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ABSTRACT

Quantification of vulnerability and its components is currently an integral part of providing

information to policy makers and stakeholders in an attempt to appropriately assess climate change

consequences and support effective risk management and spatial planning.

The aim of this study was to assess the vulnerability of maize production to climate change in

Trans Nzoia, Uasin Gishu, Narok and Nakuru Counties. The trend of baseline climate patterns

(1981-20 I0) and projected climate under RCP4.S and RCP8.S (2021-20S0) was also assessed.

Further, the relationship between climate parameters and total maize yields for the period between

2000 and 201S was determined. The study used historical climate data obtained from Kenya

Meteorological Department (KMD), simulated climate data from CORDEX for CNRM model for

the period between 2021 and 20S0, and biophysical and socioeconomic data from Kenya National

Bureau of Statistics (KNBS), Ministry of Agriculture, Livestock and Fisheries (MOALF), and

Tegemeo Institute of Agricultural Policy and Development (TIAPF).

The trend analysis revealed that temperatures increased significantly while rainfall recorded a

general increase which was not significant during the baseline period. Based on RCP4.S, rainfall

is expected to record upward mean shift and trend patterns that will be non-significant. As for

RCP8.S, the results showed that a significant upward trend of minimum and maximum temperature

will be recorded in all counties during the simulation period. The correlation results showed that

there was a relationship between maize yields and climate. The strength and direction of the

association was varied across the maize growth stages.

The results of vulnerability assessment showed that due to its least exposure index (0.19) and

considerably high adaptive capacity index (2.S8), Trans Nzoia registered the lowest vulnerability

.index of -0.21. Narok recorded the highest vulnerability index of I.Sl because of its high exposure

index (1.03) which contributed greatly to potential impacts of climate stressors and hence

increased its vulnerability. Moreover, its negative adaptive capacity index (-2.28) was the least

among the four counties. Therefore, the county had no capacity to withstand or cope with impacts

of climate change. Nakuru had the second highest vulnerability index (0.3S) while Uasin Gishu

was the second least vulnerable county (-0.12).
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Generally, counties with considerable socioeconomic and infrastructural development recorded

high adaptive capacity which reduced their vulnerability significantly. Hence, in order to reduce

the vulnerability of most vulnerable maize producing counties, climate change policies and

strategies should prioritize adaptive capacity enhancement through socio economic development

initiatives such as irrigation, rural infrastructural development and educational programs.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background Information

Over the last three decades, the earth's surface has successively been warming up at the highest

rate compared to the preceding decades since 1850. The Fifth Assessment Report by

Intergovernmental Panel on Climate Change (lPCC), shows that the global averaged land and

ocean surface temperature increased by 0.8S0C (0.6SoC - 1.06°C) from 1880 to 2012 (Pachauri et

aI., 2014). In comparison to the base period between 1986 and 2005, the increase in global mean

surface temperature by the end of the century has been projected to be in the range of 0.30C to

4.8oC (Pachauri et al., 2014).

Climate change is largely driven by the increasing emission of greenhouse gases (GHGs) that

emanate from anthropogenic activities (Parry, 2007; Stocker et al., 2013). Although there are

concerted efforts to reduce the emission of GHGs, global temperatures are still expected to

continue increasing and therefore there is urgent need to explore mechanisms for adapting to the

continuing change in climate, specifically for developing countries which face the biggest brunt of

the adverse impacts of climate change (Ahumada-Cervantes et al., 2015). Other than decreasing

the frequency of frost, cold nights and cold days, escalating global temperatures have increased

the occurrence of heat waves, hot nights and hot days globally (Adhikari et aI., 2015).

Additionally, it has caused atmospheric water vapour increase, widespread melting of ice, soil

moisture variation and deviation of runoff which have significantly interfered with the

hydrological cycle (Bates et al., 2008; Hartmann et al., 2013). Climate projections up to 2050

reveal that rising mean global temperatures will cause increased weather variability, which will in

turn affect the type and distribution of agricultural production worldwide (Parry, 2007). Due to the

impacts of climate change, global food production is expected to reduce by up to 30% (Parry et

al., 2004)

The high temperatures and increased frequency of extreme weather events due to climate change,

are bound to jeopardize agricultural production and as a result compromise food security in Africa

(Conway, 2009). Particularly, the high temperatures are likely to hinder crop development as most

crops in Africa are cultivated close to their thresholds of thermal tolerance (Collier et al., 2008).

For instance, at a 5°C global warming, East Africa is expected to experience a reduction in maize
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production by 19% (Thornton et aI., 2011). Notably, some areas in Africa are likely to benefit

from the escalating temperatures. This includes the highlands of East Africa where the increased

temperatures are expected to favour maize production. However, in the long run, the temperature

rise will exceed the optimal temperature for maize production in the highlands and varieties that

are tolerant to high temperatures will be the only remedy for sustaining optimal yields (Thornton,

2012). Large areas of marginal agricultural production may be forced out of production due to

continuous increase of temperatures and higher frequency of droughts brought about by climate

change (Conway, 2009).

In Kenya, the suitable maximum and minimum temperature for maize growth in high altitude areas

(1500m-21 OOm) is 28°C and 8° C respectively. Optimal production of maize in these areas requires

rainfall amounts ranging from 800mm to 1500mm (Schroeder et aI., 2013). Temperature has

notable impact on maize production than precipitation in Kenya (Wandaka, 2013). In particular,

the increasing temperatures during the long rain season affect maize production by disrupting crop

development during its formative stages which occurs between March and May (Ojwang et al.,

2010; Kabubo-Mariara & Karanja, 2007; Wandaka, 2013). It is predicted that by the year 2020,

yields resulting from maize farming that is rain-fed will decline by half (OJwang et aI., 2010).

Therefore, there is need for sustainable strengthening of maize production, by increasing the yields

per unit land and improving the ecological condition while at the same time averting the adverse

impacts of climate change on agricultural production (Khan et al., 2014).

The availability of locally produced maize determines Kenya's food security nationally and at the

household level since it is the staple food, and accounts for up to more than one third of the caloric

intake of food in the country (Ariga et al., 2010; Mohajan, 2014; Kirimi et al., 2011; Omoyo et

aI., 2015) . Counties found in Kenya's Rift Valley region are the major source of maize in the

country which contributes significantly to the food security and national strategic food reserves.

In particular, Uasin Gishu, Trans Nzoia, Nakuru and Narok are the among the top maize producing

counties in the region (Ministry of Agriculture, 2015).

1.2 Problem Statement

TnSub-Saharan Africa, climate change is already threatening food security by causing damaging

impacts on cereal production in the region (Khan et al., 2014). Over the years, Kenya's maize

production has been fluctuating due to erratic weather and climate patterns which have

significantly interfered with maize production locally and hence jeopardized Kenya's policy on
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food (Mati, 2000). Mapping of vulnerability and its components is currently an integral part in

providing information to policy makers and stakeholders in an attempt to appropriately assess

climate change consequences and support effective risk management and spatial planning (Preston

et aI., 20 II; Lopez-Carr et aI., 2014). However, there are very few studies done on vulnerability

to climate change in Kenya (Mwangi & Mutua, 2015 ; Opiyo et aI., 2014; Yohe et al., 2006) of

which none has focussed on the vulnerability of maize production to climate change in Trans

Nzoia, Uasin Gishu, Nakuru and Narok Counties. Therefore, there is urgent need to establish the

degree of vulnerability of maize production to climate change in these counties which contribute

significantly to locally produced maize and hence the food security of the country.

1.3 Objectives of the Study

The main objective of the study was to assess the vulnerability of maize production to climate

change in Trans nzoia, Uasin Gishu, Nakuru and Narok Counties.

The specific objectives were to:

a) Characterize climate change in Trans Nzoia, Uasin Gishu, Nakuru and Narok Counties

between 1985-2015, and 2021-2050 for RCP4.5 and RCP8.5 during annual MAM, JJA,

and OND.

b) Determine the relationship between climate and maize production in Trans Nzoia, Uasin

Gishu, Nakuru and Narok Counties between 2000 and 2015

c) Develop vulnerability indices for Trans Nzoia, Uasin Gishu, Nakuru and Narok Counties

using the indicator approach

d) Generate maize vulnerability maps for Trans Nzoia, Uasin Gishu, Nakuru and Narok

Counties.

1.4 Research Questions
a) What are the characteristics of climate change in Trans Nzoia, Uasin Gishu, Nakuru and

Narok counties?

b) What is the relationship between maize yields and climate in Trans Nzoia, Uasin Gishu,

Nakuru and Narok counties?

c) What is the degree of vulnerability of maize production to climate change in Trans Nzoia,

Uasin Gishu, Nakuru and Narok counties?

d) How can the vulnerability in Trans Nzoia, Uasin Gishu, Nakuru and Narok counties be

classified?

3



1.5 Justification of the Study

Ultimately, the current and projected trends of climate change necessitate the adoption of elaborate

measures in order to reduce the degree to which maize production is susceptible to adverse impacts

of climate change and adapt to the changes. Vulnerability indices have the ability of capturing the

multi-dimensional nature of vulnerability in a form that is understandable (Leichenko & O'brien,

2002). The maps and indices generated from vulnerability assessments are of great significance in

decision making processes for identifying various areas of varied degrees of vulnerability that

require implementation of specific adaptation and mitigation interventions (Emebet, 2013).

Information generated from this assessment will be prerequisite for formulation of policies aimed

at lowering the degree to which maize production is predisposed to climate change consequences

and appropriately allocate resources meant for impact reduction. Consequently, maize production

will be sustained in the study counties, hence improving food security in the country. Additionally,

the country will avert the economic expense that comes with sourcing of maize from other

countries in an effort to bridge the local deficit brought about by climate change induced crop

failure.

1.6 Conceptual Framework

The IPCC framework of vulnerability assessment formed the basis for vulnerability assessment in

this study. Vulnerability is dependent on various biophysical and socio-economic factors clustered

under exposure, sensitivity and adaptive capacity (Sehgal et al., 2013; Shukla et al., 2015). It is a

function of the character, magnitude and climate fluctuation rate to which a system is exposed, its

sensitivity and adaptive capacity (Parry, 2007; Binita et al., 2015). Whereas exposure and

sensitivity contribute to the potential impact of climate related stressors and increases

vulnerability, adaptive capacity has an inverse relationship with vulnerability (Smit & Pilifosova,

2003).

The change rates of temperature and rainfall, and the frequency of extreme weather events during

the baseline period between 1981 and 20 I0, were considered as climate change indicators and

denoted the changes in climate. Ecological and demographic indicators were regarded as

sensitivity indicators. Adaptive capacity indicators were represented by socio-economic factors

(Sehgal et aI., 2013).
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CHAPTER TWO

2.0 LITERATURE REVIEW

This chapter presents a review of literature on vulnerability and impacts of climate change on

agriculture, including the approaches and methods used for vulnerability assessment. The chapter

also presents climate change scenarios that are crucial for future climate change projections.

2.1 Climate Change in Kenya

In the recent decades, Kenya has recorded, noticeable changes in climate (Parry et al., 2012). Since

1960, the mean temperatures have increased by about IDC representing a decadal increase of

approximately 0.21 -c. Warming has increased by 0.29DC during the hotter months (December-

January-February) and by 0.2SDC during the cooler months (June-July-August). Daily maximum

temperatures indicate that the frequency of warm days has increased while the frequency of cold

days has decreased (Gosling et al., 2011).

Although rainfall changes have been noticed since 1960s, the changes do not show obvious

tendency towards increasing or decreasing amount of rainfall nationally. Observations have shown

that rainfall has increased throughout the short rainy season (October-November-December),

while the long rainy season (March-April-May) has recorded reduced rainfall and become less

rei iable (Parry et al., 2012).

2.1.1 Impacts of Climate Change on Crop Production

Impacts of climate change on agricultural production that considerably reduce crop yields include

reduced season duration, intensified water shortage and escalated frequency of pests, diseases and

weeds occurrence (Barros et al., 2014). Generally, heat stress and water shortage are regarded as

manifestations of climate change with the most adverse impacts on crop production (Prasad et al.,

2008).

Occurrence of heat stress during development phases causes growth of fewer and smaller plant

organs, reduced crop leaf area that decreases light interception, and variation in photosynthesis,

respiration and transpiration (Stone, 2000). Low quality crop yields result from occurrences of

heat stress throughout the flowering and grain filling stages, which result into diminished grain

count and weight (Bita & Gerats, 2013). Increase in atmospheric vapour pressure due to escalated

temperatures can raise the evaporative demand that may prompt plants to close their stomata, hence

decreasing the rate of photosynthesis and escalating propensity to heat damage (Lobell & Gourdji,
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2012). Additionally, crop yields are significantly reduced when short periods of heat stress

coincide with the reproductive stages (Teixeira et al., 2013).

