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Abstract 

 

Images have always been and remain a common and integral mode of human communication. In the 

21st century, a two-pronged communications revolution in the form of mobile hand-held devices and 

social media has led to a higher reliance on visual communication through digital photographic images.  

A large portion of these digital images are captured through embedded cameras integrated in mobile 

devices. More so than in older stand-alone digital cameras.  

To generate colour images while maintaining an affordable camera cost, a spectrally selective filter is 

placed on top of the raw data camera sensor. This filter termed a colour filter array, or CFA, subsamples 

colour data in a scene and a software-defined interpolation process termed demosaicking is performed 

later to fully reconstruct the image taken to make it more representative of the original scene. Many 

camera manufacturers employ the original array called the Bayer array. Recent studies, however, have 

shown that a newer array class referred to as panchromatic colour filter arrays possess superior light 

intensity properties and has a spectral selectivity distribution more in line with the human visual system 

than the prevalent Bayer array. This is an attractive property that can be exploited primarily in low to 

medium resolution integrated cameras that form a significant percentage of mobile device cameras.  

Demosaicking is primarily biased to the Bayer array due to its prevalence. However, more and more 

manufacturers are beginning to explore alternatives to the Bayer array to improve image quality. This 

work presents a novel demosaicking algorithm for panchromatic arrays; in particular the RGBW 

panchromatic array class that is the most promising panchromatic array. The algorithm encodes light 

intensity information in a Bayerisation conversion process and uses combinatorial geometry, 

specifically polyominoes, to provide a novel adaptive weighting mechanism to reduce the introduction 

of visual artefacts during image interpolation. Interpolation is done in the ordinal directions and a 

variable plane relationship is established. A corrective mechanism is also introduced into the algorithm 

to improve image acuity.  

Performance of the proposed demosaicking algorithm is objectively assessed using four documented 

image quality assessment metrics (MSE, CPSNR, SSIM and FSIMC) over five standard image sets 

(USC-SIPI, Kodak, McMaster-IMAX, Condat, ARRI) and one user-defined custom image set. Each set 

allows for the analysis of a unique property encountered in mobile device camera photography. This 

assessment is performed through simulation using the MATLAB® software platform. The algorithm 

results in a lowering of MSE by a factor of 1.6 and a rise in CPSNR by at least 2.49 dB in the RGBW 

domain. The algorithm also produces a robust SSIM and FSIMC profile with values greater than 0.98 

in both measures. These improvements, noted through the aforementioned image assessment metrics, 

justify further adoption and study of the newer panchromatic class of arrays in integrated cameras.     
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1 INTRODUCTION 

 

1.1 Background 

A common idiom in the English language states that a picture is worth a thousand words. Any image is 

classically defined as a two-dimensional function used as a non-linguistic communication medium. It 

describes information in a spatial manner bound in the two dimensions. Three dimensional images are 

often described as a superset of their two dimensional counterparts. 

For millennia, images have played a vital role in helping humans communicate ideas. Cave paintings 

are described as one of the earliest forms of communication. Figure 1.1 illustrates four cave painting 

images. The Pettakare Cave images in Indonesia were created around 33,000 B.C. [1] while those in 

Cueva de las Manos in Argentina are from 11,000 to 9,000 B.C. [2]. Both sets of paintings are believed 

to have been generated as part of a communal activity. Lion and mammoths were depicted in France’s 

Chauvet Cave created around 30,000 B.C. and hunting and dancing activities occurring around 6,000 

B.C. are shown the Serra da Capivara in Brazil [3].  

 

(a) 

 

(b) 

 

(c)  

 

(d) 

Figure 1.1 Cave paintings: (a) Pettakere Cave in Indonesia, (b) Cueva de las Manos in Argentina, (c) Chauvet 
Cave in France and (d) Serra da Capivara in Brazil 
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Looking ahead, images have been used in an attempt to communicate with intelligent beings that may 

inhabit the extra-Solar region. The Pioneer plaque [4] on Pioneer 10 and the Arecibo message [5] both 

shown in Figure 1.2 are images that carry information about Earth’s position in the Solar system (shown 

in yellow), information on human helix DNA composition (shown in blue/white and purple), human 

physiology (shown in red), the population at the time and our decimal numbering system (shown in 

white).  

From its basic definition, an image may refer to a graph, drawing, computer rendering, photograph, 

logo, pictogram, painting or map. However, the term image is often used to describe a visual copy of 

an object or set of objects in a scene captured by an optical medium. Optical devices can be man-made 

using mirrors and lens-based devices such as telescopes, microscopes and cameras. Naturally occurring 

optical devices include the eyes and water bodies with reflective properties. This work is devoted to 

camera-based image capture and its perception using the human eye. 

 

(a) 

 

(b) 

Figure 1.2 Extra-Solar missives: (a) Pioneer plaque and (b) Arecibo message 

 

The 21st century has seen a two pronged communications revolution; both the manner and the tools with 

which human beings communicate have changed dramatically.  

The key catalyst of this change is the worldwide proliferation of mobile hand-held devices (MHD). This 

term covers mobile cellular telephones (cell phones), tablets, embedded systems and wearable 

technology. This is due to advances in circuit component miniaturisation that have led to the mass 

production and affordable cost of these devices. In particular, the cell phone has become a ubiquitous 

feature of modern society. In 2016, it was estimated that there were over 4.66 billion mobile phone 
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users [6] and over 7 billion mobile phone user subscriptions [7]. This has led to the mobile phone being 

termed as the world’s first “truly personal computer”.  

The way communication is done has also changed. The last 10 years has seen the advent of social 

networking and the social media age. This coupled with mobile telephony has led to more and more 

people interacting with one another than ever before. In a single day, people worldwide send 8.3 trillion 

text messages and in 2017, it is projected that 1.016 billion images will be taken using smart mobile 

devices [8], [9]. The trend in the last decade has been from an audio-only communication to a 

multimedia rich communication norm [10]. 

Many mobile devices have an integrated digital still camera (DSC). Due to this, more and more 

consumers are also starting to use images rather than words to communicate ideas. Wholly image-based 

social media service Snap Inc. (formerly Snapchat) has seen a threefold increase in active users in the 

last two years when compared to Twitter that is a wholly text-based service [11]. Instagram, another 

image-based social platform has more than 400 million active daily users and at least 600 million active 

monthly users all sharing images [12]. Low cost integrated cameras are also being used with embedded 

microprocessor/microcontroller systems such as the Raspberry Pi and Arduino platforms in all manner 

of monitoring systems; from plant phenotyping [13] to space exploration and surveillance [14], [15].  

 

1.2 Justification 

The human visual process is physical, physiological and psychological by design [16], [17]. The 

physical part of the process involves the creation of an image to be transmitted to the human eye and 

this forms the study of optics. The physiological elements of the visual process are the human eye, 

associative connective pathways and the brain. They are concerned with the passing of the image from 

the human eye to the visual and visual associative cortices in the brain. Finally, the psychological 

process attempts to provide an interpretation to the image. This three stage process that consists of 

seeing, analysing and interpreting images is referred to as human visual perception. 

The physiological and psychological sections are highly variable and differ from individual to 

individual. Physiology structures may be similar but individual variations exist. Interpretation similarly 

is subject to variation between individuals. A recent example of this variability was observed in 

February 2015 when a washed-out image now called “the dress” [18]–[21] was uploaded to social media 

leading to a worldwide debate on its colour. A copy of the original image (and its colour corrected 

variants) is shown in Appendix C. Over 10 million “tweets” were sent on whether the dress in the image 

was blue and black or white and gold. Different people perceived the two widely different colour 

schemes when presented with this image due to physiological and psychological differences. 
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To ensure correct communication of image information, the physical process of image creation which 

is the only invariable process must be optimised. In the case of “the dress” image, the washed out effect 

of the image was identified as the key cause for the varying responses. This highlights the critical nature 

of proper image creation or image capture.  

With images becoming more important in the transfer of information, the way these images are 

generated becomes critical. Mobile telephones are equipped with low, medium and high resolution 

integrated digital cameras. The cost of mobile telephones on the whole grows with the resolution of its 

integrated camera. A higher camera resolution allows more sample points to describe the image being 

taken. This results in a more accurate facsimile of the scene being captured. However, it also leads to a 

more expensive image sensor being integrated to the mobile device whose cost of fabrication is passed 

on to the consumer.    

This work intends to use image processing techniques rather than electronic fabrication to improve 

image capture. The cost of the improvement becomes the mathematical complexity of the algorithm 

rather than the cost of fabrication of the sensor. By employing an image processing algorithm in 

reproducing the scene, the author intends to demonstrate that low or medium resolution cameras can 

still take high quality images of the scenes they capture. 

 

1.3 Problem Statement 

The pervasion of mobile hand-held devices integrated with digital cameras is becoming the norm in our 

society. These devices are expected to represent half of the total online activity by 2018 [22]. Also with 

the emerging trend of image-based rather than text-based communication, a proper understanding of 

image generation is warranted.  

The work presents an image processing demosaicking algorithm that employs sampled data collected 

from an image sensor to produce a high quality image of the scene being captured. The image sensor 

samples and measures both light intensity (luminosity) and colour (chromaticity). A demosaicking 

algorithm uses the sampled information to fully reconstruct an image of the scene. As such, the problem 

is one of image reconstruction and enhancement. 

This designed algorithm is created to operate with a particular subclass of image sensors called 

panchromatic colour filter array sensors. These sensors are low cost and have attractive light sensitivity 

properties [23] suitable for mobile hand-held devices when compared to more traditional sensor referred 

to as the Bayer sensor.  

The work also presents a heuristic approach to solving this image reconstruction problem. The 

reconstruction cannot be done by simple interpolation of the samples taken due to the fact that the 
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elements within a scene are never predetermined. While no exact reproduction of missing components 

may be possible – a high quality approximation is just as good. This approach is to ensure the creation 

of a computationally inexpensive algorithm. 

 

1.4 Objectives 

1.4.1 Main Objective 

The main objective is to create a robust heuristic demosaicking algorithm to reconstruct images taken 

using low and medium resolution panchromatic image sensors. 

1.4.2 Specific Objectives 

The specific objectives in this work are: 

i. To study and determine how the camera mimics the human visual system and generates 

discernable colour images. 

ii. To determine the main types of artefacts generated in the camera image processing pipeline and 

how to suppress them if possible; particularly for low to medium mobile phone cameras. 

iii. To generate a heuristic based demosaicking algorithm to reconstruct images taken by a low 

resolution camera as well as medium resolution cameras. 

iv. To compare performance of the algorithm with previously established methods by employing 

several established metrics, namely mean square error (MSE), colour peak signal-to-noise ratio 

(CPSNR), feature similarity index (FSIM) and structure similarity index (SSIM). 

v. To observe the algorithms robustness to image variance by exposing it to several standard and 

custom image sets. 

  

1.5 Scope of Work 

The work focuses on images generated by low or medium resolution mobile phone cameras. High 

resolution images taken by high end mobile hand-held devices are not intrinsically considered. 

The test-bed of images uses five standard image sets and one custom image set. In order to test and 

compare the performance of the algorithm with established techniques, the work assumes and employs 

the image sets as ground truth references. Therefore, no non-reference image performance metrics are 

used. 

The work presents all forms of visual artefacts that commonly present themselves in the image 

reconstruction process. However, the algorithm design focuses on those particular artefacts produced 
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by demosaicking and looks for ways to mitigate them. This is because these types of artefacts are the 

most commonly observed and are invariant of the camera physical characteristics. 

The work presents several classes of demosaicking algorithms but constrains itself to the spatial sub-

class of heuristic demosaicking methods. This demosaicking algorithm type is mature with a large 

number of state-of-the-art methods that can form an adequate comparison test bed. 

   

1.6 Organisation of the Thesis 

The remainder of this thesis is organised as follows. Chapter 2 provides a review of the types of sensors 

in common use. It also highlights the concept of visual artefacts and details the classes of demosaicking 

algorithms that have been developed over time to migitate their undesirable effects. The chapter 

concludes with an analysis of the knowledge gaps present in literature and the contribution of this work 

in addressing those gaps. 

Chapter 3 provides a theoretical framework with insight on the decisions governing the choice of the 

CFA, algorithm class, image sets and assessment mechanisms. Chapter 4 details the algorithm design 

process showing the Bayerisation process and the creation of the gradient based algorithm. It also shows 

some of the synthesis of the novel notions influencing the design choices taken and assumption made 

prior to the simulation process. 

Chapter 5 shows the simulation process, experimental testing and results generated using the designed 

algorithm working in the MATLAB® environment with particular comparisons made to established 

techniques. Chapter 6 presents a detailed analysis and discussion of the results generated. In particular 

the colour reconstruction performance and object fidelity measures are scrutinised. Chapter 7 gives a 

conclusion to the work, lists publications derived from this work and provides recommendations for 

any subsequent study in the area. The list of References then follows.  

A series of appendices containing supplementary information are then provided and are as follows: 

Appendix A provides the MATLAB® algorithm blocks used in the work for image acquisition, image 

demosaicking and image comparison. Appendix B provides the raw image quality assessment data 

generated from the MATLAB® simulation. Appendix C presents all the image sets used. Appendix D 

shows the spectral curves underpinning the trichromatic nature of human vision. Appendix E illustrates 

the different forms of visual artefacts and aberrations that may be encountered in an image. Appendix 

F presents some publication statistics in the area of demosaicking from several widely used publication 

repositories. Appendix G contains the publications resulting from this study that have been 

internationally peer-reviewed and published in referreed peiodicals. Finally, Appendix H presents the 

similarility statistics for this entire document from the Turnitin® plagiarism checker platform.   
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2 LITERATURE REVIEW 

 

2.1 The Human Eye and Colour Vision 

The eye is the starting point in the physiology of human vision. It contains a naturally occurring image 

capture setup in the form of a lens and a retina. The retina contains two types of light sensitive 

photoreceptor cells termed rods and cones that help to capture image information [16], [24]. The rods 

and cones are sensitive to two types of light [25]. These are: 

i. Achromatic light that is recorded by the rod photoreceptor cells. Rods are extremely sensitive 

and are triggered at low-light. In this case, the rods act alone leading to a monochromatic signal 

void of colour content and the light is termed achromatic.    

ii. Chromatic light that is recorded by the cone photoreceptor cells. Three types of cones are 

present in the eye and they are triggered within the 400nm – 700nm wavelength range of the 

electromagnetic (EM) spectrum. The result is three different colour signals and the light is 

termed chromatic. 

Chromatic light and images formed by them are attractive because colour is a powerful descriptor in 

images. From a communication perspective, chromatic images yield more information than their 

achromatic equivalents. Proof of this is evident in image display devices transitioning from 

monochromatic devices to full colour. The Young-Helmholtz theory postulated  the trichromatic nature 

of human vision as early as the 19th century [16]. In 1956, George Wald et al. [26], [27] proved this 

theory empirically by showing that each of the three types of cone photoreceptors contained a type of 

light sensitive protein-base termed Opsin that reacts to a particular wavelength range within the EM 

spectrum. This is shown in Table 2.1 below. 

Table 2.1 Spectral properties of human cone photoreceptors 

Cone Type Spectral 

Curve 

Approximate Light 

Sensitivity Range in nm  

Approximate Peak 

Wavelength in nm  

S-cone (OPN1SW or blue 
sensitive Opsin) 

β 400 – 550   440 

M-cone (OPN1MW or 

green-sensitive Opsin) 

γ 450 – 630 545 

L-cone (OPN1LW or red-
sensitive Opsin) 

ρ 470 – 700  580 

 

It can be noted from Table 2.1 that while the L-cone does not have a spectral peak explicitly within the 

red region of the EM spectrum, it is still called red-sensitive Opsin because of its proximity towards the 

red region compared with the other two cone types. The spectral curves and their characteristics are 

shown in Appendix D. 
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2.2 The Camera and the Image Processing Pipeline 

A camera is a man-made image capturing device that borrows its design from human physiology. It 

works using the intromission theory of vision that was experimentally proven by Ibn al-Haytham in the 

11th century [28]. Its primary components are an aperture, lens and sensor (or film) arrangement 

corresponding to the pupil, lens and retina of the human eye as illustrated in Figure 2.1. 

 

Figure 2.1 Basic image capture components in the eye and camera 

The aperture and lens sections are common to all cameras. An analogue still camera uses a photographic 

film coated with a gelatine emulsion containing light sensitive silver halide crystals [29]. Light 

impinging on the film alters the crystals. Developing chemicals are then used to bring out the image. 

Digital still cameras (DSC) are the predominant form of camera in use worldwide. The two dominant 

digital camera technologies are the Charged Coupled Device (CCD) sensor-based cameras and the 

Complementary Metal Oxide Semiconductor (CMOS) sensor-based type. Of the two leading 

technologies, the CMOS sensors have a higher market penetration due to advances in circuit component 

miniaturisation and mass production [30], [31]. In addition, the CMOS sensors are also low power 

consumption devices. As such, they are also widely available as integrated elements in other electronic 

components such as mobile hand-held devices.  

The image processing pipeline involved in a digital still camera from the observation to the display of 

a scene is a three phase process [32]. The phases illustrated in Figure 2.2 are: 

i. Image acquisition 

ii. Image processing 

iii. Image storage and display 

In the acquisition phase, light reflected off the surface of objects within a scene passes through an 

aperture and lens arrangement. Exposure, focus control and other mechanical operations are performed 

in this arrangement block. The light intensity and chromaticity information is then transmitted to the 

camera sensor assembly for recording. A filter array may be used to sub-sample the light information 

prior to its being recorded by the sensor. 
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Figure 2.2 Image processing pipeline in a digital still camera (DSC) 

 

The processing phase involves conversion of sensor data to meaningful information that can be 

displayed to a user. Noise components are filtered out. Some pre-processing and white balance 

adjustment is performed prior to the start of colour processing. Colour processing involves analysing 

the sensor data and establishing the appropriate colour content. In particular, when a filter array is used 

in the acquisition phase, the colour processing will involve an additional interpolation step, termed 

demosaicking, to reconstruct missing colour content removed by the filtering process. After the colour 

content is fully processed, the image may require an adjustment in the colour gamut or range so that an 

image displayed on the LCD display conveys optimum information of the scene. This is because the 

device may be incapable of displaying all visible colours [16]. This is accomplished in the colour 

transformation and correction step. Additional enhancement and post-processing are employed before 

the image is either stored or displayed by the device in the final phase of the pipeline. 

Image reconstruction is focused primarily in the filter array and sensor portion of the acquisition phase 

and the colour processing, interpolation and enhancement sections of the pipeline. This is because these 

sections are largely device invariant. Other elements are subject to specific device construction and 
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manufacturer choices. Due to this, three sensor schemes have been developed to work in the DSC filter 

and sensor arrangement. These are: 

i. Layered sensor scheme 

ii. Three-sensor or Tri-sensor scheme 

iii. Single sensor scheme 

 

2.2.1 Layered sensor scheme 

This scheme involves a combined filter-enabled sensor placed after the optical system (after the aperture 

and lens arrangement). As light passes through the sensor, stack sections absorb only one of the 

trichromatic colours and record position and intensity information. The unabsorbed colours pass 

through to be recorded elsewhere in the sensor stack [33]. This is illustrated in Figure 2.3. The sensor 

data is then passed through to finally generate the colour image.  

 

Figure 2.3 Layered sensor device 

The stack colour region ordering does not matter because at each stage, the stack regions only absorb 

their corresponding colours. The length of the absorbing regions however matters with the region 

nearest to the lens/aperture receiving the highest amount of light intensity. As the light traverses the 

stack, its intensity drops and therefore, the stack regions correspondingly increase in size in order to 

ensure a uniform reading. The complexity of producing the sensor stack lead to cost and mass 

production limitations. As such, this scheme is not used in commercial integrated DSCs but finds 

application in specialised discrete (non-integrated) cameras. 

2.2.2 Three sensor scheme 

The three sensor scheme shown in Figure 2.4 uses three independent filters and sensors; each 

corresponding to one of the trichromatic colours. Light from the optical system is passed to each of 

these filters. The filtered component is then recorded by the associated sensor. The data from all three 

sensors is then combined and passed for processing to generate a full colour image [33], [34]. 
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Figure 2.4 Three sensor device 

The duplication in functionality by using multiple filters and sensors increases cost and device 

complexity. Consequently, this scheme is not employed in mobile hand-held device cameras but in 

high-end, high performance discrete cameras [35]. 

2.2.3 Single sensor scheme 

The single sensor scheme makes use of a single filter called a colour filter array or colour filter mosaic 

(CFA/CFM). Individual colour lattices are combined to form a single array. Instead of having multiple 

filters, the array allows certain colours to be absorbed at certain pixel location points in the filter. This 

leads to the image sensor receiving sub-sampled colour data at all pixel location points. This is because 

rather than having the three colours at one pixel point, only one colour is sampled. Colour interpolation 

is done on the raw sub-sampled data in the processing pipeline in a process referred to as demosaicking. 

A full colour image is then generated. This scheme is illustrated in Figure 2.5. 

 

Figure 2.5 Single sensor device 

Since the reconstruction is a software process, the device arrangement uses single components that are 

easy to fabricate and the entire assembly can be made robust. As such, virtually all integrated cameras 

use this scheme [35]. Many robust discrete DSCs, for example action cameras, also work with a single 

sensor scheme employing a colour filter array. For this reason, the author’s work is predominantly 

biased in analysing this class of sensor. 

 

2.3 The Colour Filter Array (CFA) and the Demosaicking process 

The colour filter array is a spectrally-selective, tessellate filter found in single sensor based devices 

[36], [37]. The array is made up of a replication of cells. Each cell is in turn composed of several 
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elements as shown in Figure 2.6. Each element is responsible for filtering a specific colour component 

of incident light. The arrangement of the filter is done such that each array element is placed directly 

above one pixel point location of the image sensor.  

 

Figure 2.6 A generic CFA and its constituent components 

Mathematically, the general colour filter array is a subset of a square plane tessellation structure with a 

Schläfi symbol of {4, 4}. Exceptions to this rule exist and they incorporate unique triangular, pentagonal 

or hexagonal tile structures [38]. However, these structures also alter the fabrication of the standard 

image sensor and the image processing algorithm leading to increase in cost and hence lowering their 

potential market penetration.   

2.3.1 Classification of Colour Filter Arrays 

In the history of integrated DSCs, various colour filters have been developed by numerous 

manufacturers. All filters, quadrille or otherwise, can be broadly classified into three dominant mosaic 

types. They are the additive mosaics, subtractive mosaics and panchromatic mosaics. Some commonly 

reported forms of each type are highlighted in Table 2.2 

The additive CFAs are based on the additive concept in trichromatic theory. The filter allows the desired 

colour content to pass through while limiting the other two. By sampling the three primary colours, the 

trichromatic range of human vision is covered. After colour interpolation/demosaicking, the colours can 

be combined or added to form the full colour image. The Bayer CFA [39] was the first array of this type 

to be developed. Other additive colour inspired CFAs include the Yamanaka [40], Watanabe et al. [41], 

Roddy [42] and the diagonal stripe filters [35] . 
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Table 2.2 The development trend of various colour filter arrays   

Additive 

Colour 

Based 

CFAs 
 

Bayer, 1976 
 

Yamanaka, 1977  
Watanabe 

et al., 
1985 

 
Roddy, 2006 

 
Diagonal Stripe, 

2008 

Sub- 

tractive 

Colour 

Based 

CFAs 

 
Morimura et al., 

1986 

 
Hamilton et al., 

2001 

 
Bean, 

2003 

 
Hirakawa et al., 

2007 

 

Pan-

chromatic 

Based 

CFAs 

 
Dillon, 1977 

 
Yamagami et 

al., 1994 

Bawolek 
et al., 

1999 

 
Gindele et al. 

and Sugiyama, 

2002; 2005  
Kodak A, 2007 

 
Kodak B, 2007 

 
Kodak C, 2007 

   

 

The subtractive class of arrays are based on the use of the primary dye colours of magenta (M), yellow 

(Y) and cyan (C) instead of the primary light colours of red (R), green (G) and blue (B). Rather than the 

filter allowing the desired colour through, in the subtractive scheme, the filter colour is absorbed [16]. 

The colour component that is not part of the subtractive pigment passes through onward to the sensor. 

For incident white light (W), equation (2.1) demonstrates the subtractive process  

 

𝑊 − 𝑀 = 𝐺 

𝑊 − 𝐶 = 𝑅 

𝑊 − 𝑌 = 𝐵 

(2.1) 

 

Subtractive colour CFAs include those developed by Morimura et al.[43], Hamilton et al. [44], Bean 

[45] and Hirakawa et al [46]. 
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Panchromatic colour filter arrays allow full incident white light in some pixel point locations. The 

incident white light contains the full colour spectrum hence the term panchromatic. Dillon [47], 

Yamagami et al. [48], Bawolek et al. [49], Gindele et al. and Sugiyama [50], [51] and the three Kodak 

variants [35] are common implementations of this class of filter. 

2.3.2 The Demosaicking Process 

After the light passes through the colour filter array, each mosaic element filters one particular colour 

component to its associated sensor pixel point. This results in a one colour-per-sensor pixel point being 

recorded as illustrated in Figure 2.7 using the Bayer filter for demostration. The sensor data, ICFA, is a 

sub-sampled representation of the original scene, I, conveyed by the optical system. The sub-sampled 

representation, ICFA, is then processed by the camera software. In this phase, a colour interpolation step 

termed demosaicking is performed. As the name implies, the missing sensor data is approximated and 

the mosaic effect in ICFA is removed. The result is the reconstructed image, IR.   

 

Figure 2.7 The demosaicking process using the Bayer filter for demonstration 

Mathematically, for an image of sensor pixel dimensions M×N, the two dimensional M×N matrix ICFA 

is a true subset of the three dimensional M×N×3 matrix I. This is because three sensor will have three 

independent colour planes. The demosaicking process generates a new three dimensional matrix IR from 

ICFA that approximates I and their absolute difference is defined by a three dimensional M×N×3 matrix 

E, as given in equation (2.2). 

 
𝑰𝐶𝐹𝐴  ∈ 𝑰 

 
(2.2a) 

 𝑬 = |(𝑰 − 𝑰𝑅)| 𝑤ℎ𝑒𝑟𝑒 𝐥𝐢𝐦
𝑰→ 𝑰𝑹

𝑬 = 0 (2.2b) 
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The demosaicking process applies to all the aforementioned colour filters as given in equation (2.2). In 

the ideal demosaicking situation, E = 0. This is not possible in practice because demosaicking is an 

interpolation process that results in approximations. The practical goal of the demosaicking process is 

to ensure the reconstructed image matrix, IR, is as close as possible to the reference scene matrix, I, for 

maximum information conveyance. 

2.3.3 The Panchromatic CFA 

Additive and subtractive CFAs are fully spectrally selective recording sub-sampled information at all 

pixel point locations. Panchromatic CFAs, from their definition, are partially selective. The white 

portions of the filter allow all colour components to pass through. This is illustrated in Figure 2.8.  

 

Figure 2.8 The demosaicking process using the Gindele panchromatic filter for demostration 

Comparing the panchromatic demosaicking process in Figure 2.8 with its non-panchromatic counterpart 

in Figure 2.7, more sample points are recorded in the red and blue colour channels but the green colour 

channel has the same sample point total.  

As such the panchromatic sensor data, ICFA, is an M×N×3 matrix that is still a subset of the image, I. 

However, 

 𝑰𝐶𝐹𝐴(𝑛𝑜𝑛 𝑝𝑎𝑛𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐) ∈ 𝑰𝐶𝐹𝐴 (𝑝𝑎𝑛𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐) ∈ 𝑰 (2.3) 

 

Equation (2.3) shows the panchromatic sensor data carries more samples than its additive/subtractive 

equivalent. It should be noted that these extra samples take in the full visual colour spectrum instead of 

a single wavelength value dictated by the colour of the filter at these points.  
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This leads to a brighter image being taken at the expense of explicit colour accuracy. A white pixel 

point in the red lattice of Figure 2.8 collects not only the red filter colour wavelength, but also red 

content outside the filter specifications along with green and blue content. So the red content extracted 

from the white pixel point may not correspond exactly to one extracted if the white pixel point was 

replaced by a red pixel point.   

In an ideal image panchromatic filter capture situation, the particular wavelength can be extracted from 

the full spectrum in processing, leading to a reconstructed image with less unknowns being used in the 

demosaicking process.  

In practice, however, this is not wholly possible without introducing some approximations in the 

extraction. The process of panchromatic CFA demosaicking is aimed at ensuring reproduction at the 

white pixel points is superior to that of the blank cells points that rely solely on neighbourhood cell 

information for their reconstruction. Panchromatic CFAs are classified by the percentage of white pixels 

present in their base mosaic cell. In Table 2.2, two classes are represented: 

i. 25% Type: Gindele/Sugiyama (also called the RGBW CFA) 

ii. 50% Type: Dillon, Yamagami, Bawolek and Kodak variants 

Other configurations with higher percentages exist such as the CFA proposed by Luo [52] which is a 

75% type. They are not considered desirable in practice because more colour information is lost at the 

expense of a brighter, more luminous image. 

2.3.4 Spectral Advantages of Panchromatic CFAs 

The less restrictive filtering of panchromatic CFAs leads to several key advantages in image capture 

and recording: 

i. Larger sample sizes in the red and blue planes ensure less uncertainty in their reconstruction. 

ii. White pixel point locations record complete luminosity information leading to a brighter, more 

visually appealing image capture that is more representative of the scene. In the 

additive/subtractive CFAs, the most sampled colour is used to determine the luminosity content 

of the scene yielding darker images.  

 

2.4 Visual Artefacts 

Being a physical system, the digital still camera and the image processing pipeline it adopts are subject 

to the effects of noise and other unwanted aberrations. 

The common artefacts experienced by integrated DSCs are given in Table 2.3. 
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Table 2.3 Visual artefacts and aberrations commonly generated in single sensor cameras 

Type Area of Pipeline Examples 

Optical Effects Acquisition Phase Chromatic aberrations, Comatic 

aberrations, Spherical aberrations, Lens 

flare and Vignetting effects 

Image Noise Acquisition Phase Fixed pattern, Random, Banding 

Demosaicking Artefacts Processing Phase Moiré effects, Zipper effects, Colour 

shifts, Blurring 

Coloration and Exposure Shifts Processing Phase White imbalances and exposure effects 

Compression Artefacts Storage and Display 
Phase 

Lossy JPEG format compression 

 

2.4.1 Optical Effects 

Optical effects are caused by lens and aperture arrangement. Improper lens design can lead to spherical 

and chromatic aberrations. Spherical aberrations shown in Appendix E: Figure E.1 are caused when 

light that passes through the lens is not focused into one focal point; instead having multiple 

convergence points occur, leading to a blurring halo or monocle artefact effect [53], [54]. Chromatic 

aberration occurs when the lens focuses different wavelengths of light refracted through along different 

focal points of the optical median line. This is the result of the lens’s refractive indices having an inverse 

proportionality relationship with the different wavelengths of light [55], [56]. In the additive tristimulus 

theory of light the red, green and blue wavelengths would be focused at different points as shown in 

Figure 2.9. An example of this aberration is shown in Appendix E: Figure E.2. 

Comatic aberrations occur when light from point sources enters the lens from an angle rather than 

parallel to the optical median line. This distorts the point sources to have a coma, tear-drop shape instead 

of an expected circular form. An example of comatic aberrations are given in Appendix E: Figure E.3. 

 

 

Figure 2.9 Generation of (a) Spherical aberration and (b) Chromatic aberration 
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Lens flare occurs when shooting a bright light source point. This source leads to unwanted internal 

reflection and scattering of light within the lens causing a bloom or flaring effect. In the image, this 

flaring is observed in the form of rings or bursts of light emanating from the source. Vignetting is the 

phenomenon where peripheral regions of the image appear darkened forming a border of sorts. The 

darkening is caused by brightness and saturation loss at the lens limits. This is sometimes performed 

intentionally in software but mainly occurs from limitations introduced at the lens periphery. An image 

showing this effect is presented in Appendix E: Figure E.5.  

Lens flare, vignetting effects and spherical aberrations are unique because they are the only visual 

artefacts that are sometimes deemed desirable by the viewer. This is the case particularly where an 

emotional response from the viewer of the scene is desired along with the basic conveyance of visual 

information.  An example is when lens flares were adopted in the rebooted Star Trek franchise films to 

heighten the drama and spectacle of space travel [57]. Some still images from the films are shown in 

Appendix E: Figure E.4. 

2.4.2 Image Noise 

This type of artefact is created in the sensor section and appears as speckles or bands in smooth regions 

of the image [33], [58]. Image noise is caused by random quantum noise effects and sensor element 

inhomogeneity. This form of noise is dependent on length of exposure, colour temperature variations, 

sensitivity settings and the physical characteristics of the sensor pixel photo-sites. There are several 

types of image noise. Fixed pattern noise is caused when the intensity recorded at a pixel point exceeds 

normal ambient noise values. They appear when the sensor is overexposed or made to operate at high 

thermal temperatures. The overexposed pixel point forms a bright colour spot dependent on the 

particular light filtered through. 

Random noise is generated by intensity and colour fluctuations below and above the actual image 

values. This form of noise is always present in some degree and is mainly influenced by camera shutter 

speed. Banding noise is created when camera reads data from the sensor. The sequential nature of this 

process leads to the noise appearing as continuous bands. It is often seen in images taken in shadowy 

conditions. Sensor images showing fixed pattern, banding and random noise effects are shown in 

Appendix E: Figure E.6. 

2.4.3 Demosaicking Artefacts 

These errors are produced from the demosaicking process. Demosaicking involves the reconstruction 

of an image by approximating missing sensor data. When the approximation is underestimated, 

overestimated or completely off, undesirable visual artefacts are produced in the reconstructed image. 

Being camera invariant, these types of artefacts are commonly observed in practice. They are also the 

most documented in literature [59]–[63]. Demosaicking artefacts appear in four primary forms: 
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i. Moiré effect 

ii. Zipper effect and ‘Jaggies’  

iii. Colour shifts 

iv. Blur effects 

The Moiré effect is a spatial aliasing phenomenon that occurs when the scene contains a series of 

repetitive patterns that is of the same order or exceeds the resolution of the sensor. Consequently, the 

sensor is unable to adequately sample the high frequency information in the image scene, causing an 

aliasing problem. This aliasing presents itself in a grayscale or rainbow colour pattern being inserted 

into the image. Figure 2.10 illustrates how this artefact is generated in a Bayer CFA from a simple black 

and white stripe pattern. The pattern has two stripe types: Type 1 is of a similar order to the sensor pixel 

resolution while Type 2 has a lower resolution than the sensor. In Figure 2.10(a), the stripes are aligned 

to the sensor pixels and each pixel wholly records one type of colour. As such both stripe types are 

accurately reconstructed. In Figure 2.10(b), the alignment of the stripes is off. For the Type 1 stripe, 

each sensor records black stripe and white background colour information combining to form a grey 

stripe. In the case of the Type 2 stripe, only the edges suffer from this colour aliasing. This effect also 

occurs when patterns are of a higher resolution. Black and white images will produce grey patterns and 

colour images have rainbow-like patterns arising from this aliasing effect. An image showing this effect 

are given in Appendix E: Figure E.7. 

 

Figure 2.10 Generation of Moiré effects 

 

Zipper effect occurs along edges of objects within a scene. The sudden transition is inaccurately 

approximated by the demosaicking process resulting in aliasing. This inaccurate approximation occurs 

on both sides of the edge producing a distinct zip-like effect seen in the reconstructed image [64]. If an 

object edge experiences only a slight deviation in their colour information from its adjacent 



20 

surroundings, a staircase effect called ‘Jaggies’ is produced instead. Appendix E: Figure E.7 highlights 

some examples of this type of artefact. 

Colour shifts occur within feature rich sections of an image when the demosaicking algorithm lacks 

adequate spectral information. Colour in these sections is misrepresented and a shift in the colour quality 

is observed in the reconstructed image. When image demosaicking is done with poor edge preservation, 

the structural integrity is lost and image blurring occurs. Similar to colour shifting, image blurring 

occurs in detail rich regions of the image. Image blurring and colour shifting examples are given in 

Appendix E: Figure E.7. 

It should be noted that this class of artefacts vary in degree of severity depending on the scene data and 

the quality of the demosaicking algorithm. Considering the complexity of reconstructing unknown 

scene data, these artefacts cannot be removed completely but instead are only suppressed [65].  

2.4.4 Coloration and Exposure Shifts 

All cameras are designed and calibrated to operate within a particular sensitivity and colour light 

temperature setting. If an image is taken outside the prescribed camera light settings, the coloration of 

the scene in the image shifts from the original [33]. Coloration shifts are easily observable in achromatic 

white light because of the uniformity of the three additive colours. These shifts affect the image in its 

entirety and several modes of coloration shift are shown in Appendix E: Figure E.8 depending on what 

colour is in excess. White colour balance is the process performed to ensure the image is a true 

representation of the original scene.  

The exposure of the sensor to the reflected light from objects within a scene also dictates the visual 

acuity of the image. The speed of the camera shutter determines the level of exposure shift experienced 

due to the amount of photons recorded. Overexposure and underexposure are the two shifts observed. 

Underexposure results in a darkened image while overexposure of the sensor results in an overly bright 

image. Both these variations are shown in Appendix E: Figure E.9. 

2.4.5 Compression Artefacts 

To reduce file size in storage, many integrated DSCs employ lossy compression. A common format of 

this type is the JPEG format. The JPEG compressed images are created by storing colour and intensity 

information for a region of similar pixels instead of recording original individual pixel data. This often 

reduces the size of the image file at the expense of pixel information. Consequently, edge and fine detail 

information is lost and JPEG images suffer from a blocky appearance. These block regions are the lossy 

compression artefacts. This class of artefacts is often viewed as more serious than image noise [66] 

because of the loss of important object information in the scene. 

 



21 

2.5 Demosaicking Algorithms 

From Figures 2.7 and 2.8, it can be observed that demosaicking is primarily an interpolation process 

[67], [68]. However, unlike conventional interpolation, the colour content in the various lattices is 

highly sporadic, depending on the scene. In addition each of these colour lattices, while handled 

independently at the sensor, jointly contribute to generate a single colour at each pixel point. This leads 

to the interpolation being both an intra-dependent and inter-dependent lattice problem. The process 

must be uniform in both dependencies. With this in mind, demosaicking algorithms are classified, but 

are not limited to, four principle classes: traditional, heuristic, optimisation and image modelling. 

2.5.1 Traditional methods 

Algorithms in this class are used predominantly outside the field of demosaicking. An image’s spatial 

pixel data in the three colour lattices is converted into a sequential polynomial form. Mathematical 

interpolation is then done. Bayer’s initial design demosaicking algorithm was a simple linear 

interpolation [39] that was an extension of a design by Banning et al. [69]. This was due to the fact that 

the process involved a sequential scanning of the image line by line and the generation of the missing 

components followed the same mechanism.  Subsequent algorithms have employed higher order fitting 

techniques to improve performance. Yu [70] proposed a cubic interpolation solution and Randhawa et 

al. [71] used splines.  

2.5.2 Heuristic methods 

This class of algorithms involve applying a filtering process either in the spatial or spectral domain 

while making several assumptions on the properties of the image. These algorithms seek to produce a 

sufficient approximation of the original scene in a reasonable time rather than attempt a full 

mathematical optimisation [68]. This is because a sufficient approximation and a fully optimised image 

would be indistinguishable to the human viewer. Heuristic algorithms are the most commonly 

documented demosaicking technique and are further divided into spatial, spectral and a hybridisation 

of the two.    

(i) Spatial techniques 

This sub-class operates by applying the filtering process directly on sensor pixel data in the spatial 

domain. Non-adaptive techniques such as Bi-linear (BI) and bi-cubic interpolation (BCI) are the 

simplest forms of spatial demosaicking. They are adequate in smooth image region. However, colour 

and edge abnormalities result in the detailed regions because the intra-lattice and inter-lattice 

dependencies is not considered. 

Constant hue-based techniques assume that there is a strong inter-lattice correlation between different 

colour lattices. This enables luminance (intensity) information to be used to interpolate chrominance 

(colour) lattice data. Considering a Bayer filter, the green lattice is assumed to hold luminance data 
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while the red and blue are chrominance lattices. The constant hue assumption uses pixel data in the 

green lattice to find missing data points in the blue and red chrominance lattices. An example of this is 

the constant difference based interpolation (CDBI) [68] illustrated in Figure 2.11. The more populous 

green lattice G, is reconstructed to form Gr, by simple bilinear interpolation. The red lattice, R, is then 

subtracted to create a difference lattice, D. The difference lattice is then used to form the reconstructed 

red lattice, Rr, using equation (2.4) for a pixel point, p; 

 

Figure 2.11 Constant difference-based interpolation in a Bayer CFA 

 

 
𝐷(𝑝) = 𝑅(𝑝) −  𝐺𝑟(𝑝) 

𝑅𝑟(𝑝)𝐷𝐼𝐹𝐹 =  𝐷𝑟(𝑝) + 𝐺𝑟(𝑝) 
(2.4) 

 

The similar constant ratio based interpolation (CRBI) [68] uses the relationship shown in equation (2.5) 

for any pixel point, p. Cok [72] proposed a logarithmic form of constant hue interpolation. Kimmel [73] 

and Chung et al. [74], [75] extended constant hue based interpolation by combining it with basic edge 

directed interpolation. 

 
𝐷(𝑝) = 𝑅(𝑝) ÷ 𝐺𝑟(𝑝) 

𝑅𝑟(𝑝)𝑅𝐴𝑇𝐼𝑂 =  𝐷𝑟(𝑝) × 𝐺𝑟(𝑝) 
(2.5) 

 

Edge based adaptive techniques work on the principle of ensuring interpolation only occurs along object 

edges rather than across them. The determination of the direction of interpolation is established by 

querying neighbourhood pixel information. This is shown in Figure 2.12. Edge directed interpolation 

(EDI) and its variants [76]–[81] generate absolute difference measures in the cardinal directions; ∆𝐻 

and ∆𝑉. If one measure exceeds its complementary, the interpolation is done in the complementary 

direction. Otherwise, neighbourhood averaging is done. This demonstrates the lack of an edge in that 

particular pixel point. Figure 2.13 shows how edge directed demosaicking is extended when it 

incorporates inter-lattice correlation.  
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Figure 2.12 Sample edge directed interpolation using single lattice data 

 

Figure 2.13 Sample edge directed interpolation using multiple lattice data 

The performance of this demosaicking subset is wholly dependent on the difference measures generated 

to classify the presence or absence of an edge. The absolute difference measure is in fact a basic edge 

descriptor. Chang et al. [82] introduced finer edge descriptors leading to the development of gradient 

based techniques. Gradient based variants [83], [44], [84]–[91] make use of higher order absolute 

differences, termed gradients, that improve demosaicking. The gradient is inverted to act as an adaptive 

weighting factor because higher order gradients provide a more varied spread to fine tune demosaicking. 

Gradients can be improved further by working with residuals of gradients rather than absolute gradients. 

Residual based techniques were introduced in 2013-2016 by Kiku, Monno et al. [92]–[94]. 

Another way of further improving spatial demosaicking is introducing more interpolation directions. 

Multidirectional weighted techniques combine gradient or edge based methods with increased direction 

choice. Ordinal and oblique directions are used with the conventional cardinal directions. Some 

examples of this are presented in the algorithms found in [95]–[98].  

(ii) Spectral techniques 

This heuristic sub-class involves converting the sub-sampled spatial pixel information into the 

frequency domain and applying the filtering process in this domain. This form of demosaicking was 

first introduced by Alleysson et al. [99] and further developed by Dubois [100]. Frequency based 

demosaicking variants [101], [102] use simple low order filters to reconstruct the image. This leads to 

excessive smoothening of edge information. Wavelet based techniques proposed by Kolta et al. [103], 

Zhang et al. [104] and Komatsu et al. [105] use wavelet theory to sharpen the image during 
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reconstruction. Compressive sensing has also been recently applied to the demosaicking problem by 

Gürbüz et al. [106] and Singh et al. [107]. Once the filtering is done, the image is restored to its spatial 

equivalent. 

(iii) Spatio-spectral techniques   

Spatio-spectral methods combine spatial and spectral filtering in their demosaicking process. In most 

instances, spectral filtering is performed followed by an edge or gradient based spatial technique to 

sharpen the image. The body of work by Hirakawa and Parks [46], [108], [109] highlights this class. 

Hirakawa et al. use wavelet filter banks to generate a unique edge demosaicking algorithm that searches 

for homogeneous regions to avoid edge misrepresentation. 

2.5.3 Optimisation methods 

This class of demosaicking algorithms treats the interpolation as a mathematical optimisation problem 

[67], [68] where colour correlations and other image properties are cost functions that can be iteratively 

minimised.  

(i) Regularisation  

The regularisation demosaicking sub-class minimises a cost function consisting of two primary terms: 

a colour correlation term and a spatial smoothness term. For the classical Bayer CFA, to write the cost 

function, a vicinity vector v, is defined as given in equation 2.6. 

 𝒗(𝑛1, 𝑛2) = [

𝑅(𝑛1, 𝑛2) − �̅�

𝐺(𝑛1, 𝑛2) − �̅�

𝐵(𝑛1, 𝑛2) − �̅�

] (2.6) 

 

Where �̅�, �̅� and �̅� are colour averages in the vicinity of the pixel located at point(𝑛1 , 𝑛2). In addition, 

defining a colour covariance matrix 𝑪𝑛1𝑛2  and three directional derivatives: 𝑆𝑛1,𝑛1 , 𝑆𝑛2𝑛2 and 𝑆𝑛1,𝑛2; 

the cost function X, is defined as:  

 

𝑋 =  ∬ ∑ (𝑆𝑛1,𝑛1
2 +  2𝑆𝑛1,𝑛2

2 + 𝑆𝑛2,𝑛2
2 )

𝑆=𝑅,𝐺,𝐵

𝑑𝑛1𝑑𝑛2 

+ 𝛼 ∬ 𝒗(𝑛1, 𝑛2)
𝑇

𝑪𝑛1𝑛2
−1𝒗(𝑛1, 𝑛2)𝑑𝑛1𝑑𝑛2 

(2.7) 

   

where 𝛼 is a small positive constant. The minimisation process starts with a rough interpolation that is 

progressively refined. Examples of this method are found in literature [110]–[114]. Variations exist in 

the description of the covariance matrix and choice of directional derivatives. 
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(ii) Vector-based filtering 

Vector based filtering demosaicking involves visualising each pixel as a vector of three or more colour 

values. The demosaicking algorithm shown by Yuk [115] and Lukac et al. [116], [117] then aims to fill 

in missing sample data such that the distance between vectors of neighbouring pixels are as small as 

possible. This process is repeated while updating vector distance values until an optimal solution is 

obtained. 

