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Abstract

The stability of Couette �ow between two cylinders with the outer one stationary and the

inner one rotating and also moving with a constant axial velocity is investigated. Both

axisymmetric and non-axisymmetric disturbances are considered. The perturbations equa-

tions governing the marginal stability state of the �ow are derived and solved analytically

for the situation when the gap spacing between the cylinders is small compared to the

radius.The equations of motion governing �ow are also studied.
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1 Introduction

This chapter gives information on hydrodynamic stability and history on hydrodynamic
stability of Coue�e flow.We also define some important terms that will be used in the
preceding chapters.

1.1 Preliminary

The analysis of stability on Coue�e flow was started by Taylor(1921). Other investiga-
tors were DiPrima(1981),Drazin(1982),Kataoka(1986),Krueger (1966),Marques (1997),Weis-
berg(1997), and the area is still being pursued by many other researchers.

1.2 The Concept of Stability

Stability theory has become one of dominant importance in the study of dynamical sys-
tems. It has many applications in basic fields like meteorology, oceanography, astrophysics
and geophysics- to mention few of them. The concept of stability was developed very
early in the eighteenth century and was specialized in mechanics for equilibrium studies.
In precise mathematical terms, the equilibrium of a particle, subjected to some forces, is
stable when least perturbations makes particle not change near the equilibrium point.
Next great advance came in hydrodynamic stability which laid foundations of the stability
theory in fluid mechanics. Hydrodynamic stability has been recognized as important
subject in mechanics.
In recent years the theoretical developments in the studies of instabilities and turbulence
have been as profound as the developments in experimental methods.Linear stability is
significant in which e�ect of less fluctuation away from a solution to the equations is
examined as a function of a parameter such as the Reynolds number. Study of stability
problems is relevant to the study of structure of a physical system. It is particularly
important when it is not possible to probe into its interior and obtain information on its
structure by direct method.

1.3 Fundamental Concepts of Hydrodynamic Stability

Choice of suitable equations describing flow are o�en di�icult tasks, but we suppose here
that the equations and their solution are completely known, even though minor features
of the observed flow may be neglected or only an appropriate solution found.
Disturbance may die away, persist as a disturbance of similar magnitude or grow so much
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that the basic flow becomes a di�erent laminar or turbulent flow.Broadly speaking, we
call such disturbances (asymptotically) stable, neutrally stable or unstable respectively.
All possible slight disturbances are likely to be excited in some degree by small irregular-
ities or vibrations of the basic flow in practice, so it will persist only if it is stable to all
slight disturbances. In seeking more precise definitions of stability we may be guided by
the considerable mathematical literature of stability, but must frame the definitions to
further our physical understanding. The choice of useful definitions of ‘disturbed slightly’,
‘die away’ and ‘disturbance of similar magnitude’ is usually clear unless the basic flow is
unsteady or nonlinearity is significant.
Liapounov definition may be unsatisfactory when the norm of the basic flow itself de-
creases or increases substantially in time. Then a time-dependent norm may have to be
carefully chosen to represent what the experimentalist or observer means intuitively by
stability. Other perturbations that might lead to instability arise from small changes in
the boundary conditions due to irregularities in nature or imperfections of laboratory
equipment. The mathematical treatment of these perturbations is closely related to that
of a small initial disturbance of the basic flow.
Also, it must be recognized that an unstable basic flow free of any disturbance cannot
instantaneously be set up in the laboratory or arise in nature. Rather a stable basic flow
evolves in space or time until it becomes unstable, and the nature of the instability may
be a�ected by the means of evolution.
The method of separation of variables and Laplace Transforms suggests that in general
the solutions of the system can be expressed as the real parts of integrals of components,
each component changing with time like est for some complex number s = σ + iω. The
linear system will determine the values of s and the spatial variation of corresponding
components as eigenvalues and eigenfunctions. If the basic flow has some simple symme-
try, the linear system may be transformed with respect to some of the space variables as
well as time. For example, Poiseuille flow has basic velocity and pressure respectively
given by

U =V (1− r2

a2 )i,

P = p0−
4ρνV x

a2 f or 0≤ r ≤ a,0≤ θ ≤ 2π,−∞ < x < ∞

1.4 Hydrodynamic Stability

The essential problems of hydrodynamic stability were realized by Helmholtz, Reynolds,
Kelvin and Rayleigh.Small disturbance may upset equilibrium of the external forces,inertia
and viscous stresses. The tendency of fluid to move down pressure gradients may amplify
disturbances of certain flows and thereby create instability.Viscosity has great stabilizing
influence.
Thermal conductivity or molecular di�usion of heat has also some e�ects similar to
those of viscosity or molecular di�usion of momentum and has usually a stabilizing influ-
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ence.Centrifugal and Coriolis forces are regarded as external forces in the case of rotation
of the whole system in which the fluid moves.

The problem of hydrodynamic instability originated in the di�erentiation between stable
and unstable pa�erns of permissible flows. Analysis of dynamic instabilities dates back
to the work of Helmholtz and Reynolds. Helmholtz (1890) has analyzed the stability of
wave motion along surfaces of discontinuity assuming sharp changes in wind and density
along the verticals and showed that the over-all surface is unstable under su�iciently
large perturbations. He has also shown that a finite discontinuity in the wind will result
in reduced stability. Later Rayleigh (1913) studied the stability.
Thus he formulated the result as follows: “Parallel flows of an inviscid fluid are stable
if the velocity profile has no point of inflection.” This is known as Rayleigh’s theorem.
The theorem gives a su�icient condition for stability for inviscid fluids. Later Tollmien
(1936) showed that this condition is also su�icient for velocity distributions of certain
types. A physical mechanism for interpreting this result was derived by Lin (1945),
using an acceleration formula derived on the basis of von Karman’s (1934) mechanism
of vorticity redistribution. Rossby (1949) applied these ideas to the motion of polar air
masses, fundamental in atmospheric process. A stronger form of Rayleigh’s theorem was
obtained later by Fjorto� (1950), who proved that for instability the value of vorticity of
the primary flow must have a maximum in the domain of flow. This theorem also gives
only a necessary condition for instability.

1.5 Nonlinear Stability

Nonlinear stability analysis is necessary when one investigate the development of sec-
ondary flows and the onset of higher instabilities. Reynold (1883) has appreciated the
importance of nonlinear disturbances of Poiseuille flow in a pipe and Bhor (1909), Noether
(1921) and Heisenberg (1951) treated them theoretically for special problems. The main
concepts of the theory of nonlinear hydrodynamic stability are due to Landau (1944).
Hopf (1948) has developed similar ideas on turbulence , through repeated bifurcation to
solution representing flow. One of the specific methods is the energy method, which
originated in the early work of Reynolds (1895) and Orr (1907). In the global theory of
stability the energy methods have an important place. This method leads to a variational
problem and a definite criterion for the stability of basic flow. In fact, any method based
on a variational problem can be considered as energy method in generalized sense. This
aspect of subject has been extensively studied by Serrin (1959) and a fuller account of this
method till that date has been given by Joseph (1976). The significance of this method
is that it provides rigorous criteria for stability with respect to arbitrary disturbances
whereas the linear theory provides criteria for instability. At the end of the last century
the celebrated Russian Mathematician Liapunov (1892) elaborated a general method for
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investigating stability :
dxi

dt
= fi(t,x1, ...,xn)

Zubov (1957) and Movchan (1959) have generalized the method in order to apply to
continuous systems, though it has been used for over sixty years to determine stability of
system of ordinary di�erential equations before them. Pritchard (1968) has derived some
criteria for the nonlinear stability of Bernard convection and Coue�e flow between
rotating cylinders.

1.6 Definition of Terms

Viscosity
Is the property of the fluid by which it o�ers resistance to shear or angular deformation.
The resistance to flow because of internal friction is called viscous resistance.

Free Vortex Flow
A vortex flow is characterized by a flow pa�ern where in the streamlines are curved.

Laminar and Turbulent Flows
A laminar flow is characterized by a smooth flow of one lamina of fluid over another.
Fluid elements move in well-defined paths and they retain the same relative position
at successive cross-sections of flow. The laminar flow is also called the streamline or
viscous flow. This type of flow occurs in smooth pipes when the velocity of flow is low,
and also in liquid having a high viscosity.
In turbulent, flow, the fluid elements move in erratic and unpredictable paths. Individual
fluid particles are subjected to fluctuating transverse velocities so that the motion is eddy-
ing and sinuous rather than rectilinear. The random eddying motion is called turbulence.

Steady and Unsteady Flow
Motion of a fluid is said to be steady when the fluid parameters at any point in the flow
field remain constant with respect to time; the parameters may, however, be di�erent
at di�erent cross-sections of the flow passage. This means that quantities like velocity,
pressure, temperature and density etc., are functions only of location and do not vary
with time.
Flow is unsteady when conditions vary with respect to time; unsteadiness refers to chang-
ing flow pa�ern with the passage of time at a position in the flow.
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Uniform and Non-Uniform Flow
Flow is uniform in character if the parameters like pressure, velocity, density, viscosity
and temperature remain constant throughout the flow field at any given time. Flow is
non-uniform if there is a change in the flow parameters from one section to another.

Compressible and Incompressible Flow
Flow is incompressible if the density changes due to pressure and temperature variations,
are insignificant in the flow field. When the density changes are appreciable, the flow is
called compressible.

One,Two and Three-Dimensional Flows
In one-dimensional flow, the fluid parameters (velocity, pressure, temperature and thus
density and viscosity) remain constant throughout any cross-section normal to flow direc-
tion. In a two-dimensional flow, the flow velocity and other fluid parameters vary along
two-directions. A three-dimensional flow stipulates that the flow properties vary in all
the three directions; the stream lines are space curves.
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2 Chapter Two
Background of the Problem

Objectives
In this chapter, we illustrate the problem statement,the main and specific objectives.We
also give the history of our problem under study.

Taylor-Coue�e is a flow between rotating concentric cylinders. More importantly, the
flow instabilities that arises in the TCF and the related theoretical framework to describe
these instabilities have provided valuable insight into the commonly used no-sip bound-
ary condition, linear stability analysis, low dimension bifurcation phenomena, chaotic
advection, absolute and convective instabilities and a host of other fundamental physical
phenomenon and analytic methods. The flow is frequently studied because it is easy to
produce in small closed systems, demonstrates a fundamental fluid flow phenomenon
that can be mathematically predicted from basic principles and is simple and beautiful to
observe.
It was discovered by R.A Mallock(1880) and M.M. Coue�e(1890).

2.0.1 Problem Statement

Our main task is to determine the stability of the flow of a viscous incompressible fluid
between two concentric rotating cylinders using the Method of Normal Modes. The
equations describing the flow are the Navier-Stokes Equations (NSE) and the Continuity
equation: {

∂V
∂ t +

1
ρ

∇P = ν4V +F

∇.V = 0
(1)

Subject to the boundary conditions:

vr = vz = 0, vθ = Ω jR j at r = R j, j = 1,2
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z-axis

R2
R1

2.0.2 Main Objective

To determine the stability of flow that exists between rotating concentric cylinders .

2.0.3 Specific Objectives

(a) To study and understand the flows between parallel plates and co-rotating cylinders.

(b) To understand, derive and apply the Navier-Stokes Equations (NSE).

(c) To understand hydrodynamic stability of The Taylor-Coue�e Flow.

2.1 Literature Review

The problem of hydrodynamic stability originated in the di�erentiation between stable and
unstable pa�erns of permissible flows.Thermal conductivity or molecular di�usion of heat
has also some e�ects similar to those of viscosity or molecular di�usion of momentum and
has usually a stabilizing influence.Centrifugal and Coriolis forces are regarded as external
forces in the case of rotation of the whole system in which the fluid moves.Magnetic field
can inhibit the motion of an electrically conducting fluid across the magnetic lines of force
and thereby stabilizes flows.Small disturbance may upset the equilibrium.The tendency
of fluid to move down pressure gradients may amplify disturbances of certain flows and
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thereby create instability.Viscosity has great stabilizing influence.

The essential problems of hydrodynamic stability were formulated by Helmholtz, Reynolds,
Kelvin and Reynolds in 19th century.Analysis of dynamic instabilities dates back to the
work of Helmholtz and Reynolds. Helmholtz (1890) has analysed the stability of wave
motion along surfaces of discontinuity assuming sharp changes in wind and density along
the verticals and showed that the over-all surface is unstable under su�iciently large
perturbations. He has also shown that a finite discontinuity in the wind will result in
reduced stability.Later Rayleigh (1913) studied the stability.Thus he formulated result as
follows: "Parallel flows of an inviscid fluid are stable if the velocity profile has no point of
inflection." This is known as Rayleigh’s theorem.The theorem gives a su�icient condition
for stability for inviscid fluids.

Later Tollmien (1936) showed that this condition is also su�icient for velocity distributions
of certain types.A physical mechanism for interpreting this result was derived by Lin (1945),
using an acceleration formula derived on the basis of Von Karman’s (1934) mechanism
of vorticity redistribution. Rossby (1949) applied these ideas to the motion of polar air
masses, fundamental in atmospheric process. A stronger form of Rayleigh’s theorem was
obtained later by Fjorto� (1950), who proved that for instability the value of vorticity of the
primary flow must have a maximum in the domain of flow. This theorem also gives only
a necessary condition for instability.Some of the instabilities which arise from di�erent
causes are Taylor-Rayleigh instability,Helmholtz instability (Chandrasekhar-1961).
In Rayleigh-Taylor instability, the qualitative observations have been made by Lewis (1950)
and others. The method has been applied by Pramod (1989) to study interfacial waves.

