 
                                            #print('THE SUBTREE PREDICTION:',TreePredictor) 
                                    if (order not in TreePredictorTree): 
                                                        TreePredictorTree[order] = []                                                                                                     
                                    TreePredictorTree[order].append([TreePredictor,CellPredictorTree,NodePredictorTree])  
                          #'''                                   
                          #print('TreePredictorTree:',TreePredictorTree) 
                           
                          #CREATE TREE CLASSIFIERS 
                          if (treeno<=len(mKey)-1): 
                                    nB4 = naiveRootclassifier() 
                                    #trainset = nB4.loadCsv(filename) 
                                    trainingSet1=list(trainset)                             
                                    currentMainTree = []                             
                                    for mK, trees in classTree.items(): 
                                            if mK > 0: 
                                                    value = [mK] 
                                                    currentMainTree = currentMainTree + value                 
                                    for i in range(len(currentMainTree)):                                  
                                            otherTrees.remove(currentMainTree[i])                                                                
                                    others = [] 
                                    for j in range(len(otherTrees)):  
                                            others.append(otherTrees[j])                         
                                    mergeclass = {1:currentMainTree,-1:others}           
                                    trainingSet1, testSet1 = nB4.splitDataset2(trainingSet1, splitRatio) 
                                    #trainingSet1 = nB1.separateByRootClass(trainingSet1,mergeclass) 
                                    testSet1 = nB4.separateByClass(testSet1,mergeclass)                                     
                                    summary1 = nB4.summarizeByClass(trainingSet1,mergeclass) 
                                    features = len(trainingSet1[0])-1 
                                    dataframe = pd.DataFrame(testSet1) 
                                    array1 = dataframe.values 
                                    X = [] 
                                    X = array1[:,0:features] 
                                    predictions2 = nB4.getPredictions(summary1,X) 
                                    accuracy2 = nB4.getAccuracy(testSet1, predictions2) 
                                    mainTreePredictor = {1.0:currentMainTree,-1.0:others,0.0:[summary1,accuracy2],} 
                                    #print('ACCURACY FOR MAIN TREE PREDICTION IS:', accuracy2) 
                          else: 
                                    #print('TWIN1 IS:treeno,len(mKey)',treeno,len(mKey) ) 
                                    if (len(mKey)==1): 
                                            predictor=[] 
                                            accuracy2='100%' 
                                            mainTreePredictor = {1.0:[],-1.0:[],0.0:[accuracy2],} 
                                            #mainTreePredictor = {mKeys:[predictor,accuracy2]} 
                                                                     
                          #print('MAIN TREE PREDICTOR IS:', mainTreePredictor)           
                          #''' 
                          #if (mKeys not in classifier): 
                          if (mKeys not in TreePredictors): 
                                            TreePredictors[mKeys] = []                                                                                                     
                          TreePredictors[mKeys].append([mainTreePredictor,TreePredictorTree]) 
               #print('ALL MAIN TREES PREDICTORS ARE:',len(TreePredictors))             
               #print('ALL MAIN TREES PREDICTORS ARE:', TreePredictors) 
               ''' 
               for tree, trees in TreePredictors.items(): 
                          #TreePredictorList = trees[0] 
                          mainTreePredictor =  trees[0]                      
                            
                          mainPredictors = mainTreePredictor[0][0.0]                                        
                          print('Key: 1.0', tree,len(mainPredictors)) 
                          #mainPredictors = mainTreePredictor[-1]                                        
                          print('Key: -1.0', tree,mainPredictors) 
               ''' 
               #pickle_out = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\multiclassifier.pickle','wb') 
               #pickle.dump(TreePredictors,pickle_out) 
               #pickle_out.close() 
               #print('ALL MAIN TREES PREDICTORS ARE:', TreePredictors.keys()) 
               return TreePredictors               
        #THIS CLASSIFIES WHOLE DATASET USING NAIVE BAYES CLASSIFIERS 
        def classifyInstance(self,classifier,classTree,data):                     
                    self.classifier = classifier 
                    self.classTree = classTree 
                    self.data = data                       
                    #print('TreePredictors keys:',TreePredictors.keys())                                                    
                    tree = classTree 
                    testdata = data             
                    #mKey =list(TreePredictors.keys())  
                    #print('TreePredictors keys:',mKey) 
                    mKey =list(classifier.keys())   
                    #TreePredictorTree = {}                
                    CellPredictorTree = {} 
                    NodePredictorTree = {}                        
                    #predictiondata = data 
                    predictiondata = [] 
                    correctClassified = {}  
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                    incorrectClassified = {} 
                    predictionresult = -1 
                    for i in range(len(testdata)): 
                                      #mainTreePredictorList = {} 
                                      #mainTreePredictor = {} 
                                       