(iii) Bayesian estimation and Projection onto Convex Sets 

Bayesian estimation [68] works using probability theory to reconstruct the image. The recorded colour 

and noise statistics are modelled as probability distribution functions and a maximum a posteriori 

(MAP) formulation is performed to reconstruct an optimised estimate of the image. Projection onto 

convex sets is a demosaicking technique that involves using constrained set theory to map out the 

optimisation path [118].   

2.5.4 Image Modelling and Training  

This class involves exposing the algorithm to a large set of predefined pixel regions [119], [120]. The 

algorithm then uses a set of rules to compare sections of an image with the predefined regions. Once a 

match is found, a second set of rules determining the actual demosaicking process are then employed. 

Due to the large database that would be required to adequately define each possible scenario in an 

unknown image, this class of algorithms is hampered by long run times. 

 

2.6 Knowledge Gaps  

From the literature review, it was found that most demosaicking publications centred on the Bayer CFA. 

A simple search analysis was done to compare the occurrence of the Bayer CFA and panchromatic CFA 

in published literature.  

Table 2.4 Search term statistics for the words 'bayer cfa' and 'panchromatic cfa' 

Search Term IEEE Xplore Library Springer Link Repository SPIE Digital Library 

‘bayer cfa’ 139 607 881 

‘panchromatic cfa’ 10 39 259* 
* The term ‘panchromatic cfa’ in the SPIE repository contained references to analogue microfilm, telescope and 

laser technology that is not part of this study. To compensate, the terms ‘RGBW cfa’ and ‘White-RGB cfa’ were 

queried instead. 

Bayer noted that initial panchromatic devices performed poorly due to sensor design limitations [39] 

when comparing his method to panchromatic CFAs at the time. Panchromatic sensors such as  the 

Gindele et al. [50] and Kodak panchromatic types [121] have overcome these limitations through 

improvements in CMOS production and miniaturisation. 
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Recent publications [23], [121], [122] have empirically proved that panchromatic CFAs have a better 

sensitivity characteristic especially in low light situations. Little work has been done developing robust 

algorithms to work with them. Most published demosaicking algorithms work with the older Bayer 

sensor developed in 1975 [39]. The work presented here seeks to make a contribution in the field of 

panchromatic CFA demosaicking design. 

From the literature review it was also found that all the visual artefact studies were done using Bayer 

CFAs. This work also studies how artefacts present themselves in panchromatic CFAs and whether the 

proposed algorithm mitigates them sufficiently. The behaviour of demosaicking artefacts is considered 

solely due to their device invariance.  

Finally most published work, to assume uniformity in analysis, adopts use of the classic Kodak image 

set [123]. Other image sets referenced are the McMaster-IMAX image set [124] and the Condat image 

set [125] but to a lesser degree. However, all these image sets were of a low resolution (under 

1000×1000 pixels in dimension). To mimic images taken by real modern integrated DSCs, a custom 

image set database was created for medium resolution images. In addition, a high image database was 

also selected for supplementary analysis. These custom image sets are used in tandem with the 

established standard sets to allow the algorithm to be exposed to many resolution possibilities.   
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3 CONCEPTUAL FRAMEWORK 

 

From the knowledge gaps highlighted in the literature review in the previous chapter, the following 

deficiencies were observed: 

i. There is a tendency in literature to primarily focus on the traditional Bayer CFA rather than the 

panchromatic CFA class despite empirically proven superiority observed in the latter.  

ii. Objective analysis of algorithm performance focuses on using at most two image sets: Kodak 

and McMaster-IMAX. Attributes inherently present in these image sets (such as type of scene 

content, light saturation levels, camera resolution among others) are not considered to play a 

role. This is not the case because an algorithm may exhibit better performance over another due 

to an image attribute, say type of scene content. To fully assess an algorithm, a larger and a 

more variable image test bed profile is desirable along with some understanding of the image 

attributes that are present. 

iii. Demosaicking artefacts are primarily analysed using the traditional image assessment metrics 

such as the mean square error (MSE) and colour peak signal-to-noise ratio (CPSNR). These 

measures, while commonly referenced, are not suitable for analysing demosaicking artefacts 

such as Moiré and zipper effects [126], [127]. 

To ensure these deficiencies are adequately addressed in line with the main objective of the research 

work, the conceptual framework presented in Figure 3.1 was developed.   

 

Figure 3.1 Conceptual framework to formulate proposed demosaicking algorithm 



28 

From the conceptual framework, four independent design choices can be considered to create and ensure 

the robustness of the proposed demosaicking algorithm: the colour filter array, the algorithm class, the 

image sets forming the test bed and the assessment metrics. Each design choice helps mitigate a 

deficiency or undesirable effect extrapolated from the knowledge gaps.    

 

3.1 Colour Filter Array Selection 

The proposed algorithm was designed to work in the panchromatic class of colour filter arrays. From 

the literature review, there are several documented panchromatic colour filter arrays that have been 

developed. In this study, the RGBW CFA proposed by Gindele and Sugiyama [50], [51] was selected 

for the reasons presented below: 

i. The 𝟐 × 𝟐 nature of the mosaic cell: A simpler mosaic cell arrangement allows for the use of 

a wider class of demosaicking methods while simultaneously ensuring fewer demosaicking 

inaccuracies due to its simpler design. This has led many manufacturers to design cameras that 

use the smallest 2 × 2 mosaic cell arrangement. From Table 2.2, the CFAs meeting this criteria 

are the Bayer, Hamilton, Bean, Bawolek and RGBW (Gindele/Sugiyama) CFAs. 

ii. The presence of a white pixel point: The additive and subtractive class of CFAs record 

individual light colour or chroma data at the expense of overall light intensity or luma data. 

From Appendix D, it is shown that overall light intensity is not a pure addition of the individual 

light intensities sampled. A true representation of the scene requires a recording both colour 

and intensity. This is provided by the panchromatic class of CFAs. Of those provided in Table 

2.2, only the Bawolek and RGBW CFAs possess a white pixel point to sample intensity (luma) 

data and a 2 × 2 mosaic cell profile.  

iii. A balanced luma-chroma distribution: The recorded chroma and luma content should be done 

in such a manner as to ensure sufficient sampling of both parameters. From equation 2.1, it is 

noted that the Bawolek CFA only records primarily blue and green content devoting half its 

mosaic cell for light intensity. However, the RGBW CFA records red, blue and green colours 

leaving one quarter of the mosaic cell to capture light intensity. Comparing the two, the RGBW 

CFA luma-chroma distribution is closer to the human visual system of three colour cone 

photoreceptor types and one rod photoreceptor type.    

From all the CFAs shown in Table 2.2, the RGBW CFA was selected using the above criteria. Working 

in the RGBW mosaic cell domain allows the findings presented herein to have wide application 

primarily in the target category of cameras with low to medium resolution. 

 



29 

3.2 Choice of Demosaicking Algorithm Class 

The four classes of demosaicking algorithms presented in the literature review are the traditional, 

heuristic, optimisation-based and image modelling/training classes. Table 3.1 presents these 

aforementioned classes with the following associated properties: 

i. Speed: an indicator of the ease of implementation and time taken to undergo the image 

demosaicking process, determined from real time testing. 

ii. Local adaptability: an indicator to illustrate the ability of the algorithm class to compensate 

for and properly reconstruct localised areas in an image with large amounts edge variations. It 

is an indirect measure of algorithm complexity. 

iii. Image reconstruction acuity: an indicator highlighting how accurately the reconstructed 

image represents the original scene. 

iv. Popularity: an indicator showing how often the demosaicking class is researched and 

referenced in peer-reviewed literature.  

Table 3.1 Some properties of the various demosaicking algorithm classes 

Demosaicking 

Algorithm Class 

Speed Local 

Adaptability 

Image Reconstruction 

Acuity 

Popularity 

Traditional Very High Non-adaptive Low to Medium Low 

Heuristic High Non-adaptive  

and Adaptive 

Medium to High Very High 

Optimisation-Based Low Adaptive Very High Medium 

Image Modelling 
and Training 

Low to High Adaptive High to Very High Medium to 
High 

 

Using the above metrics, the heuristic demosaicking class of algorithms was chosen as the basis of the 

proposed algorithm design. It has a high speed of processing that is desirable for a low-to-mid resolution 

camera integrated in a mobile device as it ensures a low computational load on the mobile device 

processor. The popularity of the heuristic class also ensures there is a large set of established methods 

that can be used for comparison to the proposed design. 

Heuristic algorithms are further sub-divided into spatial and spectral techniques. The proposed design 

was chosen to work in the spatial technique domain because they work directly on pixel data without 

the need for a transformation step noted in spectral techniques. This is an attractive property that should 

be actively exploited in integrated cameras. Of the spatial techniques, the modern gradient-based 

spatial-heuristic subclass was considered due its local adaptability feature making it more resistant to 

demosaicking artefacts.  

Consequently, the proposed algorithm was chosen to be of the gradient-based spatial-heuristic class.  
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3.3 Image Sets Selection 

To ensure a variable and robust test bed for the demosaicking algorithm, six different image sets 

described in Table 3.2 were selected. Each image set possesses a unique property desirable in analysis. 

The images are provided in Appendix C. Using the camera resolution chart provided for reference in 

Appendix C, the author designated the following dimensions to determine resolution: 

i. Low: images of 1024 × 768 or smaller. 

ii. Medium: images between 1280 × 960 (1 MP) and 2048 × 1536 (3MP). 

iii. High: images of 2240 × 1680 (4MP) or higher. 

Table 3.2 Selected Image Sets 

Image Set No. of 

Images 

Image  

Dimensions 

Resolution  Reason for Use 

USC-SIPI 

(Classical) [128] 

16 256 × 256 Low Image Popularity 

Kodak [123] 24 768 × 512 Low Standard Reference 

McMaster-IMAX 

[124] 

18 500 × 500 Low Analysis of Oversaturation 

Condat Subset* 

[125] 

30 720 × 540 Low New Object Types in Scene 

and Light Variability 

ARRI [129], [130] 12 2880 × 1620 High 

Custom 15 1918 × 1077 Medium Algorithm Robustness 

Total 115    

* The full Condat image set consists of 150 images. A subset of 30 randomly picked images was defined and used 

 

The USC-SIPI image set shown in Figure C.2 in Appendix C contains the classical set of analogue film 

images widely used and referenced in signal processing literature. Some examples include the Mandrill 

image (sipi_im11) and Lena image (sipi_im12). The use of this set allows ease of comparison and the 

results can be compared to a wider range of reported works, in particular those outside the area of 

demosaicking but still within the field of image enhancement. 

The Kodak image set given in Figure C.3 contains digital images most commonly documented in 

demosaicking surveys. The Kodak set is attractive because of its set variability with images of persons, 

landscapes and objects. As it is the most popular image set used in demosaicking research, it is used in 

this work to ensure comparability with other demosaicking techniques. 

The McMaster-IMAX digital image set shown in Figure C.4 is another popular demosaicking image 

set that introduces the effect of colour vibrancy in demosaicking analysis. Images in the set are 

oversaturated; which is an effect of some medium and many high resolution cameras. Comparing the 
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proposed algorithm to established techniques using this set provides an analysis of the proposed method 

in such a camera scenario. 

The Condat and ARRI digital image sets are used to test the robustness of the proposed algorithm in 

situations that are not catered for by previous image sets such as multiple persons in an image, man-

made structures, abstract forms and light variations in a single image. These image sets are illustrated 

in Figures C.5 and C.6 in Appendix C. The Condat set is a low resolution database while the ARRI set 

is a high resolution database. 

Finally, the author felt there was the need to analyse performance of the algorithm in medium resolution 

cameras. Low resolution images tend to be more blurred and colour muted when compared to higher 

resolution devices. Many integrated cameras fall in this category; however, the established image sets 

have been taken by older, low resolution standalone digital cameras. A custom image set presented in 

Figure C.7 is used to analysis performance in the medium resolution domain. 

 

3.4 Image Quality Assessment Metrics Employed 

Image quality assessment metrics fall in two categories: reference and no-reference (blind) assessment 

[127], [131]. Reference assessment requires a ground truth image. This ground truth is compared to the 

reconstructed image in the assessment to form an opinion on the acuity of the demosaicking process. 

Blind assessment does not require a ground truth image but uses luma and chroma information in the 

reconstructed image to assess whether the demosaicking process was performed with sufficient 

accuracy. In demosaicking algorithm design, literature is biased towards use of a reference assessment 

mechanism. Reference assessment methods are also faster than blind assessment. The use of a ground 

truth image also allows for a subjective comparison involving human viewers [132]. 

The common reference-based image quality assessment methods are the mean square error (MSE) and 

peak signal-to-noise ratio (PSNR). The MSE as shown in equation (3.1) for a monochromatic image, 

 𝑀𝑆𝐸 =  
1

𝑟𝑐
(∑ ∑[𝐼(𝑖, 𝑗) − 𝐼𝑅(𝑖, 𝑗)]2

𝑐

𝑗=1

𝑟

𝑖=1

) (3.1) 

 

where 𝑟 is the total number of rows in the image, 𝑐 is the total number of columns in the image, 𝐼 is the 

ground truth original image and 𝐼𝑅 is the reconstructed image from the demosaicking process. When 

reconstruction is perfect, the MSE is zero. The PSNR is mathematically defined as: 

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝑎𝑥2

𝑀𝑆𝐸
) (3.2) 
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where 𝑀𝑎𝑥 represents the largest pixel value possible in the image. In this work 8-bit images are used, 

hence the 𝑀𝑎𝑥 value is 255. If the demosaicking is ideal, the PSNR would have an infinite value. 

A common variant of PSNR considers the averaging of the three colour channels: red, green and blue 

and is called the colour peak signal-to-noise ratio (CPSNR). This is because a colour image can be 

considered as a combination of three monochromatic images in the three colour channels; as outlined 

in Chapter 2. The averaging of the three colour channels is shown in equation (3.3) along with the 

resulting mathematical definition of CPSNR 

 

𝑀𝑆𝐸𝐶𝑃𝑆𝑁𝑅 =  
1

3𝑟𝑐
(∑ ∑ ∑[𝐼(𝑖, 𝑗, 𝑘) −  𝐼𝑅(𝑖, 𝑗, 𝑘)]2

3

𝑘=1

𝑐

𝑗=1

𝑟

𝑖=1

) 

𝐶𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝑎𝑥2

𝑀𝑆𝐸𝐶𝑃𝑆𝑁𝑅
) 

(3.3) 

 

The MSE, PSNR and CPSNR reference assessment techniques work by performing a pixel-by-pixel 

comparison as a test for reconstruction acuity. Two modern reference assessment techniques are the 

Structural Similarity Index (SSIM), the Feature Similarity Index and its chrominance inclusive variant 

(FSIM/FSIMC). These were developed based on the fact that the human visual system considers objects 

in a scene rather than absolute pixel values. Wang and Bovik [126] have shown that if a translational 

shift occurs in the pixel profile of the reconstructed image, then the  MSE  and PSNR metrics break 

down. The SSIM metric provides a measure more in line with subjective human evaluation by indicating 

the strength of reconstruction of whole objects in an image scene. Mathematically, the SSIM is based 

on the determination of three similarity terms: a structural term (𝑆𝑆), a luminance term (𝑆𝐿) and a 

contrast term (𝑆𝐶).  This is shown in equation (3.4) 

 

𝑆𝑆(𝑥, 𝑦) =  (
𝜎𝑥𝑦 + 𝑘1

𝜎𝑥𝜎𝑦 +  𝑘1
) 

𝑆𝐿(𝑥, 𝑦) =  (
2𝜇𝑥𝜇𝑦 +  𝑘2

𝜇𝑥
2 +  𝜇𝑦

2 +  𝑘2
) 

𝑆𝐶(𝑥, 𝑦) =  (
2𝜎𝑥𝜎𝑦 +  𝑘3

𝜎𝑥
2 + 𝜎𝑦

2 + 𝑘3
) 

 

(3.4a) 

 𝑆𝑆𝐼𝑀 = [𝑆𝑆(𝑥, 𝑦)]𝛼 ∙ [𝑆𝐿(𝑥, 𝑦)]𝛽 ∙ [𝑆𝐶(𝑥, 𝑦)]𝛾 (3.4b) 

 

where 𝜇 and 𝜎 are mean and variance values of image 𝑥 and 𝑦. The term 𝜎𝑥𝑦 is the covariance between 

images. The terms 𝑘1, 𝑘2 and 𝑘3 are small non-zero constants to prevent indeterminate results when the 
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means and variances are close to zero. The exponent terms 𝛼, 𝛽 and 𝛾 are used to provide 

intercomponent weighting of the three SSIM metric components and are usually all set to 1. As the 

SSIM metric works on monochromatic images and this work uses colour images; the SSIM is calculated 

as the average of the SSIM in each of the colour planes. This is shown in equation (3.5) as: 

 𝑆𝑆𝐼𝑀 =  
(𝑆𝑆𝐼𝑀𝑅𝑒𝑑 + 𝑆𝑆𝐼𝑀𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑆𝐼𝑀𝐵𝑙𝑢𝑒 )

3
 (3.5) 

 

The FSIM measure extends SSIM concepts by considering low level sections of objects rather than 

entire structures. The FSIM metric is composed of two similarity terms: a gradient magnitude (𝐺) term 

and a phase congruency (𝑃) term that are both variants of the luminance term of equation (3.4).  

Initially gradient magnitude and phase congruency maps are determined in turn for two images, say 𝑥 

and 𝑦 respectively. An individual pixel located at point (i, j) in these two maps over the two images will 

have four values that can be denoted as 𝑝𝑐𝑥, 𝑔𝑚𝑥, 𝑝𝑐𝑦 and 𝑔𝑚𝑦. The similarity terms 𝐺 and 𝑃 are 

determined for each pixel point using equation (3.6a) that resembles the form of the luminance term in 

equation (3.4).  

The overall FSIM is determined by adding all the pixel point similarities. This is presented in equation 

(3.6b) as a summation over the entire image region denoted as 𝛺. 

 

𝐺𝑖𝑗(𝑥, 𝑦) = (
2𝑔𝑚𝑥𝑔𝑚𝑦 +  𝑘1

𝑔𝑚𝑥
2 + 𝑔𝑚𝑦

2 + 𝑘1
) 

𝑃𝑖𝑗(𝑥, 𝑦) =  (
2𝑝𝑐𝑥𝑝𝑐𝑦 + 𝑘2

𝑝𝑐𝑥
2 + 𝑝𝑐𝑦

2 + 𝑘2
) 

𝑆𝐿𝑖𝑗(𝑥, 𝑦) =  [𝐺𝑖𝑗(𝑥, 𝑦)]
𝛼

∙ [𝑃𝑖𝑗(𝑥, 𝑦)]
𝛽

 

 

(3.6a) 

 𝐹𝑆𝐼𝑀 =  {
∑ (𝑆𝐿𝑖𝑗(𝑥, 𝑦) ∙ 𝑝𝑐𝑚𝑎𝑥)𝛺

∑ 𝑝𝑐𝑚𝑎𝑥𝛺
⁄ } (3.6b) 

 

The 𝑘 terms are small non-zero terms to avoid indeterminate results. The exponential terms 𝛼 and 𝛽 are 

to weight similarity terms and 𝑝𝑐𝑚𝑎𝑥 is the maximum value when comparing 𝑝𝑐𝑥 and 𝑝𝑐𝑦 numerically. 

The main drawback of SSIM and FSIM is that they were primarily designed for application with 

grayscale images and do not yield information on colour quality. This is addressed in the FSIMC variant. 

In this metric, the images are converted from the RGB (Red Green Blue) colour space to the YIQ 

(Luminance In-phase Quadrature) colour space where Y matrix holds the luminance information and I 
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and Q matrices hold chrominance information. Consequently, the FSIMC has three components: a 

luminance similarity term (𝑆𝑌), in-phase similarity term (𝑆𝐼) and a quadrature similarity term (𝑆𝑄).  

The Y (luminance) matrix has its gradient magnitude and phase congruency maps determined and its 

similarity takes the form given in equation (3.6a). The pixel points in the chrominance I and Q matrices 

are denoted as 𝑝𝑖 and 𝑝𝑞 respectively as FSIMC is calculated using pixel points. For any two images 𝑥 

and 𝑦, the FSIMC is then given as shown in equation (3.7) where the 𝑘 terms are small non-zero terms 

for error prevention. The terms 𝛼, 𝛽 and 𝛾 are exponential terms to provide weighting of the similarity 

terms and 𝑝𝑐𝑚𝑎𝑥 refers to the maximum pixel point phase congruency value over the two images. 

𝑆𝑌𝑖𝑗(𝑥, 𝑦) =  [𝐺𝑖𝑗(𝑥, 𝑦)]
𝛼

∙ [𝑃𝑖𝑗(𝑥, 𝑦)]
𝛽

 

𝑆𝐼𝑖𝑗 =  (
2𝑝𝑖𝑥𝑝𝑖𝑦 + 𝑘1

𝑝𝑖𝑥
2 + 𝑝𝑖𝑦

2 + 𝑘1
) 

𝑆𝑄𝑖𝑗 =  (
2𝑝𝑞𝑥𝑝𝑞𝑦 + 𝑘2

𝑝𝑞𝑥
2 + 𝑝𝑞𝑦

2 + 𝑘2
) 

 

(3.7a) 

𝐹𝑆𝐼𝑀𝑐 =  {
∑ (𝑆𝑌𝑖𝑗(𝑥, 𝑦) ∙ [𝑆𝐼𝑖𝑗(𝑥, 𝑦)𝑆𝑄𝑖𝑗(𝑥, 𝑦)]

𝛾
∙ 𝑝𝑐𝑚𝑎𝑥)𝛺

∑ 𝑝𝑐𝑚𝑎𝑥𝛺
⁄ } (3.7b) 

 

To assess the proposed algorithm along with current and popular established demosaicking methods, 

the author selected MSE, CPSNR, SSIM and FSIMC as the image quality metrics. These metrics, along 

with their reasons for usage, are presented in Table 3.3. 

Table 3.3 Selected Image Quality Assessment Metrics 

Assessment Metric Units Range 

(Min. to 

Max.) 

Improvement Operation Reason for Use 

Mean Square Error 

(MSE) 

- 0 to ∞ Low Value Pixel 

Statistics 

To analyse fidelity of 

reconstruction in a 

single plane 

Colour Peak Signal-

to-Noise Ratio 
(CPSNR) 

dB 0 to ∞  High Value Pixel 

Statistics 

To analyse fidelity of 

colour reconstruction 

in whole image 

Structural Similarity 

Index (SSIM) 

- 0 to 1 High Value Large 

Objects 

To analyse fidelity of 

coarse object 

reconstruction 

Feature Similarity 

Index with 

chrominance 

included (FSIMC) 

- 0 to 1 High Value Finer Detail 

Objects 

To analyse fidelity of 

fine object 

reconstruction with 

colour consideration 
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3.5 Proposed Algorithm Parameters  

To fulfil the main design objective, the conceptual framework yielded the following design parameters 

for the proposed algorithm: 

i. it belongs to the gradient-based spatial-heuristic class of algorithms 

ii. it employs the RGBW panchromatic CFA 

iii. it can be exposed to different image sets with varying image attributes  

iv. it can be analysed using the MSE, CPSNR, SSIM and FSIMC image quality assessment metrics 
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4 ALGORITHM DESIGN 

 

The development of the proposed demosaicking algorithm is presented in this chapter. From Chapter 

3, the proposed algorithm was selected to be of the gradient-based spatial-heuristic type and to operate 

on panchromatic CFAs. This chapter outlines the design of this algorithm, taking into account white 

pixel processing that is a feature of panchromatic CFAs. The chapter also presents interpolation path 

determination that is a feature of gradient based algorithms. In addition, several novel concepts and 

contributions were proposed and incorporated into the designed algorithm. This ensures the creation of 

a robust algorithm. 

 

4.1 Bayer and RGBW Design Comparison 

The proposed algorithm is designed to interpolate missing colour data in a recorded CFA image using 

neighbourhood information. In Bayer demosaicking, the CFA imposes a homogeneous one colour-per-

pixel regime. This is illustrated in Figure 4.1 for a 5×5 filter grid and it is noted that in each pixel 

location only one colour is recorded. 

 

Figure 4.1 A 5×5 Bayer grid 

The RGBW CFA, shown in Figure 4.2, by virtue of its white pixel points has a heterogeneous pixel 

arrangement. The red, green and blue pixel points all record a single colour, moreover this single colour 

occurs at a specific wavelength dictated by the filter itself. Conversely, the white pixel points allow the 

full spectrum of visible light to pass through. From the description of panchromatic sensors, in any 

white pixel point, say W11, the sensor does not only record the discrete wavelengths of the red, green 

and blue colour filters; it also records red, green and blue wavelengths outside the colour filter values.                      
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Figure 4.2 A 5×5 RGBW grid 

This panchromatic concept can be mathematically expressed as given in equation (4.1): 

 𝑊 = 𝑅𝑓𝑖𝑙 + 𝐺𝑓𝑖𝑙 + 𝐵𝑓𝑖𝑙 + {∑(𝑅𝑘 + 𝐺𝑘 + 𝐵𝑘 + 휀𝑘)

𝑘∈𝛺

} (4.1) 

 

Where 𝑅𝑓𝑖𝑙 , 𝐺𝑓𝑖𝑙 and 𝐵𝑓𝑖𝑙 are the specific wavelengths of the red, green and blue colour filters 

respectively; 𝑅𝑘 , 𝐺𝑘  and 𝐵𝑘 are the red, green and blue wavelengths outside the filter specifications and 

휀𝑘 denotes any other colour wavelength for the entire visible spectrum denoted by 𝛺. 

 

4.2 White Pixel Processing  

Due to the heterogeneous nature of the panchromatic class of colour filter arrays, in any panchromatic 

demosaicking process special attention must be paid to handling the recorded data from the white pixel 

point. This additional step, unique to panchromatic CFA regimes, must be considered before applying 

a demosaicking algorithm.  

 

4.2.1 The Separation Process Technique 

In the few heuristic panchromatic methods cited in literature [23], [133], [134] the white (W) pixel is 

usually handled in a separately from demosaicking. These methods, predominantly spectral-heuristic, 

consider the white pixel points as a purely light intensity (luma) component. From this treatment, the 

white pixel is observed to offer no contribution to the colour (chroma) component and is ignored during 

demosaicking. Consequently, the demosaicking process becomes wholly chroma-driven working in the 

non-white colour planes: red, green and blue. The additional luma information is incorporated in a latter 

process. The author has termed this reduction technique a Separation process. 

In the spatial-heuristic domain, the separation process is handled by replacing the white pixel points 

with green equivalents through a neighbourhood averaging process [23]. This is done using the 
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immediate green pixel point neighbours of every white pixel point. Considering pixel W33 in Figure 

4.2, the equivalent �̂�𝑊33 is generated using equation (4.2) 

 �̂�𝑊33 = 0.25(𝐺22 + 𝐺24 + 𝐺42 + 𝐺44) (4.2) 

 

The averaging process can be expressed as a filter, ℎ𝑏𝑎𝑠𝑖𝑐 , shown in equation (4.3): 

 ℎ𝑏𝑎𝑠𝑖𝑐 =  [
2 0 2
0 0 0
2 0 2

] /8 (4.3) 

  

All the required green equivalent pixels are generated in this manner. Green pixels on the image border 

are either discarded or approximated. The RGBW CFA representation of the image is consequently 

reduced to a Bayer CFA equivalent of the form illustrated in Figure 4.1. Demosaicking is then 

performed in the reduced Bayer equivalent CFA representation. The light intensity information of the 

white pixels is then handled separately and added to the image after demosaicking. 

4.2.2 The Bayerisation Process Technique 

A newer alternative method of handling the white pixel points was proposed by Chen et al. [135] based 

on the Malvar-He-Cutler algorithm [79]. The RGBW CFA representation of the image is exposed to 

the following modified averaging filter, ℎ𝑎𝑙𝑡 , given in equation (4.4): 

 8/

002/300

02020

2/30602/3

02020

002/300





























alth  (4.4) 

 

By using this filter, the RGBW CFA data is converted to an equivalent Bayer representation while 

simultaneously encoding the light intensity information within. All the RGBW information is encoded 

in the reduced Bayer equivalent. The author has termed this unnamed combined conversion and 

encoding technique a Bayerisation process.  

Analysing the effect of the Bayerisation process, it is noted that the white pixel coefficients of ℎ𝑎𝑙𝑡 

introduce a light intensity term into equation (4.2). If pixel W33 in Figure 4.2 is significantly brighter 

or darker than its white pixel neighbours, this intensity is additively factored into the green pixel 

average. If all the white pixels in the filter region are of equal value, ℎ𝑎𝑙𝑡 reduces to ℎ𝑏𝑎𝑠𝑖𝑐 . This light 

intensity term is denoted as 𝛿 and is given in equation (4.5). 
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 �̂�𝑊33 = 0.25(𝐺22 + 𝐺24 + 𝐺42 + 𝐺44) +  𝛿 (4.5) 

 

The Bayerisation process is attractive as it combines colour demosaicking and light intensity encoding 

in a single step thus reducing the overall algorithm complexity. This is useful when the algorithm is to 

run in an integrated camera on a mobile device. It is also a valid assumption to consider that the light 

intensity term, 𝛿, is often significantly smaller than the green neighbourhood estimates in practice for 

the white pixels to adversely affect the green plane approximation. As such, the proposed algorithm 

employs the Bayerisation process to handle the white pixel points in the RGBW CFA data. 

 

4.3 Gradient Based Demosaicking 

Any spatial-heuristic demosaicking algorithm works on the principle of finding sufficient heuristic 

values that can be used to fill in the missing information in the raw CFA image. Rough initial estimates 

are derived through an analysis of neighbourhood information. Interpolation descriptors are then 

defined and used as interpolation weights to refine the initial estimates and generate the desired heuristic 

values. An accurate generation of interpolation descriptors is directly related to the efficacy of the 

algorithm.   

In the gradient-based class of spatial-heuristic demosaicking algorithms, the descriptors are directional 

gradients obtained from a sum-of-difference (SOD) calculation mechanism during interpolation. 

Gradient-based demosaicking process can be generically defined in four steps expressed from equations 

(4.6) to equation (4.9).  

Consider a general pixel, 𝐷𝑃; where 𝐷 is the desired colour plane, 𝑁 is a separate neighbouring colour 

plane, 𝑃 is the pixel point location and 𝑘 is the interpolation direction. 

Step 1: The initial rough estimates of the desired pixel colour are established, as follows: 

 �̃�𝑃
𝑘 = (𝐷𝑃−1

𝑘 ) +  𝑐1(𝑁𝑃
𝑘 −  𝑁𝑃−2

𝑘 ) (4.6) 

Where 𝑐1 is a fractional constant to minimise neighbour effects. 

Step 2: Interpolation descriptors in the form of directional gradients are derived based on a sum-of-

differences calculation, 

 Φ𝑃
𝑘 =  Φ𝑅𝑒𝑑,𝑃

𝑘 +  Φ𝐺𝑟𝑒𝑒𝑛,𝑃
𝑘 +  Φ𝐵𝑙𝑢𝑒,𝑃

𝑘 +  𝑐2 (4.7) 

Where Φ indicates a sum-of-differences and 𝑐2 is a small, positive value corrective constant. 

Step 3: The directional gradients from equation (4.7) are then converted into weighting factors as shown 

in equation (4.8), 
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 𝜑𝑃
𝑘 =  

1

Φ𝑃
𝑘  (4.8) 

Step 4: Finally, the missing colour component in the general pixel 𝐷𝑃 is found from the calculated 

estimates and the associated weighting factors using equation (4.9), 

 �̂�𝑃= 
∑ (𝜑𝑃

𝑘�̃�𝑃
𝑘)𝑘

∑ (𝜑𝑃
𝑘)𝑘

⁄  (4.9) 

Variations and additions to this generic four-phase algorithm process exist in different gradient based 

algorithms but they all follow the above trend. A common modification is to add a refinement step after 

�̂�𝑃 has been calculated. In practice, however, a proper choice of the interpolation descriptors tends to 

reduce the efficacy of this refinement. 

 

4.4 Novel Concepts and Contributions 

The demosaicking process is highly dependent on choosing pixels that can accurately estimate missing 

colour content with minimal error. 

In the case of gradient-based demosaicking, from equations (4.6) and (4.7), it is apparent that the 

selected pixels should be sufficient enough to form good initial estimates and interpolation descriptors. 

Particular care must be taken in establishing the interpolation descriptors. If the descriptors are 

generated with too few pixels, they lead to an overly smooth image where regions of fine detail and 

texture are blurred. If too many pixels are used in the descriptor formation, the outlier information from 

distant pixels may lead to inaccuracies in reconstruction. Distant pixels also introduce unnecessary 

complexity to the algorithm. A sufficient balance in pixel selection is required to maximise algorithm 

performance. 

With the above consideration, this work introduces several new ideas to maximise performance: 

i. An ordinal-direction driven exploitation of the quincuncial green plane of a Bayer or converted 

equivalent array 

ii. The use of combinatorial geometry in the form of polyominoes to generate robust interpolation 

descriptors  

iii. Concept of variable plane factors to prioritise weighting 

It should be noted that these contributions are applied in the designed algorithm after the Bayerisation 

process and form part of the gradient-based demosaicking technique. As such they are considered in a 

Bayer or converted equivalent CFA environment. 
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4.4.1 The Ordinal Nature of the Green Plane    

Assuming a Bayer or converted equivalent CFA arrangement, there are three colour planes forming the 

CFA – the red, green and blue plane. In this three plane arrangement shown in Figure 2.7, the green 

plane is the most populous with almost 50% of the total recorded CFA data. It is for this reason that 

proper demosaicking of the green plane will significantly improve overall image reconstruction. 

Established gradient-based methods use a cardinal direction interpolation system. A visual inspection, 

however, reveals that more pixels in the green plane lie in the ordinal directions than in the cardinal 

directions for the same bounding window size. This is shown in Figure 4.3 that illustrates the green 

pixel distributions in the North and North-East directions arising from the quincuncial arrangement of 

the green plane.   

 

Figure 4.3 Paths in the North (N) and North-East (NE) directions in the green quincunx plane 

 

For any window of size (2ℎ + 1) pixels, there are more ordinal-directed pixels present than cardinal 

ones. This results in a higher pixel packing along the ordinal directions. This is shown in Figure 4.4 for 

two different grid sizes, where 𝑃𝐶𝑎𝑟 represents the cardinal pixel count and 𝑃𝑂𝑟𝑑  represents the ordinal 

pixel count. 

 
 

i. 7-by-7 grid 

𝑃𝐶𝑎𝑟 = 16, 𝑃𝑂𝑟𝑑 = 20 

ii. 9-by-9 grid 

𝑃𝐶𝑎𝑟 = 24, 𝑃𝑂𝑟𝑑 = 28 

Figure 4.4 A comparison of cardinal and ordinal directed pixels over different Bayer grid sizes 

 

This observation motivated the author to implement an ordinal-only interpolation process in the 

proposed algorithm.  
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4.4.2 Combinatorial Geometry, Polyominoes and Pentomino Inspired Paths 

Any CFA is defined in combinatorial geometry as a square tessellation in two dimensional Euclidean 

space with sets of square blocks ‘fitting together’ to form a whole. Polyominoes are shapes made by 

connecting a certain number of equal-sized squares, each connected to another square along an edge 

[136]. From these definitions, polyominoes can be viewed as sub-sets of a Bayer CFA arrangement. 

This relationship and the concept of ‘fitting together’ motivated the author to study and use polyomino 

theory to generate the heuristic interpolation descriptors.   

Polyominoes occur in various sizes depending on the number of interconnecting squares. The most 

recognisable use of polyominoes is in the popular game of Tetris – a puzzler using randomly generated 

tetrominoes (4-square polyominoes). 

A subset of polyominoes must be determined to ensure that a sufficient number of pixels to form 

heuristic interpolation descriptors can be generated. Using the assumption that the CFA under 

consideration is a reduced Bayer equivalent of the RGBW CFA, the author imposed that for any general 

n-square polyomino set; the following conditions hold: 

i. The maximum number of green pixels bounded by the polyomino, 𝑔, for odd or even valued n; 

 

𝑔𝑜𝑑𝑑 =  (
𝑛 + 1

2
) 

𝑔𝑒𝑣𝑒𝑛 =  (
𝑛

2
) 

(4.10) 

ii. The number of paths found within the polyomino, 𝑝; 

 𝑝 =  
𝑔!

(𝑔 − 2)! 2!
 (4.11) 

   

Exceptions exist to the above rules. From equations (4.10) and (4.11), an optimal value allowing for the 

generation of a sufficient number of unique descriptors in the reduced Bayer equivalent CFA was found 

to be at n = 5. This value was established by experimentally testing values of n from n = 1 to n = 6 and 

using equations (4.10) and (4.11) [91]. This subset of polyominoes are called pentominoes. 

From polyomino theory, there are a total of 18 one-sided pentominoes (assuming rotations are not 

considered unique). All the possible pentomino blocks are shown in Figure 4.5 and blocks that form 

chirals (non-superimposable mirror images) are denoted by a letter having a prime symbol. 

Each pentomino block of Figure 4.5 is used to generate two paths of the three possible. These paths, in 

turn, are used to select the sum-of-difference (SOD) term pairs to form the directional gradients used as 

the heuristic interpolation descriptors. The following rules were set as guidelines to ensure unique paths: 

i. Two blocks forming a chiral pair will have their paths forming a chiral pair as well 
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ii. The pixel of interest must share a vertex with an edge square of the pentomino construct 

The paths generated are shown in Figure 4.6 with the pixel of interest in grey. The figure considers the 

path generation is being performed in the green colour plane.  

 

Figure 4.5 The 18 possible pentomino blocks using the Golomb letter naming system 

 

Figure 4.6 Generated pentomino paths 

Considering the ordinal argument from Section 4.4.1 and based on the paths generated, the pentomino 

blocks N, P, T, V, W, X or Z are potential constructs for use. This is because blocks I, L and P have 

cardinal paths; F has paths in two different ordinal directions thus it has no preferred direction and the 

U and Y pentominoes generated no new paths that cannot be generated from F, P and T. 

The author selected the N, W and Z pentominoes to form the gradient selection paths due to their 

preferred and significant ordinal bias. 

4.4.3 Variable Plane Factors 

A reduced Bayer equivalent of the RGBW CFA will be of the form depicted in Figure 4.1 with three 

colour planes present. The inter-plane relationship between the three planes expanded in Figure 4.7 can 

take three distinct forms given in equation (4.12a): 

 

𝐶𝑎𝑠𝑒 1: 𝑘2 = 𝑘3 = 𝑘1 

𝐶𝑎𝑠𝑒 2: 𝑘2 = 𝑘3 ≠ 𝑘1 

𝐶𝑎𝑠𝑒 3: 𝑘2 ≠  𝑘3 ≠ 𝑘1 

(4.12a) 
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Many established gradient-based methods treat these planes as equal when this in fact is not the case 

[86], [96], [135].  

Consider the decomposed reduced Bayer equivalent RGBW CFA shown in Figure 4.7. The grey pixel 

point is a missing pixel point. This grey pixel point is located in the green plane but has a record of red 

colour data. When determining the missing colour content in this pixel of interest, it can be noted from 

inspection that the green plane has the most influence since the pixel physically resides in this plane. 

The red plane is of secondary importance as it is the plane containing a record of data in the CFA 

arrangement. The blue plane, in turn, offers no positional or colour record information as is deemed the 

least important contributor of information plane-wise.   

 

Figure 4.7 A plane-wise decomposition of the reduced Bayer equivalent of the RGBW CFA 

From this intuitive reasoning, this variable inter-plane weighting can be reduced to a specific subset of 

Case 3: 

 𝑘3 < 𝑘2 < 𝑘1 (4.12b) 

 

Consequently, the three colour planes can be denoted in rank as follows, for the above case: the green 

plane has the largest impact (rank 1), the red plane follows (rank 2) and the blue plane that offers no 

contribution in position or colour has the least importance (rank 3). The author encoded this ranking 

system in the proposed algorithm using three variable factors: 𝑘1 = 1, 𝑘2 = 0.8 and 𝑘3 = 0.7 where 

the subscript denotes the plane rank. This empirical determination is provided in Chapter 5. 

The above factor values are used when determining missing colour content in the green colour plane. 

A similar treatment is applied when determining colour content in the red and blue colour planes. 
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4.5 The Proposed Algorithm 

The proposed algorithm is divided into the following sections: 

i. Reduction of the RGBW CFA to a Bayer equivalent 

ii. Green Content Interpolation 

iii. Blue and Red Content Interpolation 

A flowchart depicting the processing of this sections is presented in Figure 4.8. 

 

Figure 4.8 Proposed algorithm flowchart 

 

4.5.1 RGBW CFA Reduction 

This phase of the proposed algorithm is performed by using the filter presented in equation (4.4) directly 

on the RGBW CFA data. This results in the reduced Bayer-equivalent representation that contains the 

white pixel data encoded in green equivalent pixels located at the white pixel points. The result of this 

process is shown in Figure 4.9 for a 7×7 segment. For ease of analysis in later stages of the algorithm, 

no distinction is made in the green plane between the original green pixel points and the green equivalent 

pixels that now populate the former white pixel points. This process is shown as a flowchart in Figure 

4.10. 
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Figure 4.9 A 7×7 segment of the reduced Bayer equivalent of the RGBW CFA 

 

 

Figure 4.10 CFA Reduction flowchart 

 

4.5.2 Green Plane Reconstruction 

Consider the process of determining the green colour content present in the pixel R44 in Figure 4.9. The 

initial estimates are established for the four ordinal directions as follows: 

 

�̃�𝑅44
𝑁𝑊 = 0.5(𝐺34 + 𝐺43) +  (𝑘2𝑘3)(𝑅44 − 𝑅22) 

(4.13) 
�̃�𝑅44

𝑆𝑊 = 0.5(𝐺54 + 𝐺43) +  (𝑘2𝑘3)(𝑅44 − 𝑅62) 

�̃�𝑅44
𝑆𝐸 = 0.5(𝐺45 + 𝐺54) +  (𝑘2𝑘3)(𝑅44 − 𝑅66) 

�̃�𝑅44
𝑁𝐸 = 0.5(𝐺45 + 𝐺34) +  (𝑘2𝑘3)(𝑅44 − 𝑅26) 

 

The directional gradient in each ordinal direction is determined using all three colour planes in the 

manner highlighted in equation (4.7). Using the generation of the South-West (SW) directional gradient 

as an example and using Figure 4.11 as a reference for the associated path generation, 
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 Φ𝑅44
𝑆𝑊 =  Φ𝐺𝑟𝑒𝑒𝑛,𝑅44

𝑆𝑊 +  Φ𝑅𝑒𝑑,𝑅44
𝑆𝑊 +  Φ𝐵𝑙𝑢𝑒,𝑅44

𝑆𝑊 + 휀 (4.14) 

   

Where 휀 is a small positive non-zero number to prevent a zero gradient result. The components of 

equation (4.13) are as follows: 

 

Φ𝐺𝑟𝑒𝑒𝑛,𝑅44
𝑆𝑊 =  |𝑝𝑎𝑡ℎ𝑁| + |𝑝𝑎𝑡ℎ𝑊| +  |𝑝𝑎𝑡ℎ𝑍| 

(4.15) Φ𝑅𝑒𝑑,𝑅44
𝑆𝑊 =  𝑘2(|𝑅44 − 𝑅62|) 

Φ𝐵𝑙𝑢𝑒,𝑅44
𝑆𝑊 =  𝑘3(|𝐵53 − 𝐵71|) 

 

And from Figure 4.9, 

 𝑝𝑎𝑡ℎ𝑁 = (|𝐺43 − 𝐺52| +  |𝐺45 − 𝐺52|) 

(4.16)  𝑝𝑎𝑡ℎ𝑊 = (|𝐺34 − 𝐺43| +  |𝐺43 − 𝐺52|) 

 𝑝𝑎𝑡ℎ𝑍 = (|𝐺54 − 𝐺63| +  |𝐺45 − 𝐺63|) 

 

 

Figure 4.11 The South-West paths from pixel R44 using the N, W and Z pentomino blocks 

 

By superimposing the N, W and Z pentomino blocks as shown in Figure 4.11, the proposed algorithm 

enforces an ordinal-only directed mechanism to generate the gradients using the sum-of-difference 

calculations shown in equation (4.16). The variable plane factor weighting proposed in Section 4.4.3 is 

implemented in equation (4.15) for the red and blue gradient terms. 

The North-West (Φ𝑅44
𝑁𝑊), North-East (Φ𝑅44

𝑁𝐸 ) and South-East (Φ𝑅44
𝑆𝐸 ) terms are generated in a similar 

manner by rotating the pentomino paths in Figure 4.10 clockwise 90°, 180° and 270° respectively and 

applying equations (4.15) and (4.16). Additionally, to generate the red and blue terms of equation (4.15) 
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for these three directions, the pixels lying flush in the ordinal direction are selected. For example, R44, 

B55, R66 and B77 all lie in the South-East direction line and are the terms to be adopted in equation 

(4.15).  

