

UNIVERSITY OF NAIROBI

SCHOOL OF ENGINEERING

Department of Electrical and Information Engineering

A Hybrid Heuristic-Based Localised Area Demosaicking

Technique for Panchromatic Colour Filter Arrays

By

Kinyua Wachira

F56/69105/2011

A thesis submitted in partial fulfilment for the Degree of Master of Science in Electrical and

Electronic Engineering in the Department of Electrical and Information Engineering in the University

of Nairobi

July 2018

ii

Declaration

This thesis is my original work and has not been presented for a degree in any other university.

Kinyua Wachira F56/69105/2011

Signature: ___________________________ Date: __________________

This thesis has been submitted for examination with our approval as university supervisors.

Prof. Elijah Mwangi

First Supervisor, University of Nairobi

Signature: ___________________________ Date: __________________

Prof. Gwang-gil Jeon

Second Supervisor, Incheon National University, Republic of Korea

Signature: ___________________________ Date: __________________

This work has been passed through the Turintin® Plagiarism and Similarity Checker software. The

resulting originality report and similarilty statistics are to be found at the end of this thesis document.

iii

Dedication

This work is dedicated to my parents, family and friends.

iv

Acknowledgment

The author would first and foremost like to thank his supervisors Prof. Elijah Mwangi and Prof. Gwang-

gil Jeon for their unwavering support, insightful criticism and patient guidance in the completion of this

work.

The author would also like to extend his gratitude to Prof. Heywood Ouma Absaloms & Dr. Wilfred N.

Mwema of the University of Nairobi; Dr. Keigo Hirakawa of the University of Dayton, Ohio in the

United States of America; Prof. Eric Dubois of the University of Ottawa in Canada and Dr. Xiangdong

Chen of Nanjing University of Posts and Telecommunications in the People’s Republic of China for

their willingness to discuss and critique this work.

Special thanks to the Kenya Education Network (KENET) for providing several student travel grants

to the author to present this work in peer-reviewed international conferences and publish in peer-

reviewed periodicals.

Finally, the author would like to acknowledge the moral, financial support and gentle patience of family

and friends over the many years it has taken to complete this work.

v

Abstract

Images have always been and remain a common and integral mode of human communication. In the

21st century, a two-pronged communications revolution in the form of mobile hand-held devices and

social media has led to a higher reliance on visual communication through digital photographic images.

A large portion of these digital images are captured through embedded cameras integrated in mobile

devices. More so than in older stand-alone digital cameras.

To generate colour images while maintaining an affordable camera cost, a spectrally selective filter is

placed on top of the raw data camera sensor. This filter termed a colour filter array, or CFA, subsamples

colour data in a scene and a software-defined interpolation process termed demosaicking is performed

later to fully reconstruct the image taken to make it more representative of the original scene. Many

camera manufacturers employ the original array called the Bayer array. Recent studies, however, have

shown that a newer array class referred to as panchromatic colour filter arrays possess superior light

intensity properties and has a spectral selectivity distribution more in line with the human visual system

than the prevalent Bayer array. This is an attractive property that can be exploited primarily in low to

medium resolution integrated cameras that form a significant percentage of mobile device cameras.

Demosaicking is primarily biased to the Bayer array due to its prevalence. However, more and more

manufacturers are beginning to explore alternatives to the Bayer array to improve image quality. This

work presents a novel demosaicking algorithm for panchromatic arrays; in particular the RGBW

panchromatic array class that is the most promising panchromatic array. The algorithm encodes light

intensity information in a Bayerisation conversion process and uses combinatorial geometry,

specifically polyominoes, to provide a novel adaptive weighting mechanism to reduce the introduction

of visual artefacts during image interpolation. Interpolation is done in the ordinal directions and a

variable plane relationship is established. A corrective mechanism is also introduced into the algorithm

to improve image acuity.

Performance of the proposed demosaicking algorithm is objectively assessed using four documented

image quality assessment metrics (MSE, CPSNR, SSIM and FSIMC) over five standard image sets

(USC-SIPI, Kodak, McMaster-IMAX, Condat, ARRI) and one user-defined custom image set. Each set

allows for the analysis of a unique property encountered in mobile device camera photography. This

assessment is performed through simulation using the MATLAB® software platform. The algorithm

results in a lowering of MSE by a factor of 1.6 and a rise in CPSNR by at least 2.49 dB in the RGBW

domain. The algorithm also produces a robust SSIM and FSIMC profile with values greater than 0.98

in both measures. These improvements, noted through the aforementioned image assessment metrics,

justify further adoption and study of the newer panchromatic class of arrays in integrated cameras.

vi

Table of Contents

Declaration .. ii

Dedication ... iii

Acknowledgment .. iv

Abstract ... v

Table of Contents ... vi

List of Tables ... x

List of Figures .. xii

List of Abbreviations and Acronyms .. xv

1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Justification .. 3

1.3 Problem Statement ... 4

1.4 Objectives .. 5

1.4.1 Main Objective ... 5

1.4.2 Specific Objectives ... 5

1.5 Scope of Work ... 5

1.6 Organisation of the Thesis .. 6

2 LITERATURE REVIEW .. 7

2.1 The Human Eye and Colour Vision .. 7

2.2 The Camera and the Image Processing Pipeline .. 8

2.2.1 Layered sensor scheme ... 10

2.2.2 Three sensor scheme ... 10

2.2.3 Single sensor scheme .. 11

2.3 The Colour Filter Array (CFA) and the Demosaicking process ... 11

2.3.1 Classification of Colour Filter Arrays ... 12

2.3.2 The Demosaicking Process ... 14

2.3.3 The Panchromatic CFA .. 15

vii

2.3.4 Spectral Advantages of Panchromatic CFAs ... 16

2.4 Visual Artefacts ... 16

2.4.1 Optical Effects .. 17

2.4.2 Image Noise ... 18

2.4.3 Demosaicking Artefacts .. 18

2.4.4 Coloration and Exposure Shifts... 20

2.4.5 Compression Artefacts.. 20

2.5 Demosaicking Algorithms .. 21

2.5.1 Traditional methods .. 21

2.5.2 Heuristic methods ... 21

2.5.3 Optimisation methods ... 24

2.5.4 Image Modelling and Training .. 25

2.6 Knowledge Gaps .. 25

3 CONCEPTUAL FRAMEWORK .. 27

3.1 Colour Filter Array Selection ... 28

3.2 Choice of Demosaicking Algorithm Class .. 29

3.3 Image Sets Selection .. 30

3.4 Image Quality Assessment Metrics Employed .. 31

3.5 Proposed Algorithm Parameters ... 35

4 ALGORITHM DESIGN .. 36

4.1 Bayer and RGBW Design Comparison ... 36

4.2 White Pixel Processing ... 37

4.2.1 The Separation Process Technique .. 37

4.2.2 The Bayerisation Process Technique ... 38

4.3 Gradient Based Demosaicking .. 39

4.4 Novel Concepts and Contributions ... 40

4.4.1 The Ordinal Nature of the Green Plane ... 41

4.4.2 Combinatorial Geometry, Polyominoes and Pentomino Inspired Paths 42

4.4.3 Variable Plane Factors .. 43

viii

4.5 The Proposed Algorithm .. 45

4.5.1 RGBW CFA Reduction .. 45

4.5.2 Green Plane Reconstruction .. 46

4.5.3 Red and Blue Plane Reconstruction .. 49

5 SIMULATION PROCEDURE AND RESULTS .. 54

5.1 Simulation Process ... 54

5.2 Empirical Determination of Corrective Terms (k2, k3 and ε) .. 56

5.3 Simulation Methodology and Testing Procedure ... 60

5.4 Compiled Experimental Simulation Results .. 61

6 ANALYSIS AND DISCUSSION OF RESULTS .. 64

6.1 RGBW CFA Domain Reconstruction Analysis ... 65

6.2 Single Plane Colour Reconstruction Analysis ... 66

6.3 Full Colour Reconstruction and Object Fidelity Analysis .. 67

6.3.1 Colour Reconstruction Analysis from CPSNR data ... 67

6.3.2 Fidelity of Object Reconstruction Analysis from SSIM and FSIM data 69

6.3.3 Reconstruction Analysis from Visual Inspection ... 71

6.4 Supplementary Observations from the Different Image Sets ... 76

7 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 77

7.1 Concluding Remarks .. 77

7.2 Note on Publications .. 77

7.3 Further Work ... 78

REFERENCES .. 79

Appendix A: MATLAB Code Blocks .. 85

A.1 Proposed Algorithm Block .. 85

A.2 Functions comprising the Image Acquisition Algorithm Block .. 92

A.3 Functions comprising the Comparison Algorithm Block .. 101

A.4 Test Bed Demosaicking Algorithm Blocks .. 113

A.5 Supplementary Functions .. 138

Appendix B: Detailed Simulation Result Data ... 140

ix

B.1 Mean Square Error (MSE) Data... 140

B.2 Colour Peak Signal-to-Noise Ratio (CPSNR) Data .. 143

B.3 Structure Similarity Index (SSIM) Data ... 146

B.4 Feature Similarity Index with chrominance included (FSIMC) Data 149

Appendix C: Image Sets and Camera Resolution Chart .. 152

Appendix D: Human Trichromacity ... 159

Appendix E: Visual Artefacts and Aberrations .. 160

E.1 Selected Optical Effect Artefacts ... 160

E.2 Image Noise Effects .. 161

E.3 Demosaicking Artefacts... 162

E.4 Coloration and Exposure Shifts.. 162

Appendix F: Publication Statistics .. 163

Appendix G: Author’s Publications .. 165

G.1 First Publication – IEEE SPICES 2015 .. 165

G.2 Second Publication - IEEE ICTRC 2015 ... 170

G.3 Third Publication – IEEE EUROCON 2015 .. 174

G.4 Fourth Publication – IEEE AFRICON 2015 .. 180

G.5 Fifth Publication – IEEE AFRICON 2017 ... 185

Appendix H: Results from Turnitin Plagiarism Checker .. 191

x

List of Tables

Table 2.1 Spectral properties of human cone photoreceptors .. 7

Table 2.2 The development trend of various colour filter arrays ... 13

Table 2.3 Visual artefacts and aberrations commonly generated in single sensor cameras 17

Table 2.4 Search term statistics for the words 'bayer cfa' and 'panchromatic cfa' 25

Table 3.1 Some properties of the various demosaicking algorithm classes .. 29

Table 3.2 Selected Image Sets ... 30

Table 3.3 Selected Image Quality Assessment Metrics ... 34

Table 5.1 Performance metric variations for different k2 and k3 combinations 57

Table 5.2 List of algorithms forming experimental test bed .. 60

Table 5.3 Geometric Average MSE evaluation values and associated ranking 61

Table 5.4 Geometric Average CPSNR evaluation values (in dB) and associated ranking 62

Table 5.5 Geometric Average SSIM evaluation values and associated ranking 62

Table 5.6 Geometric Average FSIMC evaluation values and associated ranking 63

Table 6.1 RGBW CFA domain algorithm data ... 65

Table 6.2 Proposed algorithm's ranking over CPSNR, SSIM and FSIMC metrics 76

Table B.1 MSE evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set 140

Table B.2 MSE evaluation of test bed demosaicking algorithms over the Kodak Image Set 140

Table B.3 MSE evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set

.. 141

Table B.4 MSE evaluation of test bed demosaicking algorithms over the Condat Image Set 141

Table B.5 MSE evaluation of test bed demosaicking algorithms over the ARRI Image Set 142

Table B.6 MSE evaluation of test bed demosaicking algorithms over the Custom Image Set 142

Table B.7 CPSNR evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set .. 143

Table B.8 CPSNR evaluation of test bed demosaicking algorithms over the Kodak Image Set 143

Table B.9 CPSNR evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image

Set ... 144

Table B.10 CPSNR evaluation of test bed demosaicking algorithms over the Condat Image Set 144

Table B.11 CPSNR evaluation of test bed demosaicking algorithms over the ARRI Image Set....... 145

Table B.12 CPSNR evaluation of test bed demosaicking algorithms over the Custom Image Set 145

Table B.13 SSIM evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set ... 146

Table B.14 SSIM evaluation of test bed demosaicking algorithms over the Kodak Image Set 146

Table B.15 SSIM evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set

.. 147

Table B.16 SSIM evaluation of test bed demosaicking algorithms over the Condat Image Set 147

xi

Table B.17 SSIM evaluation of test bed demosaicking algorithms over the ARRI Image Set 148

Table B.18 SSIM evaluation of test bed demosaicking algorithms over the Custom Image Set 148

Table B.19 FSIMC evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set .. 149

Table B.20 FSIMC evaluation of test bed demosaicking algorithms over the Kodak Image Set 149

Table B.21 FSIMC evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image

Set ... 150

Table B.22 FSIMC evaluation of test bed demosaicking algorithms over the Condat Image Set 150

Table B.23 FSIMC evaluation of test bed demosaicking algorithms over the ARRI Image Set 151

Table B.24 FSIMC evaluation of test bed demosaicking algorithms over the Custom Image Set 151

Table C.1 Resolution Specification Chart .. 158

Table F.1 Search term statistics for the words 'demosaicking' and 'demosaicing' in a publication’s title

.. 163

xii

List of Figures

Figure 1.1 Cave paintings: (a) Pettakere Cave in Indonesia, (b) Cueva de las Manos in Argentina, (c)

Chauvet Cave in France and (d) Serra da Capivara in Brazil .. 1

Figure 1.2 Extra-Solar missives: (a) Pioneer plaque and (b) Arecibo message 2

Figure 2.1 Basic image capture components in the eye and camera .. 8

Figure 2.2 Image processing pipeline in a digital still camera (DSC) .. 9

Figure 2.3 Layered sensor device ... 10

Figure 2.4 Three sensor device .. 11

Figure 2.5 Single sensor device ... 11

Figure 2.6 A generic CFA and its constituent components ... 12

Figure 2.7 The demosaicking process using the Bayer filter for demonstration 14

Figure 2.8 The demosaicking process using the Gindele panchromatic filter for demostration 15

Figure 2.9 Generation of (a) Spherical aberration and (b) Chromatic aberration 17

Figure 2.10 Generation of Moiré effects .. 19

Figure 2.11 Constant difference-based interpolation in a Bayer CFA ... 22

Figure 2.12 Sample edge directed interpolation using single lattice data ... 23

Figure 2.13 Sample edge directed interpolation using multiple lattice data 23

Figure 3.1 Conceptual framework to formulate proposed demosaicking algorithm 27

Figure 4.1 A 5×5 Bayer grid .. 36

Figure 4.2 A 5×5 RGBW grid .. 37

Figure 4.3 Paths in the North (N) and North-East (NE) directions in the green quincunx plane 41

Figure 4.4 A comparison of cardinal and ordinal directed pixels over different Bayer grid sizes 41

Figure 4.5 The 18 possible pentomino blocks using the Golomb letter naming system 43

Figure 4.6 Generated pentomino paths ... 43

Figure 4.7 A plane-wise decomposition of the reduced Bayer equivalent of the RGBW CFA 44

Figure 4.8 Proposed algorithm flowchart ... 45

Figure 4.9 A 7×7 segment of the reduced Bayer equivalent of the RGBW CFA 46

Figure 4.10 CFA Reduction flowchart ... 46

Figure 4.11 The South-West paths from pixel R44 using the N, W and Z pentomino blocks 47

Figure 4.12 Green Plane Reconstruction flowchart... 49

Figure 4.13 Red and Blue Plane Reconstruction flowchart ... 53

Figure 5.1 The experimental MATLAB simulation process.. 55

Figure 5.2 A comparison of various ε values using kodim21 of the Kodak Image Set 58

Figure 5.3 A comparison of various ε values using mcm03 of the McMaster-IMAX Image Set 58

Figure 5.4 Variation of performance metrics for different values of ε ... 59

xiii

Figure 6.1 Graph of average geometric mean MSE values over all test bed demosaicking algorithms in

all selected image sets.. 66

Figure 6.2 Graph of average geometric mean CPSNR values (in dB) over all test bed demosaicking

algorithms in all selected image sets .. 68

Figure 6.3 Graph of average geometric mean SSIM values over all test bed demosaicking algorithms in

all selected image sets.. 69

Figure 6.4 Graph of average geometric mean FSIMC values over all test bed demosaicking algorithms

in all selected image sets.. 70

Figure 6.5 A visual comparison of the right cheek section of the sipi_im11 image from the USC-SIPI

Image Set over the different demosaicking schemes in the test bed .. 72

Figure 6.6 A visual comparison of the fence section of the kodim19 image from the Kodak Image Set

over the different demosaicking schemes in the test bed ... 74

Figure 6.7 A visual comparison showing the expanded towel cloth section of the mcm11 image from

the McMaster-IMAX Image Set over the different demosaicking schemes in the test bed 75

Figure C.1 The Dress image where (a) the blue and black version is the actual dress and (b) the white

and gold version was the image posted online (source [21]) ... 152

Figure C.2 The USC-SIPI Image Set: sipi_im01 to sipi_im16; viewed from top to bottom, left to right

(source [128]) .. 153

Figure C.3 The Kodak Set: kodim01 to kodim24; viewed from top to bottom, left to right (source [123])

.. 154

Figure C.4 McMaster-IMAX Set: mcm01 to mcm18; viewed from top to bottom, left to right (source

[124]) .. 155

Figure C.5 Condat Set: codim01 to codim30; viewed from top to bottom, left to right (source [125])

.. 155

Figure C.6 The ARRI Set: arri_im01 to arri_im12; viewed from top to bottom, left to right (source

[130]) .. 156

Figure C.7 A Custom Image Set: cusim01 to cusim15; viewed from top to bottom, left to right;

developed by the author. .. 157

Figure D.1 (a) The probable sensitivity curves β, γ, and ρ determined by indirect methods together with

the spectral quality points of R, G, and B (b) Spectral sensitivity curves found from bleaching

experiments on pigments in the human retina ... 159

Figure D.2 The ρ, γ, β sensitivity curves and the spectral powers of light transmitted by red, green and

blue filters typically used in additive colour reproduction .. 159

Figure E.1 Selected images highlighting spherical aberration ... 160

Figure E.2 Image illustrating chromatic aberration ... 160

Figure E.3 Image illustrating comatic aberration .. 160

Figure E.4 Camera stills from the Star Trek films illustrating lens flare phenomena 161

xiv

Figure E.5 Selected images illustrating vignette effects .. 161

Figure E.6 Types of image noise: (a) fixed pattern (b) random and (c) banded 161

Figure E.7 Selected images showing (a) Zipper effect (b) Colour Shifts (c)Moiré effect, (d) Blurring

and (e) Jaggies (source: [33]) ... 162

Figure E.8 Image showing coloration shifts: (a) cool appearance, (b) warm appearance, (c) grey

appearance and (d) saturation effects (source [33])... 162

Figure E.9 Image showing exposure shifts: (a) underexposure, (b) normal exposure and (c)

overexposure (source [33]) .. 162

Figure F.1 Demosaicking publication trend in the IEEE Xplore repository 163

Figure F.2 Demosaicking publication trend in the Springer Link repository 164

Figure F.3 Demosaicking publication trend in the SPIE Digital Library repository 164

Figure H.1 Turnitin digital receipt ... 191

Figure H.2 Similarity statistics from Turnitin with bibliography and appendices included 192

Figure H.3 Similarity statistics from Turnitin with bibliography excluded 192

xv

List of Abbreviations and Acronyms

ACR – Average-based Colour Reconstruction algorithm

arri_im – member of the ARRI Image Set database

BI – Bi-linear Interpolation

B.C. – Year Before Christ (unit of measure)

BCI – Bi-cubic Interpolation

CCD – Charge-coupled Device

CDBI – Constant Difference Based Interpolation

CFA – Colour Filter Array

CFM – Colour Filter Mosaic

CMOS – Complementary Metal Oxide Semiconductor

codim – member of the Laurent Condat Image Set database

cusim – member of the Custom Image Set database generated by the author

CPSNR – Colour Signal-to-Noise Ratio

CRBI – Constant Ratio Based Interpolation

dB – decibels (unit of measure)

DSC – Digital Still Camera

EDCR – Edge Detection-based Colour Reconstruction algorithm

EDI – Edge Directed Interpolation

ESFBI – Edge Strength Filter Based Interpolation

EM – Electromagnetic Spectrum

FSIM – Feature Similarity Index

FSIMC – Feature Similarity Index with chrominance included

GBD – Gradient-based Demosaicking

IEEE – Institute of Electrical and Electronic Engineers

xvi

inf. – Infinite Value (unit of measure)

JPEG – Joint Photographic Experts Group

kodim – member of the Kodak Image Set database

mcm – member of the McMaster-IMAX Image Set database

McGill – the McGill Image Set database

MHC – Malvar-He-Cutler algorithm

MHD – Mobile Hand-held Device

MP – Mega pixel (unit of measure)

POCS – Projection onto Convex Sets

PSNR – Peak Signal-to-Noise Ratio

RGB – Red Green Blue Colour Space

RGBG – Red Green Blue Green Colour Filter Array

RGBW – Red Green Blue White Colour Filter Array

ROI – region of interest

sipi_im – member of the USC-SIPI Image Set database

SOD – Sum-of-Differences

SPIE – Society of Photo-optical and Instrumentation Engineers

SSIM – Structural Similarity Index

Win – Windows 7, 8, 8.1 and 10 Default Image Set

YIQ – Luminance (Y) In-phase Quadrature Colour Space

1

1 INTRODUCTION

1.1 Background

A common idiom in the English language states that a picture is worth a thousand words. Any image is

classically defined as a two-dimensional function used as a non-linguistic communication medium. It

describes information in a spatial manner bound in the two dimensions. Three dimensional images are

often described as a superset of their two dimensional counterparts.

For millennia, images have played a vital role in helping humans communicate ideas. Cave paintings

are described as one of the earliest forms of communication. Figure 1.1 illustrates four cave painting

images. The Pettakare Cave images in Indonesia were created around 33,000 B.C. [1] while those in

Cueva de las Manos in Argentina are from 11,000 to 9,000 B.C. [2]. Both sets of paintings are believed

to have been generated as part of a communal activity. Lion and mammoths were depicted in France’s

Chauvet Cave created around 30,000 B.C. and hunting and dancing activities occurring around 6,000

B.C. are shown the Serra da Capivara in Brazil [3].

(a)

(b)

(c)

(d)

Figure 1.1 Cave paintings: (a) Pettakere Cave in Indonesia, (b) Cueva de las Manos in Argentina, (c) Chauvet
Cave in France and (d) Serra da Capivara in Brazil

2

Looking ahead, images have been used in an attempt to communicate with intelligent beings that may

inhabit the extra-Solar region. The Pioneer plaque [4] on Pioneer 10 and the Arecibo message [5] both

shown in Figure 1.2 are images that carry information about Earth’s position in the Solar system (shown

in yellow), information on human helix DNA composition (shown in blue/white and purple), human

physiology (shown in red), the population at the time and our decimal numbering system (shown in

white).

From its basic definition, an image may refer to a graph, drawing, computer rendering, photograph,

logo, pictogram, painting or map. However, the term image is often used to describe a visual copy of

an object or set of objects in a scene captured by an optical medium. Optical devices can be man-made

using mirrors and lens-based devices such as telescopes, microscopes and cameras. Naturally occurring

optical devices include the eyes and water bodies with reflective properties. This work is devoted to

camera-based image capture and its perception using the human eye.

(a)

(b)

Figure 1.2 Extra-Solar missives: (a) Pioneer plaque and (b) Arecibo message

The 21st century has seen a two pronged communications revolution; both the manner and the tools with

which human beings communicate have changed dramatically.

The key catalyst of this change is the worldwide proliferation of mobile hand-held devices (MHD). This

term covers mobile cellular telephones (cell phones), tablets, embedded systems and wearable

technology. This is due to advances in circuit component miniaturisation that have led to the mass

production and affordable cost of these devices. In particular, the cell phone has become a ubiquitous

feature of modern society. In 2016, it was estimated that there were over 4.66 billion mobile phone

3

users [6] and over 7 billion mobile phone user subscriptions [7]. This has led to the mobile phone being

termed as the world’s first “truly personal computer”.

The way communication is done has also changed. The last 10 years has seen the advent of social

networking and the social media age. This coupled with mobile telephony has led to more and more

people interacting with one another than ever before. In a single day, people worldwide send 8.3 trillion

text messages and in 2017, it is projected that 1.016 billion images will be taken using smart mobile

devices [8], [9]. The trend in the last decade has been from an audio-only communication to a

multimedia rich communication norm [10].

Many mobile devices have an integrated digital still camera (DSC). Due to this, more and more

consumers are also starting to use images rather than words to communicate ideas. Wholly image-based

social media service Snap Inc. (formerly Snapchat) has seen a threefold increase in active users in the

last two years when compared to Twitter that is a wholly text-based service [11]. Instagram, another

image-based social platform has more than 400 million active daily users and at least 600 million active

monthly users all sharing images [12]. Low cost integrated cameras are also being used with embedded

microprocessor/microcontroller systems such as the Raspberry Pi and Arduino platforms in all manner

of monitoring systems; from plant phenotyping [13] to space exploration and surveillance [14], [15].

1.2 Justification

The human visual process is physical, physiological and psychological by design [16], [17]. The

physical part of the process involves the creation of an image to be transmitted to the human eye and

this forms the study of optics. The physiological elements of the visual process are the human eye,

associative connective pathways and the brain. They are concerned with the passing of the image from

the human eye to the visual and visual associative cortices in the brain. Finally, the psychological

process attempts to provide an interpretation to the image. This three stage process that consists of

seeing, analysing and interpreting images is referred to as human visual perception.

The physiological and psychological sections are highly variable and differ from individual to

individual. Physiology structures may be similar but individual variations exist. Interpretation similarly

is subject to variation between individuals. A recent example of this variability was observed in

February 2015 when a washed-out image now called “the dress” [18]–[21] was uploaded to social media

leading to a worldwide debate on its colour. A copy of the original image (and its colour corrected

variants) is shown in Appendix C. Over 10 million “tweets” were sent on whether the dress in the image

was blue and black or white and gold. Different people perceived the two widely different colour

schemes when presented with this image due to physiological and psychological differences.

4

To ensure correct communication of image information, the physical process of image creation which

is the only invariable process must be optimised. In the case of “the dress” image, the washed out effect

of the image was identified as the key cause for the varying responses. This highlights the critical nature

of proper image creation or image capture.

With images becoming more important in the transfer of information, the way these images are

generated becomes critical. Mobile telephones are equipped with low, medium and high resolution

integrated digital cameras. The cost of mobile telephones on the whole grows with the resolution of its

integrated camera. A higher camera resolution allows more sample points to describe the image being

taken. This results in a more accurate facsimile of the scene being captured. However, it also leads to a

more expensive image sensor being integrated to the mobile device whose cost of fabrication is passed

on to the consumer.