                                      nB1 = naiveRootclassifier() 
                                      X = testdata[i]                                       
                                      vector = X[0:len(X)-1] 
                                      T = 0 
                                      while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS 
                                               treeno = mKey[T]#GET CLASSIFIER NUMBER 
                                               #mainTreePredictorList = TreePredictors[treeno]  
                                               mainTreePredictorList = classifier[treeno]  
                                               mainTreePredictor =  mainTreePredictorList[0]                                                                      
                                               mainPredictors = mainTreePredictor[0][0.0]                                               
                                               #print('mainPredictors', mainPredictors)                                        
                                               if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE 
                                                               mainPredictor = mainPredictors[0] 
                                                               #print('mainPredictor', mainPredictor)                                         
                                                               mainTreeResult =  nB1.predict(mainPredictor,vector)#MAKE PREDICTION                                                     
                                                               if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER                                              
                                                                     TreePredictorTree = mainTreePredictor[1]                                        
                                                                     #print('FOR MAINTREE NO:', treeno)                                                                     
                                                                     T = len(mKey)+1#END THE LOOP 
                                                               else:#IF -1  
                                                                     if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS SECOND LAST 
                                                                            treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP 
                                                                            #mainTreePredictorList = TreePredictors[treeno] 
                                                                            mainTreePredictorList = classifier[treeno] 
                                                                            mainTreePredictor =  mainTreePredictorList[0]   
                                                                            #print('mainTreePredictor[0]', mainTreePredictor[0]) 
                                                                            TreePredictorTree = mainTreePredictor[1]  
                                                                            #print('(this is second last)FOR MAINTREE NO:', treeno)                                                                                                                                                     
                                                                            T = len(mKey)+1 #END THE LOOP 
                                                                     else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2) 
                                                                            T = T + 1 #LOOP AGAIN   
                                               else:#CASE OF ONLY ONE TREE 
                                                                TreePredictorTree = mainTreePredictor[1] 
                                                                #print('CASE OF ONLY ONE TREE',TreePredictorTree[2])  
                                                                #mainTreePredictor =  mainTreePredictorList[1] 
                                                                T = len(mKey)+1 #END THE LOOP                                                                    
                                      Key = list(TreePredictorTree.keys()) 
                                      N = len(Key) 
                                      #print('TreePredictorTree', TreePredictorTree) 
                                      #print('Key', Key) 
                                      K = 0 
                                      while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS 
                                                #TreePredictorTr = {} 
                                                #TreePredictor = {} 
                                                #Trpredictor = {}                                                 
                                                subtreeno = Key[K]                                                 
                                                TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE                                         
                                                TreePredictorTr  = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]                                         
                                                TreePredictor  = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR                                         
                                                #print('TreePredictor ',TreePredictor) 
                                                CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS                                        
                                                NodePredictorList  = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS                                          
                                                CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS                                         
                                                Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE                                          
                                                result1 = nB1.predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                                                #print('Trpredictor[0]',len(Trpredictor[0])) 
                                                #result1 = nB1.getPredictions(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                                                #print('subtree result1',result1) 
                                                if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES 
                                                    #GET CELL PREDICTORS                                             
                                                    X = len(CellPredictors) 
                                                    #print('CellPredictor:for result1=1',CellPredictors) 
                                                    if (X>0):#IF THERE ARE CELL PREDICTORS 
                                                            cellpredictorskeys = [] 
                                                            cellpredictor = {} 
                                                            i=0                                            
                                                            while i<X:#WHILE THERE ARE CELL PREDICTORS 
                                                                predictor = CellPredictors[i] 
                                                                for Keys, cells in predictor.items(): 
                                                                    predictorkey = Keys 
                                                                    cellpredictorskeys.append(predictorkey)                                                             
                                                                    cellpredictor[predictorkey] = [] 
                                                                    cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                                                i=i+1                                             
                                                            cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON                                                     
                                                            count=X 
                                                            for Keys, cells in cellpredictor.items(): 
                                                               count=count-1 #COUNT CELL PREDICTORS BOTTOM UP  
                                                               #print('Cell:',cells) 
                                                               cell = cells[0] 
                                                               currentcell = cell[0] 
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                                                               othercells = cell[1] 
                                                               cellpredictor = cell[2] 
                                                               accuracy2 = cell[3] 
                                                               result2 =  nB1.predict(cellpredictor,vector) 
                                                               #print('Cell result2',result2[0]) 
                                                               if (result2[0] == 1.0):  #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS                                                     
                                                                   #GET NODE PREDICTOR FOR THIS SUBTREE                                                    
                                                                    NodePredictors = NodePredictorList[subtreeno]                                                     
                                                                    #print('NodePredictors',NodePredictors) 
                                                                    X = len(NodePredictors) 
                                                                    nodepredictorskeys = [] 
                                                                    nodepredictor = {} 
                                                                    i=0                                            
                                                                    while i<X: 
                                                                        predictor = NodePredictors[i] 
                                                                        for Keys, nodes in predictor.items(): 
                                                                            predictorkey = Keys 
                                                                            nodepredictorskeys.append(predictorkey)                                                                     
                                                                            nodepredictor[predictorkey] = [] 
                                                                            nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                        i=i+1                                             
                                                                    nodepredictorskeys.sort()                                                            
                                                                    #print('nodepredictor',nodepredictor)                                                     
                                                                    nodes = nodepredictor[currentcell[0]] 
                                                                    #print('nodes',nodes)  
                                                                    node = nodes[0] 
                                                                    nodepair = node[0] 
                                                                    if len(nodepair)==2: 
                                                                        nodepredictor = node[1] 
                                                                        accuracy = node[2] 
                                                                        result3 =  nB1.predict(nodepredictor,vector) 
                                                                        #print('Node result',result3[0])  
                                                                        if (result3[0] == 1.0):  
                                                                            predictionresult = nodepair[0] 
                                                                        else: 
                                                                            predictionresult = nodepair[1]                                                          
                                                                    else: 
                                                                            predictionresult = nodepair[0]                                             
                                                                    #print('Node result(+ve)',vector,predictionresult)  
                                                                    break 
                                                               else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES 
                                                                   if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE 
                                                                        if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL 
                                                                           predictionresult = othercells[0]                                                      
                                                                        else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL 
                                                                           NodePredictors = NodePredictorList[subtreeno]                                                
                                                                           X = len(NodePredictors) 
                                                                           nodepredictorskeys = [] 
                                                                           nodepredictor = {} 
                                                                           i=0                                            
                                                                           while i<X: 
                                                                                predictor = NodePredictors[i] 
                                                                                for Keys, nodes in predictor.items(): 
                                                                                    predictorkey = Keys 
                                                                                    nodepredictorskeys.append(predictorkey)                                                                             
                                                                                    nodepredictor[predictorkey] = [] 
                                                                                    nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                                i=i+1                                             
                                                                           nodepredictorskeys.sort()                                                                     
                                                                           nodes = nodepredictor[othercells[0]] 
                                                                           #print('nodes',nodes)  
                                                                           node = nodes[0] 
                                                                           nodepair = node[0] 
                                                                           if len(nodepair)==2: 
                                                                                nodepredictor = node[1] 
                                                                                accuracy = node[2] 
                                                                                result3 =  nB1.predict(nodepredictor,vector) 
                                                                                #print('Node result',result3[0])  
                                                                                if (result3[0] == 1.0):  
                                                                                    predictionresult = nodepair[0] 
                                                                                else: 
                                                                                    predictionresult = nodepair[1]                                                   
                                                                         