Mallock (1880) and Coue�e (1890) independently studied flow in two di�erentially rotating
concentric cylinders, now known as a Taylor-Coue�e cell (Mallock 1880,Coue�e 1890).Cou-
e�e rotated outer cylinder while he kept inner cylinder stationary/fixed, which is the basis
for the modern viscometer, thus avoiding the vertical structure and obtaining an accurate
measurement of viscosity of various fluids.Mallock performed similar experiments to
Coue�e, but in addition he rotated inner cylinder and kept outer one stationary/fixed.He
found anomalous results in this case because Taylor vortices occurred.In fact,Mallock’s
experiment prompted Lord Kelvin to write a le�er to Lord Rayleigh in 1895 bringing the
instability to his a�ention (Donnelly 1991).While Rayleigh’s eventual analysis in 1916
explained the physical origin of the vertical structure.Taylor(1923)investigation became a
key development in the modern study of fluid mechanics because velocity of a particle in
contact with a wall moves at the same velocity as the wall moves at the same velocity
as the wall.Although this concept has become a fundamental tenet for the study of fluid
flow, it was questioned until Taylor used it with such success in his analysis of the stability
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of TCF.It o�ered convincing proof that the NSE indeed accurately describe the flow of a
Newtonian fluid,not just at the base flow level, but at a level that permi�ed the analysis of
secondary flows and instabilities.It was the first successful application of linear stability
analysis.
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3 Chapter 3
Equations of Motion

Objectives
In this chapter, we discuss and derive the equations of motion, The Navier-Stokes Equations
(NSE).

Since 2000,proving the Navier-Stokes smoothness and boundedness in R3 has been made
one of the 7 millenium prize problems. in 1934, the French mathematician Jean Leray
proved the existence of the so called weak solutions of NSE, satisfying equations in the
mean value,not pointwise.In the 1960’s , proof has been given about the smoothness and
boundedness of the 2-dimensional Navier-Stokes Equations. Early in 2014, a Kazakh math-
ematician, Mukhtarbay Otelbayev, claimed he had solved this problem in 3-dimension,but
very recently, Terence Tao has shown that Otelbayev’s proof was wrong. Shortly a�er,
Tao has published a paper proving that the 3-dimensional incompressible Navier-Stokes
Equations admit solutions blowing up in a finite time.

3.1 Navier Stoke’s Equations

Most of the incompressible fluid mechanics (dynamics) problems are described by simple
Navier-Stokes Equations for incompressible fluid velocity, which can be wri�en with a
form

∂U
∂ t

= (−U∇)U−∇ϕ +ν∇
2U +g

where ϕ is defined as the relation of pressure to density:

ϕ =
p
ρ

Satya [1966], studied exact solutions of NSE of viscous liquid motion in spherical polar
coordinates (r,θ ,φ) with axial symmetry, the line OZ (i.e.θ = 0) being the axis of sym-
metry in the annulus of a convergent tunnel bounded by two porous coaxial cones with
variable suction and injection and the results were found to be in agreement with those
discussed in Schlichting’s book (Schlichling [1960]) and the solution discussed by Agarwal
[1957].
The investigation of the axially symmetric flow of a viscous liquid through a convergent
tunnel bounded by a porous wall θ = α and θ = β (0 < β < α < π

2 ) between the sections
r = a and r = b, where 0 < b < a and a is finite since r 6= 0 and η = cosθ 6= ∓1. The
conclusion was that the flow of viscous liquid with axial symmetry along a plane boundary
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(θ = π

2 ) which ejects liquid with velocity kr2, and in which the velocity along symmetry
is zero. Velocity, pressure distribution were

vr =−k1r2cosθsinθ

vθ = k1r2sin3
θ

p =C−4k1vrcosθ

Gupta and Goyal [1970], studied Plane Coue�e flow uniform suction at stationary
plate, on pressure, longitudinal and transverse velocity as independent of x and by intro-
ducing the non-dimensional quantities in such a way that the results of the plane Coue�e
flow without suction can directly be obtained by taking λ equal to zero.
Sinha and Chaudhary [1965]; a�empted to get exact solution for NSE for coaxial porous
cylinder rotating with constant angular velocities. A solution was obtained under the
assumption of uniform conditions along the axis of cylinders. The cylinder being porous,
a hyperbolic radial velocity distribution has been superimposed over the circumferential
velocity produced due to rotation. There is a Bernoulli type pressure variation in radial
direction.If inner cylinder was at rest, shearing stress at it and the torque transmi�ed to
it decreases as σ(= ν0y1

ν
) increases.Singh(2007) solved exact solution of NSE on Hydro

magnetic by the application of Laplace transform and analytical expression was obtained.
Further analysis showed the velocity profile decreases as the Hartmann number increases.
He suggested that a similar approach can be used to solve some of the meteorological
problems which involve di�erential equation and are di�icult to solve directly by applying
boundary conditions.
The equations of viscous incompressible fluid flow, called NSE named a�er Frenchman
(Claude Louis Marie Henri Navier) and Englishman (George Gabriel Stokes) who proposed
them in the early to mid−19th century, is:

Dq
Dt

= F− 1
ρ
Op+

µ

ρ
O2q

O.q = 0

where ρ = fluid density ( constant); q≡ (u1,u2,u3) is the velocity vector which will o�en
be wri�en as (u,v,w)T ; p = air pressure; µ = viscosity, F = Xi+Y j+Zk is the body force.

D
Dt
≡ ∂

∂ t
+u

∂

∂x
+ v

∂

∂y
+w

∂

∂ z

= material derivative or substantial derivative expressing the Lagrangian, or total accelera-
tion of the fluid particle; O2 is the Laplacian, i.e.

O2 ≡ i
∂ 2

∂x2 + j
∂ 2

∂y2 + k
∂ 2

∂ z2



12

and O. is the divergence operator.
NSE in Cartesian is:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

= X− 1
ρ

∂ p
∂x

+
µ

ρ
O2u

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

= Y − 1
ρ

∂ p
∂y

+
µ

ρ
+O2v

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

= Z− 1
ρ

∂ p
∂ z

+
µ

ρ
O2w

These equations have been widely accepted as an excellent model of the macroscopic
motions of most real fluids, including air and water, and are used by countless engineers,
physicists, chemists, mathematicians, meteorologists, oceanographers, geologists and
biologists.
They don’t actually tell us what the values of the variables are, they talk about the re-
lationships between rates of change. So far we (Mathematicians) haven’t been able to
actually solve the Navier-stokes equations in a way that gives us a useful closed-form
solution.
There, however, notable and useful models of fluids whose motions are not governed by the
Navier-Stokes equations. For example there non-Newtonian fluids which are governed by
a non-linear stress tensor, and visco-elastic fluids in which the stress depends on the strain
as well as on the rate of strain of the fluid and retains a ‘memory’ of previous deformation;
Lloyd[1981]. An exact solution may seem to be more or less than a solution, because either
a given set of fields q, p for given ρ,µ and body force F satisfies the governing equations
or it does not. By exact solution we mean a solution which has a simple explicit form,
usually an expression in finite terms of elementary or other well-known special functions.
Sometimes an exact solution is taken to be one which can be reduced to a solution of
ordinary di�erential equations. Barely we go even further, and take an exact solution to
be the solution of a partial di�erential equation, provided that the equation has fewer
independent variables than the Navier-Stokes equations themselves. This is in contrast
with to an approximate solution which is taken to be a field, simple or complicated, which
approximates a solution either in numerical sense or asymptotic limit, for example vanish-
ingly small viscosity thus the logical distinctions between solutions are blurred, but in
practice the distinctions made are usually clear and useful.
The exact solutions are, essentially, a subset of solutions of NSE which happen to have
relatively simple mathematical expressions and which are, mostly simple physically. The
essence of this account, then, is the explicitness and relatively simplicity of the expression
of the solutions. Many exact solutions of NSE are unstable therefore unobservable in
practice. In the early decades of development of mathematical theory of motion of fluid
which is viscous, exact solutions was the only solutions available. Researchers solved
what problems they could, rather than solving the practical problems in hand. Inevitably
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the solvable problems were the simple ones, usually idealized with a strong symmetry.
From the mid-nineteenth century, and early twentieth century, asymptotic method were
developed, and therea�er numerical method. Nevertheless, the exact solution remain a
valuable and irreplaceable resource. The immediately convey more physical insight than a
numerical table.

3.1.1 Systems of Coordinates for Navier-Stokes Equations

NSE for a fluid which is incompressible occurs in three most common co-ordinates systems,
notably, the Cartesian co-ordinates, the cylindrical polar co-ordinates and Spherical polar
co-ordinates.

(i) Cartesian co-ordinate:

In Cartesian co-ordinates (x,y,z), q = ui+ v j +wk is the velocity. The Navier-Stokes
Equations and Continuity equations are:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

=− 1
ρ

∂ p
∂x

+X +ν∇
2u

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

=− 1
ρ

∂ p
∂y

+Y +ν∇
2v

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

=− 1
ρ

∂ p
∂ z

+Z +ν∇
2w

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

where F = (X ,Y,Z),∇2represent the three dimensional Laplacian operator.

(ii) Cylindrical Polar Co-ordinate:

We define cylindrical polar co-ordinates (r,θ ,z) such that

x = rcosθ ,

y = rsinθ ,

r ≥ 0,0≤ θ ≤ 2π,
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with corresponding velocity components v = (vr,vθ ,vz) = vrr+ vθ θ + vzz,vorticity and
body force components ω = (ωr,ωθ ,ωz),F = (vr,vθ ,vz) respectively. The components of
Navier-Stokes equations are, then,

∂vr

∂ t
+ vr

∂vr

∂ r
+

vθ

r
∂vr

∂θ
+ vz

∂vr

∂ z
−

v2
θ

r
=− 1

ρ

∂ p
∂ r

+Fr +ν(∇2vr−
vr

r2 −
2
r2

∂vθ

∂θ
),

∂vθ

∂ t
+ vr

∂vθ

∂θ
+

vθ

r
∂vθ

∂θ
+ vz

∂vθ

∂ z
+

vrvθ

r
=− 1

ρ

∂ p
∂θ

+Fθ +ν(∇2vθ +
2
r2

∂vr

∂θ
− vθ

r2 ),

∂vz

∂ t
+ vr

∂vz

∂θ
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂ z
=− 1

ρ

∂ p
∂ z

+Fz +ν∇
2vz,

with continuity equation

1
r

∂

∂ r
(rvr)+

1
r

∂vθ

∂θ
+

∂vz

∂ z
= 0.

The components of vorticity are given by

ωr =
1
r

∂vr

∂θ
− ∂vθ

∂ z

ωθ =
∂vr

∂ z
− ∂vr

∂ r

ωz =
1
r

∂

∂ r
(rvθ )−

1
r

∂vθ

∂θ
.

For a rotationally symmetric flow, independent of θ , we introduce a di�erent stream
function ψ such that with

vr =−
1
r

∂ψ

∂ z

vz =
1
r

∂ψ

∂ r

The continuity equation is satisfied identically.

(iii) Spherical Polar Co-ordinates:
We define spherical polar co-ordinates (r,θ ,φ) such that

x = rsinθcosφ ,

y = rsinθsinφ
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z = rcosθ

r ≥ 0,0≤ θ ≤ 2π,0≤ φ ≤ 2π.

With corresponding velocity components v = (vr,vθ ,vφ ) = vrr+ vθ θ + vφ φ , vorticity and
body-force components ω = (ωr,ωθ ,ωφ ),F = (Fr,Fθ ,Fφ ) respectively. The components
of Navier-Stokes equations are, then,
∂vr
∂ t + vr

∂vr
∂ r + vθ

r
∂vr
∂θ

+
vφ

rsinθ

∂vr
∂φ
− v2

θ
+v2

φ

r = − 1
ρ

∂ p
∂ r + Fr + ν(∇2vr − 2vr

r2 − 2
r2

∂vθ

∂θ
− 2vθ cotθ

r2 −
2

r2sinθ

∂vφ

∂φ
)

∂vθ

∂ t +vr
∂vθ

∂ r + vθ

r
∂vθ

∂θ
+

vφ

rsinθ

∂vθ

∂φ
+ vrvθ

r −
v2

φ
cotθ
r =− 1

ρ

1
r

∂ p
∂θ

+Fθ +ν(∇2vθ +
2
r2

∂vr
∂θ
− vθ

r2sin2θ
−

2
r2

cosθ

sin2θ

∂vφ

∂φ
)

∂vφ

∂ t +vr
∂vφ

∂ r + vθ

r
∂vφ

∂θ
+

vφ

rsinθ

∂vφ

∂φ
+

vφ vr
r +

vθ vφ

r =− 1
ρ

1
rsinθ

∂ p
∂φ

+Fφ +ν(∇2vφ−
vφ

r2sin2θ
+ 2

r2sinθ

∂vr
∂φ

+
2
r2

cosθ

sin2θ

∂vθ

∂φ
),

with continuity equation

ωr =
1ω

rsinθ
(

∂

∂θ
(vθ sinθ)− ∂vθ

∂φ
)

ωθ =
1

rsinθ

∂vr

∂φ
− 1

r
∂

∂ r
(rvθ )

ωφ =
1
r

∂

∂ r
(rvθ )−

1
r

∂vr

∂θ

The Stokes stream function, for a rotationally symmetric flow independent of φ , is now
defined such that

vr =
1

r2sinθ

∂ψ

∂θ
,

vθ =
1

rsinθ

∂ψ

∂ r
.