Water stress causes a decline in quality and quantity of crop yields by shortening the crop

reproduction stage, increasing the pollen sterility, decreasing the leaf area and shutting of stomata

to lessen water loss (Adhikari et al., 2015; Alqudah et al., 2011; Barnabas et al., 2008; Teixeira et

al., 2013). Damage to agricultural systems can occur due to pest, disease and weed infestation that

is caused by excessive water and heat induced by climate change in areas with excess water and

heat (Ziska et aI., 2011).

Maize crop requires significant rainfall amount for optimal development and production but is

sensitive to excessive continuous rainfall on a daily basis during the rainy season (Paul &

Oluwasina, 20 I I). According to (White & Reynolds, 2003), increased temperatures shortened the

growth cycle duration of maize including the grain filling stage, hence reducing the maize yields

significantly. A study by (Schlenker & Roberts, 2008) revealed that an increase in maize yields

occurred when temperatures increased until a specific threshold temperature which is considered

conducive for optimal maize production. Any further increase beyond the threshold, impacted

negatively on maize production. Cool night temperatures lead to reduced accumulation rate of

growing degree days (GOD) hence lengthening grain filling and enhancing accumulation of dry

matter and grain yields. Additionally, low minimum temperatures reduced foliar disease and pest

infestation (Hoeft et al., 2000). A study by (Nanticha et al., 2017) found out that increased

minimum temperatures during the grain filling phase accelerated respiration rate of a maize plant

leading to increased utilization of sugar which reduced the amount of sugar deposited in the kernel

as starch. They also established that escalated minimum temperatures caused the maize plant to

mature faster because the phenological growth was accelerated. As a result, the physiological

processes occurred hurriedly and inefficiently, hence the reduced maize yields (Nanticha et al.,

2017).

In Kenya's highlands increase in temperature is expected to open up new grounds for agriculture;

hence increase crop yields in these areas (Adhikari et al., 2015). However, increased temperatures

will exacerbate water stress in lowlands and considerably reduce crop yields from these areas. An

increase in frequency of floods and droughts due to climate change will hamper agricultural

production to a great extent (Pachauri & Reisinger, 2007). As a result of drought, the productivity

of rain fed agriculture will be hampered due to reduced availability of crop water. Increased
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temperatures will cause a shift of high potential agro-ecological zones to low potential zones

therefore reducing the value of agricultural lands (Kurukulasuriya & Mendelsohn, 2008).

Intensified floods will increase the frequency and intensity of soi I erosion.

Whereas climate change affects crop production adversely, its impacts are diverse depending on

the response of the crops and regions to climate stimuli (Thornton et aI., 2006). A study in China

revealed that wheat yields would decrease by 3%-10% due to a temperature increase of 1°C during

the period of plant growth (You et al., 2009). In Turkey, shorter growth periods and decrease in

rainfall caused by climate change would reduce wheat yields by a percentage that is more than

20% (Ozdogan, 2011). A study carried out to assess how global food security was affected by

climate change, found out that food access, availability and utilization will be adversely affected.

Nevertheless, the impacts across different regions will be subject to the policies and strategies that

will be adopted to counter climate change. Additionally, the study indicated that the dependence

of developing countries on imports will increase especially for Sub-Saharan countries

(Schmidhuber & Tubiello, 2007).

Climate change has impacted negatively on Kenya's agricultural production, with high

temperatures during the planting period (March to May) having great potential in decelerating or

preventing crop growth, while greatly benefiting crops during the ripening and harvesting season

(June to August) (Kabubo-Mariara & Karanja, 2007).

2.1.2 Climate Change Impacts on Maize Production.

Maize is not only considered as the principal source of carbohydrates in the world but also the

major food commodity that takes up a significant share of global markets (80%). Additionally it

is cultivated on more than 100 million hectares especially in developing countries (Tripathi et al.,

2016). Studies have shown that in Africa, every 1°C rise in temperature above 30°C will result into

a 1% to 1.7% decrease of maize yields under most favourable rainfall and drought requirements

(Lobell et aI., 2011).

A study carried out in Iran's Zayandeh-Rud River Basin revealed that maize yields would decrease

from 5.7% to 19.1 % due to a temperature increase from 1.1oC to 1.50C and rainfall decline from

II % to 31% during the period from 2015 to 2035 (Gohari et aI., 2013). In the northern plains of

China, studies have shown that a 2.4% to 45.6% decrease in maize yields will be recorded due to

higher temperatures induced by climate change (Tao & Zhang, 2010). It is estimated that climate
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change will result into a 22% reduction in maize production by mid-century (Schlenker & Lobell,

2010). The influence of climate change on agricultural production in Latin America and Africa

was assessed through a research carried out by (Jones & Thornton, 2003). They found out that, by

2055, maize production in these regions, will record an overall reduction of 10% which will be

equivalent to an annual monetary loss of two billion dolIars. However, technological advancement

and superior crop varieties may be used to minimize the reduction.

A projection using the HadCM3, on how agricultural production in Sub-Saharan Africa (SSA) would

respond to impacts caused by climate change showed that whereas C02 fertilization and planting of

most productive crop varieties will improve productivity, the potential of agricultural land in the region

will reduce by 11% and the potential of maize producing regions will reduce by 7% by 2080. (Edame

et al., 20 II ).

In Kenya, research has shown that the temperature increase throughout the long rain season (March to

May) impacted negatively on maize production. This is because high temperatures during the long

rain season interrupted crop growth by causing growth of fewer and smalIer plant organs, reduced

crop leaf area and decline in grain count and weight, which in turn reduced the maize yield

considerably ( Stone, 2000; Bita & Gerats, 2013). On the other hand, maize production benefited

from increase in rainfall during the short rain season. In comparison, temperature affects maize

production to a greater extent than rainfall. Maize production is expected to reduce by 23% by 2100 as

noted by simulations from climate scenarios (Kabubo-Mariara & Karanja, 2007; Wandaka, 2013).

In Central, Western and Eastern Kenya, a research was carried out in two agro-ecological zones to

ascertain the probable impacts of climate change on agricultural production using climate change

scenarios obtained from GFDL and CCC models. A simulation of the changes in maize yields was

performed using the CERES-Maize model. The study revealed that different climate change scenarios

impacted negatively on maize production in the two agro-ecological zones. It also found out that while

climate change caused an increased maize production in semi humid zones, it reduced maize

production in semi-arid ecological zone. As a way of adapting to the changes, it was suggested that

farmers should plant maize during the short rain season in Eastern Kenya, grow maize varieties that

mature early and plant early (Mati, 2000).

2.1.3 Impacts of Land Use/Land Cover on Agricultural Production.

Studies have been done on the relationship between land use changes and agricultural production.

Specifically, research work has been revolving around the impact of changes in forest land and
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cropland on total yields. For instance, it has been observed that loss of cereal yields resulted from

anthropogenic driven loss of forests in the Sahel (Stephenne & Lambin, 200 I). In Cameroon the

increase of area under maize production at the expense of forest areas, led to higher maize yields

in the short term. This is was due to increased cropland which expanded the area under which

maize was grown. As a result more maize crops were grown leading to increased yields. In the

long run, steady decrease of forest land resulted into notable decrease of maize yield. This was

because the forest area that had been cleared for cropping became more susceptible to erosion and

low storage capacity of soil nutrients which reduced its productivity, hence low maize yields

(Epule & Bryant, 2014). Additionally, clearing of forest for cropland expansion interrupted the

water cycle and exacerbated water scarcity. Hence cereal production and specifically maize

production, encountered insufficiency of water that is crucial for their subsistence (Epule et al.,

2011; Lobell eta/., 2011).

2.2 Vulnerability Assessment Approaches

Socioeconomic and environmental factors of different areas determine their degree of vulnerability

to climate change. Different social groupings exhibit distinctively varied socioeconomic and

environmental features which determine their vulnerability extents and adaptive capacity to

climate change (Adger et al., 2004; Rajesh et al., 2014)

Vulnerability is defined as the susceptibility degree of a system that renders it incapable of

withstanding the unfavourable effects of climate change including .variations of climate and severe

weather events (McCarthy, 200 I). It is dependent on the exposure to climate stressors, sensitivity

and adaptive capacity of a given system. The nature and extent to which climatic variations affect

a system is called exposure (Parry, 2007). The degree to which a system takes advantage of or is

adversely affected by climate change is called sensitivity (Parry, 2007). A systems potential to

adjust in order to minimize probable harm, take advantage or cope with consequences of climate

change, variability and extremes is referred to as adaptive capacity (Parry, 2007).

Socioeconomic and biophysical variables form the basis on which indices are developed. These

variables are translated into indicators of adaptive capacity, sensitivity and exposure. Vulnerability

assessments are normally carried out at varied spatial scales. Assessment of vulnerability due to

climate change can be conducted using three major conceptual approaches as outlined below.
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2.2.1 Socio-economic Approach

Socio economic and political status of individuals or groups of people forms the basis of socio-

economic vulnerability assessment approach (Adger & Kelly, 1999; Fussel, 2007). The level of

vulnerability of different individuals in a community varies depending on factors that differentiate

them which include gender, health status, technology and information access, level of education,

wealth, accessibility to credit and political power. Specifically, vulnerability is described as a

system's initial situation or condition prior to it encountering an event that is harmful (Kelly &

Adger, 2000). As a result, vulnerability is shaped by institutional and economic changes within a

society (Adger & Kelly, 1999). However, this approach ignores the intensities, frequencies and

probabilities of environmental stresses caused by environmental factors. It also overlooks the

capability of the community to use any available natural resources to neutralize the adverse impacts

of environmental disaster.

2.2.2 Bio-Physical Approach
Biophysical vulnerability assessment approach focuses on examining the destruction level caused

by a specific environmental disaster on biological and social systems (Kaly et al., 1999). For

instance, so as to quantify the impact of climate change on agriculture in monetary terms, one can

simulate the connection linking income generated from farming and climate variables (Polsky &

Easterling, 200 I). Climate prediction models provide forecasts that are used to estimate damage

caused by environmental stresses (Kurukulasuriya et al., 2008).

Estimation of the damages can also be achieved by creating sensitivity indicators through

identification of potential or real hazards including their frequencies (Cutter et al., 2000).

According to (Fussel ,2007), this approach is a risk-hazard approach and has been used in various

disciplines including research work on natural hazards where the vulnerability connection with

the hazard is termed as hazard- loss relationship. Also, it has been applied in epidemiology as

exposure-cause relationship. In macroeconomics, the approach is described as a damage function.

This approach is also referred to as the end point analysis answering various research questions

like "How extensive is the climate change problem?" (Kelly & Adger, 2000). Despite its

informative nature, the biophysical approach has a limitation of only considering the physical

damages like yield reduction.
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2.2.3 The Integrated Assessment Approach

In this method, determination of vulnerability is based on integration of socio-economic and

biophysical approaches. The hazard-of-place model uses this approach by logically aggregating

biophysical and socio-economic indicators in determining vulnerability (Cutter et al., 2000). It is

also possible to integrate the biophysical and socio-economic indicators and use the outcome to

determine the degree of vulnerability using mapping (o'Brien et al., 2004). This approach was

incorporated into fPCC's definition of vulnerability (2001) which stated that adaptive capacity,

sensitivity and exposure were the key determinants of vulnerability (Fussel & Klein, 2006; Fussel,

2007)

Absence of standard for integrating the biophysical and socio-economic data sets is the main

limitation of this approach. The data sets used in this approach have different and unknown

weights. This approach has no common metric for assessing the relative significance of individual

variable or the relevance of social and biophysical vulnerability (Cutter et al., 2000). Inability for

this method to account for dynamism in vulnerability is the other limitation.

This integrated approach was used for vulnerability assessment In this study because of is

applicability in policy formulation and decision making process.

2.3 Methods for Measuring Vulnerability to Climate Change

Vulnerability can be quantified using various methods. The econometric and indicator method are

the main methods used for measuring vulnerability to climate change.

2.3.1 Econometric Method

In this method, data from household socio-economic survey is used in the analysis ofvulnerability

level. The method considers vulnerability as expected poverty, low expected utility and assured

exposure to risk (Emebet, 2013). These categories are used to develop a welfare loss measure

caused by shocks (Hoddinott & Quisumbing, 2003).

One of the limitations of this approach is that it depends on observed data and can only use climate

data that has already been observed to measure vulnerability to climate change. It operates on high

data requirements and an assumption must be made concerning the utility function (Sofie, 2012).
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2.3.2 The Indicator Method
Vulnerability can be quantified using this method by choosing a set of potential indicators and then

merging them systematically, so as to show the degree of predisposition. It generates composite

indices which have the capability of characterizing the multi-dimensional nature of vulnerability

in a form that is comprehensible (Leichenko & O'brien, 2002). This method presents two options

for calculating vulnerability levels. In the first option an assumption is made that all vulnerability

indicators have equal significance hence generate weights that are equal (Cutter et al., 2000). To

avoid the uncertainty of equal weighting, the second option assigns different weights to the

variables considering that they have differential influence on vulnerability.