This work intends to use image processing techniques rather than electronic fabrication to improve

image capture. The cost of the improvement becomes the mathematical complexity of the algorithm

rather than the cost of fabrication of the sensor. By employing an image processing algorithm in

reproducing the scene, the author intends to demonstrate that low or medium resolution cameras can

still take high quality images of the scenes they capture.

1.3 Problem Statement

The pervasion of mobile hand-held devices integrated with digital cameras is becoming the norm in our

society. These devices are expected to represent half of the total online activity by 2018 [22]. Also with

the emerging trend of image-based rather than text-based communication, a proper understanding of

image generation is warranted.

The work presents an image processing demosaicking algorithm that employs sampled data collected

from an image sensor to produce a high quality image of the scene being captured. The image sensor

samples and measures both light intensity (luminosity) and colour (chromaticity). A demosaicking

algorithm uses the sampled information to fully reconstruct an image of the scene. As such, the problem

is one of image reconstruction and enhancement.

This designed algorithm is created to operate with a particular subclass of image sensors called

panchromatic colour filter array sensors. These sensors are low cost and have attractive light sensitivity

properties [23] suitable for mobile hand-held devices when compared to more traditional sensor referred

to as the Bayer sensor.

The work also presents a heuristic approach to solving this image reconstruction problem. The

reconstruction cannot be done by simple interpolation of the samples taken due to the fact that the

5

elements within a scene are never predetermined. While no exact reproduction of missing components

may be possible – a high quality approximation is just as good. This approach is to ensure the creation

of a computationally inexpensive algorithm.

1.4 Objectives

1.4.1 Main Objective

The main objective is to create a robust heuristic demosaicking algorithm to reconstruct images taken

using low and medium resolution panchromatic image sensors.

1.4.2 Specific Objectives

The specific objectives in this work are:

i. To study and determine how the camera mimics the human visual system and generates

discernable colour images.

ii. To determine the main types of artefacts generated in the camera image processing pipeline and

how to suppress them if possible; particularly for low to medium mobile phone cameras.

iii. To generate a heuristic based demosaicking algorithm to reconstruct images taken by a low

resolution camera as well as medium resolution cameras.

iv. To compare performance of the algorithm with previously established methods by employing

several established metrics, namely mean square error (MSE), colour peak signal-to-noise ratio

(CPSNR), feature similarity index (FSIM) and structure similarity index (SSIM).

v. To observe the algorithms robustness to image variance by exposing it to several standard and

custom image sets.

1.5 Scope of Work

The work focuses on images generated by low or medium resolution mobile phone cameras. High

resolution images taken by high end mobile hand-held devices are not intrinsically considered.

The test-bed of images uses five standard image sets and one custom image set. In order to test and

compare the performance of the algorithm with established techniques, the work assumes and employs

the image sets as ground truth references. Therefore, no non-reference image performance metrics are

used.

The work presents all forms of visual artefacts that commonly present themselves in the image

reconstruction process. However, the algorithm design focuses on those particular artefacts produced

6

by demosaicking and looks for ways to mitigate them. This is because these types of artefacts are the

most commonly observed and are invariant of the camera physical characteristics.

The work presents several classes of demosaicking algorithms but constrains itself to the spatial sub-

class of heuristic demosaicking methods. This demosaicking algorithm type is mature with a large

number of state-of-the-art methods that can form an adequate comparison test bed.

1.6 Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 provides a review of the types of sensors

in common use. It also highlights the concept of visual artefacts and details the classes of demosaicking

algorithms that have been developed over time to migitate their undesirable effects. The chapter

concludes with an analysis of the knowledge gaps present in literature and the contribution of this work

in addressing those gaps.

Chapter 3 provides a theoretical framework with insight on the decisions governing the choice of the

CFA, algorithm class, image sets and assessment mechanisms. Chapter 4 details the algorithm design

process showing the Bayerisation process and the creation of the gradient based algorithm. It also shows

some of the synthesis of the novel notions influencing the design choices taken and assumption made

prior to the simulation process.

Chapter 5 shows the simulation process, experimental testing and results generated using the designed

algorithm working in the MATLAB® environment with particular comparisons made to established

techniques. Chapter 6 presents a detailed analysis and discussion of the results generated. In particular

the colour reconstruction performance and object fidelity measures are scrutinised. Chapter 7 gives a

conclusion to the work, lists publications derived from this work and provides recommendations for

any subsequent study in the area. The list of References then follows.

A series of appendices containing supplementary information are then provided and are as follows:

Appendix A provides the MATLAB® algorithm blocks used in the work for image acquisition, image

demosaicking and image comparison. Appendix B provides the raw image quality assessment data

generated from the MATLAB® simulation. Appendix C presents all the image sets used. Appendix D

shows the spectral curves underpinning the trichromatic nature of human vision. Appendix E illustrates

the different forms of visual artefacts and aberrations that may be encountered in an image. Appendix

F presents some publication statistics in the area of demosaicking from several widely used publication

repositories. Appendix G contains the publications resulting from this study that have been

internationally peer-reviewed and published in referreed peiodicals. Finally, Appendix H presents the

similarility statistics for this entire document from the Turnitin® plagiarism checker platform.

7

2 LITERATURE REVIEW

2.1 The Human Eye and Colour Vision

The eye is the starting point in the physiology of human vision. It contains a naturally occurring image

capture setup in the form of a lens and a retina. The retina contains two types of light sensitive

photoreceptor cells termed rods and cones that help to capture image information [16], [24]. The rods

and cones are sensitive to two types of light [25]. These are:

i. Achromatic light that is recorded by the rod photoreceptor cells. Rods are extremely sensitive

and are triggered at low-light. In this case, the rods act alone leading to a monochromatic signal

void of colour content and the light is termed achromatic.

ii. Chromatic light that is recorded by the cone photoreceptor cells. Three types of cones are

present in the eye and they are triggered within the 400nm – 700nm wavelength range of the

electromagnetic (EM) spectrum. The result is three different colour signals and the light is

termed chromatic.

Chromatic light and images formed by them are attractive because colour is a powerful descriptor in

images. From a communication perspective, chromatic images yield more information than their

achromatic equivalents. Proof of this is evident in image display devices transitioning from

monochromatic devices to full colour. The Young-Helmholtz theory postulated the trichromatic nature

of human vision as early as the 19th century [16]. In 1956, George Wald et al. [26], [27] proved this

theory empirically by showing that each of the three types of cone photoreceptors contained a type of

light sensitive protein-base termed Opsin that reacts to a particular wavelength range within the EM

spectrum. This is shown in Table 2.1 below.

Table 2.1 Spectral properties of human cone photoreceptors

Cone Type Spectral

Curve

Approximate Light

Sensitivity Range in nm

Approximate Peak

Wavelength in nm

S-cone (OPN1SW or blue
sensitive Opsin)

β 400 – 550 440

M-cone (OPN1MW or

green-sensitive Opsin)

γ 450 – 630 545

L-cone (OPN1LW or red-
sensitive Opsin)

ρ 470 – 700 580

It can be noted from Table 2.1 that while the L-cone does not have a spectral peak explicitly within the

red region of the EM spectrum, it is still called red-sensitive Opsin because of its proximity towards the

red region compared with the other two cone types. The spectral curves and their characteristics are

shown in Appendix D.

8

2.2 The Camera and the Image Processing Pipeline

A camera is a man-made image capturing device that borrows its design from human physiology. It

works using the intromission theory of vision that was experimentally proven by Ibn al-Haytham in the

11th century [28]. Its primary components are an aperture, lens and sensor (or film) arrangement

corresponding to the pupil, lens and retina of the human eye as illustrated in Figure 2.1.

Figure 2.1 Basic image capture components in the eye and camera

The aperture and lens sections are common to all cameras. An analogue still camera uses a photographic

film coated with a gelatine emulsion containing light sensitive silver halide crystals [29]. Light

impinging on the film alters the crystals. Developing chemicals are then used to bring out the image.

Digital still cameras (DSC) are the predominant form of camera in use worldwide. The two dominant

digital camera technologies are the Charged Coupled Device (CCD) sensor-based cameras and the

Complementary Metal Oxide Semiconductor (CMOS) sensor-based type. Of the two leading

technologies, the CMOS sensors have a higher market penetration due to advances in circuit component

miniaturisation and mass production [30], [31]. In addition, the CMOS sensors are also low power

consumption devices. As such, they are also widely available as integrated elements in other electronic

components such as mobile hand-held devices.

The image processing pipeline involved in a digital still camera from the observation to the display of

a scene is a three phase process [32]. The phases illustrated in Figure 2.2 are:

i. Image acquisition

ii. Image processing

iii. Image storage and display

In the acquisition phase, light reflected off the surface of objects within a scene passes through an

aperture and lens arrangement. Exposure, focus control and other mechanical operations are performed

in this arrangement block. The light intensity and chromaticity information is then transmitted to the

camera sensor assembly for recording. A filter array may be used to sub-sample the light information

prior to its being recorded by the sensor.

9

Figure 2.2 Image processing pipeline in a digital still camera (DSC)

The processing phase involves conversion of sensor data to meaningful information that can be

displayed to a user. Noise components are filtered out. Some pre-processing and white balance

adjustment is performed prior to the start of colour processing. Colour processing involves analysing

the sensor data and establishing the appropriate colour content. In particular, when a filter array is used

in the acquisition phase, the colour processing will involve an additional interpolation step, termed

demosaicking, to reconstruct missing colour content removed by the filtering process. After the colour

content is fully processed, the image may require an adjustment in the colour gamut or range so that an

image displayed on the LCD display conveys optimum information of the scene. This is because the

device may be incapable of displaying all visible colours [16]. This is accomplished in the colour

transformation and correction step. Additional enhancement and post-processing are employed before

the image is either stored or displayed by the device in the final phase of the pipeline.

Image reconstruction is focused primarily in the filter array and sensor portion of the acquisition phase

and the colour processing, interpolation and enhancement sections of the pipeline. This is because these

sections are largely device invariant. Other elements are subject to specific device construction and

10

manufacturer choices. Due to this, three sensor schemes have been developed to work in the DSC filter

and sensor arrangement. These are:

i. Layered sensor scheme

ii. Three-sensor or Tri-sensor scheme

iii. Single sensor scheme

2.2.1 Layered sensor scheme

This scheme involves a combined filter-enabled sensor placed after the optical system (after the aperture

and lens arrangement). As light passes through the sensor, stack sections absorb only one of the

trichromatic colours and record position and intensity information. The unabsorbed colours pass

through to be recorded elsewhere in the sensor stack [33]. This is illustrated in Figure 2.3. The sensor

data is then passed through to finally generate the colour image.

Figure 2.3 Layered sensor device

The stack colour region ordering does not matter because at each stage, the stack regions only absorb

their corresponding colours. The length of the absorbing regions however matters with the region

nearest to the lens/aperture receiving the highest amount of light intensity. As the light traverses the

stack, its intensity drops and therefore, the stack regions correspondingly increase in size in order to

ensure a uniform reading. The complexity of producing the sensor stack lead to cost and mass

production limitations. As such, this scheme is not used in commercial integrated DSCs but finds

application in specialised discrete (non-integrated) cameras.

2.2.2 Three sensor scheme

The three sensor scheme shown in Figure 2.4 uses three independent filters and sensors; each

corresponding to one of the trichromatic colours. Light from the optical system is passed to each of

these filters. The filtered component is then recorded by the associated sensor. The data from all three

sensors is then combined and passed for processing to generate a full colour image [33], [34].

11

Figure 2.4 Three sensor device

The duplication in functionality by using multiple filters and sensors increases cost and device

complexity. Consequently, this scheme is not employed in mobile hand-held device cameras but in

high-end, high performance discrete cameras [35].

2.2.3 Single sensor scheme

The single sensor scheme makes use of a single filter called a colour filter array or colour filter mosaic

(CFA/CFM). Individual colour lattices are combined to form a single array. Instead of having multiple

filters, the array allows certain colours to be absorbed at certain pixel location points in the filter. This

leads to the image sensor receiving sub-sampled colour data at all pixel location points. This is because

rather than having the three colours at one pixel point, only one colour is sampled. Colour interpolation

is done on the raw sub-sampled data in the processing pipeline in a process referred to as demosaicking.

A full colour image is then generated. This scheme is illustrated in Figure 2.5.

Figure 2.5 Single sensor device

Since the reconstruction is a software process, the device arrangement uses single components that are

easy to fabricate and the entire assembly can be made robust. As such, virtually all integrated cameras

use this scheme [35]. Many robust discrete DSCs, for example action cameras, also work with a single

sensor scheme employing a colour filter array. For this reason, the author’s work is predominantly

biased in analysing this class of sensor.

2.3 The Colour Filter Array (CFA) and the Demosaicking process

The colour filter array is a spectrally-selective, tessellate filter found in single sensor based devices

[36], [37]. The array is made up of a replication of cells. Each cell is in turn composed of several

12

elements as shown in Figure 2.6. Each element is responsible for filtering a specific colour component

of incident light. The arrangement of the filter is done such that each array element is placed directly

above one pixel point location of the image sensor.

Figure 2.6 A generic CFA and its constituent components

Mathematically, the general colour filter array is a subset of a square plane tessellation structure with a

Schläfi symbol of {4, 4}. Exceptions to this rule exist and they incorporate unique triangular, pentagonal

or hexagonal tile structures [38]. However, these structures also alter the fabrication of the standard

image sensor and the image processing algorithm leading to increase in cost and hence lowering their

potential market penetration.

2.3.1 Classification of Colour Filter Arrays

In the history of integrated DSCs, various colour filters have been developed by numerous

manufacturers. All filters, quadrille or otherwise, can be broadly classified into three dominant mosaic

types. They are the additive mosaics, subtractive mosaics and panchromatic mosaics. Some commonly

reported forms of each type are highlighted in Table 2.2

The additive CFAs are based on the additive concept in trichromatic theory. The filter allows the desired

colour content to pass through while limiting the other two. By sampling the three primary colours, the

trichromatic range of human vision is covered. After colour interpolation/demosaicking, the colours can

be combined or added to form the full colour image. The Bayer CFA [39] was the first array of this type

to be developed. Other additive colour inspired CFAs include the Yamanaka [40], Watanabe et al. [41],

Roddy [42] and the diagonal stripe filters [35] .

13

Table 2.2 The development trend of various colour filter arrays

Additive

Colour

Based

CFAs

Bayer, 1976

Yamanaka, 1977
Watanabe

et al.,
1985

Roddy, 2006

Diagonal Stripe,

2008

Sub-

tractive

Colour

Based

CFAs

Morimura et al.,

1986

Hamilton et al.,

2001

Bean,

2003

Hirakawa et al.,

2007

Pan-

chromatic

Based

CFAs

Dillon, 1977

Yamagami et

al., 1994

Bawolek
et al.,

1999

Gindele et al.

and Sugiyama,

2002; 2005
Kodak A, 2007

Kodak B, 2007

Kodak C, 2007

The subtractive class of arrays are based on the use of the primary dye colours of magenta (M), yellow

(Y) and cyan (C) instead of the primary light colours of red (R), green (G) and blue (B). Rather than the

filter allowing the desired colour through, in the subtractive scheme, the filter colour is absorbed [16].

The colour component that is not part of the subtractive pigment passes through onward to the sensor.

For incident white light (W), equation (2.1) demonstrates the subtractive process

𝑊 − 𝑀 = 𝐺

𝑊 − 𝐶 = 𝑅

𝑊 − 𝑌 = 𝐵

(2.1)

Subtractive colour CFAs include those developed by Morimura et al.[43], Hamilton et al. [44], Bean

[45] and Hirakawa et al [46].

14

Panchromatic colour filter arrays allow full incident white light in some pixel point locations. The

incident white light contains the full colour spectrum hence the term panchromatic. Dillon [47],

Yamagami et al. [48], Bawolek et al. [49], Gindele et al. and Sugiyama [50], [51] and the three Kodak

variants [35] are common implementations of this class of filter.

2.3.2 The Demosaicking Process

After the light passes through the colour filter array, each mosaic element filters one particular colour

component to its associated sensor pixel point. This results in a one colour-per-sensor pixel point being

recorded as illustrated in Figure 2.7 using the Bayer filter for demostration. The sensor data, ICFA, is a

sub-sampled representation of the original scene, I, conveyed by the optical system. The sub-sampled

representation, ICFA, is then processed by the camera software. In this phase, a colour interpolation step

termed demosaicking is performed. As the name implies, the missing sensor data is approximated and

the mosaic effect in ICFA is removed. The result is the reconstructed image, IR.

Figure 2.7 The demosaicking process using the Bayer filter for demonstration

Mathematically, for an image of sensor pixel dimensions M×N, the two dimensional M×N matrix ICFA

is a true subset of the three dimensional M×N×3 matrix I. This is because three sensor will have three

independent colour planes. The demosaicking process generates a new three dimensional matrix IR from

ICFA that approximates I and their absolute difference is defined by a three dimensional M×N×3 matrix

E, as given in equation (2.2).

𝑰𝐶𝐹𝐴 ∈ 𝑰

(2.2a)

 𝑬 = |(𝑰 − 𝑰𝑅)| 𝑤ℎ𝑒𝑟𝑒 𝐥𝐢𝐦
𝑰→ 𝑰𝑹

𝑬 = 0 (2.2b)

15

The demosaicking process applies to all the aforementioned colour filters as given in equation (2.2). In

the ideal demosaicking situation, E = 0. This is not possible in practice because demosaicking is an

interpolation process that results in approximations. The practical goal of the demosaicking process is

to ensure the reconstructed image matrix, IR, is as close as possible to the reference scene matrix, I, for

maximum information conveyance.

2.3.3 The Panchromatic CFA

Additive and subtractive CFAs are fully spectrally selective recording sub-sampled information at all

pixel point locations. Panchromatic CFAs, from their definition, are partially selective. The white

portions of the filter allow all colour components to pass through. This is illustrated in Figure 2.8.

Figure 2.8 The demosaicking process using the Gindele panchromatic filter for demostration

Comparing the panchromatic demosaicking process in Figure 2.8 with its non-panchromatic counterpart

in Figure 2.7, more sample points are recorded in the red and blue colour channels but the green colour

channel has the same sample point total.

As such the panchromatic sensor data, ICFA, is an M×N×3 matrix that is still a subset of the image, I.

However,

 𝑰𝐶𝐹𝐴(𝑛𝑜𝑛 𝑝𝑎𝑛𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐) ∈ 𝑰𝐶𝐹𝐴 (𝑝𝑎𝑛𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐) ∈ 𝑰 (2.3)

Equation (2.3) shows the panchromatic sensor data carries more samples than its additive/subtractive

equivalent. It should be noted that these extra samples take in the full visual colour spectrum instead of

a single wavelength value dictated by the colour of the filter at these points.

16

This leads to a brighter image being taken at the expense of explicit colour accuracy. A white pixel

point in the red lattice of Figure 2.8 collects not only the red filter colour wavelength, but also red

content outside the filter specifications along with green and blue content. So the red content extracted

from the white pixel point may not correspond exactly to one extracted if the white pixel point was

replaced by a red pixel point.

In an ideal image panchromatic filter capture situation, the particular wavelength can be extracted from

the full spectrum in processing, leading to a reconstructed image with less unknowns being used in the

demosaicking process.

In practice, however, this is not wholly possible without introducing some approximations in the

extraction. The process of panchromatic CFA demosaicking is aimed at ensuring reproduction at the

white pixel points is superior to that of the blank cells points that rely solely on neighbourhood cell

information for their reconstruction. Panchromatic CFAs are classified by the percentage of white pixels

present in their base mosaic cell. In Table 2.2, two classes are represented:

i. 25% Type: Gindele/Sugiyama (also called the RGBW CFA)

ii. 50% Type: Dillon, Yamagami, Bawolek and Kodak variants

Other configurations with higher percentages exist such as the CFA proposed by Luo [52] which is a

75% type. They are not considered desirable in practice because more colour information is lost at the

expense of a brighter, more luminous image.

2.3.4 Spectral Advantages of Panchromatic CFAs

The less restrictive filtering of panchromatic CFAs leads to several key advantages in image capture

and recording:

i. Larger sample sizes in the red and blue planes ensure less uncertainty in their reconstruction.

ii. White pixel point locations record complete luminosity information leading to a brighter, more

visually appealing image capture that is more representative of the scene. In the

additive/subtractive CFAs, the most sampled colour is used to determine the luminosity content

of the scene yielding darker images.

2.4 Visual Artefacts

Being a physical system, the digital still camera and the image processing pipeline it adopts are subject

to the effects of noise and other unwanted aberrations.

The common artefacts experienced by integrated DSCs are given in Table 2.3.

17

Table 2.3 Visual artefacts and aberrations commonly generated in single sensor cameras

Type Area of Pipeline Examples

Optical Effects Acquisition Phase Chromatic aberrations, Comatic

aberrations, Spherical aberrations, Lens

flare and Vignetting effects

Image Noise Acquisition Phase Fixed pattern, Random, Banding

Demosaicking Artefacts Processing Phase Moiré effects, Zipper effects, Colour

shifts, Blurring

Coloration and Exposure Shifts Processing Phase White imbalances and exposure effects

Compression Artefacts Storage and Display
Phase

Lossy JPEG format compression

2.4.1 Optical Effects

Optical effects are caused by lens and aperture arrangement. Improper lens design can lead to spherical

and chromatic aberrations. Spherical aberrations shown in Appendix E: Figure E.1 are caused when

light that passes through the lens is not focused into one focal point; instead having multiple

convergence points occur, leading to a blurring halo or monocle artefact effect [53], [54]. Chromatic

aberration occurs when the lens focuses different wavelengths of light refracted through along different

focal points of the optical median line. This is the result of the lens’s refractive indices having an inverse

proportionality relationship with the different wavelengths of light [55], [56]. In the additive tristimulus

theory of light the red, green and blue wavelengths would be focused at different points as shown in

Figure 2.9. An example of this aberration is shown in Appendix E: Figure E.2.

Comatic aberrations occur when light from point sources enters the lens from an angle rather than

parallel to the optical median line. This distorts the point sources to have a coma, tear-drop shape instead

of an expected circular form. An example of comatic aberrations are given in Appendix E: Figure E.3.

Figure 2.9 Generation of (a) Spherical aberration and (b) Chromatic aberration

18

Lens flare occurs when shooting a bright light source point. This source leads to unwanted internal

reflection and scattering of light within the lens causing a bloom or flaring effect. In the image, this

flaring is observed in the form of rings or bursts of light emanating from the source. Vignetting is the

phenomenon where peripheral regions of the image appear darkened forming a border of sorts. The

darkening is caused by brightness and saturation loss at the lens limits. This is sometimes performed

intentionally in software but mainly occurs from limitations introduced at the lens periphery. An image

showing this effect is presented in Appendix E: Figure E.5.

Lens flare, vignetting effects and spherical aberrations are unique because they are the only visual

artefacts that are sometimes deemed desirable by the viewer. This is the case particularly where an

emotional response from the viewer of the scene is desired along with the basic conveyance of visual

information. An example is when lens flares were adopted in the rebooted Star Trek franchise films to

heighten the drama and spectacle of space travel [57]. Some still images from the films are shown in

Appendix E: Figure E.4.

2.4.2 Image Noise

This type of artefact is created in the sensor section and appears as speckles or bands in smooth regions

of the image [33], [58]. Image noise is caused by random quantum noise effects and sensor element

inhomogeneity. This form of noise is dependent on length of exposure, colour temperature variations,

sensitivity settings and the physical characteristics of the sensor pixel photo-sites. There are several

types of image noise. Fixed pattern noise is caused when the intensity recorded at a pixel point exceeds

normal ambient noise values. They appear when the sensor is overexposed or made to operate at high

thermal temperatures. The overexposed pixel point forms a bright colour spot dependent on the

particular light filtered through.

Random noise is generated by intensity and colour fluctuations below and above the actual image

values. This form of noise is always present in some degree and is mainly influenced by camera shutter

speed. Banding noise is created when camera reads data from the sensor. The sequential nature of this

process leads to the noise appearing as continuous bands. It is often seen in images taken in shadowy

conditions. Sensor images showing fixed pattern, banding and random noise effects are shown in

Appendix E: Figure E.6.

2.4.3 Demosaicking Artefacts

These errors are produced from the demosaicking process. Demosaicking involves the reconstruction

of an image by approximating missing sensor data. When the approximation is underestimated,

overestimated or completely off, undesirable visual artefacts are produced in the reconstructed image.

Being camera invariant, these types of artefacts are commonly observed in practice. They are also the

most documented in literature [59]–[63]. Demosaicking artefacts appear in four primary forms:

19

i. Moiré effect

ii. Zipper effect and ‘Jaggies’

iii. Colour shifts

iv. Blur effects

The Moiré effect is a spatial aliasing phenomenon that occurs when the scene contains a series of

repetitive patterns that is of the same order or exceeds the resolution of the sensor. Consequently, the

sensor is unable to adequately sample the high frequency information in the image scene, causing an

aliasing problem. This aliasing presents itself in a grayscale or rainbow colour pattern being inserted

into the image. Figure 2.10 illustrates how this artefact is generated in a Bayer CFA from a simple black

and white stripe pattern. The pattern has two stripe types: Type 1 is of a similar order to the sensor pixel

resolution while Type 2 has a lower resolution than the sensor. In Figure 2.10(a), the stripes are aligned

to the sensor pixels and each pixel wholly records one type of colour. As such both stripe types are

accurately reconstructed. In Figure 2.10(b), the alignment of the stripes is off. For the Type 1 stripe,

each sensor records black stripe and white background colour information combining to form a grey

stripe. In the case of the Type 2 stripe, only the edges suffer from this colour aliasing. This effect also

occurs when patterns are of a higher resolution. Black and white images will produce grey patterns and

colour images have rainbow-like patterns arising from this aliasing effect. An image showing this effect

are given in Appendix E: Figure E.7.

Figure 2.10 Generation of Moiré effects

Zipper effect occurs along edges of objects within a scene. The sudden transition is inaccurately

approximated by the demosaicking process resulting in aliasing. This inaccurate approximation occurs

on both sides of the edge producing a distinct zip-like effect seen in the reconstructed image [64]. If an

object edge experiences only a slight deviation in their colour information from its adjacent

20

surroundings, a staircase effect called ‘Jaggies’ is produced instead. Appendix E: Figure E.7 highlights

some examples of this type of artefact.

Colour shifts occur within feature rich sections of an image when the demosaicking algorithm lacks

adequate spectral information. Colour in these sections is misrepresented and a shift in the colour quality

is observed in the reconstructed image. When image demosaicking is done with poor edge preservation,

the structural integrity is lost and image blurring occurs. Similar to colour shifting, image blurring

occurs in detail rich regions of the image. Image blurring and colour shifting examples are given in

Appendix E: Figure E.7.

It should be noted that this class of artefacts vary in degree of severity depending on the scene data and

the quality of the demosaicking algorithm. Considering the complexity of reconstructing unknown

scene data, these artefacts cannot be removed completely but instead are only suppressed [65].