3.1.2 Derivation of Navier Stoke’s Equation

Let there be a viscous fluid occupying a certain region.In this region let V be the volume
enclosed by a surface S that moves with the fluid and so contains the same fluid particles
at all times.Let dV be the volume element and dS be the surface element surrounding the
fluid particle P of density ρ. The mass ρdV of this particle remains constant throughout.
Then if q is the velocity then the momentum M of the particle is given by

M =
∫ ∫ ∫

V
ρqdV
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where the integral has been carried out over the entire volume V.
Let p the normal pressure force which has an outward unit normal n.
The surface force due to pressure p is therefore

−
∫ ∫

A
pndS =−

∫ ∫ ∫
V

∇pdV

[By Gauss Divergence Theorem.]
The frictional force is ∫ ∫ ∫

V
µ∇

2qdV

Again let F be the external force acting to fluid, so that the total force in space S at any
time is ∫ ∫ ∫

V
FρdV

Thus the total force (of Euler’s equations for perfect fluid) will be∫ ∫ ∫
V

FρdV −
∫ ∫ ∫

V
∇pdV +

∫ ∫ ∫
V

µ∇
2qdV

By Newton’s 2nd law, we have

DM
Dt

=
∫ ∫ ∫

V
(ρF−∇p+µ∇

2q)dV

∫ ∫ ∫
V

Dq
Dt

ρdV +
∫ ∫ ∫

V
q

D
Dt

(ρdV ) =
∫ ∫ ∫

V
(ρF−∇p+µ∇

2q)dV

D
Dt (ρdV ) being zero since ρdV is constant.
Now since volume V can be taken as arbitrary volume of the fluid in the region considered;

ρ
Dq
Dt

= ρF−∇p+µ∇
2q

Or
Dq
Dt

= F− 1
ρ

∇p+ν∇
2q

where ν = µ

ρ
is taken to be the kinematic of viscosity.

These are NSE in vector form.
If q = ui+v j+wk and F = Xi+Y j+Zk, then the Navier-Stokes Equations take the form:

D
Dt

[ui+ v j+wk] = (Xi+Y j+Zk)− 1
ρ
[i

∂ p
∂x

+ j
∂ p
∂y

+ k
∂ p
∂ z

]+ν [i∇2u+ j∇2v+ k∇
2w]
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So that
Du
Dt

= X− 1
ρ

∂ p
∂x

+ν∇
2u

Dv
Dt

= Y − 1
ρ

∂ p
∂y

+ν∇
2v

Dw
Dt

= Z− 1
ρ

∂ p
∂ z

+ν∇
2w

These are NSE Cartesian coordinates.
Using the definition of material derivatives;

D
Dt
≡ ∂

∂ t
+u

∂

∂x
+ v

∂

∂y
+w

∂

∂ z

above equations maybe wri�en as:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

= X− ∂ p
∂x

+ν∇
2u

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

= Y − 1
ρ

∂ p
∂y

+ν∇
2v

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

= Z− 1
ρ

∂ p
∂ z

+ν∇
2w

These are the Navier-Stokes Equations in a simplified Cartesian form.

3.1.3 Importance of Terms Related to Navier-Stoke’s Equation

(i) Body Force terms F
Body force because of gravity is important in flow problems in which free liquid
surface exists or when the fluid is non-homogeneous, i.e. its density changes from
one point to another so that there exists a density gradient. If a fluid is rotating
about an axis, body force due to centripetal action must be considered. In case of
homogeneous fluid flow within closed boundaries, there is an equilibrium between
the weight of a fluid and the buoyant force acting on it. In such a case, body force
due to gravity does not influence the fluid motion and hence can be neglected from
Navier-Stokes Equations.

(ii) Viscous Terms [ν∇2u,etc.]
The no-slip condition between the fluid and the solid boundary requires that the
fluid velocity must be equal to that of boundary (i.e. zero for a stationary boundary).
In other words, both normal and tangential velocity components must be zero. Two
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independent boundary conditions must, therefore, be fulfilled, which require a partial
di�erential equation (PDE) of second order. For that, it is not permissible to ignore
the viscous terms in the PDE, even for very small values of ν , if true behaviors of
the viscous fluid is to be determined in the vicinity of the boundary.

(iii) Pressure Terms [
(

∂P
∂x

)
,etc.]

The pressure gradient terms is incorporated in Navier-Stokes Equations to show the
pressure distribution across a fluid flow, subjected to di�erent boundary terms.

(iv) Inertia Terms [
(

∂u
∂x

)
,etc.]

For high Reynolds number flow, inertia terms dominate over the viscous terms and
hence, the viscous terms can be neglected to lead a fair approximation. However,
in very low Reynolds number flow (known as creep flow), the velocity components
are very small and higher order inertia terms can be neglected, which converts the
Navier-Stokes Equations into a linear PDE, which is much easier to solve.

3.2 Limiting cases of the Navier Stoke’s Equations

(i) Potential Flow Case
In potential flow, viscous forces tend to zero. For incompressible flow,

u =
∂∅
∂x

v =
∂∅
∂y

w =
∂∅
∂ z

where ∅(x,y,z) =velocity potential function.
Using the equation of continuity for incompressible flow,

∇.q = 0

and since q = ui+ v j+wk, then the Navier-Stokes Equations of motion reduces to
the Euler’s equations of motion:

∇.q = (i
∂

∂x
+ j

∂

∂y
+ k

∂

∂ z
).(i

∂∅
∂x

+ j
∂∅
∂y

+ k
∂∅
∂ z

) =
∂ 2∅
∂x2 +

∂ 2∅
∂y2

∂ 2∅
∂ z2 = 0

=⇒ ∇
2∅= 0

Viscous components of NSE are

ν∇
2q = 0.
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As in case of incompressible flow, viscous components in NSE are zero and become
viscous term independent, i.e.

Dq
Dt

= F− 1
ρ

∇p

This is the Euler’s equation of motion.

(ii) Creep Flow Case
Creep flow occurs at very low Reynolds numbers. At these Reynolds numbers (i.e., at
very small velocity, small linear dimensions of the body or of the flow passage and
large viscosity of fluid), the inertia forces are much smaller than the viscous forces.
We know that for steady flow, inertia force= ρL2V 2 and viscous force= µA(∂u

∂x ).
As for creep flow, q is very small, hence, we neglect higher order terms of the inertia
force, like u(∂u

∂x ,v(
∂v
∂y ,etc). Then

Dq
Dt

= F− 1
ρ

∇p+
µ

ρ
∇

2q

becomes;

(i
∂u
∂ t

+ j
∂v
∂ t

+ k
∂w
∂ t

) = F− 1
ρ

∇p+ν∇
2q

=⇒ ∂q
∂ t

= F− 1
ρ

∇p+ν∇
2q

Creep flow analysis is of potential importance for laminar flow in pipes and open
channels, for seepage flow of water and oil underground, for motion of very small
bodies such bodies such as spheres in highly viscous fluid and in the theory of
lubrication.

3.3 Exact Solutions for Navier-Stoke’s Equations

Basic di�iculty in solving Navier-Stokes equations arises due to presence of nonlinear
(quadratic) inertia terms [i.e u∂u

∂x ,v
∂v
∂y , etc] on the L.H.S of the Navier-Stokes equations

in a simplified Cartesian form. However, there are some trivial solutions to NSE in which
non-linear inertia terms are usually zero, Akshoy [2005]. One such flow is parallel flow, in
which only one velocity term is trivial and all the fluid particles move in one direction
only.

3.3.1 Steady Flow Between Parallel Planes
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For a viscous incompressible fluid in steady flow, the Navier-Stokes equation with negligi-
ble body forces, are

dq
dt

=
−∇p

ρ
+

µ

ρ
∇

2q =
−∇p

ρ
+ν∇

2q,ν =
µ

ρ

In Cartesian coordinates; these are

u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

=− 1
ρ

∂ p
∂x

+ν(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 )

This is because for steady case,

du
dt

=
∂u
∂ t

+(q.∇)u = (q.∇)u,
∂

∂ t
= 0

= (u
∂

∂x
+ v

∂

∂y
+w

∂

∂ z
)u

= (u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

)

u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

=− 1
ρ

∂ p
∂x

+ν(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2 )

u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

=− 1
ρ

∂ p
∂x

+ν(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2 )

The equation of continuity for incompressible flow is

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

since
∇.q = 0

We have the conditions

v = 0,w = 0,
∂

∂ z
≡ 0

For the continuity equation ∂u
∂x +

∂v
∂y +

∂w
∂ z = 0, we have

∂u
∂x

= 0⇒ u = u(y)
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The second equation of the NSE in Cartesian coordinates gives

−∂ p
∂y

= 0

⇒ p = p(x)

Third equation in the NSE in Cartesian coordinates is identically satisfied and the NSE in
Cartesian coordinates gives

0 =− 1
ρ

d p
dx

+ν
d2u
dy2 ⇒

d p
dx

= µ
d2u
dy2

since
µ

ρ
= ν

Since u is a function of y only, so d p
dx is either a function of y or a constant. But from

−∂ p
∂y

= 0

⇒ p = p(x),

p is in terms of x alone. Hence
d p
dx

is constant. i.e. pressure gradient is constant.
Integrating 0 = − 1

ρ

d p
dx +ν

d2u
dy2 ⇒ d p

dx = µ
d2u
dy2 with respect to y twice, we get the general

solution to be

u =
1
µ

d p
dx

y2

2
+Ay+B

Now we take the following particular cases:

(i) Couette’s Flow

It is the flow between planes which are parallel (flat plates) one at rest and other in
motion with velocity U parallel to the fixed plate. Here, the constants A and B in u =
1
µ

d p
dx

y2

2 +Ay+B are determined from the rules

u = 0,y = 0,

u =U,y = h
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Using these conditions, we get

B = 0,U =
1
µ
(
d p
dx

h2

2
+Ah)

⇒ A =
U
h
− h

2µ
(
d p
dx

),B = 0

Therefore, the solution u = 1
µ

d p
dx

y2

2 +Ay+B becomes

u =
1
µ
(
d p
dx

)
y2

2
+ y[

U
h
− h

2µ
(
d p
dx

)]

=
y2−hy

2µ
(
d p
dx

)+
Uy
h

U
h

y− h2

2µ

d p
dx

y
h
(1− y

h
)

We note that this represents a parabolic curve. This equation is known as the equation of
Coue�e’s flow. Thus the velocity profile for Coue�e’s flow is parabolic.The flow Q per unit
breadth is given by

Q =
∫ h

0
udy =

∫ h

0
[
1
m

d p
dx

y2

2
+ y(

U
h
− h

2µ

d p
dx

)]dy

=
hU
2
− h3

12µ

d p
dx

=
hU
2

+
h3

12µ
P,P =−d p

dx

In non-dimensional form,
U
h

y− h2

2µ

d p
dx

y
h
(1− y

h
)

will be
u
U

=
y
h
+α

y
h
(1− y

h
)

where

α =
h2

2µU
(−d p

dx
)
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α is the non-dimensional pressure gradient. If α > 0, the pressure is decreasing in the
direction of flow and the velocity is positive between the plates. If α < 0, u

U = y
h +α

y
h(1−

y
h)

can be put as
u
U

=
y
h
(1+α)− αy2

h2

The pressure is increasing as flow and the reverse of flow begins when α <−1
y2 is neglected because y is small i.e.,
If α = 0(i.e.d p

dx = 0), then the particular case is called simple Coue�e’s flow, the velocity is

u
U

=
y
h

which gives u = 0 where y = 0 i.e. on the stationary plane.

Average and Extreme Values of Velocity

The average velocity of a Coue�e’s flow between plates which are parallel is

u0 =
1
h

∫ h

0
udy

because u = u(y)
Using the value of u from u

U = y
h +α

y
h(1−

y
h), we get

u0 =
1
h

∫ h

0
[
Uy
h

+Uα
y
h
(1− y

h
)]dy

=
Uy2

2h2 +Uα(
y2

2h2 −
y3

3h3 )

=
U
2
+

Uα

6
= (

1
2
+

α

6
)U

=
U
2
− µ2

12µ

d p
dx

=
U
2
+

h2

12µ
P,P =−d p

dx
For simple Coue�e’s flow, velocity goes up from zero on stationary plate up to U on the
moving plate such that the average velocity is U

2 . When the non-dimensional pressure
gradient is α =−3, then from = U

2 + Uα

6 = (1
2 +

α

6 )U , we get u0. This means that there is
no flow because pressure gradient is equalized with viscous force.
For maximum and minimum values of u, we have

du
dy

= 0⇒ U
h
+Uα(

1
h
− 2y

h2 ) = 0

⇒ y = (
1+α

2α
)h
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From here,
y
h
= 1 whenα = 1

and
y
h
= 0 whenα =−1

so from u
U = y

h +α
y
h(1−

y
h), we get

u = [
1+α

2α
+α(

1+α

2α
(1− 1+α

2α
)]U

=
(1+α)2

4α
U

and thus u is maximum for α ≥ 1 and minimum for α ≤−1

(ii) On Plane-Poiseuille Flow

A flow between stationary plates which are parallel; a Plane Poiseuille Flow.
The origin is taken on the line midway between the plates which are placed at a distance
h and x-axis is along this line.
The conditions to be used in this problem are u = 0 when y =±h

2

Using these conditions in u = 1
µ

d p
dx

y2

2 +Ay+B, we get

A = 0,B =
1
µ
(−d p

dx
)
h2

8

and thus the solution u = 1
µ

d p
dx

y2

2 +Ay+B is

u =
1
µ
(
d p
dx

)(
y2

2
− h2

8
)

This represents a parabola and thus the laminar flow in a Plane Poiseuille Flow is parabolic.