Various methodological approaches that are in agreement with the latter method have been

recommended to explain the difference in weights of vulnerability indicators. The fuzzy logic

(Eakin & Bojorquez-Tapia, 2008);expert judgement (Kaly & Pratt, 2000); principal component

analysis (Cutter et al., 2003; Easter, 1999) and relationship with historical disaster occurrences

(Brooks et al., 2005); are just but few of the approaches that can be used. The appropriateness of

each of these approaches remains doubtful although they try to assign weights to the variables.

This is because no standard weighting method exists that can be used to test the precision of the

approaches.

Just like the other methods, the indicator method has its own limitations which include subjective

identification of indicators and their weights, data accessibility at different scale, and difficulty in

testing or validating different metrics. Despite its limitations, many researchers have used the

approach in quantifying vulnerability because of its transparency (Rama Rao et al., 2016). In

Ethiopia, vulnerability indices were developed using the integral approach and used to rank seven

states (Deressa et al., 2009). An assessment of climate change vulnerability on a district level using

this approach revealed that higher vulnerability levels were recorded in districts located in the

western and peninsular India (Ram a Rao et al., 2016). In South Africa, this method revealed that

vulnerability to climate change of the farming areas varied spatially necessitating the development

of region specific adaptation options and policies to address climate change at provincial level

(Gbeti bouo et al., 2010).

For the purposes of this study, the integrated approach and the indicator method were adopted to

assess vulnerability of maize production to climate change within the major maize producing

counties in the Rift Valley.
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2.3.3 Principal Component Analysis

Variables do not contribute equally to vulnerability (Hebb & Mortsch, 2007). Statistical methods

such as Principal Component Analysis can be used to assign weights to variables identified for

vulnerabi Iity assessment (Cutter et aI., 2003; Thornton et al., 2008). Princi pal Component Analysis

(PCA) is an variable reduction method used to reduce multivariate set of data to data that has fewer

dimensions which capture the maximum information from the original set of data (Abdi &

Wi Iliams, 2010; Collins et aI., 2001). It is an analytical method that reorients a set of variables that

are redundant and correlated into fewer uncorrelated variables called principal components (Abson

et al., 2012;Ravindranath et al., 2011). It extracts fewer perpendicular linear combinations of

variables that characterize the maximum information from the original set of variables. The first

principal component account for the highest variability while the subsequent components explain

the remaining variability in the data set (Gbetibouo et al., 2010). It is the most suitable method

of assigning weights because it ensures that large variations in any indicator do not improperly

dominate the contribution of other relevant indicators and cause distortion in inter areal

comparisons (Emebet, 2013). Unfortunately, vulnerability is a function of relevant variables that

have been identified and therefore cannot be verified statistically. The implication is that

determination of vulnerability index using this method is on a judgement basis. PCA is not only

advantageous in terms of its objectivity in assigning weights to variables, but also in estimating

the input of each variable to the core phenomenon (Emebet, 2013)

2.4 Empirical Studies of Vulnerability in Kenya

A study carried out to classify the global distribution of vulnerability based on consequences and

adaptive capacity to climate change of various countries, categorized Kenya as extreme vulnerable

under varied emission scenarios and moderately vulnerable when mitigation strategies were

factored in the study (Yohe et al., 2006).

The multifactor approach applied to model Kenya's vulnerability to climate change using GIS

revealed that, out of the total area of Kenya; 0.28% was least vulnerable, 14.82% moderately

vulnerable, 79.9% highly vulnerable and 5.01 % had the highest vulnerability (Mwangi & Mutua,

2015).
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Figure 2: Map of Vulnerability in Kenya (Source: Mwangi & Mutua, 2015)

However, it would be difficult to apply the outcome of this study to various disciplines because

climate change vulnerability is dependent on the causal factors which are distinct for every

discipline. Additionally, it is difficult to delineate areas from the vulnerability map and

accurately determine their degree of vulnerability.
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2.5 Climate Change and Emission Scenarios
The variation between probable scenarios of future climates can be represented using climate

change trajectories developed in consideration of projections from climate system response to

scenarios of GHGs and aerosol emissions using simulations of climate models and the baseline

climate (Rwigi, 2014). The scenarios give a credible account of predictions of global cl imate states

by using logical and internally consistent array of hypotheses regarding driving forces and their

relationships (Miller & Yates, 2005). Precise investigation of possible impacts of human induced

climate change requires development of such scenarios.

Socio-economic and technological developments originating from human activities are the main

sources of increased levels of GHGs and aerosols which are the driving forces of anthropogenic

climate change (Solomon et al., 2007). Studies have shown that anthropogenic activities have

greatly impacted on climate and will continue to influence climate into the future resulting into

unidentified scenarios of climate (Mitchell et al., 1999). Developing future climate change

scenarios that result from human activities is a prerequisite in assessing environmental, social and

economic impacts of climate change so as to formulate appropriate strategies for adaptation and

mitigation (Rwigi, 2014).

Climate change scenarios are the best tools that can be used to simulate the climate resulting from

different levels ofGHGs emission caused by anthropogenic and natural emissions (Rwigi, 2014).

Due to the apparent uncertainty surrounding future changes in anthropogenic emissions, rpcc
constructed and adopted the Representative Concentration Pathways (RCPs) which represent four

distinct pathways of GHGs emissions and atmospheric concentrations, emission of air pollutant

and land use. Integrated Assessment models were used to generate the RCPs which are imputed in

various simulations of climate models so as to predict how they are going to impact the climate

system (Pachauri et aI., 2014).

RCPs are inclusive storylines constructed on the basis of the parallel approach using aerosol,

income, population, emission and energy variables which describe the different paths of radiative

forcing (Van Vuuren et aI., 2011). Essentially, four scenarios of the future climates are projected

from the RCPs and they are characterised by escalating radiative forcing level (Moss et al., 20 I0).

The RCPs are described in detail in Table 1.
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Table 1: Description of Representative Concentration Pathways (Source: Moss et al., 20 I0).

Parameter Description Radiative CO2 Pathway

forcing(Wm -2) concentration(ppm)

RCP 2.6 The lowest scenario 3Wm-2 before 2100 490ppm before Peak and
that depicts and reduces 2100 then declines declineconcerted efforts to
reduce GHG
emissions and
increase carbon
sequestration.

RCP 4.5 A low scenario 4.5 Wm-2 before 490ppm before Stabilization
characterized by 2100 then declines 2100 and reduces withoutstabilization ofGHG
emissions by mid- overshoot
century followed by
a sharp decline
subsequently.

RCP 6.0 An intermediate 6Wm-2 at 650ppm ( at Stabilization
scenario that denotes stabilization after stabilization after withouta steady increase in
GHG emissions that 2100 2100) overshoot.
stabilizes in the last
decade of the 21 st

century
RCP 8.5 The highest scenario 8.5 Wm-2 in 2100 1370ppm in 2100 Rising

that presumes
continuous increase
in emissions of GHG
up to 21 st

The assessment of how climate will be responsive to human induced forcings like rising GHG

emissions, land use changes and atmospheric aerosol concentrations has for a very long time been

done using Earth System Models (ESMS) (Hargreaves & Annan, 2014). However, the ESMS have

course horizontal resolution (100km-200km) hence they cannot account for local forcings like

topographical features and characteristics of the land surface which are vital in altering climate

(Doscher et al., 2017). So as to overcome this inadequacy, Regional Climate Models of higher grid

resolution are used to downscale simulations from ESMs (Doscher et aI., 2017). Coordinated

Regional Downscaling Experiment (CORDEX) is a regional climate modelling and downscaling

framework that is made up of various Regional Climate Model (RCM) projections (Nikulin et al.,

2012). The GCMs that form part of this framework include Canadian Centre for Climate Modelling

and Analysis (CCCMA), National Centre for Meteorological Research (CNRM), Model for

Interdisciplinary Research on Climate (MIROC), Met Office Hadley Centre (MOHC), Max Plank
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Institute (MPI), Norwegian Climate Centre (NCC), and National Oceanic and Atmospheric

Administration (NOAA) model. The framework uses a rotated grid with horizontal resolution of

0.440 in generating their simulations which is approximately 44 kilometres grid resolution (Giorgi

et al., 2009). Projections of green house gases, feedback mechanisms and carbon cycle also form

part of the CORD EX framework (Taylor et al., 2009).

The operations of CORD EX focussed on scenario simulations that were based on RCPs. RCPs are

trajectories which describe the levels of equilibrium of radiative forcing by the end of the 2151

century due to emission and concentration GHGs (Giorgi et al., 2009). The four RCPs that form

part of the framework include RCP2.6, RCP4.5, RCP6.0 and RCP8.5 which represent a radiative

forcing of2.6W/m2, 4.5W/m2, 6.OW/m2 and 8.5W/m2 respectively (Giorgi et al., 2009). The study

used RCP4.5 and RCP8.5 for climate simulation for the period between 2021 and 2050. This was

to compare the extent of climate change in a scenario where climate change policies are imposed

and also in a scenario where there is no climate change mitigation measures employed to reverse

the ascending trend of change in climate by the end of the 2151 Century. Based on RCP4.5, it is

expected that by the end of the 2 l " century, the radiative forcing will be stabilized at 4.5Watts/m2

(Thomson et al., 2011) . This will be as a result of climate change policies which will encompass

global green house gas emission prices imposed to ensure the limitation of emissions,

concentrations and radiative forcing (Peters et al., 2013) . As for RCP8.5, the temperature will

continue rising steadily up to the end of the century as there wilJ be no mitigation measured to

limit emissions ofGHGs (Giorgi et al., 2009; Van Vuuren et al., 2011).

Africa was the initial prime target for the CORDEX framework since most economic activities

depend on natural resources and lack adaptive capacity which predisposes the continent to climate

change impacts. Moreover, the continent has very few simulations generated from regional climate

model downscaling (Giorgi et al., 2009; Nikulin et al., 2012; Thomson et al., 2011).
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CHAPTER THREE

3.0 DATA AND METHODOLOGY

3.1 Area of Study

Uasin Gishu County lies between longitudes 34° 50" East and 35° 37" West and latitudes 000

03" South and 00 55" North and has a total area 3,327 km2 (Osundwa et al., 2013). Its altitude

ranges between 1500 metres and 2700 metres. The county an receives annual rainfall ranging

from 624.9mm to I560Amm. The dry spells commence in November and end in February.

Temperatures range from 8040 C to 26.1 DCwith a mean of 180C (Korir, 2011). The main crops

grown in the county are maize, sunflower, wheat, pyrethrum, potatoes and barley. The

population of the county stood at 894,179 in during the 2009 Census (Korir, 20 11; Osundwa et

al., 2013; Uasin Gishu County Government, 2013 ).
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Figure 3: Map of Study area
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Trans Nzoia County has an area of 2,467 km2 and an average altitude of 1800 metres. Its

coordinates lie between latitude 00 38" and 10° 18" North of the equator and longitudes 34° 38"

and 35° 23" East. The county receives a mean annual rainfall of 1,296.1 mm and a mean

temperature of 18.6°C. Maize production is the main farming activity and accounts for the greatest

acreage of arable land. By the year 2009, the total population ofTran Nzoia was 818, 757 (Mungo,

2014; Trans Nzoia County Government, 2013).

Nakuru County has an area coverage of 7,495.1 km2 and an altitude of 2,000 metres (Nakuru

County Government, 2013). It lies between longitude 35° 28" and 35° 36" East and latitude

0° 13" and I° I0" south (Sangori, 2012) . The county experiences high temperatures of 29°C

(December-January-February) and low temperatures of 12°C (June-July). Most farmers in the

county grow wheat, maize and horticultural crops (Dennis, 20 I0). By the year 2009, the population

of the county was 1,603,325 people (Nakuru County Government, 2013)

Narok County lies between latitudes 0° 50" and 1° 50" South and longitude 34° 28" and 36° 25"

East and has an area coverage of 17,944 km2 . Its average elevation is 1827 metres above sea level.

The population of the county in the year 2012 was estimated to be 850,920. GeneralIy the county

receives a mean annual rainfalI ranging from 500mm to 1800mm with temperatures ranging from

12°C to 28°C. Crops that are mainly grown in the county include barley, wheat, maize, beans, and

Irish potatoes. Out of these crops, the highest revenues are realized from maize and wheat that are

widely grown by most of the farmers in the county (Narok County Government, 2017)

3.2 Sampling Procedure and Sample Selection

Purposive sampling was used to select the study counties depending on their maize production

levels and availability and completeness of data so as to have a varied climatic condition.

3.3 Data Types and Sources.

A literature survey identified specific commonly used socioeconomic and biophysical indicators

that were applicable in assessing the vulnerability of maize production to climate change

(Gbetibouo et al., 2010; Ahumada-Cervantes et al., 2015; Li et al., 2016; Binita et aI., 2015; Shukla

et al., 2015; Deressa, 2010; Emebet, 2013). These indicators had some connection that was logical

with the phenomena under study that clearly showed their state, causes and results (Scholes et al.,

20 10; Ash et al., 2010). Vulnerability indicators were chosen considering: suitability of the

indicator in terms of its theoretical basis in the framework of vulnerability, definite direction of

influence between the indicator and easy access to data on the indicator (Gbetibouo et al., 20 I0).
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The variables that were applicable in maize production were identified and clustered into three

dimensions of vulnerability

3.3.1 Climate Data

Eldoret, Kitale, Nakuru and Narok meteorological stations were chosen to represent Uasin Gishu,

Trans Nzoia, Nakuru and Narok County respectively. Monthly observed data on temperature and

rainfall for the meteorological stations was obtained from Kenya Meteorological Department for

the baseline period between 1981 and 2010. Dekadal historical data for rainfall and temperature

was obtained from Kenya Meteorological Department for the period between 2000 and 2015.