2.4.4 Coloration and Exposure Shifts

All cameras are designed and calibrated to operate within a particular sensitivity and colour light

temperature setting. If an image is taken outside the prescribed camera light settings, the coloration of

the scene in the image shifts from the original [33]. Coloration shifts are easily observable in achromatic

white light because of the uniformity of the three additive colours. These shifts affect the image in its

entirety and several modes of coloration shift are shown in Appendix E: Figure E.8 depending on what

colour is in excess. White colour balance is the process performed to ensure the image is a true

representation of the original scene.

The exposure of the sensor to the reflected light from objects within a scene also dictates the visual

acuity of the image. The speed of the camera shutter determines the level of exposure shift experienced

due to the amount of photons recorded. Overexposure and underexposure are the two shifts observed.

Underexposure results in a darkened image while overexposure of the sensor results in an overly bright

image. Both these variations are shown in Appendix E: Figure E.9.

2.4.5 Compression Artefacts

To reduce file size in storage, many integrated DSCs employ lossy compression. A common format of

this type is the JPEG format. The JPEG compressed images are created by storing colour and intensity

information for a region of similar pixels instead of recording original individual pixel data. This often

reduces the size of the image file at the expense of pixel information. Consequently, edge and fine detail

information is lost and JPEG images suffer from a blocky appearance. These block regions are the lossy

compression artefacts. This class of artefacts is often viewed as more serious than image noise [66]

because of the loss of important object information in the scene.

21

2.5 Demosaicking Algorithms

From Figures 2.7 and 2.8, it can be observed that demosaicking is primarily an interpolation process

[67], [68]. However, unlike conventional interpolation, the colour content in the various lattices is

highly sporadic, depending on the scene. In addition each of these colour lattices, while handled

independently at the sensor, jointly contribute to generate a single colour at each pixel point. This leads

to the interpolation being both an intra-dependent and inter-dependent lattice problem. The process

must be uniform in both dependencies. With this in mind, demosaicking algorithms are classified, but

are not limited to, four principle classes: traditional, heuristic, optimisation and image modelling.

2.5.1 Traditional methods

Algorithms in this class are used predominantly outside the field of demosaicking. An image’s spatial

pixel data in the three colour lattices is converted into a sequential polynomial form. Mathematical

interpolation is then done. Bayer’s initial design demosaicking algorithm was a simple linear

interpolation [39] that was an extension of a design by Banning et al. [69]. This was due to the fact that

the process involved a sequential scanning of the image line by line and the generation of the missing

components followed the same mechanism. Subsequent algorithms have employed higher order fitting

techniques to improve performance. Yu [70] proposed a cubic interpolation solution and Randhawa et

al. [71] used splines.

2.5.2 Heuristic methods

This class of algorithms involve applying a filtering process either in the spatial or spectral domain

while making several assumptions on the properties of the image. These algorithms seek to produce a

sufficient approximation of the original scene in a reasonable time rather than attempt a full

mathematical optimisation [68]. This is because a sufficient approximation and a fully optimised image

would be indistinguishable to the human viewer. Heuristic algorithms are the most commonly

documented demosaicking technique and are further divided into spatial, spectral and a hybridisation

of the two.

(i) Spatial techniques

This sub-class operates by applying the filtering process directly on sensor pixel data in the spatial

domain. Non-adaptive techniques such as Bi-linear (BI) and bi-cubic interpolation (BCI) are the

simplest forms of spatial demosaicking. They are adequate in smooth image region. However, colour

and edge abnormalities result in the detailed regions because the intra-lattice and inter-lattice

dependencies is not considered.

Constant hue-based techniques assume that there is a strong inter-lattice correlation between different

colour lattices. This enables luminance (intensity) information to be used to interpolate chrominance

(colour) lattice data. Considering a Bayer filter, the green lattice is assumed to hold luminance data

22

while the red and blue are chrominance lattices. The constant hue assumption uses pixel data in the

green lattice to find missing data points in the blue and red chrominance lattices. An example of this is

the constant difference based interpolation (CDBI) [68] illustrated in Figure 2.11. The more populous

green lattice G, is reconstructed to form Gr, by simple bilinear interpolation. The red lattice, R, is then

subtracted to create a difference lattice, D. The difference lattice is then used to form the reconstructed

red lattice, Rr, using equation (2.4) for a pixel point, p;

Figure 2.11 Constant difference-based interpolation in a Bayer CFA

𝐷(𝑝) = 𝑅(𝑝) − 𝐺𝑟(𝑝)

𝑅𝑟(𝑝)𝐷𝐼𝐹𝐹 = 𝐷𝑟(𝑝) + 𝐺𝑟(𝑝)
(2.4)

The similar constant ratio based interpolation (CRBI) [68] uses the relationship shown in equation (2.5)

for any pixel point, p. Cok [72] proposed a logarithmic form of constant hue interpolation. Kimmel [73]

and Chung et al. [74], [75] extended constant hue based interpolation by combining it with basic edge

directed interpolation.

𝐷(𝑝) = 𝑅(𝑝) ÷ 𝐺𝑟(𝑝)

𝑅𝑟(𝑝)𝑅𝐴𝑇𝐼𝑂 = 𝐷𝑟(𝑝) × 𝐺𝑟(𝑝)
(2.5)

Edge based adaptive techniques work on the principle of ensuring interpolation only occurs along object

edges rather than across them. The determination of the direction of interpolation is established by

querying neighbourhood pixel information. This is shown in Figure 2.12. Edge directed interpolation

(EDI) and its variants [76]–[81] generate absolute difference measures in the cardinal directions; ∆𝐻

and ∆𝑉. If one measure exceeds its complementary, the interpolation is done in the complementary

direction. Otherwise, neighbourhood averaging is done. This demonstrates the lack of an edge in that

particular pixel point. Figure 2.13 shows how edge directed demosaicking is extended when it

incorporates inter-lattice correlation.

23

Figure 2.12 Sample edge directed interpolation using single lattice data

Figure 2.13 Sample edge directed interpolation using multiple lattice data

The performance of this demosaicking subset is wholly dependent on the difference measures generated

to classify the presence or absence of an edge. The absolute difference measure is in fact a basic edge

descriptor. Chang et al. [82] introduced finer edge descriptors leading to the development of gradient

based techniques. Gradient based variants [83], [44], [84]–[91] make use of higher order absolute

differences, termed gradients, that improve demosaicking. The gradient is inverted to act as an adaptive

weighting factor because higher order gradients provide a more varied spread to fine tune demosaicking.

Gradients can be improved further by working with residuals of gradients rather than absolute gradients.

Residual based techniques were introduced in 2013-2016 by Kiku, Monno et al. [92]–[94].

Another way of further improving spatial demosaicking is introducing more interpolation directions.

Multidirectional weighted techniques combine gradient or edge based methods with increased direction

choice. Ordinal and oblique directions are used with the conventional cardinal directions. Some

examples of this are presented in the algorithms found in [95]–[98].

(ii) Spectral techniques

This heuristic sub-class involves converting the sub-sampled spatial pixel information into the

frequency domain and applying the filtering process in this domain. This form of demosaicking was

first introduced by Alleysson et al. [99] and further developed by Dubois [100]. Frequency based

demosaicking variants [101], [102] use simple low order filters to reconstruct the image. This leads to

excessive smoothening of edge information. Wavelet based techniques proposed by Kolta et al. [103],

Zhang et al. [104] and Komatsu et al. [105] use wavelet theory to sharpen the image during

24

reconstruction. Compressive sensing has also been recently applied to the demosaicking problem by

Gürbüz et al. [106] and Singh et al. [107]. Once the filtering is done, the image is restored to its spatial

equivalent.

(iii) Spatio-spectral techniques

Spatio-spectral methods combine spatial and spectral filtering in their demosaicking process. In most

instances, spectral filtering is performed followed by an edge or gradient based spatial technique to

sharpen the image. The body of work by Hirakawa and Parks [46], [108], [109] highlights this class.

Hirakawa et al. use wavelet filter banks to generate a unique edge demosaicking algorithm that searches

for homogeneous regions to avoid edge misrepresentation.

2.5.3 Optimisation methods

This class of demosaicking algorithms treats the interpolation as a mathematical optimisation problem

[67], [68] where colour correlations and other image properties are cost functions that can be iteratively

minimised.

(i) Regularisation

The regularisation demosaicking sub-class minimises a cost function consisting of two primary terms:

a colour correlation term and a spatial smoothness term. For the classical Bayer CFA, to write the cost

function, a vicinity vector v, is defined as given in equation 2.6.

 𝒗(𝑛1, 𝑛2) = [

𝑅(𝑛1, 𝑛2) − 𝑅̅

𝐺(𝑛1, 𝑛2) − 𝐺̅

𝐵(𝑛1, 𝑛2) − 𝐵̅

] (2.6)

Where 𝑅̅, 𝐺̅ and 𝐵̅ are colour averages in the vicinity of the pixel located at point(𝑛1 , 𝑛2). In addition,

defining a colour covariance matrix 𝑪𝑛1𝑛2 and three directional derivatives: 𝑆𝑛1,𝑛1 , 𝑆𝑛2𝑛2 and 𝑆𝑛1,𝑛2;

the cost function X, is defined as:

𝑋 = ∬ ∑ (𝑆𝑛1,𝑛1
2 + 2𝑆𝑛1,𝑛2

2 + 𝑆𝑛2,𝑛2
2)

𝑆=𝑅,𝐺,𝐵

𝑑𝑛1𝑑𝑛2

+ 𝛼 ∬ 𝒗(𝑛1, 𝑛2)
𝑇

𝑪𝑛1𝑛2
−1𝒗(𝑛1, 𝑛2)𝑑𝑛1𝑑𝑛2

(2.7)

where 𝛼 is a small positive constant. The minimisation process starts with a rough interpolation that is

progressively refined. Examples of this method are found in literature [110]–[114]. Variations exist in

the description of the covariance matrix and choice of directional derivatives.

25

(ii) Vector-based filtering

Vector based filtering demosaicking involves visualising each pixel as a vector of three or more colour

values. The demosaicking algorithm shown by Yuk [115] and Lukac et al. [116], [117] then aims to fill

in missing sample data such that the distance between vectors of neighbouring pixels are as small as

possible. This process is repeated while updating vector distance values until an optimal solution is

obtained.

(iii) Bayesian estimation and Projection onto Convex Sets

Bayesian estimation [68] works using probability theory to reconstruct the image. The recorded colour

and noise statistics are modelled as probability distribution functions and a maximum a posteriori

(MAP) formulation is performed to reconstruct an optimised estimate of the image. Projection onto

convex sets is a demosaicking technique that involves using constrained set theory to map out the

optimisation path [118].

2.5.4 Image Modelling and Training

This class involves exposing the algorithm to a large set of predefined pixel regions [119], [120]. The

algorithm then uses a set of rules to compare sections of an image with the predefined regions. Once a

match is found, a second set of rules determining the actual demosaicking process are then employed.

Due to the large database that would be required to adequately define each possible scenario in an

unknown image, this class of algorithms is hampered by long run times.

2.6 Knowledge Gaps

From the literature review, it was found that most demosaicking publications centred on the Bayer CFA.

A simple search analysis was done to compare the occurrence of the Bayer CFA and panchromatic CFA

in published literature.

Table 2.4 Search term statistics for the words 'bayer cfa' and 'panchromatic cfa'

Search Term IEEE Xplore Library Springer Link Repository SPIE Digital Library

‘bayer cfa’ 139 607 881

‘panchromatic cfa’ 10 39 259*
* The term ‘panchromatic cfa’ in the SPIE repository contained references to analogue microfilm, telescope and

laser technology that is not part of this study. To compensate, the terms ‘RGBW cfa’ and ‘White-RGB cfa’ were

queried instead.

Bayer noted that initial panchromatic devices performed poorly due to sensor design limitations [39]

when comparing his method to panchromatic CFAs at the time. Panchromatic sensors such as the

Gindele et al. [50] and Kodak panchromatic types [121] have overcome these limitations through

improvements in CMOS production and miniaturisation.

26

Recent publications [23], [121], [122] have empirically proved that panchromatic CFAs have a better

sensitivity characteristic especially in low light situations. Little work has been done developing robust

algorithms to work with them. Most published demosaicking algorithms work with the older Bayer

sensor developed in 1975 [39]. The work presented here seeks to make a contribution in the field of

panchromatic CFA demosaicking design.

From the literature review it was also found that all the visual artefact studies were done using Bayer

CFAs. This work also studies how artefacts present themselves in panchromatic CFAs and whether the

proposed algorithm mitigates them sufficiently. The behaviour of demosaicking artefacts is considered

solely due to their device invariance.

Finally most published work, to assume uniformity in analysis, adopts use of the classic Kodak image

set [123]. Other image sets referenced are the McMaster-IMAX image set [124] and the Condat image

set [125] but to a lesser degree. However, all these image sets were of a low resolution (under

1000×1000 pixels in dimension). To mimic images taken by real modern integrated DSCs, a custom

image set database was created for medium resolution images. In addition, a high image database was

also selected for supplementary analysis. These custom image sets are used in tandem with the

established standard sets to allow the algorithm to be exposed to many resolution possibilities.

27

3 CONCEPTUAL FRAMEWORK

From the knowledge gaps highlighted in the literature review in the previous chapter, the following

deficiencies were observed:

i. There is a tendency in literature to primarily focus on the traditional Bayer CFA rather than the

panchromatic CFA class despite empirically proven superiority observed in the latter.

ii. Objective analysis of algorithm performance focuses on using at most two image sets: Kodak

and McMaster-IMAX. Attributes inherently present in these image sets (such as type of scene

content, light saturation levels, camera resolution among others) are not considered to play a

role. This is not the case because an algorithm may exhibit better performance over another due

to an image attribute, say type of scene content. To fully assess an algorithm, a larger and a

more variable image test bed profile is desirable along with some understanding of the image

attributes that are present.

iii. Demosaicking artefacts are primarily analysed using the traditional image assessment metrics

such as the mean square error (MSE) and colour peak signal-to-noise ratio (CPSNR). These

measures, while commonly referenced, are not suitable for analysing demosaicking artefacts

such as Moiré and zipper effects [126], [127].

To ensure these deficiencies are adequately addressed in line with the main objective of the research

work, the conceptual framework presented in Figure 3.1 was developed.

Figure 3.1 Conceptual framework to formulate proposed demosaicking algorithm

28

From the conceptual framework, four independent design choices can be considered to create and ensure

the robustness of the proposed demosaicking algorithm: the colour filter array, the algorithm class, the

image sets forming the test bed and the assessment metrics. Each design choice helps mitigate a

deficiency or undesirable effect extrapolated from the knowledge gaps.

3.1 Colour Filter Array Selection

The proposed algorithm was designed to work in the panchromatic class of colour filter arrays. From

the literature review, there are several documented panchromatic colour filter arrays that have been

developed. In this study, the RGBW CFA proposed by Gindele and Sugiyama [50], [51] was selected

for the reasons presented below:

i. The 𝟐 × 𝟐 nature of the mosaic cell: A simpler mosaic cell arrangement allows for the use of

a wider class of demosaicking methods while simultaneously ensuring fewer demosaicking

inaccuracies due to its simpler design. This has led many manufacturers to design cameras that

use the smallest 2 × 2 mosaic cell arrangement. From Table 2.2, the CFAs meeting this criteria

are the Bayer, Hamilton, Bean, Bawolek and RGBW (Gindele/Sugiyama) CFAs.

ii. The presence of a white pixel point: The additive and subtractive class of CFAs record

individual light colour or chroma data at the expense of overall light intensity or luma data.

From Appendix D, it is shown that overall light intensity is not a pure addition of the individual

light intensities sampled. A true representation of the scene requires a recording both colour

and intensity. This is provided by the panchromatic class of CFAs. Of those provided in Table

2.2, only the Bawolek and RGBW CFAs possess a white pixel point to sample intensity (luma)

data and a 2 × 2 mosaic cell profile.

iii. A balanced luma-chroma distribution: The recorded chroma and luma content should be done

in such a manner as to ensure sufficient sampling of both parameters. From equation 2.1, it is

noted that the Bawolek CFA only records primarily blue and green content devoting half its

mosaic cell for light intensity. However, the RGBW CFA records red, blue and green colours

leaving one quarter of the mosaic cell to capture light intensity. Comparing the two, the RGBW

CFA luma-chroma distribution is closer to the human visual system of three colour cone

photoreceptor types and one rod photoreceptor type.

From all the CFAs shown in Table 2.2, the RGBW CFA was selected using the above criteria. Working

in the RGBW mosaic cell domain allows the findings presented herein to have wide application

primarily in the target category of cameras with low to medium resolution.

29

3.2 Choice of Demosaicking Algorithm Class

The four classes of demosaicking algorithms presented in the literature review are the traditional,

heuristic, optimisation-based and image modelling/training classes. Table 3.1 presents these

aforementioned classes with the following associated properties:

i. Speed: an indicator of the ease of implementation and time taken to undergo the image

demosaicking process, determined from real time testing.

ii. Local adaptability: an indicator to illustrate the ability of the algorithm class to compensate

for and properly reconstruct localised areas in an image with large amounts edge variations. It

is an indirect measure of algorithm complexity.

iii. Image reconstruction acuity: an indicator highlighting how accurately the reconstructed

image represents the original scene.

iv. Popularity: an indicator showing how often the demosaicking class is researched and

referenced in peer-reviewed literature.

Table 3.1 Some properties of the various demosaicking algorithm classes

Demosaicking

Algorithm Class

Speed Local

Adaptability

Image Reconstruction

Acuity

Popularity

Traditional Very High Non-adaptive Low to Medium Low

Heuristic High Non-adaptive

and Adaptive

Medium to High Very High

Optimisation-Based Low Adaptive Very High Medium

Image Modelling
and Training

Low to High Adaptive High to Very High Medium to
High

Using the above metrics, the heuristic demosaicking class of algorithms was chosen as the basis of the

proposed algorithm design. It has a high speed of processing that is desirable for a low-to-mid resolution

camera integrated in a mobile device as it ensures a low computational load on the mobile device

processor. The popularity of the heuristic class also ensures there is a large set of established methods

that can be used for comparison to the proposed design.

Heuristic algorithms are further sub-divided into spatial and spectral techniques. The proposed design

was chosen to work in the spatial technique domain because they work directly on pixel data without

the need for a transformation step noted in spectral techniques. This is an attractive property that should

be actively exploited in integrated cameras. Of the spatial techniques, the modern gradient-based

spatial-heuristic subclass was considered due its local adaptability feature making it more resistant to

demosaicking artefacts.

Consequently, the proposed algorithm was chosen to be of the gradient-based spatial-heuristic class.

30

3.3 Image Sets Selection

To ensure a variable and robust test bed for the demosaicking algorithm, six different image sets

described in Table 3.2 were selected. Each image set possesses a unique property desirable in analysis.

The images are provided in Appendix C. Using the camera resolution chart provided for reference in

Appendix C, the author designated the following dimensions to determine resolution:

i. Low: images of 1024 × 768 or smaller.

ii. Medium: images between 1280 × 960 (1 MP) and 2048 × 1536 (3MP).

iii. High: images of 2240 × 1680 (4MP) or higher.

Table 3.2 Selected Image Sets

Image Set No. of

Images

Image

Dimensions

Resolution Reason for Use

USC-SIPI

(Classical) [128]

16 256 × 256 Low Image Popularity

Kodak [123] 24 768 × 512 Low Standard Reference

McMaster-IMAX

[124]

18 500 × 500 Low Analysis of Oversaturation

Condat Subset*

[125]

30 720 × 540 Low New Object Types in Scene

and Light Variability

ARRI [129], [130] 12 2880 × 1620 High

Custom 15 1918 × 1077 Medium Algorithm Robustness

Total 115

* The full Condat image set consists of 150 images. A subset of 30 randomly picked images was defined and used

The USC-SIPI image set shown in Figure C.2 in Appendix C contains the classical set of analogue film

images widely used and referenced in signal processing literature. Some examples include the Mandrill

image (sipi_im11) and Lena image (sipi_im12). The use of this set allows ease of comparison and the

results can be compared to a wider range of reported works, in particular those outside the area of

demosaicking but still within the field of image enhancement.

The Kodak image set given in Figure C.3 contains digital images most commonly documented in

demosaicking surveys. The Kodak set is attractive because of its set variability with images of persons,

landscapes and objects. As it is the most popular image set used in demosaicking research, it is used in

this work to ensure comparability with other demosaicking techniques.

The McMaster-IMAX digital image set shown in Figure C.4 is another popular demosaicking image

set that introduces the effect of colour vibrancy in demosaicking analysis. Images in the set are

oversaturated; which is an effect of some medium and many high resolution cameras. Comparing the

31

proposed algorithm to established techniques using this set provides an analysis of the proposed method

in such a camera scenario.

The Condat and ARRI digital image sets are used to test the robustness of the proposed algorithm in

situations that are not catered for by previous image sets such as multiple persons in an image, man-

made structures, abstract forms and light variations in a single image. These image sets are illustrated

in Figures C.5 and C.6 in Appendix C. The Condat set is a low resolution database while the ARRI set

is a high resolution database.

Finally, the author felt there was the need to analyse performance of the algorithm in medium resolution

cameras. Low resolution images tend to be more blurred and colour muted when compared to higher

resolution devices. Many integrated cameras fall in this category; however, the established image sets

have been taken by older, low resolution standalone digital cameras. A custom image set presented in

Figure C.7 is used to analysis performance in the medium resolution domain.

3.4 Image Quality Assessment Metrics Employed

Image quality assessment metrics fall in two categories: reference and no-reference (blind) assessment

[127], [131]. Reference assessment requires a ground truth image. This ground truth is compared to the

reconstructed image in the assessment to form an opinion on the acuity of the demosaicking process.

Blind assessment does not require a ground truth image but uses luma and chroma information in the

reconstructed image to assess whether the demosaicking process was performed with sufficient

accuracy. In demosaicking algorithm design, literature is biased towards use of a reference assessment

mechanism. Reference assessment methods are also faster than blind assessment. The use of a ground

truth image also allows for a subjective comparison involving human viewers [132].

The common reference-based image quality assessment methods are the mean square error (MSE) and

peak signal-to-noise ratio (PSNR). The MSE as shown in equation (3.1) for a monochromatic image,

 𝑀𝑆𝐸 =
1

𝑟𝑐
(∑ ∑[𝐼(𝑖, 𝑗) − 𝐼𝑅(𝑖, 𝑗)]2

𝑐

𝑗=1

𝑟

𝑖=1

) (3.1)

where 𝑟 is the total number of rows in the image, 𝑐 is the total number of columns in the image, 𝐼 is the

ground truth original image and 𝐼𝑅 is the reconstructed image from the demosaicking process. When

reconstruction is perfect, the MSE is zero. The PSNR is mathematically defined as:

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝑎𝑥2

𝑀𝑆𝐸
) (3.2)

32

where 𝑀𝑎𝑥 represents the largest pixel value possible in the image. In this work 8-bit images are used,

hence the 𝑀𝑎𝑥 value is 255. If the demosaicking is ideal, the PSNR would have an infinite value.

A common variant of PSNR considers the averaging of the three colour channels: red, green and blue

and is called the colour peak signal-to-noise ratio (CPSNR). This is because a colour image can be

considered as a combination of three monochromatic images in the three colour channels; as outlined

in Chapter 2. The averaging of the three colour channels is shown in equation (3.3) along with the

resulting mathematical definition of CPSNR

𝑀𝑆𝐸𝐶𝑃𝑆𝑁𝑅 =
1

3𝑟𝑐
(∑ ∑ ∑[𝐼(𝑖, 𝑗, 𝑘) − 𝐼𝑅(𝑖, 𝑗, 𝑘)]2

3

𝑘=1

𝑐

𝑗=1

𝑟

𝑖=1

)

𝐶𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝑎𝑥2

𝑀𝑆𝐸𝐶𝑃𝑆𝑁𝑅
)

(3.3)

The MSE, PSNR and CPSNR reference assessment techniques work by performing a pixel-by-pixel

comparison as a test for reconstruction acuity. Two modern reference assessment techniques are the

Structural Similarity Index (SSIM), the Feature Similarity Index and its chrominance inclusive variant

(FSIM/FSIMC). These were developed based on the fact that the human visual system considers objects

in a scene rather than absolute pixel values. Wang and Bovik [126] have shown that if a translational

shift occurs in the pixel profile of the reconstructed image, then the MSE and PSNR metrics break

down. The SSIM metric provides a measure more in line with subjective human evaluation by indicating

the strength of reconstruction of whole objects in an image scene. Mathematically, the SSIM is based

on the determination of three similarity terms: a structural term (𝑆𝑆), a luminance term (𝑆𝐿) and a

contrast term (𝑆𝐶). This is shown in equation (3.4)

𝑆𝑆(𝑥, 𝑦) = (
𝜎𝑥𝑦 + 𝑘1

𝜎𝑥𝜎𝑦 + 𝑘1
)

𝑆𝐿(𝑥, 𝑦) = (
2𝜇𝑥𝜇𝑦 + 𝑘2

𝜇𝑥
2 + 𝜇𝑦

2 + 𝑘2
)

𝑆𝐶(𝑥, 𝑦) = (
2𝜎𝑥𝜎𝑦 + 𝑘3

𝜎𝑥
2 + 𝜎𝑦

2 + 𝑘3
)

(3.4a)

 𝑆𝑆𝐼𝑀 = [𝑆𝑆(𝑥, 𝑦)]𝛼 ∙ [𝑆𝐿(𝑥, 𝑦)]𝛽 ∙ [𝑆𝐶(𝑥, 𝑦)]𝛾 (3.4b)

where 𝜇 and 𝜎 are mean and variance values of image 𝑥 and 𝑦. The term 𝜎𝑥𝑦 is the covariance between

images. The terms 𝑘1, 𝑘2 and 𝑘3 are small non-zero constants to prevent indeterminate results when the

33

means and variances are close to zero. The exponent terms 𝛼, 𝛽 and 𝛾 are used to provide

intercomponent weighting of the three SSIM metric components and are usually all set to 1. As the

SSIM metric works on monochromatic images and this work uses colour images; the SSIM is calculated

as the average of the SSIM in each of the colour planes. This is shown in equation (3.5) as:

 𝑆𝑆𝐼𝑀 =
(𝑆𝑆𝐼𝑀𝑅𝑒𝑑 + 𝑆𝑆𝐼𝑀𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑆𝐼𝑀𝐵𝑙𝑢𝑒)

3
 (3.5)

The FSIM measure extends SSIM concepts by considering low level sections of objects rather than

entire structures. The FSIM metric is composed of two similarity terms: a gradient magnitude (𝐺) term

and a phase congruency (𝑃) term that are both variants of the luminance term of equation (3.4).

Initially gradient magnitude and phase congruency maps are determined in turn for two images, say 𝑥

and 𝑦 respectively. An individual pixel located at point (i, j) in these two maps over the two images will

have four values that can be denoted as 𝑝𝑐𝑥, 𝑔𝑚𝑥, 𝑝𝑐𝑦 and 𝑔𝑚𝑦. The similarity terms 𝐺 and 𝑃 are

determined for each pixel point using equation (3.6a) that resembles the form of the luminance term in

equation (3.4).