Average and Maximum velocity

For extreme values of u, we have du
dy = 0 and thus from u = 1

µ
(d p

dx )(
y2

2 −
h2

8 ), we get

1
µ
(
d p
dx

y = 0 ⇒ y = 0)
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Therefore,

Umax =
h2

8µ
(−d p

dx
)

The average velocity in the plane Poiseuille flow is defined by

u0 =
1
h

∫ h/2

−h/2
udy

Using the value of u from u = 1
µ
(d p

dx )(
y2

2 −
h2

8 ), we get

u0 =
1
h

∫ h/2

−h/2

−h2

8µ

d p
dx

(1− 4y2

h2 )dy

2
3
(
−h2

8µ

d p
dx

) =
2
3

Umax

From Umax =
h2

8µ
(−d p

dx ) and 2
3(
−h2

8µ

d p
dx ) =

2
3Umax, decrease in the pressure is given by

d p
dx

=−8µ

h2 Umax =
−8µ

h2
3
2

u0 =
−12µ

h2 u0

This further shows that d p
dx is a negative constant.
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4 Taylor-Coue�e Flow

Objectives
In this chapter, we fully discuss about the Taylor-Coue�e Flow.

Taylor-Coue�e Flow is a canonical flow geometry that has long been a subject of interest
in the fluid mechanics community. The study of Taylor-Coue�e Flow is useful in many
research and industrial application such as water purification and desalination (Du�a and
Ray,2004; Sengupta etc. et al. 2001, Wereley and Leuptow, 1998) and bisectors (Bo and
Vigil,2013; Curran and Black,2005; Haut etc et al. 2003)

4.1 The Background of Taylor-Coue�e Problem

Many researchers have made significant contributions to the understanding of flow tran-
sition and turbulence by studying this canonical flow system (Taylor,1923; Davey,1962;
Coles,1965; Gollub, & Freilich,1976;Walden & Donnelly,1979; Gorman and Swinney,1982;Wereley
& Leuptow,1994; Smith & Matsoukas, 1998.) Because of its interest in the fluid mechan-
ics community, Taylor-Coue�e Flow has been studied over a 100 years. The study of
Taylor-Coue�e Flow began as early as the 1890 and still continues on today due to its
importance to various areas of fundamental and applied research.Before the development
of laser-based measurement techniques, the flow was studied by visual observations such
as Coue�e 1890 described a series of experiments in which he measured the viscosities
of water and air using the concentric cylinder apparatus of his own design, Taylor(1923)
used ink visualization and presented for the first time measurements of pa�erns in the
unstable flow, and Taylor (1936) reported the series of measurements of the torque on the
cylinder of Coue�e flow apparatus due to the rotation of the other for a variety of radius
ratios and Reynolds numbers, and by intrusive electrical measurements such as Taylor
(1936) described the velocity profile of Taylor-Coue�e flow observed and measured by
pitot tube; outer cylinder rotated while inner cylinder was fixed, Wendt(1933) reported
measurements of velocity and pressure distributions inside the gap between the inner
and outer cylinders of Taylor-Coue�e flow apparatus, Bagnold (1954) designed a Coue�e
rheometer to measure the shear and normal stresses, Hollis-Halle� and W.J. Heikkila
(1955) adapted the Hollis-Halliet’s viscometer to study the Coue�e-Taylor flow at very low
Reynolds number, and Coles (1965) used hot-wire measurement in air to investigate the
changes in Coue�e-Taylor flow and showed pa�erns with alternating laminar & turbulent
flow. Development for laser Doppler velocimetry was a big advantage in the study of
Taylor-Coue�e flow as it allowed for the non-intrusive measurement of velocity.
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4.2 Flow Description

A simple Taylor-Coue�e flow is a flow which is steady and created between rotating
infinitely long cylinders which are coaxial. Since the cylinder lengths are infinitely long,
the flow is essentially unidirectional in steady state. If inner cylinder with radius R1

rotate at constant angular velocity Ω1 & outer cylinder with radius R2 rotates at constant
angular velocity Ω2, then azimuthal velocity component is given by

vθ = Ar+
B
r

Proof
We take flow between cylinders which are concentric and rotating with radii r1,r2(r2 > r1)

having viscous fluid between them. We assume that the flow is circular such that only
the tangential component of velocity exists. Let Ω1 & Ω2 be angular velocity of inner &
outer cylinders, respectively. The continuity equation in cylindrical coordinates (r,θ ,z)
reduces to

∂qθ

∂θ
= 0 =⇒ qθ = qθ (r)

where qr = qz = 0
Now, the NSE of viscous incompressible fluid in cylindrical coordinates:

ρ(
dqr

dt
−

q2
θ

r
) = ρXr−

∂ p
∂ r

+µ(∇2qr−
qr

r2 −
2
r2

∂qθ

∂θ
)

ρ(
dqθ

dt
+

qrqθ

r
) = ρXθ −

1
r

∂ p
∂θ

+µ(∇2qθ +
2
r2 −

2
r2

∂qr

∂θ
− qθ

r2 )

ρ
dqr

dt
= ρXz−

∂ p
∂ z

+µ∇
2qz

Here,
qr = qz = 0;(Xr,Xθ ,Xz) = 0,qθ = qθ (r)

From the last two equations, we have:

∂ p
∂ z

= 0,−1
r

∂ p
∂θ

+µ(∇2qθ −
qθ

r2 = 0) (2)

and the first equation gives

ρ
q2

θ

r
=

∂ p
∂ r

The LHS of this equation is in terms of r and thus p is a component of r only. i.e.

∂ p
∂θ

= 0
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Therefore equation (2) reduces to

∇
2qθ −

qθ

r2 = 0

where

∇
2 ≡ ∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ z2

=⇒ d2qθ

dr2 +
1
r

dqθ

dr
− qθ

r2 = 0

=⇒ d2qθ

dr2 +
d
dr

(
qθ

r
) = 0

Integrating, we get
dqθ

dr
+ qθ

r
= 2A

⇒ r
dqθ

dr
+qθ = 2Ar

d
dr

(rqθ ) = 2Ar

Integrating, we get
rqθ = Ar2 +B

=⇒ qθ = Ar+
B
r

(3)

Or
vθ = Ar+

B
r

Hence proved.

The boundary conditions are
qθ = r1Ω1, when r = r1

and
qθ = r2Ω2, when r = r2

There on surface

v = r
dθ

dt
⇒ v = rΩ

l = rθ ⇒ dl
dt

= r
dl
dt
⇒ v = rΩ

Using these equations in qθ = Ar+ B
r , we obtain

A =
Ω1r2

1−Ω2r2
2

r2
1− r2

2
(4)

B =
r2

1r2
2(Ω1−Ω2)

r2
2− r2

1
(5)
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Thus the solution of (3) in the present case is

qθ =
1

r2
2− r2

1
[(r2

2Ω2− r2
1Ω1)r−

r2
1r2

2(Ω2−Ω1)

r
]

In particular, if the inner cylinder is at rest, i.e.

Ω1 = 0,Ω2 = Ω(say),r1 = a,r2 = b,

then the solution becomes

qθ =
Ωb2

b2−a2 (r−
a2

r
)

The radial pressure, given by ρ
q2

θ

r = ∂ p
∂ r , is

d p
dr

= ρ
q2

θ

r
=

ρ

r
(A2

1r2 +
B2

2
r2 +2AB)

= ρ(A2r+
B2

r3 +
2AB

r
)

Integrating with respect to r, we get

p = ρ[
A2r2

2
− B2

2r2 +2ABlogr]+C

If p = p1 when r = r1, then

p1 = ρ[
A2r2

1
2
− B2

2r2
1
+2ABlogr1]+C

⇒C = p1−ρ[
A2r2

1
2
− B2

2r2
1
+2ABlogr1]

Hence the pressure is given by

p = p1−ρ[A2(
r2− r2

1
2

)− B2

2
(

1
r2 −

1
r2

1
)+2ABlog

r
r1
]

where A and B are as given by (4) and (5). The formula for shearing stress is

σrθ = µ[
dqθ

dr
− qθ

r
] = µ[r

d
dr

(
qθ

r
)]

= µ[r
d
dr

(
Ar+B/r)

r
)]
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= µ.r
d
dr

(A+B/r) = µ(−2B
r3 )

=−2µB
r2 =

−2µr2
1r2

2(Ω1−Ω2)

r2(r2
2− r2

1)

The expressions for shearing stress on the outer and the inner cylinder are

(σrθ )r = r2 =
2µ(Ω2−Ω1)r2

1
r2

2− r2
1

(σrθ )r = r1 =
2µ(Ω2−Ω1)r2

2
r2− r2

1

Also A and B are constants related to the boundary conditions set by the rotation speeds
of each cylinder Ω1 and Ω2 and may be expressed as:

A =
Ω1(η

2−µ)

1−η2

and
B = Ω1R2

1
1−µ

1−η2

where
µ =

Ω2

Ω1
andη =

R1

R2

4.3 Volumetric flow Between Co-axial Circular Cylinders

We suppose steady flow of fluid which is viscous parallel to the axis in the annular space
between cylinders which are coaxial of radii r1 & r2 (r2 > r1). The velocity of such a flow
is

qz =
1

4µ
(
d p
dz

)r2 +Alog r+B (6)

Boundary conditions are
qz = 0 atr = r1 andr = r2

Applying these conditions in (6), we get

A =
1

4µ
(
d p
dz

)
r2

2− r2
1

log r1/r2
=− 1

4µ
(
d p
dz

)
(n2−1)r2

1
log n

(7)

,
n = r2/r1
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and

B =
1

4µ
(
d p
dz

)[
(n2−1)r2

1
log n

log r1− r2
1] (8)

Thus the velocity distribution in space between cylinders which are coaxial is

qz =−
1

4µ
(
d p
dz

)[(r2
1− r2)+

(n2−1r2
1)

log n
log(r/r1)] (9)

The volumetric flow in this case is

Q =
∫ 2π

0

∫ r2

r1

qzrdrdθ

=
∫ 2π

0

∫ r2

r1

− 1
4µ

(
d p
dz

)[(r2
1− r2)+

(n2−1)r2
1

log n
log(r/r1)]rdrdθ

=−2π

4µ
(
d p
dz

)[r2
1

r2

2
− r4

4
+

(n2−1)r2
1

log n
(
r2

2
log(r/r1)−

r2

4
)]nr1

r1

=− π

2µ
(
d p
dz

)[
n2r4

1
2
−

r4
1
2
−

n4r4
1

4
+

r4
1
4
+

(n2−1)r2
1

log n
(log n−1/2)

n2r2
1

2
+

r2
1
4
]

=−
πr4

1
8µ

(
d p
dz

)[2n2−2−n4 +1+
n2−1
log n

(2log n−1)n2 +1]

−
πr4

1
8µ

(
d p
dz

)[2n2−n4−1+2n4−2n2− (n2−1)2

log n
]

=−
πr4

1
8µ

(
d p
dz

)[(n4−1)− (n2−1)2

log n
]

4.4 Expression for Shearing Stress

We consider flow between two concentric cylinders which are rotating with radii r1,r2,(r2 >

r1) having viscous fluid in between them. We assume that the flow is circular such that
only the tangential component of velocity exists. Let Ω1 & Ω2 be angular velocity of inner
& outer cylinders, respectively.
The continuity equation in cylindrical co-ordinates (r,θ ,z) reduces to

∂qθ

∂θ
= 0, ⇒ qθ = qθ (r) (10)
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where
qr = qz = 0

Now NSE for fluid which is viscous and incompressible in cylindrical co-ordinates are

ρ(
dqr

dt
−

q2
θ

r
) = ρXr−

∂ p
∂ r

+µ(∇2qr−
qr

r2 −
2
r2

∂qθ

∂θ
)

ρ(
dqθ

dt
+

qrqθ

r
) = ρXθ −

1
r

∂ p
∂θ

+µ(∇2qθ +
2
r2

∂qr

∂θ
− qθ

r2 )

ρ(
dqz

dt
= ρXz−

∂ p
∂ z

+µ∇
2qz

Here,
qr = qz = 0;X = (Xr,Xθ ,Xz) = 0,qθ = qθ (r)

From the last two equations, we have

∂ p
∂ z

= 0,−1
r

∂ p
∂θ

+µ(∇2qθ −
qθ

r2 ) = 0

and the first equation gives

ρ
q2

θ

r
=

∂ p
∂ r

The LHS of this equation is a term of r and thus p is a term of r only, i.e.