                                                                           else: 
                                                                                    predictionresult = nodepair[0]                                             
                                                                           #print('Node result(+ve)',vector,predictionresult)  
                                                                           break  
                                                            K = N 
                                                    else:#IF THERE ARE NO CELL PREDICTORS 
                                                            #GET NODE PREDICTORS 
                                                                    NodePredictors = NodePredictorList[subtreeno]                                       
                                                                    X = len(NodePredictors) 
                                                                    nodepredictorskeys = [] 
                                                                    nodepredictor = {} 
                                                                    i=0                                            
                                                                    while i<X: 
                                                                        predictor = NodePredictors[i] 
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                                                                        for Keys, nodes in predictor.items(): 
                                                                            predictorkey = Keys 
                                                                            nodepredictorskeys.append(predictorkey)                                                                     
                                                                            nodepredictor[predictorkey] = [] 
                                                                            nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                        i=i+1                                             
                                                                    nodepredictorskeys.sort()                                                             
                                                                    currentcell = nodepredictorskeys[0] 
                                                                    #print('currentcell',currentcell)                                                     
                                                                    nodes = nodepredictor[currentcell] 
                                                                    #print('nodes',nodes)  
                                                                    node = nodes[0] 
                                                                    nodepair = node[0] 
                                                                    if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL 
                                                                        nodepredictor = node[1] 
                                                                        accuracy = node[2] 
                                                                        result3 =  nB1.predict(nodepredictor,vector)#PREDICT ONE OF THE NODES 
                                                                        #print('Node result',result3[0])  
                                                                        if (result3[0] == 1.0):  
                                                                            predictionresult = nodepair[0] 
                                                                        else: 
                                                                            predictionresult = nodepair[1] 
                                                                        K = N 
                                                                        break                                                         
                                                                     