The overall FSIM is determined by adding all the pixel point similarities. This is presented in equation

(3.6b) as a summation over the entire image region denoted as 𝛺.

𝐺𝑖𝑗(𝑥, 𝑦) = (
2𝑔𝑚𝑥𝑔𝑚𝑦 + 𝑘1

𝑔𝑚𝑥
2 + 𝑔𝑚𝑦

2 + 𝑘1
)

𝑃𝑖𝑗(𝑥, 𝑦) = (
2𝑝𝑐𝑥𝑝𝑐𝑦 + 𝑘2

𝑝𝑐𝑥
2 + 𝑝𝑐𝑦

2 + 𝑘2
)

𝑆𝐿𝑖𝑗(𝑥, 𝑦) = [𝐺𝑖𝑗(𝑥, 𝑦)]
𝛼

∙ [𝑃𝑖𝑗(𝑥, 𝑦)]
𝛽

(3.6a)

 𝐹𝑆𝐼𝑀 = {
∑ (𝑆𝐿𝑖𝑗(𝑥, 𝑦) ∙ 𝑝𝑐𝑚𝑎𝑥)𝛺

∑ 𝑝𝑐𝑚𝑎𝑥𝛺
⁄ } (3.6b)

The 𝑘 terms are small non-zero terms to avoid indeterminate results. The exponential terms 𝛼 and 𝛽 are

to weight similarity terms and 𝑝𝑐𝑚𝑎𝑥 is the maximum value when comparing 𝑝𝑐𝑥 and 𝑝𝑐𝑦 numerically.

The main drawback of SSIM and FSIM is that they were primarily designed for application with

grayscale images and do not yield information on colour quality. This is addressed in the FSIMC variant.

In this metric, the images are converted from the RGB (Red Green Blue) colour space to the YIQ

(Luminance In-phase Quadrature) colour space where Y matrix holds the luminance information and I

34

and Q matrices hold chrominance information. Consequently, the FSIMC has three components: a

luminance similarity term (𝑆𝑌), in-phase similarity term (𝑆𝐼) and a quadrature similarity term (𝑆𝑄).

The Y (luminance) matrix has its gradient magnitude and phase congruency maps determined and its

similarity takes the form given in equation (3.6a). The pixel points in the chrominance I and Q matrices

are denoted as 𝑝𝑖 and 𝑝𝑞 respectively as FSIMC is calculated using pixel points. For any two images 𝑥

and 𝑦, the FSIMC is then given as shown in equation (3.7) where the 𝑘 terms are small non-zero terms

for error prevention. The terms 𝛼, 𝛽 and 𝛾 are exponential terms to provide weighting of the similarity

terms and 𝑝𝑐𝑚𝑎𝑥 refers to the maximum pixel point phase congruency value over the two images.

𝑆𝑌𝑖𝑗(𝑥, 𝑦) = [𝐺𝑖𝑗(𝑥, 𝑦)]
𝛼

∙ [𝑃𝑖𝑗(𝑥, 𝑦)]
𝛽

𝑆𝐼𝑖𝑗 = (
2𝑝𝑖𝑥𝑝𝑖𝑦 + 𝑘1

𝑝𝑖𝑥
2 + 𝑝𝑖𝑦

2 + 𝑘1
)

𝑆𝑄𝑖𝑗 = (
2𝑝𝑞𝑥𝑝𝑞𝑦 + 𝑘2

𝑝𝑞𝑥
2 + 𝑝𝑞𝑦

2 + 𝑘2
)

(3.7a)

𝐹𝑆𝐼𝑀𝑐 = {
∑ (𝑆𝑌𝑖𝑗(𝑥, 𝑦) ∙ [𝑆𝐼𝑖𝑗(𝑥, 𝑦)𝑆𝑄𝑖𝑗(𝑥, 𝑦)]

𝛾
∙ 𝑝𝑐𝑚𝑎𝑥)𝛺

∑ 𝑝𝑐𝑚𝑎𝑥𝛺
⁄ } (3.7b)

To assess the proposed algorithm along with current and popular established demosaicking methods,

the author selected MSE, CPSNR, SSIM and FSIMC as the image quality metrics. These metrics, along

with their reasons for usage, are presented in Table 3.3.

Table 3.3 Selected Image Quality Assessment Metrics

Assessment Metric Units Range

(Min. to

Max.)

Improvement Operation Reason for Use

Mean Square Error

(MSE)

- 0 to ∞ Low Value Pixel

Statistics

To analyse fidelity of

reconstruction in a

single plane

Colour Peak Signal-

to-Noise Ratio
(CPSNR)

dB 0 to ∞ High Value Pixel

Statistics

To analyse fidelity of

colour reconstruction

in whole image

Structural Similarity

Index (SSIM)

- 0 to 1 High Value Large

Objects

To analyse fidelity of

coarse object

reconstruction

Feature Similarity

Index with

chrominance

included (FSIMC)

- 0 to 1 High Value Finer Detail

Objects

To analyse fidelity of

fine object

reconstruction with

colour consideration

35

3.5 Proposed Algorithm Parameters

To fulfil the main design objective, the conceptual framework yielded the following design parameters

for the proposed algorithm:

i. it belongs to the gradient-based spatial-heuristic class of algorithms

ii. it employs the RGBW panchromatic CFA

iii. it can be exposed to different image sets with varying image attributes

iv. it can be analysed using the MSE, CPSNR, SSIM and FSIMC image quality assessment metrics

36

4 ALGORITHM DESIGN

The development of the proposed demosaicking algorithm is presented in this chapter. From Chapter

3, the proposed algorithm was selected to be of the gradient-based spatial-heuristic type and to operate

on panchromatic CFAs. This chapter outlines the design of this algorithm, taking into account white

pixel processing that is a feature of panchromatic CFAs. The chapter also presents interpolation path

determination that is a feature of gradient based algorithms. In addition, several novel concepts and

contributions were proposed and incorporated into the designed algorithm. This ensures the creation of

a robust algorithm.

4.1 Bayer and RGBW Design Comparison

The proposed algorithm is designed to interpolate missing colour data in a recorded CFA image using

neighbourhood information. In Bayer demosaicking, the CFA imposes a homogeneous one colour-per-

pixel regime. This is illustrated in Figure 4.1 for a 5×5 filter grid and it is noted that in each pixel

location only one colour is recorded.

Figure 4.1 A 5×5 Bayer grid

The RGBW CFA, shown in Figure 4.2, by virtue of its white pixel points has a heterogeneous pixel

arrangement. The red, green and blue pixel points all record a single colour, moreover this single colour

occurs at a specific wavelength dictated by the filter itself. Conversely, the white pixel points allow the

full spectrum of visible light to pass through. From the description of panchromatic sensors, in any

white pixel point, say W11, the sensor does not only record the discrete wavelengths of the red, green

and blue colour filters; it also records red, green and blue wavelengths outside the colour filter values.

37

Figure 4.2 A 5×5 RGBW grid

This panchromatic concept can be mathematically expressed as given in equation (4.1):

 𝑊 = 𝑅𝑓𝑖𝑙 + 𝐺𝑓𝑖𝑙 + 𝐵𝑓𝑖𝑙 + {∑(𝑅𝑘 + 𝐺𝑘 + 𝐵𝑘 + 𝜀𝑘)

𝑘∈𝛺

} (4.1)

Where 𝑅𝑓𝑖𝑙 , 𝐺𝑓𝑖𝑙 and 𝐵𝑓𝑖𝑙 are the specific wavelengths of the red, green and blue colour filters

respectively; 𝑅𝑘 , 𝐺𝑘 and 𝐵𝑘 are the red, green and blue wavelengths outside the filter specifications and

𝜀𝑘 denotes any other colour wavelength for the entire visible spectrum denoted by 𝛺.

4.2 White Pixel Processing

Due to the heterogeneous nature of the panchromatic class of colour filter arrays, in any panchromatic

demosaicking process special attention must be paid to handling the recorded data from the white pixel

point. This additional step, unique to panchromatic CFA regimes, must be considered before applying

a demosaicking algorithm.

4.2.1 The Separation Process Technique

In the few heuristic panchromatic methods cited in literature [23], [133], [134] the white (W) pixel is

usually handled in a separately from demosaicking. These methods, predominantly spectral-heuristic,

consider the white pixel points as a purely light intensity (luma) component. From this treatment, the

white pixel is observed to offer no contribution to the colour (chroma) component and is ignored during

demosaicking. Consequently, the demosaicking process becomes wholly chroma-driven working in the

non-white colour planes: red, green and blue. The additional luma information is incorporated in a latter

process. The author has termed this reduction technique a Separation process.

In the spatial-heuristic domain, the separation process is handled by replacing the white pixel points

with green equivalents through a neighbourhood averaging process [23]. This is done using the

38

immediate green pixel point neighbours of every white pixel point. Considering pixel W33 in Figure

4.2, the equivalent 𝐺̂𝑊33 is generated using equation (4.2)

 𝐺̂𝑊33 = 0.25(𝐺22 + 𝐺24 + 𝐺42 + 𝐺44) (4.2)

The averaging process can be expressed as a filter, ℎ𝑏𝑎𝑠𝑖𝑐 , shown in equation (4.3):

 ℎ𝑏𝑎𝑠𝑖𝑐 = [
2 0 2
0 0 0
2 0 2

] /8 (4.3)

All the required green equivalent pixels are generated in this manner. Green pixels on the image border

are either discarded or approximated. The RGBW CFA representation of the image is consequently

reduced to a Bayer CFA equivalent of the form illustrated in Figure 4.1. Demosaicking is then

performed in the reduced Bayer equivalent CFA representation. The light intensity information of the

white pixels is then handled separately and added to the image after demosaicking.

4.2.2 The Bayerisation Process Technique

A newer alternative method of handling the white pixel points was proposed by Chen et al. [135] based

on the Malvar-He-Cutler algorithm [79]. The RGBW CFA representation of the image is exposed to

the following modified averaging filter, ℎ𝑎𝑙𝑡 , given in equation (4.4):

 8/

002/300

02020

2/30602/3

02020

002/300





























alth (4.4)

By using this filter, the RGBW CFA data is converted to an equivalent Bayer representation while

simultaneously encoding the light intensity information within. All the RGBW information is encoded

in the reduced Bayer equivalent. The author has termed this unnamed combined conversion and

encoding technique a Bayerisation process.

Analysing the effect of the Bayerisation process, it is noted that the white pixel coefficients of ℎ𝑎𝑙𝑡

introduce a light intensity term into equation (4.2). If pixel W33 in Figure 4.2 is significantly brighter

or darker than its white pixel neighbours, this intensity is additively factored into the green pixel

average. If all the white pixels in the filter region are of equal value, ℎ𝑎𝑙𝑡 reduces to ℎ𝑏𝑎𝑠𝑖𝑐 . This light

intensity term is denoted as 𝛿 and is given in equation (4.5).

39

 𝐺̂𝑊33 = 0.25(𝐺22 + 𝐺24 + 𝐺42 + 𝐺44) + 𝛿 (4.5)

The Bayerisation process is attractive as it combines colour demosaicking and light intensity encoding

in a single step thus reducing the overall algorithm complexity. This is useful when the algorithm is to

run in an integrated camera on a mobile device. It is also a valid assumption to consider that the light

intensity term, 𝛿, is often significantly smaller than the green neighbourhood estimates in practice for

the white pixels to adversely affect the green plane approximation. As such, the proposed algorithm

employs the Bayerisation process to handle the white pixel points in the RGBW CFA data.

4.3 Gradient Based Demosaicking

Any spatial-heuristic demosaicking algorithm works on the principle of finding sufficient heuristic

values that can be used to fill in the missing information in the raw CFA image. Rough initial estimates

are derived through an analysis of neighbourhood information. Interpolation descriptors are then

defined and used as interpolation weights to refine the initial estimates and generate the desired heuristic

values. An accurate generation of interpolation descriptors is directly related to the efficacy of the

algorithm.

In the gradient-based class of spatial-heuristic demosaicking algorithms, the descriptors are directional

gradients obtained from a sum-of-difference (SOD) calculation mechanism during interpolation.

Gradient-based demosaicking process can be generically defined in four steps expressed from equations

(4.6) to equation (4.9).

Consider a general pixel, 𝐷𝑃; where 𝐷 is the desired colour plane, 𝑁 is a separate neighbouring colour

plane, 𝑃 is the pixel point location and 𝑘 is the interpolation direction.

Step 1: The initial rough estimates of the desired pixel colour are established, as follows:

 𝐷̃𝑃
𝑘 = (𝐷𝑃−1

𝑘) + 𝑐1(𝑁𝑃
𝑘 − 𝑁𝑃−2

𝑘) (4.6)

Where 𝑐1 is a fractional constant to minimise neighbour effects.

Step 2: Interpolation descriptors in the form of directional gradients are derived based on a sum-of-

differences calculation,

 Φ𝑃
𝑘 = Φ𝑅𝑒𝑑,𝑃

𝑘 + Φ𝐺𝑟𝑒𝑒𝑛,𝑃
𝑘 + Φ𝐵𝑙𝑢𝑒,𝑃

𝑘 + 𝑐2 (4.7)

Where Φ indicates a sum-of-differences and 𝑐2 is a small, positive value corrective constant.

Step 3: The directional gradients from equation (4.7) are then converted into weighting factors as shown

in equation (4.8),

40

 𝜑𝑃
𝑘 =

1

Φ𝑃
𝑘 (4.8)

Step 4: Finally, the missing colour component in the general pixel 𝐷𝑃 is found from the calculated

estimates and the associated weighting factors using equation (4.9),

 𝐷̂𝑃=
∑ (𝜑𝑃

𝑘𝐷̃𝑃
𝑘)𝑘

∑ (𝜑𝑃
𝑘)𝑘

⁄ (4.9)

Variations and additions to this generic four-phase algorithm process exist in different gradient based

algorithms but they all follow the above trend. A common modification is to add a refinement step after

𝐷̂𝑃 has been calculated. In practice, however, a proper choice of the interpolation descriptors tends to

reduce the efficacy of this refinement.

4.4 Novel Concepts and Contributions

The demosaicking process is highly dependent on choosing pixels that can accurately estimate missing

colour content with minimal error.

In the case of gradient-based demosaicking, from equations (4.6) and (4.7), it is apparent that the

selected pixels should be sufficient enough to form good initial estimates and interpolation descriptors.

Particular care must be taken in establishing the interpolation descriptors. If the descriptors are

generated with too few pixels, they lead to an overly smooth image where regions of fine detail and

texture are blurred. If too many pixels are used in the descriptor formation, the outlier information from

distant pixels may lead to inaccuracies in reconstruction. Distant pixels also introduce unnecessary

complexity to the algorithm. A sufficient balance in pixel selection is required to maximise algorithm

performance.

With the above consideration, this work introduces several new ideas to maximise performance:

i. An ordinal-direction driven exploitation of the quincuncial green plane of a Bayer or converted

equivalent array

ii. The use of combinatorial geometry in the form of polyominoes to generate robust interpolation

descriptors

iii. Concept of variable plane factors to prioritise weighting

It should be noted that these contributions are applied in the designed algorithm after the Bayerisation

process and form part of the gradient-based demosaicking technique. As such they are considered in a

Bayer or converted equivalent CFA environment.

41

4.4.1 The Ordinal Nature of the Green Plane

Assuming a Bayer or converted equivalent CFA arrangement, there are three colour planes forming the

CFA – the red, green and blue plane. In this three plane arrangement shown in Figure 2.7, the green

plane is the most populous with almost 50% of the total recorded CFA data. It is for this reason that

proper demosaicking of the green plane will significantly improve overall image reconstruction.

Established gradient-based methods use a cardinal direction interpolation system. A visual inspection,

however, reveals that more pixels in the green plane lie in the ordinal directions than in the cardinal

directions for the same bounding window size. This is shown in Figure 4.3 that illustrates the green

pixel distributions in the North and North-East directions arising from the quincuncial arrangement of

the green plane.

Figure 4.3 Paths in the North (N) and North-East (NE) directions in the green quincunx plane

For any window of size (2ℎ + 1) pixels, there are more ordinal-directed pixels present than cardinal

ones. This results in a higher pixel packing along the ordinal directions. This is shown in Figure 4.4 for

two different grid sizes, where 𝑃𝐶𝑎𝑟 represents the cardinal pixel count and 𝑃𝑂𝑟𝑑 represents the ordinal

pixel count.

i. 7-by-7 grid

𝑃𝐶𝑎𝑟 = 16, 𝑃𝑂𝑟𝑑 = 20

ii. 9-by-9 grid

𝑃𝐶𝑎𝑟 = 24, 𝑃𝑂𝑟𝑑 = 28

Figure 4.4 A comparison of cardinal and ordinal directed pixels over different Bayer grid sizes

This observation motivated the author to implement an ordinal-only interpolation process in the

proposed algorithm.

42

4.4.2 Combinatorial Geometry, Polyominoes and Pentomino Inspired Paths

Any CFA is defined in combinatorial geometry as a square tessellation in two dimensional Euclidean

space with sets of square blocks ‘fitting together’ to form a whole. Polyominoes are shapes made by

connecting a certain number of equal-sized squares, each connected to another square along an edge

[136]. From these definitions, polyominoes can be viewed as sub-sets of a Bayer CFA arrangement.

This relationship and the concept of ‘fitting together’ motivated the author to study and use polyomino

theory to generate the heuristic interpolation descriptors.

Polyominoes occur in various sizes depending on the number of interconnecting squares. The most

recognisable use of polyominoes is in the popular game of Tetris – a puzzler using randomly generated

tetrominoes (4-square polyominoes).

A subset of polyominoes must be determined to ensure that a sufficient number of pixels to form

heuristic interpolation descriptors can be generated. Using the assumption that the CFA under

consideration is a reduced Bayer equivalent of the RGBW CFA, the author imposed that for any general

n-square polyomino set; the following conditions hold:

i. The maximum number of green pixels bounded by the polyomino, 𝑔, for odd or even valued n;

𝑔𝑜𝑑𝑑 = (
𝑛 + 1

2
)

𝑔𝑒𝑣𝑒𝑛 = (
𝑛

2
)

(4.10)

ii. The number of paths found within the polyomino, 𝑝;

 𝑝 =
𝑔!

(𝑔 − 2)! 2!
 (4.11)

Exceptions exist to the above rules. From equations (4.10) and (4.11), an optimal value allowing for the

generation of a sufficient number of unique descriptors in the reduced Bayer equivalent CFA was found

to be at n = 5. This value was established by experimentally testing values of n from n = 1 to n = 6 and

using equations (4.10) and (4.11) [91]. This subset of polyominoes are called pentominoes.

From polyomino theory, there are a total of 18 one-sided pentominoes (assuming rotations are not

considered unique). All the possible pentomino blocks are shown in Figure 4.5 and blocks that form

chirals (non-superimposable mirror images) are denoted by a letter having a prime symbol.

Each pentomino block of Figure 4.5 is used to generate two paths of the three possible. These paths, in

turn, are used to select the sum-of-difference (SOD) term pairs to form the directional gradients used as

the heuristic interpolation descriptors. The following rules were set as guidelines to ensure unique paths:

i. Two blocks forming a chiral pair will have their paths forming a chiral pair as well

43

ii. The pixel of interest must share a vertex with an edge square of the pentomino construct

The paths generated are shown in Figure 4.6 with the pixel of interest in grey. The figure considers the

path generation is being performed in the green colour plane.

Figure 4.5 The 18 possible pentomino blocks using the Golomb letter naming system

Figure 4.6 Generated pentomino paths

Considering the ordinal argument from Section 4.4.1 and based on the paths generated, the pentomino

blocks N, P, T, V, W, X or Z are potential constructs for use. This is because blocks I, L and P have

cardinal paths; F has paths in two different ordinal directions thus it has no preferred direction and the

U and Y pentominoes generated no new paths that cannot be generated from F, P and T.

The author selected the N, W and Z pentominoes to form the gradient selection paths due to their

preferred and significant ordinal bias.

4.4.3 Variable Plane Factors

A reduced Bayer equivalent of the RGBW CFA will be of the form depicted in Figure 4.1 with three

colour planes present. The inter-plane relationship between the three planes expanded in Figure 4.7 can

take three distinct forms given in equation (4.12a):

𝐶𝑎𝑠𝑒 1: 𝑘2 = 𝑘3 = 𝑘1

𝐶𝑎𝑠𝑒 2: 𝑘2 = 𝑘3 ≠ 𝑘1

𝐶𝑎𝑠𝑒 3: 𝑘2 ≠ 𝑘3 ≠ 𝑘1

(4.12a)

44

Many established gradient-based methods treat these planes as equal when this in fact is not the case

[86], [96], [135].

Consider the decomposed reduced Bayer equivalent RGBW CFA shown in Figure 4.7. The grey pixel

point is a missing pixel point. This grey pixel point is located in the green plane but has a record of red

colour data. When determining the missing colour content in this pixel of interest, it can be noted from

inspection that the green plane has the most influence since the pixel physically resides in this plane.

The red plane is of secondary importance as it is the plane containing a record of data in the CFA

arrangement. The blue plane, in turn, offers no positional or colour record information as is deemed the

least important contributor of information plane-wise.

Figure 4.7 A plane-wise decomposition of the reduced Bayer equivalent of the RGBW CFA

From this intuitive reasoning, this variable inter-plane weighting can be reduced to a specific subset of

Case 3:

 𝑘3 < 𝑘2 < 𝑘1 (4.12b)

Consequently, the three colour planes can be denoted in rank as follows, for the above case: the green

plane has the largest impact (rank 1), the red plane follows (rank 2) and the blue plane that offers no

contribution in position or colour has the least importance (rank 3). The author encoded this ranking

system in the proposed algorithm using three variable factors: 𝑘1 = 1, 𝑘2 = 0.8 and 𝑘3 = 0.7 where

the subscript denotes the plane rank. This empirical determination is provided in Chapter 5.

The above factor values are used when determining missing colour content in the green colour plane.

A similar treatment is applied when determining colour content in the red and blue colour planes.

45

4.5 The Proposed Algorithm

The proposed algorithm is divided into the following sections:

i. Reduction of the RGBW CFA to a Bayer equivalent

ii. Green Content Interpolation

iii. Blue and Red Content Interpolation

A flowchart depicting the processing of this sections is presented in Figure 4.8.

Figure 4.8 Proposed algorithm flowchart

4.5.1 RGBW CFA Reduction

This phase of the proposed algorithm is performed by using the filter presented in equation (4.4) directly

on the RGBW CFA data. This results in the reduced Bayer-equivalent representation that contains the

white pixel data encoded in green equivalent pixels located at the white pixel points. The result of this

process is shown in Figure 4.9 for a 7×7 segment. For ease of analysis in later stages of the algorithm,

no distinction is made in the green plane between the original green pixel points and the green equivalent

pixels that now populate the former white pixel points. This process is shown as a flowchart in Figure

4.10.

46

Figure 4.9 A 7×7 segment of the reduced Bayer equivalent of the RGBW CFA

Figure 4.10 CFA Reduction flowchart

4.5.2 Green Plane Reconstruction

Consider the process of determining the green colour content present in the pixel R44 in Figure 4.9. The

initial estimates are established for the four ordinal directions as follows:

𝐺̃𝑅44
𝑁𝑊 = 0.5(𝐺34 + 𝐺43) + (𝑘2𝑘3)(𝑅44 − 𝑅22)

(4.13)
𝐺̃𝑅44

𝑆𝑊 = 0.5(𝐺54 + 𝐺43) + (𝑘2𝑘3)(𝑅44 − 𝑅62)

𝐺̃𝑅44
𝑆𝐸 = 0.5(𝐺45 + 𝐺54) + (𝑘2𝑘3)(𝑅44 − 𝑅66)

𝐺̃𝑅44
𝑁𝐸 = 0.5(𝐺45 + 𝐺34) + (𝑘2𝑘3)(𝑅44 − 𝑅26)

The directional gradient in each ordinal direction is determined using all three colour planes in the

manner highlighted in equation (4.7). Using the generation of the South-West (SW) directional gradient

as an example and using Figure 4.11 as a reference for the associated path generation,

47

 Φ𝑅44
𝑆𝑊 = Φ𝐺𝑟𝑒𝑒𝑛,𝑅44

𝑆𝑊 + Φ𝑅𝑒𝑑,𝑅44
𝑆𝑊 + Φ𝐵𝑙𝑢𝑒,𝑅44

𝑆𝑊 + 𝜀 (4.14)

Where 𝜀 is a small positive non-zero number to prevent a zero gradient result. The components of

equation (4.13) are as follows:

Φ𝐺𝑟𝑒𝑒𝑛,𝑅44
𝑆𝑊 = |𝑝𝑎𝑡ℎ𝑁| + |𝑝𝑎𝑡ℎ𝑊| + |𝑝𝑎𝑡ℎ𝑍|

(4.15) Φ𝑅𝑒𝑑,𝑅44
𝑆𝑊 = 𝑘2(|𝑅44 − 𝑅62|)

Φ𝐵𝑙𝑢𝑒,𝑅44
𝑆𝑊 = 𝑘3(|𝐵53 − 𝐵71|)

And from Figure 4.9,

 𝑝𝑎𝑡ℎ𝑁 = (|𝐺43 − 𝐺52| + |𝐺45 − 𝐺52|)

(4.16) 𝑝𝑎𝑡ℎ𝑊 = (|𝐺34 − 𝐺43| + |𝐺43 − 𝐺52|)

 𝑝𝑎𝑡ℎ𝑍 = (|𝐺54 − 𝐺63| + |𝐺45 − 𝐺63|)

Figure 4.11 The South-West paths from pixel R44 using the N, W and Z pentomino blocks

By superimposing the N, W and Z pentomino blocks as shown in Figure 4.11, the proposed algorithm

enforces an ordinal-only directed mechanism to generate the gradients using the sum-of-difference

calculations shown in equation (4.16). The variable plane factor weighting proposed in Section 4.4.3 is

implemented in equation (4.15) for the red and blue gradient terms.

The North-West (Φ𝑅44
𝑁𝑊), North-East (Φ𝑅44

𝑁𝐸) and South-East (Φ𝑅44
𝑆𝐸) terms are generated in a similar

manner by rotating the pentomino paths in Figure 4.10 clockwise 90°, 180° and 270° respectively and

applying equations (4.15) and (4.16). Additionally, to generate the red and blue terms of equation (4.15)

48

for these three directions, the pixels lying flush in the ordinal direction are selected. For example, R44,

B55, R66 and B77 all lie in the South-East direction line and are the terms to be adopted in equation

(4.15).

Once all the directional terms are established, the proposed algorithm determines the weighting factors.