∂ p
∂θ

= 0

Therefore,∂ p
∂ z = 0,−1

r
∂ p
∂θ

+µ(∇2qθ − qθ

r2 ) = 0 reduces to

∇
2qθ −

qθ

r2 = 0,

∇
2 ≡ ∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ z2

⇒ d2qθ

dr2 +
1
r

dqθ

dr
− qθ

r2 = 0

⇒ d2qθ

dr2 +
d
dr

(
qθ

r
) = 0

Integrating, we get
dqθ

dr
+

qθ

r
= 2C1
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r
dqθ

dr
+qθ = 2C1r ⇒ d

dr
(rqθ ) = 2C1r

Integrating, we get

rqθ =C1r2 +C2 C1r+
C2

r
which is the general solution.
Boundary conditions are

qθ = r1Ω−1, whenr = r1

and
qθ = r2Ω2, whenr = r2

Because on the surface, v = r dθ

dt v = rΩ

l = rθ ⇒ dl
dt = r dθ

dt , i.e.v = rΩ

Using rqθ =C1r2 +C2 C1r+ C2
r , we obtain

C1 =
Ω1r2

1−Ω2
2

r2
1− r2

2

C2 =
r2

1r2
2(Ω1−Ω2)

r2
2− r2

1

Thus the solution of rqθ =C1r2 +C2 C1r+ C2
r in the present case is

qθ =
1

r−22− r2
1
[(r2

2Ω2− r2
1Ω1)r−

r2
1r2

2(Ω2−Ω1)

r
]

In particular, if the inner cylinder is at rest, i.e. Ω1 = 0,Ω2 = Ω(say),r1 = a,r2 = b, then
the solution becomes

qθ =
Ωb2

b2−a2 (r−
a2

r
)

The radial pressure given by ρ
q2

θ

r = ∂ p
∂ r , is

d p
dr

= ρ
q2

θ

r

=
ρ

r
(C2

1r2 +
C2

2
r2 +2C1C2)

= ρ(C2
1r+

C2
2

r3 +
2C1C2

r
)

Integrating with respect to r we get

p = ρ[
C2

1r2

2
−

C2
2

2r2 +2C1C2log r]+C3
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If p = p1 when r = r1, then

p1 = ρ[
C2

1r2
1

2
−

C2
2

2r2
1
+2C1C2log r1]+C3

⇒C3 = p1−ρ[
C2

1r2
1

2
−

C2
2

2r2
1
+2C1C2log r1]

Hence the pressure is given by

p = p1 +ρ[C2
1(

r2− r2
1

2
)−

C2
2

2
(

1
r2 −

1
r2

1
+2C1C2log(r/r1))]

where C1 and C2 are given by

C1 =
Ω1r2

1−Ω2
2

r2
1− r2

2

C2 =
r2

1r2
2(Ω1−Ω2)

r2
2− r2

1

The formula for shearing stress is

σrθ = µ[
dqθ

dr
− qθ

r
] = µ[d

d
dr

(
qθ

r
)]

= µ[r
d
dr

(
C1r+C2/r

r
)]

= µr
d
dr

(C1 +
C2

r2 )

= µr(−2C2

r3 )

=
−2µC2

r2

=
−2µr2

1r2
2(Ω1−Ω2)

r2(r2
2− r2

1)

The expressions for the shearing stress on the outer and the inner cylinders are

(σrθ )r=r2 =
2µ(Ω2−Ω1)r2

1
r2

2− r2
1

(σrθ )r=r1 =
2µ(Ω2−Ω1)r2

2
r2

2− r2
1
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4.5 Normal Modes

Modes-harmonic (sinusoidal) motions.
Normal-independent of each other.
A normal mode is a motion where all parts of the system are moving sinusoidally with
the same frequency and in phase.
All observed configurations of a system may be generated from its normal modes.Each
normal mode has a characteristic frequency, its eigenvalue.

4.5.1 Characteristics of Normal Mode Motion

1. Each normal mode acts like a simple harmonic oscillator.

2. A normal mode is concerted motion of many atoms.

3. Centre of mass does not move.

4. All atom pass through their equilibrium positions at the same time.

5. Normal modes are orthogonal to each other; they resonate independently.

6. Directly related to vibrational spectroscopy.

4.6 Coue�e Flow and Perturbation

To determine the flow stability that exists between cylinders which are concentric and
rotating; we take the following considerations:
(i) We take the basic Coue�e flow

V (r) = Ar+
B
r

(11)

for Navier-Stokes Equations of a viscous fluid.
Where we take rigid cylinders r = R1,R2 with angular velocities Ω1,Ω2 respectively with

A =
Ω2R2

2−Ω1R2
1

R2
2−R2

1
,B =

Ω1−Ω2

R−1 2−R−2 2
(12)

(ii)We linearize the NSE and boundary conditions for small perturbations of basic flow.
(iii) We choose dimensionless variables and parameters.
(iv) We take the normal modes:

u′(x, t) = u(r)est+i(nθ+kz)
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(v)We then derive an ordinary di�erential eigenvalue problem to find s, for given real
wavenumber k and integral wavenumber n.

Since the resulting numerical problem is too di�icult to solve; we will simplify our problem
based on the following assumptions:
(i)Most unstable perturbations are axisymmetric and so n = o.
(ii)Exchange of stabilities Principle holds, i.e. Im(s) = 0 at the onset of instability, and so
s = 0 thus we seek dimensionless parameters which give the margin of instability.
(iii) There is a narrow gap between the cylinders, i.e. R2−R1 << R2.

Let ur,uθ and w be the velocity components r,θ & z directions, respectively.
Then governing relations are: are:

1
r

∂

∂ r
(rur)+

1
r

∂vθ

∂θ
+

∂w
∂ z

= 0

∂ur
∂ t +ur

∂ur
∂ r + vθ

r
∂ur
∂θ

+w∂ur
∂ z −

v2
θ

r =−∂ p
∂ r +

1
Re(∇

2ur− ur
r2 − 2

r2
∂vθ

∂θ
),

∂vθ

∂ t +ur
∂uθ

∂ r + vθ

r
∂vθ

∂θ
+w∂vθ

∂ z + urvθ

r =−1
r

∂ p
∂θ

+ 1
Re(∇

2vθ − vθ

r2 +
2
r

∂ur
∂θ

),

∂w
∂ t

+ur
∂w
∂ r

+
vθ

r
∂w
∂θ

+w
∂w
∂ z

=−∂ p
∂ r

+
1

Re
∇

2w.

where

∇
2 ≡ ∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ z2

All variables have been nondimensionalized with respect to the gap width, l = R2−R1

and a characteristic velocity U0; the Reynolds number,Re = U0l
ν

and the density, ρ is a
constant.
Now the solution for the mean flow is one that is θ−component and a term of r only or
V =V (r). The mean pressure , P, is taken as only a function of r. Thus,

V = Ar+
B
r

is the solution that meets these requirements and the pressure,P, can be obtained from
the relation

1
ρ

dP
dr

=
V 2

r
.
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The coe�icients A and B are fixed by requiring the value of V to be that of the cylinders
at r = R1 and R2 and are found to be

A =
(R2

R1
)2 Ω2

Ω1
−1

(R2
R1
)2−1

B =−A,

when the cylinders rotate in the similar way. If rotation is in reverse ways, simply we
replace Ω1 by −Ω1.

Next, small perturbations are introduced and the governing equations are linearized. In
this way, with the notation for the velocity as (ur,V + vθ .w) and P+ p for the pressure,
the linearized equations are:

1
r

∂

∂ r
(rur)+

1
r

∂vθ

∂θ
+

∂w
∂ z

= 0

∂ur

∂ t
+

V
r

∂ur

∂θ
− 2V

r
vθ =−∂ p

∂ r
+

1
Re

(∇2ur−
ur

r2 −
2
r2

∂vθ

∂θ
)

∂vθ

∂ t
+

V
r

∂vθ

∂θ
+

dV
dr

ur =−
1
r

∂ p
∂θ

+
1

Re
(∇2vθ −

vθ

r2 −
2
r2

∂ur

∂θ
)

∂w
∂ t

+
V
r

∂w
∂θ

=−∂ p
∂ z

+
1

Re
∇

2w

The solutions of these equations must satisfy the B.C that all the 3 perturbation compo-
nents of velocity die on both inner and outer cylinder end walls.
For obtaining general solution:
(i) Only axisymmetric disturbances will be treated hence the θ− dependence is omi�ed.
(ii) The cylinders are fixed in such a way that the gap width, l, is small or, in the sense of
the nondimensional variables,

l
r
<< 1.

When axisymmetry ( ∂

∂θ
= 0) is incorporated into the set of the above equations and the

pressure is eliminated, then the pair of coupled equations:

[
∂

∂ t
− 1

Re
(∇2− 1

r2 )](∇
2ur−

ur

r2 ) = 2(
V
r
)
∂ 2vθ

∂ z2

and
∂vθ

∂ t
− 1

Re
(∇2vθ −

vθ

r2 =−dV
dr

ur)

result.
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The solutions for ur and vθ can be obtained in terms of normal modes or

ur(r,z, t) = u′(r)eσt+iλ z

vθ (r,z, t) = v′(r)eσt+iλ z

As a result of this form for the solutions, the above equations now become coupled
ordinary di�erential equations. Of course, in this form, even the general set of the
linearized equations where the assumption of axisymmetry is not used,we express in
eigenfunctions,Bessel functions. The resulting eigenvalue problem that determines the
stability will be given as

F(σ ,λ ,
R2

R1
,
Ω2

Ω1
,Re) = 0

The net result of axisymmetry, the small gap approximation and the normal mode solutions
reduces the coupled equations to:

[
1

Re
(

d2

dr2 −λ
2)−σ ](

d2u′

dr2 −λ
2u′) = 2λ

2(
V
r

v′)

and
1

Re
(
d2v′

dr2 −λ
2v′)−σv′ =−dV

dr
u′

with B.C.
u′ = u′′ = v′ = 0

at cylinder walls.
The small gap approximation also a�ects the variation of the mean velocity profile. Specifi-
cally, the part of mean flow that varies as 1

r can be neglected just as it was for the operators
in the perturbation equations. Thus, V (r) = Ar, a linear variation, and is the reason that
the flow has been referred to as Coue�e flow.
If we define ε = Re−1 and expand the immediate previous equations so that all terms
involving the fourth and second derivatives as well as the dependent variables can be
grouped.
These reordered equations are then multiplied by the respective complex conjugates of
u′ and v′. Once this has been done, the product equation relations are integrated over r
from R1 to R2.

The imaginary relations for σi can be combined by recognizing the relations of complex
conjugate pairs. This means the integrals on the RHS of (26) and (28) di�er only by a
minus sign and

σi[
2λ (V/r)

V ′
−

(I2
1 +λ 2I2

0 )

J2
1

] = 0
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results.
For this to be true, either σi = 0 or the bracketed terms must balance.
If σi 6= 0, then the disturbances are periodic in time. In turn, for this to occur, the ratio

2λ (V/r)/V ′ > 0

⇒ that the mean profile must increase outward. Certainly, if V > 0,V ′ > 0. Let us call
the necessary relation as

2λ (V/r)/V ′ = P > 0.

Now, the expression for the real parts of σr can be used. In fact, it is found that

σr =−
(E +B/P)
(D+A/P)

where
A = (I2

1 +λ
2I2

0 ,)

B = ε(I2
2 +2λ

2I2
1 +λ

4I2
0 )

J2
1 ,E = ε(I2

1 +λ
2J2

0)

Thus, σr < 0 and consequently, a disturbance that is periodic in time must decay. The
combination indicates that neutral stability corresponds to σ = σr + iσr = 0. We call it
exchange of stabilities principle. Again, unlike the results for parallel or almost parallel
mean flows, neutrality is tantamount to a steady state. By using the principle just
established, the neutral solution for the Taylor problem can now be determined.Now the
reduced normal modes solution becomes a�er se�ing σ = 0;

(D2−λ
2)2u′ = 2λ

2(
V
r
)Rev′

(D2−λ
2)v′ =−V ′Reu′

where the Reynolds number has been moved to the RHS for those relations. And, strictly
speaking, for the narrow gap approximation, V/r =V ′ = A with A an angular velocity in
dimensional terms. These two equations can be combined to form one for u′, namely

(D2−λ
2)3u′ =−2λ

2Re2(
V
R
)V ′

Now, the Taylor number emerges and is defined as

Ta =−2Re2(
V
r
)V ′ >> 1

and, for the Taylor problem, V ′ < 0.Fof small gap approximation, the above equation can
be solved exactly. When the cylinders rotate in opposite directions, then V = 0 for some
value of r between R1 and R2 and the solution must account for this fact and this has
been done.[CJ03]
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4.7 Analytical Discussion of the Stability of Inviscid Coue�e Flow

We now discuss about the analytic solution and the stability of inviscid Coue�e flow.

4.8 On Viscous Coue�e Flow

We now turn our a�ention to stationary viscous flow between two rotating cylinders.
In cylindrical polar coordinates, the Navier-Stokes equations for viscous incompressible
fluids take the forms:

∂ur

∂ t
+(u.∇)ur−

u2
θ

r
=− ∂

∂ r
(

p
ρ
)+ν(∇2ur−

2
r2

∂uθ

∂θ
− ur

r2 )

∂uθ

∂ t
+(u.∇)uθ +

uruθ

r
=−1

r
∂

∂θ
(

p
ρ
)+ν(∇2uθ +

2
r2

∂ur

∂θ
− uθ

r2 )

∂uz

∂ t
+(u.∇)uz =−

∂

∂ z
(

p
ρ
)+ν∇

2uz

where

u.∇≡ ur
∂

∂ r
+

uθ

r
∂

∂θ
+uz

∂

∂ z

and

∇
2 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ z2

We have also the equation of continuity,

∂ur

∂ r
+

ur

r
+

1
r

∂uθ

∂θ
+

∂uz

∂ z
= 0

These equations allow a stationary solution of the form

ur = uz = 0,uθ =V (r)

provided
d
dr

(
p
ρ
=

V 2

r
)

and

ν(∇2V − V
r2 ) = ν

d
dr

(
d
dr

+
1
r
)V = 0
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From the equation above, it is apparent that the most general form ofV (r) which is
compatible with ν 6= 0 is

V = Ar+
B
r

whereAand B are two arbitrary constants. The corresponding expression for the angular
velocity is

Ω = A+
B
r2

The constants A and B can, therefore be related to the angular velocities Ω1 and Ω2 with
which the two cylinders are related.We have as before;

A =−Ω1η
2 1−µ/η2

1−η2

and

B = Ω1
R2

1(1−µ)

1−η2

where
µ =

Ω2

Ω1

and
η =

R1

R2

As we have seen before, Rayleigh’s criterion for the stability of inviscid Coue�e flow
applied to the distribution Ω = A+ B

r2 yields

µ > η
2

Taylor found an explicit analytical expression for the criterion; and he was able to confirm
by experiments that the marginal state is stationary and exhibits a break-up of the basic
flow into a cellular pa�ern.