Once all the directional terms are established, the proposed algorithm determines the weighting factors. 

This is done by applying equation (4.8) to the results of equation (4.14) for all ordinal directions and 

mathematically expressed as follows: 

 

𝜑𝑅44
𝑆𝑊 =  

1

Φ𝑅44
𝑆𝑊  

(4.17) 

𝜑𝑅44
𝑁𝑊 =  

1

Φ𝑅44
𝑁𝑊  

𝜑𝑅44
𝑁𝐸 =  

1

Φ𝑅44
𝑁𝐸  

𝜑𝑅44
𝑆𝐸 =  

1

Φ𝑅44
𝑆𝐸  

 

After determining the weighting factor, the proposed algorithm uses polling maps similar to those used 

by Chen et al. [137] to establish the final missing colour value. The polling maps help determine whether 

interpolation is predominant in a particular ordinal direction or not. Equations (4.18) and (4.19) are used 

when the polling map shows preference to a NW-SE or a SE-NW direction respectively. Otherwise, 

equation (4.20) is used.  

 �̂�𝑅44 =  
∑ {𝜑𝑅44

𝑘 �̃�𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸)

⁄  (4.18) 

 �̂�𝑅44 =  
∑ {𝜑𝑅44

𝑘 �̃�𝑅44
𝑘 }𝑘∈(𝑁𝐸,𝑆𝑊)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁𝐸,𝑆𝑊)

⁄  (4.19) 

 �̂�𝑅44 =  
∑ {𝜑𝑅44

𝑘 �̃�𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸,𝑁𝐸,𝑆𝑊)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸,𝑁𝐸,𝑆𝑊)

⁄  (4.20) 

 

The final result �̂�𝑅44 is considered to be the missing colour content of the green plane for pixel local 

R44. The above steps are repeated to establish all the missing green colour content in the red pixel 

locations.  

The proposed algorithm then works on the CFA data in a similar way to determine the green colour 

content in the blue pixel locations. During this step, the positions of the blue and red pixels in equations 

(4.13) though to (4.20) are switched without loss of generality. Once complete, the entire green plane 
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is fully reconstructed. The entire process of reconstruction of green plane data is shown as a flowchart 

in Figure 4.12. 

 

Figure 4.12 Green Plane Reconstruction flowchart 

 

4.5.3 Red and Blue Plane Reconstruction 

Unlike the green plane, the red and blue colour planes are not quincuncial in nature. Consequently, 

reconstruction is divided into a two phase process. The first phase involves establishing content in an 

opposing colour planes (that is red colour content in the blue pixel record locations and vice versa) and 

the second involves finding missing red or blue colour content within the green locations. 

 

(i) Opposing Plane Reconstruction in the Blue Plane 

Consider the problem of establishing blue content in pixel R44 in Figure 4.9. The proposed algorithm 

takes advantage of the fact that at this stage the green content in each red pixel has been established. 

The algorithm slightly modifies the initial estimation step of the generic gradient demosaicking shown 

in equation (4.6) instead using a difference based solution. The initial ordinal estimates are calculated 

using equation (4.21) provided: 

 

�̃�𝑅44
𝑆𝑊 = 𝐵53 −  �̂�𝐵53 

(4.21) 
�̃�𝑅44

𝑁𝑊 = 𝐵33 −  �̂�𝐵33 

�̃�𝑅44
𝑁𝐸 = 𝐵35 −  �̂�𝐵35 

�̃�𝑅44
𝑆𝐸 = 𝐵55 −  �̂�𝐵55 

 

Directional gradients are found using a variant of equation (4.7) shown in equation (4.22) below where 

both actual green colour content from the CFA and those determined from Section 4.5.2 are used. 
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 Γ𝑘 =  Γ𝐺,𝑎𝑐𝑡𝑢𝑎𝑙
𝑘 + Γ𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑘  +  Γ𝐵
𝑘 + 휀 (4.22) 

  

Where 휀 is a small positive non-zero constant. Considering the North-West (NW) direction for pixel 

R44 in Figure 4.9, the components of equation (4.22) are: 

 

Γ𝑅44(𝐺,𝑎𝑐𝑡𝑢𝑎𝑙)
𝑁𝑊 = (|𝐺43 − 𝐺32| +  |𝐺34 − 𝐺23|) 

(4.23) Γ𝑅44(𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)
𝑁𝑊 = (|�̂�𝑅44 −  �̂�𝐵33| +  |�̂�𝐵33 −  �̂�𝑅22|) 

Γ𝑅44(𝐵)
𝑁𝑊 = (|𝐵33 − 𝐵55|) 

  

The remaining gradients Γ𝑅44
𝑁𝐸 , Γ𝑅44

𝑆𝐸  and Γ𝑅44
𝑆𝑊  are found by repeating the process from equation (4.22) 

to form the weights. Once established, the reciprocals of the gradients are determined using the 

relationship in equation (4.24): 

 𝛾𝑅44
𝑘 =  

1

Γ𝑅44
𝑘  (4.24) 

 

Finally, the weights are applied to the initial estimates of equation (4.21) and added to �̂�𝑅44 to counter 

the difference relationship set in equation (4.21). This will result in a final estimate for the blue colour 

content in pixel location R44 as shown in equation (4.25). To simplify the proposed algorithm, no 

polling maps were used in this phase. 

 �̂�𝑅44 =  �̂�𝑅44 +  {
∑ {𝛾𝑅44

𝑘 �̃�𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

∑ {𝛾𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

⁄ } (4.25) 

  

(ii) Opposing Plane Reconstruction in the Red Plane  

The process outlined in equations (4.21) through to equation (4.25) is repeated to establish all the red 

colour content in blue pixel locations. The proposed algorithm switches the placing of the red and blue 

in equations (4.21) through to (4.25) to perform the inverse process of determining red colour content 

in blue pixel locations. Consider, for example, the process of determining red colour content in the pixel 

B55 in Figure 4.9. The initial estimates for this pixel will take the form given in equation (4.26), 

 

�̃�𝐵55
𝑆𝑊 = 𝑅64 − �̂�𝑅64 

�̃�𝐵55
𝑁𝑊 = 𝑅44 − �̂�𝑅44 

�̃�𝐵55
𝑁𝐸 = 𝑅46 − �̂�𝑅46 

�̃�𝐵55
𝑆𝐸 = 𝑅66 − �̂�𝑅66 

(4.26) 
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The directional gradient general equation was be as follows: 

 Γ𝑘 =  Γ𝐺,𝑎𝑐𝑡𝑢𝑎𝑙
𝑘 +  Γ𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑘  +  Γ𝑅
𝑘 + 휀 (4.27) 

 

And for the pixel under analysis, B55, interpolation in the SE direction would use a gradient formulation 

shown in equation (4.28): 

 

Γ𝐵55(𝐺,𝑎𝑐𝑡𝑢𝑎𝑙)
𝑆𝐸 = (|𝐺65 − 𝐺76| +  |𝐺56 − 𝐺67|) 

(4.28) Γ𝐵55(𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)
𝑆𝐸 = (|�̂�𝐵55 − �̂�𝑅66| +  |�̂�𝑅66 − �̂�𝐵77|) 

Γ𝐵55(𝑅)
𝑆𝐸 = (|𝑅44 − 𝑅66|) 

 

After all the gradients, namely Γ𝐵55
𝑆𝐸 , Γ𝐵55

𝑁𝐸 , Γ𝐵55
𝑁𝑊 and Γ𝐵55

𝑆𝑊 , are found using equation (4.27) the weights 

are found using equation (4.29) before the final value is established using equation (4.30). These 

equations are given below: 

 𝛾𝐵55
𝑘 =  

1

Γ𝐵55
𝑘  (4.29) 

 

 �̂�𝐵55 = �̂�𝐵55 +  {
∑ {𝛾𝐵55

𝑘 �̃�𝐵55
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

∑ {𝛾𝐵55
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

⁄ } (4.30) 

 

Equation (4.26) through to equation (4.30) are recursively applied to all the blue pixel points to generate 

the associated red colour content. Once complete, the blue and red colour planes both observe a 

quincuncial profile. 

(iii) Reconstruction in Green Pixel Locations 

At this point in the processing, the proposed algorithm has a fully constructed green plane and 

quincuncial blue and red planes. The remaining undetermined content are the blue and red colour values 

in green pixel locations. The proposed algorithm uses a procedure similar to the green plane 

reconstruction. This is because the missing colour blue or red content now occurs in a quincuncial plane 

– a situation similar to that in Section 4.5.2. 

Consider the problem of establishing red content in pixel G45. An initial estimate is generated and is of 

a simpler form than equation (4.13) due to the availability of previously missing colour content data. 

This is shown in equation (4.31) using the North-West (NW) direction as an example: 

 �̃�𝐺45
𝑁𝑊 = 0.25(�̂�35 + 𝑅24 + �̂�𝐵33 + 𝑅44) (4.31) 
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Estimates in the three remaining ordinal directions are generated in the same way. The gradients, 

associated weights and final colour content values are then established. Equations (4.32), (4.33) and 

(4.34) illustrate the proposed algorithm’s workflow in the North-West direction in establishing the red 

colour content in pixel G45. This is done in the remaining ordinal directions and the final colour value 

is determined using equation (4.35).  

 Φ𝐺45
𝑁𝑊 =  Φ𝑅𝑒𝑑,𝐺45

𝑁𝑊 +  Φ𝐺𝑟𝑒𝑒𝑛,𝐺45
𝑁𝑊 + 휀 (4.32) 

 

Where 휀 is a small positive non-zero constant and 

 
Φ𝑅𝑒𝑑,𝐺45

𝑁𝑊 = (|�̂�𝐵35 − 𝑅24| +  |�̂�𝐵33 − 𝑅44|) 
(4.33) 

Φ𝐺𝑟𝑒𝑒𝑛,𝐺45
𝑁𝑊 = (|𝐺45 − 𝐺34| +  |𝐺34 − 𝐺23|) 

 

 𝜑𝐺45
𝑘 =  

1

Φ𝐺45
𝑘  (4.34) 

 

 �̂�𝐺45 =  
∑ {𝜑𝐺45

𝑘 �̃�𝐺45
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

∑ {𝜑𝐺45
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

⁄  (4.35) 

  

The process outline in this is repeated to establish all the red colour content in the green pixel locations. 

In the same manner, the proposed algorithm works on determining the missing blue content in the green 

pixel locations. Equations (4.36), (4.37), (4.38) and (4.39) outline the steps taken in establishing the 

blue colour content in pixel G34 over a North-East interpolation direction.  

 �̃�𝐺34
𝑁𝐸 = 0.25(�̂�𝑅24 + 𝐵15 + �̂�𝑅26 + 𝐵35) (4.36) 

 

 Φ𝐺34
𝑁𝐸 =  Φ𝑅𝑒𝑑,𝐺34

𝑁𝐸 +  Φ𝐺𝑟𝑒𝑒𝑛,𝐺34
𝑁𝐸 + 휀 (4.37) 

 

 
Φ𝐵𝑙𝑢𝑒,𝐺34

𝑁𝐸 = (|�̂�𝑅24 − 𝐵15| +  |�̂�𝑅26 − 𝐵35|) 
(4.38) 

Φ𝐺𝑟𝑒𝑒𝑛,𝐺34
𝑁𝐸 = (|𝐺34 − 𝐺25| +  |𝐺25 − 𝐺16|) 

 

 𝜑𝐺34
𝑘 =  

1

Φ𝐺34
𝑘  (4.39) 
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The final estimate for the pixel G34 is given by equation (4.40): 

 �̂�𝐺34 =  
∑ {𝜑𝐺34

𝑘 �̃�𝐺34
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

∑ {𝜑𝐺34
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

⁄  (4.40) 

 

This process is repeated until all the missing blue colour content in the green pixel points is found. 

When all the missing colour points have been reconstructed, the demosaicking process is complete. The 

red and blue pixel processing is depicted in Figure 4.13. 

 

Figure 4.13 Red and Blue Plane Reconstruction flowchart 
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5 SIMULATION PROCEDURE AND RESULTS 

 

The experimental phase of this research work was carried out fully in simulation through the use of 

MATLAB® (matrix laboratory) software platform. MATLAB® is a numerical computational tool with 

built-in graphical, simulation modelling and programming functionality. This software environment 

was used because of: 

i. the lack of physical real world Bayer and RGBW CFA CMOS sensors in the desired pixel 

dimensions and arrangement to perform the experiment 

ii. the need for a ground-truth reference image to perform a comparative analysis with the 

demosaicked equivalent to assess algorithm performance 

iii. the fact that several established state-of-the-art algorithms are not available in the public 

domain due to strict confidentiality and non-disclosure agreements and must themselves be 

modelled from their journal and/or patent information 

Modelling the experiment in the MATLAB® platform allowed for the simulation of the image 

acquisition as well as the colour processing and interpolation (demosaicking) shown in Figure 2.2. It 

also allowed for the modelling of a comparison between the original ground-truth reference image and 

the final reconstructed demosaicked image. 

It should be noted that the associated process shown in Figure 2.2 that form part of the image processing 

pipeline such as noise filtering, white balance adjustment and post processing enhancement techniques 

are not modelled because: 

i. this work is primarily focused on the efficacy of demosaicking process 

ii. these associated processes are considered independently of the demosaicking stage  

iii. some processes such as noise tend to be device-specific due to design and choice of materials 

of the physical camera and modelling them would constrain the applicability of the proposed 

algorithm 

iv. some enhancement processes, such as gamut correction, are purely subjective and image quality 

assessment would vary amongst observers 

 

5.1 Simulation Process 

Each of the aforementioned phases of image acquisition, demosaicking and comparison were modelled 

as MATLAB® algorithm function blocks in line with the physical equivalent shown in Figure 2.7. The 

functional MATLAB® code blocks created and forming part of this research study are provided in their 

entirety in Appendix A.  
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Figure 5.1 The experimental MATLAB simulation process 

 

The image acquisition algorithm block takes the three dimensional M×N×3 original ground truth 

image, I, subsampling it to the CFA equivalent image representation, ICFA. In this work, this block has 

two functional variants depending on whether the algorithm under consideration is driven using a Bayer 

or an RGBW colour filter array. If the algorithm uses a Bayer CFA, the resulting CFA equivalent image 

is two dimensional. However, in the RGBW case, the image acquisition block would produce a three 

dimensional CFA equivalent image. Code blocks detailing these processes are provided in Section A.2. 

The demosaicking algorithm block is responsible for the conversion of the CFA representation, ICFA, 

to a fully reconstructed demosaicked image, IR. This block is the main area of study and a functional 

block variant was created for the proposed algorithm as well as each established state-of-the-art 

demosaicking algorithm that formed part of the overall test bed. The main aim of this block is to model 

equation (2.2). The proposed algorithm is given in Section A.1 while the test bed algorithms are 

provided in Section A.4. It should be noted, due to confidentiality agreement constraints in industry, 

the author created and implemented MATLAB® versions of the state-of-the-art test bed demosaicking 

methods from their initial journal, conference periodical or patent formulation. 

The final simulation process is the comparison algorithm block detailed in Section A.3. Its function is 

to provide a quantitative and qualitative analysis of the overall reconstruction by comparing the 

demosaicked image, IR, to the original image, I. A quantitative analysis is achieved by implementing a 

comparison using the established image quality assessment techniques laid out in the conceptual 

framework in Chapter 3. These are the mean square error (MSE), colour peak signal-to-noise ratio 

(CPSNR) and the structural and feature similarity indices (SSIM/FSIM). Each assessment method is 

developed as a MATLAB® function and combined to form the algorithm functional block. A qualitative 

analysis was implemented by having the comparison algorithm block saving both the original and 

reconstructed image in computer storage for the purposes of display to a human observer at a later time. 
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5.2 Empirical Determination of Corrective Terms (k2, k3 and ε) 

Prior to using the proposed algorithm; a determination of corrective terms was performed. From 

equations (4.6) and (4.7), any gradient based demosaicking algorithm may have up to two corrective 

terms; denoted as c1 and c2. Many of the established algorithms either set these terms to zero or give 

arbitrary values to these terms to fulfil the fractional requirement of c1 and the small positive value 

requirement of c2.  

However, due to the fact that these values are themselves used in the initial estimate stage, the choice 

of value may impact demosaicking performance. Consequently, the author felt it was necessary to 

empirically determine these corrective terms. Comparing equation (4.6) to (4.13) and equation (4.7) to 

(4.14), (4.22), (4.27), (4.32) and (4.37) the proposed algorithm designed the corrective terms to be: 

 
𝑐1 = (𝑘2𝑘3) 

𝑐2 =  휀 
(5.1) 

Where the variable plane factors k2 and k3 constitute the first corrective term and the small positive 

constant 휀 is the second. To analyse the effect of these corrective terms, a base gradient demosaicking 

algorithm was created and applied to the reconstruction of Bayer CFA content using the simulation 

process highlighted in Figure 5.1. This base algorithm was created by using simplified variants of 

equations (4.13) and (4.14) that operate in the cardinal directions and primarily focus on the green 

colour plane. These are shown below in equation (5.2) through to equation (5.4): 

 

�̃�𝑅44
𝑁 = 𝐺34 +  (𝑘2𝑘3)(𝑅44 − 𝑅24) 

(5.2) 
�̃�𝑅44

𝑊 = 𝐺43 +  (𝑘2𝑘3)(𝑅44 − 𝑅42) 

�̃�𝑅44
𝑆 = 𝐺54 +  (𝑘2𝑘3)(𝑅44 − 𝑅64) 

�̃�𝑅44
𝐸 = 𝐺45 +  (𝑘2𝑘3)(𝑅44 − 𝑅46) 

 

 Φ𝑅44
𝑘 =  Φ𝐺𝑟𝑒𝑒𝑛,𝑅44

𝑘 + 휀 (5.3) 

Where: 

 

Φ𝑅44
𝑁 = (|𝐺34 − 𝐺23| + |𝐺34 − 𝐺25|) + 휀 

Φ𝑅44
𝑊 = (|𝐺43 − 𝐺32| + |𝐺43 − 𝐺52|) + 휀 

Φ𝑅44
𝑆 = (|𝐺54 − 𝐺63| + |𝐺54 − 𝐺65|) + 휀 

Φ𝑅44
𝐸 = (|𝐺45 − 𝐺36| + |𝐺45 − 𝐺56|) + 휀 

(5.4) 
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The weights of this base algorithm and the final value for missing pixels in the green colour plane are 

established using equations (5.5) and (5.6) that are cardinal variants of equations (4.17) and (4.20) 

respectively. 

 𝜑𝑅44
𝑘 =  

1

Φ𝑅44
𝑘  (5.5) 

 

 �̂�𝑅44 =  
∑ {𝜑𝑅44

𝑘 �̃�𝑅44
𝑘 }𝑘∈(𝑁,𝑆,𝐸,𝑊)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁,𝑆,𝐸,𝑊)

⁄  (5.6) 

This treatment explaining the synthesis of this base algorithm is also provided in the author’s paper 

outlining corrective term usage [138]. The three forms of equation (4.12a) were tested using several 

images from the Kodak and McMaster-IMAX picked at random. Normalising k1 to 1, k2 and k3 were 

varied from 0 to 2 in steps of 0.1. Their CPSNR, SSIM and FSIM values were recorded. The optimal 

values of k2 and k3 for each form of equation (4.12a) were determined and their values noted and these 

are shown in Table 5.1. The observed the optimal values were at k2 = 0.8 and k3 =0.7. These were the 

values used and indicated in Chapter 4. 

For the second corrective term denoted by ε, a preliminary estimation of value was performed by 

exposing two images from two different image sets (kodim21 from the Kodak Image Set and mcm04 

from the McMaster-IMAX Image Set) to the same base gradient algorithm provided in [138] and 

varying the value of ε logarithmically. Using equation (4.7), only the green colour plane was considered 

during the ε analysis. The results of the reconstruction using the same base gradient algorithm but 

differing values of ε is shown in Figures 5.2 and 5.3. From simple visual inspection, the optimal value 

was between ε=1 and ε=100.  

Table 5.1 Performance metric variations for different k2 and k3 combinations 

Set Case 1: 𝐤𝟐 = 𝐤𝟑 = 𝟏 Case 2: 𝐤𝟐 = 𝐤𝟑 = 𝟎. 𝟖 Case 3: 𝐤𝟐 = 𝟎. 𝟖, 𝐤𝟑 = 𝟎. 𝟕 

CPSNR 

Kodak 38.469 41.111 41.356 

McMaster-IMAX 37.661 39.407 39.756 

SSIM 

Kodak 0.9721 0.9813 0.9818 

McMaster-IMAX 0.9512 0.9652 0.9676 

FSIM 

Kodak 0.9690 0.9720 0.9723 

McMaster-IMAX 0.9655 0.9684 0.9688 

 

Refinement of the ε value was achieved by exposing each image in the Kodak set to 33 different ε 

values in the range of ε=0 to ε=100. The values of PSNR, SSIM and FSIM were calculated and recorded 

at each step point and the average result for each metric over the entire Kodak image set was determined. 
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The resultant trend is plotted in Figure 5.4. This process was repeated in three other image sets: 

McMaster-IMAX, McGill University Calibrated Color Image Set [139] and the default local images 

found on a Windows 7 computer. 

 

휀 = 0 

 

휀 = 1 

 

휀 = 10 

 

휀 = 100 

 

휀 = 1000 

 

Original 

Figure 5.2 A comparison of various ε values using kodim21 of the Kodak Image Set 

 

 

휀 = 0 

 

휀 = 1 

 

휀 = 10 

 

휀 = 100 

 

휀 = 1000 

 

Original 

Figure 5.3 A comparison of various ε values using mcm03 of the McMaster-IMAX Image Set 
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From Figure 5.4, the optimal value over all performance metrics was determined to occur at ε = 4. This 

was the value used in the proposed algorithm outlined in Chapter 4 and Section A.1 of Appendix A. 

(a) PSNR Variation 

 

(b) SSIM Variation 

 

(c) FSIM Variation 

 

Figure 5.4 Variation of performance metrics for different values of ε 
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5.3 Simulation Methodology and Testing Procedure 

The simulation of image acquisition, demosaicking and comparison processes was performed using 

MATLAB® R2015b running on an Intel® Core ™ i5-6200 CPU @ 2.39 GHz processor.  

The testing procedure was as follows. For each image set defined in Table 3.2: 

i. Every image was decomposed to a Bayer CFA equivalent (or RGBW CFA equivalent in the 

case of some of the RGBW methods lacking a Bayerisation process) by passing it through the 

image acquisition algorithm block. 

ii. The CFA equivalent image was then passed through all the algorithms forming the 

experimental test bed in turn. There were nine (9) algorithms considered in total, comprising 

the proposed method along with the established state-of-the-art current methods. Each method 

is provided in Appendix A and described below in Table 5.1. Each algorithm is realised as a 

demosaicking algorithm block and results in a unique demosaicked image.  

Table 5.2 List of algorithms forming experimental test bed 

S/n Algorithm Heuristic Class CFA 
Year 

Developed 

1 2 
Constant Difference Based 

Interpolation (CDBI) [68] 

Constant Hue 

Based 
Bayer n/a 

2 3 
Edge Directed Interpolation (EDI) 

[76] 
Edge Bayer 2006 

3 4 
Malvar-He-Cutler algorithm (MHC) 

[79] 
Edge Bayer 2004 

4 5 Wang algorithm (Wang) [81] Gradient Bayer 2012 

5 6 
Edge Strength Filter Based 

Interpolation (ESFBI) [83] 
Gradient Bayer 2012 

6 7 
Multi-Gradient Based Interpolation 

(MGBI) [86] 
Gradient Bayer 2013 

7 8 
Average Colour Ratio algorithm 

(ACR) [140] 
Edge RGBW 2014 

8 9 
Edge Directed Colour Ratio 

algorithm (EDCR) [140] 
Edge RGBW 2014 

9  Proposed algorithm Gradient 
Bayerised 

RGBW 
2017 

 

iii. In step (ii), a maximum bounding window region of five pixels-width was used as padding and 

ignored in the reconstruction phase so that the results over different algorithms could be 

normalised. This was done as different algorithms in the experimental test bed employ different 

path descriptor lengths to establish edge or gradient information.  

iv. Each reconstructed version of the image under consideration was then passed in turn to the 

comparison algorithm block for quantitative determination of the four image quality assessment 
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metrics; namely MSE, CPSNR, SSIM and FSIMC. The values obtained were recorded. The 

reconstructed version was then stored for qualitative presentation. 

v. The above steps were repeated in sequence until all the images in an image set were processed. 

A geometric mean was then taken for each of the algorithms. A geometric mean was chosen 

because it is more resistant to perturbation from outlier information than an arithmetic mean. 

These perturbations were inherent due to the random nature of the images. 

vi. An overall rank was generated from the geometric mean data to show the position of the 

proposed algorithm relative to all the test bed algorithms. These values and the associated 

geometric mean data are highlighted in the detailed tabulation of simulation results found in 

Appendix B.  

vii. After all the six selected image sets had been processed in the manner outlined in steps (i) 

through (vi), a compilation of the geometric means was performed and the data is presented in 

Tables 5.3 through to 5.6. 

5.4 Compiled Experimental Simulation Results 

Tables 5.3 – 5.6 below present the geometric mean value data and associated ranking of each algorithm 

over each image set collated from the values provided in Appendix B. A two decimal point resolution 

for the MSE and CPSNR (both range from 0 to infinity) and a three decimal point resolution for the 

SSIM and FSIMC (both range from 0 to 1) was considered adequate. As previously mentioned, 

geometric mean rather than arithmetic mean evaluation was used to ensure average results were more 

resistant to outlier data effects. 

Table 5.3 below highlights the average MSE values for each of the nine test bed algorithms when 

exposed to the 115 images from the six image databases. The proposed algorithm achieved a median 

performance rank of 6 overall. The raw image data values are tabulated in Tables B.1 through to B.6 of 

Appendix B. 

Table 5.3 Geometric Average MSE evaluation values and associated ranking  

Image Set (No. of 

Images) 

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank 

USC-SIPI(16) 6.99 6.07 5.39 5.72 7.76 6.96 11.72 13.21 6.58 4 

Kodak (24) 8.42 7.19 3.62 4.95 3.13 2.74 11.57 10.40 5.91 5 

McMaster-IMAX 

(18) 

6.39 5.27 4.71 4.88 6.44 5.87 9.61 12.72 5.86 4 

Condat (30) 7.84 6.12 5.42 5.27 6.45 5.96 11.72 7.43 6.82 6 

ARRI (12) 2.14 1.53 1.63 1.29 2.40 2.72 2.54 4.32 2.85 8 

Custom (15) 4.66 4.17 1.55 2.47 1.27 1.28 6.38 5.48 3.13 5 

Average (115) 5.56 4.56 3.29 3.64 3.81 3.64 7.93 8.22 4.90 6 
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Table 5.4 gives the average CPSNR evaluation values for the entire algorithm test bed over the entire 

image databases chosen. From the compilation of the raw data from Tables B.7 to B.12 in Appendix B, 

the proposed algorithm achieves the premier CPSNR geometric mean performance of 40.78 dB over 

the six chosen image sets. 

Table 5.4 Geometric Average CPSNR evaluation values (in dB) and associated ranking  

Image Set (No. of 

Images) 

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank 

USC-SIPI(16) 33.27 38.12 38.11 38.31 37.60 37.44 37.48 36.76 39.54 1 

Kodak (24) 32.80 38.84 39.72 40.12 41.23 41.70 36.75 36.61 41.39 2 

McMaster-IMAX 

(18) 

33.71 38.89 38.94 38.96 38.44 38.43 37.64 36.92 38.94 2 

Condat (30) 32.34 38.43 38.29 38.44 38.18 38.09 36.75 36.84 38.90 1 

ARRI (12) 38.44 43.68 43.06 42.50 41.57 40.73 42.44 41.11 42.61 3 

Custom (15) 37.29 41.48 43.32 43.39 44.99 44.45 39.04 38.84 43.55 3 

Average (115) 34.56 39.86 40.18 40.24 40.25 40.07 38.30 37.81 40.78 1 

 

The average SSIM performance is presented in Table 5.5 for the algorithm testbed. The compiled data 

from the raw image values given in Section B.3 of Appendix B shows that the proposed algorithm 

performs second best, only behind the CDBI technique by a value of 0.002 (or 0.2%) 

Table 5.5 Geometric Average SSIM evaluation values and associated ranking  

Image Set (No. of 

Images) 

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank 

USC-SIPI(16) 0.956 0.948 0.949 0.947 0.944 0.937 0.947 0.937 0.961 1 

Kodak (24) 0.979 0.975 0.979 0.979 0.981 0.972 0.954 0.942 0.979 2 

McMaster-IMAX 

(18) 

0.979 0.973 0.970 0.969 0.961 0.956 0.969 0.958 0.972 3 

Condat (30) 0.983 0.978 0.976 0.976 0.969 0.956 0.969 0.941 0.976 3 

ARRI (12) 0.998 0.996 0.998 0.998 0.997 0.954 0.998 0.989 0.997 5 

Custom (15) 0.997 0.995 0.994 0.995 0.988 0.971 0.994 0.985 0.995 2 

Average (115) 0.982 0.977 0.977 0.977 0.973 0.958 0.971 0.958 0.980 2 

 

From the raw image data of the selected image sets provided in Section B.4 of Appendix B, Table 5.6 

is generated. This table provides the geometric mean data for the FSIMC image quality assessment 

metric for all the algorithms in the demosaicking test bed over the selected image databases. From Table 

5.6, it is noted that the proposed algorithm ties for first place in performance with the CDBI and EDI 

methods with an average value of 0.991. 
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Table 5.6 Geometric Average FSIMC evaluation values and associated ranking  

Image Set (No. of 

Images) 

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank 

USC-SIPI(16) 0.990 0.987 0.973 0.978 0.968 0.934 0.975 0.961 0.988 2 

Kodak (24) 0.994 0.993 0.982 0.986 0.980 0.948 0.976 0.962 0.989 3 

McMaster-IMAX 

(18) 

0.991 0.993 0.980 0.984 0.977 0.953 0.979 0.967 0.993 1 

Condat (30) 0.990 0.991 0.979 0.984 0.975 0.946 0.976 0.940 0.984 3 

ARRI (12) 0.990 0.994 0.999 0.998 0.998 0.972 0.999 0.988 0.998 3 

Custom (15) 0.990 0.988 0.995 0.997 0.992 0.970 0.993 0.982 0.995 2 

Average (115) 0.991 0.991 0.985 0.988 0.981 0.954 0.983 0.966 0.991 1 
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6 ANALYSIS AND DISCUSSION OF RESULTS 

 

From the simulation process outlined in Chapter 5, the 115 test images exposed to the nine different 

demosaicking algorithms of the test bed and four image quality assessment metrics resulted in a data 

set of 4,140 values.  To make logical inferences from this data set, the author subdivided the analysis 

into three main sections: 

i. RGBW CFA domain analysis: to test the efficacy of the proposed algorithm’s Bayerisation 

process and establish whether it is of any benefit  

ii. Single plane reconstruction analysis: to test the performance of the proposed algorithm’s 

reconstruction in the green colour plane – the most significant of the three colour planes from 

a human physiological viewpoint 

iii. Full colour and object reconstruction analysis: to measure the overall performance of the 

algorithm when compared to the entire test bed  

The RGBW only analysis operates on three of the nine algorithms – the Average-based Colour 

Reconstruction algorithm (ACR) [140], the Edge Detection-based Colour Reconstruction algorithm 

(EDCR) [140] and the proposed method. In this category, all of the image quality metrics are 

considered. The single and full colour analysis techniques add the Bayer based methods – that is the 

Constant Difference Based Interpolation (CDBI) [68], Edge Directed Interpolation (EDI) [76], Malvar-

He-Cutler algorithm (MHC) [79], Wang algorithm (Wang) [81], Edge Strength Filter Based 

Interpolation (ESFBI) [83] and the Multi-scale Gradient Based Interpolation (MGBI) [86].   

In the single plane reconstruction analysis, the MSE data established on the green plane is compared 

over all algorithms. Finally, the full colour and object fidelity analysis makes use of the CPSNR, SSIM 

and FSIMC data. It should be noted here, as stated in Table 3.3, that an improvement in performance in 

an algorithm is observed when the MSE is lower and the CPSNR, SSIM and FSIMC are higher than 

comparative methods.  

For the purpose of analysis, all graphs plotted in this section are oriented in such a manner that the 

Bayer-based algorithms increase in descriptor complexity as one moves from left to right: that is from 

constant hue-based descriptors (CDBI); to edge-based descriptors (EDI, MHC) and finally to gradient-

based descriptors (Wang, ESFBI, MGBI). Furthermore, the complexity within each descriptor class 

increases from left to right. For example, MHC is a more complex algorithm when compared to EDI. 

By the same token the MGBI algorithm is the most complex of its descriptor class. 
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6.1 RGBW CFA Domain Reconstruction Analysis 

Extracting the geometric mean data from algorithms working in the RGBW CFA domain from the 

results tables in Chapter 5, it is observed that the proposed method has a superior performance to the 

two other RGBW algorithms in the test bed. This is because the proposed algorithm exhibits the lowest 

MSE and highest CPSNR, SSIM and FSIMC values of the subset. This is shown in Table 6.1. 

Table 6.1 RGBW CFA domain algorithm data 

 ACR EDCR Proposed 

Average MSE 7.93 8.22 4.90 

Average CPSNR (dB) 38.30 37.81 40.78 

Average SSIM 0.971 0.958 0.980 

Average FSIMc 0.983 0.966 0.991 

 

From the geometric average MSE data from Table 6.1, it is noted that the proposed algorithm improves 

the green plane reconstruction by a factor of approximately 1.6 over both the ACR and EDCR 

algorithms. This was attributed to the fact that the Bayerisation process introduces more green values 

into the CFA data prior to demosaicking. Comparing the demosaicking processes outlined in Figures 

2.7 and Figure 2.8, the Bayer CFA has twice the number of green samples per unit than the equivalent 

RGBW (panchromatic) CFA of the same dimensional size. Theoretically, therefore, a reconstruction of 

this green plane would experience half the number of estimation errors in the Bayer CFA compared to 

the panchromatic RGBW case if the demosaicking process were considered equal. This is 

approximately what it observed and the author attributes the factor to be at 1.6 rather than 2 because the 

Bayerisation process itself introduces estimation errors. 

In the CPSNR geometric mean data, the proposed method also exceeds the established ACR method by 

2.97 dB and the EDCR method by 2.48 dB. The author attributed this to: 

i. the larger green sample size available to the demosaicking algorithm  

ii. the ordinal nature of the proposed demosaicking algorithm 

The larger number of pixels available in the green plane increases CPSNR performance because its 

value is largely dependent on pixel statistics. The larger the number of samples taken the better the 

CPSNR. Concurrently, the ordinal nature of the demosaicking algorithm allows the exploitation of the 

tighter pixel packing along these directions, leading to more accurate estimates in all three colour planes. 

It is this ordinal demosaicking regime that the author also attributes to the proposed algorithm yielding 

higher SSIM and FSIMC values than the established panchromatic demosaicking techniques. The SSIM 

and FSIM operate on analysing object reconstruction. Using Figure 4.3 as reference, by demosaicking 

using ordinal path descriptors in the green plane, there is a lower likelihood of over-smoothing an object 

edge. This is particularly important in regions of object edge transition.   
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6.2 Single Plane Colour Reconstruction Analysis 

The single plane colour reconstruction analysis is performed by considering the MSE values obtained 

from the reconstruction of the green plane. The RGBW MSE values were considered in the previous 

section. Expanding the MSE value analysis to include all the demosaicking algorithms in the test bed; 

as shown in Figure 6.1, it is observed that the proposed method performs poorly when compared to the 

Bayer CFA based techniques. 

 

Figure 6.1 Graph of average geometric mean MSE values over all test bed demosaicking algorithms in all 

selected image sets 

 

This is a departure from the variation observed in the RGBW only methods. However, the author 

believes this is to be expected. This is because while shifting the sensor data from the RGBW to the 

Bayer domain prior to demosaicking, the Bayerisation process does so using estimate data. As such, the 

green plane does not have a 50% exact sample data profile but a 25% exact sample data plus 25% 

estimate data profile instead. In the RGBW domain, only 25% of the sensor contains exact sample data 

used for reconstruction. This median property is quantitatively proven by calculating the geometric 

mean values of the algorithms in the two domains while isolating the proposed method. This process is 

outlined in equation (6.1).  

 

 
𝑀𝑆𝐸𝐵𝑎𝑦𝑒𝑟 =  √(𝑀𝑆𝐸𝐶𝐷𝐵𝐼  × 𝑀𝑆𝐸𝐸𝐷𝐼 × 𝑀𝑆𝐸𝑀𝐻𝐶 × 𝑀𝑆𝐸𝑊𝑎𝑛𝑔 × 𝑀𝑆𝐸𝐸𝑆𝐹𝐵𝐼 × 𝑀𝑆𝐸𝑀𝐺𝐵𝐼)

6
 

𝑀𝑆𝐸𝑅𝐺𝐵𝑊 =  √(𝑀𝑆𝐸𝐴𝐶𝑅 × 𝑀𝑆𝐸𝐸𝐷𝐶𝑅) 

(6.1) 
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This results in the following values: 

 

𝑀𝑆𝐸𝐵𝑎𝑦𝑒𝑟 = 4.43 

(6.2) 𝑀𝑆𝐸𝑅𝐺𝐵𝑊 = 8.07 

𝑀𝑆𝐸𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 4.90 

 

Equations (6.1) and (6.2) provide an explanation to the fact that the proposed algorithm ranks in the 

near median position (6th) in the overall MSE evaluation of Table 5.3. This issue of estimate data leads 

to inaccuracies in reconstruction, especially in the case of the ARRI image set that has a very large pixel 

count due to its resolution characteristics. 

 

6.3 Full Colour Reconstruction and Object Fidelity Analysis 

The main aim of any demosaicking process is to ensure that colour reconstruction from subsampled 

sensor data is effective and provides a true representation of the scene. This, however, is sometimes 

achieved at the expense of edge definition of an object in an image scene. A demosaicking algorithm 

may use a large number of descriptors to accurately interpolate missing colour information. However, 

the large number of descriptors may adversely affect object edge in a scene resulting in colour shifting 

or blurring. Some of these errors are shown in Figure E.7: (b) Colour Shifting (d) Blurring. In both 

cases, the colour is a true representation of the scene but the sharp edge definition is lost.  

The converse is true; one may use fewer descriptors to maintain edge fidelity. However, at high 

frequency colour regions (such as changes between different objects), these descriptors are inadequate 

to provide a proper colour transition. This results in demosaicking errors such as Moiré and zipper 

effects also depicted in Figure E.7: (a) Zipper effect and (c) Moiré effect. Here the edges are quite sharp; 

however, either spurious colours are generated or granulation of the edge occurs. 

Consequently, a balance must be observed and maintained by any demosaicking algorithm. This is 

particularly pertinent in images taken by low to medium resolution cameras. This is because they have 

a lower sub-sample data count and must rely more heavily on descriptor information. 

In the full reconstruction analysis, the author selected the CPSNR to provide an indication of colour 

quality and the SSIM/FSIMC to provide edge quality indication.     

 

6.3.1 Colour Reconstruction Analysis from CPSNR data 

From the data set generated from the experimental simulation, the geometric mean CPSNR data was 

extracted and plotted in Figure 6.2. The proposed algorithm exhibited the best overall CPSNR value of 
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40.78 dB that exceeded by best performing Bayer algorithm in the test bed, that is ESFBI, by 0.53dB.  

It also exceeded the best performing RGBW algorithm that is the ACR method by 2.48 dB. 

The author attributes the high performance over Bayer methods to: 

i. the use of gradient descriptors that operate in ordinal directions 

ii. the encoding of white pixel (luminosity) information through the Bayerisation process 

The high performance over RGBW methods is attributed to the increase in green colour sample data 

through the Bayerisation process. 

From the 6th-order polynomial curve fitted trend line provided in Figure 6.2, it is observed that as 

algorithm complexity increases in the Bayer based algorithms, there is a rise, plateauing and fall of the 

CPSNR values. This is indicative of a ‘maximum threshold region’ beyond which increasing descriptor 

complexity does not benefit demosaicking. By using ordinal directed descriptors coupled with the 

encoding of luminosity information; the proposed method exceeds this threshold and generates, on 

average, a more representative facsimile of the original scene. 

 

Figure 6.2 Graph of average geometric mean CPSNR values (in dB) over all test bed demosaicking algorithms 

in all selected image sets 

 

Comparing the RGBW counterparts, an increase in descriptor complexity results in a reduction in 

CPSNR. The author believes this is due to the fact that the RGBW domain has a low sub-sample data 

count in the green plane. Therefore, increasing the descriptor complexity at a low sub-sample count 

leads to an increase in estimation errors rather than a reduction. This inference is strengthened by the 

fact that the more complex EDCR exhibits a higher MSE in Figure 6.1 than the simpler ACR method. 

The proposed method, however, increases its low green sub-sample count through the Bayerisation 
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process and consequently operates as a Bayer algorithm. As such its increased complexity is not 

hampered in the same way as the EDCR method. 

 

6.3.2 Fidelity of Object Reconstruction Analysis from SSIM and FSIM data 

The SSIM and FSIMC data generated from the simulation is plotted in Figures 6.3 and 6.4 respectively. 

The proposed algorithm exhibits the best FSIMC, of 0.9911 (rounded off to 0.991) followed by CDBI 

at 0.9909 and EDI at 0.9908 (both also rounded off to 0.991). For the purposes of analysis, the FSIMC 

is considered the same over all three algorithms. The proposed algorithm has an SSIM value of 0.980 

which the second best performance value after the 0.982 value of the CDBI algorithm. 

 

 

Figure 6.3 Graph of average geometric mean SSIM values over all test bed demosaicking algorithms in all 

selected image sets 

 

The author attributes the high values of SSIM and FSIMC from: 

i. the use of a wholly ordinal-directed descriptor generation system uses pentomino inspired paths 

ii. the non-symmetry of individual N, W and Z pentomino paths with emphasis on shorter 

descriptor paths  
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Figure 6.4 Graph of average geometric mean FSIMC values over all test bed demosaicking algorithms in all 

selected image sets 

 

Observation of the trend lines and bar graph values of both graphs in Figures 6.3 and 6.4 reveals a 

similar trend over both the SSIM and FSIM metrics. This is to be expected as both metric are similar in 

definition and vary only in application size. In both the Bayer-based and RGBW-based comparison 

algorithms, it is observed that as the algorithm descriptor complexity increases, the SSIM and FSIMC 

decreases. EDI and CDBI perform well due to their simple interpolation descriptors. 

The reason for this inverse relationship arises from the fact that all the algorithms in the test bed with 

the exception of the proposed method use a cardinal direction for establishing descriptors. An increased 

descriptor complexity results in the use of a larger pixel grid. Consider the different grid sizes shown in 

Figure 4.4, and the associated process of reconstruction. In a 7×7 grid, a Bayer-based algorithm has a 

pool of 16 pixels with which to generate a sufficient set of descriptors for interpolation.  Increase to a 

9×9 grid, the pool has grown substantially to 24 pixels.  

This larger size occurs in a loosely packed grid and the introduction of the far outlier pixels, denoted Oi 

in equation 6.3, during descriptor generation results in an overall smoothening effect at the pixel of 

interest due the large distance traversed from the neighbour pixels, Ni. A larger distance often means 

larger path difference, dpath:  

 𝑑𝑝𝑎𝑡ℎ =  ∑ |(𝑁𝑖 − 𝑂𝑖

𝑛

𝑖=1

)| > 0 (6.3) 
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A large path difference value can be interpreted as a higher likelihood of smoothening because of the 

inverse relationships descriptor paths have with their edges/gradients, as shown in equation (4.8). This 

smoothening results in loss of object edge information, lowering the SSIM and FSIMC values. 

The proposed algorithm works solely on an ordinal directed environment. From Figure 4.3 and 4.4, it 

is noted that the tight packing ensures a smaller comparative distance is traversed by the descriptor 

paths generated. As such, the overall path difference value generated from equation (6.3) will be 

comparatively smaller that the cardinal driven algorithms of similar complexity. This in turn will allow 

for sharper edges and fidelity of object reconstruction overall.  

The additional property of the N, W and Z paths having a larger number of shorter paths than longer 

paths reinforces the edge sharpening property of the algorithm via equation (6.3). A large number of 

shorter paths is better than a small number of large paths due to the fact that small paths have a higher 

likelihood of producing near null values compared to larger paths, resulting in a smaller path difference. 

 

6.3.3 Reconstruction Analysis from Visual Inspection 

To augment the quantitative data established in Figures 6.2, 6.3 and 6.4, three images were selected 

from the 115 tested – each from a different image set. In each image, a region of interest (ROI) was 

selected after completing the demosaicking process and enlarged for observation of inconsistencies in 

image reconstruction. These regions of interest were also visually inspected to determine the test bed 

algorithms’ resistance to demosaicking artefacts. 

The first image under visual inspection was the sipi_im11 or Mandrill image from the USC-SIPI 

database. The region of interest is the right hand side cheek of the mandrill. The image ROI contains 

fine detail regions due to the fur of the mandrill. From the visual data presented in Figure 6.5, color 

shifting is observed to occur appreciably in the CDBI, EDI, MHC and Wang methods and to a lesser 

degree in the ESFBI method. This shifting takes the form of small blue-orange or purple-green pixel 

blocks in the ROI. The ACR and EDCR methods are more resistant to color shifting. However, both 

these methods instead suffer from blurring effects due to the oversmoothening nature of the algorithms. 

In particular, the oversmoothening property of the EDCR algorithm begins to introduce a wash-out 

effect on the ROI. 