The performance of GCMs represented in CORDEX was assessed using root mean square error

(RMSE) and coefficient of determination (R2). The simulated rainfall data for the period between

1981 and 2010 for Nakuru, Narok, Kitale and Eldoret meteorological stations was obtained from

the GCMs that form part of the CORDEX framework and compared to the observed rainfall data

for the same period and stations. This was done so as to determine the appropriate model whose

simulated climate data was similar to the observed data during the baseline period. The model with

the highest coefficient of determination and the least RMSE value was selected. The results

revealed that the National Centre for Meteorological Research (CNRM) had the highest R2 value

of 0.152 and the least RMSE of 67mm.

Table 2: Assessment of Model performance using Correlation and Root Mean Square Error

Correlation Coefficient of
MODEL Coefficient Determination RMSE

CCMA 0.165 0.027 100

CNRM 0.3899 0.152 67

MIROC 0.22 0.048 76

MOHC 0.17 0.029 73

MPT 0.216 0.047 75

NCC -0.012 0.000144 84

NOAA 0.28 0.078 271

Therefore CNRM was selected as the model whose climate simulations would be used to assess

the trend of temperature and rainfall patterns during the simulation period between 2021 and 2050

based on RCP4.5 and RCP8.5.
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The simulations from CNRM model were downloaded for the period between 2021 and 2050 and

used to obtain the climate data for Eldoret, Kitale, Nakuru and Narok meteorological stations. A

script was generated and run using Grid Analysis and Display System (GRADS) so as to extract

the simulated climate data based on RCP4.5 and RCP8.5 for the stations that represented the

counties under study.

3.3.2 Maize Data
The annual maize yields for the four counties were obtained from the Ministry of Agriculture the

period between 2000 and 2015.

3.3.3 Exposure Indicators
The exposure indicators included rates of change of rainfall, minimum and maximum temperature,

and frequency of droughts and floods. In order to get the rate of change of temperature and rainfall,

the historical data of each county was analysed using Sen's Slope estimator. The change rate of

rainfall and temperature was used as the exposure variable in computation of exposure and

vulnerability indices. Standard Precipitation Index was used to analyse observed rainfall data of

each station so as to get the frequency of droughts and events that were anomalously wet. The

results from analysis were compared to the SPI value table to determine the number of values that

corresponded to extremely wet and extremely dry categories.

Land use/Land cover was also used as a vulnerability indicator for exposure. The land use/land

cover of the counties was assessed using satellite images for the year 1984,2000 and 2015. The

images had an interval of fifteen years (1984 TM, 2000ETM and 20 l50Ll) with spectral resolution

of 30 metres. Ground truthing was done using a GPS tool. The images were obtained from

SERVIR.

3.3.4 Sensitivity Indicators

The sensitivity indicators were grouped into ecological and demographic sensitivity indicators.

Ecological sensitivity was determined by the percentage dependency on rain- fed agriculture, total

annual maize yields, annual maize yields per hectare and agricultural area under maize production.

Density of rural population, percentage of farmers who practice maize farming and percentage of

people living under poverty line constituted the demographic sensitivity.

3.3.5 Adaptive Capacity Indicators

Adaptive capacity indicators were collectively grouped as social-economic capacity indicators

which included; social capital (percentage share of farmers in farm organisations), Iiteracy rate,

22



financial capital (percentage of farmers who save money, off farm income, farm income, farm

land holding size, farm assets, net house hold income, remittances and percentage of farmers who

had access to credit) and physical capital (distance to motorable roads, distance to National Cereals

and Produce Board(NCPB) depot, distance to tarmac road, distance to farm produce market, use

of chemical fertilizers, rate of irrigation and use of improved seeds).

The data on sensitivity and adaptive capacity variables was obtained from the Kenya National

Bureau of Statistics (KNBS), Ministry of agriculture, Livestock and Fisheries (MOALF) and

Tegemeo Institute of Agricultural Policy and Development (TIAPD). Table 2 shows the

vulnerability indicators, their unit of measurement and functional relationship with vulnerability.

The sources of data for the component variables are listed in Table 3.
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Table 3: Component variables and their relationship with vulnerability

Vulnerability Component Variables Indicator descriptionlUnit of Functional
Component Measurement Relationship
Exposure Rainfall Rate of change of rainfall(l981-20 10) t

Maximum Temperature Rate of change of maximum ttemperaturer Ivs 1-20 I 0)
Minimum Temperature Rate of change of minimum ttempemture(198 1-20 10)
Extreme Climate events Number of droughts t(droughts)
Extreme Climate events Number of flood t(floods)

Sensitivity Agricultural area under maize Hectares tproduction
Maize yields per acre Tonnes/ Hecta re t
Total annual maize production Tonncs t
% dependency on rain- fed Percentage of farmers who rely on tagriculture rainfall (%)
Density of rural population Number of people per km2 t
People living under poverty Number of people who are unemployed tline
% farmers who practice maize Percentage tproduction

Adaptive Capacity % of farmers who belong to Percentage tagricultural organisations
% Literacy rate Percentage of people who can read and twrite(%)
Off farm Income Income generated from none tauricultural activities(KSH)
% of farmers who save money Percentage t
Farm Income Income generated from none maize tproduction(KSH)
Ownership of farmland Acres t
Farm assets Kenyan Shillings t
Access to cred it Percentage of maize farmers who can taccess credit
Rerni ttances Kenyan Shillings t
Net House Hold Income Kenyan Shillings t
Distance to farm produce Kilometres t
market

Distance to NCPB Kilometres t
Distance to motorable road Kilometres t
Distance to tarmac road Kilo metres t
% rate of irrigation Percentage of maize farmers who tirrigate their fan11S(%)
use of improved seed Percentage of maize farmers who use timproved seeds(%)
Use of chemical fertilizers Percentage of maize farmers who use tchemical fertilizers(%)

Key

i-Vulnerability increases

~ - Vulnerability decreases
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Table 4 : Source of data on the vulnerability indicators

Vulnerability Component Variables Data Source
Component
Exposure • Rate of change of rainfall(l981-20 10) Kenya Meteorological

• Rate of change of maximum Department
temperature(l981 -20] 0)

• Rate of change of in minimum
temperature(l981-20 10)

• Number of droughts Standard Precipitation Index
• Number of flood

Sensitivity • Agricultural area under maize production Ministry of Agriculture and
• Maize yields per acre Fisheries
• Total annual maize production

• % dependency on rain- fed agriculture Kenya National Bureau of
• Density of rural population Statistics
• People living under poverty line

• % farmers who practice maize production Tegemeo Institute of
Agricultural Policy and
Development

Adaptive • % of farmers who belong to agricultural Tegemeo Institute of
Capacity organisations Agricultural Policy and

• % Literacy rate Development
• Off farm Income
• % of fanners who save money
• Farm Income
• Ownership of farmland
• Farm assets
• Access to credit
• Remittances
• Net House Hold Income
• Distance to farm produce market
• Distance to NCPB
• Distance to motorable road
• Distance to tarmac road
• % rate of irrigation
• use of improved seed
• Use of chemical fertilizers
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3.4 Methodology

Various methods were used to achieve the objectives set out in the study as described in the

following section.

3.4.1 Mann-Kendall Test

Generally, in most climatologic studies, Mann-Kendall test has been used for determining the

trend patterns in climatologic time series (Kahya & Kalayci, 2004; Mavromatis & Stathis, 2011).

This method is advantageous because it is non parametric and the data used need not be normally

distributed. The test has minimal sensitivity when dealing with an inhomogeneous time series that

has abrupt breaks. Moreover, a general value that is lesser than the least observed figure in the

data set is allotted to any data points that are reported as non-detects (Karmeshu, 2012). While

carrying out the test, it is theorized that the null hypothesis, Ho, assumes absence of trend and that

the data is independent and randomly structured. The null hypothesis is checked against an

alternate hypothesis which supposes that there exists trend in the data set. Commonly, the process

used for computation in Mann-Kendall test takes into account a time series of n data values and

T, and Tj as two data subsets (i = 1,2,3, ... , n-I and j = i+ 1, i+2, i+3, ... , n). The evaluation of values

within the data was done by considering them as ordered time series and each value was compared

to all other preceding or consequent data values in the data set. The statistic value S computed as

given in equation (1).

S = If=-l IJ=i+l sign( '0 - Td ~ Eqn (1)

Where, S is the Mann-Kendall statistic.

{

lif(1j - Ti) > 0

Sign(1j - TJ = 0 if(1j - TJ = 0
-1 if it, - Ta < 0

.................................................... Eqn (2)

Where Tj and T, are annual values in years j and i ,j>i respectively.

An increasing value S implied that the data value from a later time period was higher than a data

value from the earlier time period. Conversely, if the statistic S decreased, the data value from a

later time was considered to be lower than the data value sampled earlier on. The final value of S
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was considered to be the result of the decrements and increments (Kundu et al., 2014; Mishra et

al., 2014; Pingale et al., 2014). An increasing trend was denoted by a positive value ofS while a

negative value of S indicated a decreasing trend. The observed trend was considered to be

statistically significant when the p- value was smaller than the level of significance value of 0.05.

3.4.2 Pettit's Test

In order to identify the sudden change in records of climatic parameters, Pettit's test for change

detection was applied. It is a non parametric test that is highly sensitive to breaks in a data set and

is used to distinguish points of change in a set of continuous climate data (Jaiswal et al., 2015;

Pohlert, 2016; Zarenistanak et al., 2014). Essentially, a notable shift in the mean of the time series

is detected by this method especially when the precise instance of mean deviation is unidentified

(Jaiswal et al., 2015). Suppose a series of observed data is XI.X2.X3 Xn has a change point at t,

such that the distribution function of XI.X2 ... , x, is FI{x) and the second part of the series XI+I,XI+2, Xn

has a distribution function of F2{X.), then Pettit's test computes a parameter, Ur, using equation (3).

U t=LI=l LJ=t+l sign(xt-Xj) , Eqn (3)

sign(xt - Xj) = { ~i:r~::~;j~:~ Eqn (4)

-1 if(xt - Xj) < 0

The test statistic and the associated confidence level (p) for the sample length (n) were computed

using equations (5) and (6) respectively.

K = MaxIUtl Eqn (5)

-K
P = exp(-Z-3)················································································..·Eqn (6)n +n

The null hypothesis was rejected whenever p was smaller than the specific confidence level. The

significance probability (p) for a change-point was estimated using equation (7).

p = 1- p Eqn (7)
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3.4.3 Seu's Slope Estimator

The slope of the linear trend Iine was calculated in order to determ ine the rate of change of weather

parameters per unit time using the non-parametric method that was developed by Sen in 1968

(Drapela & Drapelova, 20 II; Gocic & Trajkovic, 2013). The form of liner model that was used is

given in equation (8).

fCt) = Qt + K Eqn (8)

Where Q is the slope

K is the constant

In order to approximate the slope, Q, a computation of slopes for all data pairs was carried out

using equation (9).

X'-Xk
Qi = < Eqn (9)

}-k

Where i=i,2, N, j>k

In a case where there were n values of x then the number of slopes that would estimate Qi were

given by equation (10).

n(n-l)
N = 2 Eqn (10)

The N values of Q: were ranked from least to highest and the slope median (Sen's slope estimator)

was calculated using equation (11).

{

Q ; if N isodd

Q = 1
'2 (QN/2 + QN+2/J if Nis even

................................................................ Eqn (11)
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3.4.4 Standard Precipitation Index

Standard precipitation Index was used to analyse observed rainfall data of each station so as to get

the frequency of droughts and events that were anomalously wet. The rainfall data for the

meteorological stations was subjected to a 3 month- SPI computation using a program provided

by the World Meteorological Organisation that is recommended for calculation of SPI (Svoboda

et aI., 2012). The results from analysis were compared to the SPI table value to determine the

number of values that corresponded to extremely wet and extremely dry categories (Svoboda et

al., 2012)

Table 5: Standard Precipitation Index values

2.0 + Extremely wet

1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

-0.99 to 0.99 Near normal

-1.0 to -1.49 Moderately dry

-1.5to-1.99 Severely dry

-2 and less Extremely dry

3.4.5 Analysis of Satellite Images

Satellite images of the counties were pre-processed so as to point out and demarcate varied land

use/land cover (LULC) units. Further categorization of satellite images was done using supervised

classification method. In comparison, the interpretation and classification of recent satellite images

taken during the research period can be directly ground truthed as opposed to satellite images taken

before the recent time. In order to ascertain the classification of satellite images that were taken

during the research period, eight numbers of classes were selected for each LULC unit as a training

area. This was done depending on the nature of reflectance signature in the study area. Maximum

likelihood classification method was used to identify the land use/land cover classes. The

maximum likelihood classification is a supervised classification method drawn from the Bayes

theorem which states that the a posterior distribution.P'(r]oi), which is the probability that a pixel

with feature vector 0) belongs to class i, is given by

. p(wli)p(i)
P(llw) = Eqn (12)

pew)

Where

PCw I i) is the likelihood function.
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P (i) is the priori information (probability that class i occurs in the study area).