This is done by applying equation (4.8) to the results of equation (4.14) for all ordinal directions and

mathematically expressed as follows:

𝜑𝑅44
𝑆𝑊 =

1

Φ𝑅44
𝑆𝑊

(4.17)

𝜑𝑅44
𝑁𝑊 =

1

Φ𝑅44
𝑁𝑊

𝜑𝑅44
𝑁𝐸 =

1

Φ𝑅44
𝑁𝐸

𝜑𝑅44
𝑆𝐸 =

1

Φ𝑅44
𝑆𝐸

After determining the weighting factor, the proposed algorithm uses polling maps similar to those used

by Chen et al. [137] to establish the final missing colour value. The polling maps help determine whether

interpolation is predominant in a particular ordinal direction or not. Equations (4.18) and (4.19) are used

when the polling map shows preference to a NW-SE or a SE-NW direction respectively. Otherwise,

equation (4.20) is used.

 𝐺̂𝑅44 =
∑ {𝜑𝑅44

𝑘 𝐺̃𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸)

⁄ (4.18)

 𝐺̂𝑅44 =
∑ {𝜑𝑅44

𝑘 𝐺̃𝑅44
𝑘 }𝑘∈(𝑁𝐸,𝑆𝑊)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁𝐸,𝑆𝑊)

⁄ (4.19)

 𝐺̂𝑅44 =
∑ {𝜑𝑅44

𝑘 𝐺̃𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸,𝑁𝐸,𝑆𝑊)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝐸,𝑁𝐸,𝑆𝑊)

⁄ (4.20)

The final result 𝐺̂𝑅44 is considered to be the missing colour content of the green plane for pixel local

R44. The above steps are repeated to establish all the missing green colour content in the red pixel

locations.

The proposed algorithm then works on the CFA data in a similar way to determine the green colour

content in the blue pixel locations. During this step, the positions of the blue and red pixels in equations

(4.13) though to (4.20) are switched without loss of generality. Once complete, the entire green plane

49

is fully reconstructed. The entire process of reconstruction of green plane data is shown as a flowchart

in Figure 4.12.

Figure 4.12 Green Plane Reconstruction flowchart

4.5.3 Red and Blue Plane Reconstruction

Unlike the green plane, the red and blue colour planes are not quincuncial in nature. Consequently,

reconstruction is divided into a two phase process. The first phase involves establishing content in an

opposing colour planes (that is red colour content in the blue pixel record locations and vice versa) and

the second involves finding missing red or blue colour content within the green locations.

(i) Opposing Plane Reconstruction in the Blue Plane

Consider the problem of establishing blue content in pixel R44 in Figure 4.9. The proposed algorithm

takes advantage of the fact that at this stage the green content in each red pixel has been established.

The algorithm slightly modifies the initial estimation step of the generic gradient demosaicking shown

in equation (4.6) instead using a difference based solution. The initial ordinal estimates are calculated

using equation (4.21) provided:

𝜌̃𝑅44
𝑆𝑊 = 𝐵53 − 𝐺̂𝐵53

(4.21)
𝜌̃𝑅44

𝑁𝑊 = 𝐵33 − 𝐺̂𝐵33

𝜌̃𝑅44
𝑁𝐸 = 𝐵35 − 𝐺̂𝐵35

𝜌̃𝑅44
𝑆𝐸 = 𝐵55 − 𝐺̂𝐵55

Directional gradients are found using a variant of equation (4.7) shown in equation (4.22) below where

both actual green colour content from the CFA and those determined from Section 4.5.2 are used.

50

 Γ𝑘 = Γ𝐺,𝑎𝑐𝑡𝑢𝑎𝑙
𝑘 + Γ𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑘 + Γ𝐵
𝑘 + 𝜀 (4.22)

Where 𝜀 is a small positive non-zero constant. Considering the North-West (NW) direction for pixel

R44 in Figure 4.9, the components of equation (4.22) are:

Γ𝑅44(𝐺,𝑎𝑐𝑡𝑢𝑎𝑙)
𝑁𝑊 = (|𝐺43 − 𝐺32| + |𝐺34 − 𝐺23|)

(4.23) Γ𝑅44(𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)
𝑁𝑊 = (|𝐺̂𝑅44 − 𝐺̂𝐵33| + |𝐺̂𝐵33 − 𝐺̂𝑅22|)

Γ𝑅44(𝐵)
𝑁𝑊 = (|𝐵33 − 𝐵55|)

The remaining gradients Γ𝑅44
𝑁𝐸 , Γ𝑅44

𝑆𝐸 and Γ𝑅44
𝑆𝑊 are found by repeating the process from equation (4.22)

to form the weights. Once established, the reciprocals of the gradients are determined using the

relationship in equation (4.24):

 𝛾𝑅44
𝑘 =

1

Γ𝑅44
𝑘 (4.24)

Finally, the weights are applied to the initial estimates of equation (4.21) and added to 𝐺̂𝑅44 to counter

the difference relationship set in equation (4.21). This will result in a final estimate for the blue colour

content in pixel location R44 as shown in equation (4.25). To simplify the proposed algorithm, no

polling maps were used in this phase.

 𝐵̂𝑅44 = 𝐺̂𝑅44 + {
∑ {𝛾𝑅44

𝑘 𝜌̃𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

∑ {𝛾𝑅44
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

⁄ } (4.25)

(ii) Opposing Plane Reconstruction in the Red Plane

The process outlined in equations (4.21) through to equation (4.25) is repeated to establish all the red

colour content in blue pixel locations. The proposed algorithm switches the placing of the red and blue

in equations (4.21) through to (4.25) to perform the inverse process of determining red colour content

in blue pixel locations. Consider, for example, the process of determining red colour content in the pixel

B55 in Figure 4.9. The initial estimates for this pixel will take the form given in equation (4.26),

𝜌̃𝐵55
𝑆𝑊 = 𝑅64 − 𝐺̂𝑅64

𝜌̃𝐵55
𝑁𝑊 = 𝑅44 − 𝐺̂𝑅44

𝜌̃𝐵55
𝑁𝐸 = 𝑅46 − 𝐺̂𝑅46

𝜌̃𝐵55
𝑆𝐸 = 𝑅66 − 𝐺̂𝑅66

(4.26)

51

The directional gradient general equation was be as follows:

 Γ𝑘 = Γ𝐺,𝑎𝑐𝑡𝑢𝑎𝑙
𝑘 + Γ𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑘 + Γ𝑅
𝑘 + 𝜀 (4.27)

And for the pixel under analysis, B55, interpolation in the SE direction would use a gradient formulation

shown in equation (4.28):

Γ𝐵55(𝐺,𝑎𝑐𝑡𝑢𝑎𝑙)
𝑆𝐸 = (|𝐺65 − 𝐺76| + |𝐺56 − 𝐺67|)

(4.28) Γ𝐵55(𝐺,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)
𝑆𝐸 = (|𝐺̂𝐵55 − 𝐺̂𝑅66| + |𝐺̂𝑅66 − 𝐺̂𝐵77|)

Γ𝐵55(𝑅)
𝑆𝐸 = (|𝑅44 − 𝑅66|)

After all the gradients, namely Γ𝐵55
𝑆𝐸 , Γ𝐵55

𝑁𝐸 , Γ𝐵55
𝑁𝑊 and Γ𝐵55

𝑆𝑊 , are found using equation (4.27) the weights

are found using equation (4.29) before the final value is established using equation (4.30). These

equations are given below:

 𝛾𝐵55
𝑘 =

1

Γ𝐵55
𝑘 (4.29)

 𝑅̂𝐵55 = 𝐺̂𝐵55 + {
∑ {𝛾𝐵55

𝑘 𝜌̃𝐵55
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

∑ {𝛾𝐵55
𝑘 }𝑘∈(𝑁𝑊,𝑆𝑊,𝑆𝐸,𝑁𝐸)

⁄ } (4.30)

Equation (4.26) through to equation (4.30) are recursively applied to all the blue pixel points to generate

the associated red colour content. Once complete, the blue and red colour planes both observe a

quincuncial profile.

(iii) Reconstruction in Green Pixel Locations

At this point in the processing, the proposed algorithm has a fully constructed green plane and

quincuncial blue and red planes. The remaining undetermined content are the blue and red colour values

in green pixel locations. The proposed algorithm uses a procedure similar to the green plane

reconstruction. This is because the missing colour blue or red content now occurs in a quincuncial plane

– a situation similar to that in Section 4.5.2.

Consider the problem of establishing red content in pixel G45. An initial estimate is generated and is of

a simpler form than equation (4.13) due to the availability of previously missing colour content data.

This is shown in equation (4.31) using the North-West (NW) direction as an example:

 𝑅̃𝐺45
𝑁𝑊 = 0.25(𝑅̂35 + 𝑅24 + 𝑅̂𝐵33 + 𝑅44) (4.31)

52

Estimates in the three remaining ordinal directions are generated in the same way. The gradients,

associated weights and final colour content values are then established. Equations (4.32), (4.33) and

(4.34) illustrate the proposed algorithm’s workflow in the North-West direction in establishing the red

colour content in pixel G45. This is done in the remaining ordinal directions and the final colour value

is determined using equation (4.35).

 Φ𝐺45
𝑁𝑊 = Φ𝑅𝑒𝑑,𝐺45

𝑁𝑊 + Φ𝐺𝑟𝑒𝑒𝑛,𝐺45
𝑁𝑊 + 𝜀 (4.32)

Where 𝜀 is a small positive non-zero constant and

Φ𝑅𝑒𝑑,𝐺45

𝑁𝑊 = (|𝑅̂𝐵35 − 𝑅24| + |𝑅̂𝐵33 − 𝑅44|)
(4.33)

Φ𝐺𝑟𝑒𝑒𝑛,𝐺45
𝑁𝑊 = (|𝐺45 − 𝐺34| + |𝐺34 − 𝐺23|)

 𝜑𝐺45
𝑘 =

1

Φ𝐺45
𝑘 (4.34)

 𝑅̂𝐺45 =
∑ {𝜑𝐺45

𝑘 𝑅̃𝐺45
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

∑ {𝜑𝐺45
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

⁄ (4.35)

The process outline in this is repeated to establish all the red colour content in the green pixel locations.

In the same manner, the proposed algorithm works on determining the missing blue content in the green

pixel locations. Equations (4.36), (4.37), (4.38) and (4.39) outline the steps taken in establishing the

blue colour content in pixel G34 over a North-East interpolation direction.

 𝐵̃𝐺34
𝑁𝐸 = 0.25(𝐵̂𝑅24 + 𝐵15 + 𝐵̂𝑅26 + 𝐵35) (4.36)

 Φ𝐺34
𝑁𝐸 = Φ𝑅𝑒𝑑,𝐺34

𝑁𝐸 + Φ𝐺𝑟𝑒𝑒𝑛,𝐺34
𝑁𝐸 + 𝜀 (4.37)

Φ𝐵𝑙𝑢𝑒,𝐺34

𝑁𝐸 = (|𝐵̂𝑅24 − 𝐵15| + |𝐵̂𝑅26 − 𝐵35|)
(4.38)

Φ𝐺𝑟𝑒𝑒𝑛,𝐺34
𝑁𝐸 = (|𝐺34 − 𝐺25| + |𝐺25 − 𝐺16|)

 𝜑𝐺34
𝑘 =

1

Φ𝐺34
𝑘 (4.39)

53

The final estimate for the pixel G34 is given by equation (4.40):

 𝐵̂𝐺34 =
∑ {𝜑𝐺34

𝑘 𝐵̃𝐺34
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

∑ {𝜑𝐺34
𝑘 }𝑘∈(𝑁𝑊,𝑁𝐸,𝑆𝐸,𝑆𝑊)

⁄ (4.40)

This process is repeated until all the missing blue colour content in the green pixel points is found.

When all the missing colour points have been reconstructed, the demosaicking process is complete. The

red and blue pixel processing is depicted in Figure 4.13.

Figure 4.13 Red and Blue Plane Reconstruction flowchart

54

5 SIMULATION PROCEDURE AND RESULTS

The experimental phase of this research work was carried out fully in simulation through the use of

MATLAB® (matrix laboratory) software platform. MATLAB® is a numerical computational tool with

built-in graphical, simulation modelling and programming functionality. This software environment

was used because of:

i. the lack of physical real world Bayer and RGBW CFA CMOS sensors in the desired pixel

dimensions and arrangement to perform the experiment

ii. the need for a ground-truth reference image to perform a comparative analysis with the

demosaicked equivalent to assess algorithm performance

iii. the fact that several established state-of-the-art algorithms are not available in the public

domain due to strict confidentiality and non-disclosure agreements and must themselves be

modelled from their journal and/or patent information

Modelling the experiment in the MATLAB® platform allowed for the simulation of the image

acquisition as well as the colour processing and interpolation (demosaicking) shown in Figure 2.2. It

also allowed for the modelling of a comparison between the original ground-truth reference image and

the final reconstructed demosaicked image.

It should be noted that the associated process shown in Figure 2.2 that form part of the image processing

pipeline such as noise filtering, white balance adjustment and post processing enhancement techniques

are not modelled because:

i. this work is primarily focused on the efficacy of demosaicking process

ii. these associated processes are considered independently of the demosaicking stage

iii. some processes such as noise tend to be device-specific due to design and choice of materials

of the physical camera and modelling them would constrain the applicability of the proposed

algorithm

iv. some enhancement processes, such as gamut correction, are purely subjective and image quality

assessment would vary amongst observers

5.1 Simulation Process

Each of the aforementioned phases of image acquisition, demosaicking and comparison were modelled

as MATLAB® algorithm function blocks in line with the physical equivalent shown in Figure 2.7. The

functional MATLAB® code blocks created and forming part of this research study are provided in their

entirety in Appendix A.

55

Figure 5.1 The experimental MATLAB simulation process

The image acquisition algorithm block takes the three dimensional M×N×3 original ground truth

image, I, subsampling it to the CFA equivalent image representation, ICFA. In this work, this block has

two functional variants depending on whether the algorithm under consideration is driven using a Bayer

or an RGBW colour filter array. If the algorithm uses a Bayer CFA, the resulting CFA equivalent image

is two dimensional. However, in the RGBW case, the image acquisition block would produce a three

dimensional CFA equivalent image. Code blocks detailing these processes are provided in Section A.2.

The demosaicking algorithm block is responsible for the conversion of the CFA representation, ICFA,

to a fully reconstructed demosaicked image, IR. This block is the main area of study and a functional

block variant was created for the proposed algorithm as well as each established state-of-the-art

demosaicking algorithm that formed part of the overall test bed. The main aim of this block is to model

equation (2.2). The proposed algorithm is given in Section A.1 while the test bed algorithms are

provided in Section A.4. It should be noted, due to confidentiality agreement constraints in industry,

the author created and implemented MATLAB® versions of the state-of-the-art test bed demosaicking

methods from their initial journal, conference periodical or patent formulation.

The final simulation process is the comparison algorithm block detailed in Section A.3. Its function is

to provide a quantitative and qualitative analysis of the overall reconstruction by comparing the

demosaicked image, IR, to the original image, I. A quantitative analysis is achieved by implementing a

comparison using the established image quality assessment techniques laid out in the conceptual

framework in Chapter 3. These are the mean square error (MSE), colour peak signal-to-noise ratio

(CPSNR) and the structural and feature similarity indices (SSIM/FSIM). Each assessment method is

developed as a MATLAB® function and combined to form the algorithm functional block. A qualitative

analysis was implemented by having the comparison algorithm block saving both the original and

reconstructed image in computer storage for the purposes of display to a human observer at a later time.

56

5.2 Empirical Determination of Corrective Terms (k2, k3 and ε)

Prior to using the proposed algorithm; a determination of corrective terms was performed. From

equations (4.6) and (4.7), any gradient based demosaicking algorithm may have up to two corrective

terms; denoted as c1 and c2. Many of the established algorithms either set these terms to zero or give

arbitrary values to these terms to fulfil the fractional requirement of c1 and the small positive value

requirement of c2.

However, due to the fact that these values are themselves used in the initial estimate stage, the choice

of value may impact demosaicking performance. Consequently, the author felt it was necessary to

empirically determine these corrective terms. Comparing equation (4.6) to (4.13) and equation (4.7) to

(4.14), (4.22), (4.27), (4.32) and (4.37) the proposed algorithm designed the corrective terms to be:

𝑐1 = (𝑘2𝑘3)

𝑐2 = 𝜀
(5.1)

Where the variable plane factors k2 and k3 constitute the first corrective term and the small positive

constant 𝜀 is the second. To analyse the effect of these corrective terms, a base gradient demosaicking

algorithm was created and applied to the reconstruction of Bayer CFA content using the simulation

process highlighted in Figure 5.1. This base algorithm was created by using simplified variants of

equations (4.13) and (4.14) that operate in the cardinal directions and primarily focus on the green

colour plane. These are shown below in equation (5.2) through to equation (5.4):

𝐺̃𝑅44
𝑁 = 𝐺34 + (𝑘2𝑘3)(𝑅44 − 𝑅24)

(5.2)
𝐺̃𝑅44

𝑊 = 𝐺43 + (𝑘2𝑘3)(𝑅44 − 𝑅42)

𝐺̃𝑅44
𝑆 = 𝐺54 + (𝑘2𝑘3)(𝑅44 − 𝑅64)

𝐺̃𝑅44
𝐸 = 𝐺45 + (𝑘2𝑘3)(𝑅44 − 𝑅46)

 Φ𝑅44
𝑘 = Φ𝐺𝑟𝑒𝑒𝑛,𝑅44

𝑘 + 𝜀 (5.3)

Where:

Φ𝑅44
𝑁 = (|𝐺34 − 𝐺23| + |𝐺34 − 𝐺25|) + 𝜀

Φ𝑅44
𝑊 = (|𝐺43 − 𝐺32| + |𝐺43 − 𝐺52|) + 𝜀

Φ𝑅44
𝑆 = (|𝐺54 − 𝐺63| + |𝐺54 − 𝐺65|) + 𝜀

Φ𝑅44
𝐸 = (|𝐺45 − 𝐺36| + |𝐺45 − 𝐺56|) + 𝜀

(5.4)

57

The weights of this base algorithm and the final value for missing pixels in the green colour plane are

established using equations (5.5) and (5.6) that are cardinal variants of equations (4.17) and (4.20)

respectively.

 𝜑𝑅44
𝑘 =

1

Φ𝑅44
𝑘 (5.5)

 𝐺̂𝑅44 =
∑ {𝜑𝑅44

𝑘 𝐺̃𝑅44
𝑘 }𝑘∈(𝑁,𝑆,𝐸,𝑊)

∑ {𝜑𝑅44
𝑘 }𝑘∈(𝑁,𝑆,𝐸,𝑊)

⁄ (5.6)

This treatment explaining the synthesis of this base algorithm is also provided in the author’s paper

outlining corrective term usage [138]. The three forms of equation (4.12a) were tested using several

images from the Kodak and McMaster-IMAX picked at random. Normalising k1 to 1, k2 and k3 were

varied from 0 to 2 in steps of 0.1. Their CPSNR, SSIM and FSIM values were recorded. The optimal

values of k2 and k3 for each form of equation (4.12a) were determined and their values noted and these

are shown in Table 5.1. The observed the optimal values were at k2 = 0.8 and k3 =0.7. These were the

values used and indicated in Chapter 4.

For the second corrective term denoted by ε, a preliminary estimation of value was performed by

exposing two images from two different image sets (kodim21 from the Kodak Image Set and mcm04

from the McMaster-IMAX Image Set) to the same base gradient algorithm provided in [138] and

varying the value of ε logarithmically. Using equation (4.7), only the green colour plane was considered

during the ε analysis. The results of the reconstruction using the same base gradient algorithm but

differing values of ε is shown in Figures 5.2 and 5.3. From simple visual inspection, the optimal value

was between ε=1 and ε=100.

Table 5.1 Performance metric variations for different k2 and k3 combinations

Set Case 1: 𝐤𝟐 = 𝐤𝟑 = 𝟏 Case 2: 𝐤𝟐 = 𝐤𝟑 = 𝟎. 𝟖 Case 3: 𝐤𝟐 = 𝟎. 𝟖, 𝐤𝟑 = 𝟎. 𝟕

CPSNR

Kodak 38.469 41.111 41.356

McMaster-IMAX 37.661 39.407 39.756

SSIM

Kodak 0.9721 0.9813 0.9818

McMaster-IMAX 0.9512 0.9652 0.9676

FSIM

Kodak 0.9690 0.9720 0.9723

McMaster-IMAX 0.9655 0.9684 0.9688

Refinement of the ε value was achieved by exposing each image in the Kodak set to 33 different ε

values in the range of ε=0 to ε=100. The values of PSNR, SSIM and FSIM were calculated and recorded

at each step point and the average result for each metric over the entire Kodak image set was determined.

58

The resultant trend is plotted in Figure 5.4. This process was repeated in three other image sets:

McMaster-IMAX, McGill University Calibrated Color Image Set [139] and the default local images

found on a Windows 7 computer.

𝜀 = 0

𝜀 = 1

𝜀 = 10

𝜀 = 100

𝜀 = 1000

Original

Figure 5.2 A comparison of various ε values using kodim21 of the Kodak Image Set

𝜀 = 0

𝜀 = 1

𝜀 = 10

𝜀 = 100

𝜀 = 1000

Original

Figure 5.3 A comparison of various ε values using mcm03 of the McMaster-IMAX Image Set

59

From Figure 5.4, the optimal value over all performance metrics was determined to occur at ε = 4. This

was the value used in the proposed algorithm outlined in Chapter 4 and Section A.1 of Appendix A.

(a) PSNR Variation

(b) SSIM Variation

(c) FSIM Variation

Figure 5.4 Variation of performance metrics for different values of ε

60

5.3 Simulation Methodology and Testing Procedure

The simulation of image acquisition, demosaicking and comparison processes was performed using

MATLAB® R2015b running on an Intel® Core ™ i5-6200 CPU @ 2.39 GHz processor.

The testing procedure was as follows. For each image set defined in Table 3.2:

i. Every image was decomposed to a Bayer CFA equivalent (or RGBW CFA equivalent in the

case of some of the RGBW methods lacking a Bayerisation process) by passing it through the

image acquisition algorithm block.

ii. The CFA equivalent image was then passed through all the algorithms forming the

experimental test bed in turn. There were nine (9) algorithms considered in total, comprising

the proposed method along with the established state-of-the-art current methods. Each method

is provided in Appendix A and described below in Table 5.1. Each algorithm is realised as a

demosaicking algorithm block and results in a unique demosaicked image.

Table 5.2 List of algorithms forming experimental test bed

S/n Algorithm Heuristic Class CFA
Year

Developed

1 2
Constant Difference Based

Interpolation (CDBI) [68]

Constant Hue

Based
Bayer n/a

2 3
Edge Directed Interpolation (EDI)

[76]
Edge Bayer 2006

3 4
Malvar-He-Cutler algorithm (MHC)

[79]
Edge Bayer 2004

4 5 Wang algorithm (Wang) [81] Gradient Bayer 2012

5 6
Edge Strength Filter Based

Interpolation (ESFBI) [83]
Gradient Bayer 2012

6 7
Multi-Gradient Based Interpolation

(MGBI) [86]
Gradient Bayer 2013

7 8
Average Colour Ratio algorithm

(ACR) [140]
Edge RGBW 2014

8 9
Edge Directed Colour Ratio

algorithm (EDCR) [140]
Edge RGBW 2014

9 Proposed algorithm Gradient
Bayerised

RGBW
2017

iii. In step (ii), a maximum bounding window region of five pixels-width was used as padding and

ignored in the reconstruction phase so that the results over different algorithms could be

normalised. This was done as different algorithms in the experimental test bed employ different

path descriptor lengths to establish edge or gradient information.

iv. Each reconstructed version of the image under consideration was then passed in turn to the

comparison algorithm block for quantitative determination of the four image quality assessment

61

metrics; namely MSE, CPSNR, SSIM and FSIMC. The values obtained were recorded. The

reconstructed version was then stored for qualitative presentation.

v. The above steps were repeated in sequence until all the images in an image set were processed.

A geometric mean was then taken for each of the algorithms. A geometric mean was chosen

because it is more resistant to perturbation from outlier information than an arithmetic mean.

These perturbations were inherent due to the random nature of the images.

vi. An overall rank was generated from the geometric mean data to show the position of the

proposed algorithm relative to all the test bed algorithms. These values and the associated

geometric mean data are highlighted in the detailed tabulation of simulation results found in

Appendix B.

vii. After all the six selected image sets had been processed in the manner outlined in steps (i)

through (vi), a compilation of the geometric means was performed and the data is presented in

Tables 5.3 through to 5.6.

5.4 Compiled Experimental Simulation Results

Tables 5.3 – 5.6 below present the geometric mean value data and associated ranking of each algorithm

over each image set collated from the values provided in Appendix B. A two decimal point resolution

for the MSE and CPSNR (both range from 0 to infinity) and a three decimal point resolution for the

SSIM and FSIMC (both range from 0 to 1) was considered adequate. As previously mentioned,

geometric mean rather than arithmetic mean evaluation was used to ensure average results were more

resistant to outlier data effects.

Table 5.3 below highlights the average MSE values for each of the nine test bed algorithms when

exposed to the 115 images from the six image databases. The proposed algorithm achieved a median

performance rank of 6 overall. The raw image data values are tabulated in Tables B.1 through to B.6 of

Appendix B.

Table 5.3 Geometric Average MSE evaluation values and associated ranking

Image Set (No. of

Images)

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank

USC-SIPI(16) 6.99 6.07 5.39 5.72 7.76 6.96 11.72 13.21 6.58 4

Kodak (24) 8.42 7.19 3.62 4.95 3.13 2.74 11.57 10.40 5.91 5

McMaster-IMAX

(18)

6.39 5.27 4.71 4.88 6.44 5.87 9.61 12.72 5.86 4

Condat (30) 7.84 6.12 5.42 5.27 6.45 5.96 11.72 7.43 6.82 6

ARRI (12) 2.14 1.53 1.63 1.29 2.40 2.72 2.54 4.32 2.85 8

Custom (15) 4.66 4.17 1.55 2.47 1.27 1.28 6.38 5.48 3.13 5

Average (115) 5.56 4.56 3.29 3.64 3.81 3.64 7.93 8.22 4.90 6

62

Table 5.4 gives the average CPSNR evaluation values for the entire algorithm test bed over the entire

image databases chosen. From the compilation of the raw data from Tables B.7 to B.12 in Appendix B,

the proposed algorithm achieves the premier CPSNR geometric mean performance of 40.78 dB over

the six chosen image sets.