From the sipi_im11 image inspection of Figure 6.5, only the MGBI and the proposed methods result in 

reconstructions of the ROI that exhibit no real demosaicking artefacts. 
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(a) Original image with enlarged section expanded for reference 

 

(b) Original expanded 

 

(c) CDBI expanded (d) EDI expanded 

 

(e) MHC expanded 

(f) Wang expanded (g) ESFBI expanded (h) MGBI expanded 

 

(i) ACR expanded 

 

(j) EDCR expanded 

 

(k) Proposed expanded 

Figure 6.5 A visual comparison of the right cheek section of the sipi_im11 image from the USC-SIPI Image Set 

over the different demosaicking schemes in the test bed 
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The second image selected for a qualitative visual inspection was the kodim19 image, also referred to 

as the ‘Lighthouse’. It is a member of the Kodak Image Set. This particular image exhibits high 

frequency colour transition in the fence section of the image due to the narrow distance between 

individual fence posts. Enlarging the fence section near the coin-operated binoculars, in the right of the 

image, to act as the region of interest; the reconstruction results are given in Figure 6.6. It is noted that 

the CDBI, MHC and ESFBI methods suffer from discernable blue-orange Moiré patterns. The EDI and 

proposed methods suffer from the same artefact but to a lesser degree. The ACR and EDCR methods 

experience a yellow-purple Moiré effect by virtue of demosaicking in the RGBW domain. The Moiré 

pattern in the EDCR is so severe that the bands constituting the artefact are clearly observed. The MGBI 

and Wang methods suffer the least from the colour Moiré effect. However, a closer inspection reveals 

that this resistance comes at the expense of a granulation of the fence edges. This granulation is also 

observed in the EDI reconstruction of the ROI. The proposed method also suffers from colour Moiré in 

the fence post region. This is because the posts themselves are vertically placed reducing the efficacy 

of the ordinal gradients selected.  

The third image selected from the various images was the mcm11 image from the McMaster-IMAX 

Image Set. This image is of a striped tea cloth towel surrounded by a batch of freshly washed assorted 

vegetables. Selecting the ROI are the tea cloth towel and the nearby green leaves, an enlargement of 

this region was extracted from the original image. The reconstruction of the image was done with all 

the demosaicking algorithms of the test bed, the ROI extracted and the results are shown in Figure 6.7. 

It is observed that the CDBI, MHC, ESFBI and MGBI algorithms result in a ROI reconstruction with 

‘jaggies’ present. This demosaicking artefact is observed primarily on the leaves section in the region 

of interest. The EDI and Wang methods suffer from the introduction of black spots in the leaves sections 

and a smotthening of the leaf edges. The ACR and EDCR reconstructions suffer from excessive blurring 

of the leaves and towel sections of the ROI. The EDCR method also introduces color shifts in the bands 

of the towel. 

In the mcm11 image ROI reconstructions of Figure 6.7, the proposed method exhibits the closest 

approximation to the reference original.  
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(a) Original (b) CDBI 

 

(c) EDI 

 

(d) MHC 

 

(e) Wang 

 

(f) ESFBI 

 

(g) MGBI 

 

(h) ACR 

 

 

(i) EDCR 

 

(j) Proposed 

 

Figure 6.6 A visual comparison of the fence section of the kodim19 image from the Kodak Image Set over the 

different demosaicking schemes in the test bed 
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(a) Original image with enlarged section expanded for reference (b) Original expanded 

 

(c) CDBI expanded 

 

(d) EDI expanded  (e) MHC expanded 

 

(f) Wang expanded  (g) ESFBI expanded  (h) MGBI exanded 

 

(i) ACR expanded 

 

(j) EDCR expanded  

 

(k) Proposed expanded 

Figure 6.7 A visual comparison showing the expanded towel cloth section of the mcm11 image from the 

McMaster-IMAX Image Set over the different demosaicking schemes in the test bed 
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From the brief visual inspection, it was noted that the proposed algorithm was largely invariant to most 

of the documented demosaicking effects namely colour shifting, blurring and granulation jaggies. 

However, it was found to be somewhat weak to colour Moiré in high frequency transition regions. The 

proposed algorithm, in line with its design, also ensured that object fidelity was not sacrificed for colour 

accuracy. This was observed visually in Figure 6.6 when comparing the proposed method to the MGBI 

method. 

6.4 Supplementary Observations from the Different Image Sets 

The performance rank values for the proposed algorithm over all image sets, established from 

simulation, is provided in Table 6.2. In all but one of the image sets, the proposed algorithm ranks in 

the top three best performing algorithms over CPSNR, SSIM and FSIMC assessment metrics. 

Table 6.2 Proposed algorithm's ranking over CPSNR, SSIM and FSIMC metrics 

 CPSNR SSIM FSIMC 

USC-SIPI(16) 1 1 2 

Kodak (24) 2 2 3 

McMaster-IMAX (18) 2 3 1 

Condat (30) 1 3 3 

ARRI (12) 3 5 3 

Custom (15) 3 2 2 

Average (115) 1 2 1 

 

From the conceptual framework section, in particular Table 3.2, each of the image sets had been chosen 

for a particular property that is exhibited uniformly in all of its images. From the resolution designations 

set up in the framework, it is observed that the proposed algorithm had a very robust CPSNR over the 

low resolution image sets (USC-SIPI, Kodak, McMaster-IMAX and Condat) ranking in the top two 

algorithms. In the medium image set (Custom) and high resolution image set (ARRI), the proposed 

algorithm had the third ranking CPSNR value. 

In the SSIM performance, the proposed algorithm achieves a robust edge preservation profile. This is 

because it obtains top three level performance in both the low and medium resolution sets; the only 

exception overall is in the high resolution ARRI image set where it achieves a median rank. Finally, in 

the FSIMC affirms the robust nature of the proposed algorithm where, on average, it is the best 

performing demosaicking algorithm. 

From the average information over all image sets, the proposed algorithm is found to be invariant to the 

properties of various image sets such as object number and types in a scene, light intensity variations 

and saturation effects. 
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7 CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

7.1 Concluding Remarks 

A novel heuristic-based localised area demosaicking algorithm for panchromatic colour filter arrays has 

been proposed, outlined and developed in this work. It is a two stage process that operates by first using 

a Bayerisation process to convert RGBW panchromatic CFA sensor data to an equivalent Bayer 

representation. The Bayerisation process allows for the capture and encoding of luminance information 

from the RGBW domain into the Bayer domain for use in the demosaicking. The proposed algorithm’s 

second stage then employs a unique ordinal-directed gradient interpolation mechanism, founded on 

pentomino constructs, to generate a sufficient number of path descriptors that allow for robust colour 

reconstruction without compromising on object edge information. The gradient-based interpolation 

process was strengthened by additional novel concepts such as the quincuncial exploitation of the 

ordinal nature of the green colour plane and the introduction of corrective variable plane (k2 and k3) and 

path (ε) terms. 

In line with the study’s objectives of operation for low and medium resolution cameras, a conceptual 

framework was established yielding an appropriate grouping of image sets. Four of the six image sets 

were of low resolution, one of medium resolution and one of high resolution. The image sets were 

selected from both standard and custom and each set provided an opportunity to test a different image 

property. 

To test the efficacy of the proposed algorithm in a structured manner, a robust test bed of well 

documented and state-of-the art demosaicking algorithms both in the Bayer and panchromatic domain 

was created. Together with the proposed algorithm, the entire test bed was passed through the 

aforementioned image sets and a quantitative assessment (through four standard image assessment 

metrics) and qualitative assessment (through visual inspection) was made. It was determined that the 

proposed algorithm, from average metric data achieved a high colour reconstruction with maintaining 

object edge acuity. From a visual inspection, it was found the proposed algorithm was mostly resistant 

to the expected visual artefacts reviewed in literature.  

 

7.2 Note on Publications 

This study on demosaicking algorithm design resulted in the publication of the following internationally 

peer-reviewed papers: 
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i. K. Wachira, E. Mwangi, and G. Jeon, “An Ordinal Direction Driven Gradient-Based RGBW 

CFA Demosaicking Technique Using A Bayerisation Process and Polyomino Theory,” in IEEE 

AFRICON2017, 2017, pp. 1–6. DOI:10.1109/AFRCON.2017.8095483 [95]. 

ii. K. Wachira, E. Mwangi, and G. Jeon, “A pentomino-based path inspired demosaicking 

technique for the bayer color filter array,” in IEEE AFRICON2015, 2015, pp. 1–5. 

DOI:10.1109/AFRCON.2015.7331959 [91]. 

iii. K. Wachira, “Corrective term usage in the improvement of gradient-based bayer CFA 

demosaicking algorithms,” in IEEE EUROCON 2015 - International Conference on Computer 

as a Tool (EUROCON), 2015, pp. 1–6. DOI:10.1109/EUROCON.2015.7313800 [138]. 

iv. K. Wachira and E. Mwangi, “A multi-variate weighted interpolation technique with local 

polling for bayer CFA demosaicking,” in 2015 International Conference on Information and 

Communication Technology Research (ICTRC), 2015, pp. 76–79. 

DOI:10.1109/ICTRC.2015.7156425 [90]. 

v. K. Wachira and E. Mwangi, “A cardinal-direction quincunx based interpolation technique with 

non-uniform inter-plane weighting for bayer CFA demosaicking,” in 2015 IEEE International 

Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 

2015, pp. 1–5. DOI:10.1109/SPICES.2015.7091363 [89]. 

 

7.3 Further Work 

Consequently, it is the opinion of the author, that the main and specific objectives of this study were 

resolved. However, from the analysis of the proposed algorithm, several new questions arose such as: 

i. Why does the proposed algorithm’s performance deteriorate at higher resolutions despite the 

advantages of tighter pixel packing in the ordinal directions? 

ii. Can the Bayerisation process be improved by employing a filter, ℎ𝑎𝑙𝑡, that uses dynamic 

rather than static coefficients? 

iii. The panchromatic arrangement considered was the RGBW domain. Are the qualities of the 

proposed algorithm transferable to other panchromatic arrangements while maintaining the 

same level of image reconstruction performance? 

iv. Through both simulation and real world implementation, a complexity vs. speed analysis can 

be done to compare the proposed algorithm with other state-of-the art demosaicking 

techniques. 

v. How would compressive sensing theory be employed in demosaicking and would the results 

generated be significantly higher than established techniques? Secondly, how would 

compressive sensing affect the commonly observed demosaicking artefacts? 

 These questions are the author’s recommendations for future work in this area. 

https://doi.org/10.1109/AFRCON.2017.8095483
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Appendix A: MATLAB Code Blocks 

The MATLAB code implementations of the following demosaicking algorithms are provided below: 

A.1 Proposed Algorithm Block 

1  %========================================================================== 

2  %   Name:       ordinal5Tris_v1.m 

3  %   Author:     Kinyua Wachira, Univ. of Nairobi 

4  %   Date:       30-04-2017 (Completion) 

5  %   Desc:       an ordinal pentomino inspired path demosaicking algorithm, 

%      working under a Bayer equivalent CFA 

6  % 

7  %========================================================================== 

8    

9  %========================================================================== 

10  %   Preamble 

11  %========================================================================== 

12  % utility fcns 

13  % clc; clear all; close all hidden; 

14    

15  % load image and generate Bayer CFA representation - in particular rgbg 

16  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

17  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

18  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

19  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

20  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

21  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

22   

23  imgBayer = fcn_bayerisation(img); %used to perform the bayerisation process 

24    

25    

26  imgBayer = double(imgBayer); %need to make this a double during calculation 

27  %imgBayer = img; 

28  [R,C] = size(imgBayer); 

29  [imgRed,imgGrn,imgBlu] = deal(double(zeros(R,C))); 

30  imgPTI = deal(double(zeros(R,C,3))); 

31  %also set a border padding size  

32  pad=3; %during interpolation - the maximum width 

33  padBorder = 4; %when calculating PSNR, CPSNR 

34    

35  for i=1:1:R; 

36      for j=1:1:C; 

37          if (mod(i,2)==1 && mod(j,2)==1)  

38              imgRed(i,j) = imgBayer(i,j); 

39          elseif (mod(i+j,2)==1) 

40              imgGrn(i,j) = imgBayer(i,j); 

41          else 

42              imgBlu(i,j) = imgBayer(i,j); 

43          end; 

44      end; 

45  end; 

46    

47  %========================================================================== 

48  %   Algorithm 

49  %========================================================================== 

50  % SECTION I: GREEN CHANNEL INTERPOLATION 

51    

52  %------------------------------------------------------------------- 

53  % step 0: set the 5 variables and perform the interpolation process 

54  %------------------------------------------------------------------- 
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55  %variable set 1: choice of epsilon 

56  err = 4; %using my epsilon analysis information over 4 image sets 

57    

58  %variable set 2: green plane overemphasis and no emphasis factors 

59  noemp = 1; 

60  empGrn = 3; 

61  empOpp = 2; 

62  %variable set 3: non uniform interplane weighting 

63  k1 = 0.8; 

64  k2 = 0.7; 

65    

66  %----------------------------------------------------- 

67  % step 1: set up maps to be used for polling 

68  %----------------------------------------------------- 

69  [HRmap,VRmap,HBmap,VBmap] = deal(double(zeros(R,C))); 

70  [crmap,cbmap] = deal(double(zeros(R,C))); 

71    

72  %------------------------------------------------------ 

73  % step 2: populate the Hmaps and Vmaps 

74  %------------------------------------------------------ 

75  for i=1+2:1:R-2; 

76      for j=1+2:1:C-2; 

77          if (mod(i,2)==1 && mod(j,2)==1) %red pixel locations 

78              HRmap(i,j) = 0.25*abs(2.*imgBayer(i,j) - imgBayer(i,j-2) - 

imgBayer(i,j+2)) ... 

79                         + 0.5*abs(imgBayer(i,j-1) - imgBayer(i,j+1)); 

80              VRmap(i,j) = 0.25*abs(2*imgBayer(i,j) - imgBayer(i-2,j) - 

imgBayer(i+2,j)) ... 

81                         + 0.5*abs(imgBayer(i-1,j) - imgBayer(i+1,j)); 

82          end; 

83          if (mod(i,2)==0 && mod(j,2)==0) %blue pixel locations             

84              HBmap(i,j) = 0.25.*abs(2.*imgBayer(i,j) - imgBayer(i,j-2) - 

imgBayer(i,j+2)) ... 

85                         + 0.5*abs(imgBayer(i,j-1) - imgBayer(i,j+1)); 

86              VBmap(i,j) = 0.25*abs(2*imgBayer(i,j) - imgBayer(i-2,j) - 

imgBayer(i+2,j)) ... 

87                         + 0.5*abs(imgBayer(i-1,j) - imgBayer(i+1,j)); 

88          end; 

89      end; 

90  end; 

91    

92  %--------------------------------------------------------- 

93  % step 3: populate the cmaps - the choice/polling maps 

94  %--------------------------------------------------------- 

95  for i=1:1:R; 

96      for j=1:1:C; 

97          if (HRmap(i,j) > 2*VRmap(i,j)) 

98              crmap(i,j) = 1; 

99          end; 

100          if (VRmap(i,j) > 2*HRmap(i,j)) 

101              crmap(i,j) = -1; 

102          end; 

103          if (HBmap(i,j) > 2*VBmap(i,j)) 

104              cbmap(i,j) = 1; 

105          end; 

106          if (VBmap(i,j) > 2*HBmap(i,j)) 

107              crmap(i,j) = -1; 

108          end; 

109      end; 

110  end; 

111    

112  %------------------------------------------------------- 

113  % step 4: perform the green interpolation, with polling  

114  %------------------------------------------------------- 

115  for i=1+pad:1:R-pad; 

116      for j=1+pad:1:C-pad; 

117          if ~(mod(i+j,2)==1) 

118              %initial estimates 
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119              GNWest = 0.5*(imgGrn(i-1,j) + imgGrn(i,j-1)) + 

(k1*k2).*(imgBayer(i,j) - imgBayer(i-2,j-2)); 

120              GSWest = 0.5*(imgGrn(i+1,j) + imgGrn(i,j-1)) + 

(k1*k2).*(imgBayer(i,j) - imgBayer(i+2,j-2)); 

121              GSEest = 0.5*(imgGrn(i,j+1) + imgGrn(i+1,j)) + 

(k1*k2).*(imgBayer(i,j) - imgBayer(i+2,j+2)); 

122              GNEest = 0.5*(imgGrn(i,j+1) + imgGrn(i-1,j)) + 

(k1*k2).*(imgBayer(i,j) - imgBayer(i-2,j+2)); 

123               

124              %establish gradients 

125              gNW = abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ... %g43-g32 --N 

126                   abs(imgGrn(i,j+1) - imgGrn(i-1,j-2)) + ... %g45-g32 --N 

127                   abs(imgGrn(i,j+1) - imgGrn(i-2,j-1)) + ... %g45-g23 --Z 

128                   abs(imgGrn(i-1,j) - imgGrn(i-2,j-1)) + ... %g34-g23 --Z 

129                   abs(imgGrn(i+1,j) - imgGrn(i,j-1)) + ... %g54-g43 --W 

130                   abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ... %g43-g32 --W 

131                   k1.*abs(imgBayer(i,j) - imgBayer(i-2,j-2)) + ...%r44-r22 

132                   k2.*abs(imgBayer(i-1,j-1) - imgBayer(i-3,j-3)) + ...%b33-

b11 

133                   err; 

134                

135              gSW = abs(imgGrn(i,j+1) - imgGrn(i+2,j-1)) + ... %g45-g63 --Z 

136                   abs(imgGrn(i+1,j) - imgGrn(i+2,j-1)) + ... %g54-g63 --Z 

137                   abs(imgGrn(i-1,j) - imgGrn(i,j-1)) + ... %g34-g43 --W 

138                   abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ...%g43-g52 --N 

139                   abs(imgGrn(i,j+1) - imgGrn(i+1,j-2)) + ...%g45-g52 --N 

140                   abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ...%g43-g52 --W 

141                   k1.*abs(imgBayer(i,j) - imgBayer(i+2,j-2)) + ...%r44-r62 

142                   k2.*abs(imgBayer(i+1,j-1) - imgBayer(i+3,j-3)) + ...%b53-

b71 

143                   err; 

144               

145              gNE = abs(imgGrn(i,j-1) - imgGrn(i-1,j+2)) + ... %g43-g36 --N 

146                   abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ... %g45-g36 --N 

147                   abs(imgGrn(i+1,j) - imgGrn(i,j+1)) + ... %g54-g45 --W 

148                   abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ... %g45-g36 --W 

149                   abs(imgGrn(i,j-1) - imgGrn(i-2,j+1)) + ... %g43-g25 --Z 

150                   abs(imgGrn(i-1,j) - imgGrn(i-2,j+1)) + ... %g34-g25 --Z 

151                   k1.*abs(imgBayer(i,j) - imgBayer(i-2,j+2)) + ...%r44-r26 

152                   k2.*abs(imgBayer(i-1,j+1) - imgBayer(i-3,j+3)) + ...%b35-

b17 

153                   err; 

154                

155              gSE = abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ... %g45-g56 --N 

156                   abs(imgGrn(i,j-1) - imgGrn(i+1,j+2)) + ... %g43-g56 --N 

157                   abs(imgGrn(i-1,j) - imgGrn(i,j+1)) + ... %g34-g45 --W 

158                   abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ...%g45-g56 --W 

159                   abs(imgGrn(i,j-1) - imgGrn(i+2,j+1)) + ...%g43-g65 --Z 

160                   abs(imgGrn(i+1,j) - imgGrn(i+2,j+1)) + ...%g54-g65 --Z 

161                   k1.*abs(imgBayer(i,j) - imgBayer(i+2,j+2)) + ...%r44-r66 

162                   k2.*abs(imgBayer(i+1,j+1) - imgBayer(i+3,j+3)) + ...%b55-

b77 

163                   err; 

164               

165               %establish weights 

166               wNW = 1./gNW; 

167               wSE = 1./gSE; 

168               wSW = 1./gSW; 

169               wNE = 1./gNE; 

170                

171               %set up the voting mechanism 

172               if (mod(i,2)==1 && mod(j,2)==1) %red pixel centre 

173                   F = crmap(i,j) + ... 

174                       cbmap(i-1,j-1) + cbmap(i+1,j+1) + ... 

175                       cbmap(i-1,j+1) + cbmap(i+1,j-1);                      

176               end; 

177               if (mod(i,2)==0 && mod(j,2)==0) %blue pixel centre 

178                   F = cbmap(i,j) + ... 
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179                       crmap(i-1,j-1) + crmap(i+1,j+1) + ... 

180                       crmap(i-1,j+1) + crmap(i+1,j-1); 

181               end; 

182               

183               switch F 

184                   case {4,5} % predominantly vertical 

185                       imgGrn(i,j) = (wNW.*GNWest + wSE.*GSEest)/(wNW+wSE); 

186                   case {-4,-5} % predominantly horizontal 

187                       imgGrn(i,j) = (wSW.*GSWest + wNE.*GNEest)/(wSW+wNE); 

188                   otherwise % undetermined 

189                       imgGrn(i,j) = (wNW.*GNWest + wSE.*GSEest + ... 

190                                      wSW.*GSWest + 

wNE.*GNEest)/(wNW+wSE+wSW+wNE); 

191               end;           

192          end; 

193      end; 

194  end; 

195    

196  % SECTION II: RED CHANNEL INTERPOLATION 

197  % red content in blue pixel points 

198  for i=1+pad:1:R-pad; 

199      for j=1+pad:1:C-pad; 

200          if (mod(i,2)==0 && mod(j,2)==0) 

201              %initial estimates in the NW, NE, SE, SW directions 

202              rNW = imgBayer(i-1,j-1) - imgGrn(i-1,j-1); 

203              rNE = imgBayer(i-1,j+1) - imgGrn(i-1,j+1); 

204              rSE = imgBayer(i+1,j+1) - imgGrn(i+1,j+1); 

205              rSW = imgBayer(i+1,j-1) - imgGrn(i+1,j-1); 

206               

207              %gradient determination 

208              gNW = k2.*abs(imgBayer(i-1,j-1) - imgBayer(i+1,j+1)) + ... %opp 

plane 

209                    empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j-1)) + ... %green 

in-line 

210                    empGrn.*abs(imgGrn(i-1,j-1) - imgGrn(i-2,j-2)) + ... 

211                    noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j-1)) + ...%green 

outlier 

212                    noemp.*abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ... 

213                    err;%desired 

214                 

215              gNE = k2.*abs(imgBayer(i-1,j+1) - imgBayer(i+1,j-1)) + ... 

216                    empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j+1)) + ... 

217                    empGrn.*abs(imgGrn(i-1,j+1) - imgGrn(i-2,j+2)) + ... 

218                    noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j+1))+ ... 

219                    noemp.*abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ... 

220                    err; 

221                 

222              gSE = k2.*abs(imgBayer(i+1,j+1) - imgBayer(i-1,j-1)) + ... 

223                    empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j+1)) + ... 

224                    empGrn.*abs(imgGrn(i+1,j+1) - imgGrn(i+2,j+2)) + ... 

225                    noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j+1)) + ... 

226                    noemp.*abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ... 

227                    err; 

228               

229              gSW = k2.*abs(imgBayer(i+1,j-1) - imgBayer(i-1,j+1)) + ... 

230                    empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j-1)) + ... 

231                    empGrn.*abs(imgGrn(i+1,j-1) - imgGrn(i+2,j-2)) + ... 

232                    noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j-1)) + ... 

233                    noemp.*abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ... 

234                    err; 

235               

236              % weights 

237              wNW = 1./gNW; 

238              wNE = 1./gNE; 

239              wSE = 1./gSE; 

240              wSW = 1./gSW; 

241              w = wNW + wNE + wSE + wSW; 

242               
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243              r = imgGrn(i,j) + (wNW.*rNW + wNE.*rNE + wSE.*rSE + 

wSW.*rSW)/w; 

244              imgRed(i,j) = r; 

245          end; 

246      end; 

247  end; 

248    

249    

250  for i=1+pad:1:R-pad; 

251      for j=1+pad:1:C-pad; 

252          if (mod(i+j,2)==1) 

253               

254              %initial estimates of N,E,W,S directions 

255              rN = imgRed(i-1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i-2,j)); 

256              rS = imgRed(i+1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i+2,j)); 

257              rE = imgRed(i,j+1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j+2)); 

258              rW = imgRed(i,j-1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j-2)); 

259                           

260              %establish gradients 

261              gN = abs(imgRed(i-2,j-1) - imgRed(i,j-1)) + ... 

262                   empOpp.*abs(imgRed(i-1,j) - imgRed(i-2,j-1)) + ... 

263                   empOpp.*abs(imgRed(i-1,j) - imgRed(i-2,j+1)) + ... 

264                   abs(imgRed(i-2,j+1) - imgRed(i,j+1)) + ... 

265                   abs(imgGrn(i-3,j-1) - imgGrn(i-1,j-1)) + ... 

266                   abs(imgGrn(i-3,j+1) - imgGrn(i-1,j+1)) + ... 

267                   abs(imgGrn(i-2,j) - imgGrn(i,j)) + ... 

268                   err; 

269              gS = abs(imgRed(i,j-1) - imgRed(i+2,j-1)) + ... 

270                   empOpp.*abs(imgRed(i+1,j) - imgRed(i+2,j-1)) + ... 

271                   empOpp.*abs(imgRed(i+1,j) - imgRed(i+2,j+1)) + ... 

272                   abs(imgRed(i,j+1) - imgRed(i+2,j+1)) + ... 

273                   abs(imgGrn(i+1,j-1) - imgGrn(i+3,j-1)) + ... 

274                   abs(imgGrn(i+1,j+1) - imgGrn(i+3,j+1)) + ... 

275                   abs(imgGrn(i,j) - imgGrn(i+2,j)) + ... 

276                   err; 

277              gW = abs(imgRed(i-1,j-2) - imgRed(i-1,j)) + ... 

278                   abs(imgRed(i+1,j-2) - imgRed(i+1,j)) + ... 

279                   empOpp.*abs(imgRed(i,j-1) - imgRed(i-1,j-2)) + ... 

280                   empOpp.*abs(imgRed(i,j-1) - imgRed(i+1,j-2)) + ... 

281                   abs(imgGrn(i-1,j-3) - imgGrn(i-1,j-1)) + ... 

282                   abs(imgGrn(i+1,j-3) - imgGrn(i+1,j-1)) + ... 

283                   abs(imgGrn(i,j-2) - imgGrn(i,j))+ ... 

284                   err; 

285              gE = empOpp.*abs(imgRed(i,j+1) - imgRed(i-1,j+2)) + ... 

286                   empOpp.*abs(imgRed(i,j+1) - imgRed(i+1,j+2)) + ... 

287                   abs(imgRed(i-1,j) - imgRed(i-1,j+2)) + ... 

288                   abs(imgRed(i+1,j) - imgRed(i+1,j+2)) + ... 

289                   abs(imgGrn(i-1,j+1) - imgGrn(i-1,j+3)) + ... 

290                   abs(imgGrn(i+1,j+1) - imgGrn(i+1,j+3)) + ... 

291                   abs(imgGrn(i,j) - imgGrn(i,j+2)) + ... 

292                   err; 

293                

294              % weights     

295              wN = 1./gN; 

296              wS = 1./gS; 

297              wW = 1./gW; 

298              wE = 1./gE; 

299              w = wN + wS + wE + wW; 

300               

301              imgRed(i,j) = (wN*rN + wE*rE + wW*rW + wS*rS)/w; 

302          end; 

303      end; 

304  end; 

305    

306  % SECTION III: BLUE CHANNEL INTERPOLATION 

307  % blue content in red pixel points 

308  for i=1+pad:1:R-pad; 

309      for j=1+pad:1:C-pad; 
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310          if (mod(i,2)==1 && mod(j,2)==1) 

311              %initial estimates in the NW, NE, SE, SW directions 

312              bNW = imgBayer(i-1,j-1) - imgGrn(i-1,j-1); 

313              bNE = imgBayer(i-1,j+1) - imgGrn(i-1,j+1); 

314              bSE = imgBayer(i+1,j+1) - imgGrn(i+1,j+1); 

315              bSW = imgBayer(i+1,j-1) - imgGrn(i+1,j-1); 

316               

317              %gradient determination 

318              gNW = k2.*abs(imgBayer(i-1,j-1) - imgBayer(i+1,j+1)) + ... %opp 

plane 

319                    empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j-1)) + ... %green 

in-line 

320                    empGrn.*abs(imgGrn(i-1,j-1) - imgGrn(i-2,j-2)) + ... 

321                    noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j-1)) + ...%green 

outlier 

322                    noemp.*abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ... 

323                    err;%desired 

324                 

325              gNE = k2.*abs(imgBayer(i-1,j+1) - imgBayer(i+1,j-1)) + ... 

326                    empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j+1)) + ... 

327                    empGrn.*abs(imgGrn(i-1,j+1) - imgGrn(i-2,j+2)) + ... 

328                    noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j+1))+ ... 

329                    noemp.*abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ... 

330                    err; 

331                 

332              gSE = k2.*abs(imgBayer(i+1,j+1) - imgBayer(i-1,j-1)) + ... 

333                    empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j+1)) + ... 

334                    empGrn.*abs(imgGrn(i+1,j+1) - imgGrn(i+2,j+2)) + ... 

335                    noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j+1)) + ... 

336                    noemp.*abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ... 

337                    err; 

338               

339              gSW = k2.*abs(imgBayer(i+1,j-1) - imgBayer(i-1,j+1)) + ... 

340                    empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j-1)) + ... 

341                    empGrn.*abs(imgGrn(i+1,j-1) - imgGrn(i+2,j-2)) + ... 

342                    noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j-1)) + ... 

343                    noemp.*abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ... 

344                    err; 

345               

346              % weights 

347              wNW = 1./gNW; 

348              wNE = 1./gNE; 

349              wSE = 1./gSE; 

350              wSW = 1./gSW; 

351              w = wNW + wNE + wSE + wSW; 

352               

353               

354              b = imgGrn(i,j) + (wNW.*bNW + wNE.*bNE + wSE.*bSE + 

wSW.*bSW)/w; 

355              imgBlu(i,j) = b; 

356          end; 

357      end; 

358  end; 

359    

360  for i=1+pad:1:R-pad; 

361      for j=1+pad:1:C-pad; 

362          if (mod(i+j,2)==1) 

363               

364              %initial estimates of N,E,W,S directions 

365              bN = imgBlu(i-1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i-2,j)); 

366              bS = imgBlu(i+1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i+2,j)); 

367              bE = imgBlu(i,j+1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j+2)); 

368              bW = imgBlu(i,j-1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j-2)); 

369                          

370              %establish gradients 

371              gN = abs(imgBlu(i-2,j-1) - imgBlu(i,j-1)) + ... 

372                   empOpp.*abs(imgBlu(i-1,j) - imgBlu(i-2,j-1)) + ... 

373                   empOpp.*abs(imgBlu(i-1,j) - imgBlu(i-2,j+1)) + ... 
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374                   abs(imgBlu(i-2,j+1) - imgBlu(i,j+1)) + ... 

375                   abs(imgGrn(i-3,j-1) - imgGrn(i-1,j-1)) + ... 

376                   abs(imgGrn(i-3,j+1) - imgGrn(i-1,j+1)) + ... 

377                   abs(imgGrn(i-2,j) - imgGrn(i,j)) + ... 

378                   err; 

379              gS = abs(imgBlu(i,j-1) - imgBlu(i+2,j-1)) + ... 

380                   empOpp.*abs(imgBlu(i+1,j) - imgBlu(i+2,j-1)) + ... 

381                   empOpp.*abs(imgBlu(i+1,j) - imgBlu(i+2,j+1)) + ... 

382                   abs(imgBlu(i,j+1) - imgBlu(i+2,j+1)) + ... 

383                   abs(imgGrn(i+1,j-1) - imgGrn(i+3,j-1)) + ... 

384                   abs(imgGrn(i+1,j+1) - imgGrn(i+3,j+1)) + ... 

385                   abs(imgGrn(i,j) - imgGrn(i+2,j)) + ... 

386                   err; 

387              gW = abs(imgBlu(i-1,j-2) - imgBlu(i-1,j)) + ... 

388                   abs(imgBlu(i+1,j-2) - imgBlu(i+1,j)) + ... 

389                   empOpp.*abs(imgBlu(i,j-1) - imgBlu(i-1,j-2)) + ... 

390                   empOpp.*abs(imgBlu(i,j-1) - imgBlu(i+1,j-2)) + ... 

391                   abs(imgGrn(i-1,j-3) - imgGrn(i-1,j-1)) + ... 

392                   abs(imgGrn(i+1,j-3) - imgGrn(i+1,j-1)) + ... 

393                   abs(imgGrn(i,j-2) - imgGrn(i,j))+ ... 

394                   err; 

395              gE = empOpp.*abs(imgBlu(i,j+1) - imgBlu(i-1,j+2)) + ... 

396                   empOpp.*abs(imgBlu(i,j+1) - imgBlu(i+1,j+2)) + ... 

397                   abs(imgBlu(i-1,j) - imgBlu(i-1,j+2)) + ... 

398                   abs(imgBlu(i+1,j) - imgBlu(i+1,j+2)) + ... 

399                   abs(imgGrn(i-1,j+1) - imgGrn(i-1,j+3)) + ... 

400                   abs(imgGrn(i+1,j+1) - imgGrn(i+1,j+3)) + ... 

401                   abs(imgGrn(i,j) - imgGrn(i,j+2)) + ... 

402                   err; 

403                

404              % weights     

405              wN = 1./gN; 

406              wS = 1./gS; 

407              wW = 1./gW; 

408              wE = 1./gE; 

409              w = wN + wS + wE + wW; 

410               

411              imgBlu(i,j) = (wN*bN + wE*bE + wW*bW + wS*bS)/w; 

412          end; 

413      end; 

414  end; 

415    

416    

417  %========================================================================== 

418  %   Results 

419  %========================================================================== 

420  %--------------------------------------- 

421  % display images 

422  %--------------------------------------- 

423  % imtool(img); 

424  % imtool(imgBayer); 

425  % imtool(uint8(imgRed)); 

426  % imtool(uint8(imgGrn)); 

427  % imtool(uint8(imgBlu)); 

428    

429    

430  %-------------------------- 

431  % performance metrics 

432  %--------------------------- 

433  imgPTI(:,:,1) = imgRed; 

434  imgPTI(:,:,2) = imgGrn; 

435  imgPTI(:,:,3) = imgBlu; 

436    

437  % imtool(uint8(imgPTI)); 

438  %imwrite(uint8(imgMWILP),'C:\Users\Kinyua Wachira\Desktop\MWILP_dem.tiff'); 

439    

440  MSE = fcn_measureMSESinglev2(uint8(imgPTI(:,:,2)),uint8(img(:,:,2)),4); 

441  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgPTI)); 
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442  CPSNR = fcn_measureCPSNRv2(uint8(imgPTI),uint8(img),4); 

443  SSIM = ssim(img,uint8(imgPTI)); 

 

A.2 Functions comprising the Image Acquisition Algorithm Block 

Ground Truth Reference Image to Bayer CFA Equivalent Conversion Function 

1  %========================================================================== 

2  % Author:   Kinyua Wachira, Univ. of Nairobi 

3  % Date:     2016 (Development) 

4  % File:     function_ConvertToBayerCFAv2.m 

5  % Desc:     a function to convert an RGB image to its Bayer equivalent 

6    

7  % Notes:    this function assumes the CFA is RGBG from top left clockwise 

8  %========================================================================== 

9    

10  function [imgBayer, imgFullBayer] = function_ConvertToBayerCFA(img) 

11    

12  %setup 

13  [R,C,k] = size(img); 

14  imgBayer = uint8(zeros(R,C)); 

15  imgFullBayer = uint8(zeros(R,C,k)); 

16    

17  %populate the Bayer CFA matrices 

18  for i=1:1:R; 

19      for j=1:1:C; 

20          if (mod(i+j,2)==1) 

21                  imgBayer(i,j) = img(i,j,2); %green component 

22                  imgFullBayer(i,j,2) = img(i,j,2); 

23          end; 

24          if (mod(i,2)==0 && mod(j,2)==0) 

25                  imgBayer(i,j) = img(i,j,3); %blue component 

26                  imgFullBayer(i,j,3) = img(i,j,3); 

27          end; 

28          if (mod(i,2)==1 && mod(j,2)==1) 

29                  imgBayer(i,j) = img(i,j,1); %red component 

30                  imgFullBayer(i,j,1) = img(i,j,1); 

31          end; 

32      end; 

33  end; 

 

Ground Truth Reference Image to RGBW CFA Equivalent Conversion Function 

1  %========================================================================== 

2  % Author:   Kinyua Wachira, Univ. of Nairobi 

3  % Date:     2016-2017 (Development) 

4  % File:     function_ConvertToRGBWCFAv2.m 

5  % Desc:     a function to convert an RGB image to its Bayer equivalent 

6    

7  % Notes:    this function assumes the CFA is RGBW from top left clockwise 

8  %========================================================================== 

9    

10  function [imgRGBW]= function_ConvertToRGBWCFA(img) 

11    

12  %setup 

13  [R,C,N] = size(img); 

14  imgRGBW = uint8(zeros(R,C,N)); 

15    

16  %populate the Bayer CFA matrices 

17  for i=1:1:R; 

18      for j=1:1:C; 

19          for k=1:1:N; 

20              if (mod(i,2)==0 && mod(j,2)==0) 
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21                  imgRGBW(i,j,3) = img(i,j,3); %blue component 

22              end; 

23              if (mod(i,2)==1 && mod(j,2)==1) 

24                  imgRGBW(i,j,1) = img(i,j,1); %red component 

25              end; 

26              if (mod(i,2)==1 && mod(j,2)==0) 

27                  imgRGBW(i,j,2) = img(i,j,2); %green component 

28              end; 

29              if (mod(i,2)==0 && mod(j,2)==1) 

30                  imgRGBW(i,j,k) = img(i,j,k); %white component 

31              end; 

32          end; 

33      end; 

34  end; 

 

Ground Truth Reference Image to WRGB CFA Equivalent Conversion Function (a 90° clockwise shift 

of the preceding function block used in the ACR and EDCR algorithms)  

1  %========================================================================== 

2  % Author:   Kinyua Wachira, Univ. of Nairobi 

3  % Date:     21-01-2016 (Completion) 

4  % File:     function_ConvertToRGBWCFA.m 

5  % Desc:     a function to convert an RGB image to its Bayer equivalent 

6    

7  % Notes:    this function assumes the CFA is RGBW from top left clockwise 

8  %========================================================================== 

9    

10  function [imgWRGB]= function_ConvertToWRGBCFA(img) 

11    

12  %setup 

13  [R,C,N] = size(img); 

14  ImgWRGB = uint8(zeros(R,C,N)); 

15    

16  %populate the Bayer CFA matrices 

17  for i=1:1:R; 

18      for j=1:1:C; 

19          for k=1:1:N; 

20              if (mod(i,2)==1 && mod(j,2)==1) 

21                  imgWRGB(i,j,k) = img(i,j,k); %white component 

22              end; 

23              if (mod(i,2)==1 && mod(j,2)==0) 

24                  imgWRGB(i,j,1) = img(i,j,1); %red component 

25              end; 

26              if (mod(i,2)==0 && mod(j,2)==0) 

27                  imgWRGB(i,j,2) = img(i,j,2); %green component 

28              end; 

29              if (mod(i,2)==0 && mod(j,2)==1) 

30                  imgWRGB(i,j,3) = img(i,j,3); %blue component 

31              end; 

32          end; 

33      end; 

34  end; 

 

Bayerisation Algorithm (Author’s Implementation) 

1  %========================================================================== 

2  %   Name:       fcn_bayerisation.m 

3  %   Author:     Kinyua Wachira, Univ. of Nairobi 

4  %   Date:       2017 (development) 

5  %   Desc:       a function to simulate the Bayer CFA 

6  % 

7  %   Notes:      the Bayer image is going to be grayscale 

8  %========================================================================== 

9    
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10  function [imageBayer] = fcn_bayerisation(image) 

11  %construct the Bayer representation 

12  [R,C,k] = size(image); 

13  imageBayer = uint8(zeros(R,C)); 

14    

15  h = 0.125.* [0 0 -1.5 0 0; 0 2 0 2 0; -1.5 0 6 0 -1.5; 0 2 0 2 0; 

16      0 0 -1.5 0 0]; 

17    

18  image = h.*image; 

19  image = function_ConvertToBayerCFA(image);  

20  for i=1:1:R; 

21      for j=1:1:C; 

22          if (mod(i,2)==1 && mod(j,2)==1) 

23              imageBayer(i,j) = image(i,j,1); 

24          elseif (mod(i+j,2) == 1) 

25              imageBayer(i,j) = image(i,j,2); 

26          else 

27              imageBayer(i,j) = image(i,j,3); 

28          end; 

29      end; 

30  end; 

 

Image Reading Function Block (Default MATLAB source implementation) 

1  function [X, map, alpha] = imread(varargin) 

2  %IMREAD Read image from graphics file. 

3  %   A = IMREAD(FILENAME,FMT) reads a grayscale or color image from the file 

4  %   specified by the string FILENAME. FILENAME must be in the current  

5  %   directory, in a directory on the MATLAB path, or include a full or  

6  %   relative path to a file. 

7  %    

8  %   The text string FMT specifies the format of the file by its standard 

9  %   file extension. For example, specify 'gif' for Graphics Interchange  

10  %   Format files. To see a list of supported formats, with their file  

11  %   extensions, use the IMFORMATS function. If IMREAD cannot find a file  

12  %   named FILENAME, it looks for a file named FILENAME.FMT. 

13  % 

14  %   The return value A is an array containing the image data. If the file  

15  %   contains a grayscale image, A is an M-by-N array. If the file contains 

16  %   a truecolor image, A is an M-by-N-by-3 array. For TIFF files containing 

17  %   color images that use the CMYK color space, A is an M-by-N-by-4 array.  

18  %   See TIFF in the Format-Specific Information section for more 

19  %   information. 

20  %    

21  %   The class of A depends on the bits-per-sample of the image data, 

22  %   rounded to the next byte boundary. For example, IMREAD returns 24-bit 

23  %   color data as an array of uint8 data because the sample size for each 

24  %   color component is 8 bits. See the Remarks section for a discussion of   

25  %   bitdepths, and see the Format-Specific Information section for more   

26  %   detail about supported bitdepths and sample sizes for a particular 

27  %   format. 

28  %     

29  %   [X,MAP] = IMREAD(FILENAME,FMT) reads the indexed image in FILENAME into 

30  %   X and its associated colormap into MAP. Colormap values in the image  

31  %   file are automatically rescaled into the range [0,1].  

32  %  

33  %   [...] = IMREAD(FILENAME) attempts to infer the format of the file 

34  %   from its content. 

35  %  

36  %   [...] = IMREAD(URL,...) reads the image from an Internet URL.   

37  %     

38  %   Remarks 

39  %     

40  %   Bitdepth is the number of bits used to represent each image pixel.   

41  %   Bitdepth is calculated by multiplying the bits-per-sample with the  

42  %   samples-per-pixel. Thus, a format that uses 8-bits for each color  
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43  %   component (or sample) and three samples per pixel has a bitdepth of 24. 

44  %   Sometimes the sample size associated with a bitdepth can be ambiguous:  

45  %   does a 48-bit bitdepth represent six 8-bit samples or three 16-bit  

46  %   samples? The following format-specific sections provide sample size  

47  %   information to avoid this ambiguity. 

48  %     

49  %   Format-Specific Information (Listed Alphabetically by Format) 

50  %    

51  %   BMP  --  Windows Bitmap 

52  % 

53  %   Supported  Compression     Output    

54  %   Bitdepths  None    RLE     Class    Notes 

55  %   --------------------------------------------------------- 

56  %    1-bit      x        -     logical   

57  %    4-bit      x        x     uint8           

58  %    8-bit      x        x     uint8 

59  %   16-bit      x        -     uint8    1 sample/pixel 

60  %   24-bit      x        -     uint8    3 samples/pixel 

61  %   32-bit      x        -     uint8    3 samples/pixel (1 byte padding) 

62  %        

63  %   CUR  -- Cursor File 

64  %   

65  %   Supported    Compression      Output 

66  %   Bitdepths   None Compressed   Class   

67  %   -------------------------------------------------- 

68  %   1-bit        x      -         logical 

69  %   4-bit        x      -         uint8           

70  %   8-bit        x      -         uint8 

71  %    

72  %   Special syntaxes: 

73  %    

74  %   [...] = IMREAD(...,IDX) reads in one image from a multi-image icon or  

75  %   cursor file. IDX is an integer value that specifies the order that the 

76  %   image appears in the file. For example, if IDX is 3, IMREAD reads the  

77  %   third image in the file. If you omit this argument, IMREAD reads the 

78  %   first image in the file.  

79  %  

80  %   [A,MAP,ALPHA] = IMREAD(...) returns the AND mask for the resource,  

81  %   which can be used to determine transparency information.  For cursor  

82  %   files, this mask may contain the only useful data.     

83  %      

84  %   GIF  --  Graphics Interchange Format 

85  %    

86  %   Supported     Output Class   

87  %   --------------------------- 

88  %   1-bit         logical 

89  %   2-to-8 bit    uint8    

90  %    

91  %   Special syntaxes:  

92  %    

93  %   [...] = IMREAD(...,IDX) reads in one or more frames from a multiframe  

94  %   (i.e., animated) GIF file. IDX must be an integer scalar or vector of  

95  %   integer values.  For example, if IDX is 3, IMREAD reads the third image 

96  %   in the file.  If IDX is 1:5, only the first five frames are returned. 

97  % 

98  %   [...] = IMREAD(...,'Frames',IDX) is the same as the syntax above except 

99  %   that IDX can be 'all'.  In this case, all of the frames are read and  

100  %   returned in the order that they appear in the file. 

101  % 

102  %   Note: Because of the way GIF files are structured, all of the frames 

103  %   must be read when a particular frame is requested. Consequently, it is  

104  %   much faster to specify a vector of frames or 'all' for IDX than to call 

105  %   IMREAD in a loop when reading multiple frames from the same GIF file.  