P (w) is the probability that W is observed which is given by equation (13) below.

pew) = I~l P(wl opei) Eqn (13)

Where M is the number of classes

Normally P (w) is regarded as a standardization constant to make sure I~l P(i Iw) sums up to

I. Pixel x is allocated to class i based on the following rule.

x E i, if P(wIO > PCilw) for j * i

The Maximum likelihood classification presumes that the distribution of data within a specific

class i, conforms to the multivariate Gaussian distribution. Every pixel is allocated to the class

with the maximum likelihood. In case the pixels have probability values that are lower than the set

limit then it is categorized as unclassified (Asmala, 2012)

Land use/land cover maps were generated from 1984,2000 and 2015 satellite images of the study

area during the post-interpretation and classification phase. ArcGIS 10 and ERDAS Imagine 10

were used for land cover land use classification.

3.4.6 Spearman's Correlation

Spearman's correlation was used to determine the relationship between climate and maize yields

in Trans Nzoia, Uasin Gishu, Nakuru and Narok Counties. It is a non-parametric measure of

association between two paired variables (Gautheir, 200 I). It shows the degree and direction of

correlation between two variables that are on scale. The spearman's correlation coefficient, p , is

the measure of the strength of association between two ranked pairs and ranges between I and -I

(Chok, 2010). For instance, given two variables X and Y, the relationship between them can be

determined using equation (14) below.

p = 1 - Lr=~D2 Eqn (14)
n(n -1)

Where,

D is the difference between the paired ranks

n is the number of rank pairs
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3.4.8 Root Mean Square Error

Root Mean Square error is a statistical method that is used to assess the performance of a model

by computing the differences between the observations and forecasts from the model (Chai &

Draxler, 2014; Sagero, 2012). RMSE can be determined using Equation (15) below.

RMSE = I.f':,O(Fi-OBSi)2
N Eqn (15)

Where F. is the predicted value from the model, OBSi is the observations and N is the number of

observations.

3.4.9 Indicator Approach

The suitability of data for climate change vulnerability analysis In maize production requires

standardization because they are all in different measurement units. According to (Vincent, 2004),

standardization of the indicators eliminates differences in scales, and makes sure that they are

com parables and dimensionless. It was important to establish the functional relationship that

existed between an indicator and vulnerability. The method that United Nation Development

Program (UNDP) used to compute Human Development index (HDI) was used for normalization

in this study (UNDP, 2002). In cases where vulnerability increased when the value ofthe indicator

increased, then equation (16) was used for normalization.

Xij-MinXij
Xnormalized = .. Eqn (16)

MaXXij-MtnXij

Conversely, if vulnerability reduced with an increase in a specified indicator then normalization

was done using equation (17).

MaXXij-Xij
Eqn (17)MaXXij-MinXij········································· .Xnormalized

Where,

Xij is the value of the zth indicator for thefh county

Normalization of the data was followed by ranking of the indicators where unequal weights were

assigned to each of them using the principal component analysis method. For instance, if there is

a collection of N variables (afj to a~j)' PCA can be used to normalize each variable using its

average and standard deviation as given in equation (18) (Deressa, 20 I0).
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Eqn (18)

Where,

af is the mean of over the region and its standard deviation is sf.

For each county, j, a linear combination of a set of core components was used to express the

selected variables (Deressa et al., 2008; Deressa, 20 I0).

a1j = Vl1A1j + V12A2j + V1NANj, j=1.. Eqn (19)

aNj = VN1A1j + VN2A2j + VNNANj Eqn (20)

Where,

A's are the components.

V's are the coefficients on each component for each variable.

The solution to this equation is undefined because the only part of the equation that is known is

the left hand side which is basically the actual value of the vulnerability variable. So as to surmount

this challenge, PCA was used to obtain a linear combination of variables with highest variance

termed as the first principal component (A Ij). Subsequently, the second principal component

generated using PCA was orthogonal to the first principal component and accounted for the

remaining maximum variance et cetera. This method provided a theoretical solution in the equation

(R - AI'!) vn = 0, for Vn and An . In this equation, each variable's correlation with the nth

component was represented by the matrix R. A solution of this equation presented the value of An

(Eigen values) which was the typical root ofR and their associated Eigen vectors, vn. Scaling the

vns so that the total oftheir square adds up to the total variance, produced the final set of estimates.

This was another restriction imposed to achieve determinacy of the problem (Deressa, 2010).

Equation (19) above implies inverting of the system which allows for the recovery of the scoring

factors from the model. Consequently, a set of estimates for each K principal components is

yielded.
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A1j = t..« + flZaZj + .flNaNj Eqn (21)

ANj = fN1a + fNZaZj + .fNNaNj Eqn (22)

Based on Equation (23) below, the index of each county is the first principal component, expressed

in terms of the initial variables that have not been normal ized.

t IN( a~j-at)
# Eqn (23)

sN

The weights obtained from PCA were multiplied by their respective normalized values of each

variable under the three components of vulnerability. Thereafter, the products were summed up

and divided by the total weight of variables under each component as given by Equation (24) to

(26) (Emebet, 20 \3).

2.{=1 PiY E
] Eqn (24)

2.1=1 P1
Ee ==

2.{=1 PiY S
] Eqn (25)

2.1=1 P1

2.{=1 PiY AC
] Eqn (26)

2.1=1 P1

Where:

• ACe is the adaptive capacity of the County

• S, is the sensitivity of the County

• E, is the exposure of the county

• YE, Ysand YAC are standardized values of variables under exposure, sensitivity and

adaptive capacity respectively.
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• Pi is the weight of the indicators.

The vulnerability index of the counties (VIe) was computed by summing up S, and E, and then

subtracting the ACe as shown in equation (27) (Ahumada-Cervantes et al., 2015).

VI Ec+Sc-(l-ACc)
c = 3 Eqn (27)

Where:

• VIe is the vulnerability of the county

• ACe is the adaptive capacity of the county

• S, is the sensitivity of the county

• E, is the exposure of the county

The vulnerability indices were normalized further so as to get the final value on a scale of 0-5 as

shown in equation (28) (Ravindranath et al., 2011).

Vlnormalized = S( Vl-vmin ) Eqn (28)
Vlmax-Vlmin

Five categories were created to classify the normalized VIs. These included: very high

(4::;Vlnonnalized<5), high (3::;Vlnormalized<5), moderate (2::;Vlnormalized<3), low (l::;Vlnonnalized<2) and

very low (O::;Vlnormalized<1). The Vlnormalizedvalues were plotted to generate the spatial patterns of

vulnerability for each county using GIS (Ahumada-Cervantes et al., 2015).
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

In this chapter, a detailed discussion of the results obtained from the analysis of this study is

presented. This includes trend and mean shift of baseline and simulated climate, correlation of

weather parameters and annual maize yields, exposure, sensitivity, adaptive capacity and

vulnerability indices for baseline period.

4.1 Trends and Patterns of Baseline Climate

4.1.1 Rainfall Trends and Patterns

Nakuru and Narok stations experienced an increasing trend and an upward mean shift in the

observed annual rainfall while Eldoret and Kitale stations registered decreasing trend patterns

and downward mean shift for the baseline period between 1981 and 20 I0 (Figures 4 and 5).

RCP4.5 RCP4.5E
~ "1
<;; ..•
~

N

~I- ..•
E N
:>
E "1

~ !:l,.
"cc.«

~•.
2
~ ~
~ 11i
I-

"1E '"~ N

~ ~~ '",. ...
"E«1021 202~ JOn 1030 lOJJ 2036 X1l9 1042 ~~ 2048 2021 2024 2021 2630 lOlJ 2036 1039 2042 2045 2048

Yea,..
EklOle.

Years
Kttale

RCP4.5
RCP 4.5 ~

~ •.
~ "1~ ~

[,~~~'"
!:l

I •.~ 0-
E :;l•.~ "1
l-

N
I- ~ E
E "g E "1~ s f;l
~ ~ ::a

rom "2 c
.:i' 2<,,' "''' "''' 2<)'" 2<)" 2<)" ")9 ",,, ",,, ,... ~

Years
N_l}rlrt"lI

1021 2024 2027 2030 lOll 2031; 2019 2041 2045 20<8

Years
Narok

Figure 4: Trend of annual rainfall for Eldoret, Kitale, Nakuru and Narok stations (1981-2010)
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Figure 5: Mean shift ofannual rainfall jar Eldoret, Kitale, Nakuru and Narok stations (198/-
2010)

The highest mean seasonal rainfall for Eldoret was recorded during JJA rainy season (Table 6).

Kitale had the highest mean rainfall among the four meteorological stations across the seasons.

Nevertheless, the station recorded declining trends in seasonal mean rainfall during MAM and

JJA. Its OND season had the highest rate of change among the four stations of +4.7mm/year.

Rainfall patterns in Nakuru indicated a general increasing trend except for JJA rainy season. In

this station, the OND rainy season recorded the highest rate of change despite it having the

lowest seasonal rainfall mean. Out of the four stations, the lowest seasonal mean rainfall during

JJA was recorded in Narok.

In general, the OND rainy season exhibited an increasing trend in rainfall amounts across all the

study stations. Notably, the trend patterns and mean shifts of baseline rainfall were not

statistically significant as depicted by the p-values of Mann-Kendall and Pettit's test which were

higher than the significance level value (a=O.05).

From the rainfall analysis, Uasin Gishu and Trans Nzoia recorded reducing rainfall trends during

the season ofMAM with negative rates of change of -2.9mm/year and -3.2mm/year respectively.

Consequently, maize production encountered water stress which caused a decline in quality and

quantity of crop yields.
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Table 6: Characteristics of baseline rainfall for Eldoret, Kitale, Nakuru and Narok stations

Season Mean p- value p- value Sen's Slope
Rainfall( mm) (MK test) (P test) Value

Station Score
Eldoret MAM 331.0 -61 0.28 0.8 -2.9

JJA 415.1 9 0.89 1.3 0.7
OND 166.0 35 0.54 1.0 1.3
Annual 1054.5 7 0.91 1.3 1.1

Kitale MAM 449.2 -59 0.3 0.5 -3.2
JJA 386.2 -17 0.78 1.2 -0.6
OND 324.6 45 0.43 0.8 4.7
Annual 1275.5 -19 0.75 0.5 -1.0

Nakuru MAM 314.2 37 0.52 0.4 1.3
JJA 272.6 -15 0.8 1.4 -0.8
OND 271.4 97 0.09 0.4 4.1
Annual 939.1 17 0.78 0.9 0.9

Narok MAM 314.3 19 0.75 1.0 0.6
JJA 66.0 -47 0.41 0.3 -0.7
OND 205.4 45 0.43 1.0 1.8
Annual 724.6 23 0.69 0.9 2.4

Nakuru and Narok had increasing trend of rainfall during MAM season. It was also noted that

Uasin Gishu had an increasing rainfall trend during JJA season with a positive rate of change of

0.7mm/years. As for OND season, the trend of rainfall patterns was increasing in all counties with

Kitale and Narok recording the highest rates of change.

Studies revealed that rainfall had increased throughout the short rainy season (OND), while the

long rainy season (MAM) has recorded reduced rainfall and become less reliable (Parry et al.,

2012). In Uasin Gishu and Trans Nzoia rainfall reduced during MAM season which is in agreement

with the findings of the study by (Parry et al., 2012). However, the results of rainfall trend in

Nakuru and Narok showed that rainfall had increased in the two counties during MAM which was

contrary to findings by (Parry et al., 2012). All counties recorded an increase in rainfall during

OND season which is agreement with findings by (Parry et al., 2012).

4.1.2 Trends of Maximum Temperature

The maximum temperature depicted increasing trend and upward mean shift during the baseline

period over all the study stations for all seasons. Generally, the maximum temperature increased

at change rates ranging between +0.0440Clyears and +0.0560Clyears (Figures 6 and 7, Table 7).
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Table 7: Characteristics of baseline maximum temperature for Eldoret, Kitale, Nakuru and
Narok stations

Station Season Maximum Score p- value p- value Sen's Slope
Temperature (0C) (MK test) (P test) Value

Eldoret MAM 25.9 204 0.0003 0.0003 0.054
JJA 23.8 190 0.0007 0.0057 0.053
OND 25.3 196 0.0005 0.0053 0.052
Annual 25.2 245 <0.0001 0.0002 0.054

Kitale MAM 26.2 198 0.0004 0.0002 0.056
JJA 24.0 188 0.0008 0.0046 0.055
OND 25.6 200 0.0004 0.0043 0.052
Annual 25.5 251 <0.0001 0.0002 0.054

Nakuru MAM 23.6 189 0.0008 0.0012 0.054
JJA 21.5 187 0.0009 0.0016 0.044
OND 22.6 183 0.001 0.0114 0.052
Annual 22.9 225 <0.0001 0.0003 0.051

Narok MAM 25.4 174 0.002 0.0022 0.048
JJA 24.1 208 0.0002 0.0007 0.051
OND 26.3 191 0.0007 0.0218 0.056
Annual 25.5 255 <0.0001 0.0002 0.056

The increasing trend and mean shift of the maximum temperature was statistically significant with

p- values generated from Mann-Kendall and Pettit's test being much less than significance level

value ofO.OS.