Table 5.4 Geometric Average CPSNR evaluation values (in dB) and associated ranking

Image Set (No. of

Images)

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank

USC-SIPI(16) 33.27 38.12 38.11 38.31 37.60 37.44 37.48 36.76 39.54 1

Kodak (24) 32.80 38.84 39.72 40.12 41.23 41.70 36.75 36.61 41.39 2

McMaster-IMAX

(18)

33.71 38.89 38.94 38.96 38.44 38.43 37.64 36.92 38.94 2

Condat (30) 32.34 38.43 38.29 38.44 38.18 38.09 36.75 36.84 38.90 1

ARRI (12) 38.44 43.68 43.06 42.50 41.57 40.73 42.44 41.11 42.61 3

Custom (15) 37.29 41.48 43.32 43.39 44.99 44.45 39.04 38.84 43.55 3

Average (115) 34.56 39.86 40.18 40.24 40.25 40.07 38.30 37.81 40.78 1

The average SSIM performance is presented in Table 5.5 for the algorithm testbed. The compiled data

from the raw image values given in Section B.3 of Appendix B shows that the proposed algorithm

performs second best, only behind the CDBI technique by a value of 0.002 (or 0.2%)

Table 5.5 Geometric Average SSIM evaluation values and associated ranking

Image Set (No. of

Images)

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank

USC-SIPI(16) 0.956 0.948 0.949 0.947 0.944 0.937 0.947 0.937 0.961 1

Kodak (24) 0.979 0.975 0.979 0.979 0.981 0.972 0.954 0.942 0.979 2

McMaster-IMAX

(18)

0.979 0.973 0.970 0.969 0.961 0.956 0.969 0.958 0.972 3

Condat (30) 0.983 0.978 0.976 0.976 0.969 0.956 0.969 0.941 0.976 3

ARRI (12) 0.998 0.996 0.998 0.998 0.997 0.954 0.998 0.989 0.997 5

Custom (15) 0.997 0.995 0.994 0.995 0.988 0.971 0.994 0.985 0.995 2

Average (115) 0.982 0.977 0.977 0.977 0.973 0.958 0.971 0.958 0.980 2

From the raw image data of the selected image sets provided in Section B.4 of Appendix B, Table 5.6

is generated. This table provides the geometric mean data for the FSIMC image quality assessment

metric for all the algorithms in the demosaicking test bed over the selected image databases. From Table

5.6, it is noted that the proposed algorithm ties for first place in performance with the CDBI and EDI

methods with an average value of 0.991.

63

Table 5.6 Geometric Average FSIMC evaluation values and associated ranking

Image Set (No. of

Images)

CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Proposed Rank

USC-SIPI(16) 0.990 0.987 0.973 0.978 0.968 0.934 0.975 0.961 0.988 2

Kodak (24) 0.994 0.993 0.982 0.986 0.980 0.948 0.976 0.962 0.989 3

McMaster-IMAX

(18)

0.991 0.993 0.980 0.984 0.977 0.953 0.979 0.967 0.993 1

Condat (30) 0.990 0.991 0.979 0.984 0.975 0.946 0.976 0.940 0.984 3

ARRI (12) 0.990 0.994 0.999 0.998 0.998 0.972 0.999 0.988 0.998 3

Custom (15) 0.990 0.988 0.995 0.997 0.992 0.970 0.993 0.982 0.995 2

Average (115) 0.991 0.991 0.985 0.988 0.981 0.954 0.983 0.966 0.991 1

64

6 ANALYSIS AND DISCUSSION OF RESULTS

From the simulation process outlined in Chapter 5, the 115 test images exposed to the nine different

demosaicking algorithms of the test bed and four image quality assessment metrics resulted in a data

set of 4,140 values. To make logical inferences from this data set, the author subdivided the analysis

into three main sections:

i. RGBW CFA domain analysis: to test the efficacy of the proposed algorithm’s Bayerisation

process and establish whether it is of any benefit

ii. Single plane reconstruction analysis: to test the performance of the proposed algorithm’s

reconstruction in the green colour plane – the most significant of the three colour planes from

a human physiological viewpoint

iii. Full colour and object reconstruction analysis: to measure the overall performance of the

algorithm when compared to the entire test bed

The RGBW only analysis operates on three of the nine algorithms – the Average-based Colour

Reconstruction algorithm (ACR) [140], the Edge Detection-based Colour Reconstruction algorithm

(EDCR) [140] and the proposed method. In this category, all of the image quality metrics are

considered. The single and full colour analysis techniques add the Bayer based methods – that is the

Constant Difference Based Interpolation (CDBI) [68], Edge Directed Interpolation (EDI) [76], Malvar-

He-Cutler algorithm (MHC) [79], Wang algorithm (Wang) [81], Edge Strength Filter Based

Interpolation (ESFBI) [83] and the Multi-scale Gradient Based Interpolation (MGBI) [86].

In the single plane reconstruction analysis, the MSE data established on the green plane is compared

over all algorithms. Finally, the full colour and object fidelity analysis makes use of the CPSNR, SSIM

and FSIMC data. It should be noted here, as stated in Table 3.3, that an improvement in performance in

an algorithm is observed when the MSE is lower and the CPSNR, SSIM and FSIMC are higher than

comparative methods.

For the purpose of analysis, all graphs plotted in this section are oriented in such a manner that the

Bayer-based algorithms increase in descriptor complexity as one moves from left to right: that is from

constant hue-based descriptors (CDBI); to edge-based descriptors (EDI, MHC) and finally to gradient-

based descriptors (Wang, ESFBI, MGBI). Furthermore, the complexity within each descriptor class

increases from left to right. For example, MHC is a more complex algorithm when compared to EDI.

By the same token the MGBI algorithm is the most complex of its descriptor class.

65

6.1 RGBW CFA Domain Reconstruction Analysis

Extracting the geometric mean data from algorithms working in the RGBW CFA domain from the

results tables in Chapter 5, it is observed that the proposed method has a superior performance to the

two other RGBW algorithms in the test bed. This is because the proposed algorithm exhibits the lowest

MSE and highest CPSNR, SSIM and FSIMC values of the subset. This is shown in Table 6.1.

Table 6.1 RGBW CFA domain algorithm data

 ACR EDCR Proposed

Average MSE 7.93 8.22 4.90

Average CPSNR (dB) 38.30 37.81 40.78

Average SSIM 0.971 0.958 0.980

Average FSIMc 0.983 0.966 0.991

From the geometric average MSE data from Table 6.1, it is noted that the proposed algorithm improves

the green plane reconstruction by a factor of approximately 1.6 over both the ACR and EDCR

algorithms. This was attributed to the fact that the Bayerisation process introduces more green values

into the CFA data prior to demosaicking. Comparing the demosaicking processes outlined in Figures

2.7 and Figure 2.8, the Bayer CFA has twice the number of green samples per unit than the equivalent

RGBW (panchromatic) CFA of the same dimensional size. Theoretically, therefore, a reconstruction of

this green plane would experience half the number of estimation errors in the Bayer CFA compared to

the panchromatic RGBW case if the demosaicking process were considered equal. This is

approximately what it observed and the author attributes the factor to be at 1.6 rather than 2 because the

Bayerisation process itself introduces estimation errors.

In the CPSNR geometric mean data, the proposed method also exceeds the established ACR method by

2.97 dB and the EDCR method by 2.48 dB. The author attributed this to:

i. the larger green sample size available to the demosaicking algorithm

ii. the ordinal nature of the proposed demosaicking algorithm

The larger number of pixels available in the green plane increases CPSNR performance because its

value is largely dependent on pixel statistics. The larger the number of samples taken the better the

CPSNR. Concurrently, the ordinal nature of the demosaicking algorithm allows the exploitation of the

tighter pixel packing along these directions, leading to more accurate estimates in all three colour planes.

It is this ordinal demosaicking regime that the author also attributes to the proposed algorithm yielding

higher SSIM and FSIMC values than the established panchromatic demosaicking techniques. The SSIM

and FSIM operate on analysing object reconstruction. Using Figure 4.3 as reference, by demosaicking

using ordinal path descriptors in the green plane, there is a lower likelihood of over-smoothing an object

edge. This is particularly important in regions of object edge transition.

66

6.2 Single Plane Colour Reconstruction Analysis

The single plane colour reconstruction analysis is performed by considering the MSE values obtained

from the reconstruction of the green plane. The RGBW MSE values were considered in the previous

section. Expanding the MSE value analysis to include all the demosaicking algorithms in the test bed;

as shown in Figure 6.1, it is observed that the proposed method performs poorly when compared to the

Bayer CFA based techniques.

Figure 6.1 Graph of average geometric mean MSE values over all test bed demosaicking algorithms in all

selected image sets

This is a departure from the variation observed in the RGBW only methods. However, the author

believes this is to be expected. This is because while shifting the sensor data from the RGBW to the

Bayer domain prior to demosaicking, the Bayerisation process does so using estimate data. As such, the

green plane does not have a 50% exact sample data profile but a 25% exact sample data plus 25%

estimate data profile instead. In the RGBW domain, only 25% of the sensor contains exact sample data

used for reconstruction. This median property is quantitatively proven by calculating the geometric

mean values of the algorithms in the two domains while isolating the proposed method. This process is

outlined in equation (6.1).

𝑀𝑆𝐸𝐵𝑎𝑦𝑒𝑟 = √(𝑀𝑆𝐸𝐶𝐷𝐵𝐼 × 𝑀𝑆𝐸𝐸𝐷𝐼 × 𝑀𝑆𝐸𝑀𝐻𝐶 × 𝑀𝑆𝐸𝑊𝑎𝑛𝑔 × 𝑀𝑆𝐸𝐸𝑆𝐹𝐵𝐼 × 𝑀𝑆𝐸𝑀𝐺𝐵𝐼)

6

𝑀𝑆𝐸𝑅𝐺𝐵𝑊 = √(𝑀𝑆𝐸𝐴𝐶𝑅 × 𝑀𝑆𝐸𝐸𝐷𝐶𝑅)

(6.1)

5.56

4.56

3.29
3.64 3.81 3.64

7.93
8.22

4.90

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

M
S

E

Demosaicking Algorithm

67

This results in the following values:

𝑀𝑆𝐸𝐵𝑎𝑦𝑒𝑟 = 4.43

(6.2) 𝑀𝑆𝐸𝑅𝐺𝐵𝑊 = 8.07

𝑀𝑆𝐸𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 4.90

Equations (6.1) and (6.2) provide an explanation to the fact that the proposed algorithm ranks in the

near median position (6th) in the overall MSE evaluation of Table 5.3. This issue of estimate data leads

to inaccuracies in reconstruction, especially in the case of the ARRI image set that has a very large pixel

count due to its resolution characteristics.

6.3 Full Colour Reconstruction and Object Fidelity Analysis

The main aim of any demosaicking process is to ensure that colour reconstruction from subsampled

sensor data is effective and provides a true representation of the scene. This, however, is sometimes

achieved at the expense of edge definition of an object in an image scene. A demosaicking algorithm

may use a large number of descriptors to accurately interpolate missing colour information. However,

the large number of descriptors may adversely affect object edge in a scene resulting in colour shifting

or blurring. Some of these errors are shown in Figure E.7: (b) Colour Shifting (d) Blurring. In both

cases, the colour is a true representation of the scene but the sharp edge definition is lost.

The converse is true; one may use fewer descriptors to maintain edge fidelity. However, at high

frequency colour regions (such as changes between different objects), these descriptors are inadequate

to provide a proper colour transition. This results in demosaicking errors such as Moiré and zipper

effects also depicted in Figure E.7: (a) Zipper effect and (c) Moiré effect. Here the edges are quite sharp;

however, either spurious colours are generated or granulation of the edge occurs.

Consequently, a balance must be observed and maintained by any demosaicking algorithm. This is

particularly pertinent in images taken by low to medium resolution cameras. This is because they have

a lower sub-sample data count and must rely more heavily on descriptor information.

In the full reconstruction analysis, the author selected the CPSNR to provide an indication of colour

quality and the SSIM/FSIMC to provide edge quality indication.

6.3.1 Colour Reconstruction Analysis from CPSNR data

From the data set generated from the experimental simulation, the geometric mean CPSNR data was

extracted and plotted in Figure 6.2. The proposed algorithm exhibited the best overall CPSNR value of

68

40.78 dB that exceeded by best performing Bayer algorithm in the test bed, that is ESFBI, by 0.53dB.

It also exceeded the best performing RGBW algorithm that is the ACR method by 2.48 dB.

The author attributes the high performance over Bayer methods to:

i. the use of gradient descriptors that operate in ordinal directions

ii. the encoding of white pixel (luminosity) information through the Bayerisation process

The high performance over RGBW methods is attributed to the increase in green colour sample data

through the Bayerisation process.

From the 6th-order polynomial curve fitted trend line provided in Figure 6.2, it is observed that as

algorithm complexity increases in the Bayer based algorithms, there is a rise, plateauing and fall of the

CPSNR values. This is indicative of a ‘maximum threshold region’ beyond which increasing descriptor

complexity does not benefit demosaicking. By using ordinal directed descriptors coupled with the

encoding of luminosity information; the proposed method exceeds this threshold and generates, on

average, a more representative facsimile of the original scene.

Figure 6.2 Graph of average geometric mean CPSNR values (in dB) over all test bed demosaicking algorithms

in all selected image sets

Comparing the RGBW counterparts, an increase in descriptor complexity results in a reduction in

CPSNR. The author believes this is due to the fact that the RGBW domain has a low sub-sample data

count in the green plane. Therefore, increasing the descriptor complexity at a low sub-sample count

leads to an increase in estimation errors rather than a reduction. This inference is strengthened by the

fact that the more complex EDCR exhibits a higher MSE in Figure 6.1 than the simpler ACR method.

The proposed method, however, increases its low green sub-sample count through the Bayerisation

34.56

39.86
40.18 40.24 40.25 40.07

38.30
37.81

40.78

34.00

35.00

36.00

37.00

38.00

39.00

40.00

41.00

42.00

C
P

S
N

R
 (

d
B

)

Demosaicking Algorithm

69

process and consequently operates as a Bayer algorithm. As such its increased complexity is not

hampered in the same way as the EDCR method.

6.3.2 Fidelity of Object Reconstruction Analysis from SSIM and FSIM data

The SSIM and FSIMC data generated from the simulation is plotted in Figures 6.3 and 6.4 respectively.

The proposed algorithm exhibits the best FSIMC, of 0.9911 (rounded off to 0.991) followed by CDBI

at 0.9909 and EDI at 0.9908 (both also rounded off to 0.991). For the purposes of analysis, the FSIMC

is considered the same over all three algorithms. The proposed algorithm has an SSIM value of 0.980

which the second best performance value after the 0.982 value of the CDBI algorithm.

Figure 6.3 Graph of average geometric mean SSIM values over all test bed demosaicking algorithms in all

selected image sets

The author attributes the high values of SSIM and FSIMC from:

i. the use of a wholly ordinal-directed descriptor generation system uses pentomino inspired paths

ii. the non-symmetry of individual N, W and Z pentomino paths with emphasis on shorter

descriptor paths

0.982

0.977 0.977 0.977

0.973

0.958

0.971

0.958

0.980

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

S
S

IM

Demosaicking Algorithm

70

Figure 6.4 Graph of average geometric mean FSIMC values over all test bed demosaicking algorithms in all

selected image sets

Observation of the trend lines and bar graph values of both graphs in Figures 6.3 and 6.4 reveals a

similar trend over both the SSIM and FSIM metrics. This is to be expected as both metric are similar in

definition and vary only in application size. In both the Bayer-based and RGBW-based comparison

algorithms, it is observed that as the algorithm descriptor complexity increases, the SSIM and FSIMC

decreases. EDI and CDBI perform well due to their simple interpolation descriptors.

The reason for this inverse relationship arises from the fact that all the algorithms in the test bed with

the exception of the proposed method use a cardinal direction for establishing descriptors. An increased

descriptor complexity results in the use of a larger pixel grid. Consider the different grid sizes shown in

Figure 4.4, and the associated process of reconstruction. In a 7×7 grid, a Bayer-based algorithm has a

pool of 16 pixels with which to generate a sufficient set of descriptors for interpolation. Increase to a

9×9 grid, the pool has grown substantially to 24 pixels.

This larger size occurs in a loosely packed grid and the introduction of the far outlier pixels, denoted Oi

in equation 6.3, during descriptor generation results in an overall smoothening effect at the pixel of

interest due the large distance traversed from the neighbour pixels, Ni. A larger distance often means

larger path difference, dpath:

 𝑑𝑝𝑎𝑡ℎ = ∑ |(𝑁𝑖 − 𝑂𝑖

𝑛

𝑖=1

)| > 0 (6.3)

0.991 0.991

0.985
0.988

0.981

0.954

0.983

0.966

0.991

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

F
S

IM
c

Demosaicking Algorithm

71

A large path difference value can be interpreted as a higher likelihood of smoothening because of the

inverse relationships descriptor paths have with their edges/gradients, as shown in equation (4.8). This

smoothening results in loss of object edge information, lowering the SSIM and FSIMC values.

The proposed algorithm works solely on an ordinal directed environment. From Figure 4.3 and 4.4, it

is noted that the tight packing ensures a smaller comparative distance is traversed by the descriptor

paths generated. As such, the overall path difference value generated from equation (6.3) will be

comparatively smaller that the cardinal driven algorithms of similar complexity. This in turn will allow

for sharper edges and fidelity of object reconstruction overall.

The additional property of the N, W and Z paths having a larger number of shorter paths than longer

paths reinforces the edge sharpening property of the algorithm via equation (6.3). A large number of

shorter paths is better than a small number of large paths due to the fact that small paths have a higher

likelihood of producing near null values compared to larger paths, resulting in a smaller path difference.

6.3.3 Reconstruction Analysis from Visual Inspection

To augment the quantitative data established in Figures 6.2, 6.3 and 6.4, three images were selected

from the 115 tested – each from a different image set. In each image, a region of interest (ROI) was

selected after completing the demosaicking process and enlarged for observation of inconsistencies in

image reconstruction. These regions of interest were also visually inspected to determine the test bed

algorithms’ resistance to demosaicking artefacts.

The first image under visual inspection was the sipi_im11 or Mandrill image from the USC-SIPI

database. The region of interest is the right hand side cheek of the mandrill. The image ROI contains

fine detail regions due to the fur of the mandrill. From the visual data presented in Figure 6.5, color

shifting is observed to occur appreciably in the CDBI, EDI, MHC and Wang methods and to a lesser

degree in the ESFBI method. This shifting takes the form of small blue-orange or purple-green pixel

blocks in the ROI. The ACR and EDCR methods are more resistant to color shifting. However, both

these methods instead suffer from blurring effects due to the oversmoothening nature of the algorithms.

In particular, the oversmoothening property of the EDCR algorithm begins to introduce a wash-out

effect on the ROI.

From the sipi_im11 image inspection of Figure 6.5, only the MGBI and the proposed methods result in

reconstructions of the ROI that exhibit no real demosaicking artefacts.

72

(a) Original image with enlarged section expanded for reference

(b) Original expanded

(c) CDBI expanded (d) EDI expanded

(e) MHC expanded

(f) Wang expanded (g) ESFBI expanded (h) MGBI expanded

(i) ACR expanded

(j) EDCR expanded

(k) Proposed expanded

Figure 6.5 A visual comparison of the right cheek section of the sipi_im11 image from the USC-SIPI Image Set

over the different demosaicking schemes in the test bed

73

The second image selected for a qualitative visual inspection was the kodim19 image, also referred to

as the ‘Lighthouse’. It is a member of the Kodak Image Set. This particular image exhibits high

frequency colour transition in the fence section of the image due to the narrow distance between

individual fence posts. Enlarging the fence section near the coin-operated binoculars, in the right of the

image, to act as the region of interest; the reconstruction results are given in Figure 6.6. It is noted that

the CDBI, MHC and ESFBI methods suffer from discernable blue-orange Moiré patterns. The EDI and

proposed methods suffer from the same artefact but to a lesser degree. The ACR and EDCR methods

experience a yellow-purple Moiré effect by virtue of demosaicking in the RGBW domain. The Moiré

pattern in the EDCR is so severe that the bands constituting the artefact are clearly observed. The MGBI

and Wang methods suffer the least from the colour Moiré effect. However, a closer inspection reveals

that this resistance comes at the expense of a granulation of the fence edges. This granulation is also

observed in the EDI reconstruction of the ROI. The proposed method also suffers from colour Moiré in

the fence post region. This is because the posts themselves are vertically placed reducing the efficacy

of the ordinal gradients selected.

The third image selected from the various images was the mcm11 image from the McMaster-IMAX

Image Set. This image is of a striped tea cloth towel surrounded by a batch of freshly washed assorted

vegetables. Selecting the ROI are the tea cloth towel and the nearby green leaves, an enlargement of

this region was extracted from the original image. The reconstruction of the image was done with all

the demosaicking algorithms of the test bed, the ROI extracted and the results are shown in Figure 6.7.

It is observed that the CDBI, MHC, ESFBI and MGBI algorithms result in a ROI reconstruction with

‘jaggies’ present. This demosaicking artefact is observed primarily on the leaves section in the region

of interest. The EDI and Wang methods suffer from the introduction of black spots in the leaves sections

and a smotthening of the leaf edges. The ACR and EDCR reconstructions suffer from excessive blurring

of the leaves and towel sections of the ROI. The EDCR method also introduces color shifts in the bands

of the towel.

In the mcm11 image ROI reconstructions of Figure 6.7, the proposed method exhibits the closest

approximation to the reference original.

74

(a) Original (b) CDBI

(c) EDI

(d) MHC

(e) Wang

(f) ESFBI

(g) MGBI

(h) ACR

(i) EDCR

(j) Proposed

Figure 6.6 A visual comparison of the fence section of the kodim19 image from the Kodak Image Set over the

different demosaicking schemes in the test bed

75

(a) Original image with enlarged section expanded for reference (b) Original expanded

(c) CDBI expanded

(d) EDI expanded (e) MHC expanded

(f) Wang expanded (g) ESFBI expanded (h) MGBI exanded

(i) ACR expanded

(j) EDCR expanded

(k) Proposed expanded

Figure 6.7 A visual comparison showing the expanded towel cloth section of the mcm11 image from the

McMaster-IMAX Image Set over the different demosaicking schemes in the test bed

76

From the brief visual inspection, it was noted that the proposed algorithm was largely invariant to most

of the documented demosaicking effects namely colour shifting, blurring and granulation jaggies.

However, it was found to be somewhat weak to colour Moiré in high frequency transition regions. The

proposed algorithm, in line with its design, also ensured that object fidelity was not sacrificed for colour

accuracy. This was observed visually in Figure 6.6 when comparing the proposed method to the MGBI

method.

6.4 Supplementary Observations from the Different Image Sets

The performance rank values for the proposed algorithm over all image sets, established from

simulation, is provided in Table 6.2. In all but one of the image sets, the proposed algorithm ranks in

the top three best performing algorithms over CPSNR, SSIM and FSIMC assessment metrics.

Table 6.2 Proposed algorithm's ranking over CPSNR, SSIM and FSIMC metrics

 CPSNR SSIM FSIMC

USC-SIPI(16) 1 1 2

Kodak (24) 2 2 3

McMaster-IMAX (18) 2 3 1

Condat (30) 1 3 3

ARRI (12) 3 5 3

Custom (15) 3 2 2

Average (115) 1 2 1

From the conceptual framework section, in particular Table 3.2, each of the image sets had been chosen

for a particular property that is exhibited uniformly in all of its images. From the resolution designations

set up in the framework, it is observed that the proposed algorithm had a very robust CPSNR over the

low resolution image sets (USC-SIPI, Kodak, McMaster-IMAX and Condat) ranking in the top two

algorithms. In the medium image set (Custom) and high resolution image set (ARRI), the proposed

algorithm had the third ranking CPSNR value.

In the SSIM performance, the proposed algorithm achieves a robust edge preservation profile. This is

because it obtains top three level performance in both the low and medium resolution sets; the only

exception overall is in the high resolution ARRI image set where it achieves a median rank. Finally, in

the FSIMC affirms the robust nature of the proposed algorithm where, on average, it is the best

performing demosaicking algorithm.

From the average information over all image sets, the proposed algorithm is found to be invariant to the

properties of various image sets such as object number and types in a scene, light intensity variations

and saturation effects.

77

7 CONCLUSION AND RECOMMENDATIONS FOR

FUTURE WORK

7.1 Concluding Remarks

A novel heuristic-based localised area demosaicking algorithm for panchromatic colour filter arrays has

been proposed, outlined and developed in this work. It is a two stage process that operates by first using

a Bayerisation process to convert RGBW panchromatic CFA sensor data to an equivalent Bayer

representation. The Bayerisation process allows for the capture and encoding of luminance information

from the RGBW domain into the Bayer domain for use in the demosaicking. The proposed algorithm’s

second stage then employs a unique ordinal-directed gradient interpolation mechanism, founded on

pentomino constructs, to generate a sufficient number of path descriptors that allow for robust colour

reconstruction without compromising on object edge information. The gradient-based interpolation

process was strengthened by additional novel concepts such as the quincuncial exploitation of the

ordinal nature of the green colour plane and the introduction of corrective variable plane (k2 and k3) and

path (ε) terms.

In line with the study’s objectives of operation for low and medium resolution cameras, a conceptual

framework was established yielding an appropriate grouping of image sets. Four of the six image sets

were of low resolution, one of medium resolution and one of high resolution. The image sets were

selected from both standard and custom and each set provided an opportunity to test a different image

property.

To test the efficacy of the proposed algorithm in a structured manner, a robust test bed of well

documented and state-of-the art demosaicking algorithms both in the Bayer and panchromatic domain

was created. Together with the proposed algorithm, the entire test bed was passed through the

aforementioned image sets and a quantitative assessment (through four standard image assessment

metrics) and qualitative assessment (through visual inspection) was made. It was determined that the

proposed algorithm, from average metric data achieved a high colour reconstruction with maintaining

object edge acuity. From a visual inspection, it was found the proposed algorithm was mostly resistant

to the expected visual artefacts reviewed in literature.

7.2 Note on Publications

This study on demosaicking algorithm design resulted in the publication of the following internationally

peer-reviewed papers:

78

i. K. Wachira, E. Mwangi, and G. Jeon, “An Ordinal Direction Driven Gradient-Based RGBW

CFA Demosaicking Technique Using A Bayerisation Process and Polyomino Theory,” in IEEE

AFRICON2017, 2017, pp. 1–6. DOI:10.1109/AFRCON.2017.8095483 [95].

ii. K. Wachira, E. Mwangi, and G. Jeon, “A pentomino-based path inspired demosaicking

technique for the bayer color filter array,” in IEEE AFRICON2015, 2015, pp. 1–5.

DOI:10.1109/AFRCON.2015.7331959 [91].

iii. K. Wachira, “Corrective term usage in the improvement of gradient-based bayer CFA

demosaicking algorithms,” in IEEE EUROCON 2015 - International Conference on Computer

as a Tool (EUROCON), 2015, pp. 1–6. DOI:10.1109/EUROCON.2015.7313800 [138].

iv. K. Wachira and E. Mwangi, “A multi-variate weighted interpolation technique with local

polling for bayer CFA demosaicking,” in 2015 International Conference on Information and

Communication Technology Research (ICTRC), 2015, pp. 76–79.

DOI:10.1109/ICTRC.2015.7156425 [90].

v. K. Wachira and E. Mwangi, “A cardinal-direction quincunx based interpolation technique with

non-uniform inter-plane weighting for bayer CFA demosaicking,” in 2015 IEEE International

Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES),

2015, pp. 1–5. DOI:10.1109/SPICES.2015.7091363 [89].