106  %    

107  %   HDF  --  Hierarchical Data Format 

108  %      

109  %   Supported   Raster image   Raster image     Output 

110  %   Bitdepths   with colormap  without colormap Class    Notes 
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111  %   ------------------------------------------------------------ 

112  %    8-bit        x               x             uint8 

113  %   24-bit        -               x             uint8   3 samples/pixel 

114  %    

115  %   Special Syntaxes: 

116  %    

117  %   [...] = IMREAD(...,REF) reads in one image from a multi-image HDF file. 

118  %   REF is an integer value that specifies the reference number used to  

119  %   identify the image. For example, if REF is 12, IMREAD reads the image  

120  %   whose reference number is 12. (Note that in an HDF file the reference  

121  %   numbers do not necessarily correspond with the order of the images in 

122  %   the file. You can use IMFINFO to match up image order with reference  

123  %   number.) If you omit this argument, IMREAD reads the first image in  

124  %   the file. 

125  %      

126  %   ICO  -- Icon File  

127  %    

128  %   See CUR. 

129  %    

130  %   JPEG  --  Joint Photographic Experts Group 

131  %    

132  %   Note: IMREAD can read any baseline JPEG image as well as JPEG images  

133  %   with some commonly used extensions.  

134  %    

135  %   Supported    Compression      Output 

136  %   Bitdepths   Lossy Lossless    Class      Notes 

137  %   -------------------------------------------------------- 

138  %    8-bit        x      x        uint8     Grayscale or RGB 

139  %   12-bit        x      x        uint16    Grayscale   

140  %   16-bit        -      x        uint16    Grayscale 

141  %   36-bit        x      x        uint16    RGB(Three 12-bit samples/pixel) 

142  % 

143  %   JPEG 2000 - Joint Photographic Experts Group 2000 

144  % 

145  %   Supported      Compression      Output 

146  %   Bitdepths     Lossy Lossless    Class    

147  %   (per sample) 

148  %   ---------------------------------------------------------- 

149  %    1-bit          x      x        logical 

150  %    2- to 8-bit    x      x        uint8, int8 

151  %    9- to 16-bit   x      x        uint16, int16 

152  % 

153  %   Note: Indexed JPEG 2000 images are not supported. Only JP2 compatible 

154  %   color spaces are supported for JP2/JPX files.   By default, all image 

155  %   channels are returned in the order they are stored in the file. 

156  % 

157  %   Special Syntaxes 

158  % 

159  %   [...] = IMREAD(..., 'Param1', value1, 'Param2', value2, ...) uses 

160  %   parameter-value pairs to control the read operation.   

161  % 

162  %       Parameter name   Value 

163  %       --------------   ----- 

164  %       'ReductionLevel' A non-negative integer specifying the reduction in 

165  %                        the resolution of the image. For a reduction  

166  %                        level 'L', the image resolution is reduced by a  

167  %                        factor of 2^L. The default value is 0 implying  

168  %                        no reduction. The reduction level is limited by  

169  %                        the total number of decomposition levels as   

170  %                        provided by 'WaveletDecompositionLevels' field   

171  %                        in the structure returned from IMFINFO function.    

172  % 

173  %       'PixelRegion'    {ROWS, COLS}.  IMREAD returns the sub-image 

174  %                        specified by the boundaries in ROWS and COLS. 

175  %                        ROWS and COLS must both be two-element vectors 

176  %                        that denote the 1-based indices [START STOP]. If 

177  %                        'ReductionLevel' is greater than 0, then ROWS and 

178  %                        COLS are coordinates in the reduced-sized image.    
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179  % 

180  %       'V79Compatible'  A logical value. If true, the image returned is  

181  %                        transformed to gray-scale or RGB as consistent with 

182  %                        previous versions of IMREAD (MATLAB 7.9 [R2009b]  

183  %                        and earlier).  Use this option to transform YCC 

184  %                        images into RGB.  The default is false. 

185  % 

186  %   PBM  --  Portable Bitmap 

187  %    

188  %   Supported  Raw     ASCII (Plain)  Output 

189  %   Bitdepths  Binary  Encoded        Class 

190  %   ---------------------------------------- 

191  %   1-bit        x        x          logical 

192  %       

193  %   PCX  --  Windows Paintbrush 

194  %   

195  %   Supported     Output     

196  %   Bitdepths     Class       Notes 

197  %   ---------------------------------------------- 

198  %    1-bit        logical     Grayscale only 

199  %    8-bit        uint8       Grayscale or indexed 

200  %   24-bit        uint8       RGB (8-bit samples) 

201  %     

202  %   PGM  --  Portable Graymap 

203  %         

204  %   Supported        Raw      ASCII (Plain)  Output         

205  %   Bitdepths        Binary   Encoded        Class 

206  %   ------------------------------------------------ 

207  %   up to 16-bit      x            -         uint8 

208  %   Arbitrary         -            x 

209  %     

210  %   PNG  --  Portable Network Graphics 

211  %    

212  %   Supported     Output     

213  %   Bitdepths     Class      Notes 

214  %   ------------------------------------------- 

215  %    1-bit        logical    Grayscale only 

216  %    2-bit        uint8      Grayscale only 

217  %    4-bit        uint8      Grayscale only 

218  %    8-bit        uint8      Grayscale or Indexed 

219  %   16-bit        uint16     Grayscale or Indexed 

220  %   24-bit        uint8      RGB (Three 8-bit samples/pixel) 

221  %   48-bit        uint16     RGB (Three 16-bit samples/pixel) 

222  %          

223  %   Special Syntaxes: 

224  %    

225  %   [...] = IMREAD(...,'BackgroundColor',BG) composites any transparent  

226  %   pixels in the input image against the color specified in BG.  If BG is 

227  %   'none', then no compositing is performed. Otherwise, if the input image 

228  %   is indexed, BG should be an integer in the range [1,P] where P is the 

229  %   colormap length. If the input image is grayscale, BG should be a value 

230  %   in the range [0,1].  If the input image is RGB, BG should be a  

231  %   three-element vector whose values are in the range [0,1]. The string 

232  %   'BackgroundColor' may be abbreviated.   

233  %  

234  %   If the ALPHA output argument is used (see below), then BG defaults to  

235  %   'none' if not specified by the user. Otherwise, if the PNG file  

236  %   ontains a background color chunk, that color is used as the default   

237  %   value for BG. If ALPHA is not used and the file does not contain a  

238  %   background color chunk, then the default value for BG is 1 for indexed   

239  %   images; 0 for grayscale images; and [0 0 0] for RGB images.   

240  % 

241  %   [A,MAP,ALPHA] = IMREAD(...) returns the alpha channel if one is 

242  %   present; otherwise ALPHA is []. If 'BackgroundColor' is specified by 

243  %   the user then ALPHA is []. Note that MAP may be empty if the file 

244  %   contains a grayscale or truecolor image.     

245  %      

246  %   PPM  --  Portable Pixmap  
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247  %    

248  %   Supported        Raw      ASCII (Plain)  Output         

249  %   Bitdepths        Binary   Encoded        Class 

250  %   ------------------------------------------------ 

251  %   up to 16-bit      x            -         uint8 

252  %   Arbitrary         -            x      

253  %    

254  %   RAS  --  Sun Raster  

255  %    

256  %   Supported    Output     

257  %   Bitdepths    Class     Notes 

258  %   ---------------------------------------------------- 

259  %    1-bit       logical   Bitmap   

260  %    8-bit       uint8     Indexed 

261  %   24-bit       uint8     RGB (8-bit samples) 

262  %   32-bit       uint8     RGB with Alpha (8-bit samples) 

263  %     

264  %   TIFF  --  Tagged Image File Format 

265  %    

266  %   NOTE:  Images with a YCbCr photometric interpretation are converted to 

267  %   the RGB colorspace.   

268  %    

269  %   Special Syntaxes: 

270  %    

271  %   A = IMREAD(...) returns color data that uses the RGB, CIELAB, ICCLAB, 

272  %   or CMYK color spaces.  If the color image uses the CMYK color space, A  

273  %   is an M-by-N-by-4 array. 

274  % 

275  %   [...] = IMREAD(..., 'Param1', value1, 'Param2', value2, ...) uses 

276  %   parameter-value pairs to control the read operation.  There are three 

277  %   different parameters you can use: 

278  % 

279  %       Parameter name   Value 

280  %       --------------   ----- 

281  %       'Index'          A positive integer specifying which image to read 

in 

282  %                        a multi-image TIFF file.  For example, if 'Index' 

is 

283  %                        3, IMREAD reads the third image in the file. 

284  % 

285  %       'Info'           A structure array; the output of IMFINFO.  When 

286  %                        reading images from a multi-image TIFF file, 

passing 

287  %                        the output of IMFINFO as the 'Info' parameter helps 

288  %                        IMREAD locate the images in the file more quickly. 

289  % 

290  %       'PixelRegion'    {ROWS, COLS}.  IMREAD returns the sub-image 

291  %                        specified by the boundaries in ROWS and COLS.  ROWS 

292  %                        and COLS must be either two- or three-element 

293  %                        vectors.  If two elements are provided, they denote 

294  %                        the 1-based indices [START STOP].  If three 

elements 

295  %                        are provided, the indices [START INCREMENT STOP] 

296  %                        allow image downsampling. 

297  %    

298  %   XWD  --  X Window Dump 

299  %    

300  %   Supported                                  Output     

301  %   Bitdepths  ZPixmaps  XYBitmaps  XYPixmaps  Class 

302  %   -------------------------------------------------- 

303  %   1-bit        x          -         x        logical 

304  %   8-bit        x          -         -        uint8 

305  % 

306  %   Please read the file libtiffcopyright.txt for more information. 

307  % 

308  %   Example: 

309  % 

310  %       imdata = imread('ngc6543a.jpg'); 
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311  % 

312  %   See also IMFINFO, IMWRITE, IMFORMATS, FREAD, IMAGE, DOUBLE, UINT8. 

313    

314  %   Copyright 1984-2015 The MathWorks, Inc. 

315    

316  [filename, fmt_s, extraArgs] = parse_inputs(varargin{:}); 

317    

318  % Download remote file. 

319  if (strfind(filename, '://')) 

320     

321      url = true; 

322     

323      if (~usejava('jvm')) 

324          error(message('MATLAB:imagesci:imread:noJava')) 

325      end 

326       

327      try 

328          filename = urlwrite(filename, tempname); 

329      catch %#ok<*CTCH> 

330          error(message('MATLAB:imagesci:imread:readURL', filename)); 

331      end 

332       

333  else 

334     

335      url = false; 

336    

337  end 

338    

339  if (isempty(fmt_s)) 

340      % The format was not specified explicitly. 

341       

342      % Verify that the file exists. 

343      fid = fopen(filename, 'r'); 

344      if (fid == -1) 

345         

346          if ~isempty(dir(filename)) 

347              error(message('MATLAB:imagesci:imread:fileReadPermission', 

filename)); 

348          else 

349              error(message('MATLAB:imagesci:imread:fileDoesNotExist', 

filename)); 

350          end 

351    

352      else 

353          % File exists.  Get full filename. 

354          filename = fopen(fid); 

355          fclose(fid); 

356      end 

357       

358      % Try to determine the file type. 

359      [format, fmt_s] = imftype(filename); 

360    

361      if (isempty(format)) 

362          error(message('MATLAB:imagesci:imread:fileFormat')); 

363      end 

364       

365  else 

366      % The format was specified explicitly. 

367       

368      % Verify that the file exists. 

369      fid = fopen(filename, 'r'); 

370      if (fid == -1) 

371          % Couldn't open using the given filename; search for a 

372          % file with an appropriate extension. 

373          for p = 1:length(fmt_s.ext) 

374              fid = fopen([filename '.' fmt_s.ext{p}]); 

375               

376              if (fid ~= -1) 
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377                  % The file was found.  Don't continue searching. 

378                  break 

379              end 

380          end 

381      end 

382       

383      if (fid == -1) 

384          if ~isempty(dir(filename)) 

385              error(message('MATLAB:imagesci:imread:fileReadPermission', 

filename)); 

386          else 

387              error(message('MATLAB:imagesci:imread:fileDoesNotExist', 

filename)); 

388          end 

389      else 

390          filename = fopen(fid); 

391          fclose(fid); 

392      end 

393       

394  end 

395    

396  if isempty(fmt_s) 

397      % Get format details. 

398      fmt_s = imformats(format); 

399  end 

400    

401  % Verify that a read function exists 

402  if (isempty(fmt_s.read)) 

403      error(message('MATLAB:imagesci:imread:readFunctionRegistration', 

fmt_s.ext{ 1 })); 

404  end 

405    

406  if ((fmt_s.alpha) && (nargout == 3)) 

407     

408      % Use the alpha channel. 

409      [X, map, alpha] = feval(fmt_s.read, filename, extraArgs{:}); 

410       

411  else 

412    

413      % Alpha channel is not requested or is not applicable. 

414      alpha = []; 

415      [X, map] = feval(fmt_s.read, filename, extraArgs{:}); 

416       

417  end 

418    

419  % Delete temporary file from Internet download. 

420  if (url) 

421      delete_download(filename); 

422  end 

423    

424    

425    

426  %-------------------------------------------------------------------------- 

427  function delete_download(filename) 

428    

429  try 

430      delete(filename); 

431  catch 

432      warning(message('MATLAB:imagesci:imread:tempFileDelete', filename)) 

433  end 

434    

435    

436         

437    

438  %-------------------------------------------------------------------------- 

439  function [filename, fmt_s, extraArgs] = parse_inputs(varargin) 

440    

441  filename = ''; 
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442  fmt_s = struct([]); 

443  extraArgs = {}; 

444    

445  % Parse arguments based on their number. 

446  switch(nargin) 

447  case 0 

448    

449      % Not allowed. 

450      error(message('MATLAB:imagesci:imread:inputParsing')); 

451       

452  case 1 

453    

454      % Filename only. 

455      filename = varargin{1}; 

456      if ~ischar(filename) 

457          error(message('MATLAB:imagesci:imread:badImageSourceDatatype')); 

458      end 

459       

460  otherwise 

461    

462      % Filename and format or other arguments. 

463      filename = varargin{1}; 

464       

465      % Check whether second argument is a format. 

466      if (ischar(varargin{2})) 

467          fmt_s = imformats(varargin{2}); 

468      end 

469       

470      if (~isempty(fmt_s)) 

471          % The argument matches a format. 

472          extraArgs = varargin(3:end); 

473      else 

474          % The argument begins the format-specific parameters. 

475          extraArgs = varargin(2:end); 

476      end 

477       

478  end 

 

A.3 Functions comprising the Comparison Algorithm Block  

MSE Evaluation Function (Author’s Implementation) 

1  %measure MSE in a single channel 

2  function [MSE] = fcn_measureMSESinglev2(obsImg,actImg,b) 

3    

4  if( nargin < 3 ) 

5   b = 0; 

6  End 

7    

8  if( b > 0 ) 

9   actImg = actImg(b:size(actImg,1)-b, b:size(actImg,2)-b); 

10   obsImg = obsImg(b:size(obsImg,1)-b, b:size(obsImg,2)-b); 

11  End 

12    

13  diff = (actImg - obsImg); 

14  diff = diff .* diff; 

15    

16  MSE = sum( diff(:) ) / numel(diff) + 1e-32; %small positive factor to avoid 

0 MSE 

17    

18  end 

 

CPSNR Evaluation Function (Author’s Implementation) 
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1  %measure CPSNR 

2  %obsImg = observedImage 

3  %actImg = actualImage 

4  %b = paddding border width 

5    

6  function [CPSNR] = fcn_measureCPSNRv2(obsImg,actImg,b) 

7  peak = 255; 

8    

9  if( nargin < 3 ) 

10   b = 0; 

11  end 

12    

13  if( b > 0 ) 

14   actImg = actImg(b:size(actImg,1)-b, b:size(actImg,2)-b,:); 

15   obsImg = obsImg(b:size(obsImg,1)-b, b:size(obsImg,2)-b,:); 

16  end 

17    

18  dif = (actImg - obsImg); 

19  dif = dif .* dif; 

20    

21  MSE = sum( dif(:) ) / numel(dif) + 1e-32; %small positive factor to avoid 0 

MSE 

22    

23  CPSNR = 10 * log10( peak*peak / MSE ); 

24    

25  end 

 

 

SSIM Evaluation Function (source [131]) 

1  function [mssim, ssim_map] = ssim(img1, img2, K, window, L) 

2    

3  % ======================================================================== 

4  % SSIM Index with automatic downsampling, Version 1.0 

5  % Copyright(c) 2009 Zhou Wang 

6  % All Rights Reserved. 

7  % 

8  % ---------------------------------------------------------------------- 

9  % Permission to use, copy, or modify this software and its documentation 

10  % for educational and research purposes only and without fee is hereby 

11  % granted, provided that this copyright notice and the original authors' 

12  % names appear on all copies and supporting documentation. This program 

13  % shall not be used, rewritten, or adapted as the basis of a commercial 

14  % software or hardware product without first obtaining permission of the 

15  % authors. The authors make no representations about the suitability of 

16  % this software for any purpose. It is provided "as is" without express 

17  % or implied warranty. 

18  %---------------------------------------------------------------------- 

19  % 

20  % This is an implementation of the algorithm for calculating the 

21  % Structural SIMilarity (SSIM) index between two images 

22  % 

23  % Please refer to the following paper and the website with suggested usage 

24  % 

25  % Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image 

26  % quality assessment: From error visibility to structural similarity," 

27  % IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612, 

28  % Apr. 2004. 

29  % 

30  % http://www.ece.uwaterloo.ca/~z70wang/research/ssim/ 

31  % 

32  % Note: This program is different from ssim_index.m, where no automatic 

33  % downsampling is performed. (downsampling was done in the above paper 

34  % and was described as suggested usage in the above website.) 
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35  % 

36  % Kindly report any suggestions or corrections to zhouwang@ieee.org 

37  % 

38  %---------------------------------------------------------------------- 

39  % 

40  %Input : (1) img1: the first image being compared 

41  %        (2) img2: the second image being compared 

42  %        (3) K: constants in the SSIM index formula (see the above 

43  %            reference). defualt value: K = [0.01 0.03] 

44  %        (4) window: local window for statistics (see the above 

45  %            reference). default widnow is Gaussian given by 

46  %            window = fspecial('gaussian', 11, 1.5); 

47  %        (5) L: dynamic range of the images. default: L = 255 

48  % 

49  %Output: (1) mssim: the mean SSIM index value between 2 images. 

50  %            If one of the images being compared is regarded as  

51  %            perfect quality, then mssim can be considered as the 

52  %            quality measure of the other image. 

53  %            If img1 = img2, then mssim = 1. 

54  %        (2) ssim_map: the SSIM index map of the test image. The map 

55  %            has a smaller size than the input images. The actual size 

56  %            depends on the window size and the downsampling factor. 

57  % 

58  %Basic Usage: 

59  %   Given 2 test images img1 and img2, whose dynamic range is 0-255 

60  % 

61  %   [mssim, ssim_map] = ssim(img1, img2); 

62  % 

63  %Advanced Usage: 

64  %   User defined parameters. For example 

65  % 

66  %   K = [0.05 0.05]; 

67  %   window = ones(8); 

68  %   L = 100; 

69  %   [mssim, ssim_map] = ssim(img1, img2, K, window, L); 

70  % 

71  %Visualize the results: 

72  % 

73  %   mssim                        %Gives the mssim value 

74  %   imshow(max(0, ssim_map).^4)  %Shows the SSIM index map 

75  %======================================================================== 

76    

77    

78  if (nargin < 2 || nargin > 5) 

79     mssim = -Inf; 

80     ssim_map = -Inf; 

81     return; 

82  end 

83    

84  if (size(img1) ~= size(img2)) 

85     mssim = -Inf; 

86     ssim_map = -Inf; 

87     return; 

88  end 

89    

90  [M N] = size(img1); 

91    

92  if (nargin == 2) 

93     if ((M < 11) || (N < 11)) 

94         mssim = -Inf; 

95         ssim_map = -Inf; 

96        return 

97     end 

98     window = fspecial('gaussian', 11, 1.5);  % 

99     K(1) = 0.01;                 % default settings 

100     K(2) = 0.03;                 % 

101     L = 255;                                     % 

102  end 
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103    

104  if (nargin == 3) 

105     if ((M < 11) || (N < 11)) 

106         mssim = -Inf; 

107         ssim_map = -Inf; 

108        return 

109     end 

110     window = fspecial('gaussian', 11, 1.5); 

111     L = 255; 

112     if (length(K) == 2) 

113        if (K(1) < 0 || K(2) < 0) 

114             mssim = -Inf; 

115          ssim_map = -Inf; 

116          return; 

117        end 

118     else 

119         mssim = -Inf; 

120      ssim_map = -Inf; 

121         return; 

122     end 

123  end 

124    

125  if (nargin == 4) 

126     [H W] = size(window); 

127     if ((H*W) < 4 || (H > M) || (W > N)) 

128         mssim = -Inf; 

129         ssim_map = -Inf; 

130        return 

131     end 

132     L = 255; 

133     if (length(K) == 2) 

134        if (K(1) < 0 || K(2) < 0) 

135             mssim = -Inf; 

136          ssim_map = -Inf; 

137          return; 

138        end 

139     else 

140         mssim = -Inf; 

141      ssim_map = -Inf; 

142         return; 

143     end 

144  end 

145    

146  if (nargin == 5) 

147     [H W] = size(window); 

148     if ((H*W) < 4 || (H > M) || (W > N)) 

149         mssim = -Inf; 

150         ssim_map = -Inf; 

151        return 

152     end 

153     if (length(K) == 2) 

154        if (K(1) < 0 || K(2) < 0) 

155             mssim = -Inf; 

156          ssim_map = -Inf; 

157          return; 

158        end 

159     else 

160         mssim = -Inf; 

161      ssim_map = -Inf; 

162         return; 

163     end 

164  end 

165    

166    

167  img1 = double(img1); 

168  img2 = double(img2); 

169    

170  % automatic downsampling 
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171  f = max(1,round(min(M,N)/256)); 

172  %downsampling by f 

173  %use a simple low-pass filter  

174  if(f>1) 

175      lpf = ones(f,f); 

176      lpf = lpf/sum(lpf(:)); 

177      img1 = imfilter(img1,lpf,'symmetric','same'); 

178      img2 = imfilter(img2,lpf,'symmetric','same'); 

179    

180      img1 = img1(1:f:end,1:f:end); 

181      img2 = img2(1:f:end,1:f:end); 

182  end 

183    

184  C1 = (K(1)*L)^2; 

185  C2 = (K(2)*L)^2; 

186  window = window/sum(sum(window)); 

187    

188  mu1   = filter2(window, img1, 'valid'); 

189  mu2   = filter2(window, img2, 'valid'); 

190  mu1_sq = mu1.*mu1; 

191  mu2_sq = mu2.*mu2; 

192  mu1_mu2 = mu1.*mu2; 

193  sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; 

194  sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; 

195  sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; 

196    

197  if (C1 > 0 && C2 > 0) 

198     ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + 

C1).*(sigma1_sq + sigma2_sq + C2)); 

199  else 

200     numerator1 = 2*mu1_mu2 + C1; 

201     numerator2 = 2*sigma12 + C2; 

202      denominator1 = mu1_sq + mu2_sq + C1; 

203     denominator2 = sigma1_sq + sigma2_sq + C2; 

204     ssim_map = ones(size(mu1)); 

205     index = (denominator1.*denominator2 > 0); 

206     ssim_map(index) = 

(numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(i

ndex)); 

207     index = (denominator1 ~= 0) & (denominator2 == 0); 

208     ssim_map(index) = numerator1(index)./denominator1(index); 

209  end 

210    

211  mssim = mean2(ssim_map); 

212    

213  return 

 

FSIM/FSIMC Evaluation Function (source [131]) 

1  function [FSIM, FSIMc] = FeatureSIM(imageRef, imageDis) 

2  % ======================================================================== 

3  % FSIM Index with automatic downsampling, Version 1.0 

4  % Copyright(c) 2010 Lin ZHANG, Lei Zhang, Xuanqin Mou and David Zhang 

5  % All Rights Reserved. 

6  % 

7  % ---------------------------------------------------------------------- 

8  % Permission to use, copy, or modify this software and its documentation 

9  % for educational and research purposes only and without fee is here 

10  % granted, provided that this copyright notice and the original authors' 

11  % names appear on all copies and supporting documentation. This program 

12  % shall not be used, rewritten, or adapted as the basis of a commercial 

13  % software or hardware product without first obtaining permission of the 

14  % authors. The authors make no representations about the suitability of 

15  % this software for any purpose. It is provided "as is" without express 

16  % or implied warranty. 

17  %---------------------------------------------------------------------- 
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18  % 

19  % This is an implementation of the algorithm for calculating the 

20  % Feature SIMilarity (FSIM) index between two images. 

21  % 

22  % Please refer to the following paper 

23  % 

24  % Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang,"FSIM: a feature 

similarity 

25  % index for image qualtiy assessment", IEEE Transactions on Image 

Processing, vol. 20, no. 8, pp. 2378-2386, 2011. 

26  %  

27  %---------------------------------------------------------------------- 

28  % 

29  %Input : (1) imageRef: the first image being compared 

30  %        (2) imageDis: the second image being compared 

31  % 

32  %Output: (1) FSIM: is the similarty score calculated using FSIM algorithm. 

FSIM 

33  %        only considers the luminance component of images. For colorful 

images,  

34  %            they will be converted to the grayscale at first. 

35  %        (2) FSIMc: is the similarity score calculated using FSIMc 

algorithm. FSIMc 

36  %            considers both the grayscale and the color information. 

37  %Note: For grayscale images, the returned FSIM and FSIMc are the same. 

38  %         

39  %----------------------------------------------------------------------- 

40  % 

41  %Usage: 

42  %Given 2 test images img1 and img2. For gray-scale images, their dynamic 

range should be 0-255. 

43  %For colorful images, the dynamic range of each color channel should be 0-

255. 

44  % 

45  %[FSIM, FSIMc] = FeatureSIM(img1, img2); 

46  %----------------------------------------------------------------------- 

47    

48  [rows, cols] = size(imageRef(:,:,1)); 

49  I1 = ones(rows, cols); 

50  I2 = ones(rows, cols); 

51  Q1 = ones(rows, cols); 

52  Q2 = ones(rows, cols); 

53    

54  if ndims(imageRef) == 3 %images are colorful 

55      Y1 = 0.299 * double(imageRef(:,:,1)) + 0.587 * double(imageRef(:,:,2)) + 

0.114 * double(imageRef(:,:,3)); 

56      Y2 = 0.299 * double(imageDis(:,:,1)) + 0.587 * double(imageDis(:,:,2)) + 

0.114 * double(imageDis(:,:,3)); 

57      I1 = 0.596 * double(imageRef(:,:,1)) - 0.274 * double(imageRef(:,:,2)) - 

0.322 * double(imageRef(:,:,3)); 

58      I2 = 0.596 * double(imageDis(:,:,1)) - 0.274 * double(imageDis(:,:,2)) - 

0.322 * double(imageDis(:,:,3)); 

59      Q1 = 0.211 * double(imageRef(:,:,1)) - 0.523 * double(imageRef(:,:,2)) + 

0.312 * double(imageRef(:,:,3)); 

60      Q2 = 0.211 * double(imageDis(:,:,1)) - 0.523 * double(imageDis(:,:,2)) + 

0.312 * double(imageDis(:,:,3)); 

61  else %images are grayscale 

62      Y1 = imageRef; 

63      Y2 = imageDis; 

64  end 

65    

66  Y1 = double(Y1); 

67  Y2 = double(Y2); 

68  %%%%%%%%%%%%%%%%%%%%%%%%% 

69  % Downsample the image 

70  %%%%%%%%%%%%%%%%%%%%%%%%% 

71  minDimension = min(rows,cols); 

72  F = max(1,round(minDimension / 256)); 
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73  aveKernel = fspecial('average',F); 

74    

75  aveI1 = conv2(I1, aveKernel,'same'); 

76  aveI2 = conv2(I2, aveKernel,'same'); 

77  I1 = aveI1(1:F:rows,1:F:cols); 

78  I2 = aveI2(1:F:rows,1:F:cols); 

79    

80  aveQ1 = conv2(Q1, aveKernel,'same'); 

81  aveQ2 = conv2(Q2, aveKernel,'same'); 

82  Q1 = aveQ1(1:F:rows,1:F:cols); 

83  Q2 = aveQ2(1:F:rows,1:F:cols); 

84    

85  aveY1 = conv2(Y1, aveKernel,'same'); 

86  aveY2 = conv2(Y2, aveKernel,'same'); 

87  Y1 = aveY1(1:F:rows,1:F:cols); 

88  Y2 = aveY2(1:F:rows,1:F:cols); 

89    

90  %%%%%%%%%%%%%%%%%%%%%%%%% 

91  % Calculate the phase congruency maps 

92  %%%%%%%%%%%%%%%%%%%%%%%%% 

93  PC1 = phasecong2(Y1); 

94  PC2 = phasecong2(Y2); 

95    

96  %%%%%%%%%%%%%%%%%%%%%%%%% 

97  % Calculate the gradient map 

98  %%%%%%%%%%%%%%%%%%%%%%%%% 

99  dx = [3 0 -3; 10 0 -10;  3  0 -3]/16; 

100  dy = [3 10 3; 0  0   0; -3 -10 -3]/16; 

101  IxY1 = conv2(Y1, dx, 'same');      

102  IyY1 = conv2(Y1, dy, 'same');     

103  gradientMap1 = sqrt(IxY1.^2 + IyY1.^2); 

104    

105  IxY2 = conv2(Y2, dx, 'same');      

106  IyY2 = conv2(Y2, dy, 'same');     

107  gradientMap2 = sqrt(IxY2.^2 + IyY2.^2); 

108    

109  %%%%%%%%%%%%%%%%%%%%%%%%% 

110  % Calculate the FSIM 

111  %%%%%%%%%%%%%%%%%%%%%%%%% 

112  T1 = 0.85;  %fixed 

113  T2 = 160; %fixed 

114  PCSimMatrix = (2 * PC1 .* PC2 + T1) ./ (PC1.^2 + PC2.^2 + T1); 

115  gradientSimMatrix = (2*gradientMap1.*gradientMap2 + T2) ./(gradientMap1.^2 + 

gradientMap2.^2 + T2); 

116  PCm = max(PC1, PC2); 

117  SimMatrix = gradientSimMatrix .* PCSimMatrix .* PCm; 

118  FSIM = sum(sum(SimMatrix)) / sum(sum(PCm)); 

119    

120  %%%%%%%%%%%%%%%%%%%%%%%%% 

121  % Calculate the FSIMc 

122  %%%%%%%%%%%%%%%%%%%%%%%%% 

123  T3 = 200; 

124  T4 = 200; 

125  ISimMatrix = (2 * I1 .* I2 + T3) ./ (I1.^2 + I2.^2 + T3); 

126  QSimMatrix = (2 * Q1 .* Q2 + T4) ./ (Q1.^2 + Q2.^2 + T4); 

127    

128  lambda = 0.03; 

129    

130  SimMatrixC = gradientSimMatrix .* PCSimMatrix .* real((ISimMatrix .* 

QSimMatrix) .^ lambda) .* PCm; 

131  FSIMc = sum(sum(SimMatrixC)) / sum(sum(PCm)); 

132    

133  return; 

134    

135  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

136    

137  function [ResultPC]=phasecong2(im) 
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138  % ======================================================================== 

139  % Copyright (c) 1996-2009 Peter Kovesi 

140  % School of Computer Science & Software Engineering 

141  % The University of Western Australia 

142  % http://www.csse.uwa.edu.au/ 

143  %  

144  % Permission is hereby  granted, free of charge, to any  person obtaining a 

copy 

145  % of this software and associated  documentation files (the "Software"), to 

deal 

146  % in the Software without restriction, subject to the following conditions: 

147  %  

148  % The above copyright notice and this permission notice shall be included in 

all 

149  % copies or substantial portions of the Software. 

150  %  

151  % The software is provided "as is", without warranty of any kind. 

152  % References: 

153  % 

154  %     Peter Kovesi, "Image Features From Phase Congruency". Videre: A 

155  %     Journal of Computer Vision Research. MIT Press. Volume 1, Number 3, 

156  %     Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html 

157    

158  nscale          = 4;     % Number of wavelet scales.     

159  norient         = 4;     % Number of filter orientations. 

160  minWaveLength   = 6;     % Wavelength of smallest scale filter.     

161  mult            = 2;   % Scaling factor between successive filters.     

162  sigmaOnf        = 0.55;  % Ratio of the standard deviation of the 

163                               % Gaussian describing the log Gabor filter's 

164                               % transfer function in the frequency domain 

165                               % to the filter center frequency.     

166  dThetaOnSigma   = 1.2;   % Ratio of angular interval between filter 

orientations     

167                               % and the standard deviation of the angular 

Gaussian 

168                               % function used to construct filters in the 

169                               % freq. plane. 

170  k               = 2.0;   % No of standard deviations of the noise 

171                               % energy beyond the mean at which we set the 

172                               % noise threshold point.  

173                               % below which phase congruency values get 

174                               % penalized. 

175  epsilon         = .0001;                % Used to prevent division by zero. 

176    

177  thetaSigma = pi/norient/dThetaOnSigma;  % Calculate the standard deviation 

of the 

178                                          % angular Gaussian function used to 

179                                          % construct filters in the freq. 

plane. 

180    

181  [rows,cols] = size(im); 

182  imagefft = fft2(im);              % Fourier transform of image 

183    

184  zero = zeros(rows,cols); 

185  EO = cell(nscale, norient);       % Array of convolution results.                                  

186    

187  estMeanE2n = []; 

188  ifftFilterArray = cell(1,nscale); % Array of inverse FFTs of filters 

189    

190  % Pre-compute some stuff to speed up filter construction 

191    

192  % Set up X and Y matrices with ranges normalised to +/- 0.5 

193  % The following code adjusts things appropriately for odd and even values 

194  % of rows and columns. 

195  if mod(cols,2) 

196      xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1); 

197  else 

198      xrange = [-cols/2:(cols/2-1)]/cols;  
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199  end 

200    

201  if mod(rows,2) 

202      yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1); 

203  else 

204      yrange = [-rows/2:(rows/2-1)]/rows;  

205  end 

206    

207  [x,y] = meshgrid(xrange, yrange); 

208    

209  radius = sqrt(x.^2 + y.^2);       % Matrix values contain *normalised* 

radius from centre. 

210  theta = atan2(-y,x);              % Matrix values contain polar angle. 

211                                    % (note -ve y is used to give +ve 

212                                    % anti-clockwise angles) 

213                     

214  radius = ifftshift(radius);       % Quadrant shift radius and theta so that 

filters 

215  theta  = ifftshift(theta);        % are constructed with 0 frequency at the 

corners. 

216  radius(1,1) = 1;                  % Get rid of the 0 radius value at the 0 

217                                    % frequency point (now at top-left corner) 

218                                    % so that taking the log of the radius 

will  

219                                    % not cause trouble. 

220    

221  sintheta = sin(theta); 

222  costheta = cos(theta); 

223  clear x; clear y; clear theta;    % save a little memory 

224    

225  % Filters are constructed in terms of two components. 

226  % 1) The radial component, which controls the frequency band that the filter 

227  %    responds to 

228  % 2) The angular component, which controls the orientation that the filter 

229  %    responds to. 

230  % The two components are multiplied together to construct the overall 

filter. 

231    

232  % Construct the radial filter components... 

233    

234  % First construct a low-pass filter that is as large as possible, yet falls 

235  % away to zero at the boundaries.  All log Gabor filters are multiplied by 

236  % this to ensure no extra frequencies at the 'corners' of the FFT are 

237  % incorporated as this seems to upset the normalisation process when 

238  % calculating phase congrunecy. 

239  lp = lowpassfilter([rows,cols],.45,15);   % Radius .45, 'sharpness' 15 

240    

241  logGabor = cell(1,nscale); 

242    

243  for s = 1:nscale 

244      wavelength = minWaveLength*mult^(s-1); 

245      fo = 1.0/wavelength;                  % Centre frequency of filter. 

246      logGabor{s} = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));   

247      logGabor{s} = logGabor{s}.*lp;        % Apply low-pass filter 

248      logGabor{s}(1,1) = 0;                 % Set the value at the 0 frequency 

point of the filter 

249                                            % back to zero (undo the radius 

fudge). 

250  end 

251    

252  % Then construct the angular filter components... 

253    

254  spread = cell(1,norient); 

255    

256  for o = 1:norient 

257    angl = (o-1)*pi/norient;           % Filter angle. 

258    

259    % For each point in the filter matrix calculate the angular distance from 
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260    % the specified filter orientation.  To overcome the angular wrap-around 

261    % problem sine difference and cosine difference values are first computed 

262    % and then the atan2 function is used to determine angular distance. 

263    

264    ds = sintheta * cos(angl) - costheta * sin(angl);    % Difference in sine. 

265    dc = costheta * cos(angl) + sintheta * sin(angl);    % Difference in 

cosine. 

266    dtheta = abs(atan2(ds,dc));                          % Absolute angular 

distance. 

267    spread{o} = exp((-dtheta.^2) / (2 * thetaSigma^2));  % Calculate the 

268                                                         % angular filter 

component. 

269  end 

270    

271  % The main loop... 

272  EnergyAll(rows,cols) = 0; 

273  AnAll(rows,cols) = 0; 

274    

275  for o = 1:norient                    % For each orientation. 

276    sumE_ThisOrient   = zero;          % Initialize accumulator matrices. 

277    sumO_ThisOrient   = zero;        

278    sumAn_ThisOrient  = zero;       

279    Energy            = zero;       

280    for s = 1:nscale,                  % For each scale. 

281      filter = logGabor{s} .* spread{o};   % Multiply radial and angular 

282                                           % components to get the filter.  

283      ifftFilt = real(ifft2(filter))*sqrt(rows*cols);  % Note rescaling to 

match power 

284      ifftFilterArray{s} = ifftFilt;                   % record ifft2 of 

filter 

285      % Convolve image with even and odd filters returning the result in EO 

286      EO{s,o} = ifft2(imagefft .* filter);       

287    

288      An = abs(EO{s,o});                         % Amplitude of even & odd 

filter response. 

289      sumAn_ThisOrient = sumAn_ThisOrient + An;  % Sum of amplitude responses. 

290      sumE_ThisOrient = sumE_ThisOrient + real(EO{s,o}); % Sum of even filter 

convolution results. 

291      sumO_ThisOrient = sumO_ThisOrient + imag(EO{s,o}); % Sum of odd filter 

convolution results. 

292      if s==1                                 % Record mean squared filter 

value at smallest 

293        EM_n = sum(sum(filter.^2));           % scale. This is used for noise 

estimation. 

294        maxAn = An;                           % Record the maximum An over all 

scales. 

295      else 

296        maxAn = max(maxAn, An); 

297      end 

298    end                                       % ... and process the next scale 

299    

300    % Get weighted mean filter response vector, this gives the weighted mean 

301    % phase angle. 

302    

303    XEnergy = sqrt(sumE_ThisOrient.^2 + sumO_ThisOrient.^2) + epsilon;    

304    MeanE = sumE_ThisOrient ./ XEnergy;  

305    MeanO = sumO_ThisOrient ./ XEnergy;  

306    

307    % Now calculate An(cos(phase_deviation) - | sin(phase_deviation)) | by 

308    % using dot and cross products between the weighted mean filter response 

309    % vector and the individual filter response vectors at each scale.  This 

310    % quantity is phase congruency multiplied by An, which we call energy. 

311    

312    for s = 1:nscale,        

313        E = real(EO{s,o}); O = imag(EO{s,o});    % Extract even and odd 

314                                                 % convolution results. 

315        Energy = Energy + E.*MeanE + O.*MeanO - abs(E.*MeanO - O.*MeanE); 

316    end 
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317    

318    % Compensate for noise 

319    % We estimate the noise power from the energy squared response at the 

320    % smallest scale.  If the noise is Gaussian the energy squared will have a 

321    % Chi-squared 2DOF pdf.  We calculate the median energy squared response 

322    % as this is a robust statistic.  From this we estimate the mean. 

323    % The estimate of noise power is obtained by dividing the mean squared 

324    % energy value by the mean squared filter value 

325    

326    medianE2n = median(reshape(abs(EO{1,o}).^2,1,rows*cols)); 

327    meanE2n = -medianE2n/log(0.5); 

328    estMeanE2n(o) = meanE2n; 

329    

330    noisePower = meanE2n/EM_n;                       % Estimate of noise 

power. 

331    

332    % Now estimate the total energy^2 due to noise 

333    % Estimate for sum(An^2) + sum(Ai.*Aj.*(cphi.*cphj + sphi.*sphj)) 

334    

335    EstSumAn2 = zero; 

336    for s = 1:nscale 

337      EstSumAn2 = EstSumAn2 + ifftFilterArray{s}.^2; 

338    end 

339    

340    EstSumAiAj = zero; 

341    for si = 1:(nscale-1) 

342      for sj = (si+1):nscale 

343        EstSumAiAj = EstSumAiAj + ifftFilterArray{si}.*ifftFilterArray{sj}; 

344      end 

345    end 

346    sumEstSumAn2 = sum(sum(EstSumAn2)); 

347    sumEstSumAiAj = sum(sum(EstSumAiAj)); 

348    

349    EstNoiseEnergy2 = 2*noisePower*sumEstSumAn2 + 4*noisePower*sumEstSumAiAj; 

350    

351    tau = sqrt(EstNoiseEnergy2/2);                     % Rayleigh parameter 

352    EstNoiseEnergy = tau*sqrt(pi/2);                   % Expected value of 

noise energy 

353    EstNoiseEnergySigma = sqrt( (2-pi/2)*tau^2 ); 

354    

355    T =  EstNoiseEnergy + k*EstNoiseEnergySigma;       % Noise threshold 

356    

357    % The estimated noise effect calculated above is only valid for the PC_1 

measure.  

358    % The PC_2 measure does not lend itself readily to the same analysis.  

However 

359    % empirically it seems that the noise effect is overestimated roughly by a 

factor  

360    % of 1.7 for the filter parameters used here. 

361    

362    T = T/1.7;        % Empirical rescaling of the estimated noise effect to  

363                      % suit the PC_2 phase congruency measure 

364    Energy = max(Energy - T, zero);          % Apply noise threshold 

365    

366    EnergyAll = EnergyAll + Energy; 

367    AnAll = AnAll + sumAn_ThisOrient; 

368  end  % For each orientation 

369  ResultPC = EnergyAll ./ AnAll; 

370  return; 

371    

372    

373  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

374  % LOWPASSFILTER - Constructs a low-pass butterworth filter. 

375  % 

376  % usage: f = lowpassfilter(sze, cutoff, n) 

377  %  

378  % where: sze    is a two element vector specifying the size of filter  

379  %               to construct [rows cols]. 
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380  %        cutoff is the cutoff frequency of the filter 0 - 0.5 

381  %        n      is the order of the filter, the higher n is the sharper 

382  %               the transition is. (n must be an integer >= 1). 

383  %               Note that n is doubled so that it is always an even integer. 

384  % 

385  %                      1 

386  %      f =    -------------------- 

387  %                              2n 

388  %              1.0 + (w/cutoff) 

389  % 

390  % The frequency origin of the returned filter is at the corners. 

391  % 

392  % See also: HIGHPASSFILTER, HIGHBOOSTFILTER, BANDPASSFILTER 

393  % 

394    

395  % Copyright (c) 1999 Peter Kovesi 

396  % School of Computer Science & Software Engineering 

397  % The University of Western Australia 

398  % http://www.csse.uwa.edu.au/ 

399  %  

400  % Permission is hereby granted, free of charge, to any person obtaining a 

copy 

401  % of this software and associated documentation files (the "Software"), to 

deal 

402  % in the Software without restriction, subject to the following conditions: 

403  %  

404  % The above copyright notice and this permission notice shall be included in  

405  % all copies or substantial portions of the Software. 

406  % 

407  % The Software is provided "as is", without warranty of any kind. 

408    

409  % October 1999 

410  % August  2005 - Fixed up frequency ranges for odd and even sized filters 

411  %                (previous code was a bit approximate) 

412    

413  function f = lowpassfilter(sze, cutoff, n) 

414       

415      if cutoff < 0 || cutoff > 0.5 

416      error('cutoff frequency must be between 0 and 0.5'); 

417      end 

418       

419      if rem(n,1) ~= 0 || n < 1 

420      error('n must be an integer >= 1'); 

421      end 

422    

423      if length(sze) == 1 

424      rows = sze; cols = sze; 

425      else 

426      rows = sze(1); cols = sze(2); 

427      end 

428    

429      % Set up X and Y matrices with ranges normalised to +/- 0.5 

430      % The following code adjusts things appropriately for odd and even 

values 

431      % of rows and columns. 

432      if mod(cols,2) 

433      xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1); 

434      else 

435      xrange = [-cols/2:(cols/2-1)]/cols;  

436      end 

437    

438      if mod(rows,2) 

439      yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1); 

440      else 

441      yrange = [-rows/2:(rows/2-1)]/rows;  

442      end 

443       

444      [x,y] = meshgrid(xrange, yrange); 
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445      radius = sqrt(x.^2 + y.^2);        % A matrix with every pixel = radius 

relative to centre. 