The result of maximum temperature trend agrees with studies done by (Parry et al., 2012), which

had shown that in Kenya, temperature had increased by 1°C since 1960.

4.1.3 Minimum Temperature Trends

Minimum temperature recorded an ascending trend pattern and an upward mean shift for the period

between 1981 and 20 lOin all the stations during all seasons (Figure 8 and 9, Table 8). The

minimum temperature increased at rates between +0.0390C/years and +O.OSSoC/years during the

base line period.

The increasing trends in minimum temperature patterns noted in all the study counties were

statistically significant as depicted by very small p-values of Mann-Kendall test compared to the

significance level value of 0.05. In addition, the Pettit's test yielded p-values that were less than

the value of the significance level (a =O.OS) thereby indicating a significant change in the mean

values of the sample data sets.
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Table 8: Characteristics of baseline minimum temperature for Eldoret, Kitale, Nakuru and
Narok stations

Station Season Minimum Score p- value p- value Sens Slope
Temperature (MK test) (P test) Value
(0C)

Eldoret MAM 12.2 166 0.003 0.001 0.05
JJA 11.0 201 0.0004 0.003 0.042
aND 11.2 153 0.007 0.025 0.046
Annual 11.4 222 <0.0001 0.0004 0.046

Kitale MAM 11.9 168 0.003 0 0.05
JJA 10.9 199 0.0004 0.002 0.042
aND 10.9 154 0.006 0.025 0.045
Annual 11.2 221 <0.0001 0.0004 0.049

Nakuru MAM 10.0 174 0.002 0.002 0.043
JJA 8.6 208 0.0002 0.001 0.039
aND 9.0 150 0.008 0.033 0.042
Annual 9.1 240 <0.0001 0 0.045

Narok MAM 12.0 195 0.0005 0.001 0.05
JJA 9.5 225 <0.0001 0.0003 0.049
aND 10.2 186 0.0009 0.014 0.046
Annual 10.6 275 <0.0001 0.001 0.055

4.2 Trends Patterns of Projected Climate for RCP4.5 Emission Scenario

4.2.1 Rainfall Pattern

Under RCP4.5 emission scenario based on the CNRM model outputs, rainfall is projected to

increase over the study area for the period between 2021 and 2050 (Figures 10 and 11). These

figures clearly show an increasing trend pattern and a shift in the mean of annual precipitation.

Table 9 shows the characteristics of rainfall patterns for the simulation period for the study stations.

At Eldoret station, all seasons are projected to register an increase in rainfall except JJA rainy

season. The highest rate of change and seasonal rainfall are expected to occur during the MAM

rainy season at this station. Kitale station is expected to experience the most notable changes in

its rainfall characteristics. It is expected to receive the highest amount of seasonal rainfall of

781.2mm during MAM rainy season which will have increased at a rate of +6.4mm/year between

2021 and 2050. The highest annual total precipitation of 2265.3mm is projected for this station

with a positive rate of change of + I4.1mm/year.
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Nakuru station is projected to experience increasing trend of rainfall patterns. The low projected

values are an indication that Nakuru station will receive the lowest rainfall among the study

stations. In addition, Nakuru is the only station that is expected to record an increasing trend during

JJA rainy season. Narok station is expected to record the smallest rate of change during MAM

rainy season as well as the lowest seasonal mean precipitation during the JJA rainy season. The

JJA rainy season in this station is projected to register a decreasing trend pattern of rainfall.

Based on RCP4.5, the increasing trend and positive shifts in rainfall patterns will not be statistically

significant as denoted by the p-values from Man-Kendall and Pettit's test which were higher than

the significance level value.

Table 9: Characteristics ofprojected rainfall based on RCP4.5 for Eldoret, Kitale, Nakuru and
Narok stations (2021-2050)

Station Season Mean Score p- value p- value Sen's Slope
RainfaII(mm) (MK test) (P test) Value

Eldoret MAM 592.3 65 0.254 0.97 5.8
JJA 289.8 -31 0.592 0.95 -1.4
OND 468.7 43 0.454 0.34 3.4
Annual 1587.7 125 0.269 0.06 12.9

Kitale MAM 781.2 71 0.212 0.88 6.4
JJA 528.9 -49 0.392 0.74 -2.7
OND 611.4 23 0.695 0.39 3.1
Annual 2265.3 133 0.019 0.09 14.1

Nakuru MAM 233 35 0.544 0.68 1.2
JJA 106.9 15 0.803 1.17 0.2
OND 200.5 81 0.154 0.13 1.8
Annual 627.2 81 0.154 0.21 4.8

Narok MAM 414.5 13 0.830 1.32 0.6
JJA 71.6 -5 0.943 0.88 -0.01
OND 357.1 117 0.038 0.25 4.5
Annual 944.6 91 0.108 0.45 5.4

4.2.2 Projected Maximum Temperature under RCP4.5

An analysis of projected climate under RCP4.5 shows that the four counties will experience an

increasing trend and an upward shift in mean of annual maximum temperature for all the seasons

(Figures 12 and 13, Table 10).
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Generally, the p-values from Pettit's test for the stations were significantly higher than the level of

significance value of 0.05. This indicates that the shift in the mean maximum temperatures will

not be significant for projected climate under RCP4.5. The p-values from Mann Kendall test for

Eldoret, Kitale and Nakuru during JJA season (Table 10) indicate that the increasing trend of

maximum temperature under RCP4.5 is expected to be statistically significant between 2021 and

2050. Annual maximum temperature in Nakuru will register an increasing trend which is expected

to be statistically significant.

Table 10: Characteristics of projected maximum temperature based on RCP4.5 for Eldoret,
Kitale, Nakuru and Narok stations

Station Season Maximum Score P- value P- value Sens Slope
Temperature (MK test) (P test) Value
(oC)

Eldoret MAM 24.6 I I 0.97 0.007
JJA 22.8 116 0.04 0.11 0.025
OND 22.4 7 0.91 0.92 0.003
Annual 23.7 79 0.16 0.20 0.007

Kitale MAM 24.4 -29 0.62 1.32 -0.006
JJA 22.1 109 0.05 0.14 0.022
OND 22.0 1 1 1.04 0.002
Annual 23.4 85 0.13 0.11 0.007

Nakuru MAM 23.0 59 0.32 0.61 0.009
JJA 21.6 149 0.01 0.07 0.026
OND 21.1 17 0.79 0.61 0.002
Annual 22.3 119 0.04 0.13 0.006

Narok MAM 23.3 1 1 1.02 0.001
JJA 22.5 81 0.17 0.07 0.023
OND 21.8 -7 0.91 1.51 -0.001
Annual 22.9 17 0.79 0.13 0.006

4.2.2 Projected Minimum Temperature based on RCP4.5
Based on RCP4.5, annual minimum temperatures are projected to register an increasing trend

(Figure 14) and a shift in the mean across the study stations (Figure 15).
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Generally, minimum temperature is projected to increase as illustrated by positive values of the
scores (Table 11).
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It is also apparent that the rate of change is projected to be positive for each of the seasons in all

the study stations. The highest minimum temperature is projected for the MAM rainy season

ranging from 10.7°C to 14.0°C. Notably, the p- values generated from Mann- Kendall test for

projected minimum temperature over Nakuru station for annual and MAM are very much smaller

than the value of the significance level (0.05) hence it is expected that its increasing trend of

minimum temperature will be statistically significant. Annual and OND's minimum temperature

in Eldoret, will have significant mean shift and trend patterns. Kitale and Narok will record

increasing annual minimum temperature that will be statistically significant.

Table 11: Characteristics of projected minimum temperature under RCP 4.5 for Eldoret, Kitale,
Nakuru and Narok stations

Station Season Minimum P- value P- value Sens Slope
Temperature Score (MK test) (P test) Value
(oC)

Eldoret MAM 13.2 77 0.175 0.15 0.016
JJA 12.5 51 0.372 1.04 0.012
aND 12.0 137 0.015 0.03 0.018
Annual 12.6 167 0.003 0.02 0.020

Kitale MAM 14.0 73 0.199 0.16 0.015
JJA 13.9 61 0.284 0.64 0.013
aND 12.5 91 0.108 0.11 0.015
Annual 13.4 129 0.030 0.03 0.019

Nakuru MAM 10.7 171 0.002 0.04 0.028
JJA 10.0 147 0.009 0.\6 0.028
aND 10.2 153 0.007 0.04 0.0257
Annual 10.3 231 0.000 0.00 0.028

Narok MAM 12.7 85 0.134 0.23 0.014
JJA 10.3 91 0.108 0.51 0.020
aND 12.2 104 0.066 0.26 0.014
Annual 11.8 179 0.001 0.01 0.022

4.3 Trends and Patterns of Projected Climate based on RCP8.5

4.3.1 Rainfall Trend

Projections under RCP8.5 that were obtained from CNRM model showed that in Eldoret and

Kitale, annual rainfall will increase while Nakuru and Narok will register decreasing trend (Figure

16). Figure 17 shows that a general shift in the annual mean rainfall will be recorded for the period

between 2021 and 2050.
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Table 12 indicates that the rainfall patterns during MAM season in Eldoret, Kitale and Nakuru will

have a declining trend. It was also noted that Eldoret and Kitale stations will have increasing

rainfall trends during JJA and OND seasons with positive rates of change.

Table 12: Analysis results of projected rainfall under R. c.p 8.5 for Eldoret, Kitale, Nakuru and
Narok stations

Station Season Mean Score p- value p, value Sen's Slope
Rainfall(mm) (MK test)· (P Test) Value

Eldoret MAM 551.2 -39 0.50 0.52 -2.0
JJA 320.8 45 0.43 0.54 2.2
OND 425.8 63 0.27 0.54 4.27
Annual 1525.4 39 0.50 0.30 5.1

Kitale MAM 729.0 -41 0.48 0.31 -3.1
JJA 2391.5 45 0.43 0.83 1.5

OND 576.2 85 0.13 0.25 3.5
Annual 2198.5 31 0.59 0.28 3.6

Nakuru MAM 219.1 -35 0.54 0.76 -0.7
JJA 117.4 41 0.48 0.54 0.6
OND 188.7 -37 0.52 1.02 -0.7
Annual 603.7 -41 0.48 0.99 -2.2

Narok MAM 241.5 19 0.75 1.29 0.4
JJA 82.5 63 0.27 0.5\ 1.1
OND 343.4 -57 0.32 0.32 -1.2
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The mean shift of maximum temperature in Eldoret, Kitale and Narok, for annual and JJA are

expected to be statistically significant. In Nakuru, it is only OND which is projected register

mean shift of maximum temperature that will not be significant. Generally the p-values from

Mann-Kendall were smaller than the significant level value of 0.05 denoting that the trend

pattern of maximum temperature under Rep8.5 is expected to be significant in all stations.
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Table 13: Analysis results of projected maximum temperature under Rep 8.5 for Eldoret, Kitale,
Nakuru and Narok stations

Station Season Maximum Score p, value P- value Sens
Temperature (MK test) (P test) Slope
(oC) Value

Eldoret MAM 24.7 161 0.0043095 0.073 0.045
JJA 22.9 207 0.0002 0.014 0.035
OND 22.7 73 0.20 0.578 0.018
Annual 23.9 207 0.0002 0.012 0.032

Kitale MAM 24.5 151 0.007 0.086 0.044
JJA 22.2 197 0.0005 0.014 0.035
OND 22.2 77 0.18 0.578 0.017
Annual 23.5 223 <0.00001 0.007 0.035

Nakuru MAM 23.2 185 0.002 0.020 0.046
JJA 21.7 253 0.00002 0.004 0.038
OND 21.3 129 0.03 0.263 0.027
Annual 22.5 249 0.00002 0.002 0.036

Narok MAM 23.4 157 0.005 0.011 0.046
JJA 22.1 211 0.0002 0.006 0.040
OND 21.9 177 0.002 0.056 0.036
Annual 23.0 237 0.00003 0.001 0.038

In Eldoret and Kitale stations, the mean shift of maximum temperature for annual and JJA season

is expected to be significant. Significant mean shift of maximum temperature under Rep8.S is

expected in Nakuru and Narok for Annual, MAM and JJA seasons.
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4.3.3 Minimum Temperature Characteristics of Projected Climate based on RCP 8.5
Figure 20 shows that the annual trend patterns of minimum temperature are expected to record

an increasing trend. It is also expected that the mean of annual minimum temperature will shift

upwards as illustrated by Figure 21. The results also showed that the four stations will register

increased maximum temperature during all the seasons for the period between 2021 and 2050

(Table 14).
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In reference to Table 14, the minimum temperature is expected to increase at positive rates of

change and have ascending trends. It is noticeable that the highest minimum temperature of

14.1oC will occur during MAM season in Kitale.