7.3 Further Work

Consequently, it is the opinion of the author, that the main and specific objectives of this study were

resolved. However, from the analysis of the proposed algorithm, several new questions arose such as:

i. Why does the proposed algorithm’s performance deteriorate at higher resolutions despite the

advantages of tighter pixel packing in the ordinal directions?

ii. Can the Bayerisation process be improved by employing a filter, ℎ𝑎𝑙𝑡, that uses dynamic

rather than static coefficients?

iii. The panchromatic arrangement considered was the RGBW domain. Are the qualities of the

proposed algorithm transferable to other panchromatic arrangements while maintaining the

same level of image reconstruction performance?

iv. Through both simulation and real world implementation, a complexity vs. speed analysis can

be done to compare the proposed algorithm with other state-of-the art demosaicking

techniques.

v. How would compressive sensing theory be employed in demosaicking and would the results

generated be significantly higher than established techniques? Secondly, how would

compressive sensing affect the commonly observed demosaicking artefacts?

 These questions are the author’s recommendations for future work in this area.

https://doi.org/10.1109/AFRCON.2017.8095483

79

REFERENCES

[1] P. Hall, Indonesia, Malaysia & Singapore Handbook. Trade & Trade & Travel Publications ; New
York, NY, 1993.

[2] U. W. H. Centre, “Cueva de las Manos, Río Pinturas,” UNESCO World Heritage Centre. [Online].

Available: http://whc.unesco.org/en/list/936/. [Accessed: 28-Mar-2017].

[3] J. Mott, “A Journey to the Oldest Cave Paintings in the World,” Smithsonian, vol. 46, no. 10, Jan-
2016.

[4] C. Sagan, L. S. Sagan, and F. Drake, “A Message from Earth,” Science, vol. 175, no. 4024, pp.

881–884, Feb. 1972.
[5] D. Goldsmith and T. Owen, The Search for Life in the Universe, 3rd edition. Sausalito, Calif:

University Science Books, 2001.

[6] “Number of mobile phone users worldwide 2013-2019,” Statista. [Online]. Available:
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/.

[Accessed: 27-Mar-2017].

[7] B. Sanou, “ICTFacts & Figures: The world in 2015,” ITU, ITU Telecommunication Development

Bureau, May 2015.
[8] M. Tumbleson, “19 Text Messaging Facts | Teckst | Incredible Textable Tech,” Texting for

Customer Service, 03-Oct-2015. [Online]. Available: https://teckst.com/19-text-messaging-stats-

that-will-blow-your-mind/. [Accessed: 27-Mar-2017].
[9] J. Schneider, “Infographic: There Will Be One Trillion Photos Taken in 2015,” Resource Magazine

Online. [Online]. Available: http://resourcemagonline.com/2014/12/infographic-there-will-be-

one-trillion-photos-taken-in-2015/45332/. [Accessed: 27-Mar-2017].

[10] H. Bajaj and R. Jindal, “Thinking beyond WhatsApp,” in 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom), 2015, pp. 1443–1447.

[11] J. Dunn, “Here’s how slowly Twitter has grown compared to Facebook, Instagram, and Snapchat,”

Business Insider. [Online]. Available: http://www.businessinsider.com/twitter-vs-facebook-
snapchat-user-growth-chart-2017-2. [Accessed: 27-Mar-2017].

[12] “Our Story,” Instagram, 29-Nov-2016. [Online]. Available: https://instagram-press.com/our-

story/. [Accessed: 27-Mar-2017].
[13] M. Minervini, H. Scharr, and S. A. Tsaftaris, “Image Analysis: The New Bottleneck in Plant

Phenotyping [Applications Corner],” IEEE Signal Process. Mag., vol. 32, no. 4, pp. 126–131, Jul.

2015.

[14] V. Menezes, V. Patchava, and M. S. D. Gupta, “Surveillance and monitoring system using
Raspberry Pi and SimpleCV,” in 2015 International Conference on Green Computing and Internet

of Things (ICGCIoT), 2015, pp. 1276–1278.

[15] H.-Q. Nguyen, T. T. K. Loan, B. D. Mao, and E.-N. Huh, “Low cost real-time system monitoring
using Raspberry Pi,” in 2015 Seventh International Conference on Ubiquitous and Future

Networks, 2015, pp. 857–859.

[16] R. W. G. Hunt, The Reproduction of Colour. John Wiley & Sons, 2005.
[17] D. H. Hubel and T. N. Wiesel, Brain and Visual Perception: The Story of a 25-Year Collaboration,

1 edition. New York, N.Y: Oxford University Press, 2004.

[18] K. R. Gegenfurtner, M. Bloj, and M. Toscani, “The many colours of ‘the dress,’” Curr. Biol., vol.

25, no. 13, pp. R543–R544, Jun. 2015.
[19] R. Lafer-Sousa, K. L. Hermann, and B. R. Conway, “Striking individual differences in color

perception uncovered by ‘the dress’ photograph,” Curr. Biol., vol. 25, no. 13, pp. R545–R546, Jun.

2015.
[20] A. D. Winkler, L. Spillmann, J. S. Werner, and M. A. Webster, “Asymmetries in blue–yellow color

perception and in the color of ‘the dress,’” Curr. Biol., vol. 25, no. 13, pp. R547–R548, Jun. 2015.

[21] D. H. Brainard and A. C. Hurlbert, “Colour Vision: Understanding #TheDress,” Curr. Biol., vol.

25, no. 13, pp. R551–R554, Jun. 2015.

80

[22] “Gartner Says By 2018, More Than 50 Percent of Users Will Use a Tablet or Smartphone First for

All Online Activities.” [Online]. Available: http://www.gartner.com/newsroom/id/2939217.
[Accessed: 27-Mar-2017].

[23] J. Li, C. Bai, Z. Lin, and J. Yu, “Automatic Design of High-Sensitivity Color Filter Arrays With

Panchromatic Pixels,” IEEE Trans. Image Process., vol. 26, no. 2, pp. 870–883, Feb. 2017.

[24] S. K. Shevell, The Science of Color. Elsevier, 2003.
[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Education, 2011.

[26] G. Wald, “The Photoreceptor Process in Vision*,” Am. J. Ophthalmol., vol. 40, no. 5, pp. 18–41,

Nov. 1955.
[27] B. H. Zeavin and G. Wald, “Rod and Cone Vision in Retinitis Pigmentosa*,” Am. J. Ophthalmol.,

vol. 42, no. 4, pp. 253–269, Oct. 1956.

[28] Alhazen and A. I. Sabra, The optics of Ibn al-Haytham: Books I-III : on direct vision. Warburg
Institute, University of London, 1989.

[29] K. Keller et al., “Photography,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH

Verlag GmbH & Co. KGaA, 2000.

[30] N. Waltham, “CCD and CMOS sensors,” in Observing Photons in Space, M. C. E. Huber, A.
Pauluhn, J. L. Culhane, J. G. Timothy, K. Wilhelm, and A. Zehnder, Eds. Springer New York,

2013, pp. 423–442.

[31] G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems, 2 edition. Winter Park,
FL : Bellingham, Wash: SPIE--The International Society for Optical Engineering, 2011.

[32] R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color Image Processing Pipeline,” IEEE,

vol. 22, no. 1, pp. 34–43, Jan. 2005.
[33] R. Lukac, Single-Sensor Imaging: Methods and Applications for Digital Cameras. CRC Press,

2008.

[34] R. Lukac, Computational Photography: Methods and Applications. CRC Press, 2010.

[35] J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras. CRC Press, 2016.
[36] J. Pach and P. K. Agarwal, Combinatorial Geometry, 1 edition. New York: Wiley-Interscience,

1995.

[37] H. H. Crapo and G.-C. Rota, On The Foundations of Combinatorial Theory: Combinatorial
Geometries, Prelim. ed edition. Cambridge, Mass: The MIT Press, 1970.

[38] J. A. McKee, “Pixel cells in a honeycomb arrangement,” US7511323 B2, 31-Mar-2009.

[39] B. E. Bayer, “Color Imaging Array,” 3971065, Jul-1976.

[40] S. Yamanaka, “Solid state color camera,” US4054906 A, 18-Oct-1977.
[41] T. Watanabe and S. Miyatake, “Color imaging array and color imaging device,” US4500914 A,

19-Feb-1985.

[42] J. E. Roddy, R. J. Zolla, N. A. Blish, and L. Horvath, “Four color image sensing apparatus,”
US7057654 B2, 06-Jun-2006.

[43] A. Morimura and H. Tanaka, “Color solid-state imager with color filter having an overlapping

segmented filter arrangement,” US4630106 A, 16-Dec-1986.
[44] J. F. Hamilton, J. E. Adams, and D. M. Orlicki, “Particular pattern of pixels for a color filter array

which is used to derive luminance and chrominance values,” US6330029 B1, 11-Dec-2001.

[45] J. J. Bean, “Cyan-magenta-yellow-blue color filter array,” US6628331 B1, 30-Sep-2003.

[46] K. Hirakawa and P. J. Wolfe, “Spatio-Spectral Color Filter Array Design for Optimal Image
Recovery,” IEEE, vol. 17, no. 10, pp. 1876–1890, Oct. 2008.

[47] P. L. P. Dillon, “Color imaging array,” US4047203 A, 06-Sep-1977.

[48] T. Yamagami, T. Sasaki, and A. Suga, “Image signal processing apparatus having a color filter
with offset luminance filter elements,” US5323233 A, 21-Jun-1994.

[49] E. J. Bawolek, Z.-F. Li, and R. D. Smith, “Magenta-white-yellow (MWY) color system for digital

image sensor applications,” US5914749 A, 22-Jun-1999.
[50] E. B. Gindele and A. C. Gallagher, “Sparsely sampled image sensing device with color and

luminance photosites,” US6476865 B1, 05-Nov-2002.

[51] T. Sugiyama, “Image-capturing apparatus,” US20050231618 A1, 20-Oct-2005.

[52] G. Luo, “A novel color filter array with 75% transparent elements,” 2007, vol. 6502, p. 65020T–
65020T–8.

81

[53] N. Mansurov, “What is Spherical Aberration?,” Photography Life. [Online]. Available:

https://photographylife.com/what-is-spherical-aberration/. [Accessed: 06-Apr-2017].
[54] S. Borodin, “Lens Aberrations in Photography: Good or Bad?” [Online]. Available:

http://allphotolenses.com/articles/item/c_28.html. [Accessed: 06-Apr-2017].

[55] D. H. Marimont and B. A. Wandell, “Matching color images: the effects of axial chromatic

aberration,” JOSA A, vol. 11, no. 12, pp. 3113–3122, Dec. 1994.
[56] “Achromats Information | Engineering360.” [Online]. Available:

http://www.globalspec.com/learnmore/optics_optical_components/optical_components/achromat

s. [Accessed: 06-Apr-2017].
[57] M. Hullin, E. Eisemann, H.-P. Seidel, and S. Lee, “Physically-based Real-time Lens Flare

Rendering,” in ACM SIGGRAPH 2011 Papers, New York, NY, USA, 2011, p. 108:1–108:10.

[58] “Digital Camera Image Noise: Concept and Types.” [Online]. Available:
http://www.cambridgeincolour.com/tutorials/image-noise.htm. [Accessed: 06-Apr-2017].

[59] D. M. John and A. Thomas, “Combined denoising and demosaicing of CFA images,” in 2015 IEEE

International Conference on Signal Processing, Informatics, Communication and Energy Systems

(SPICES), 2015, pp. 1–6.
[60] X. Zhang, M.-T. Sun, L. Fang, and O. C. Au, “Joint Denoising and demosaicking of noisy CFA

images based on inter-color correlation,” in 2014 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2014, pp. 5784–5788.
[61] I. Amidror, The Theory of the Moiré Phenomenon. Springer Science & Business Media, 2012.

[62] L. Condat and S. Mosaddegh, “Joint demosaicking and denoising by total variation minimization,”

in 2012 19th IEEE International Conference on Image Processing (ICIP), 2012, pp. 2781–2784.
[63] L. Condat, “A simple, fast and efficient approach to denoisaicking: Joint demosaicking and

denoising,” in 2010 17th IEEE International Conference on Image Processing (ICIP), 2010, pp.

905–908.

[64] E. Reuss, “Beyond the Limits of Visual Acuity: The Real Reason for 4K and 8K Image Resolution,”
SMPTE Motion Imaging J., vol. 126, no. 2, pp. 33–39, Mar. 2017.

[65] R. Lukac, Perceptual Digital Imaging: Methods and Applications. CRC Press, 2012.

[66] S. Fang, Q. Shi, and Y. Cao, “Adaptive removal of real noise from a single image,” J. Electron.
Imaging, vol. 22, no. 3, pp. 033014–033014, 2013.

[67] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” 2008, vol. 6822, p.

68221J–68221J–15.

[68] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking:
Color Filter Array Interpolation,” IEEE, vol. 22, no. 1, pp. 44–54, Jan. 2005.

[69] T. Banning Jr., “Color television and the like,” US2683769 A, 13-Jul-1954.

[70] W. Yu, “Adaptive cubic convolution interpolation and sequential filtering for color demosaicing of
Bayer pattern image sensors,” in Proc. SPIE, 2005, vol. 5909, pp. 5–11.

[71] S. Randhawa and J. S. J. Li, “Adaptive Order Spline Interpolation for Edge-Preserving Colour

Filter Array Demosaicking,” in 2011 International Conference on Digital Image Computing:
Techniques and Applications, 2011, pp. 666–671.

[72] D. R. Cok, “Signal Processing Method and Apparatus For Producing Interpolated Chrominance

Values In A Sampled Color Signal,” 4642678, Feb-1987.

[73] R. Kimmel, “Demosaicing: Image Reconstruction from color CCD Samples,” IEEE, vol. 8, no. 9,
pp. 1221–1228, Sep. 1999.

[74] K.-H. Chung and Y.-H. Chan, “An Adaptive Color Filter Array Interpolation Algorithm for Digital

Camera,” in 2006 IEEE International Conference on Image Processing, 2006, pp. 2697–2700.
[75] K. H. Chung and Y. H. Chan, “Color Demosaicing Using Variance of Color Differences,” IEEE,

vol. 15, no. 10, pp. 2944–2955, Oct. 2006.

[76] W. Lee, S. Lee, and J. Kim, “Cost-efffective color filter array demosaicing using spatial
correlation,” IEEE Trans. Consum. Electron., vol. 52, no. 2, pp. 547–554, May 2006.

[77] X. Wang, W. Lin, and P. Xue, “Demosaicing with improved edge direction detection,” in 2005

IEEE International Symposium on Circuits and Systems, 2005, p. 2048–2051 Vol. 3.

[78] R. Lukac, K. N. Plataniotis, D. Hatzinakos, and M. Aleksic, “A novel cost effective demosaicing
approach,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 256–261, Feb. 2004.

82

[79] H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-

patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2004, vol. 3, pp. 485–488.

[80] D. Su and P. Willis, “Demosaicing of color images using pixel level data-dependent triangulation,”

in Proceedings of Theory and Practice of Computer Graphics, 2003., 2003, pp. 16–23.

[81] W. Jin, “Improved Color Interpolation Method Based On Bayer Image,” in Proc. SPIE 8420, 6th
International Symposium on Advanced Optical Manufacturing and Testing Technologies, 2012.

[82] H.-A. Chang and H. Chen, “Directionally weighted color interpolation for digital cameras,” in 2005

IEEE International Symposium on Circuits and Systems, 2005, p. 6284–6287 Vol. 6.
[83] I. Pekkucuksen and Y. Altunbasak, “Edge Strength Filter Based Color Filter Array Interpolation,”

IEEE, vol. 21, no. 1, pp. 393–397, Jan. 2012.

[84] C.-Y. Su and Y.-H. Chen, “Low-complexity demosaicing via multiscale gradients,” 2014, vol.
9069, pp. 906910-906910–5.

[85] D.-C. Sung and H.-W. Tsao, “A Gradient Based Edge Sensing Scheme for Color Filter Array

Demosaicking,” in 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo,

Japan, 2013.
[86] I. Pekkucuksen and Y. Altunbasak, “Multiscale Gradients-Based Color Filter Array Interpolation,”

IEEE, vol. 22, no. 1, pp. 157–165, Jan. 2013.

[87] I. Pekkucuksen and Y. Altunbasak, “Gradient based threshold free color filter array interpolation,”
in 2010 17th IEEE International Conference on Image Processing (ICIP), 2010, pp. 137–140.

[88] K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of Color Filter Array

Captured Images Using Gradient Edge Detection Masks and Adaptive Heterogeneity-Projection,”
IEEE Trans. Image Process., vol. 17, no. 12, pp. 2356–2367, Dec. 2008.

[89] K. Wachira and E. Mwangi, “A cardinal-direction quincunx based interpolation technique

with non-uniform inter-plane weighting for bayer CFA demosaicking,” in Signal Processing,

Informatics, Communication and Energy Systems (SPICES), 2015 IEEE International

Conference on, 2015, pp. 1–5.

[90] K. Wachira and E. Mwangi, “A multi-variate weighted interpolation technique with local

polling for bayer CFA demosaicking,” in Information and Communication Technology

Research (ICTRC), 2015 International Conference on, 2015, pp. 76–79.

[91] K. Wachira, E. Mwangi, and G. Jeon, “A pentomino-based path inspired demosaicking

technique for the bayer color filter array,” in AFRICON, 2015, 2015, pp. 1–5.

[92] Y. Monno, S. Kikuchi, M. Tanaka, and M. Okutomi, “A Practical One-Shot Multispectral Imaging
System Using a Single Image Sensor,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3048–

3059, Oct. 2015.

[93] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Minimized-Laplacian Residual Interpolation
for Color Image Demosaicking,” in Proc. SPIE-IS&T 9023, Digital Photography X, 2014.

[94] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation for color image

demosaicking,” in 2013 20th IEEE International Conference on Image Processing (ICIP), 2013,
pp. 2304–2308.

[95] K. Wachira, E. Mwangi, and G. Jeon, “An Ordinal Direction Driven Gradient-Based RGBW

CFA Demosaicking Technique Using A Bayerisation Process and Polyomino Theory,” in

IEEE AFRICON2017 Proceedings, Cape Town, South Africa, 2017, pp. 1–6.
[96] X. Chen, G. Jeon, J. Jeong, and L. He, “Multi-Directional Weighted Interpolation and Refinement

Method for Bayer Pattern CFA Demosaicking,” IEEE, 2014.

[97] L. Wang and G. Jeon, “Bayer Pattern CFA Demosaicking Based on Multi-Directional Weighted
Interpolation and Guided Filter,” Signal Process. Lett. IEEE, vol. 22, no. 11, pp. 2083–2087, Nov.

2015.

[98] T. y Jung, S. Yang, and J. Jeong, “Multi-directional Demosaicing for Digital Still Cameras,” in
2009 WRI World Congress on Computer Science and Information Engineering, 2009, vol. 7, pp.

374–378.

[99] D. Alleysson, S. Süsstrunk, and J. Hérault, “Linear Demosaicing Inspired By The human Visual

System,” IEEE, vol. 14, no. 4, pp. 1–12, Apr. 2005.
[100] E. Dubois, “Frequency-domain methods for demosaicking of Bayer-sampled color images,”

IEEE Signal Process. Lett., vol. 12, no. 12, pp. 847–850, Dec. 2005.

83

[101] W. Tang, O. C. Au, Y. Yang, X. Wen, and L. Fang, “Frequency selection and merging with

universal matrices for color filter array demosaicking,” in 2009 IEEE International Symposium on
Circuits and Systems, 2009, pp. 2369–2372.

[102] E. Dubois, “Filter Design for Adaptive Frequency-Domain Bayer Demosaicking,” in 2006

International Conference on Image Processing, 2006, pp. 2705–2708.

[103] R. W. B. Kolta, H. A. Aly, and W. Fakhr, “A hybrid demosaicking algorithm using frequency
domain and wavelet methods,” in 2011 International Conference on Image Information Processing

(ICIIP), 2011, pp. 1–6.

[104] D. Zhang, X. Wu, and D. Zhang, “Color Reproduction From Noisy CFA Data of Single Sensor
Digital Cameras,” IEEE Trans. Image Process., vol. 16, no. 9, pp. 2184–2197, Sep. 2007.

[105] T. Komatsu and T. Saito, “Sharpening-demosaicing with the shift-invariant Haar wavelet

transform,” in 2009 International Symposium on Intelligent Signal Processing and Communication
Systems (ISPACS), 2009, pp. 252–255.

[106] H. İlbeği and A. C. Gürbüz, “Demosaicking with compressive sensing,” in 2012 20th Signal

Processing and Communications Applications Conference (SIU), 2012, pp. 1–4.

[107] T. Singh and M. Singh, “Disregarding spectral overlap #x2014; A unified approach for
demosaicking, compressive sensing and color filter array design,” in 2011 18th IEEE International

Conference on Image Processing, 2011, pp. 3161–3164.

[108] K. Hirakawa and T. W. Parks, “Joint demosaicing and denoising,” IEEE Trans. Image Process.,
vol. 15, no. 8, pp. 2146–2157, Aug. 2006.

[109] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE

Trans. Image Process., vol. 14, no. 3, pp. 360–369, Mar. 2005.
[110] X. Wu, S. Tang, L. Huang, W. Shao, P. Liu, and Z. Wei, “Robust color demosaicking via

vectorial hessian frobenius norm regularization,” in 2016 IEEE International Conference on Signal

and Image Processing (ICSIP), 2016, pp. 161–165.

[111] C. Hu, L. Cheng, and Y. M. Lu, “Graph-based regularization for color image demosaicking,”
in 2012 19th IEEE International Conference on Image Processing, 2012, pp. 2769–2772.

[112] T. Ma and S. J. Reeves, “An iterative regularization approach for Color Filter Array image

restoration,” in 2011 IEEE International Conference on Industrial Technology (ICIT), 2011, pp.
332–335.

[113] D. Menon and G. Calvagno, “Regularization Approaches to Demosaicking,” IEEE Trans.

Image Process., vol. 18, no. 10, pp. 2209–2220, Oct. 2009.

[114] O. A. Omer and T. Tanaka, “Image demosaicking based on chrominance regularization with
region-adaptive weights,” in 2007 6th International Conference on Information, Communications

Signal Processing, 2007, pp. 1–5.

[115] C. K. M. Yuk, O. C. Au, R. Y. M. Li, and S. Y. Lam, “Soft-Decision Color Demosaicking with
Direction Vector Selection,” in 2007 IEEE 9th Workshop on Multimedia Signal Processing, 2007,

pp. 449–452.

[116] R. Lukac and K. N. Plataniotis, “Vector Concepts-Based Spectral Modelling,” in 2006
Canadian Conference on Electrical and Computer Engineering, 2006, pp. 2009–2012.

[117] R. Lukac, B. Smolka, K. Martin, K. N. Plataniotis, and A. N. Venetsanopoulos, “Vector

filtering for color imaging,” IEEE Signal Process. Mag., vol. 22, no. 1, pp. 74–86, Jan. 2005.

[118] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using
alternating projections,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 997–1013, Sep. 2002.

[119] H. J. Trussell, E. Saber, and M. Vrhel, “Color image processing [basics and special issue

overview],” IEEE Signal Process. Mag., vol. 22, no. 1, pp. 14–22, Jan. 2005.
[120] H. J. Trussell and R. E. Hartwig, “Mathematics for demosaicking,” IEEE Trans. Image

Process., vol. 11, no. 4, pp. 485–492, Apr. 2002.

[121] M. Rafinazari and E. Dubois, “Demosaicking algorithm for the Kodak-RGBW color filter
array,” 2015, p. 939503.

[122] K. S. Song, C. H. Park, J. Kim, and M. G. Kang, “Color interpolation algorithm for an RWB

color filter array including double-exposed white channel,” EURASIP J. Adv. Signal Process., vol.

2016, no. 1, p. 58, Dec. 2016.
[123] “True Color Kodak Images,” True Color Kodak Image Set, 11-Jul-2017. [Online]. Available:

http://r0k.us/graphics/kodak/. [Accessed: 09-Jul-2017].

84

[124] “CDM Dataset.” [Online]. Available:

http://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm. [Accessed: 09-Apr-2017].
[125] “Index of /~laurent.condat/download.” [Online]. Available: https://www.gipsa-lab.grenoble-

inp.fr/~laurent.condat/download/. [Accessed: 09-Apr-2017].

[126] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at Signal

Fidelity Measures,” IEEE Signal Process. Mag., vol. 26, no. 1, pp. 98–117, Jan. 2009.
[127] Z. Wang and A. C. Bovik, Modern Image Quality Assessment. Morgan & Claypool Publishers,

2006.

[128] “SIPI Image Database - Misc,” The USC-SIPI Image Set, 11-Jul-2017. [Online]. Available:
http://sipi.usc.edu/database/database.php?volume=misc. [Accessed: 10-Jul-2017].

[129] S. Andriani, H. Brendel, T. Seybold, and J. Goldstone, “Beyond the Kodak image set: A new

reference set of color image sequences,” in 2013 IEEE International Conference on Image
Processing, 2013, pp. 2289–2293.

[130] “ARRI Imageset.” [Online]. Available: ftp://imageset@ftp.arri.de. [Accessed: 23-May-2017].

[131] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A Feature SImilarity Index for Image

Quality Assessment,” IEEE, vol. 20, no. 8, pp. 2378–2386, Aug. 2011.
[132] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-Reference Image Quality Assessment in the

Spatial Domain,” IEEE Trans. Image Process., vol. 21, no. 12, pp. 4695–4708, Dec. 2012.

[133] S. Mihoubi, O. Losson, B. Mathon, and L. Macaire, “Multispectral demosaicing using pseudo-
panchromatic image,” IEEE Trans. Comput. Imaging, vol. PP, no. 99, pp. 1–1, 2017.

[134] M. Aghagolzadeh, A. Abdolhosseini Moghadam, M. Kumar, and H. Radha, “Bayer and

panchromatic color filter array demosaicing by sparse recovery,” 2011, vol. 7876, pp. 787603-
787603–11.

[135] X. Chen, L. He, J. Tang, and Y. S. Lee, “A Low-Complexity Interpolation Method for Single-

Sensor Camera Imaging with White-RGB Color Filter Array,” in 2015 11th International

Conference on Signal-Image Technology Internet-Based Systems (SITIS), 2015, pp. 560–565.
[136] S. W. Golomb, Polyominoes: Puzzles, Patterns, Problems and Packings, 2nd ed. Princeton,

New Jersey: Princeton University Press, 1994.

[137] X. Chen, G. Jeon, and J. Jeong, “Voting-Based Directional Interpolation Method and Its
Application to Still Color Image Demosaicking,” IEEE Trans. Circuits Syst. Video Technol., vol.

24, no. 2, pp. 255–262, Feb. 2014.

[138] K. Wachira, “Corrective term usage in the improvement of gradient-based bayer CFA

demosaicking algorithms,” in EUROCON 2015 - International Conference on Computer as a

Tool (EUROCON), IEEE, 2015, pp. 1–6.