4.8.1 The Perturbation Equations

Suppose
d
dr

(
p
ρ
) =

v2

r
and

V = Ar+
B
r

Let the perturbed state be characterized by

ur,V +uθ ,uz,
δ p
ρ

= ϖ
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The linearized equations are:

∂ur

∂ t
−2

V
r

uθ =
∂ϖ

∂ r
+ν(∇2ur−

ur

r2 )

∂uθ

∂ t
+(

dV
dr

+
V
r
)ur = ν(∇2uθ −

uθ

r2 )

and
∂uz

∂ t
=−∂ϖ

∂ z
+ν∇

2uz

where

∇
2 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

∂ 2

∂ z2

Also, for axisymmetric motions, the equation of continuity reduces to

∂ur

∂ r
+

ur

r
+

∂uz

∂ z
= 0

By analyzing the disturbance into normal modes, we look for solution of the above equa-
tions which are of the forms

ur = u(r)eptcoskz

uθ = v(r)eptcoskz

uz = w(r)eptsinkz

ϖ = ϖ(r)eptcoskz

For solutions of the form as above,the linearized equations become:

ν(DD∗− k2− p
ν
)u+2

V
r

v =
dϖ

dr

ν(DD∗− k2− p
ν
)v− (D∗V )u = 0

ν(DD∗− k2− p
ν
)w =−kϖ

∇
2 = (

d
dr

+
1
r
)

d
dr
− k2 = D∗D− k2 = DD∗+

1
r2 − k2

and
D∗u =−kw
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Eliminating w in the equations above, we have

ν

k2 (D∗D− k2− p
ν
)D∗u = ϖ

Inserting this expression for ϖ in ν(DD∗− k2− p
ν
)u+ 2V

r v = dϖ

dr , we find a�er some
rearranging,

ν

k2 (D∗D− k2− p
ν
)(DD∗− k2)u = 2

V
r

v

This equation must be considered together with

ν(D∗D− k2− p
ν
)v = (D∗V )u

These equations are general and do not depend on any particular form of V (r).Measuring
r in units of radius R2 of the outer cylinder and writing

k2 =
a2

R2
2

and
σ = pR2

2ν

Equations ν

k2 (D∗D−k2− p
ν
)(DD∗−k2)u = 2V

r v and ν(D∗D−k2− p
ν
)v = (D∗V )u become

(when V (r) has the particular form V = Ar+ B
r )

(DD∗−a2−σ)(DD∗−a2)u = a2 2B
ν
(

1
r2 +

AR2
2

B
)v

and
(DD∗−a2−σ)v =

2A
ν

R2
2u

For convenience we make transformation

AR2
2

ν
u 7→ u

The equations then take the more convenient forms

(DD∗−a2−σ)(DD∗−a2)u =−Ta2(
1
r2 −κ)v

and
(DD∗−a2−σ)v = u

where

T =−4AB
ν2 R2

2 =
4Ω2

1R4
1

ν2
(1−µ)(1−µ/η2)

(1−η2)2
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and

κ =−
AR2

2
B

=
1−µ/η2

1−µ

Solutions of (DD∗−a2−σ)(DD∗−a2)u =−Ta2( 1
r2 −κ)v and (DD∗−a2−σ)v = u must

be sought which satisfy the boundary conditions appropriate for no-slip on the cylindrical
walls at r = 1 and η .

4.8.2 The Stability of the Flow for µ > η2

We shall now show when Rayleigh’s criterionµ > η2 is satisfied, the flow is indeed stable.
First, we may notice certain elementary integral properties of the operator DD∗. If f (r)
and g(r) are any two functions and if one of them, say f (r), vanishes at the limits of
integration, ∫

r f DD∗gdr =−
∫
(r

d f
dr

dg
dr

+
f g
r
)dr

and if the derivative of f also vanishes at the limits,∫
r f DD∗gdr =

∫
rgDD∗ f dr

These relations follow by successive integrations by parts. Thus, by writing

∫
r f DD∗gdr =

∫
[ f

d
dr

(r
dg
dr

)− f g
r
]dr,

The truth of
∫

r f DD∗gdr =−
∫
(r d f

dr
dg
dr +

f g
r )dr becomes self evident and a further inte-

gration by parts leads to
∫

r f DD∗gdr =
∫

rgDD∗ f dr
Now returning to (DD∗−a2−σ)(DD∗−a2)u =−Ta2( 1

r2 −κ)v
and (DD∗−a2−σ)v = u ,multiply (DD∗−a2−σ)(DD∗−a2)u =−Ta2( 1

r2 −κ)v by ru∗

and integrate over the range of r.
We have ∫ 1

η

ru∗[(DD∗−a2)2u−σ(DD∗−a2)u]dr =−ϒ a2
∫ 1

η

rφ(r)vu∗dr

where, for brevity, we have wri�en

ϒ =
T

1−µ
=

4Ω2
1R4

1
ν2

(1−µ/η2)

(1−η2)2

and
φ = (1−µ)(1/r2−κ)
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Since u and its derivative vanish at r = 1 and η , the integrals on the le�-hand side of∫ 1
η

ru∗[(DD∗−a2)2u−σ(DD∗−a2)u]dr =−ϒ a2 ∫ 1
η

rφ(r)vu∗dr can be transformed to pos-

itive definite forms by making use of
∫

r f DD∗gdr =−
∫
(r d f

dr
dg
dr +

f g
r )dr and

∫
r f DD∗gdr =∫

rgDD∗ f dr . Thus,
∫ 1

η
ru∗[(DD∗−a2)2u−σ(DD∗−a2)u]dr =

∫ 1
η

r(| (DD∗−a2)u |)2dr+
σ
∫ 1

η
[r(| du

dr |)
2 +(1

r +a2r)(| u |)2]dr

Next, substituting for u∗ (from (DD∗−a2−σ)v = u ) in the integrand on the right-hand
side of equation

∫ 1
η

ru∗[(DD∗−a2)2u−σ(DD∗−a2)u]dr =−ϒ a2 ∫ 1
η

rφ(r)vu∗dr, we obtain

∫ 1

η

rφ(r)vu∗dr =
∫ 1

η
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=−(a2 +σ
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Again, by making use of
∫
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r )dr, we have
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φ(r)(r | dv
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r
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η

v
r2

dv∗

dr
dr

Now combining equations above, we obtain

σ I1 + I2 =ϒ a2[(a2 +σ
∗)I3 + I4]

where

I1 =
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η

[r | du
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1
r
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η

v
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dr
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The integrals I1 and I2 are clearly positive definite. For µ > 0,φ(r) > 0; so that in this
case, I3 is also positive definite. The first of the two integrals included in I4 is positive
for µ > 0;but the second is complex. However, the real part of I4 is positive definite for
µ > 0;in fact,

re(I4) =
∫ 1

η

rφ(r) | dv
dr
− v

r
|2 dr
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For, expanding the integrand in re(I4) =
∫ 1

η
rφ(r) | dv

dr −
v
r |

2 dr , we have

∫ 1

η

rφ(r) | dv
dr
− v

r
|2 dr =

∫ 1

η

φ(r)(r | dv
dr
|2 + | v |

2

r
)dr−
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φ(r)
d | v |2
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dr

But
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η
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dr
dr = (1−µ)
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η

(
1
r2 −κ)

d | v |2

dr
dr = (1−µ)

∫ 1

η

1
r2

d | v |2
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Therefore, the right- hand side of
∫ 1

η
rφ(r) | dv

dr −
v
r |

2 dr =
∫ 1

η
φ(r)(r | dv

dr |
2 + |v|

2

r )dr−∫ 1
η

φ(r)d|v|2
dr dr is, indeed, the real part of I4 Returning to σ I1 + I2 =ϒ a2[(a2 +σ∗)I3 + I4]

and equating the real parts of this equation, we obtain

re(σ)(I1−ϒ a2I3)+ I2−ϒ a2[a2I3 + re(I4)] = 0

When µ > η2 ; ϒ < 0 and the coe�icient of re(σ)in re(σ)(I1−ϒ a2I3)+ I2−ϒ a2[a2I3 +

re(I4)] = 0
Therefore,

re(σ)< 0 for µ > η
2

And the flow is stable; this result is entirely to be expected on physical grounds. Nev-
ertheless, it appears to be the only one which can be established by general analytical
arguments.By equating the imaginary parts ofσ I1+ I2 =ϒ a2[(a2+σ∗)I3+ I4] , we obtain

im(σ)(I2 +ϒ a2I3) =−2ϒ a2im
∫ 1

η

v
r2

dv∗

dr
dr

and no general conclusions can be drawn from this equation; when µ < 0,even I3 is not
positive definite!
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5 Hydrodynamic Stability Analysis

Objectives
Here,we study about the Hydrodynamic Stability Analysis.

5.1 Linear Stability Analysis

To determine whether the flow is stable or unstable, one o�en employs the method of
linear stability analysis. In this type of analysis, the governing equations and boundary
conditions are linearized. This is based on the fact that the concept of ‘stable’ or ‘unstable’
is based on an infinitely small disturbance. For such disturbances, it is reasonable to
assume that disturbances of di�erent wavelengths evolve independently. (A nonlinear
governing equation will allow disturbances of di�erent wavelengths to interact with each
other).

Analysing Flow Stability

5.1.1 Bifurcation Theory

This is a useful way to discuss stability of given flow bifurcation with changes that occur
in the structure of a given system in the case of hydrodynamic stability; this is a series of
di�erential equations and their solutions. A bifurcation occurs when a small change in the
parameters of the system causes a qualitative change in its behavior, the parameter that
is being changed in the case of hydrodynamic stability is the Reynolds number. It can be
shown that the occurrence of bifurcations falls in line with the occurrence of instabilities.

5.1.2 Laboratory and Computational Experimentation

Laboratory experiments are a very useful way of gaining information about a given flow
without having to use more complex; mathematical techniques. Sometimes physically
seeing the change in the flow overtime is just as useful as a numerical approach and any
findings from these experiments can be related back to the underlying theory. Experimental
analysis is also useful because it allows one to vary the governing parameters very easily
and their e�ects will be visible. When dealing with more complicated mathematical
theories such as Bifurcation theory and weakly nonlinear theory, numerically solving
such problems becomes very di�icult and time consuming but with the help of computers
this process becomes much easier and quicker. Since the 1980s computational analysis
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has become more useful, the improvement of algorithms which can solve the governing
equations, such as the NSE means that they can be integrated more accurately for various
types of flow.

Applications

5.1.3 Kelvin-Helmholtz Instability(KHI)

Kelvin-Helmoltz instability is an application of hydrodynamic stability that can be seen in
nature. It occurs when there are two fluids flowing at di�erent velocities. The di�erence in
velocity at the interface of the two layers. The shear velocity of one fluid moving induces a
shear stress on the other which, if greater than the restraining surface tension, then results
in an instability along the interface between them. This motion causes the appearance
of a series of overturning ocean waves, a characteristic of the KHI. Indeed, the apparent
ocean wave-like nature is an example of vortex formation, which are formed when a fluid
is rotating about some axis, and is o�en associated with this phenomenon. The KHI can
be seen in the bands in planetary atmospheres such as Saturn and Jupiter, for example in
the giant red spot vortex.

5.1.4 Rayleigh-Taylor Instability(RTI)

Rayleigh-Taylor instability is another application of hydrodynamic stability and also oc-
curs between two fluids but this time the densities are di�erent. Due to di�erence in
densities, the two fluids will try to reduce their combined potential energy. The less dense
fluid will do this by trying to force its way upwards and the more dense fluid will try to
force its way downwards. Therefore, there are two possibilities; if the lighter fluid is on
top the interface is said to be stable, but if the heavier fluid is on top, then the equilibrium
of the system is unstable to any disturbances of the interface. If this is the case then both
fluids will begin to mix.
In the linear phase, equations can be linearized and the amplitude of perturbations is
growing exponentially with time. In the non-linear phase, perturbation amplitude is too
large for the non-linear terms to be neglected. In general, the density disparity between
the fluids determines the structure of the subsequent non-linear RTI flows (assuming
other variables such as surface tension and viscosity are negligible here).
This process is evident not only in many terrestrial examples, from salt domes to weather
inversions, but also in astrophysics and electro hydrodynamics. RTI structure is also
evident in the Crab Nebula, in which the expanding pulsar wind nebula powered by
the Crab pulsar is sweeping up ejected material from the supernova explosion 1000
years ago. The RTI has also recently been discovered in the sun’s outer atmosphere, or
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solar corona, when a relatively dense solar prominence overlies a less dense plasma bubble.

The inviscid two-dimensional RTI provides an excellent springboard into the mathematical
study of stability because of the simple nature of the base state. This is the equilibrium
state that exists before any perturbation is added to the system, and is described by
velocity field U(x,z) =W (x,z) = 0, where the gravitational field is g =−gz. An interface
at z = 0 separates the fluids of densities ρG in the upper region, and ρL in the lower
region. In this section it is shown that when the heavy fluid sits on top, the growth of a
small perturbation at the interface is exponential, and takes place at the rate

exp(ϒt), with ϒ =
√

Agα and
ρheavy−ρlight

ρheavy +ρlight

where ϒ is the temporal growth rate, α is the spatial wavenumber and A is the Atwood
number.