                                                                    else:#IF THERE IS ONLY ONR NODE IN A CELL 
                                                                            predictionresult = nodepair[0] 
                                                                            K = N                                                                  
                                                             
                                                else:#IF CURRENT SUBTREE NOT PREDICTED 
                                                            if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING 
                                                                subtreeno = Key[K] 
                                                                TreePredictorList = TreePredictorTree[subtreeno]                                                 
                                                                TreePredictorTr  = TreePredictorList[0]                                                 
                                                                TreePredictor  = TreePredictorTr[0]                                                 
                                                                CellPredictorList = TreePredictorTr[1]                                         
                                                                NodePredictorList  = TreePredictorTr[2]                                                 
                                                                CellPredictors = CellPredictorList[subtreeno] 
                                                                X = len(CellPredictors)                                                    
                                                                cellpredictorskeys = [] 
                                                                cellpredictor = {} 
                                                                i=0                                            
                                                                while i<X: 
                                                                    predictor = CellPredictors[i] 
                                                                    for Keys, cells in predictor.items(): 
                                                                        predictorkey = Keys 
                                                                        cellpredictorskeys.append(predictorkey)                                                                 
                                                                        cellpredictor[predictorkey] = [] 
                                                                        cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                                                    i=i+1                                             
                                                                cellpredictorskeys.sort()                                                         
                                                                count=X 
                                                                for Keys, cells in cellpredictor.items(): 
                                                                   count=count-1  
                                                                   #print('if current subtree not predicted,Cell:',cells) 
                                                                   cell = cells[0] 
                                                                   currentcell = cell[0] 
                                                                   othercells = cell[1] 
                                                                   cellpredictor = cell[2] 
                                                                   accuracy2 = cell[3] 
                                                                   result2 =  nB1.predict(cellpredictor,vector) 
                                                                   #print('if current subtree not predicted,Cell result2',result2[0]) 
                                                                   if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE                                                      
                                                                       #GET NODE PREDICTOR                                                         
                                                                        NodePredictors = NodePredictorList[subtreeno]                                                  
                                                                        X = len(NodePredictors) 
                                                                        nodepredictorskeys = [] 
                                                                        nodepredictor = {} 
                                                                        i=0                                            
                                                                        while i<X: 
                                                                            predictor = NodePredictors[i] 
                                                                            for Keys, nodes in predictor.items(): 
                                                                                predictorkey = Keys 
                                                                                nodepredictorskeys.append(predictorkey)                                                                         
                                                                                nodepredictor[predictorkey] = [] 
                                                                                nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                                            i=i+1                                             
                                                                        nodepredictorskeys.sort()                                                                                                                     
                                                                        nodes = nodepredictor[currentcell[0]] 
                                                                        #print('if current subtree not predicted,nodes',nodes)  
                                                                        node = nodes[0] 
                                                                        nodepair = node[0] 
                                                                        if len(nodepair)==2: 
                                                                            nodepredictor = node[1] 
                                                                            accuracy = node[2] 
                                                                            result3 =  nB1.predict(nodepredictor,vector) 
                                                                            #print('if current subtree not predicted,Node result',result3[0])  
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                                                                            if (result3[0] == 1.0):  
                                                                                predictionresult = nodepair[0] 
                                                                            else: 
                                                                                predictionresult = nodepair[1]                                                          
                                                                        else: 
                                                                                predictionresult = nodepair[0]                                             
                                                                        #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)  
                                                                        break 
                                                                   else:#IF CELL PREDICTION IS FALSE 
                                                                       if (count==0): 
                                                                            if len(othercells)==1: 
                                                                               predictionresult = othercells[0]                                                            
                                                                            #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)  
                                                                            break  
                                                                K = N                                                        
                                                            else: 
                                                                K = K + 1                                             
                                                                              