446      f = ifftshift( 1 ./ (1.0 + (radius ./ cutoff).^(2*n)) );   % The filter 

447      return; 

 

A.4 Test Bed Demosaicking Algorithm Blocks 

Constant Difference Based Interpolation Algorithm (Author’s Implementation) 

1  %========================================================================== 

2  %script:    constantDiffBasedInterpolation.m 

3  %author:    Kinyua Wachira 

4  %date:      --/07/2014 

5  %desc:      a script that takes a Bayer filtered image and performs 

6  %           an extension of bilinear interpolation called constant 

7  %           difference based (CDB) interpolation on it 

8  %========================================================================== 

9    

10  %utility functions 

11  clc; clear all; close all; 

12    

13  %load image 

14  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

15  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

16  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

17  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim04.tif'); 

18  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

19  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

20    

21  %establish the Bayer CFA representation 

22  imgBayer = img2Bayer(img); 

23    

24  %extract the colour components 

25  imgRed = double(imgBayer(:,:,1)); 

26  imgGrn = double(imgBayer(:,:,2)); 

27  imgBlu = double(imgBayer(:,:,3)); 

28    

29  pad = 0; %padding region width for interpolation error 

30    

31  %interpolate the green component 

32  fG = [0 1 0; 1 4 1;0 1 0]/4; 

33  imgGrnInt = conv2(fG,imgGrn,'full'); 

34    

35  %interpolate the red component, by first establishing it's difference, then 

36  %doing interpolation -- the steps follow 

37  [R,C] = size(imgRed); 

38  %set up a matrix to hold the image differences 

39  imgRedDiff = double(zeros(R,C));  

40  %populate the difference matrix 

41  for i=1:1:R; 

42      for j=1:1:C; 

43          if (mod(i,2)==1 && mod(j,2)==1) 

44              imgRedDiff(i,j) = imgRed(i,j) - imgGrnInt(i+1,j+1); 

45          end; 

46      end; 

47  end; 

48  %interpolate the red component difference 

49  fRB = [1 2 1; 2 4 2; 1 2 1]/4; 

50  imgRedDiffInt = conv2(fRB,imgRedDiff,'full'); 

51  %establish the final red interpolation matrix 
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52  imgRedInt = imgRedDiffInt + imgGrnInt; 

53    

54  %interpolate the blue component, in a similar way to the red 

55  [R,C] = size(imgBlu); 

56  %set up a matrix to hold the image differences 

57  imgBluDiff = double(zeros(R,C));  

58  %populate the difference matrix 

59  for i=1:1:R; 

60      for j=1:1:C; 

61          if (mod(i,2)==0 && mod(j,2)==0) 

62              imgBluDiff(i,j) = imgBlu(i,j) - imgGrnInt(i+1,j+1); 

63          end; 

64      end; 

65  end; 

66  %interpolate the blue component difference 

67  fRB = [1 2 1; 2 4 2; 1 2 1]/4; 

68  imgBluDiffInt = conv2(fRB,imgBluDiff,'full'); 

69  %establish the final blue interpolation matrix 

70  imgBluInt = imgBluDiffInt + imgGrnInt; 

71    

72  %finally reconstruct the image from its constitutent colour components 

73  [R,C] = size(imgGrnInt); 

74  imgCDBInt = uint8(zeros(R,C,3)); 

75  imgCDBInt(:,:,1) = uint8(imgRedInt);  

76  imgCDBInt(:,:,2) = uint8(imgGrnInt); 

77  imgCDBInt(:,:,3) = uint8(imgBluInt); 

78    

79  %results 

80  %imtool(img); 

81  %imtool(imgBayer); 

82  %imtool(imgCDBInt); 

83    

84  %preconditioning img before PSNR 

85  [R,C,dim] = size(img); 

86  imgCDB = double(zeros(R,C,dim)); 

87  for i=1:1:R; 

88      for j=1:1:C; 

89          for k=1:1:dim; 

90              imgCDB(i,j,k) = imgCDBInt(i+1,j+1,k); 

91          end; 

92      end; 

93  end; 

94    

95  %pre-conditioning image to measure CIEDE2000 (if desired) 

96  imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k)); 

97  imgCDBCrop = double(zeros(R-(2*pad),C-(2*pad),k)); 

98    

99  for i=1:1:R-(2*pad); 

100      for j=1:1:C-(2*pad); 

101          for k=1:1:3; 

102              imgCrop(i,j,k) = img(i+pad,j+pad,k); 

103              imgCDBCrop(i,j,k) = imgCDB(i+pad,j+pad,k); 

104          end; 

105      end; 

106  end; 

107    

108  %comparison measures 

109  [PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgCDB,img,pad); 

110  [CPSNR] = fcn_measureCPSNRv2(imgCDB,img,pad); 

111  MSE = fcn_measureMSESinglev2(uint8(imgCDB(:,:,2)),uint8(img(:,:,2)),4); 

112  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgCDB)); 

113  SSIM = ssim(img,uint8(imgCDB)); 

114  PSNR_R; 

115  PSNR_G; 

116  PSNR_B; 

117  CPSNR; 
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Edge Directed Interpolation Algorithm (Author’s Implementation) 

1  %========================================================================== 

2  %script:    edgeDirectedInterpolation.m 

3  %author:    Kinyua Wachira 

4  %date:      --/07/2014 

5  %desc:      a script that takes a Bayer filtered image and performs 

6  %           simple edge directed interpolation as shown in fig [3] of 

7  %           gunturk article in 2005 Jan Issue of SPM 

8  %========================================================================== 

9    

10  %utility functions 

11  clc; clear all; close all; 

12    

13  %load image  

14  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

15  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

16  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

17  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

18  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

19  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

20    

21  pad = 3; %padding region width for interpolation error 

22    

23  %obtain the 3D (colour) bayer CFA representation 

24  imgBayer3D = img2Bayer(img); 

25  [R,C,k] = size(img); 

26    

27  %---------------------------- 

28  %work on the green component 

29  %---------------------------- 

30  imgGrn = double(imgBayer3D(:,:,2)); 

31  [R,C] = size(imgGrn); 

32  %populate the image edges first so that all inner missing values with hade 

33  %sufficient neighbours for edge directed interpolation 

34  imgGrnInt = imgGrn; 

35  if (mod(R,2) == 0 && mod(C,2) == 0) 

36      imgGrnInt(1,1) = (imgGrn(2,1)+imgGrn(1,2))/2; 

37      imgGrn(R,C) = (imgGrn(R-1,C)+imgGrn(R,C-1))/2; 

38      for i=3:2:R-1; %left edge of image 

39          imgGrnInt(i,1) = (imgGrn(i-1,1)+imgGrn(i+1,1))/2; 

40      end; 

41      for i=2:2:R-2; %right edge of image 

42          imgGrnInt(i,C) = (imgGrn(i-1,C)+imgGrn(i+1,C))/2; 

43      end; 

44      for j=3:2:C-1; %top edge of image 

45          imgGrnInt(1,j) = (imgGrn(1,j-1)+imgGrn(1,j+1))/2; 

46      end; 

47      for j=2:2:C-2; %bottom edge of image 

48          imgGrnInt(R,j) = (imgGrn(R,j-1)+imgGrn(R,j+1))/2; 

49      end; 

50  end; 

51    

52  %populate the green plane using the simple edge directed interpolation 

53  %algorithm 

54  for i=1:1:R; 

55      for j = 1:1:C; 

56          if (mod(i+j,2)==0 && (i>1 && i<R) && (j>1 && j<C)) 

57              HD = abs(imgGrn(i,j-1) - imgGrn(i,j+1)); 

58              VD = abs(imgGrn(i-1,j) - imgGrn(i+1,j)); 

59              if (HD>VD) 

60                  imgGrnInt(i,j) = (imgGrn(i-1,j) + imgGrn(i+1,j))/2; 
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61              elseif (HD<VD) 

62                  imgGrnInt(i,j) = (imgGrn(i,j-1) + imgGrn(i,j+1))/2; 

63              else 

64                  imgGrnInt(i,j) = ( (imgGrn(i-1,j) + imgGrn(i+1,j)) + ... 

65                                  (imgGrn(i,j-1) + imgGrn(i,j+1)) )/4; 

66              end; 

67          end; 

68      end; 

69  end; 

70    

71  %---------------------------- 

72  %work on the red component 

73  %---------------------------- 

74  imgRed = double(imgBayer3D(:,:,1)); 

75  imgRedInt = imgRed; 

76  for i=1:2:R-1;%Red Horizontals 

77      for j=2:2:C-2; 

78          imgRedInt(i,j) = (imgRed(i,j-1) - imgGrnInt(i,j-1))/2 + ... 

79                        (imgRed(i,j+1) - imgGrnInt(i,j+1))/2 + ... 

80                        imgGrnInt(i,j); 

81      end; 

82  end; 

83    

84  for i=2:2:R-2;%Red Verticals 

85      for j=1:2:C-1; 

86          imgRedInt(i,j) = (imgRed(i-1,j) - imgGrnInt(i-1,j))/2 + ... 

87                        (imgRed(i+1,j) - imgGrnInt(i+1,j))/2 + ... 

88                        imgGrnInt(i,j); 

89      end; 

90  end; 

91    

92  for i=2:2:R-2; %Red in Blue pixel locations 

93      for j=2:2:C-2; 

94          imgRedInt(i,j) = (imgRed(i-1,j-1) - imgGrnInt(i-1,j-1))/4 + ... 

95                        (imgRed(i-1,j+1) - imgGrnInt(i-1,j+1))/4 + ... 

96                        (imgRed(i+1,j-1) - imgGrnInt(i+1,j-1))/4 + ... 

97                        (imgRed(i+1,j+1) - imgGrnInt(i+1,j+1))/4 + ... 

98                        imgGrnInt(i,j); 

99      end; 

100  end; 

101    

102  %---------------------------- 

103  %work on the blue component 

104  %---------------------------- 

105  imgBlu = double(imgBayer3D(:,:,3)); 

106  imgBluInt = imgBlu; 

107  for i=2:2:R;%Blue Horizontals 

108      for j=3:2:C-1; 

109          imgBluInt(i,j) = (imgBlu(i,j-1) - imgGrnInt(i,j-1))/2 + ... 

110                        (imgBlu(i,j+1) - imgGrnInt(i,j+1))/2 + ... 

111                        imgGrnInt(i,j); 

112      end; 

113  end; 

114    

115  for i=3:2:R-1;%Blue Verticals 

116      for j=2:2:C; 

117          imgBluInt(i,j) = (imgBlu(i-1,j) - imgGrnInt(i-1,j))/2 + ... 

118                        (imgBlu(i+1,j) - imgGrnInt(i+1,j))/2 + ... 

119                        imgGrnInt(i,j); 

120      end; 

121  end; 

122    

123  for i=3:2:R-1; %Blue in Red pixel locations 

124      for j=3:2:C-1; 

125          imgBluInt(i,j) = (imgBlu(i-1,j-1) - imgGrnInt(i-1,j-1))/4 + ... 

126                        (imgBlu(i-1,j+1) - imgGrnInt(i-1,j+1))/4 + ... 

127                        (imgBlu(i+1,j-1) - imgGrnInt(i+1,j-1))/4 + ... 

128                        (imgBlu(i+1,j+1) - imgGrnInt(i+1,j+1))/4 + ... 
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129                        imgGrnInt(i,j); 

130      end; 

131  end; 

132    

133  %finally reconstruct the entire image from its interpolated planes 

134  imgEdgeInt(:,:,1) = uint8(imgRedInt); 

135  imgEdgeInt(:,:,2) = uint8(imgGrnInt); 

136  imgEdgeInt(:,:,3) = uint8(imgBluInt); 

137    

138  %results 

139  %imtool(img); 

140  %imtool(imgBayer3D); 

141  %imtool(uint8(imgGrnInt)); 

142  %imtool(uint8(imgRedInt)); 

143  %imtool(uint8(imgBluInt)); 

144  %imtool(imgEdgeInt); 

145    

146  %pre-conditioning image to measure CIEDE2000 

147  imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k)); 

148  imgEdgeIntCrop = double(zeros(R-(2*pad),C-(2*pad),k)); 

149    

150  for i=1:1:R-(2*pad); 

151      for j=1:1:C-(2*pad); 

152          for k=1:1:3; 

153              imgCrop(i,j,k) = img(i+pad,j+pad,k); 

154              imgEdgeIntCrop(i,j,k) = imgEdgeInt(i+pad,j+pad,k); 

155          end; 

156      end; 

157  end; 

158    

159  % [PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgEdgeInt,img,pad); 

160  % [CPSNR] = measureCPSNR(imgEdgeInt,img,pad); 

161  % PSNR_R; 

162  % PSNR_G; 

163  % PSNR_B; 

164  % CPSNR; 

165   

166  MSE = fcn_measureMSESinglev2(uint8(imgEdgeInt(:,:,2)),uint8(img(:,:,2)),4); 

167  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgEdgeInt)); 

168  CPSNR = fcn_measureCPSNRv2(uint8(imgEdgeInt),uint8(img),4); 

169  SSIM = ssim(img,uint8(imgEdgeInt)); 

170  %notes: 

171  %1. this algorithm is too dependent on image dimensions especially when 

172  %   establishing the green component. I had to establish corner points 

before  

173  %   I could even start interpolating. Can this be abstracted/ generalised? 

174  %2. I did not bother with interpolating some edge areas in the blue and red 

175  %   images as there is insufficient information to interpolate - this led to 

176  %   some color artefacts at the edges of the image, however these errors are 

177  %   1 pixel wide 

178  %3. from subjective observation, the results here mirrored the images seen 

179  %   in gurturk's paper 2005 Jan SPM issue 

180  %4. the algorithm can be found in its entirety in the Laroche Prescott 

Patent  

181  %5. there also seems to be a washout effect this algorithm is performing - 

182  %   colours are less vibrant than in the original 

183    

184    

185  %NOTE WELL 

186  %there was a time PSNR Blue was <<< other PSNR, this was because somewhere 

187  %I forgot to define blue matrix as type double/ it was approximating 

188  %everything to uint8... be very careful about datatype management... use 

189  %double always when calculating 

 

The Malvar-He-Cutler Algorithm (Author’s Implementation) 
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1  %========================================================================== 

2  % script:   malvar_HE_CutlerMethod 

3  % date:     --/08/2014 

4  % author:   Kinyua Wachira 

5  % desc:     a script to perform the Malvar-He-Cutler demosaicking technique 

6  %========================================================================== 

7    

8  %utility fcns 

9  %clc; clear all; close all; 

10    

11  %load image  

12  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

13  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

14  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

15  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

16  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

17  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

18    

19    

20  pad = 2; %padding region width for interpolation error 

21    

22  %obtain 3D (color) Bayer image 

23  imgBayer3D = img2Bayer(img); 

24    

25  %obtain the grayscale equivalent 

26  [R,C,k] = size(imgBayer3D); 

27  imgBayer = double(zeros(R,C)); 

28    

29  for i=1:1:R; 

30      for j=1:1:C; 

31          if(mod(i,2)==1 && mod(j,2)==1) 

32              imgBayer(i,j) = imgBayer3D(i,j,1); 

33          elseif (mod(i+j,2)==1) 

34              imgBayer(i,j) = imgBayer3D(i,j,2); 

35          else 

36              imgBayer(i,j) = imgBayer3D(i,j,3); 

37          end; 

38      end; 

39  end; 

40    

41  %=============== 

42  %green component 

43  %=============== 

44  imgGrn=double(zeros(R,C)); 

45  %green in green pixel locations 

46  for i=1:1:R; 

47      for j=1:1:C; 

48          if(mod(i+j,2)==1) 

49              imgGrn(i,j) = imgBayer(i,j); 

50          end; 

51      end; 

52  end; 

53  %green in red/blue pixel locations 

54  for i=1+2:1:R-2; 

55      for j=1+2:1:C-2; 

56          if (mod(i+j,2)~=1) 

57              imgGrn(i,j) = 0.125.* (-1*imgBayer(i-2,j) + 2*imgGrn(i-1,j) + 

... 

58                  -1*imgBayer(i,j-2) + 2*imgGrn(i,j-1) + 4*imgBayer(i,j) + ... 

59                  2*imgGrn(i,j+1) - 1*imgBayer(i,j+2) + ... 

60                  2*imgGrn(i+1,j) -1*imgBayer(i+2,j) ); 

61          end; 

62      end; 
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63  end; 

64    

65  %============= 

66  %red component 

67  %============= 

68  imgRed=double(zeros(R,C)); 

69  %red in red pixel locations 

70  for i=1:1:R; 

71      for j=1:1:C; 

72          if(mod(i,2)==1 && mod(j,2)==1) 

73              imgRed(i,j) = imgBayer(i,j); 

74          end; 

75      end; 

76  end; 

77  %red in green and blue pixel locations 

78  for i=1+2:1:R-2; 

79      for j=1+2:1:C-2; 

80          if (mod(i+j,2)==1 && mod(i,2)==1) 

81              imgRed(i,j) = 0.125.* (0.5*imgGrn(i-2,j) ... 

82                  - 1*imgGrn(i-1,j-1) - 1*imgGrn(i-1,j+1) ... 

83                  - 1*imgGrn(i,j-2) + 4*imgBayer(i,j-1) + 5*imgGrn(i,j) ... 

84                  + 4*imgBayer(i,j+1) - 1*imgGrn(i,j+2) ... 

85                  - 1*imgGrn(i+1,j-1) - 1*imgGrn(i+1,j+1) ... 

86                  + 0.5*imgGrn(i+2,j) ); 

87          elseif (mod(i+j,2)==1 && mod(i,2)==0) 

88              imgRed(i,j) = 0.125.* (-1*imgGrn(i-2,j) ... 

89                  - 1*imgGrn(i-1,j-1) + 4*imgBayer(i-1,j) - 1*imgGrn(i-1,j+1) 

... 

90                  + 0.5*imgGrn(i,j-2) + 5*imgGrn(i,j) + 0.5*imgGrn(i,j+2) + 

... 

91                  - 1*imgGrn(i+1,j-1) + 4*imgBayer(i+1,j) - 1*imgGrn(i+1,j+1) 

... 

92                  - 1*imgGrn(i+2,j) ); 

93          elseif (mod(i,2)==0 && mod(j,2)==0) 

94              imgRed(i,j) = 0.125.* (-1.5*imgBayer(i-2,j) ... 

95                  + 2*imgBayer(i-1,j-1) + 2*imgBayer(i-1,j+1) ... 

96                  - 1.5*imgBayer(i,j-2) + 6*imgBayer(i,j) - 

1.5*imgBayer(i,j+2) + ... 

97                  + 2*imgBayer(i+1,j-1) + 2*imgBayer(i+1,j+1) ... 

98                  - 1.5*imgBayer(i+2,j) ); 

99          end; 

100      end; 

101  end; 

102    

103  %============= 

104  %blue component 

105  %============= 

106  imgBlu=double(zeros(R,C)); 

107  %blue in blue pixel locations 

108  for i=1:1:R; 

109      for j=1:1:C; 

110          if(mod(i,2)==0 && mod(j,2)==0) 

111              imgBlu(i,j) = imgBayer(i,j); 

112          end; 

113      end; 

114  end; 

115  %blue in green and red pixel locations 

116  for i=1+2:1:R-2; 

117      for j=1+2:1:C-2; 

118          if (mod(i+j,2)==1 && mod(i,2)==0) 

119              imgBlu(i,j) = 0.125.* (0.5*imgGrn(i-2,j) ... 

120                  - 1*imgGrn(i-1,j-1) - 1*imgGrn(i-1,j+1) ... 

121                  - 1*imgGrn(i,j-2) + 4*imgBayer(i,j-1) + 5*imgGrn(i,j) ... 

122                  + 4*imgBayer(i,j+1) - 1*imgGrn(i,j+2) ... 

123                  - 1*imgGrn(i+1,j-1) - 1*imgGrn(i+1,j+1) ... 

124                  + 0.5*imgGrn(i+2,j) ); 

125          elseif (mod(i+j,2)==1 && mod(i,2)==1) 

126              imgBlu(i,j) = 0.125.* (-1*imgGrn(i-2,j) ... 
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127                  - 1*imgGrn(i-1,j-1) + 4*imgBayer(i-1,j) - 1*imgGrn(i-1,j+1) 

... 

128                  + 0.5*imgGrn(i,j-2) + 5*imgGrn(i,j) + 0.5*imgGrn(i,j+2) + 

... 

129                  - 1*imgGrn(i+1,j-1) + 4*imgBayer(i+1,j) - 1*imgGrn(i+1,j+1) 

... 

130                  - 1*imgGrn(i+2,j) ); 

131          elseif (mod(i,2)==1 && mod(j,2)==1) 

132              imgBlu(i,j) = 0.125.* (-1.5*imgBayer(i-2,j) ... 

133                  + 2*imgBayer(i-1,j-1) + 2*imgBayer(i-1,j+1) ... 

134                  - 1.5*imgBayer(i,j-2) + 6*imgBayer(i,j) - 

1.5*imgBayer(i,j+2) + ... 

135                  + 2*imgBayer(i+1,j-1) + 2*imgBayer(i+1,j+1) ... 

136                  - 1.5*imgBayer(i+2,j) ); 

137          end; 

138      end; 

139  end; 

140    

141  %==================== 

142  %final reconstruction 

143  %==================== 

144  imgMCH = zeros(R,C,k); 

145    

146  imgMCH(:,:,1) = imgRed; 

147  imgMCH(:,:,2) = imgGrn; 

148  imgMCH(:,:,3) = imgBlu; 

149    

150    

151  %results 

152  %imtool(img); 

153  %imtool(imgBayer3D); 

154  %imtool(uint8(imgBayer)); 

155  %imtool(uint8(imgGrn)); 

156  %imtool(uint8(imgRed)); 

157  %imtool(uint8(imgBlu)); 

158  %imtool(uint8(imgMCH)); 

159    

160  %pre-conditioning image to measure CIEDE2000 (if desired) 

161  imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k)); 

162  imgMCHCrop = double(zeros(R-(2*pad),C-(2*pad),k)); 

163    

164  for i=1:1:R-(2*pad); 

165      for j=1:1:C-(2*pad); 

166          for k=1:1:3; 

167              imgCrop(i,j,k) = img(i+pad,j+pad,k); 

168              imgMCHCrop(i,j,k) = imgMCH(i+pad,j+pad,k); 

169          end; 

170      end; 

171  end; 

172    

173  %[PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgMCH,img,pad); 

174  %[CPSNR] = measureCPSNR(imgMCH,img,pad); 

175  %SSIM = ssim(img,uint8(imgMCH)); 

176    

177  MSE = fcn_measureMSESinglev2(uint8(imgMCH(:,:,2)),uint8(img(:,:,2)),4); 

178  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgMCH)); 

179  CPSNR = fcn_measureCPSNRv2(uint8(imgMCH),uint8(img),4); 

180  SSIM = ssim(img,uint8(imgMCH)); 

181    

182  %PSNR_R; 

183  %PSNR_G; 

184  %PSNR_B; 

185  %CPSNR; 

 

The Edge Strength Filter Based Interpolation Algorithm (Author’s Implementation) 



121 

1  %========================================================================== 

2  %   Name:       ESFBI_v1.m 

3  %   Author:     Kinyua Wachira 

4  %   Date:       24/09/2014 

5  %   Desc:       an implementation of the Edge Strength Filter Based 

6  %               Interpolation technique from seen in IEEE TIP v21 n1 2012  

7  %               (05770218) 

8  % 

9  %   Notes:     did not convert dmap to d'map because I did not understand 

10  %   how the neighbours are generated dmap is quincunx in nature  

11  % 

12  %   25/9 Almost done just need to find out why the R,B plane is a bit low 

13  %   in the image quality 

14  %   Finished the ESFBI algorithm, used W =0.5 (non-adaptive) and only one 

15  %   updation loop. And a border size pad of 4 pixels 

16  %========================================================================== 

17    

18  %utility fcns 

19  clc; clear all; close all hidden; 

20    

21  %load image and establish Bayer CFA pattern 

22  %load image  

23  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

24  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

25  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

26  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

27  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

28  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

29    

30  imgBayer = fcn_bayer(img); 

31    

32  %========================================================================== 

33  % Preamble 

34  %========================================================================== 

35  imgBayer = double(imgBayer); 

36  [R,C] = size(imgBayer); 

37  [imgRed,imgGrn,imgBlu] = deal(double(zeros(R,C)));  

38  imgESFBI = deal(double(zeros(R,C,3))); 

39  padBorder = 4; 

40  %populate Red, Green and Blue planes with information from Bayer (what is 

41  %known) 

42  for i = 1:1:R; 

43      for j=1:1:C; 

44          if (mod(i,2)==1 && mod(j,2)==1) %red 

45              imgRed(i,j) = imgBayer(i,j); 

46          elseif (mod(i+j,2)==1) %green 

47              imgGrn(i,j) = imgBayer(i,j); 

48          else %blue 

49              imgBlu(i,j) = imgBayer(i,j); 

50          end; 

51      end; 

52  end; 

53    

54  %========================================================================== 

55  % Generate the S map - that is the edge strength map %border size of 1 

56  %========================================================================== 

57  Smap = double(zeros(R,C)); 

58    

59  for i=1+1:1:R-1; 

60      for j=1+1:1:C-1; 

61          Smap(i,j) = abs(imgBayer(i-1,j-1) - imgBayer(i+1,j+1))/2 ... 

62                    + abs(imgBayer(i-1,j+1) - imgBayer(i+1,j-1))/2 ... 

63                    + abs(imgBayer(i-1,j) - imgBayer(i+1,j)) ... 
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64                    + abs(imgBayer(i,j-1) - imgBayer(i,j+1)); 

65      end; 

66  end; 

67    

68    

69  %========================================================================== 

70  % Green Plane Interpolation 

71  %========================================================================== 

72  %generate the Hmap and Vmap in the R,B regions 

73  [Hmap,Vmap,dmap] = deal(double(zeros(R,C))); 

74    

75  for i=1+2:1:R-2; 

76      for j=1+2:1:C-2; 

77          if ~(mod(i+j,2)==1) 

78              Hmap(i,j) = sum(sum(Smap(i-2:i+2,j-2:j+1)-Smap(i-2:i+2,j-

2+1:j+1+1))); 

79              Vmap(i,j) = sum(sum(Smap(i-2:i+1,j-2:j+2)-Smap(i-2+1:i+1+1,j-

2:j+2))); 

80          end; 

81      end; 

82  end; 

83    

84  %generate the dmap  

85  %here 0 means invalid location, 128 means H, 255 means V 

86  for i=1+2:1:R-2; 

87      for j=1+2:1:C-2; 

88          if ~(mod(i+j,2)==1) 

89              if (Hmap(i,j)<Vmap(i,j)) 

90                  dmap(i,j) = 128; 

91              else 

92                  dmap(i,j) = 255; 

93              end; 

94          end; 

95      end; 

96  end; 

97    

98  %perform the interpolation 

99  for i=1+3:1:R-3; 

100      for j=1+3:1:C-3; 

101          if ~(mod(i+j,2)==1) 

102              %directional estimations 

103              GH = (imgGrn(i,j-1) + imgGrn(i,j+1))/2 + ... 

104                   (2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2))/4; 

105                

106              GV = (imgGrn(i-1,j) + imgGrn(i+1,j))/2 + ... 

107                   (2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j))/4; 

108                

109              BHneg = (imgBayer(i,j-2) + imgBayer(i,j))/2 + ... 

110                   (2*imgGrn(i,j-1) - imgGrn(i,j-3) - imgGrn(i,j+1))/4; 

111                

112              BHpos = (imgBayer(i,j) + imgBayer(i,j+2))/2 + ... 

113                   (2*imgGrn(i,j+1) - imgGrn(i,j-1) - imgGrn(i,j+3))/4; 

114                

115              BVneg = (imgBayer(i-2,j) + imgBayer(i,j))/2 + ... 

116                   (2*imgGrn(i-1,j) - imgGrn(i-3,j) - imgGrn(i+1,j))/4; 

117                

118              BVpos = (imgBayer(i,j) + imgBayer(i+2,j))/2 + ... 

119                   (2*imgGrn(i+1,j) - imgGrn(i-1,j) - imgGrn(i+3,j))/4; 

120                

121              if (dmap(i,j)==128) 

122                  imgGrn(i,j) = imgBayer(i,j) + (GH - imgBayer(i,j))/2 ... 

123                      + (imgGrn(i,j-1) - BHneg)/4 + (imgGrn(i,j+1) - BHpos)/4; 

124              elseif (dmap(i,j)==255) 

125                  imgGrn(i,j) = imgBayer(i,j) + (GV - imgBayer(i,j))/2 ... 

126                      + (imgGrn(i-1,j) - BVneg)/4 + (imgGrn(i+1,j) - BVpos)/4; 

127              end; 

128          end; 

129      end; 
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130  end; 

131    

132    

133  %doing the green channel update 

134  c = 0.1; 

135  W = 0.5; 

136    

137  for i=1+3:1:R-3; 

138      for j=1+3:1:C-3; 

139          if ~(mod(i+j,2)==1) 

140              %set up the update parameters 

141              D1 = abs(Smap(i,j) - Smap(i-1,j)) + abs(Smap(i-1,j) - Smap(i-

2,j)) +... 

142                   abs(Smap(i-2,j) - Smap(i-3,j)) +c; 

143              D2 = abs(Smap(i,j) - Smap(i,j-1)) + abs(Smap(i,j-1) - Smap(i,j-

2)) +... 

144                   abs(Smap(i,j-2) - Smap(i,j-3)) +c; 

145              D3 = abs(Smap(i,j) - Smap(i,j+1)) + abs(Smap(i,j+1) - 

Smap(i,j+2)) +... 

146                   abs(Smap(i,j+2) - Smap(i,j+3)) +c; 

147              D4 = abs(Smap(i,j) - Smap(i+1,j)) + abs(Smap(i+1,j) - 

Smap(i+2,j)) +... 

148                   abs(Smap(i+2,j) - Smap(i+3,j)) +c; 

149               

150              M1 = D2.*D3.*D4; 

151              M2 = D1.*D3.*D4; 

152              M3 = D1.*D2.*D4; 

153              M4 = D1.*D2.*D2; 

154              MT = M1+M2+M3+M4; 

155               

156              gUP = imgBayer(i,j) + ... 

157                  W.*(imgGrn(i,j) - imgBayer(i,j)) + ... 

158                  (1-W).*( (M1/MT).*(imgGrn(i-2,j) - imgBayer(i-2,j)) ... 

159                         + (M2/MT).*(imgGrn(i,j-2) - imgBayer(i,j-2)) ... 

160                         + (M3/MT).*(imgGrn(i,j+2) - imgBayer(i,j+2)) ... 

161                         + (M4/MT).*(imgGrn(i+2,j) - imgBayer(i+2,j)) ); 

162                      

163                      

164              imgGrn(i,j) = gUP; 

165          end; 

166      end; 

167  end; 

168    

169  %========================================================================== 

170  % Red and Blue Plane Interpolation 

171  %========================================================================== 

172  %in the opposing planes 

173  e=0; %needed to add this to prevent the regions of homogeneity from giving  

174  %a NaN error 

175    

176  for i=1+2:1:R-2; 

177      for j=1+2:1:C-2; 

178          if (mod(i+j,2)==0) %red in blue pixels and blue in red pixels 

179              M1 = abs(imgGrn(i-2,j-2) - imgGrn(i,j)) + ... 

180                   abs(imgGrn(i-1,j-1) - imgGrn(i+1,j+1)) + ... 

181                   abs(imgGrn(i,j) - imgGrn(i+2,j+2))+e; 

182              M2 = abs(imgGrn(i-2,j+2) - imgGrn(i,j)) + ... 

183                   abs(imgGrn(i-1,j+1) - imgGrn(i+1,j-1)) + ... 

184                   abs(imgGrn(i,j) - imgGrn(i+2,j-2))+e; 

185                

186              if (mod(i,2)==1 && mod(j,2)==1) %red pixel location 

187                  imgBlu(i,j) = imgGrn(i,j) ... 

188                  - ((M2./(2.*(M1+M2))).*( (imgGrn(i-1,j-1)-imgBlu(i-1,j-1)) + 

(imgGrn(i+1,j+1)-imgBlu(i+1,j+1)) )) ... 

189                  - ((M1./(2.*(M1+M2))).*( (imgGrn(i-1,j+1)-imgBlu(i-1,j+1)) + 

(imgGrn(i+1,j-1)-imgBlu(i+1,j-1)) )); 

190              end; 

191              if (mod(i,2)==0 && mod(j,2)==0) % blue pixel location 



124 

192                  imgRed(i,j) = imgGrn(i,j) ... 

193                  - ((M2./(2.*(M1+M2))).*( (imgGrn(i-1,j-1)-imgRed(i-1,j-1)) + 

(imgGrn(i+1,j+1)-imgRed(i+1,j+1)) )) ... 

194                  - ((M1./(2.*(M1+M2))).*( (imgGrn(i-1,j+1)-imgRed(i-1,j+1)) + 

(imgGrn(i+1,j-1)-imgRed(i+1,j-1)) )); 

195              end; 

196          end; 

197      end; 

198  end; 

199    

200  %in the green plane 

201  for i=1+2:1:R-2; 

202      for j=1+2:1:C-2; 

203          if (mod(i+j,2)==1) %green pixel locations 

204              if (mod(i,2)==1) %red rows/blue cols 

205                  imgRed(i,j) = imgGrn(i,j) - ... 

206                      ((imgGrn(i,j-1)-imgRed(i,j-1))+(imgGrn(i,j+1)-

imgRed(i,j+1)))/2; 

207                  imgBlu(i,j) = imgGrn(i,j) - ... 

208                      ((imgGrn(i-1,j)-imgBlu(i-1,j))+(imgGrn(i+1,j)-

imgBlu(i+1,j)))/2; 

209              end; 

210              if (mod(i,2)==0) %blue rows/red cols 

211                  imgRed(i,j) = imgGrn(i,j) - ... 

212                      ((imgGrn(i-1,j)-imgRed(i-1,j))+(imgGrn(i+1,j)-

imgRed(i+1,j)))/2; 

213                  imgBlu(i,j) = imgGrn(i,j) - ... 

214                      ((imgGrn(i,j-1)-imgBlu(i,j-1))+(imgGrn(i,j+1)-

imgBlu(i,j+1)))/2; 

215              end; 

216          end; 

217      end; 

218  end; 

219    

220    

221  %========================================================================== 

222  % Results 

223  %========================================================================== 

224  imgESFBI(:,:,1) = imgRed; 

225  imgESFBI(:,:,2) = imgGrn; 

226  imgESFBI(:,:,3) = imgBlu; 

227    

228  % imtool(img); 

229  % imtool(uint8(imgBayer)); 

230  % imtool(uint8(imgRed)); 

231  % imtool(uint8(imgGrn)); 

232  % imtool(uint8(imgBlu)); 

233  % imtool(uint8(imgESFBI)); 

234  %imtool(uint8(dmap)); 

235    

236  % [PSNR(1),PSNR(2),PSNR(3)] = 

fcn_measurePSNRv2(uint8(imgESFBI),img,padBorder); 

237  % PSNR = PSNR'; 

238    

239    

240  MSE = fcn_measureMSESinglev2(uint8(imgESFBI(:,:,2)),uint8(img(:,:,2)),4); 

241  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgESFBI)); 

242  CPSNR = fcn_measureCPSNRv2(uint8(imgESFBI),uint8(img),4); 

243  SSIM = ssim(img,uint8(imgESFBI)); 

 

The Wang Algorithm (Author’s Implementation) 

1  %========================================================================== 

2  % script:   wangMethod 

3  % date:     --/--/2015 

4  % author:   Kinyua Wachira 
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5  % desc:     a script to perform the Wang demosaicking technique from SPIE 

6  %           v8420 of 2012 

7  %========================================================================== 

8    

9  %utility functions 

10  clc; clear all; close all; 

11    

12  %load image and establish Bayer CFA pattern 

13  %load image  

14  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

15  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

16  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

17  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

18  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

19  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

20    

21    

22  pad = 2; %padding region width for interpolation error 

23    

24  %obtain the 3D (colour) Bayer CFA representation 

25  imgBayer3D = img2Bayer(img); 

26    

27  %convert 3D Bayer to 2D (grayscale) equivalent 

28  [R,C,k] = size(imgBayer3D); 

29  imgBayer = double(zeros(R,C)); 

30  for i=1:1:R; 

31      for j=1:1:C; 

32          if (mod(i+j,2)==1) 

33              imgBayer(i,j) = imgBayer3D(i,j,2); 

34          elseif (mod(i,2)==1 && mod(j,2)==1) 

35              imgBayer(i,j) = imgBayer3D(i,j,1); 

36          else 

37              imgBayer(i,j) = imgBayer3D(i,j,3); 

38          end; 

39      end; 

40  end; 

41    

42  %========================= 

43  %green plane interpolation 

44  %========================= 

45  imgGrnEst = double(zeros(R,C)); 

46  imgGrn = double(zeros(R,C)); 

47    

48  for i=1:1:R; 

49      for j=1:1:C; 

50          if (mod(i+j,2)==1) 

51              imgGrnEst(i,j) = imgBayer(i,j); 

52              imgGrn(i,j) = imgBayer(i,j); 

53          end; 

54      end; 

55  end; 

56    

57  %1st interpolation 

58  for i=1+2:1:R-2; 

59      for j=1+2:1:C-2; 

60          if (mod(i+j,2)~=1) 

61              Hgrad = abs(imgBayer(i,j-2)-imgBayer(i,j)) + 

abs(imgBayer(i,j+2)-imgBayer(i,j))... 

62                  + abs(imgGrn(i,j-1)-imgGrn(i,j+1)); 

63              Vgrad = abs(imgBayer(i-2,j)-imgBayer(i,j)) + 

abs(imgBayer(i+2,j)-imgBayer(i,j))... 

64                  + abs(imgGrn(i-1,j)-imgGrn(i+1,j)); 

65              if (Hgrad < Vgrad) 
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66                  imgGrnEst(i,j) = (imgGrn(i,j-1)+imgGrn(i,j+1))/2 + ... 

67                    (2.*imgBayer(i,j)-imgBayer(i,j-2)-imgBayer(i,j+2))/4;  

68              else 

69                  imgGrnEst(i,j) = (imgGrn(i-1,j)+imgGrn(i+1,j))/2 + ... 

70                    (2.*imgBayer(i,j)-imgBayer(i-2,j)-imgBayer(i+2,j))/4;  

71              end; 

72          end; 

73               

74      end; 

75  end; 

76    

77  %2nd interpolation 

78  for i=1+2:1:R-2; 

79      for j=1+2:1:C-2; 

80          if (mod(i+j,2)~=1) 

81              Hgrad = abs(imgBayer(i,j-2)-imgBayer(i,j)) + 

abs(imgBayer(i,j+2)-imgBayer(i,j))... 

82                  + abs(imgGrnEst(i,j-1)-imgGrnEst(i,j+1)); 

83              Vgrad = abs(imgBayer(i-2,j)-imgBayer(i,j)) + 

abs(imgBayer(i+2,j)-imgBayer(i,j))... 

84                  + abs(imgGrnEst(i-1,j)-imgGrnEst(i+1,j)); 

85              Ngrad = abs(imgBayer(i-2,j-2)-imgBayer(i,j)) + 

abs(imgBayer(i+2,j+2)-imgBayer(i,j))... 

86                  + abs(imgGrnEst(i-1,j-1)-imgGrnEst(i+1,j+1)); 

87              Pgrad = abs(imgBayer(i+2,j-2)-imgBayer(i,j)) + abs(imgBayer(i-

2,j+2)-imgBayer(i,j))... 

88                  + abs(imgGrnEst(i-1,j+1)-imgGrnEst(i+1,j-1)); 

89               

90              grad = [Hgrad,Vgrad,Ngrad,Pgrad]; 

91              Thres = min(grad); 

92               

93              if (Thres==Hgrad) 

94                  imgGrn(i,j) = (imgGrnEst(i,j-1) + imgGrnEst(i,j+1))/2 ... 

95                      + (2*imgBayer(i,j)-imgBayer(i,j-2)-imgBayer(i,j+2))/4; 

96              elseif (Thres==Vgrad) 

97                  imgGrn(i,j) = (imgGrnEst(i-1,j) + imgGrnEst(i+1,j))/2 ... 

98                      + (2*imgBayer(i,j)-imgBayer(i-2,j)-imgBayer(i+2,j))/4; 

99              elseif (Thres==Ngrad) 

100                  imgGrn(i,j) = (imgGrnEst(i-1,j-1) + imgGrnEst(i+1,j+1))/2 

... 

101                      + (2*imgBayer(i,j)-imgBayer(i-2,j-2)-

imgBayer(i+2,j+2))/4; 

102              else 

103                  imgGrn(i,j) = (imgGrnEst(i-1,j+1) + imgGrnEst(i+1,j-1))/2 

... 

104                      + (2*imgBayer(i,j)-imgBayer(i-2,j+2)-imgBayer(i+2,j-

2))/4; 

105              end; 

106          end; 

107      end; 

108  end; 

109    

110  %======================= 

111  %red plane interpolation 

112  %======================= 

113  imgRed = double(zeros(R,C)); 

114    

115  %red in red pixel locations 

116  for i=1:1:R; 

117      for j=1:1:C; 

118          if (mod(i,2)==1 && mod(j,2)==1) 

119              imgRed(i,j) = imgBayer(i,j); 

120          end; 

121      end; 

122  end; 

123    

124  %red in green pixel locations 

125  for i=1+1:1:R-1; 
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126      for j=1+1:1:C-1; 

127          if (mod(i,2)==1 && mod(i+j,2)==1) 

128              imgRed(i,j) = imgGrn(i,j) + ... 

129                  (imgRed(i,j-1)-imgGrn(i,j-1) + imgRed(i,j+1)-

imgGrn(i,j+1))/2; 

130          end; 

131          if (mod(i,2)==0 && mod(i+j,2)==1) 

132              imgRed(i,j) = imgGrn(i,j) + ... 

133                  (imgRed(i-1,j)-imgGrn(i-1,j) + imgRed(i+1,j)-

imgGrn(i+1,j))/2; 

134          end; 

135      end; 

136  end; 

137    

138  %red in blue pixel locations 

139  for i=1+1:1:R-1; 

140      for j=1+1:1:C-1; 

141          if(mod(i,2)==0 && mod(j,2)==0) 

142              imgRed(i,j) = imgGrn(i,j) + ... 

143                 ( imgRed(i-1,j-1)-imgGrn(i-1,j-1) + imgRed(i-1,j+1)-imgGrn(i-

1,j+1) + ... 

144                   imgRed(i+1,j-1)-imgGrn(i+1,j-1) + imgRed(i+1,j+1)-

imgGrn(i+1,j+1) )/4; 

145          end; 

146      end; 

147  end; 

148  %======================== 

149  %blue plane interpolation 

150  %======================== 

151  imgBlu = double(zeros(R,C)); 

152    

153  %blue in blue pixel locations 

154  for i=1:1:R; 

155      for j=1:1:C; 

156          if (mod(i,2)==0 && mod(j,2)==0) 

157              imgBlu(i,j) = imgBayer(i,j); 

158          end; 

159      end; 

160  end; 

161    

162  %blue in green pixel locations 

163  for i=1+1:1:R-1; 

164      for j=1+1:1:C-1; 

165          if (mod(i,2)==0 && mod(i+j,2)==1) 

166              imgBlu(i,j) = imgGrn(i,j) + ... 

167                  (imgBlu(i,j-1)-imgGrn(i,j-1) + imgBlu(i,j+1)-

imgGrn(i,j+1))/2; 

168          end; 

169          if (mod(i,2)==1 && mod(i+j,2)==1) 

170              imgBlu(i,j) = imgGrn(i,j) + ... 

171                  (imgBlu(i-1,j)-imgGrn(i-1,j) + imgBlu(i+1,j)-

imgGrn(i+1,j))/2; 

172          end; 

173      end; 

174  end; 

175    

176  %blue in red pixel locations 

177  for i=1+1:1:R-1; 

178      for j=1+1:1:C-1; 

179          if(mod(i,2)==1 && mod(j,2)==1) 

180              imgBlu(i,j) = imgGrn(i,j) + ... 

181                 ( imgBlu(i-1,j-1)-imgGrn(i-1,j-1) + imgBlu(i-1,j+1)-imgGrn(i-

1,j+1) + ... 