5.1.5 Details of Linear Stability analysis

The perturbation introduced to the system is described by a velocity field of infinites-
imally small amplitude, (u′(x,z, t),w′(x,z, t)). Because fluid is assumed incompressible,
this velocity field has the stream function representation

u′ = (u′(x,z, t),w′(x,z, t)) = (ψz,ψx),

where subscripts indicate partial derivatives. Moreover, in an initially stationary incom-
pressible fluid, there is no vorticity, and the fluid stays irrotational, hence∇×u′ = 0. In
the stream function representation,∇2ψ = 0. Next,

ψ(x,z, t) = eiα(x−ct)
Ψ(z)

where α is a spatial wavenumber. Thus, the problem reduces to solving the equation

(D2−α
2)Ψ j = 0, D =

d
dz

, j = L,G

The domain of the problem is the following:
The fluid with label ‘L′ lives in the region −∞ < z ≤ 0, while the fluid with label ‘G′

in the upper half-plane 0 ≤ z < ∞. To specify the solution fully, it is necessary to fix
conditions at the boundaries and interface. This determines the wave speed, which in turn
determines the stability.First of these conditions is provided by details at the boundary.
The perturbation velocities w′i should satisfy a no-flux condition, so that fluid does not
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leak out at the boundaries z = ±∞. Thus, w′L = 0 on z = −∞,and w′G = 0 on z = ∞. In
terms of the stream function, this is

ΨL(−∞) = 0, ΨG(∞) = 0

The other three conditions are provided by details at the interface z = η(x, t).

Continuity of Vertical Velocity

At z = η , the vertical velocities match, w′L = w′G.Using the streamfuction representation,
this gives

ΨL(η) = ΨG(η)

Expanding about z = 0 gives

ΨL(0) = ΨG(0)+H.O.T.

where H.O.T means higher order terms.
This equation is the required interfacial condition.

The Free-surface Condition

∂η

∂ t
+u′

∂η

∂x
= w′(η)

Linearizing, this is simply,
∂η

∂ t
= w′(0),

where the velocity w′(η) is linearized on to the surface z = 0. Using the normal mode and
stream function representation, this condition is cη = Ψ, the second interfacial condition.

Pressure Relation Across the Interface

For the case with surface tension, the pressure di�erence over the interface at z = η is
given by the Young-Laplace equation:

pG(Z = η)− pG(z = η) = σκ

where σ is the surface tension and κ is the curvature of the interface, which in a linear
approximation is

κ = ∇
2
η = ηxx
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Thus,
pG(z = η)− pL(z = η) = σηxx

However, this condition refers to as the total pressure (base perturbed), thus

[PG(η)+ p′G(0)]− [PL(η)+ p′L(0)] = σηxx

(As usual, the perturbed quantities can be linearized onto the surface = 0). Using hydro-
static balance,in the form

PL =−ρLgz+ p0

PG =−ρGgz+ p0

This becomes
p′G− p′L = gη(ρG−ρL)+σηxx

on z = 0.
The perturbed pressures are evaluated in terms of stream functions, using the horizontal
momentum equation of the linearized Euler equations for the perturbations,

∂u′i
∂ t

=− 1
ρi

∂ p′i
∂x

with i = L,G

to yield
p′i = ρicDΨi, i = L,G.

Pu�ing this last equation and the jump condition on p′G− p′L together,

c(ρGDΨG−ρLDΨL) = gη(ρG−ρL)+σηxx,

Substituting the second interfacial condition cη = Ψ and using the normal mode repre-
sentation, this relation becomes

c2(ρGDΨG−ρLDΨL) = gΨ(ρG−ρL)−σα
2
Ψ,

where there is no need to label Ψ (only its derivatives) because

ΨL = ΨG at z = 0.

Solution

Now the model of stratified flow has been set up, the solution is at hand. The stream
function equation

(D2−α
2)Ψi = 0,
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with the boundary conditions Ψ(±∞) has the solution

ΨL = ALeαz

ΨG = AGe−αz.

The first interfacial condition states that ΨL = ΨG at z = 0, which forces AL = AG =

A.The third interfacial condition states that

c2(ρGDΨG−ρLDΨL) = gΨ(ρG−ρL)−σα
2
Ψ,

Plugging the solution into this equation gives the relation

Ac2
α(−ρG−ρL) = Ag(ρG−ρL)−σα

2A.

The A cancels from both sides and we are le� with

c2 =
g
α

ρL−ρG

ρL +ρG
+

σα

ρL +ρG
.

To understand the implications of this result in full, it is helpful to consider the case of
zero surface tension. Then,

c2 =
g
α

ρL−ρG

ρL +ρG
, σ = 0,

and clearly,
(i) If ρG < ρL,c2 < 0 and c is real. This happens if lighter fluid is on top.
(ii) If ρG > ρL,c2 > 0 and c is purely imaginary. This happens if the heavier fluid is on top.
Now =,when heavier fluid is on top, c2 < 0 , and

c =±
√

gA
α

,

A =
ρG−ρL

ρG +ρL

where A is the Atwood number.
By taking the positive solution, we see that the solution is

Ψ(x,z, t) = ae−α|z|exp[α(x− ct)] = aexp(α

√
gA
α

t)exp(iαx−α | z |)

and this is associated to the interface position by

cη = Ψ.
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Now define B = a/c. The time evolution of the interface elevation z = η(x, t), initially at
η(x,0) = ℜBexp(iαx), is given by:

η = ℜBexp(
√

Agαt)exp(iαx)

which grows exponentially in time.Here B is the amplitude of the initial perturbation and
ℜ. represents real part of complex valued expression .
In general, condition for linear stability is that the imaginary part of the "wave speed"
c is positive. Finally,restoring the surface tension makes c2 less negative and therefore
stabilizing.Indeed, there is a range of short waves for which the surface tension stabilizes
the system and prevents the instability.

5.2 Centrifugal Instabilities

Flows with curved streamlines, such as those sketched below, can be unstable due to the
centrifugal e�ects of rotation. Here we focus on centrifugal instabilities in inviscid fluids.
Our main focus is Rayleigh’s criterion for the instability of a basic swirling flow with an
arbitrary dependence of Ω(r) on r . This states that

Φ(r)< o

for instability, where

Φ =
1
r3

d
dr

(r4
Ω

2)

In the first case we motivate the above equation using a physical argument and in the
second, we prove it via linear stability analysis. Lastly, we apply it to flow between
concentric cylinders. Note an analogy between these curvature driven instabilities and
the thermal instabilities and the thermal instabilities discussed above. Fluid elements are
forced outward by centrifugal e�ects in one case and upwards by their bouyancy in the
other. The governing equations are as follows. For inviscid fluids, in the absence of body
forces, the Navier-Stokes equations reduces to Euler’s equations:
continuity ∇.u = 0
Momentum balance ρ[∂tu+(u.∇)u] =−∇p
We use cylindrical coordinates throughout this section. We consider axisymmetric flows,
which can depend on r and z but not θ . Componentwise we then have
continuity ∂ur

∂ r + ur
r + ∂uz

∂ z = 0

momentum balance Dur
Dt −

u2
θ

r =− 1
ρ

∂ p
∂ r

Duθ

Dt
+

uruθ

r
= 0

Duz

Dt
=− 1

ρ

∂ p
∂ z
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In which the material derivative

D
Dt

=
∂

∂ t
+ur

∂

∂ r
+uz

∂

∂ z

5.3 Rayleigh’s Criterion For Inviscid Stability

Consider an initially laminar azimuthal flow

u = uθ (r)θ

with an arbitrary dependence of azimuthal velocity uθ = rΩ(r) on r. Rayleigh provided
criterion to distinguish between stable and unstable distributions of the angular velocity
Ω(r) using a simple physical argument, which we now describe. Noting that θ component
of momentum balance Duθ

Dt + uruθ

r = 0,can be wri�en as

D
Dt

(ruθ ) = 0

We see that the quantity H = ruθ , which is the angular momentum, is conserved for each
material element. This is to be expected in the absence of viscous dissipation. Associated
with the azimuthal motion is a kinetic energy per unit volume of

1
2

ρu2
θ =

1
2

ρH2

r2

Now consider two volume elements of equal volumes dV at radial locations r = r1 and
r = r2 with r2 > r1. Their combined kinetic energy is

E =
1
2

ρ(
H2

1
r2

1
+

H2
2

r2
2
)dV

Now imagine that these elements swap positions. By virtue of D
Dt (ruθ ) = 0, each keeps its

own angular momentum. A�er the swap, their combined energy is thus

Enew =
1
2

ρ(
H2

1
r2

1
+

H2
2

r2
2
)dV

So the swap has resulted in an energy change

∆E ∝ (H2
2 −H2

1 )(
1
r2

1
− 1

r2
2
)
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If the swap has released energy (4E < 0,H2
1 > H2

2 ),the laminar base flow will be unstable
to such swaps. Thus, the criterion for instability is that H2 decreases with r:

d
dr

H2 < 0 for instability

Recalling that H = ruθ = r2Ω, the condition for instability is finally seen to be

d
dr

(r4
Ω

2)< 0 for instability

This is consistent with our original statement that

Φ =
1
r3

d
dr

(r4
Ω

2)

5.4 Proof via Linear Stability Analysis

Governing Equations and Boundary Conditions

We apply the governing equations of inviscid axisymmetric flow to the flow between two
impermeable boundaries located at r = r1,r2.

Base State

For the base state we consider a laminar swirling azimuthal flow

uB = (ur,uθ ,uz)
T = (0,rΩ(r),0)T

with an arbitrary dependence of the angular velocity Ω(r) on radius, r.

Small Perturbation

We now subject the base state to small perturbation, still assuming axisymmetric (∂θ ...= 0)

u = (0,rΩ(r),0)+δ (u′(r,z, t),v′(r,z, t),w′(r,z, t)

with an analogous expression for the pressure p (δ is small).
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Linearize the Equations

We substitute u = (0,rΩ(r),0)+δ (u′(r,z, t),v′(r,z, t),w′(r,z, t) into governing equations
and expand in powers of δ . Neglecting terms O(δ 2) and higher, we get the linearized
equations: Continuity

(∂r +
1
r
)u′+∂zw′ = 0

Momentum balance
∂tu′−2Ω(r)v′ =− 1

ρ
∂r p′

∂tv′+u′∂r(Ω(r)r)u′ = 0

∂tw′ =−
1
ρ

∂z p′

Solution of the linearized equations using Normal Modes

We now express the perturbation as a sum of normal modes:

[u′(r,z, t),v′(r,z, t),w′(r,z, t)] = ∑[u′(r),v′(r),w′(r)]exp(ikz+ st)

with an analogous expression for the pressure. k is the wavevector in the axial direction.
The equations

(∂r +
1
r
)u′+∂zw′ = 0

∂tu′−2Ω(r)v′ =− 1
ρ

∂r p′

∂tv′+u′∂r(Ω(r)r)u′ = 0

∂tw′ =−
1
ρ

∂z p′

then become

Continuity

(
d
dr

+
1
r
)u′+ ikw′ = 0

Momentum balance

su′−2Ω(r)v′ =− 1
ρ

d p
dr
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sv′+u′
d
dr

[Ω(r)r]+Ω(r)u′ = 0

sw′ =− ik
ρ

p′

The strategy now is to progressively eliminate p′,v′ and w′ leaving a single equation
for u′. We will then use this to distinguish between stable (sr < 0) and unstable (sr > 0)
perturbations. First we eliminate p′ by ge�ing the di�erence between ik×(su′−2Ω(r)v′=
− 1

ρ

d p
dr ) and d

dr × (sw′ =− ik
ρ

p′) to get

ik[su′−2Ωv′]− s
dw′

dr
= 0

This leaves[( d
dr +

1
r )u
′+ ikw′= 0,sv′+u′ d

dr [Ω(r)r]+Ω(r)u′= 0,ik[su′−2Ωv′]−sdw′
dr = 0]in

u′,v′,w′. From sv′+u′ d
dr [Ω(r)r]+Ω(r)u′ = 0, we have

v′ =−1
s
[2Ω+ r

dΩ

dr
]u′

which can be substituted into ik[su′−2Ωv′]− sdw′
dr = 0 to give

iksu′+
2k2Ω

s
[2Ω+ r

dΩ

dr
]u′ = s

dw′

dr

We have now eliminated v′ leaving (( d
dr +

1
r )u
′+ ikw′ = 0 ,iksu′+ 2k2Ω

s [2Ω+ r dΩ

dr ]u
′ = sdw′

dr

) for u′,w′. Multiplying iksu′+ 2k2Ω

s [2Ω+ r dΩ

dr ]u
′ = sdw′

dr by ik/s,we get

−k2u′− 2k2Ω

s2 [2Ω+ r
dΩ

dr
]u′ = ik

dw′

dr

This can finally be combined with d
dr × (( d

dr +
1
r )u
′+ ikw′ = 0) to eliminate w′, leaving a

single equation in u′

d
dr

[
d
dr

+
1
r
]u′− k2u′− 2k2Ω

s2 [2Ω+ r
dΩ

dr
]u′ = 0

Defining Φ as Φ = 1
r3

d
dr (r

4Ω2), this can be wri�en in simpler form

d
dr

[
1
r

d
dr

(ru′)]− k2u′ =
k2

s2 Φ(r)u′

Now multiplying across by u′(c), where (c) denotes complex conjugate, and integrating
from r1 to r2, we get

∫ r2

r1

ru′(c)
d
dr

[
1
r

d
dr

(ru′)]dr− k2
∫ r2

r1

r | u′ |2 dr =
k2

s2

∫ r2

r1

Φ(r)r | u′ |2
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Integrating the first term by parts we get

[ru′(c)
1
r

d
dr

(ru′)]r2
r1
−
∫ r2

r1

1
r
| d

dr
(ru′) |2 dr− k2

∫ r2

r1

r | u′ |2 dr =
k2

s2

∫ r2

r1

Φ(r)r | u′ |2 dr

The first term is zero, because the boundaries at r1,r2 are impermeable. Hence the above
equation has the form

−I1− k2I2 =
k2

s2

∫ r2

r1

Φ(r)r | u′ |2 dr

In which I1 > 0, I2 > 0.The characteristic values k2

s2 are therefore all negative if Φ > 0
throughout the interval r1 < r < r2.In contrast, if Φ < 0 in some region then we can have
s2 > 0 and sr > 0, denoting linear instability. This is in accordance with the Rayleigh’r
criterion that

Φ =
1
r3

d
dr

(r4
Ω

2)

If Φ is positive everywhere, however, note that we still cannot conclude stability without
considering non-axisymmetric disturbances well.We do not pursue that issue further.