                                      #print('Prediction result for this vector:',vector,predictionresult) 
                                      y = float(predictionresult)                   
                                      predictiondata.append(y)  
                                      #predictiondata[i][-1] = float(predictionresult) 
                                      #print(vector[-1],'...',y) 
                                                          
                                      if vector[-1] == y:                                             
                                            if (vector[-1] in correctClassified): 
                                                    #print('count before is:',correctClassified[vector[-1]]) 
                                                    count=correctClassified[vector[-1]] 
                                                    correctClassified[vector[-1]] = count+1 
                                                    #print('count after is:',correctClassified[vector[-1]]) 
                                                    #print('Yes1')  
                                                        
                                            else: 
                                                    correctClassified[vector[-1]] = 1 
                                                    #print('Yes2') 
                                      else: 
                                            if (vector[-1] in incorrectClassified): 
                                                    count=incorrectClassified[vector[-1]] 
                                                    incorrectClassified[vector[-1]] = count+1  
                                                    #print('No1')    
                                            else: 
                                                    incorrectClassified[vector[-1]] = 1 
                                                    #print('No2') 
                                                                                       
                                                                                         
                                                                                       
                    #print('correctClassified:',correctClassified) 
                    #print('incorrectClassified:',incorrectClassified)  
                    testFileDistribution = nB1.getClassDistribution(testdata) 
                    classAccuracy = nB1.getClassAccuracy(testFileDistribution,correctClassified,incorrectClassified)                       
                    #print('classAccuracy is:',classAccuracy) 
                    #print('len(testdata),len(predictiondata):',len(testdata),len(predictiondata))                                         
                    overallaccuracy = nB1.getAccuracy(testdata,predictiondata) 
                    #print('THE ACCURACY FOR THIS CLASSIFICATION IS=%:',nB1.getAccuracy(testdata,predictiondata))                   
                    return  overallaccuracy                
  
  
        #THIS CLASSIFIES ONE INSTANCE AT A TIME USING A STORED TRAINED CLASSIFIER LOADED FROM PICKLE  
        def classifyOneInstance(self,classifier,classTree,data): 
                     
                    self.classTree = classTree 
                    self.data = data 
                                                    
                    tree = classTree 
                    testdata = data                     
                    ''' 
                    #RETRIEVE THE CLASSIFIER 
                    pickle_in = open('C:\Program Files (x86)\WinPython-64bit-3.4.3.5\PythonEditor\PYPE-2.9.4\EXPERIMENTDATA\PROTEIN\BNclassifier.pickle','rb') 
                    tp=pickle.load(pickle_in)                   
                     
                    TreePredictors = tp 
                    '''      
                    TreePredictors = classifier 
                                
                    mKey =list(TreePredictors.keys())             
                    CellPredictorTree = {} 
                    NodePredictorTree = {} 
                    #TreePredictorTre = {}       
                    #predictiondata = data 
                    predictiondata = []  
                     
                    nB1 = naiveRootclassifier() 
                    vector = testdata 
                    T = 0 
                    while (T <len(mKey)):#CHECK IN EACH MAIN TREE IN WHICH THE INSTANCE BELONGS 
                            treeno = mKey[T]#GET CLASSIFIER NUMBER 
                            mainTreePredictorList = TreePredictors[treeno]  
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                            mainTreePredictor =  mainTreePredictorList[0]                                    
                                                                     
                            #print('mainTreePredictor[0]', mainTreePredictor[0])                                        
                            mainPredictors = mainTreePredictor[0][0.0]                                        
                            if (len(mainPredictors)> 1):#CASE OF MORE THAN ONE TREE 
                                            mainPredictor = mainPredictors[0]                                        
                                            mainTreeResult =  nB1.predict(mainPredictor,vector)#MAKE PREDICTION                                                     
                                            if (mainTreeResult[0] ==1.0)and (T <=(len(mKey)- 2)):#IF 1 GET SUBTREE CLASSIFIER                                              
                                                    TreePredictorTree = mainTreePredictor[1]                                        
                                                    #print('FOR MAINTREE NO:', treeno) 
                                                     
                                                     
                                                     