182                   imgBlu(i+1,j-1)-imgGrn(i+1,j-1) + imgBlu(i+1,j+1)-

imgGrn(i+1,j+1) )/4; 

183          end; 

184      end; 

185  end; 
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186    

187  %==================== 

188  %final reconstruction 

189  %==================== 

190  imgWang = zeros(R,C,k); 

191  imgWang(:,:,1) = imgRed; 

192  imgWang(:,:,2) = imgGrn; 

193  imgWang(:,:,3) = imgBlu; 

194    

195  %results 

196  %imtool(img); 

197  %imtool(imgBayer3D); 

198  %imtool(uint8(imgBayer)); 

199  %imtool(uint8(imgGrnEst)); 

200  %imtool(uint8(imgGrn)); 

201  %imtool(uint8(imgRed)); 

202  %imtool(uint8(imgBlu)); 

203  %imtool(uint8(imgWang)); 

204    

205  %pre-conditioning image to measure CIEDE2000 (if desired) 

206   imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k)); 

207   imgWangCrop = double(zeros(R-(2*pad),C-(2*pad),k)); 

208    

209   for i=1:1:R-(2*pad); 

210       for j=1:1:C-(2*pad); 

211           for k=1:1:3; 

212               imgCrop(i,j,k) = img(i+pad,j+pad,k); 

213               imgWangCrop(i,j,k) = imgWang(i+pad,j+pad,k); 

214           end; 

215       end; 

216   end; 

217    

218  % [PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgWang,img,pad); 

219  % [CPSNR] = measureCPSNR(imgWang,img,pad); 

220  % PSNR_R; 

221  % PSNR_G; 

222  % PSNR_B; 

223  % CPSNR; 

224  %  

225  % [observedLAB,actualLAB,diffLAB] = measureLAB(uint8(imgWang),img,pad); 

226  % [diffdelta00] = measureDELTA00(uint8(imgWangCrop),imgCrop); 

227    

228  % padBorder = 4; 

229  %  

230  % [PSNR(1),PSNR(2),PSNR(3)] = 

fcn_measurePSNRv2(uint8(imgWang),img,padBorder); 

231  % PSNR = PSNR'; 

232  % CPSNR = fcn_measureCPSNRv2(uint8(imgWang),img,padBorder); 

233  % SSIM = ssim(img,uint8(imgWang)); 

234  % [FSIM,FSIMc] = FeatureSIM(img,uint8(imgWang)); 

235    

236  MSE = fcn_measureMSESinglev2(uint8(imgWang(:,:,2)),uint8(img(:,:,2)),4); 

237  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgWang)); 

238  CPSNR = fcn_measureCPSNRv2(uint8(imgWang),uint8(img),4); 

239  SSIM = ssim(img,uint8(imgWang)); 

 

 

Multi-scale Gradient Based Interpolation Algorithm (Author’s Implementation) 

1  %========================================================================== 

2  %   Name:       MGBI_v1.m 

3  %   Author:     Kinyua Wachira 

4  %   Date:       --/--/2015 

5  %   Desc:       an implementation of Multi-gradient Based Interpolation 

6  %   seen in IEEE TIP v22 n1 2013 (06253257) 
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7  % 

8  %   Notes:      will try to make note of any assumptions here 

9  %           1. i think at this stage diffH, diffV are correct 

10  %           2. created DHmap and DVmap 

11  %           3. managed to create the green plane - has a border of 4 

12  %              also not implemented the green update section using 

13  %              w,ws,wn,we,ww yet 

14  % 

15  % 

16  %     18/9  4. implemented the green updation stage, since w not given 

17  %     picked w=0.5 - seen improvment i.e kodim19 -> PSNR_G from 41.6174 to 

18  %     43.2833 

19  % 

20  %           5. only performed one updation iteration for this algorithm 

21  %           implementation 

22  % 

23  %     24/9 My implementation of this algorithm fails at white-only regions 

24  %     -this has resulted in problems for kodim 06 08 10 15 20 23 24 that 

25  %     all have large white regions in the image --> need to determine 

26  %     whether this is due to bad coding or is it inherent from the 

27  %     algorithm itself 

28  %========================================================================== 

29    

30  %utility fcns 

31  clc; clear all; close all hidden; 

32    

33  %load image and generate the Bayer representation 

34  %load image  

35  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

36  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

37  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

38  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

39  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

40  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

41    

42    

43  imgBayer = fcn_bayer(img); 

44    

45  %generate maps 

46  [R,C] = size(imgBayer); 

47  imgBayer = double(imgBayer); 

48  [rGHmap, RHmap, rGVmap, RVmap] = deal(double(zeros(R,C))); %used deal to do 

multiple variable initialisation 

49  [bGHmap, BHmap, bGVmap, BVmap] = deal(double(zeros(R,C))); 

50    

51  %error term to prevent 

52  err=0; 

53  padBorder =4; 

54    

55  %rGHmap, RHmap, bGHmap, BHmap - all horizontal maps 

56  %NOTE: here G_row (RED) = i is odd, j is even 

57  %           G_row (BLUE) = i is even, j is odd 

58  for i=1:1:R; 

59      for j=1+2:1:C-2; 

60          if (mod(i,2) == 1 && mod(j,2) == 1) %rGHmap 

61              rGHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ... 

62              + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2))); 

63          end; 

64          if (mod(i,2) ==1 && mod(i+j,2) == 1) %RHmap 

65              RHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ... 

66              + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2))); 

67          end; 

68          if (mod(i,2) == 0 && mod(j,2) == 0) %bGHmap 
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69              bGHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ... 

70              + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2))); 

71          end; 

72          if (mod(i,2) ==0 && mod(i+j,2) == 1) %BHmap 

73              BHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ... 

74              + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2))); 

75          end; 

76      end; 

77  end; 

78    

79  %rGVmap, RVmap, bGVmap, BVmap - all vertical maps 

80  %NOTE: here G_col (RED) = i is even, j is odd 

81  %           G_col (BLUE) = i is odd, j is even 

82  for i=1+2:1:R-2; 

83      for j=1:1:C; 

84          if (mod(i,2)==1 && mod(j,2)==1) %rGVmap 

85              rGVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ... 

86              + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j))); 

87          end; 

88          if (mod(i,2)==0 && mod(i+j,2)==1) %RVmap 

89              RVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ... 

90              + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j))); 

91          end; 

92          if (mod(i,2)==0 && mod(j,2)==0) %bGVmap 

93              bGVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ... 

94              + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j))); 

95          end; 

96          if (mod(i,2)==1 && mod(i+j,2) ==1) %BVmap 

97              BVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ... 

98              + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j))); 

99          end; 

100      end; 

101  end; 

102    

103  %establish the diffH and diffV maps 

104  [diffH, diffV] = deal(double(zeros(R,C))); 

105    

106  for i=1:1:R; 

107      for j=1+2:1:C-2; 

108          if (mod(i,2)==1 && mod(j,2)==1) 

109              diffH(i,j) = rGHmap(i,j) - imgBayer(i,j); 

110          end; 

111          if (mod(i,2)==1 && mod(i+j,2)==1) 

112              diffH(i,j) = imgBayer(i,j) - RHmap(i,j); 

113          end; 

114          if (mod(i,2)==0 && mod(j,2)==0) 

115              diffH(i,j) = bGHmap(i,j) - imgBayer(i,j); 

116          end; 

117          if (mod(i,2)==0 && mod(i+j,2)==1) 

118              diffH(i,j) = imgBayer(i,j) - BHmap(i,j); 

119          end; 

120      end; 

121  end; 

122    

123  for i=1+2:1:R-2; 

124      for j=1:1:C; 

125          if (mod(i,2)==1 && mod(j,2)==1) 

126              diffV(i,j) = rGVmap(i,j) - imgBayer(i,j); 

127          end; 

128          if (mod(i,2)==0 && mod(i+j,2)==1) 

129              diffV(i,j) = imgBayer(i,j) - RVmap(i,j); 

130          end; 

131          if (mod(i,2)==0 && mod(j,2)==0) 

132              diffV(i,j) = bGVmap(i,j) - imgBayer(i,j); 

133          end; 

134          if (mod(i,2)==1 && mod(i+j,2)==1) 

135              diffV(i,j) = imgBayer(i,j) - BVmap(i,j); 

136          end; 
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137      end; 

138  end; 

139    

140  %establish the absolute difference maps (DHmap,DVmap) 

141  [DHmap, DVmap] = deal(double(zeros(R,C))); 

142    

143  for i=1:1:R; 

144      for j=1+3:1:C-3; 

145          DHmap(i,j) = abs(diffH(i,j-1) - diffH(i,j+1)); 

146      end; 

147  end; 

148  for i=1+3:1:R-3; 

149      for j=1:1:C; 

150          DVmap(i,j) = abs(diffV(i-1,j) - diffV(i+1,j)); 

151      end; 

152  end; 

153    

154  clear i j 

155    

156  %======================================================================== 

157  [imgRed,imgGrn,imgBlu] = deal(double(zeros(R,C))); 

158  %for red in red pixels 

159  for i=1:1:R; 

160      for j=1:1:C; 

161          if (mod(i,2)==1 && mod(j,2)==1) 

162              imgRed(i,j) = imgBayer(i,j); 

163          end; 

164      end; 

165  end; 

166  %for green in green pixels 

167  for i=1:1:R; 

168      for j=1:1:C; 

169          if (mod(i+j,2) == 1) 

170              imgGrn(i,j) = imgBayer(i,j); 

171          end; 

172      end; 

173  end; 

174  %for blue in blue pixels 

175  for i=1:1:R; 

176      for j=1:1:C; 

177          if (mod(i,2)==0 && mod(j,2)==0) 

178              imgBlu(i,j) = imgBayer(i,j); 

179          end; 

180      end; 

181  end; 

182  %======================================================================== 

183    

184  %======================================================================== 

185  % Green Plane Interpolation 

186  %======================================================================== 

187  f = [0.25, 0.5, 0.25]; 

188  %note we are looking for the missing components in the green plane 

189    

190  %for green in red pixels 

191  %gmap --> can be grmap or gbmap depending on place 

192  gmap = double(zeros(R,C)); 

193  for i=1+4:1:R-4; 

194      for j=1+4:1:C-4; 

195          if ~(mod(i+j,2)==1) 

196              %establish the weights 

197              wV = 1/(sum(sum(DVmap(i-2:i+2,j-2:j+2),2))); 

198              wH = 1/(sum(sum(DHmap(i-2:i+2,j-2:j+2),2))); 

199              %construct the gmap 

200              gmap(i,j) = (wH.*(diffH(i,j-1:j+1)*f') + wV.*(f*diffV(i-

1:i+1,j)))... 

201                           /(wV+wH); 

202          end; 

203      end; 
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204  end; 

205    

206  %green channel update 

207  ggmap = double(zeros(R,C)); 

208  for i=1+4:1:R-4; 

209      for j=1+4:1:C-4; 

210          if ~(mod(i+j,2)==1) 

211              %establish weights 

212              w = 0.5; 

213              wN = 1/((sum(sum(DVmap(i-4:i,j-1:j+1),2)))+err); 

214              wS = 1/((sum(sum(DHmap(i:i+4,j-1:j+1),2)))+err); 

215              wW = 1/((sum(sum(DVmap(i-1:i+1,j-4:j),2)))+err); 

216              wE = 1/((sum(sum(DHmap(i-1:i+1,j:j+4),2)))+err); 

217              wT = wN + wS + wW + wE; 

218              %construct the ggmap 

219               

220              ggmap(i,j) = (gmap(i,j).*(1-w)) + ... 

221               ( w.*(wN.*gmap(i-2,j) + wS.*gmap(i+2,j) + ... 

222                   wW.*gmap(i,j-2) + wE.*gmap(i,j+2))/wT ); 

223                

224              if (mod(i,2)==1 && mod(j,2)==1) 

225                  %get the green contents in red pixels 

226                  imgGrn(i,j) = imgRed(i,j) + ggmap(i,j); 

227              end; 

228              if (mod(i,2)==0 && mod(j,2)==0) 

229                  %get the green contents in red pixels 

230                  imgGrn(i,j) = imgBlu(i,j) + ggmap(i,j); 

231              end; 

232          end; 

233      end; 

234  end; 

235    

236  %======================================================================== 

237  % Red and Blue Plane Interpolation 

238  %======================================================================== 

239  prb = 1/32.*[ 0  0 -1  0 -1  0  0; 

240          0  0  0  0  0  0  0; 

241         -1  0 10  0 10  0 -1; 

242          0  0  0  0  0  0  0; 

243         -1  0 10  0 10  0 -1; 

244          0  0  0  0  0  0  0; 

245          0  0 -1  0 -1  0  0]; 

246    

247  [Rmap,Bmap] = deal(double(zeros(R,C))); 

248       

249  %for the red in blue pixels, and blue in red pixels data 

250  for i=1+4:1:R-4; 

251      for j=1+4:1:C-4; 

252          if (mod(i,2)==0 && mod(j,2)==0) 

253              Rmap(i,j) = imgGrn(i,j) - sum(sum(ggmap(i-3:i+3,j-3:j+3).*prb)); 

254              imgRed(i,j) = Rmap(i,j); 

255          end; 

256          if (mod(i,2)==1 && mod(j,2)==1) 

257              Bmap(i,j) = imgGrn(i,j) - sum(sum(ggmap(i-3:i+3,j-3:j+3).*prb)); 

258              imgBlu(i,j) = Bmap(i,j); 

259          end; 

260      end; 

261  end; 

262    

263  %for the red or blue in green pixel locations 

264  for i=1+4:1:R-4; 

265      for j=1+4:1:C-4; 

266          if (mod(i+j,2)==1) 

267              %establish the weights 

268              wV = 1/(sum(sum(DVmap(i-2:i+2,j-2:j+2),2))); 

269              wH = 1/(sum(sum(DHmap(i-2:i+2,j-2:j+2),2))); 

270              %populate the red and blue planes 

271              imgRed(i,j) = imgGrn(i,j) - ... 
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272                 (  wV.*((imgGrn(i-1,j)-imgRed(i-1,j)) + (imgGrn(i+1,j)-

imgRed(i+1,j))) ... 

273                  + wH.*((imgGrn(i,j-1)-imgRed(i,j-1)) + (imgGrn(i,j+1)-

imgRed(i,j+1))) )... 

274                 /(2.*(wV+wH));       

275             imgBlu(i,j) = imgGrn(i,j) - ... 

276                 (  wV.*((imgGrn(i-1,j)-imgBlu(i-1,j)) + (imgGrn(i+1,j)-

imgBlu(i+1,j))) ... 

277                  + wH.*((imgGrn(i,j-1)-imgBlu(i,j-1)) + (imgGrn(i,j+1)-

imgBlu(i,j+1))) )... 

278                 /(2.*(wV+wH));       

279          end; 

280      end; 

281  end; 

282    

283  %======================================================================== 

284  % Final Reconstruction 

285  %======================================================================== 

286  imgMGBI = double(zeros(R,C,3)); 

287  imgMGBI(:,:,1) = imgRed; 

288  imgMGBI(:,:,2) = imgGrn; 

289  imgMGBI(:,:,3) = imgBlu; 

290    

291  %======================================================================== 

292  % Results 

293  %======================================================================== 

294    

295  %imtool(img); 

296  %imtool(uint8(imgBayer)); 

297  %imtool(uint8(rGVmap)); 

298  %imtool(uint8(RVmap)); 

299  %imtool(uint8(diffV)); 

300  %imtool(uint8(DVmap)); 

301  %imtool(uint8(imgMGBI)); 

302  %  

303  % [PSNR(1),PSNR(2),PSNR(3)] = 

fcn_measurePSNRv2(uint8(imgMGBI),img,padBorder); 

304  % PSNR = PSNR'; 

305  % CPSNR = fcn_measureCPSNRv2(uint8(imgMGBI),img,padBorder); 

306  % SSIM = ssim(img,uint8(imgMGBI)); 

307  % [FSIM,FSIMc] = FeatureSIM(img,uint8(imgMGBI)); 

308    

309  MSE = fcn_measureMSESinglev2(uint8(imgMGBI(:,:,2)),uint8(img(:,:,2)),4); 

310  [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgMGBI)); 

311  CPSNR = fcn_measureCPSNRv2(uint8(imgMGBI),uint8(img),4); 

312  SSIM = ssim(img,uint8(imgMGBI)); 

 

The Average-based Colour Reconstruction Algorithm (Author’s Implementation) 

1  %========================================================================= 

2  % Author: Kinyua Wachira 

3  % Date: 25-10-2016 

4  % Name: algorithm_AWCR.m 

5  % 

6  % Desc: Average-based Color Reconstruction is an algorithm proposed in 

7  % 2007 by Honda et. al in "A novel Bayer-like WRGB color filter array for \ 

8  % CMOS image sensors". 

9  % This is my implementation of it. 

10  % 

11  % Sections 

12  % [1] Utility Functions 

13  % [2] Load Image 

14  % [3] Call function_Convert2WRGBCFA.m 

15  % [4] Pre-Algorithm Setup 

16  % [5a] Algorithm - White Pixel Centre Reconstruction 

17  % [5b] Algorithm - Red Pixel Centre Reconstruction 
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18  % [5c] Algorithm - Green Pixel Centre Reconstruction 

19  % [5d] Algorithm - Blue Pixel Centre Reconstruction 

20  % [6] Display Result 

21  %========================================================================= 

22    

23  % [1] Utility Functions 

24  clc;    %clear command window 

25  clear; %clear any prior variables in workspace 

26  close all hidden; % close all figures 

27    

28  % [2] Load Image  

29  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

30  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

31  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

32  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

33  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

34  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

35    

36  % [3] Call function_Convert2WRGBCFA.m 

37  imgWRGB = function_Convert2WRGBCFA(img); 

38    

39  % [4] Pre-Algorithm Setup 

40  imgRes = double(imgWRGB); 

41  [R,C,N] = size(imgRes); 

42  pBord = 2; % Pixel Border width 

43    

44  % [5a] Algorithm - White Pixel Centre Reconstruction 

45  for i=(1+pBord):1:(R-pBord); 

46      for j=(1+pBord):1:(C-pBord); 

47          if (mod(i,2)==1 && mod(j,2)==1) % white pixel 

48              W =(imgRes(i,j,1) + imgRes(i,j,2) + imgRes(i,j,3)); % define W 

49              Rav = 0.5.*(imgRes(i,j-1,1) + imgRes(i,j+1,1)); % define Rav 

50              Gav = 0.25.*(imgRes(i-1,j-1,2) + imgRes(i-1,j+1,2) + ... 

51                           imgRes(i+1,j-1,2) + imgRes(i+1,j+1,2)); % define 

Gav 

52              Bav = 0.5.*(imgRes(i-1,j,3) + imgRes(i+1,j,3)); % define Bav 

53              imgRes(i,j,1) = Rav./(Rav+Gav+Bav).*W; % compute Rw  

54              imgRes(i,j,2) = Gav./(Rav+Gav+Bav).*W; % compute Gw 

55              imgRes(i,j,3) = Bav./(Rav+Gav+Bav).*W; % compute Bw 

56          end; 

57      end; 

58  end; 

59    

60  % [5b] Algorithm - Red Pixel Centre Construction 

61  for i=(1+pBord):1:(R-pBord) 

62      for j=(1+pBord):1:(C-pBord) 

63          if (mod(i,2)==1 && mod(j,2)==0) % red pixel 

64              imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ... 

65                              imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; % compute 

Gr 

66              imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i-1,j+1,3) + ... 

67                               imgRes(i+1,j-1,3) + imgRes(i+1,j+1,3) + ... 

68                               imgRes(i,j-1,3) + imgRes(i,j+1,3))./6; %compute 

Br 

69          end; 

70      end; 

71  end; 

72    

73  % [5c] Algorithm - Green Pixel Centre Construction 

74  for i=(1+pBord):1:(R-pBord) 

75      for j=(1+pBord):1:(C-pBord) 

76          if (mod(i,2)==0 && mod(j,2)==0) % green pixel 
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77              imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j,1) + imgRes(i-

1,j+1,1) + ... 

78                               imgRes(i+1,j-1,1) + imgRes(i+1,j,1) + 

imgRes(i+1,j+1,1))./6; % compute Rg 

79              imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i,j-1,3) + 

imgRes(i+1,j-1,3) + ... 

80                               imgRes(i-1,j+1,3) + imgRes(i,j+1,3) + 

imgRes(i+1,j+1,3))./6; % compute Bg 

81          end; 

82      end; 

83  end; 

84    

85  % [5d] Algorithm - Blue Pixel Centre Construction 

86  for i=(1+pBord):1:(R-pBord) 

87      for j=(1+pBord):1:(C-pBord) 

88          if (mod(i,2)==0 && mod(j,2)==1) % blue pixel 

89              imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j+1,1) + ... 

90                               imgRes(i+1,j-1,1) + imgRes(i+1,j+1,1) + ... 

91                               imgRes(i-1,j,1) + imgRes(i+1,j,1))./6; % 

compute Rb 

92              imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ... 

93                               imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; % 

compute Gb 

94          end; 

95      end; 

96  end; 

97    

98  % [6] Display Result 

99   imgACR = uint8(imgRes); 

100  % clear imgRes; 

101  % imtool(img); 

102  % imtool(imgACR); 

103    

104  MSE = fcn_measureMSESinglev2(uint8(imgACR(:,:,2)),uint8(img(:,:,2)),4); 

105  CPSNR = fcn_measureCPSNRv2(imgACR,img,4); %border length of 4 is used 

106  SSIM = ssim(imgACR,img); 

107  [FSIM,FSIMc] = FeatureSIM(img,imgACR); 

108  % end of M-file 

109  %====================================================================== 

 

 

The Edge Detection-based Colour Reconstruction Algorithm (Author’s Implementation) 

1  %========================================================================= 

2  % Author: Kinyua Wachira 

3  % Date: 28-10-2016 

4  % Name: algorithm_EDCR.m 

5  % 

6  % Desc: Edge Detection-based Color Reconstruction is  

7  % an algorithm proposed in 2007 by Honda et. al in "High Sensitivity Color  

8  % CMOS Image Sensor with WRGB Color Filter Array and Color Separation 

9  % Process Using Edge Detection" 

10  % This is my implementation of it. 

11  % 

12  % Sections 

13  % [1] Utility Functions 

14  % [2] Load Image 

15  % [3] Call function_Convert2WRGBCFA.m 

16  % [4] Pre-Algorithm Setup 

17  % [5] Edge Detection Process 

18  % [6a] Algorithm - White Pixel Centre, No Edge Detected, Reconstruction  

19  % [6b] Algorithm - White Pixel Centre, Edge Detected, Reconstruction 

20  % [6c] Algorithm - Green Pixel Centre Reconstruction 

21  % [6d] Algorithm - Red Pixel Centre Reconstruction 

22  % [6e] Algorithm - Blue Pixel Centre Reconstruction 
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23  % [7] Display Results 

24  %========================================================================= 

25    

26  % [1] Utility Functions 

27  clc;    %clear command window 

28  clear; %clear any prior variables in workspace 

29  close all hidden; % close all figures 

30    

31  % [2] Load Image  

32  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff'); 

33  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png'); 

34  %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif'); 

35  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Condat\codim30.tif'); 

36  %img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif'); 

37  img = imread('C:\Users\Kinyua 

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg'); 

38    

39    

40  % [3] Call function_Convert2WRGBCFA.m 

41  imgWRGB = function_Convert2WRGBCFA(img); 

42    

43  % [4] Pre-Algorithm Setup 

44  imgRes = double(imgWRGB); 

45  [R,C,N] = size(imgRes); 

46  pBord = 2; % Pixel Border width 

47  thres = 60; % Threshold Value 

48    

49  % [5] Edge Detection Process 

50  imgEdge = uint8(zeros(R,C)); %setup an edge map to contain edge detection 

information 

51    

52  for i=(1+pBord):1:(R-pBord) 

53      for j=(1+pBord):1:(C-pBord) 

54          if (mod(i,2)==1 && mod(j,2)==1) % white pixel  

55              % horizontal edge |(G11+B11+G12) - (G21+B21+G22)|  

56              if abs((imgRes(i-1,j-1,2)+imgRes(i-1,j,3)+imgRes(i-1,j+1,2)) - 

(imgRes(i+1,j-1,2)+imgRes(i+1,j,3)+imgRes(i+1,j+1,2)))>thres 

57                  imgEdge(i,j) = 255; 

58              % vertical edge |(G11+R11+G21) - (G12+R12+G22)| 

59              elseif abs((imgRes(i-1,j-1,2)+imgRes(i,j-1,1)+imgRes(i+1,j-1,2)) 

- (imgRes(i-1,j+1,2)+imgRes(i,j+1,1)+imgRes(i+1,j+1,2)))>thres 

60                  imgEdge(i,j) = 255; 

61              % left-handed diagonal edge |(R11+B21) - (B11+R12)| 

62              elseif abs((imgRes(i,j-1,1)+imgRes(i+1,j,3))-(imgRes(i-

1,j,3)+imgRes(i,j+1,1)))>thres 

63                  imgEdge(i,j) = 255; 

64              % right-handed diagonal edge |(B11+R11) - (R12+B21)| 

65              elseif abs((imgRes(i-1,j,3)+imgRes(i,j-1,1))-

(imgRes(i,j+1,1)+imgRes(i+1,j,3)))>thres 

66                  imgEdge(i,j) = 255; 

67              else 

68                  imgEdge(i,j) = 0; 

69              end; 

70          end; 

71      end; 

72  end; 

73    

74  % [6a] Algorithm - White Pixel, No Edge Detected, Reconstruction  

75  for i=(1+pBord):1:(R-pBord) 

76      for j=(1+pBord):1:(C-pBord) 

77          if (mod(i,2)==1 && mod(j,2)==1 && imgEdge(i,j)==0) % white pixel 

78              W =(imgRes(i,j,1) + imgRes(i,j,2) + imgRes(i,j,3)); % define W 

79              Rav = 0.5.*(imgRes(i,j-1,1) + imgRes(i,j+1,1)); % define Rav 

80              Gav = 0.25.*(imgRes(i-1,j-1,2) + imgRes(i-1,j+1,2) + ... 
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81                           imgRes(i+1,j-1,2) + imgRes(i+1,j+1,2)); % define 

Gav 

82              Bav = 0.5.*(imgRes(i-1,j,3) + imgRes(i+1,j,3)); % define Bav 

83              imgRes(i,j,1) = Rav./(Rav+Gav+Bav).*W; % compute Rw  

84              imgRes(i,j,2) = Gav./(Rav+Gav+Bav).*W; % compute Gw 

85              imgRes(i,j,3) = Bav./(Rav+Gav+Bav).*W; % compute Bw 

86          end; 

87      end; 

88  end; 

89    

90  % [6b] Algorithm - White Pixel, Edge Detected, Reconstruction  

91  for i=(1+pBord):1:(R-pBord) 

92      for j=(1+pBord):1:(C-pBord) 

93          if (mod(i,2)==1 && mod(j,2)==1 && imgEdge(i,j)==255) % white pixel 

94              W =(imgRes(i,j,1) + imgRes(i,j,2) + imgRes(i,j,3)); % define W 

95              Gav = 0.25.*(imgRes(i-1,j-1,2) + imgRes(i-1,j+1,2) + ... 

96                           imgRes(i+1,j-1,2) + imgRes(i+1,j+1,2)); % define 

Gav 

97              imgRes(i,j,1) = (imgRes(i,j-1,1)+imgRes(i,j+1,1))./2; % Rw = 0  

98              imgRes(i,j,2) = Gav./(Rav+Gav+Bav).*W; % compute Gw 

99              imgRes(i,j,3) = (imgRes(i-1,j,3)+imgRes(i+1,j,3))./2; % Bw = 0 

100          end; 

101      end; 

102  end; 

103    

104  % [6c] Algorithm - Green Pixel Reconstruction  

105  for i=(1+pBord):1:(R-pBord) 

106      for j=(1+pBord):1:(C-pBord) 

107          if (mod(i,2)==0 && mod(j,2)==0) % green pixel 

108              imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j,1) + imgRes(i-

1,j+1,1) + ... 

109                               imgRes(i+1,j-1,1) + imgRes(i+1,j,1) + 

imgRes(i+1,j+1,1))./6; % compute Rg 

110              imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i,j-1,3) + 

imgRes(i+1,j-1,3) + ... 

111                               imgRes(i-1,j+1,3) + imgRes(i,j+1,3) + 

imgRes(i+1,j+1,3))./6; % compute Bg 

112          end; 

113      end; 

114  end; 

115    

116  % [6d] Algorithm - Red Pixel Reconstruction 

117  for i=(1+pBord):1:(R-pBord) 

118      for j=(1+pBord):1:(C-pBord) 

119          if (mod(i,2)==1 && mod(j,2)==0) % red pixel 

120              imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ... 

121                              imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; % compute 

Gr 

122              imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i-1,j+1,3) + ... 

123                               imgRes(i+1,j-1,3) + imgRes(i+1,j+1,3) + ... 

124                               imgRes(i,j-1,3) + imgRes(i,j+1,3))./6; %compute 

Br 

125          end; 

126      end; 

127  end; 

128    

129  % [6e] Algorithm - Blue Pixel Reconstruction 

130  for i=(1+pBord):1:(R-pBord) 

131      for j=(1+pBord):1:(C-pBord) 

132          if (mod(i,2)==0 && mod(j,2)==1) % blue pixel 

133              imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j+1,1) + ... 

134                               imgRes(i+1,j-1,1) + imgRes(i+1,j+1,1) + ... 

135                               imgRes(i-1,j,1) + imgRes(i+1,j,1))./6; % 

compute Rb 

136              imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ... 

137                               imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; % 

compute Gb 

138          end; 
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139      end; 

140  end; 

141    

142  % [7] Display Result 

143   imgEDCR = uint8(imgRes); 

144  % clear imgRes; 

145  % imtool(img); 

146  % imtool(uint8(imgEdge)); 

147  % imtool(imgEDCR); 

148    

149  MSE = fcn_measureMSESinglev2(uint8(imgEDCR(:,:,2)),uint8(img(:,:,2)),4); 

150  CPSNR = fcn_measureCPSNRv2(imgEDCR,img,10); %border length of 10 i used 

151  SSIM = ssim(imgEDCR,img); 

152  [FSIM,FSIMc] = FeatureSIM(img,imgEDCR); 

153    

154  % end of M-file 

155  %====================================================================== 

 

 

A.5 Supplementary Functions 

Analysis Function Used to Determine the Value of the Corrective Term ε (Author’s Implementation) 

1  %========================================================================== 

2  %   Name:       fcn_epsilonAnalysis.m 

3  %   Author:     Kinyua Wachira 

4  %   Date:       16/10/2014 

5  %   Desc:       a function to write out PSNR values for an image by 

6  %               changing the value of epsilon 

7  % 

8  %   Notes:      modified on 4/11/2014 to cater for ssim 

9  %               modified on 5/11/2014 to analyses effect of different 

10  %               directional combinations on PSNR 

11  %========================================================================== 

12    

13  %========================================================================== 

14  %   Preamble 

15  %========================================================================== 

16    

17  function [PSNRArray,SSIMArray,FSIMArray,GMSDArray] = 

fcn_epsilonAnalysis(imgLoc,epsilonArray) 

18    

19  img = imread(imgLoc); 

20  imgBayer = fcn_bayer(img); 

21    

22  [R,C] = size(imgBayer); 

23  imgGRN = double(zeros(R,C)); 

24  for i=1:1:R; 

25      for j=1:1:C; 

26          if (mod(i+j,2)==1)  

27              imgGRN(i,j) = imgBayer(i,j); 

28          end; 

29      end; 

30  end; 

31    

32  %========================================================================== 

33  %   Algorithm and Analysis in the Green Channel Using a Generic Weighting 

34  %   System 

35  %========================================================================== 

36  % Green channel interpolation in the cardinal directions 

37    

38  max = length(epsilonArray); 

39  [PSNRArray, SSIMArray, FSIMArray, GMSDArray] = deal(zeros(max,1)); 

40    

41  for count = 1:1:max; 
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42      imgGrn = imgGRN; 

43      e = epsilonArray(count); 

44       

45      for i=1+2:1:R-2; 

46          for j=1+2:1:C-2; 

47              if ~(mod(i+j,2)==1) 

48                  %initial estimates 

49                  GN = imgGrn(i-1,j) + 0.5.*(imgBayer(i,j) - imgBayer(i-2,j)); 

50                  GS = imgGrn(i+1,j) + 0.5.*(imgBayer(i,j) - imgBayer(i+2,j)); 

51                  GW = imgGrn(i,j-1) + 0.5.*(imgBayer(i,j) - imgBayer(i,j-2)); 

52                  GE = imgGrn(i,j+1) + 0.5.*(imgBayer(i,j) - imgBayer(i,j+2)); 

53              

54                  %establish the gradients 

55                  dN = abs(imgGrn(i-1,j) - imgGrn(i-2,j-1))... 

56                      +abs(imgGrn(i-1,j) - imgGrn(i-2,j+1))+e; 

57                  dS = abs(imgGrn(i+1,j) - imgGrn(i+2,j-1))... 

58                      +abs(imgGrn(i+1,j) - imgGrn(i+2,j+1))+e; 

59                  dW = abs(imgGrn(i,j-1) - imgGrn(i-1,j-2))... 

60                      +abs(imgGrn(i,j-1) - imgGrn(i+1,j-2))+e; 

61                  dE = abs(imgGrn(i,j+1) - imgGrn(i-1,j+2))... 

62                      +abs(imgGrn(i,j+1) - imgGrn(i+1,j+2))+e; 

63                   

64                  wN = 1./dN; 

65                  wS = 1./dS; 

66                  wW = 1./dW; 

67                  wE = 1./dE; 

68              

69                  %using 2 directions (6 possible combinations - 4C2) 

70  %                 imgGrn(i,j) = (wN.*GN + wS.*GS)./(wN+wS); 

71  %                 imgGrn(i,j) = (wN.*GN + wW.*GW)./(wN+wW); 

72  %                 imgGrn(i,j) = (wN.*GN + wE.*GE)./(wN+wE); 

73  %                 imgGrn(i,j) = (wS.*GS + wW.*GW)./(wS+wW); 

74  %                 imgGrn(i,j) = (wS.*GS + wE.*GE)./(wS+wE); 

75  %                 imgGrn(i,j) = (wW.*GW + wE.*GE)./(wW+wE); 

76    

77                 %using 3 directions (4 possible combinations -4C3) 

78  %                 imgGrn(i,j) = (wN.*GN + wS.*GS + wW.*GW)./(wN+wS+wW); 

79  %                 imgGrn(i,j) = (wN.*GN + wS.*GS + wE.*GE)./(wN+wS+wE); 

80  %                 imgGrn(i,j) = (wS.*GS + wW.*GW + wE.*GE)./(wS+wW+wE); 

81  %                 imgGrn(i,j) = (wN.*GN + wW.*GW + wE.*GE)./(wN+wW+wE); 

82                   

83  %                 %using 4 direction NSEW (1 combination - 4C4) 

84                  imgGrn(i,j) = (wN.*GN+wS.*GS+wW.*GW+wE.*GE)./(wN+wS+wW+wE);           

85              end; 

86          end; 

87      end; 

88       

89      PSNRArray(count) = fcn_measurePSNRSinglev2(uint8(imgGrn),img(:,:,2),4); 

90      SSIMArray(count) = ssim(img(:,:,2),uint8(imgGrn)); 

91      FSIMArray(count) = FeatureSIM(img(:,:,2),uint8(imgGrn)); 

92  %     GMSDArray(count) = fcn_GMSD(double(img(:,:,2)),imgGrn); 

93       

94  end; 
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Appendix B: Detailed Simulation Result Data 

B.1 Mean Square Error (MSE) Data  

 

Table B.1 MSE evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

sipi_im1 5.81 5.98 5.10 5.55 6.94 6.73 8.83 4.60 5.68  

sipi_im2 5.54 4.39 3.70 3.73 5.17 4.48 37.22 6.52 4.59  

sipi_im3 3.27 2.10 2.28 1.82 3.52 2.39 4.43 13.10 3.15  

sipi_im4 4.55 3.33 2.96 2.70 3.73 3.70 7.34 15.98 3.91  

sipi_im5 6.33 4.95 4.32 4.73 7.55 6.02 10.54 5.45 5.85  

sipi_im6 16.84 15.60 11.12 13.05 14.82 12.74 24.78 10.17 13.46  

sipi_im7 2.43 2.01 2.31 2.46 6.38 5.17 4.20 15.32 2.61  

sipi_im8 3.72 2.69 3.46 3.30 8.32 6.81 6.16 22.65 4.17  

sipi_im9 4.03 4.10 2.88 3.90 4.36 4.19 7.11 4.93 3.19  

sipi_im10 8.75 7.79 8.34 8.06 9.97 9.86 12.42 16.10 8.92  

sipi_im11 29.55 28.07 25.34 26.17 26.47 24.98 41.47 26.71 27.59  

sipi_im12 7.29 7.22 5.34 6.32 7.58 6.72 11.31 9.00 6.37  

sipi_im13 5.54 4.56 2.76 3.74 4.39 3.88 8.70 8.09 4.55  

sipi_im14 18.31 19.47 17.26 18.83 17.80 17.38 24.90 40.05 18.46  

sipi_im15 9.69 9.37 9.23 9.05 10.32 10.43 14.89 25.85 9.76  

sipi_im16 9.49 8.27 7.21 7.75 8.89 8.61 13.17 44.45 11.02  

average 6.99 6.07 5.39 5.72 7.76 6.96 11.72 13.21 6.58 4 

 

Table B.2 MSE evaluation of test bed demosaicking algorithms over the Kodak Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

kodim01 20.00 15.92 8.54 11.06 7.00 3.63 26.81 24.26 15.03  

kodim02 5.65 6.06 2.80 4.05 3.08 2.70 8.18 4.82 4.82  

kodim03 4.57 3.62 1.70 2.68 1.81 1.58 5.98 8.10 2.82  

kodim04 5.17 5.30 1.72 3.61 1.72 1.70 8.26 7.31 3.33  

kodim05 16.17 13.74 6.30 9.13 5.20 3.55 21.89 27.66 10.24  

kodim06 14.11 11.02 6.19 7.13 4.74 2.55 18.46 14.52 9.62  

kodim07 4.87 3.72 2.00 2.42 1.83 1.74 6.58 5.46 4.71  

kodim08 22.10 13.07 12.31 10.47 10.27 5.44 31.63 57.76 17.29  

kodim09 5.16 3.51 1.91 2.25 1.73 1.26 7.69 5.61 3.77  

kodim10 4.73 3.44 1.62 2.39 1.48 1.34 6.95 6.85 3.14  

kodim11 9.94 8.62 4.61 5.74 4.11 2.66 13.32 18.63 6.71  

kodim12 5.08 3.93 2.05 2.51 1.96 1.62 6.72 9.12 3.17  

kodim13 24.09 25.73 12.53 19.65 9.57 6.56 31.14 32.35 17.00  

kodim14 11.54 11.31 4.94 7.30 4.37 3.48 15.18 7.43 7.53  

kodim15 5.98 5.86 3.05 4.59 3.38 3.98 8.30 18.75 4.34  

kodim16 8.29 6.98 3.18 4.15 2.80 1.41 11.00 5.98 5.08  

kodim17 5.10 4.65 2.00 3.03 1.46 1.27 7.25 9.13 3.38  

kodim18 11.27 11.63 4.75 7.98 4.13 3.32 15.42 12.23 7.56  

kodim19 11.15 7.23 4.97 4.95 4.04 1.77 15.66 10.31 8.35  

kodim20 5.95 5.21 2.66 3.64 2.52 15.25 7.82 6.78 3.78  

kodim21 11.16 10.34 5.17 7.24 4.49 2.74 14.89 8.59 7.87  

kodim22 8.83 8.96 3.98 6.40 0.98 3.13 11.71 9.11 6.44  

kodim23 3.15 2.76 1.39 1.90 1.89 1.89 4.44 1.93 2.37  

kodim24 12.24 10.61 6.00 8.23 5.86 8.22 16.74 14.17 8.89  

average 8.42 7.19 3.62 4.95 3.13 2.74 11.57 10.40 5.91 5 
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Table B.3 MSE evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

mcm01 16.42 14.49 15.16 13.48 17.58 17.16 24.40 25.81 17.26  

mcm02 7.56 6.34 5.33 5.33 7.00 6.33 11.38 12.88 6.56  

mcm03 15.53 12.53 9.98 11.19 10.47 8.77 21.02 63.36 13.50  

mcm04 8.83 4.94 7.95 6.05 7.59 6.96 11.93 31.13 8.40  

mcm05 6.97 5.43 6.26 5.75 8.28 7.75 11.27 14.12 7.54  

mcm06 3.44 3.16 3.78 3.79 7.63 7.22 6.49 5.24 4.86  

mcm07 11.50 12.09 4.80 8.66 3.96 2.83 14.68 7.49 7.25  

mcm08 6.22 4.96 3.25 3.74 2.94 2.41 8.67 23.56 4.49  

mcm09 5.34 4.04 4.08 3.77 5.77 5.57 7.95 15.97 5.14  

mcm10 3.95 3.65 2.78 2.94 4.89 4.63 7.14 12.93 3.37  

mcm11 4.01 3.88 2.74 3.26 4.82 4.84 5.87 7.61 3.33  

mcm12 5.63 3.92 3.00 2.76 5.02 4.30 8.76 9.89 3.75  

mcm13 2.08 1.17 1.79 1.56 3.49 2.93 3.46 8.40 2.79  

mcm14 3.02 2.71 2.37 2.47 3.52 3.28 4.56 9.64 2.82  

mcm15 2.88 2.85 2.39 2.71 3.75 3.71 4.41 7.24 2.77  

mcm16 14.54 12.81 9.26 10.52 13.72 13.10 19.19 8.71 11.09  

mcm17 7.24 6.99 8.33 8.05 13.04 13.00 11.83 5.49 8.81  

mcm18 11.92 9.39 7.67 8.25 8.97 8.25 16.44 20.26 9.51  

average 6.39 5.27 4.71 4.88 6.44 5.87 9.61 12.72 5.86 4 

 

Table B.4 MSE evaluation of test bed demosaicking algorithms over the Condat Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

codim01 13.18 10.43 7.99 8.05 8.48 7.12 18.67 16.66 10.27  

codim02 7.60 6.31 5.22 5.05 6.46 5.73 11.26 14.19 5.95  

codim03 6.83 5.48 4.11 4.43 5.46 4.92 9.62 8.19 6.22  

codim04 9.46 6.51 6.29 5.32 6.25 5.04 13.30 24.87 7.18  

codim05 7.26 6.71 4.89 5.70 6.41 5.73 10.51 4.37 6.26  

codim06 5.87 4.21 4.44 3.86 5.54 5.06 8.90 4.30 5.64  

codim07 11.44 9.12 6.80 7.51 7.60 10.32 15.15 19.54 8.47  

codim08 10.47 7.91 7.25 6.90 7.74 6.10 15.16 3.13 8.22  

codim09 22.09 20.86 16.53 17.63 16.74 16.71 31.55 7.17 17.84  

codim10 6.59 3.15 3.49 2.62 4.10 3.05 9.82 27.35 8.33  

codim11 19.79 20.72 18.60 21.05 23.13 22.29 30.43 9.17 21.39  

codim12 17.42 11.57 11.22 9.76 9.60 7.17 24.74 5.44 14.17  

codim13 16.16 13.10 11.03 11.16 10.81 9.48 22.83 27.49 13.35  

codim14 3.73 2.97 3.42 3.18 5.37 4.76 6.38 12.59 4.75  

codim15 11.92 9.10 8.80 7.76 9.00 7.29 16.75 12.57 9.30  

codim16 4.29 3.44 3.67 3.38 5.16 4.81 6.61 12.50 4.75  

codim17 7.79 6.14 7.23 6.03 9.27 33.60 13.10 4.25 8.16  

codim18 7.12 5.00 5.23 4.37 6.40 5.13 11.50 4.25 7.13  

codim19 6.45 5.14 3.14 3.82 3.75 2.48 8.97 4.20 4.08  

codim20 6.88 4.93 5.59 4.32 7.08 6.75 10.31 3.19 6.37  

codim21 3.82 3.13 2.40 2.29 2.61 1.97 5.66 4.83 3.22  

codim22 11.65 11.77 8.65 10.46 9.14 10.20 16.47 6.78 10.04  

codim23 2.05 1.31 0.67 0.81 0.86 1.04 3.24 1.32 1.30  

codim24 17.00 14.29 9.09 11.48 9.08 7.49 23.00 29.28 13.65  

codim25 2.24 1.40 2.23 1.82 4.40 4.41 4.48 1.84 2.45  

codim26 11.20 8.75 7.32 6.74 7.45 4.85 15.74 5.18 7.23  

codim27 14.61 13.23 8.46 9.56 8.39 6.99 20.57 26.55 11.59  

codim28 2.36 1.88 2.22 2.08 3.88 3.68 4.07 2.00 2.28  

codim29 3.33 3.25 2.80 2.94 4.44 4.50 5.26 2.39 2.95  

codim30 12.10 8.00 8.37 6.70 8.64 6.97 18.02 12.38 10.32  

average 7.84 6.12 5.42 5.27 6.45 5.96 11.72 7.43 6.82 6 
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Table B.5 MSE evaluation of test bed demosaicking algorithms over the ARRI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

arri_im1 3.46 3.38 2.55 2.53 4.38 4.40 2.50 31.62 4.16  

arri_im2 2.43 2.23 1.35 1.25 2.14 2.18 2.27 9.00 3.44  

arri_im3 0.65 0.50 0.48 0.52 0.67 2.08 0.81 4.99 1.26  

arri_im4 1.48 1.27 1.64 1.45 2.09 2.11 1.90 1.52 1.95  

arri_im5 0.82 0.76 0.56 0.58 0.91 0.89 0.90 0.82 0.82  

arri_im6 1.67 1.44 1.27 1.19 2.01 2.00 1.61 8.95 2.27  

arri_im7 5.45 4.17 3.42 2.72 4.38 4.28 6.10 17.08 6.75  

arri_im8 1.34 1.10 1.47 1.30 2.33 2.40 1.69 1.11 1.85  

arri_im9 5.47 0.69 2.26 0.40 2.59 3.87 9.36 23.60 5.80  

arri_im10 1.22 1.08 1.48 1.43 2.39 2.34 1.88 1.59 1.82  

arri_im11 2.51 1.76 2.11 1.39 3.18 3.04 3.03 1.34 4.76  

arri_im12 6.95 5.11 5.17 4.83 7.66 7.71 10.55 2.84 7.13  

average 2.14 1.53 1.63 1.29 2.40 2.72 2.54 4.32 2.85 8 

 

Table B.6 MSE evaluation of test bed demosaicking algorithms over the Custom Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

cusim01 5.19 4.43 1.92 2.69 1.50 0.91 7.37 7.09 3.75  

cusim02 3.33 3.24 1.22 2.03 1.23 0.71 4.62 3.18 2.05  

cusim03 5.63 4.27 2.30 2.78 1.41 1.21 8.70 10.53 4.18  

cusim04 7.80 8.21 2.12 4.62 1.36 0.95 9.82 5.95 4.30  

cusim05 5.16 2.91 1.82 1.79 1.57 0.58 7.42 1.87 4.32  

cusim06 6.32 4.72 2.16 2.81 1.85 1.42 8.75 9.79 4.96  

cusim07 5.53 4.20 1.69 2.31 1.37 0.63 7.84 5.18 4.73  

cusim08 5.01 4.41 1.61 2.56 1.35 5.83 6.96 11.53 3.46  

cusim09 8.17 7.50 2.54 4.32 1.88 21.08 10.96 16.68 5.50  

cusim10 7.57 7.63 2.64 4.46 1.66 4.51 10.10 4.50 4.78  

cusim11 3.48 4.09 1.34 2.75 1.12 0.79 4.68 7.57 1.84  

cusim12 2.59 3.08 0.77 1.71 0.85 0.58 3.40 1.98 1.55  

cusim13 5.80 4.67 1.93 2.50 1.36 0.69 8.07 6.11 4.04  

cusim14 0.97 1.03 0.27 0.61 0.42 0.63 1.16 1.37 0.63  

cusim15 4.89 4.51 1.66 2.64 1.15 0.93 6.86 8.19 2.95  

average 4.66 4.17 1.55 2.47 1.27 1.28 6.38 5.48 3.13 5 
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B.2 Colour Peak Signal-to-Noise Ratio (CPSNR) Data 