Table 14:Minimum temperature characteristics for Eldoret, Kitale, Nakuru and Narok stations
between 2021 and 2050 (RCP8.5)

Station Season Minimum Score p- value p- value Sens Slope
Temperature (oC) (MK test) (P test) Value

Eldoret MAM 13.4 127 0.02 0.02 0.026
JJA 12.9 207 0.0002 0.09 0.038
OND 12.2 155 0.006 0.010 0.024
Annual 12.8 237 0.00003 0.008 0.029

Kitale MAM 14.1 131 0.02 0.02 0.027
JJA 14.1 135 0.02 0.19 0.028
OND 12.7 217 0.0001 0.01 0.025
Annual 13.6 255 0.00006 0.002 0.030

Nakuru MAM 11.1 183 0.001 0.005 0.031
JJA 10.3 253 0.00002 0.003 0.040
OND 10.5 301 <0.000001 0.0004 0.036
Annual 9.0 150 0.008 0.03 0.042

Narok MAM 12.8 197 0.0005 0.005 0.033
JJA 10.6 197 0.0005 0.003 0.058
OND 12.3 104 0.07 0.003 0.029
Annual 12.1 311 < 0.00001 0.0004 0.039
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The table also showed that results from Mann- Kendall and Pettit's test yielded p-values that

were generally smaller than the significance level value of O.OS. Therefore, the upward trend

patterns and mean shift of minimum temperature will be statistically significant.

4.4 Comparison between the Baseline and Projected Climates
4.4.1 Rainfall
Figure 22 shows bar plots of change rates of annual and seasonal rainfall for baseline and

projected climate under RCP4.S and RCP8.S.
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Figure 22: Batplots ofchange rates (?l'CI/lI//lO/ and seasonal precipitation

Generally, Uasin Gishu and Trans Nzoia recorded a decrease in rainfall during MAM season

throughout the baseline period. As for Narok and Nakuru, rainfall increased in the same season

for the period between 1981 and 2010. During JJA season, Uasin Gishu recorded an increase in

rainfall. All counties registered an increase in rainfall amounts during OND season under the

baseline period. Climate simulations based on RCP4.S for the period between 2021 and 20S0

indicated that rainfall is expected to increase in all counties during MAM season. Nakuru is the

only county whose JJA season is expected to record an increase in rainfall. All counties are

expected to experience a rise in seasonal rainfall during OND. Under RCP8.S, rainfall is

expected to decrease during MAM in all counties except Narok. It was noted that rainfall amount
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expected to experience a rise in seasonal rainfall during OND. Under RCP8.S, rainfall is expected

to decrease during MAM in all counties except Narok. It was noted that rainfall amount will be on

the rise during JJA in all counties. Whereas Nakuru and Narok are expected to have a decrease,

Trans Nzoia and Uasin Gishu will experience a rise in rainfall throughout OND based on RCP 8.S.

As for annual rainfall, increasing trend patterns were recorded in all counties except Kitale which

had negative score value of -19 during the base line duration. Notable increase in annual rainfall

is expected under RCP4.S in all stations for the period between 2021 and 20S0. While Uasin Gishu

and Trans Nzoia are expected to register upward trend of annual rainfall based on RCP8.S, Narok

and Nakuru will record negative change rates for the period between 2021 and 20S0. Notably, the

rainfall patterns and mean shift under the baseline period, RCP4.S and RCP8.S had p-values that

were higher that the significance level value ofO.OS and hence were found not to be statistically

significant.

According to a study done by (Parry et al., 2012), observations showed an increase in rainfall

during the short rain season(OND). Similarly, trend analysis in this study indicated a rise in rainfall

during OND in all counties. Further, (Parry et al., 2012) noted that rainfall reduced during MAM

season. This was true for Uasin Gishu and Kitale but not for Narok and Nakuru.

4.4.2 Temperature

The comparison of maximum and minimum temperature for baseline, RCP4.S and RCP8.S IS

shown in Figures 23 and 24.
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Figure 23: Bar plots ofchange rates of alii ilia! and seasonal maximum temperature.

During the baseline period, there was a notable mean shift and ascending trend patterns of

maximum temperature in all counties during all seasons. Similarly, minimum temperature

recorded an ascending trend pattern and mean shift that was significant in all counties throughout

all seasons between 1981 and 2010. Generally, the rate change of minimum and maximum

temperature under the base line period was between 0.042oC and 0.058°C. It is expected that

based on RCP4.5, maximum temperature will record an increasing trend and mean shift that will

not be significant during the simulation period between 2021 and 2050. Notably, Kitale will have

a declining change rate in MAM while Narok will record a negative change rate during OND.

Kitale, Narok and Nakuru are expected to record annual mean shift and trend patterns of

minimum temperature that will be statistically significant. The mean shift and upward trend

patterns of minimum temperature in Eldoret for annual and OND are predicted to be significant.

The change rates of temperature are expected to range between 0.001 °c and 0.028oC for

projected climate under RCP4.5. Based on RCP8.5, the results revealed that maximum and

minimum temparature will record significant ascending trend patterns and mean shift in all

stations throughout all seasons. The temperature under this scenario will change at a rate ranging

from 0.0 17°C to 0.058oC.
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Figure 24: Bar plots ofchange rates of annual and seasonal minimum temperature.

In summary, the deduction that can be made from baseline and projected climate analysis is that

the emission and concentration of GHGs have a profound influence temperature. It is also clear

that the mitigation policies imposed to manage climate change under RCP4.S will reduce the

change rate at which temperature will increase in the study counties. On the contrary, a scenario

under RCP8.S means that the emmsions and concentration of GHGs will increase continually

leading to temperatures increasing upto 20S0.

4.5 Land UselLand Cover Trends (1984,2000,2015)
An analysis of changes in land use and land cover was carried out using satellite images obtained

from Landsat S (1984 TM), Landsat 7 (2000 ETM) and Landsat 8 (20 IS OLl), whose resolutions

were 30 metres. The results revealed eight classes under which land use/land cover in the study

area was categorized. These classes encompassed forestland, shrub land, grassland, cropland,

water body, wetland, built up area and bare land (Figure 2S).
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Figure 25: Classification of Land use/Land Cover for 1984, 2000 and 2015
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Figure 26, 27 and 28 illustrate the percentage area coverage of land use/land cover classes for

1984,2000 and 2015 respectively. It is apparent that shrub land covered the largest portion of land

in the study area. Notably, its area coverage increased in 2000 and reduced by 2015. The area

coverage of forest land declined significantly with the largest decrease occurring in 2015.

Land coyer/Land use(198.t)

"etland
0%.

Built up
A.·ea
0%

Figure 26: Pie chart for percentage area coverage of Land use/Land cover classes in 1984

The trend of crop land reduced slightly in 2000 as compared to its cover in 1984. However, by

2015, the percentage of land used for cropping had increased to 21% from a coverage of 17% that

was observed in 2000.

Land conr/Land use(2000)

Figure 27: Pie chart for percentage area coverage of Land use/Land cover classes in 2000
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In 2000, part of the grass land had been taken up by other land uses which reduced its coverage

from 14% in 1984 to 10% in 2000. Despite this, the acreage covered by grass had an upward trend

in 20 IS. Although its percentage area coverage was significantly minimal, the built up area was

the only land cover classification that recorded an ascending trend throughout.

Lmd use/Land COHl"(2IH5)
Built up

An';}
0°/0

\Yetland
0°/0

Figure 28: Pie chart for percentage area coverage of Land use/Land cover classes in 2015

In summary, forestland, cropland, shrub land and grassland were the main classes of land use in

the study area which had notable variation in percentage coverage. Water body, built up area, bare

land and wetlands accounted for only I% of the total acreage in the study area. Alth~ugh built up

area increased steadily, its percentage coverage was greatly small. There was a decrease in forest

land and crop land in 2000 as compared to their percentage coverage in 1984. By 20 IS, cropland

had increased significantly while forests registered notable declining trend. In reference to Figure

25, it is obvious that areas that were initially forests had been replaced by cropland. This implies

that the reduction of forest lands was a result of expansion of acreage under crop production.

The land use/ land cover results show that forest land was converted into cropland in the study

area. This increased the maize production in the short term and hence the yields. However, over

time, water scarcity increased and the frequency of extreme weather events escalated. As a result,

the exposure of the study area to negative impacts of climate change increased, hence
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increasing the vulnerability of the area. The results agree with earlier studies by Epule et al (2011),

Lobell et al (2011), Epule & Bryant (2014), and Stephenne & Lambin (2001).

4.6 Relationship between Annual Maize yields and Observed Climate.

The correlation analysis revealed that the relationship between maize yields and rainfall had a

notable positive correlation coefficient of 0.51 during the seedling and grain filling, and maturity

growth stages in Nakuru County (Table 14). Also, maize yields and minimum temperature had a

positive relationship with significant coefficients during the seedling growth stage (0.45) and

vegetative growth stage (0.56). Narok had a negative correlation coefficient of -0.39 between

rainfall and maize yields during the vegetative growth stage. It was in the same county that

maximum temperature and maize yields had positive relationship with coefficients of 0.52 and

0.50 for the vegetative growth and flowering and fertilization stages respectively. In Trans Nzoia

County, rainfall and maize yields had positive correlation coefficients of 0.64 and 0.55 during

seedling growth and grain filling, and maturity stages respectively. The most notable correlation

coefficient between maize yields and maximum temperature in the county was realized during the

vegetative growth stage (0.50). Uasin Gishu registered a correlation coefficient of 0.52 between

maize yields and rainfall during the grain filling and maturity stage which was highest amongst

the four growth stages. Maximum temperature had the most notable influence on maize yields

during the vegetative growth stage (0.60).

Table 15: Spearman's Correlation Coefficient

Seedling Vegatative Flowering Grain
Growth p- Growth 0/0 p- filling%

County Correlation value p-value Fertilization value Maturity p-value

Nakuru RfalllYield 0.51 0.03 -0.18 0.86 0.16 0.25 OSI 0.08
Trnax/Yield 0.12 0.92 -007 0.26 0.07 0.63 -0.24 0.48

TminlYield 0.45 0.27 0.56 0.20 0.29 0.72 -0.01 0.81
Narok RfalllYield 0.24 0.11 -0.39 0.56 0.09 0.77 -0.05 0.67

TmaxlYield -0.23 0.85 0.52 0.66 0.50 0.59 -0.05 0.46

TminlYield 0.19 0.55 -0.06 0.98 0.18 0.50 0.24 0.59
Trans
Nzoia RfalllYield 0.64 0.07 0.09 0.69 0.23 0.35 0.55 0.18

Tmax/Yield -0.22 0.25 0.50 0.22 -0.04 0.73 -0.13 0.94
TminlYield -0.04 0.82 -0.20 0.87 0.08 0.90 0.26 0.29

Uasin
Gishu RfalllYield 0.28 0.24 -0.14 0.75 0.11 0.65 0.52 0.24

TmaxlYield -0.13 0.62 0.60 0.28 -0.43 0.05 -0.35 0.80
Tmin/Yield -0.20 0.92 0.08 0.87 0.15 0.73 0.16 0.78
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4.7 Vulnerability of Maize Production to Climate change.
PCA resulted into three major principal components whose Eigen values were greater than one.

These components explained 100% of the variation in the data set with 51.2%,25.3% and 23.5%

of the variation being accounted for by the first, second and third component respectively. The

first principal component was used to develop the vulnerability indices. The weights of the

vulnerability indicators in the first component were multiplied by their respective normalized

values and later aggregated to obtain the indices. The exposure, sensitivity, adaptive capacity and

vulnerabil ity indices for each county are recorded in Table 16.

Table 16: Exposure, Sensitivity, Adaptive capacity and Vulnerability indices

Exposure Sensitivity Adaptive Vulnerability

County Index Index Capacity Index Index

Nakuru 0.48 0.71 1.13 0.35

Narok 1.03 0.21 -2.28 1.51

Trans Nzoia 0.19 0.75 2.58 -0.21

Uasin Gishu 0.61 0.64 2.60 -0.12

4.7.1 Exposure Indices

The exposure indices for the counties ranged from 0.19 to 1.03 (Table 16, Figure 29). Narok had

the highest exposure index of 1.03 while Trans Nzoia emerged as the least exposed county with

an index of 0.19. The second and third highest exposure indices were recorded in Uasin Gishu

(0.61) and Nakuru (0.48) respectively. The growth and development of crops is highly dependent

on prevailing climate conditions(temperature and rainfall patterns) and extreme weather events (Li

et al., 2015). Climate change exacerbates the exposure of farmers by triggering new and unknown

alterations in temperature and rainfall patterns including increased recurrence rate of droughts and

floods (Gbetibouo et al., 2010). In comparison, temperature affects maize production to a greater

extent than precipitation (Kabubo-Mariara & Karanja, 2007). Evidently, Narok recorded the

highest change rate of maximum temperature (0.0560Clyear) and minimum temperature

(0.0550C/year). Also, it recorded a total of five floods and six droughts during the baseline period.