                                                                                                 
                                                    T = len(mKey)+1#END THE LOOP 
                                            else:#IF -1  
                                                    if (mainTreeResult[0] == -1.0)and (T >= (len(mKey) - 2)):#CHECK WHETHER IT IS SECOND LAST 
                                                        treeno = mKey[T+1]#GET GET THE ONLY LAST AND END THEN LOOP 
                                                        mainTreePredictorList = TreePredictors[treeno] 
                                                        mainTreePredictor =  mainTreePredictorList[0]   
                                                        #print('mainTreePredictor[0]', mainTreePredictor[0]) 
                                                        TreePredictorTree = mainTreePredictor[1]  
                                                        #print('(this is second last)FOR MAINTREE NO:', treeno) 
                                                             
                                                             
                                                             
                                                             
                                                        T = len(mKey)+1 #END THE LOOP 
                                                    else:#IF NOT SECOND LAST (mainTreeResult[0] == -1.0)and (T < len(mKey) - 2) 
                                                        T = T + 1 #LOOP AGAIN   
                            else:#CASE OF ONLY ONE TREE 
                                            TreePredictorTree = mainTreePredictor[1] 
                                            T = len(mKey)+1 #END THE LOOP 
                                                 
                    Key = list(TreePredictorTree.keys()) 
                    N = len(Key) 
                    #print('TreePredictorTree', TreePredictorTree) 
                    K = 0 
                    while (K < len(Key)):#CHECK IN EACH SUBTREE THE CELL IN WHICH THE INSTANCE BELONGS 
                            subtreeno = Key[K] 
                            TreePredictorList = TreePredictorTree[subtreeno]#TreePredictorList IS A LIST OF ONLY ONE ELEMENT I.E. THIS SUBTREE                                         
                            TreePredictorTr  = TreePredictorList[0]#TreePredictorTr IS A LIST OF THREE DICTIONARIES OF THIS SUBTREE PREDICTORS I.E.[{SUBTREE},{CELLS},{NODES}]                                         
                            TreePredictor  = TreePredictorTr[0]# TreePredictor IS A DICTIONARY OF THIS SUBTREE PREDICTOR                                         
                            CellPredictorList = TreePredictorTr[1] #CellPredictorList IS A DICTIONARY OF THIS SUBTREE CELL PREDICTORS                                        
                            NodePredictorList  = TreePredictorTr[2]#NodePredictorList IS A DICTIONARY OF THIS SUBTREE NODE PREDICTORS                                          
                            CellPredictors = CellPredictorList[subtreeno]#CellPredictors IS A LIST OF THIS SUBTREE'S CELL PREDICTORS                                         
                            Trpredictor = TreePredictor[0.0]#Trpredictor IS A PREDICTOR OF THIS CURRENT SUBTREE                                          
                            result1 = nB1.predict(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                            #print('Trpredictor[0]',Trpredictor[0]) 
                            #result1 = nB1.getPredictions(Trpredictor[0],vector)#THIS IS PREDICTING THE CURRENT SUBTREE 
                                 
                            #print('subtree result1',result1) 
                            if (result1[0] == 1.0):#IF CURRENT SUBTREE PREDICTED YES 
                                #GET CELL PREDICTORS                                             
                                X = len(CellPredictors) 
                                #print('CellPredictor:for result1=1',CellPredictors) 
                                if (X>0):#IF THERE ARE CELL PREDICTORS 
                                        cellpredictorskeys = [] 
                                        cellpredictor = {} 
                                        i=0                                            
                                        while i<X:#WHILE THERE ARE CELL PREDICTORS 
                                            predictor = CellPredictors[i] 
                                            for Keys, cells in predictor.items(): 
                                                predictorkey = Keys 
                                                cellpredictorskeys.append(predictorkey)                                                             
                                                cellpredictor[predictorkey] = [] 
                                                cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                            i=i+1                                             
                                        cellpredictorskeys.sort()#SORT THEM IN THE ORDER THEY WILL BE WORKED ON                                                     
                                        count=X 
                                        for Keys, cells in cellpredictor.items(): 
                                            count=count-1 #COUNT CELL PREDICTORS BOTTOM UP  
                                            #print('Cell:',cells) 
                                            cell = cells[0] 
                                            currentcell = cell[0] 
                                            othercells = cell[1] 
                                            cellpredictor = cell[2] 
                                            accuracy2 = cell[3] 
                                            result2 =  nB1.predict(cellpredictor,vector) 
                                            #print('Cell result2',result2[0]) 
                                            if (result2[0] == 1.0):  #IF CELL RESULT IS 1 SELECT THE FIRST CELL'S NODE PREDICTORS                                                     
                                                #GET NODE PREDICTOR FOR THIS SUBTREE                                                    
                                                NodePredictors = NodePredictorList[subtreeno]                                                     
                                                #print('NodePredictors',NodePredictors) 
                                                X = len(NodePredictors) 
                                                nodepredictorskeys = [] 
                                                nodepredictor = {} 
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                                                i=0                                            
                                                while i<X: 
                                                    predictor = NodePredictors[i] 
                                                    for Keys, nodes in predictor.items(): 
                                                        predictorkey = Keys 
                                                        nodepredictorskeys.append(predictorkey)                                                                     
                                                        nodepredictor[predictorkey] = [] 
                                                        nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                    i=i+1                                             
                                                nodepredictorskeys.sort()                                                            
                                                #print('nodepredictor',nodepredictor)                                                     
                                                nodes = nodepredictor[currentcell[0]] 
                                                #print('nodes',nodes)  
                                                node = nodes[0] 
                                                nodepair = node[0] 
                                                if len(nodepair)==2: 
                                                    nodepredictor = node[1] 
                                                    accuracy = node[2] 
                                                    result3 =  nB1.predict(nodepredictor,vector) 
                                                    #print('Node result',result3[0])  
                                                    if (result3[0] == 1.0):  
                                                        predictionresult = nodepair[0] 
                                                    else: 
                                                        predictionresult = nodepair[1]                                                           
                                                     