5.4.1 Taylor Vortices

We now apply Rayleigh’s criterion Φ = 1
r3

d
dr (r

4Ω2) to Coue�e flow between infinitely
long concentric cylinders. In particular, we are interested whether a basic swirl solution

uB = (ur,uθ ,uz) = (0,v(r),0) = (0,rΩ(r),0)

is stable with respect to axisymmetric perturbations.The main task here is to derive the
basic flow v(r) = rΩ(r).This can then be plugged directly into Rayleigh’s criterion to
determine stability/instability.

As shown earlier, the possible basic solution has the form

v(r) = A+
B
r

To determine A and B, we apply boundary conditions at

r = R1,Ω = Ω1 = A+
B
R2

1

at
r = R2,Ω = Ω2 = A+

B
R2

2
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Solving these gives

B =
(Ω1−Ω2)

( 1
R2

1
− 1

R2
2
)
= Ω1R2

1
(1− Ω2

Ω1
)

(1− R2
1

R2
2
)

Now let
µ =

Ω2

Ω1
,η =

R1

R2
< 1

This gives

B = Ω1R2
1
(1−µ)

(1−η2)

and

A =−Ω1
(η2−µ)

(1−η2)

So
v(r) = A+

B
r

and

B = Ω1R2
1
(1−µ)

(1−η2)
,A =−Ω1

(η2−µ)

(1−η2)

together give the laminar base flow. We now examine the linear stability of this base flow
using Rayleigh’s criterion. First we need to calculate

Φ =
1
r3

d
dr

(r4
Ω

2)

=
1
r3

d
dr

(r4[A2 +
2AB
r2 +

B2

r4 ])

= 4A2(1+
B

Ar2 )

Recall that the condition for instability is Φ < 0. Now 4A2 > 0 always, so the condition for
instability is just the quantity 1+ B

Ar2 is negative. Expanding this expression with actual
values of A and B we get

Φ(r) = 4A2(1−
(1−µ)R2

1
(η2−µ)r2 )

We consider values of µ > 0, corresponding to both cylinders rotating in the same sense
(Ω1 and Ω2 having the same sign). In this case, it can be shown that

Φ > 0 (giving stability) if µ > η
2

Φ < 0 (giving instability) if µ < η
2
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This is shown by the solid line in the figure overleaf. The dashed line shows the stabilizing
e�ect of a non-zero viscosity, though we do not calculate that result here, as can be seen,
the flow is linearly stable if only the outer cylinder rotates (Ω1 = 0)

Ω1

Ω2

Unstable

Stable

Ω2
Ω1

=
R2

1
R2

2

With viscosity
Inviscid

Figure: linear stability/instability of axisymmetric Coue�e flow for di�erent (co)rotation rates of the outer and inner cylinders.
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6 Conclusion

In this project we have been able to determine the stability of the Taylor-Coue�e flow using
the method of normal modes.The dynamics are parametrized by the three nondimensional
numbers, the Reynolds number, determining the shear rate,the rotation number, describing
the e�ect of the system rotation and the associated Coriolis force and the Taylor number,
for determining the stability of the flow.The objective of the project was to determine the
stability of the Taylor-Coue�e flow .We have also derived the equations of motion;the
Navier-Stokes equations and solved simple cases of the Navier-Stokes equations;steady
flow between parallel plates,Coue�e flow and Plane Poiseuille flow.
In order for us to determine the stability of the flow that exists between two concentric
rotating cylinders; we took the following considerations:
(i) We took the basic Coue�e flow

V (r) = Ar+
B
r

for the Navier-Stokes Equations of a viscous fluid.
Where we take rigid cylinders r = R1,R2 with angular velocities Ω1,Ω2 respectively with

A =
Ω2R2

2−Ω1R2
1

R2
2−R2

1
,B =

Ω1−Ω2

R−1 2−R−2 2

(ii)We linearized the Navier-Stokes equations and the boundary conditions for small
perturbations of the basic flow.
(iii) We chose dimensionless variables and parameters.
(iv) We took the normal modes of the form

u′(x, t) = u(r)est+i(nθ+kz)

(v)We then derived an ordinary di�erential eigenvalue problem to find s, for given real
wavenumber k and integral wavenumber n.

Since the resulting numerical problem was too di�icult to solve; we simplified our problem
based on the following assumptions:
(i)Most unstable perturbations are axisymmetric and so n = 0.
(ii)The principle of exchange of stabilities is valid, i.e. Im(s) = 0 at the onset of instability,
and so s= 0 thus we sought dimensionless parameters which give the margin of instability.
(iii) There is a narrow gap between the cylinders, i.e. R2−R1 << R2.
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We have also studied hydrodynamic stability ;linear stability analysis by analysing the
stability using bifurcation theory.
Our hope is that this preliminary study will help to increase understanding of the subject
of Hydrodynamics and stability of Taylor-Coue�e Flow.

According to Rayleigh’s criterion, the flow is unstable if the inner cylinder rotates and the
outer cylinder is at rest, and stable if the outer cylinder rotates and the inner is at rest. If
the cylinders rotate in opposite directions, however, the circulation decreases outward in
at least part of the flow field, and the flow is unstable.
The current study concludes some preliminary investigations on the stability of incom-
pressible Taylor-Coue�e flow. Still their are many other interesting aspects that are
needed to be further examined, such as the e�ects of axial flow, gap width, finite axial
length and other possible influential factors.Small gap limitation was successively re-
moved to allow for the determination of critical Taylor numbers for finite gap width.In
all of these investigations, the stability of the basic flow has been considered only with
respect to axisymmetric disturbances. However, it is known from experiments that non-
axisymmetric disturbances play an important role in the instability of Taylor vortices.It
has been indicated that, when the ratio of the rotational speeds of the outer and inner
cylinders is su�iciently negative, the critical speed for Taylor-Coue�e flow may occur for
axisymmetric disturbances.For example Coles noted that for counter-rotating cylinder a
weak spiral configuration is quite typical of the Taylor instability boundary, except at low
Reynolds numbers for the outer cylinder.Furthermore, it has been found from experiments
by Snyder that the lowest mode of instability is in a non axisymmetric form, depicting a
weak helical motion similar to that observed by Coles.

We can use the knowledge of our study in the purification of water through a process
called Taylor vortex photocatalytic reactor for water purification.Heterogeneous photo-
catalysis on semiconductor particles has shown to be an e�ective means of removing
toxic organic pollutants from water.Unsteady Taylor-Coue�e flow between two coaxial
cylinders, where the inner cylinder (coated with TiO2 catalyst) is rotated to achieve the
desired instability.The main advantage of considering this type of flow pa�ern is its cre-
ation of wavy vortex flow in the laminar-flow regime.Significant transfer of fluid between
neighboring vortices occurs in a cyclic fashion along certain wave, and net axial flow also
occurs in which fluids wind around the vortices.Our future research is on the large-scale
purification of water using our knowlegde on the Taylor-Coue�e flow.



63

Bibliography

[AB07] Avila M,Belisle M,J, et al Mode Competition in Modulated Talor-Coue�e Flow
2007.

[Sag01] Bruce E. Sagan. The Symmetric Group,Representations, Combinatorial Algo-
rithms, and Symmetric Functions, Graduate Texts in Mathematics, 2001.

[Ful14] William Fulton. Young Tableaux, with Applications to Representation Theory
and Geometry, Landon Mathematical Society Student Texts, 2014.

[BJ89] Barenghi F, Jonnes, Modulated Taylor-Coue�e Flow 1989.

[CT81] Carmi S. and Tustaniwskyj J. Stability of Modulated Finite-Gap Cylindrical
Coue�e Flow 1981.

[CJ03] Criminale W.O, Jackson T.L, et al :Theory and Computation of Hydrodynamic
Stability, 2003.

[CH61] Chandrasekhar S. Hydrodynamic and Hydronagnetic Stability 1961

[CH61] Charru F. Hydrodynamic Instabilities 1961

[CO65] Coles D. Transition in Circular Coue�e Flow 1965

[CL07] Czarny O.and Leuptow Time Scales for Transition in Taylor-Coue�e Flow 2007.

[DO90] Donnelly R.J. Externally Modulated Hydrodynamic Systems in Nonlinear Evolu-
tion of Spatio-Temporal Structures in Dissipative Continuous Systems 1990

[DR02] Drazin P.G. Introduction to Hydrodynamic Stability. 2002.

[DR04] Drazin P.G and Reid W.H Hydrodynamic Stability, 2004.

[EC65] Eckhaus W. Studies in Nonlinear Stability Theory, 1965.

[EG96] Esser A. and Grossmann S. Analytical Expression for Taylor-Coue�e Stability
Boundary 1996

[HA75] Hall P. The Stability of Unsteady Cylinder Flow, 1975.

[LA98] Linek M. and Ahlers G Boundary Limitation of Wavenumbers in Taylor-Vortex
Flow, 1998.

[LO20] Lord Rayleigh On The Dynamics of Resolving Fluids, 1920.



64

[MA99] M.A Ali The Stability of Coue�e Flow with an Inner Cylinder Rotating and Moving
with a Constant Axial Velocity. 1999.

[NA90] Ning L, Ahler G et al. Wave number Selection at Finite Amplitude in Rotating
Coue�e Flow, 1990.

[SA85] Savas O. On Flow Visualization using reflexive flakes, 1985.

[SN69] Snyder H.A. Wave number Selection at Finite Amplitude in Rotating Coue�e Flow,
1965

[TA94] Tagg R. The Coue�e-Taylor Problem, 1994.

[SA86] Swinney H.I, Andereck C.D. et al. Flow Regimes in a Circular Coue�e System
with Independently Rotating Cylinders, 1986.

[SG75] Swinney and Gollub J.P. Onset to Turbulence in a Rotating Fluid, 1975.

[TA79] Takeuchi D.I. A Numerical and Experimental Investigation of the Stability of
Spiral Poiseuille Flow,PhD Thesis. 1979.

[TJ81] Takeuchi D.I. and Jankowski D.F. A Numerical and Experimental Investigation of
the Stability of Spiral Poiseuille Flow, 1981.

[TA23] Taylor G.I. Stability of a Viscous Liquid Contained Between Two Rotating Cylin-
ders, 1923.

[TH68] Thompson R.J. Instabilities of Some Time-dependent Flow,PhD Thesis. 1968

[TB90] Tuckerman L.S. and Barkley D. Bifurcation Analysis of the Eckhaus Instability,
1990.

[WD88] Walsh T.J. and Donnelly R.J Taylor-Coue�e Flow with Periodically Corrugated
and Counter Rotated Cylinders, 1988.

[WE96] Weisberg A.Y. Control of Transition in Taylor-Coue�e Flow with Axial Modulation
of the inner Cylinder, 1996.

[YW03] Youd A.J.,Willis A.P. et al. Reversing and Non-reversing Modulated Taylor-Coue�e
Flow, 2003.

[YB05] Youd A.J, Barenghi C.F., et al. Non-reversing Modulated Taylor-Coue�e Flows,
2005.


	Abstract
	Declaration and Approval
	Dedication
	Acknowledgments
	Introduction
	Preliminary
	The Concept of Stability
	Fundamental Concepts of Hydrodynamic Stability
	Hydrodynamic Stability
	Nonlinear Stability
	Definition of Terms

	Chapter Two Background of the Problem
	Problem Statement
	Main Objective
	Specific Objectives

	Literature Review

	Chapter 3Equations of Motion
	Navier Stoke's Equations
	Systems of Coordinates for Navier-Stokes Equations
	Derivation of Navier Stoke's Equation
	Importance of Terms Related to Navier-Stoke's Equation

	Limiting cases of the Navier Stoke's Equations
	Exact Solutions for Navier-Stoke's Equations
	Steady Flow Between Parallel Planes


	Taylor-Couette Flow 
	The Background of Taylor-Couette Problem
	Flow Description
	Volumetric flow Between Co-axial Circular Cylinders
	Expression for Shearing Stress 
	Normal Modes
	Characteristics of Normal Mode Motion

	Couette Flow and Perturbation
	Analytical Discussion of the Stability of Inviscid Couette Flow
	On Viscous Couette Flow
	The Perturbation Equations
	The Stability of the Flow for >2


	Hydrodynamic Stability Analysis
	Linear Stability Analysis
	Bifurcation Theory
	Laboratory and Computational Experimentation
	Kelvin-Helmholtz Instability(KHI)
	Rayleigh-Taylor Instability(RTI)
	Details of Linear Stability analysis

	Centrifugal Instabilities
	Rayleigh's Criterion For Inviscid Stability
	Proof via Linear Stability Analysis
	Taylor Vortices


	Conclusion
	Bibliography