Trans Nzoia registered the second highest change rates of maximum temperature and minimum

temperature ofO.0540Clyear and 0.0490Clyear respectively. A total of three
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droughts and five floods were observed in the county between 1981 and 2010. Evidently, the

peak exposure index realized in Narok was as a result of its high temperature variation which

was highest among the four counties.
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Figure 29: Exposure indices by County.

Additionally, the considerably high frequency of extreme weather events contributed

significantly to the peak exposure index in the county. Although Trans Nzoia had the second

highest change rates in maximum and minimum temperature, it emerged as the least exposed

county due to least frequency of droughts and floods during the baseline period. The least change

rates of maximum temperature (0.051oC/year) and minimum temperature (0.0450C/year) were

observed in Nakuru County. Uasin Gishu had the same rate of change of minimum temperature

with Trans Nzoia (0.54oC/year) and the third highest minimum temperature change rate

(0.046oC/year). Notably, Nakuru and Uasin Gishu recorded the highest number of droughts (6)

and floods (7). Uasin Gishu and Nakuru recorded higher exposure indices than Trans Nzoia due

to their peak frequency of extreme weather events. The results obtained in this study for

exposure indices agree with the observation made by (Gbetibouo et al., 2010) that farm ing areas

with high variability in climate patterns and peak occurrence rate of extreme weather events are

likely to be highly exposed to climate change.

4.7.2 Sensitivity Indices
Sensitivity indices for the study counties ranged from 0.21 to 0.75 (Figure 30). Trans Nzoia

emerged as the most sensitive county with an index of 0.75. The minimal sensitivity was

recorded In Narok County with a value of 0.21. The second highest and the second least

sensitivity indices were recorded in Nakuru (0.71) and Uasin Gishu (0.64) respectively. Trans
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Nzoia recorded the highest percentage of farmers who practiced maize production (98%), density

of rural population (328 people/km/), percentage of people Iiving under poverty line (50.1 %) and

absolute reliance of maize production on rainfall (100%). As a result, more people were at the risk

of being adversely affected by change in climate and hence exhibited higher sensitivity levels.

Narok recorded the least density of rural population (48people/km2), percentage of farmers who

practiced maize production (85.7%) and percentage of people living under poverty line (33.7%).

Thus fewer people were exposed to impacts of climate change hence the minimal sensitivity

recorded in the county.

The results in this study were consistent with research findings by (Yusuf & Francisco, 2009) and

(Hegglin & Huggel, 2008) on sensitivity. These studies found out that the degree of sensitivity

was dependent on the number of people that were at risk of being affected by climate change.

Nakuru had a lower percentage of rural population density, people living under poverty line and

maize farmers compared to Uasin Gishu. However, the percentage dependency of maize

production on rainfall was 100% in Nakuru and 99% in Uasin Gishu. Therefore, farmers in Uasin

Gishu were not entirely dependent on rainfall for maize production and could lessen the impacts

of climate change induced water stress by using irrigation which reduced their sensitivity. This is

in line with findings by (Emebet, 2013) who stated that sensitivity to temporary rainfall variability

would be reduced by irrigation in a given area.
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Figure 30: Bar plots of Sensitivity indices
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4.7.3 Adaptive Capacity Indices
The comparison of adaptive capacity indices for the study counties are presented in Figure 31.

Narok had the minimal adaptive capacity index of -2.28. Not only did Narok record the least

percentage of farmers in agricultural organisations (33.3%) but it also had the lowest literacy rate

among maize farmers (53.7%). Membership of farmers in agricultural organisations creates a

societal network that acts as a platform that facilitates cash flow and transfers which eliminates

financial barriers for farmers (Deressa et al., 2008). Also, literacy rates determine the ability of

farmers to access knowledge and information and hence improve their coping capability to

unfavourable consequences of climate change (Brooks et aI., 2005). As a result, in Narok, fewer

farmers accessed climate change information and were not able to fully understand, interpret and

implement it to improve maize production, hence the low adaptive capacity realized in the

county.

The wealth status of farmers can be ascertained by considering the value of farm assets, farm, off

farm and net income. Such wealth enables farmers to access resources like markets and

technology which are vital in improving their adaptive capacity (Brenkert & Malone, 2005). The

net income that accrued from farm and off farm activities was least in Narok County. Therefore,

the maize farmers lacked financial capacity to adapt to impacts of climate change. For farmers to

access markets to sell their produce, there must be quality and dense infrastructure network in

form of roads and other transport routes (Adger et al., 2004). Narok had the furthest distance to
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farm produce outlets, NCPB depots, motorable and tarmac roads. As a result, farmers incurred

higher costs in transporting their maize to nearest markets which reduced their revenue

considerably and made them more vulnerable to climate change. Although 100% of farmers in

the county used improved seeds, lack of irrigation and low usage of chemical fertilizers limited

the total annual maize yields which translated to lesser farm income for the maize farmers in

Narok.

The peak adaptive capacity during the baseline period was recorded in Uasin Gishu (2.60).It had

the highest farm asset value, farm, off farm and net incomes among the four counties. Therefore,

in the face of climate change impacts, maize farmers in this county were able to promptly

address financial constrains posed by erratic climate patterns. Out of all maize farmers in the

county, 91% were literate, 53.1 % were members of agricultural organisations and 59.4% saved

their income. This meant that a greater portion of maize farmers had access to climate

information and could understand, interpret and implement the information for improvement of

maize production against a wave of changing climate patterns. Besides, the farm produce

markets were closer to farmers in Uasin Gishu and therefore more farmers were able to sell their

produce without incurring a lot on transport expenses. The second and third highest adaptive

capacity were recorded in Trans Nzoia (2.58) and Nakuru (1.13) respectively.

Adaptive Capacity Indices

2

CD 1
::J
'">
)( Q.CD~.E

-1'

-2'

Nakuru Narok Trans Nzoia
County

Figure 31: Bar plots of Adaptive Capacity indices
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the second highest adaptive capacity index (2.58) which reduced its vulnerability considerably.

Uasin Gishu County recorded a vulnerability index of -0.12 making it the second least vulnerable

county. Much as the highest adaptive capacity was realised in this county, the combined effect of

its sensitivity and exposure created a greater climate change potential impact and hence increased

its vulnerability. Narok registered the highest vulnerability index of 1.51. This is because the

significant values of exposure index recorded in the county, contributed greatly to potential

impacts of climate stressors and hence increased its vulnerability to a great extent. Moreover, its

negative adaptive capacity index meant that the county lacked capability to adjust in order to

minimize probable harm, take advantage or cope with consequences of climate change and

extremes events. The second most vulnerable county was Nakuru with a vulnerability index of

0.35.

The overall vulnerability is a function of magnitude of exposure, sensitivity and adaptive capacity

for the system or area under study (Ezra, 2016; Yusuf & Francisco, 2009). Areas that are highly

exposed to climate change and have low adaptive capacity depict peak vulnerability levels (Li et

al., 2015). Narok recorded the least vulnerability index because it had the least adaptive capacity

and highest exposure. Highly exposed areas or communities do not necessarily have low adaptive

capacity or high sensitivity to climate change (Gbetibouo et al., 20 I0; Islam et aI., 2014 ). As much

as Narok was the most exposed county, it registered the least sensitivity and adaptive capacity

index. Also, Trans Nzoia was the most sensitive county, but had the second highest adaptive

capacity. Vulnerability increases when sensitivity and exposure increases, but reduces as adaptive

capacity increases and vice versa (Ahumada-Cervantes et al., 2015). The vulnerability in Trans

Nzoia and Uasin Gishu was considerably reduced by significant adaptive capacity realized in the

counties. The sensitivity and exposure of Uasin Gishu (potential impact) was higher than in Trans

Nzoia. This had an increasing effect on the vulnerability in Uasin Gishu although it had the highest

adaptive capacity. The high exposure index in Narok increased its vulnerability considerably while

the negative adaptive capacity was inconsequential in reducing peak vulnerability in the county.

4.8 Vulnerability Maps

Based on a scale of 0-5, three categories of normalized vulnerability indices of the study counties

were identified (Table 17).

Table 17: Normalized vulnerability classes
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Vulnerability class County

Very low (O:::;Vlnonnalized<1) Trans Nzoia, UasinGishu

Low (l:::;Vlnormalized<2) Nakuru

Very high (4:::;Vlnormalized<5) Narok

Trans Nzoia County was classified under the very low category (O:::;Vlnonnalized<I). Uasin Gishu

County scored a normalized vulnerability index that lay between I and zero (0.3) and therefore

was classified under the same vulnerability class as Trans Nzoia County. The vulnerability in

Nakuru County was classified as low (l:::;VInonnalized<2) due to its normalized vulnerability index

of 1.6. Narok County had a normalized vulnerability index of 5 and therefore was classified as

very high category of vulnerability (4:::;Vlnormalized<5). Based on these vulnerability categories, a

vulnerability map for the study counties was developed (Figure 34).
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CHAPTER FIVE

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The results showed that climate had changed in the four counties between 1981 and 2010.

Temperatures increased considerably and recorded notable upward mean shift over all the stations

in the four counties under study during the baseline period. Although reducing trend patterns were

observed during MAM rainy season in Uasin Gishu and Trans Nzoia, Nakuru and Narok recorded

an increase in rainfall during the same season under the baseline period. Rainfall increased during

OND rainy season over all the study counties. As for annual rainfall, increasing trend patterns were

recorded in all counties except Trans Nzoia.

Based on RCP4.5 and RCP8.5, it is expected that there will be changes in climate between 2021

and 2050. Under RCP4.5 scenario, rainfall is expected to increase over all the counties during

MAM and OND seasons. Nakuru is the only county that is expected to record a upward trend

during JJA season. Notable increase in annual rainfall is expected under RCP4.5 in all stations for

the period between 2021 and 2050. Generally, maximum and minimum temperature are expected

to record upward trend patterns that will not be significant under RCP4.5. Based on RCP8.5

scenario, rainfall is expected to decrease during MAM in all counties except Narok. All counties

are expected to register increased rainfall during JJA under this scenario. Whereas Nakuru and

Narok are expected to have a decrease, Trans Nzoia and Uasin Gishu will experience a rise in

rainfall during annual and OND rainy season based on RCP8.5. Temperatures are expected to

increase in all the counties under study based on RCP8.5.

From the correlation analysis, the results showed that there existed a relationship between climate

and maize yields. However the direction and strength of correlation between maize yields and

climate (temperature and rainfall) varied depending on the growth stage of the maize crop.

Vulnerability analysis for the four counties showed that each of them had distinct vulnerability

index which was dependent on the degree of exposure, sensitivity and adaptive capacity of each

county. Narok emerged as the most vulnerable county among the four counties under study.

Consequently, maize production in the county would be adversely affected by climate change. The

county lacked the adaptive capacity that is prerequisite for vulnerability reduction. Trans Nzoia

was the least exposed and most sensitive county. However, it recorded the second highest adaptive
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capacity which reduced its vulnerability considerably. The combined effect of sensitivity and

exposure in Uasin Gishu was higher than in Trans Nzoia, making it the second least vulnerable

county despite its highest adaptive capacity. Nakuru was the second most vulnerable county to

impacts of climate change.

5.2 Recommendations

• It was noted that in all the counties, maize production was dependent on rainfall which

increased the sensitivity of maize farmers to severe impacts of erratic rainfall fluctuations.

Being that it is a primary requirement of maize production, it is imperative to ensure that

water availability and supply remains constant regardless of the prevailing climate.

Therefore, harvested rainfall, surface and ground water should be utilized for irrigation in

order to suppress water stress situations like drought and inadequate rainfall during the

rainy seasons that are brought about by the increasing temperatures. Irrigation can also be

used to increase the number of growing seasons and hence increase maize yields.

Consequently, the sensitivity of maize farmers in the study counties and hence vulnerability

will be minimized.

• Availability of climate, biophysical and socioeconomic data is imperative for vulnerability

assessments. There is need to increase the number of weather stations so as to gather

meteorological data that will be more representative of the region under study. Regular

surveys need to be carried out to build up real time data on biophysical and socioeconomic

indicators.

• Improvement of the maize farmers' adaptive capacity IS fundamental as it reduces

vulnerability to a great extent. Adaptive capacity of the most vulnerable counties can be

improved by implementing socio-economic and rural infrastructural developments.

Educational programs can be part of social programs initiated to improve the literacy levels

of the maize farmers. Improvement of rural infrastructure should entail expansion and

upgrading of the road network and building farm produce outlets that can easily be

accessed by the farmers.
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