                                                else: 
                                                        predictionresult = nodepair[0]                                             
                                                #print('Node result(+ve)',vector,predictionresult)  
                                                break 
                                            else:#IF CELL RESULT IS -1 SELECT THE OTHER CELL'S NODES 
                                                if (count==0):#IF THIS IS THE LAST CELL PREDICTOR FOR THIS SUBTREE 
                                                    if len(othercells)==1:#IF THERE IS ONLY ONE NODE IN THIS CELL 
                                                        predictionresult = othercells[0]                                                        
                                                         
                                                    else:#IF THERE IS MORE THAN ONE(TWO) NODES IN THIS CELL 
                                                        NodePredictors = NodePredictorList[subtreeno]                                                
                                                        X = len(NodePredictors) 
                                                        nodepredictorskeys = [] 
                                                        nodepredictor = {} 
                                                        i=0                                            
                                                        while i<X: 
                                                            predictor = NodePredictors[i] 
                                                            for Keys, nodes in predictor.items(): 
                                                                predictorkey = Keys 
                                                                nodepredictorskeys.append(predictorkey)                                                                             
                                                                nodepredictor[predictorkey] = [] 
                                                                nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                            i=i+1                                             
                                                        nodepredictorskeys.sort()                                                                     
                                                        nodes = nodepredictor[othercells[0]] 
                                                        #print('nodes',nodes)  
                                                        node = nodes[0] 
                                                        nodepair = node[0] 
                                                        if len(nodepair)==2: 
                                                            nodepredictor = node[1] 
                                                            accuracy = node[2] 
                                                            result3 =  nB1.predict(nodepredictor,vector) 
                                                            #print('Node result',result3[0])  
                                                            if (result3[0] == 1.0):  
                                                                predictionresult = nodepair[0] 
                                                            else: 
                                                                predictionresult = nodepair[1]                                                     
                                                             
                                                        else: 
                                                                predictionresult = nodepair[0]                                             
                                                        #print('Node result(+ve)',vector,predictionresult)  
                                                        break  
                                        K = N 
                                else:#IF THERE ARE NO CELL PREDICTORS 
                                        #GET NODE PREDICTORS 
                                                NodePredictors = NodePredictorList[subtreeno]                                       
                                                X = len(NodePredictors) 
                                                nodepredictorskeys = [] 
                                                nodepredictor = {} 
                                                i=0                                            
                                                while i<X: 
                                                    predictor = NodePredictors[i] 
                                                    for Keys, nodes in predictor.items(): 
                                                        predictorkey = Keys 
                                                        nodepredictorskeys.append(predictorkey)                                                                     
                                                        nodepredictor[predictorkey] = [] 
                                                        nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                    i=i+1                                             
                                                nodepredictorskeys.sort()                                                             
                                                currentcell = nodepredictorskeys[0] 
                                                #print('currentcell',currentcell)                                                     
                                                nodes = nodepredictor[currentcell] 
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                                                #print('nodes',nodes)  
                                                node = nodes[0] 
                                                nodepair = node[0] 
                                                if len(nodepair)==2:#CHECK IF THERE ARE TWO NODES IN A CELL 
                                                    nodepredictor = node[1] 
                                                    accuracy = node[2] 
                                                    result3 =  nB1.predict(nodepredictor,vector)#PREDICT ONE OF THE NODES 
                                                    #print('Node result',result3[0])  
                                                    if (result3[0] == 1.0):  
                                                        predictionresult = nodepair[0] 
                                                    else: 
                                                        predictionresult = nodepair[1] 
                                                    K = N 
                                                    break                                                         
                                                     