 

Table B.7 CPSNR evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

sipi_im1 33.49 37.66 37.56 37.58 37.35 37.10 37.22 37.66 39.79  

sipi_im2 34.57 39.47 39.16 39.54 38.92 38.62 37.61 37.80 39.23  

sipi_im3 36.80 42.95 42.34 43.79 42.37 42.24 41.72 39.21 43.44  

sipi_im4 36.01 40.70 40.10 41.16 39.87 39.46 38.83 37.41 42.80  

sipi_im5 33.65 38.06 37.90 38.33 37.77 37.49 36.48 37.00 40.50  

sipi_im6 29.55 34.79 35.15 35.31 35.11 35.16 34.05 34.72 35.51  

sipi_im7 37.33 42.23 41.74 41.87 39.38 39.19 41.91 38.83 42.35  

sipi_im8 35.81 40.92 40.26 40.69 38.21 38.05 39.94 37.01 41.05  

sipi_im9 37.38 41.05 41.42 41.11 40.45 39.96 40.83 41.46 42.26  

sipi_im10 33.19 37.43 37.68 37.42 36.92 36.61 38.18 37.57 41.86  

sipi_im11 24.72 32.13 32.20 32.27 32.27 32.39 31.78 32.24 35.27  

sipi_im12 33.91 37.80 37.88 38.01 37.57 37.44 37.31 37.51 38.05  

sipi_im13 35.57 39.60 40.44 40.39 39.79 39.73 38.62 38.46 40.12  

sipi_im14 28.95 34.16 34.32 34.30 34.24 34.25 34.31 33.44 34.63  

sipi_im15 31.79 35.96 36.00 36.06 35.94 35.82 36.22 35.28 38.62  

sipi_im16 32.47 36.81 37.24 37.04 36.68 36.72 36.22 33.78 38.66  

average 33.27 38.12 38.11 38.31 37.60 37.44 37.48 36.76 39.54 1 

 

Table B.8 CPSNR evaluation of test bed demosaicking algorithms over the Kodak Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

kodim01 29.15 35.15 36.08 36.67 38.21 40.73 33.25 33.19 39.21  

kodim02 36.06 40.57 40.56 41.83 42.06 42.10 37.95 38.41 42.06  

kodim03 36.95 41.60 42.19 42.71 44.38 44.49 39.54 38.98 45.25  

kodim04 36.41 40.55 42.85 41.54 43.37 43.08 38.17 38.13 42.18  

kodim05 29.58 36.33 37.61 37.37 39.70 40.85 34.39 33.79 37.86  

kodim06 30.55 36.76 37.45 38.35 39.56 41.13 34.68 34.83 38.93  

kodim07 36.39 41.93 41.87 43.24 44.14 43.98 39.32 39.13 43.83  

kodim08 26.69 35.71 34.83 36.92 36.53 38.66 32.67 31.64 37.29  

kodim09 35.31 41.64 42.30 43.48 43.13 45.21 38.51 38.59 42.28  

kodim10 35.21 41.72 41.94 43.23 42.77 44.47 38.84 38.52 43.84  

kodim11 32.00 38.24 38.93 39.68 40.59 42.36 36.07 35.49 42.26  

kodim12 36.13 41.04 42.02 42.95 43.58 44.65 38.94 38.45 43.95  

kodim13 26.47 33.68 34.91 34.56 37.08 38.38 32.76 32.55 37.09  

kodim14 32.05 37.55 38.97 38.74 40.14 40.82 35.53 35.99 41.70  

kodim15 35.06 39.99 41.23 40.82 41.78 40.48 38.78 37.17 41.19  

kodim16 33.99 39.05 39.97 40.98 41.93 44.51 36.68 37.09 40.21  

kodim17 34.81 41.13 42.56 42.78 45.08 45.37 38.82 38.23 43.75  

kodim18 30.68 37.09 38.97 38.12 40.51 41.18 35.63 35.59 39.79  

kodim19 31.14 38.69 38.66 40.24 40.52 43.38 35.46 35.74 40.79  

kodim20 34.29 40.11 41.09 41.15 41.74 34.20 38.59 38.59 42.56  

kodim21 31.33 37.39 38.42 38.56 40.34 41.65 35.82 36.21 41.92  

kodim22 33.21 38.03 39.56 39.05 40.38 41.14 36.77 36.90 41.33  

kodim23 38.24 43.01 44.23 44.05 44.11 43.17 41.11 41.68 45.65  

kodim24 29.33 36.94 37.95 37.83 39.25 37.04 35.46 35.44 39.93  

average 32.80 38.84 39.72 40.12 41.23 41.70 36.75 36.61 41.39 2 
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Table B.9 CPSNR evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

mcm01 27.73 34.76 34.43 34.73 33.97 33.84 34.03 33.84 34.19  

mcm02 32.73 37.78 37.74 37.90 37.31 37.28 36.68 36.34 37.49  

mcm03 29.17 35.82 36.28 36.24 36.74 37.10 34.37 32.04 36.54  

mcm04 31.94 38.89 38.13 38.71 38.36 38.64 35.96 34.12 38.97  

mcm05 32.72 38.07 37.76 37.99 37.09 37.01 37.08 36.68 37.55  

mcm06 36.04 40.00 39.36 39.37 37.50 37.50 39.39 39.35 39.02  

mcm07 32.69 36.81 38.66 37.89 40.71 41.61 35.72 36.08 38.84  

mcm08 33.83 39.64 40.51 40.32 41.45 41.72 38.32 36.31 40.62  

mcm09 34.80 39.73 39.56 39.61 38.61 38.49 38.14 36.93 39.47  

mcm10 36.55 40.49 40.76 40.54 39.33 39.22 38.77 37.77 40.36  

mcm11 37.42 41.29 41.81 41.37 40.57 40.24 40.26 39.69 41.65  

mcm12 34.56 40.61 40.54 40.87 40.10 39.89 38.58 38.32 41.21  

mcm13 38.74 43.08 42.26 42.96 41.43 40.99 41.29 39.82 42.10  

mcm14 37.50 41.44 41.13 41.42 40.57 40.16 40.32 39.06 41.07  

mcm15 37.71 41.63 41.37 41.46 40.52 40.13 40.79 39.91 41.40  

mcm16 31.37 36.69 37.49 36.92 36.33 36.41 36.07 36.65 37.03  

mcm17 31.78 36.93 36.75 36.27 35.14 35.10 36.74 37.28 36.73  

mcm18 31.83 37.49 37.46 37.83 37.22 37.56 36.03 35.59 37.79  

average 33.71 38.89 38.94 38.96 38.44 38.43 37.64 36.92 38.94 2 

 

Table B.10 CPSNR evaluation of test bed demosaicking algorithms over the Condat Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

codim01 30.13 36.92 36.83 37.43 37.27 37.17 34.82 34.75 37.01  

codim02 32.84 38.53 38.32 38.93 38.06 37.92 36.74 36.37 38.72  

codim03 33.35 39.22 38.90 39.63 38.94 38.77 37.16 37.01 39.07  

codim04 31.53 38.30 38.09 38.95 38.54 38.89 36.37 35.15 38.70  

codim05 33.37 38.37 39.10 38.74 38.47 38.42 37.59 38.20 40.75  

codim06 34.31 39.97 39.08 39.99 38.71 38.81 38.34 38.78 39.75  

codim07 32.56 37.09 37.74 37.83 37.49 35.63 36.08 35.51 37.60  

codim08 30.27 37.61 37.39 38.15 37.65 38.14 35.73 36.65 37.79  

codim09 26.19 34.05 34.30 34.26 34.50 34.22 33.16 34.14 38.48  

codim10 34.57 40.78 39.73 40.30 40.22 40.79 37.36 35.49 39.05  

codim11 26.90 33.52 33.65 33.26 32.88 32.95 32.88 33.61 33.48  

codim12 28.18 35.93 35.79 36.86 36.80 37.73 33.84 34.74 36.24  

codim13 28.35 35.92 35.91 36.43 36.35 36.54 34.38 33.85 38.10  

codim14 36.25 40.35 40.19 40.30 39.06 39.07 38.97 37.82 40.03  

codim15 29.70 37.19 36.91 37.64 37.23 37.70 35.54 35.63 37.67  

codim16 35.57 40.34 39.94 40.22 38.97 38.93 38.57 37.42 39.80  

codim17 31.56 38.11 37.19 37.81 35.54 31.19 36.22 37.06 36.96  

codim18 32.69 38.57 38.22 38.87 37.93 38.35 36.66 37.33 39.04  

codim19 35.29 40.29 40.71 40.97 41.13 42.18 38.01 38.59 41.24  

codim20 32.91 38.09 37.99 37.80 37.28 37.38 37.02 37.70 38.64  

codim21 35.55 42.07 42.40 43.01 42.60 43.20 39.66 39.62 42.56  

codim22 30.40 36.06 36.34 36.19 36.43 35.64 35.17 35.51 36.91  

codim23 41.11 45.90 44.75 47.06 47.06 45.67 42.25 42.53 45.95  

codim24 28.52 35.54 36.38 36.31 36.77 37.14 34.10 33.51 38.13  

codim25 37.42 41.59 41.08 36.34 39.61 39.31 40.92 41.81 41.67  

codim26 30.50 37.57 37.27 38.22 37.88 39.23 35.54 36.38 38.32  

codim27 29.85 36.16 36.57 36.75 36.97 37.27 34.58 33.92 36.41  

codim28 38.15 42.71 41.80 39.06 40.33 40.16 41.43 42.04 42.69  

codim29 37.05 41.59 41.50 40.32 40.08 39.94 40.54 41.08 41.39  

codim30 30.55 37.31 36.77 37.89 36.92 37.49 35.09 35.35 36.90  

average 32.34 38.43 38.29 38.44 38.18 38.09 36.75 36.84 38.90 1 
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Table B.11 CPSNR evaluation of test bed demosaicking algorithms over the ARRI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

arri_im1 37.02 41.61 41.28 40.67 39.52 39.63 40.37 36.00 39.90  

arri_im2 38.68 42.84 42.91 41.76 40.62 40.88 41.16 39.07 42.02  

arri_im3 43.53 47.34 47.34 44.47 46.24 42.28 46.78 43.61 45.74  

arri_im4 41.35 45.52 44.98 44.91 43.66 42.95 43.94 44.13 43.82  

arri_im5 44.58 48.54 48.27 45.66 46.49 46.46 48.73 48.59 46.90  

arri_im6 40.41 45.10 44.33 44.17 42.93 42.91 44.75 41.28 43.04  

arri_im7 33.02 39.62 39.24 39.36 38.60 38.60 37.60 35.81 39.20  

arri_im8 39.94 44.84 44.05 43.75 42.18 41.91 44.73 45.14 42.79  

arri_im9 34.70 43.64 41.03 41.52 40.44 34.37 38.04 35.87 41.77  

arri_im10 39.87 44.31 43.66 43.09 40.71 41.68 45.12 45.31 46.30  

arri_im11 38.04 43.32 42.14 42.62 40.81 40.69 41.44 41.35 41.19  

arri_im12 32.31 38.59 38.64 38.63 37.62 37.64 38.33 39.47 39.47  

average 38.44 43.68 43.06 42.50 41.57 40.73 42.44 41.11 42.61 3 

 

Table B.12 CPSNR evaluation of test bed demosaicking algorithms over the Custom Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

cusim01 36.50 40.98 42.56 42.79 42.74 45.48 38.43 38.33 43.46  

cusim02 38.80 42.48 43.76 44.24 45.62 46.87 40.33 40.52 45.85  

cusim03 37.19 41.76 43.38 43.37 44.12 44.82 37.99 37.36 42.41  

cusim04 35.62 38.85 42.28 40.77 45.16 46.28 37.35 37.54 41.57  

cusim05 35.86 42.68 42.66 44.91 45.08 48.28 38.54 39.31 42.49  

cusim06 35.46 40.87 42.14 42.81 44.17 44.58 37.80 37.40 41.47  

cusim07 36.47 41.24 42.97 43.78 44.46 47.13 38.07 38.14 44.21  

cusim08 36.99 41.36 43.55 43.39 44.63 38.60 38.69 37.76 43.08  

cusim09 34.93 39.22 41.72 41.23 39.83 33.47 36.85 35.99 41.13  

cusim10 34.90 39.15 41.69 40.89 44.23 39.28 37.32 37.62 41.30  

cusim11 39.05 41.44 44.57 43.02 46.65 47.70 40.37 39.64 44.84  

cusim12 40.45 43.08 46.76 44.97 47.53 48.16 41.39 41.65 46.29  

cusim13 36.15 41.13 42.76 43.37 45.69 47.86 38.16 38.12 42.43  

cusim14 44.61 47.48 46.87 49.20 49.96 48.04 46.00 45.62 50.97  

cusim15 37.46 41.17 42.52 42.73 45.80 43.48 39.16 38.53 42.78  

average 37.29 41.48 43.32 43.39 44.99 44.45 39.04 38.84 43.55 3 
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B.3 Structure Similarity Index (SSIM) Data 

Note: the SSIM values for image sipi_im1 to sipi_im8 of USC-SIPI were indeterminate in the ACR & 

EDCR algorithms due to the implementation of the SSIM algorithm. To ensure uniform analysis over 

all image sets, the geometric average was established using remaining images sipi_im9 to sipi_im16.  

Table B.13 SSIM evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

sipi_im1 0.982 0.977 0.943 0.962 0.941 0.935 - - 0.937  

sipi_im2 0.984 0.981 0.952 0.968 0.950 0.945 - - 0.945  

sipi_im3 0.966 0.953 0.879 0.910 0.862 0.871 - - 0.866  

sipi_im4 0.980 0.970 0.937 0.956 0.933 0.920 - - 0.932  

sipi_im5 0.980 0.967 0.913 0.938 0.892 0.890 - - 0.892  

sipi_im6 0.970 0.965 0.934 0.947 0.922 0.920 - - 0.922  

sipi_im7 0.977 0.956 0.884 0.907 0.860 0.874 - - 0.878  

sipi_im8 0.981 0.969 0.908 0.931 0.886 0.898 - - 0.902  

sipi_im9 0.975 0.968 0.973 0.968 0.963 0.954 0.969 0.953 0.987  

sipi_im10 0.953 0.940 0.942 0.937 0.929 0.911 0.953 0.951 0.976  

sipi_im11 0.923 0.908 0.911 0.905 0.908 0.912 0.885 0.856 0.973  

sipi_im12 0.968 0.959 0.952 0.957 0.952 0.946 0.954 0.949 0.955  

sipi_im13 0.981 0.973 0.970 0.972 0.966 0.957 0.969 0.966 0.966  

sipi_im14 0.934 0.926 0.933 0.930 0.934 0.930 0.937 0.930 0.932  

sipi_im15 0.939 0.933 0.934 0.932 0.935 0.927 0.940 0.936 0.936  

sipi_im16 0.981 0.976 0.977 0.974 0.970 0.959 0.972 0.957 0.965  

average 0.956 0.948 0.949 0.947 0.944 0.937 0.947 0.937 0.961 1 

 

Table B.14 SSIM evaluation of test bed demosaicking algorithms over the Kodak Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

kodim01 0.961 0.961 0.973 0.974 0.983 0.986 0.917 0.905 0.979  

kodim02 0.976 0.972 0.975 0.978 0.975 0.971 0.943 0.921 0.978  

kodim03 0.983 0.979 0.982 0.980 0.984 0.983 0.968 0.964 0.984  

kodim04 0.990 0.989 0.989 0.984 0.987 0.979 0.979 0.976 0.982  

kodim05 0.981 0.978 0.982 0.981 0.985 0.984 0.954 0.942 0.992  

kodim06 0.964 0.960 0.971 0.974 0.980 0.956 0.926 0.913 0.975  

kodim07 0.992 0.988 0.987 0.988 0.986 0.983 0.980 0.967 0.984  

kodim08 0.967 0.969 0.972 0.978 0.980 0.980 0.923 0.907 0.977  

kodim09 0.991 0.991 0.990 0.986 0.989 0.984 0.983 0.978 0.987  

kodim10 0.991 0.993 0.992 0.988 0.990 0.981 0.984 0.978 0.988  

kodim11 0.973 0.969 0.975 0.978 0.980 0.981 0.941 0.934 0.977  

kodim12 0.978 0.977 0.982 0.984 0.985 0.985 0.958 0.953 0.984  

kodim13 0.950 0.939 0.964 0.956 0.977 0.975 0.899 0.883 0.969  

kodim14 0.977 0.972 0.978 0.978 0.981 0.978 0.948 0.915 0.976  

kodim15 0.982 0.979 0.985 0.983 0.986 0.970 0.968 0.957 0.985  

kodim16 0.969 0.966 0.971 0.977 0.978 0.979 0.936 0.908 0.975  

kodim17 0.994 0.991 0.984 0.987 0.984 0.978 0.980 0.976 0.978  

kodim18 0.987 0.983 0.984 0.981 0.984 0.981 0.972 0.966 0.981  

kodim19 0.979 0.980 0.969 0.974 0.971 0.971 0.955 0.939 0.968  

kodim20 0.980 0.971 0.972 0.972 0.954 0.851 0.959 0.952 0.971  

kodim21 0.979 0.972 0.976 0.975 0.979 0.977 0.952 0.941 0.975  

kodim22 0.976 0.970 0.976 0.974 0.977 0.975 0.949 0.935 0.974  

kodim23 0.991 0.987 0.985 0.985 0.984 0.973 0.980 0.965 0.983  

kodim24 0.976 0.972 0.978 0.977 0.982 0.973 0.948 0.937 0.979  

average 0.979 0.975 0.979 0.979 0.981 0.972 0.954 0.942 0.979 2 
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Table B.15 SSIM evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

mcm01 0.959 0.952 0.948 0.947 0.927 0.913 0.949 0.936 0.954  

mcm02 0.978 0.974 0.971 0.973 0.967 0.964 0.968 0.960 0.965  

mcm03 0.980 0.974 0.974 0.973 0.971 0.966 0.958 0.934 0.971  

mcm04 0.991 0.975 0.970 0.972 0.968 0.960 0.963 0.957 0.965  

mcm05 0.975 0.968 0.959 0.963 0.949 0.943 0.965 0.955 0.960  

mcm06 0.982 0.976 0.972 0.969 0.949 0.947 0.978 0.974 0.966  

mcm07 0.977 0.970 0.976 0.975 0.981 0.977 0.954 0.921 0.976  

mcm08 0.988 0.984 0.982 0.984 0.980 0.976 0.976 0.966 0.978  

mcm09 0.985 0.981 0.974 0.977 0.968 0.963 0.977 0.971 0.970  

mcm10 0.986 0.985 0.983 0.980 0.976 0.972 0.980 0.976 0.989  

mcm11 0.981 0.977 0.977 0.974 0.966 0.962 0.981 0.972 0.970  

mcm12 0.980 0.970 0.966 0.967 0.961 0.956 0.961 0.958 0.962  

mcm13 0.982 0.972 0.963 0.966 0.958 0.950 0.967 0.965 0.978  

mcm14 0.985 0.981 0.976 0.979 0.972 0.967 0.978 0.975 0.982  

mcm15 0.983 0.978 0.971 0.971 0.964 0.959 0.974 0.971 0.976  

mcm16 0.959 0.953 0.957 0.942 0.927 0.926 0.972 0.950 0.974  

mcm17 0.975 0.972 0.972 0.962 0.946 0.943 0.977 0.951 0.980  

mcm18 0.975 0.969 0.972 0.968 0.965 0.964 0.965 0.951 0.976  

average 0.979 0.973 0.970 0.969 0.961 0.956 0.969 0.958 0.972 3 

 

Table B.16 SSIM evaluation of test bed demosaicking algorithms over the Condat Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

codim01 0.976 0.970 0.972 0.973 0.974 0.953 0.950 0.939 0.975  

codim02 0.986 0.977 0.970 0.972 0.967 0.949 0.970 0.967 0.968  

codim03 0.986 0.982 0.979 0.981 0.974 0.959 0.970 0.960 0.973  

codim04 0.980 0.977 0.975 0.977 0.973 0.967 0.961 0.953 0.974  

codim05 0.980 0.975 0.975 0.971 0.970 0.963 0.966 0.928 0.971  

codim06 0.972 0.968 0.960 0.963 0.948 0.948 0.968 0.933 0.965  

codim07 0.983 0.972 0.963 0.962 0.953 0.905 0.963 0.956 0.969  

codim08 0.979 0.975 0.976 0.977 0.975 0.974 0.958 0.885 0.975  

codim09 0.965 0.960 0.972 0.965 0.968 0.947 0.942 0.897 0.970  

codim10 0.992 0.988 0.980 0.983 0.978 0.971 0.978 0.970 0.974  

codim11 0.990 0.987 0.987 0.982 0.976 0.974 0.984 0.944 0.979  

codim12 0.981 0.977 0.973 0.975 0.973 0.973 0.963 0.895 0.974  

codim13 0.984 0.982 0.982 0.981 0.980 0.965 0.971 0.960 0.980  

codim14 0.994 0.989 0.983 0.984 0.979 0.975 0.987 0.982 0.989  

codim15 0.988 0.980 0.971 0.971 0.969 0.966 0.971 0.962 0.970  

codim16 0.991 0.987 0.982 0.984 0.978 0.974 0.981 0.973 0.979  

codim17 0.990 0.987 0.981 0.982 0.904 0.771 0.980 0.958 0.970  

codim18 0.974 0.971 0.967 0.972 0.964 0.963 0.949 0.888 0.972  

codim19 0.988 0.979 0.972 0.973 0.971 0.970 0.971 0.938 0.972  

codim20 0.976 0.972 0.970 0.967 0.961 0.959 0.962 0.903 0.965  

codim21 0.994 0.990 0.986 0.987 0.985 0.982 0.984 0.976 0.983  

codim22 0.974 0.970 0.973 0.970 0.973 0.936 0.959 0.937 0.984  

codim23 0.997 0.993 0.989 0.990 0.989 0.985 0.991 0.955 0.987  

codim24 0.977 0.972 0.974 0.971 0.971 0.969 0.952 0.943 0.992  

codim25 0.990 0.988 0.985 0.985 0.976 0.972 0.989 0.982 0.980  

codim26 0.970 0.961 0.967 0.962 0.967 0.968 0.951 0.892 0.979  

codim27 0.987 0.984 0.985 0.986 0.985 0.979 0.970 0.959 0.982  

codim28 0.982 0.976 0.971 0.971 0.958 0.955 0.977 0.936 0.980  

codim29 0.993 0.991 0.990 0.988 0.982 0.980 0.992 0.956 0.984  

codim30 0.973 0.969 0.967 0.970 0.962 0.955 0.948 0.928 0.961  

average 0.983 0.978 0.976 0.976 0.969 0.956 0.969 0.941 0.976 3 
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Table B.17 SSIM evaluation of test bed demosaicking algorithms over the ARRI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

arri_im1 0.999 0.989 0.999 0.998 0.996 0.993 0.998 0.987 0.996  

arri_im2 0.999 0.999 0.999 0.999 0.999 0.970 0.999 0.994 0.999  

arri_im3 1.000 0.999 0.999 0.999 0.996 0.972 0.999 0.998 0.999  

arri_im4 0.998 0.999 0.997 0.998 0.997 0.991 0.995 0.982 0.998  

arri_im5 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999  

arri_im6 0.999 0.999 0.999 0.999 0.998 0.998 0.999 0.997 0.998  

arri_im7 0.999 0.986 0.999 0.998 0.998 0.998 0.998 0.995 0.998  

arri_im8 0.998 0.998 0.998 0.997 0.995 0.991 0.997 0.993 0.995  

arri_im9 0.998 0.999 0.998 0.999 0.997 0.641 0.996 0.993 0.997  

arri_im10 0.998 0.997 0.997 0.997 0.995 0.995 0.995 0.994 0.995  

arri_im11 0.999 0.999 0.999 0.999 0.998 0.990 0.999 0.965 0.998  

arri_im12 0.997 0.994 0.995 0.994 0.991 0.987 0.995 0.974 0.992  

average 0.998 0.996 0.998 0.998 0.997 0.954 0.998 0.989 0.997 5 

 

Table B.18 SSIM evaluation of test bed demosaicking algorithms over the Custom Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

cusim01 0.995 0.993 0.993 0.995 0.994 0.992 0.991 0.988 0.994  

cusim02 0.995 0.991 0.991 0.993 0.992 0.989 0.992 0.985 0.990  

cusim03 1.000 0.999 0.999 0.999 0.998 0.976 0.999 0.995 0.997  

cusim04 0.998 0.997 0.996 0.997 0.996 0.993 0.996 0.989 0.999  

cusim05 0.999 0.992 0.987 0.992 0.984 0.978 0.992 0.953 0.992  

cusim06 0.997 0.995 0.994 0.996 0.994 0.987 0.993 0.988 0.997  

cusim07 0.997 0.995 0.995 0.997 0.995 0.992 0.994 0.984 0.993  

cusim08 0.997 0.992 0.992 0.995 0.984 0.950 0.991 0.988 0.993  

cusim09 0.997 0.992 0.990 0.991 0.922 0.860 0.991 0.985 0.993  

cusim10 0.996 0.992 0.993 0.994 0.988 0.947 0.991 0.974 0.992  

cusim11 0.998 0.997 0.996 0.997 0.996 0.994 0.996 0.995 0.996  

cusim12 0.996 0.993 0.994 0.994 0.994 0.988 0.993 0.967 0.996  

cusim13 0.997 0.994 0.994 0.996 0.994 0.992 0.993 0.986 0.997  

cusim14 0.999 0.998 0.995 0.997 0.995 0.984 0.996 0.995 0.996  

cusim15 0.999 0.999 0.998 0.998 0.998 0.951 0.998 0.997 0.998  

average 0.997 0.995 0.994 0.995 0.988 0.971 0.994 0.985 0.995 2 
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B.4 Feature Similarity Index with chrominance included (FSIMC) Data 

Note: the FSIMC values for image sipi_im1 to sipi_im8 of USC-SIPI were indeterminate in the ACR & 

EDCR algorithms due to the implementation of the FSIM algorithm. To ensure uniform analysis over 

all image sets, the geometric average was established using remaining images sipi_im9 to sipi_im16. 

Table B.19 FSIMC evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

sipi_im1 0.980 0.974 0.939 0.957 0.936 0.928 - - 0.932  

sipi_im2 0.981 0.977 0.947 0.963 0.944 0.938 - - 0.939  

sipi_im3 0.962 0.944 0.872 0.901 0.853 0.852 - - 0.853  

sipi_im4 0.976 0.966 0.932 0.950 0.926 0.911 - - 0.924  

sipi_im5 0.974 0.961 0.907 0.931 0.884 0.879 - - 0.884  

sipi_im6 0.963 0.957 0.927 0.939 0.913 0.908 - - 0.913  

sipi_im7 0.974 0.953 0.882 0.904 0.856 0.867 - - 0.873  

sipi_im8 0.978 0.966 0.905 0.927 0.883 0.891 - - 0.898  

sipi_im9 0.997 0.995 0.976 0.988 0.973 0.938 0.981 0.939 0.986  

sipi_im10 0.992 0.987 0.972 0.975 0.961 0.914 0.973 0.971 0.999  

sipi_im11 0.977 0.974 0.962 0.964 0.958 0.924 0.957 0.934 0.986  

sipi_im12 0.995 0.989 0.971 0.978 0.967 0.935 0.973 0.968 0.982  

sipi_im13 0.996 0.992 0.975 0.980 0.964 0.929 0.976 0.974 0.986  

sipi_im14 0.982 0.980 0.971 0.975 0.969 0.945 0.974 0.968 0.988  

sipi_im15 0.990 0.987 0.977 0.981 0.974 0.950 0.978 0.971 0.988  

sipi_im16 0.994 0.991 0.983 0.987 0.975 0.939 0.983 0.963 0.987  

average 0.990 0.987 0.973 0.978 0.968 0.934 0.975 0.961 0.988 2 

 

Table B.20 FSIMC evaluation of test bed demosaicking algorithms over the Kodak Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

kodim01 0.991 0.992 0.985 0.991 0.985 0.955 0.972 0.966 0.994  

kodim02 0.995 0.989 0.977 0.985 0.977 0.929 0.975 0.940 0.990  

kodim03 0.996 0.995 0.984 0.988 0.983 0.956 0.982 0.979 0.983  

kodim04 0.997 0.996 0.988 0.990 0.987 0.964 0.986 0.979 0.988  

kodim05 0.993 0.994 0.986 0.990 0.986 0.966 0.976 0.966 0.987  

kodim06 0.990 0.991 0.983 0.988 0.982 0.933 0.971 0.964 0.984  

kodim07 0.998 0.997 0.988 0.991 0.986 0.962 0.985 0.969 0.997  

kodim08 0.987 0.992 0.986 0.991 0.987 0.971 0.968 0.959 0.981  

kodim09 0.996 0.995 0.985 0.988 0.983 0.955 0.981 0.971 0.986  

kodim10 0.996 0.995 0.983 0.986 0.979 0.947 0.979 0.968 0.990  

kodim11 0.993 0.993 0.984 0.987 0.984 0.954 0.975 0.969 0.990  

kodim12 0.995 0.995 0.990 0.991 0.986 0.964 0.984 0.979 0.989  

kodim13 0.987 0.985 0.984 0.983 0.984 0.960 0.966 0.955 0.988  

kodim14 0.995 0.995 0.980 0.987 0.979 0.959 0.975 0.942 0.988  

kodim15 0.995 0.995 0.991 0.992 0.989 0.956 0.986 0.974 0.990  

kodim16 0.993 0.993 0.970 0.975 0.970 0.936 0.965 0.936 0.983  

kodim17 0.996 0.995 0.980 0.987 0.979 0.962 0.979 0.974 0.987  

kodim18 0.993 0.991 0.983 0.986 0.983 0.960 0.976 0.965 0.984  

kodim19 0.992 0.990 0.974 0.978 0.972 0.941 0.965 0.943 0.986  

kodim20 0.994 0.992 0.982 0.984 0.957 0.864 0.978 0.970 0.988  

kodim21 0.993 0.990 0.976 0.979 0.975 0.938 0.965 0.948 0.989  

kodim22 0.995 0.992 0.975 0.979 0.974 0.937 0.972 0.956 0.999  

kodim23 0.998 0.997 0.985 0.988 0.984 0.952 0.985 0.967 0.999  

kodim24 0.989 0.985 0.976 0.977 0.970 0.928 0.967 0.957 0.999  

average 0.994 0.993 0.982 0.986 0.980 0.948 0.976 0.962 0.989 3 
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Table B.21 FSIMC evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

mcm01 0.982 0.990 0.979 0.984 0.975 0.941 0.976 0.964 0.997  

mcm02 0.990 0.995 0.987 0.991 0.986 0.970 0.984 0.973 1.000  

mcm03 0.990 0.988 0.977 0.979 0.972 0.942 0.972 0.945 1.000  

mcm04 0.973 0.988 0.968 0.976 0.956 0.920 0.967 0.954 0.983  

mcm05 0.990 0.993 0.977 0.983 0.972 0.948 0.979 0.970 0.992  

mcm06 0.988 0.996 0.981 0.988 0.978 0.950 0.983 0.978 0.999  

mcm07 0.985 0.992 0.986 0.988 0.984 0.969 0.981 0.949 0.987  

mcm08 0.986 0.994 0.989 0.991 0.987 0.976 0.986 0.976 0.992  

mcm09 0.986 0.992 0.978 0.983 0.973 0.948 0.979 0.974 0.993  

mcm10 0.992 0.996 0.985 0.989 0.982 0.962 0.986 0.981 0.994  

mcm11 0.998 0.995 0.987 0.991 0.985 0.966 0.988 0.973 0.993  

mcm12 0.996 0.992 0.968 0.972 0.963 0.925 0.969 0.966 0.979  

mcm13 0.995 0.984 0.961 0.964 0.956 0.911 0.964 0.961 0.994  

mcm14 0.998 0.994 0.984 0.988 0.981 0.962 0.986 0.983 0.993  

mcm15 0.997 0.994 0.981 0.986 0.979 0.956 0.983 0.980 0.999  

mcm16 0.997 0.995 0.988 0.990 0.984 0.969 0.986 0.959 0.990  

mcm17 0.996 0.995 0.990 0.992 0.987 0.974 0.989 0.964 0.994  

mcm18 0.993 0.993 0.981 0.986 0.978 0.959 0.970 0.958 0.989  

average 0.991 0.993 0.980 0.984 0.977 0.953 0.979 0.967 0.993 1 

 

Table B.22 FSIMC evaluation of test bed demosaicking algorithms over the Condat Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

codim01 0.983 0.992 0.978 0.983 0.976 0.934 0.972 0.957 0.987  

codim02 0.985 0.993 0.980 0.985 0.977 0.940 0.979 0.971 0.997  

codim03 0.995 0.993 0.981 0.985 0.978 0.941 0.978 0.967 0.977  

codim04 0.994 0.992 0.980 0.985 0.977 0.952 0.975 0.967 0.987  

codim05 0.996 0.989 0.975 0.978 0.971 0.939 0.973 0.920 0.986  

codim06 0.993 0.994 0.986 0.992 0.985 0.972 0.985 0.934 0.988  

codim07 0.983 0.988 0.971 0.975 0.962 0.903 0.967 0.954 0.985  

codim08 0.988 0.988 0.975 0.979 0.970 0.948 0.971 0.892 0.986  

codim09 0.988 0.985 0.979 0.980 0.974 0.934 0.969 0.914 0.987  

codim10 0.995 0.992 0.971 0.979 0.967 0.928 0.971 0.957 0.985  

codim11 0.989 0.991 0.983 0.986 0.979 0.961 0.979 0.924 0.987  

codim12 0.988 0.988 0.977 0.983 0.976 0.948 0.964 0.867 0.986  

codim13 0.989 0.990 0.982 0.986 0.980 0.947 0.972 0.956 0.997  

codim14 0.990 0.993 0.981 0.986 0.978 0.954 0.982 0.972 0.987  

codim15 0.989 0.990 0.974 0.981 0.972 0.946 0.968 0.950 0.998  

codim16 0.998 0.996 0.986 0.990 0.984 0.968 0.986 0.977 0.988  

codim17 0.990 0.985 0.971 0.976 0.944 0.911 0.968 0.931 0.988  

codim18 0.992 0.988 0.971 0.976 0.964 0.938 0.967 0.895 0.985  

codim19 0.990 0.991 0.976 0.980 0.971 0.947 0.973 0.913 0.976  

codim20 0.990 0.993 0.976 0.981 0.974 0.942 0.975 0.917 0.978  

codim21 0.990 0.989 0.977 0.981 0.971 0.945 0.976 0.963 0.986  

codim22 0.989 0.993 0.987 0.989 0.985 0.934 0.982 0.952 0.979  

codim23 0.990 0.999 0.993 0.996 0.992 0.978 0.991 0.950 0.987  

codim24 0.989 0.991 0.979 0.983 0.977 0.951 0.973 0.967 0.968  

codim25 0.990 0.996 0.985 0.990 0.984 0.962 0.986 0.966 0.975  

codim26 0.991 0.988 0.970 0.975 0.968 0.937 0.963 0.882 0.975  

codim27 0.989 0.994 0.988 0.991 0.987 0.969 0.983 0.969 0.982  

codim28 0.990 0.995 0.978 0.985 0.976 0.948 0.980 0.933 0.976  

codim29 0.988 0.997 0.992 0.994 0.990 0.978 0.991 0.938 0.987  

codim30 0.982 0.988 0.972 0.977 0.965 0.935 0.968 0.945 0.975  

average 0.990 0.991 0.979 0.984 0.975 0.946 0.976 0.940 0.984 3 
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Table B.23 FSIMC evaluation of test bed demosaicking algorithms over the ARRI Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

arri_im1 0.989 0.991 0.999 1.000 0.997 0.989 0.998 0.989 0.996  

arri_im2 0.989 0.991 1.000 0.999 0.997 0.972 0.998 0.990 0.997  

arri_im3 0.989 0.991 1.000 0.990 0.994 0.975 0.999 0.997 0.997  

arri_im4 0.990 0.990 0.999 0.997 1.000 0.998 0.999 0.971 0.999  

arri_im5 0.991 0.991 1.000 0.998 1.000 0.999 1.000 0.998 0.999  

arri_im6 0.990 0.992 0.999 0.998 0.997 0.994 0.998 0.996 0.997  

arri_im7 0.990 0.999 0.999 0.999 0.999 0.998 0.999 0.995 0.999  

arri_im8 0.991 0.999 1.000 0.999 0.999 0.993 0.999 0.991 0.999  

arri_im9 0.990 0.998 0.999 0.998 0.998 0.788 0.998 0.994 0.997  

arri_im10 0.990 0.996 0.999 0.998 0.999 0.997 0.999 0.997 0.999  

arri_im11 0.990 0.997 1.000 0.998 0.998 0.989 0.999 0.956 0.998  

arri_im12 0.991 0.998 0.999 0.999 0.998 0.991 0.998 0.980 0.997  

average 0.990 0.994 0.999 0.998 0.998 0.972 0.999 0.988 0.998 3 

 

Table B.24 FSIMC evaluation of test bed demosaicking algorithms over the Custom Image Set 

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank 

cusim01 0.991 0.988 0.996 0.998 0.994 0.988 0.986 0.990 0.992  

cusim02 0.993 0.988 0.995 0.997 0.994 0.984 0.990 0.983 0.992  

cusim03 0.997 0.989 0.997 0.998 0.996 0.975 0.990 0.987 0.994  

cusim04 0.998 0.989 0.998 0.999 0.998 0.995 0.998 0.986 0.996  

cusim05 0.983 0.987 0.994 0.997 0.993 0.981 0.993 0.938 1.000  

cusim06 0.989 0.988 0.996 0.997 0.994 0.982 0.995 0.987 0.993  

cusim07 0.989 0.988 0.996 0.997 0.995 0.986 0.991 0.983 0.993  

cusim08 0.989 0.987 0.995 0.997 0.988 0.939 0.993 0.991 0.991  

cusim09 0.989 0.986 0.993 0.996 0.973 0.917 0.990 0.985 0.991  

cusim10 0.989 0.986 0.995 0.997 0.989 0.929 0.995 0.970 0.999  

cusim11 0.989 0.987 0.995 0.997 0.993 0.985 0.995 0.994 0.999  

cusim12 0.990 0.987 0.993 0.996 0.991 0.969 0.994 0.964 0.999  

cusim13 0.989 0.988 0.994 0.997 0.994 0.984 0.995 0.982 0.997  

cusim14 0.990 0.989 0.997 0.998 0.996 0.982 0.998 0.997 0.997  

cusim15 0.990 0.989 0.997 0.999 0.996 0.956 0.998 0.996 0.994  

average 0.990 0.988 0.995 0.997 0.992 0.970 0.993 0.982 0.995 2 
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Appendix C: Image Sets and Camera Resolution Chart 

 

The images provided below have been employed in the analysis of this work and are readily available 

online or upon e-mail request to the author via the following addresses: 

kinyua.wachira@students.uonbi.ac.ke or kinyua.wachira@gmail.com.  

 

 

(a)  

 

(b) 

Figure C.1 The Dress image where (a) the blue and black version is the actual dress and (b) the white and gold 

version was the image posted online (source [21]) 

mailto:kinyua.wachira@students.uonbi.ac.ke
mailto:kinyua.wachira@gmail.com
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Figure C.2 The USC-SIPI Image Set: sipi_im01 to sipi_im16; viewed from top to bottom, left to right (source 

[128])   
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Figure C.3 The Kodak Set: kodim01 to kodim24; viewed from top to bottom, left to right (source [123]) 
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Figure C.4 McMaster-IMAX Set: mcm01 to mcm18; viewed from top to bottom, left to right (source [124]) 

 

Figure C.5 Condat Set: codim01 to codim30; viewed from top to bottom, left to right (source [125]) 
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Figure C.6 The ARRI Set: arri_im01 to arri_im12; viewed from top to bottom, left to right (source [130]) 
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Figure C.7 A Custom Image Set: cusim01 to cusim15; viewed from top to bottom, left to right; developed by the 

author. 

 

 

 

 

 

 

 

 



158 

Table C.1 Resolution Specification Chart 

Digital Camera Resolution Chart 

Capture 

Resolution 

Video 

Display* 

Print Size*** 

2x3" 4x5"/4x6" 5x7" 8x10" 11x14" 16x20" 20x30" 

320x240 Acceptable Good Acceptable Poor Poor Poor Poor Poor 

640x480 (0.3 

Megapixel) 

Good Excellent Good Poor Poor Poor Poor Poor 

800x600 Excellent Photo 

Quality 

Very Good Acceptable Poor Poor Poor Poor 

1024x768 Excellent Photo 

Quality 

Excellent Good Acceptable Poor Poor Poor 

1280x960 (1 

Megapixel) 

Excellent Photo 

Quality 

Photo 

Quality 

Very Good Good Poor Poor Poor 

1536x1180 Excellent** Photo 

Quality 

Photo 

Quality 

Excellent Very Good Acceptable Poor Poor 

1600x1200 (2 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Very Good Acceptable Acceptable Poor 

2048x1536  (3 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Excellent Good Acceptable Acceptable 

2240x1680 (4 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Very Good Good Acceptable 

2560x1920 (5 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Excellent Very Good Very Good 

3032x2008 (6 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Excellent Very Good 

3072x2304  (7 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Excellent Excellent 

3264x2448 (8 

Megapixel) 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Excellent 

10 Megapixel 

and Above 

Excellent** Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

Photo 

Quality 

 

*   A television or computer display  

** Will produce an excessively large file size that would be inappropriate for web applications 

*** Using a typical Photo Quality Desktop printer 

 

Where: 

i. Poor: the image is noticeably pixelated  

ii. Acceptable: only coarse details are visible in the image  

iii. Good: coarse and fine details are visible in the image 

iv. Very Good: image is an adequate scene representation for most people 

v. Excellent: to the human eye, the image is indistinguishable from the original scene at a normal 

viewing distance 

vi. Photo Quality: on a photo-quality printer, to the human eye, the image is indistinguishable 

from the original scene at a normal viewing distance 
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Appendix D: Human Trichromacity 

 

The spectral curves derived from Hunt [16] are presented in Figures D.1 and D.2 for reference. 

Figure D.1 

 

 

Figure D.2

 

 

Figure D.1 (a) The probable sensitivity curves β, γ, and ρ determined by indirect methods together with the 
spectral quality points of R, G, and B (b) Spectral sensitivity curves found from bleaching experiments on 

pigments in the human retina  

Figure D.2 The ρ, γ, β sensitivity curves and the spectral powers of light transmitted by red, green and blue 

filters typically used in additive colour reproduction  
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Appendix E: Visual Artefacts and Aberrations 

E.1 Selected Optical Effect Artefacts 

 

Figure E.1 Selected images highlighting spherical aberration 

 

Figure E.2 Image illustrating chromatic aberration  

 

Figure E.3 Image illustrating comatic aberration 
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Figure E.4 Camera stills from the Star Trek films illustrating lens flare phenomena 

 

Figure E.5 Selected images illustrating vignette effects 

 

E.2 Image Noise Effects 

 

Figure E.6 Types of image noise: (a) fixed pattern (b) random and (c) banded 
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E.3 Demosaicking Artefacts 

 

 

(e) 

Figure E.7 Selected images showing (a) Zipper effect (b) Colour Shifts (c)Moiré effect, (d) Blurring and (e) 

Jaggies (source: [33]) 

E.4 Coloration and Exposure Shifts 

 

Figure E.8 Image showing coloration shifts: (a) cool appearance, (b) warm appearance, (c) grey appearance 
and (d) saturation effects (source [33]) 

 

Figure E.9 Image showing exposure shifts: (a) underexposure, (b) normal exposure and (c) overexposure 

(source [33]) 
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Appendix F: Publication Statistics 

A general term search analysis was performed to identify the level of active interest in single sensor 

image demosaicking. The three main image processing repositories: the IEEE Xplore library [141], the 

Springer Link repository [142] and the SPIE Digital library [143] were queried to find the number of 

times the terms ‘demosaicking’ and ‘demosaicing’ appeared in titles of journals and conference papers.  

The results are shown below. 

Table F.1 Search term statistics for the words 'demosaicking' and 'demosaicing' in a publication’s title  

Search Term IEEE Xplore Library Springer Link Repository SPIE Digital Library 

‘demosaicking’ 258 44 37  

‘demosaicing’ 252 93 31 

 

 

 

Figure F.1 Demosaicking publication trend in the IEEE Xplore repository 
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Figure F.2 Demosaicking publication trend in the Springer Link repository 

 

Figure F.3 Demosaicking publication trend in the SPIE Digital Library repository 
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Appendix G: Author’s Publications 

G.1 First Publication – IEEE SPICES 2015 
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G.2 Second Publication - IEEE ICTRC 2015 
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G.3 Third Publication – IEEE EUROCON 2015 
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G.4 Fourth Publication – IEEE AFRICON 2015 
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G.5 Fifth Publication – IEEE AFRICON 2017 
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Appendix H: Results from Turnitin Plagiarism Checker  

 

Figure H.1 Turnitin digital receipt 
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Figure H.2 Similarity statistics from Turnitin with bibliography and appendices included 

 

 

Figure H.3 Similarity statistics from Turnitin with bibliography excluded 
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The updated Turnitin® statistics after implementing corrections are given below:  

 

The updated digital receipt: 
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The Turnitin® statistics after implementing corrections (bibliography excluded): 

 

 

 