                                                else:#IF THERE IS ONLY ONR NODE IN A CELL 
                                                        predictionresult = nodepair[0] 
                                                        K = N                                                                  
                                             
                            else:#IF CURRENT SUBTREE NOT PREDICTED 
                                        if (K == N-1):#CHECK IF ONLY ONE SUBTREE REMAINING 
                                            subtreeno = Key[K] 
                                            TreePredictorList = TreePredictorTree[subtreeno]                                                 
                                            TreePredictorTr  = TreePredictorList[0]                                                 
                                            TreePredictor  = TreePredictorTr[0]                                                 
                                            CellPredictorList = TreePredictorTr[1]                                         
                                            NodePredictorList  = TreePredictorTr[2]                                                 
                                            CellPredictors = CellPredictorList[subtreeno] 
                                            X = len(CellPredictors)                                                    
                                            cellpredictorskeys = [] 
                                            cellpredictor = {} 
                                            i=0                                            
                                            while i<X: 
                                                predictor = CellPredictors[i] 
                                                for Keys, cells in predictor.items(): 
                                                    predictorkey = Keys 
                                                    cellpredictorskeys.append(predictorkey)                                                                 
                                                    cellpredictor[predictorkey] = [] 
                                                    cellpredictor[predictorkey].append(predictor[predictorkey]) 
                                                i=i+1                                             
                                            cellpredictorskeys.sort()                                                         
                                            count=X 
                                            for Keys, cells in cellpredictor.items(): 
                                                count=count-1  
                                                #print('if current subtree not predicted,Cell:',cells) 
                                                cell = cells[0] 
                                                currentcell = cell[0] 
                                                othercells = cell[1] 
                                                cellpredictor = cell[2] 
                                                accuracy2 = cell[3] 
                                                result2 =  nB1.predict(cellpredictor,vector) 
                                                #print('if current subtree not predicted,Cell result2',result2[0]) 
                                                if (result2[0] == 1.0): #IF CELL PREDICTION IS TRUE                                                      
                                                    #GET NODE PREDICTOR                                                         
                                                    NodePredictors = NodePredictorList[subtreeno]                                                  
                                                    X = len(NodePredictors) 
                                                    nodepredictorskeys = [] 
                                                    nodepredictor = {} 
                                                    i=0                                            
                                                    while i<X: 
                                                        predictor = NodePredictors[i] 
                                                        for Keys, nodes in predictor.items(): 
                                                            predictorkey = Keys 
                                                            nodepredictorskeys.append(predictorkey)                                                                         
                                                            nodepredictor[predictorkey] = [] 
                                                            nodepredictor[predictorkey].append(predictor[predictorkey]) 
                                                        i=i+1                                             
                                                    nodepredictorskeys.sort()                                                                                                                     
                                                    nodes = nodepredictor[currentcell[0]] 
                                                    #print('if current subtree not predicted,nodes',nodes)  
                                                    node = nodes[0] 
                                                    nodepair = node[0] 
                                                    if len(nodepair)==2: 
                                                        nodepredictor = node[1] 
                                                        accuracy = node[2] 
                                                        result3 =  nB1.predict(nodepredictor,vector) 
                                                        #print('if current subtree not predicted,Node result',result3[0])  
                                                        if (result3[0] == 1.0):  
                                                            predictionresult = nodepair[0] 
                                                        else: 
                                                            predictionresult = nodepair[1]                                                          
                                                    else: 
                                                            predictionresult = nodepair[0]                                             
                                                    #print('if current subtree not predicted,Node result(+ve)',vector,predictionresult)  
                                                    break 
                                                else:#IF CELL PREDICTION IS FALSE 
                                                    if (count==0): 
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                                                        if len(othercells)==1: 
                                                            predictionresult = othercells[0]                                                            
                                                        #print('if current subtree not predicted,Node result(-ve)',vector,predictionresult)  
                                                        break  
                                            K = N                                                        
                                        else: 
                                            K = K + 1                                             
                                                             
                    #print('Prediction result for this vector:',vector,predictionresult) 
                    y = float(predictionresult)                              
                    return  y                 
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