[139] “McGill Calibrated Colour Image Database.” [Online]. Available:

http://tabby.vision.mcgill.ca/html/browsedownload.html. [Accessed: 04-Oct-2017].
[140] C. Wang and J. Chong, “An Improved White-RGB Color Filter Array Based CMOS Imaging

System for Cell Phones in Low-Light Environments,” IEICE Trans. Inf. Syst., vol. E97.D, no. 5,

pp. 1386–1389, 2014.
[141] “IEEE Xplore Digital Library.” [Online]. Available:

http://ieeexplore.ieee.org/Xplore/home.jsp. [Accessed: 09-Apr-2017].

[142] “Home - Springer.” [Online]. Available: https://link.springer.com/. [Accessed: 09-Apr-2017].

[143] “Home | SPIE.” [Online]. Available: http://spiedigitallibrary.org/index.aspx. [Accessed: 09-
Apr-2017].

85

Appendix A: MATLAB Code Blocks

The MATLAB code implementations of the following demosaicking algorithms are provided below:

A.1 Proposed Algorithm Block

1 %==

2 % Name: ordinal5Tris_v1.m

3 % Author: Kinyua Wachira, Univ. of Nairobi

4 % Date: 30-04-2017 (Completion)

5 % Desc: an ordinal pentomino inspired path demosaicking algorithm,

% working under a Bayer equivalent CFA

6 %

7 %==

8

9 %==

10 % Preamble

11 %==

12 % utility fcns

13 % clc; clear all; close all hidden;

14

15 % load image and generate Bayer CFA representation - in particular rgbg

16 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

17 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

18 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

19 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

20 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

21 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

22

23 imgBayer = fcn_bayerisation(img); %used to perform the bayerisation process

24

25

26 imgBayer = double(imgBayer); %need to make this a double during calculation

27 %imgBayer = img;

28 [R,C] = size(imgBayer);

29 [imgRed,imgGrn,imgBlu] = deal(double(zeros(R,C)));

30 imgPTI = deal(double(zeros(R,C,3)));

31 %also set a border padding size

32 pad=3; %during interpolation - the maximum width

33 padBorder = 4; %when calculating PSNR, CPSNR

34

35 for i=1:1:R;

36 for j=1:1:C;

37 if (mod(i,2)==1 && mod(j,2)==1)

38 imgRed(i,j) = imgBayer(i,j);

39 elseif (mod(i+j,2)==1)

40 imgGrn(i,j) = imgBayer(i,j);

41 else

42 imgBlu(i,j) = imgBayer(i,j);

43 end;

44 end;

45 end;

46

47 %==

48 % Algorithm

49 %==

50 % SECTION I: GREEN CHANNEL INTERPOLATION

51

52 %---

53 % step 0: set the 5 variables and perform the interpolation process

54 %---

86

55 %variable set 1: choice of epsilon

56 err = 4; %using my epsilon analysis information over 4 image sets

57

58 %variable set 2: green plane overemphasis and no emphasis factors

59 noemp = 1;

60 empGrn = 3;

61 empOpp = 2;

62 %variable set 3: non uniform interplane weighting

63 k1 = 0.8;

64 k2 = 0.7;

65

66 %---

67 % step 1: set up maps to be used for polling

68 %---

69 [HRmap,VRmap,HBmap,VBmap] = deal(double(zeros(R,C)));

70 [crmap,cbmap] = deal(double(zeros(R,C)));

71

72 %--

73 % step 2: populate the Hmaps and Vmaps

74 %--

75 for i=1+2:1:R-2;

76 for j=1+2:1:C-2;

77 if (mod(i,2)==1 && mod(j,2)==1) %red pixel locations

78 HRmap(i,j) = 0.25*abs(2.*imgBayer(i,j) - imgBayer(i,j-2) -

imgBayer(i,j+2)) ...

79 + 0.5*abs(imgBayer(i,j-1) - imgBayer(i,j+1));

80 VRmap(i,j) = 0.25*abs(2*imgBayer(i,j) - imgBayer(i-2,j) -

imgBayer(i+2,j)) ...

81 + 0.5*abs(imgBayer(i-1,j) - imgBayer(i+1,j));

82 end;

83 if (mod(i,2)==0 && mod(j,2)==0) %blue pixel locations

84 HBmap(i,j) = 0.25.*abs(2.*imgBayer(i,j) - imgBayer(i,j-2) -

imgBayer(i,j+2)) ...

85 + 0.5*abs(imgBayer(i,j-1) - imgBayer(i,j+1));

86 VBmap(i,j) = 0.25*abs(2*imgBayer(i,j) - imgBayer(i-2,j) -

imgBayer(i+2,j)) ...

87 + 0.5*abs(imgBayer(i-1,j) - imgBayer(i+1,j));

88 end;

89 end;

90 end;

91

92 %---

93 % step 3: populate the cmaps - the choice/polling maps

94 %---

95 for i=1:1:R;

96 for j=1:1:C;

97 if (HRmap(i,j) > 2*VRmap(i,j))

98 crmap(i,j) = 1;

99 end;

100 if (VRmap(i,j) > 2*HRmap(i,j))

101 crmap(i,j) = -1;

102 end;

103 if (HBmap(i,j) > 2*VBmap(i,j))

104 cbmap(i,j) = 1;

105 end;

106 if (VBmap(i,j) > 2*HBmap(i,j))

107 crmap(i,j) = -1;

108 end;

109 end;

110 end;

111

112 %---

113 % step 4: perform the green interpolation, with polling

114 %---

115 for i=1+pad:1:R-pad;

116 for j=1+pad:1:C-pad;

117 if ~(mod(i+j,2)==1)

118 %initial estimates

87

119 GNWest = 0.5*(imgGrn(i-1,j) + imgGrn(i,j-1)) +

(k1*k2).*(imgBayer(i,j) - imgBayer(i-2,j-2));

120 GSWest = 0.5*(imgGrn(i+1,j) + imgGrn(i,j-1)) +

(k1*k2).*(imgBayer(i,j) - imgBayer(i+2,j-2));

121 GSEest = 0.5*(imgGrn(i,j+1) + imgGrn(i+1,j)) +

(k1*k2).*(imgBayer(i,j) - imgBayer(i+2,j+2));

122 GNEest = 0.5*(imgGrn(i,j+1) + imgGrn(i-1,j)) +

(k1*k2).*(imgBayer(i,j) - imgBayer(i-2,j+2));

123

124 %establish gradients

125 gNW = abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ... %g43-g32 --N

126 abs(imgGrn(i,j+1) - imgGrn(i-1,j-2)) + ... %g45-g32 --N

127 abs(imgGrn(i,j+1) - imgGrn(i-2,j-1)) + ... %g45-g23 --Z

128 abs(imgGrn(i-1,j) - imgGrn(i-2,j-1)) + ... %g34-g23 --Z

129 abs(imgGrn(i+1,j) - imgGrn(i,j-1)) + ... %g54-g43 --W

130 abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ... %g43-g32 --W

131 k1.*abs(imgBayer(i,j) - imgBayer(i-2,j-2)) + ...%r44-r22

132 k2.*abs(imgBayer(i-1,j-1) - imgBayer(i-3,j-3)) + ...%b33-

b11

133 err;

134

135 gSW = abs(imgGrn(i,j+1) - imgGrn(i+2,j-1)) + ... %g45-g63 --Z

136 abs(imgGrn(i+1,j) - imgGrn(i+2,j-1)) + ... %g54-g63 --Z

137 abs(imgGrn(i-1,j) - imgGrn(i,j-1)) + ... %g34-g43 --W

138 abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ...%g43-g52 --N

139 abs(imgGrn(i,j+1) - imgGrn(i+1,j-2)) + ...%g45-g52 --N

140 abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ...%g43-g52 --W

141 k1.*abs(imgBayer(i,j) - imgBayer(i+2,j-2)) + ...%r44-r62

142 k2.*abs(imgBayer(i+1,j-1) - imgBayer(i+3,j-3)) + ...%b53-

b71

143 err;

144

145 gNE = abs(imgGrn(i,j-1) - imgGrn(i-1,j+2)) + ... %g43-g36 --N

146 abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ... %g45-g36 --N

147 abs(imgGrn(i+1,j) - imgGrn(i,j+1)) + ... %g54-g45 --W

148 abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ... %g45-g36 --W

149 abs(imgGrn(i,j-1) - imgGrn(i-2,j+1)) + ... %g43-g25 --Z

150 abs(imgGrn(i-1,j) - imgGrn(i-2,j+1)) + ... %g34-g25 --Z

151 k1.*abs(imgBayer(i,j) - imgBayer(i-2,j+2)) + ...%r44-r26

152 k2.*abs(imgBayer(i-1,j+1) - imgBayer(i-3,j+3)) + ...%b35-

b17

153 err;

154

155 gSE = abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ... %g45-g56 --N

156 abs(imgGrn(i,j-1) - imgGrn(i+1,j+2)) + ... %g43-g56 --N

157 abs(imgGrn(i-1,j) - imgGrn(i,j+1)) + ... %g34-g45 --W

158 abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ...%g45-g56 --W

159 abs(imgGrn(i,j-1) - imgGrn(i+2,j+1)) + ...%g43-g65 --Z

160 abs(imgGrn(i+1,j) - imgGrn(i+2,j+1)) + ...%g54-g65 --Z

161 k1.*abs(imgBayer(i,j) - imgBayer(i+2,j+2)) + ...%r44-r66

162 k2.*abs(imgBayer(i+1,j+1) - imgBayer(i+3,j+3)) + ...%b55-

b77

163 err;

164

165 %establish weights

166 wNW = 1./gNW;

167 wSE = 1./gSE;

168 wSW = 1./gSW;

169 wNE = 1./gNE;

170

171 %set up the voting mechanism

172 if (mod(i,2)==1 && mod(j,2)==1) %red pixel centre

173 F = crmap(i,j) + ...

174 cbmap(i-1,j-1) + cbmap(i+1,j+1) + ...

175 cbmap(i-1,j+1) + cbmap(i+1,j-1);

176 end;

177 if (mod(i,2)==0 && mod(j,2)==0) %blue pixel centre

178 F = cbmap(i,j) + ...

88

179 crmap(i-1,j-1) + crmap(i+1,j+1) + ...

180 crmap(i-1,j+1) + crmap(i+1,j-1);

181 end;

182

183 switch F

184 case {4,5} % predominantly vertical

185 imgGrn(i,j) = (wNW.*GNWest + wSE.*GSEest)/(wNW+wSE);

186 case {-4,-5} % predominantly horizontal

187 imgGrn(i,j) = (wSW.*GSWest + wNE.*GNEest)/(wSW+wNE);

188 otherwise % undetermined

189 imgGrn(i,j) = (wNW.*GNWest + wSE.*GSEest + ...

190 wSW.*GSWest +

wNE.*GNEest)/(wNW+wSE+wSW+wNE);

191 end;

192 end;

193 end;

194 end;

195

196 % SECTION II: RED CHANNEL INTERPOLATION

197 % red content in blue pixel points

198 for i=1+pad:1:R-pad;

199 for j=1+pad:1:C-pad;

200 if (mod(i,2)==0 && mod(j,2)==0)

201 %initial estimates in the NW, NE, SE, SW directions

202 rNW = imgBayer(i-1,j-1) - imgGrn(i-1,j-1);

203 rNE = imgBayer(i-1,j+1) - imgGrn(i-1,j+1);

204 rSE = imgBayer(i+1,j+1) - imgGrn(i+1,j+1);

205 rSW = imgBayer(i+1,j-1) - imgGrn(i+1,j-1);

206

207 %gradient determination

208 gNW = k2.*abs(imgBayer(i-1,j-1) - imgBayer(i+1,j+1)) + ... %opp

plane

209 empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j-1)) + ... %green

in-line

210 empGrn.*abs(imgGrn(i-1,j-1) - imgGrn(i-2,j-2)) + ...

211 noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j-1)) + ...%green

outlier

212 noemp.*abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ...

213 err;%desired

214

215 gNE = k2.*abs(imgBayer(i-1,j+1) - imgBayer(i+1,j-1)) + ...

216 empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j+1)) + ...

217 empGrn.*abs(imgGrn(i-1,j+1) - imgGrn(i-2,j+2)) + ...

218 noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j+1))+ ...

219 noemp.*abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ...

220 err;

221

222 gSE = k2.*abs(imgBayer(i+1,j+1) - imgBayer(i-1,j-1)) + ...

223 empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j+1)) + ...

224 empGrn.*abs(imgGrn(i+1,j+1) - imgGrn(i+2,j+2)) + ...

225 noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j+1)) + ...

226 noemp.*abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ...

227 err;

228

229 gSW = k2.*abs(imgBayer(i+1,j-1) - imgBayer(i-1,j+1)) + ...

230 empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j-1)) + ...

231 empGrn.*abs(imgGrn(i+1,j-1) - imgGrn(i+2,j-2)) + ...

232 noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j-1)) + ...

233 noemp.*abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ...

234 err;

235

236 % weights

237 wNW = 1./gNW;

238 wNE = 1./gNE;

239 wSE = 1./gSE;

240 wSW = 1./gSW;

241 w = wNW + wNE + wSE + wSW;

242

89

243 r = imgGrn(i,j) + (wNW.*rNW + wNE.*rNE + wSE.*rSE +

wSW.*rSW)/w;

244 imgRed(i,j) = r;

245 end;

246 end;

247 end;

248

249

250 for i=1+pad:1:R-pad;

251 for j=1+pad:1:C-pad;

252 if (mod(i+j,2)==1)

253

254 %initial estimates of N,E,W,S directions

255 rN = imgRed(i-1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i-2,j));

256 rS = imgRed(i+1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i+2,j));

257 rE = imgRed(i,j+1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j+2));

258 rW = imgRed(i,j-1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j-2));

259

260 %establish gradients

261 gN = abs(imgRed(i-2,j-1) - imgRed(i,j-1)) + ...

262 empOpp.*abs(imgRed(i-1,j) - imgRed(i-2,j-1)) + ...

263 empOpp.*abs(imgRed(i-1,j) - imgRed(i-2,j+1)) + ...

264 abs(imgRed(i-2,j+1) - imgRed(i,j+1)) + ...

265 abs(imgGrn(i-3,j-1) - imgGrn(i-1,j-1)) + ...

266 abs(imgGrn(i-3,j+1) - imgGrn(i-1,j+1)) + ...

267 abs(imgGrn(i-2,j) - imgGrn(i,j)) + ...

268 err;

269 gS = abs(imgRed(i,j-1) - imgRed(i+2,j-1)) + ...

270 empOpp.*abs(imgRed(i+1,j) - imgRed(i+2,j-1)) + ...

271 empOpp.*abs(imgRed(i+1,j) - imgRed(i+2,j+1)) + ...

272 abs(imgRed(i,j+1) - imgRed(i+2,j+1)) + ...

273 abs(imgGrn(i+1,j-1) - imgGrn(i+3,j-1)) + ...

274 abs(imgGrn(i+1,j+1) - imgGrn(i+3,j+1)) + ...

275 abs(imgGrn(i,j) - imgGrn(i+2,j)) + ...

276 err;

277 gW = abs(imgRed(i-1,j-2) - imgRed(i-1,j)) + ...

278 abs(imgRed(i+1,j-2) - imgRed(i+1,j)) + ...

279 empOpp.*abs(imgRed(i,j-1) - imgRed(i-1,j-2)) + ...

280 empOpp.*abs(imgRed(i,j-1) - imgRed(i+1,j-2)) + ...

281 abs(imgGrn(i-1,j-3) - imgGrn(i-1,j-1)) + ...

282 abs(imgGrn(i+1,j-3) - imgGrn(i+1,j-1)) + ...

283 abs(imgGrn(i,j-2) - imgGrn(i,j))+ ...

284 err;

285 gE = empOpp.*abs(imgRed(i,j+1) - imgRed(i-1,j+2)) + ...

286 empOpp.*abs(imgRed(i,j+1) - imgRed(i+1,j+2)) + ...

287 abs(imgRed(i-1,j) - imgRed(i-1,j+2)) + ...

288 abs(imgRed(i+1,j) - imgRed(i+1,j+2)) + ...

289 abs(imgGrn(i-1,j+1) - imgGrn(i-1,j+3)) + ...

290 abs(imgGrn(i+1,j+1) - imgGrn(i+1,j+3)) + ...

291 abs(imgGrn(i,j) - imgGrn(i,j+2)) + ...

292 err;

293

294 % weights

295 wN = 1./gN;

296 wS = 1./gS;

297 wW = 1./gW;

298 wE = 1./gE;

299 w = wN + wS + wE + wW;

300

301 imgRed(i,j) = (wN*rN + wE*rE + wW*rW + wS*rS)/w;

302 end;

303 end;

304 end;

305

306 % SECTION III: BLUE CHANNEL INTERPOLATION

307 % blue content in red pixel points

308 for i=1+pad:1:R-pad;

309 for j=1+pad:1:C-pad;

90

310 if (mod(i,2)==1 && mod(j,2)==1)

311 %initial estimates in the NW, NE, SE, SW directions

312 bNW = imgBayer(i-1,j-1) - imgGrn(i-1,j-1);

313 bNE = imgBayer(i-1,j+1) - imgGrn(i-1,j+1);

314 bSE = imgBayer(i+1,j+1) - imgGrn(i+1,j+1);

315 bSW = imgBayer(i+1,j-1) - imgGrn(i+1,j-1);

316

317 %gradient determination

318 gNW = k2.*abs(imgBayer(i-1,j-1) - imgBayer(i+1,j+1)) + ... %opp

plane

319 empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j-1)) + ... %green

in-line

320 empGrn.*abs(imgGrn(i-1,j-1) - imgGrn(i-2,j-2)) + ...

321 noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j-1)) + ...%green

outlier

322 noemp.*abs(imgGrn(i,j-1) - imgGrn(i-1,j-2)) + ...

323 err;%desired

324

325 gNE = k2.*abs(imgBayer(i-1,j+1) - imgBayer(i+1,j-1)) + ...

326 empGrn.*abs(imgGrn(i,j) - imgGrn(i-1,j+1)) + ...

327 empGrn.*abs(imgGrn(i-1,j+1) - imgGrn(i-2,j+2)) + ...

328 noemp.*abs(imgGrn(i-1,j) - imgGrn(i-2,j+1))+ ...

329 noemp.*abs(imgGrn(i,j+1) - imgGrn(i-1,j+2)) + ...

330 err;

331

332 gSE = k2.*abs(imgBayer(i+1,j+1) - imgBayer(i-1,j-1)) + ...

333 empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j+1)) + ...

334 empGrn.*abs(imgGrn(i+1,j+1) - imgGrn(i+2,j+2)) + ...

335 noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j+1)) + ...

336 noemp.*abs(imgGrn(i,j+1) - imgGrn(i+1,j+2)) + ...

337 err;

338

339 gSW = k2.*abs(imgBayer(i+1,j-1) - imgBayer(i-1,j+1)) + ...

340 empGrn.*abs(imgGrn(i,j) - imgGrn(i+1,j-1)) + ...

341 empGrn.*abs(imgGrn(i+1,j-1) - imgGrn(i+2,j-2)) + ...

342 noemp.*abs(imgGrn(i+1,j) - imgGrn(i+2,j-1)) + ...

343 noemp.*abs(imgGrn(i,j-1) - imgGrn(i+1,j-2)) + ...

344 err;

345

346 % weights

347 wNW = 1./gNW;

348 wNE = 1./gNE;

349 wSE = 1./gSE;

350 wSW = 1./gSW;

351 w = wNW + wNE + wSE + wSW;

352

353

354 b = imgGrn(i,j) + (wNW.*bNW + wNE.*bNE + wSE.*bSE +

wSW.*bSW)/w;

355 imgBlu(i,j) = b;

356 end;

357 end;

358 end;

359

360 for i=1+pad:1:R-pad;

361 for j=1+pad:1:C-pad;

362 if (mod(i+j,2)==1)

363

364 %initial estimates of N,E,W,S directions

365 bN = imgBlu(i-1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i-2,j));

366 bS = imgBlu(i+1,j) + (k1*k2).*(imgGrn(i,j) - imgGrn(i+2,j));

367 bE = imgBlu(i,j+1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j+2));

368 bW = imgBlu(i,j-1) + (k1*k2).*(imgGrn(i,j) - imgGrn(i,j-2));

369

370 %establish gradients

371 gN = abs(imgBlu(i-2,j-1) - imgBlu(i,j-1)) + ...

372 empOpp.*abs(imgBlu(i-1,j) - imgBlu(i-2,j-1)) + ...

373 empOpp.*abs(imgBlu(i-1,j) - imgBlu(i-2,j+1)) + ...

91

374 abs(imgBlu(i-2,j+1) - imgBlu(i,j+1)) + ...

375 abs(imgGrn(i-3,j-1) - imgGrn(i-1,j-1)) + ...

376 abs(imgGrn(i-3,j+1) - imgGrn(i-1,j+1)) + ...

377 abs(imgGrn(i-2,j) - imgGrn(i,j)) + ...

378 err;

379 gS = abs(imgBlu(i,j-1) - imgBlu(i+2,j-1)) + ...

380 empOpp.*abs(imgBlu(i+1,j) - imgBlu(i+2,j-1)) + ...

381 empOpp.*abs(imgBlu(i+1,j) - imgBlu(i+2,j+1)) + ...

382 abs(imgBlu(i,j+1) - imgBlu(i+2,j+1)) + ...

383 abs(imgGrn(i+1,j-1) - imgGrn(i+3,j-1)) + ...

384 abs(imgGrn(i+1,j+1) - imgGrn(i+3,j+1)) + ...

385 abs(imgGrn(i,j) - imgGrn(i+2,j)) + ...

386 err;

387 gW = abs(imgBlu(i-1,j-2) - imgBlu(i-1,j)) + ...

388 abs(imgBlu(i+1,j-2) - imgBlu(i+1,j)) + ...

389 empOpp.*abs(imgBlu(i,j-1) - imgBlu(i-1,j-2)) + ...

390 empOpp.*abs(imgBlu(i,j-1) - imgBlu(i+1,j-2)) + ...

391 abs(imgGrn(i-1,j-3) - imgGrn(i-1,j-1)) + ...

392 abs(imgGrn(i+1,j-3) - imgGrn(i+1,j-1)) + ...

393 abs(imgGrn(i,j-2) - imgGrn(i,j))+ ...

394 err;

395 gE = empOpp.*abs(imgBlu(i,j+1) - imgBlu(i-1,j+2)) + ...

396 empOpp.*abs(imgBlu(i,j+1) - imgBlu(i+1,j+2)) + ...

397 abs(imgBlu(i-1,j) - imgBlu(i-1,j+2)) + ...

398 abs(imgBlu(i+1,j) - imgBlu(i+1,j+2)) + ...

399 abs(imgGrn(i-1,j+1) - imgGrn(i-1,j+3)) + ...

400 abs(imgGrn(i+1,j+1) - imgGrn(i+1,j+3)) + ...

401 abs(imgGrn(i,j) - imgGrn(i,j+2)) + ...

402 err;

403

404 % weights

405 wN = 1./gN;

406 wS = 1./gS;

407 wW = 1./gW;

408 wE = 1./gE;

409 w = wN + wS + wE + wW;

410

411 imgBlu(i,j) = (wN*bN + wE*bE + wW*bW + wS*bS)/w;

412 end;

413 end;

414 end;

415

416

417 %==

418 % Results

419 %==

420 %---------------------------------------

421 % display images

422 %---------------------------------------

423 % imtool(img);

424 % imtool(imgBayer);

425 % imtool(uint8(imgRed));

426 % imtool(uint8(imgGrn));

427 % imtool(uint8(imgBlu));

428

429

430 %--------------------------

431 % performance metrics

432 %---------------------------

433 imgPTI(:,:,1) = imgRed;

434 imgPTI(:,:,2) = imgGrn;

435 imgPTI(:,:,3) = imgBlu;

436

437 % imtool(uint8(imgPTI));

438 %imwrite(uint8(imgMWILP),'C:\Users\Kinyua Wachira\Desktop\MWILP_dem.tiff');

439

440 MSE = fcn_measureMSESinglev2(uint8(imgPTI(:,:,2)),uint8(img(:,:,2)),4);

441 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgPTI));

92

442 CPSNR = fcn_measureCPSNRv2(uint8(imgPTI),uint8(img),4);

443 SSIM = ssim(img,uint8(imgPTI));

A.2 Functions comprising the Image Acquisition Algorithm Block

Ground Truth Reference Image to Bayer CFA Equivalent Conversion Function

1 %==

2 % Author: Kinyua Wachira, Univ. of Nairobi

3 % Date: 2016 (Development)

4 % File: function_ConvertToBayerCFAv2.m

5 % Desc: a function to convert an RGB image to its Bayer equivalent

6

7 % Notes: this function assumes the CFA is RGBG from top left clockwise

8 %==

9

10 function [imgBayer, imgFullBayer] = function_ConvertToBayerCFA(img)

11

12 %setup

13 [R,C,k] = size(img);

14 imgBayer = uint8(zeros(R,C));

15 imgFullBayer = uint8(zeros(R,C,k));

16

17 %populate the Bayer CFA matrices

18 for i=1:1:R;

19 for j=1:1:C;

20 if (mod(i+j,2)==1)

21 imgBayer(i,j) = img(i,j,2); %green component

22 imgFullBayer(i,j,2) = img(i,j,2);

23 end;

24 if (mod(i,2)==0 && mod(j,2)==0)

25 imgBayer(i,j) = img(i,j,3); %blue component

26 imgFullBayer(i,j,3) = img(i,j,3);

27 end;

28 if (mod(i,2)==1 && mod(j,2)==1)

29 imgBayer(i,j) = img(i,j,1); %red component

30 imgFullBayer(i,j,1) = img(i,j,1);

31 end;

32 end;

33 end;

Ground Truth Reference Image to RGBW CFA Equivalent Conversion Function

1 %==

2 % Author: Kinyua Wachira, Univ. of Nairobi

3 % Date: 2016-2017 (Development)

4 % File: function_ConvertToRGBWCFAv2.m

5 % Desc: a function to convert an RGB image to its Bayer equivalent

6

7 % Notes: this function assumes the CFA is RGBW from top left clockwise

8 %==

9

10 function [imgRGBW]= function_ConvertToRGBWCFA(img)

11

12 %setup

13 [R,C,N] = size(img);

14 imgRGBW = uint8(zeros(R,C,N));

15

16 %populate the Bayer CFA matrices

17 for i=1:1:R;

18 for j=1:1:C;

19 for k=1:1:N;

20 if (mod(i,2)==0 && mod(j,2)==0)

93

21 imgRGBW(i,j,3) = img(i,j,3); %blue component

22 end;

23 if (mod(i,2)==1 && mod(j,2)==1)

24 imgRGBW(i,j,1) = img(i,j,1); %red component

25 end;

26 if (mod(i,2)==1 && mod(j,2)==0)

27 imgRGBW(i,j,2) = img(i,j,2); %green component

28 end;

29 if (mod(i,2)==0 && mod(j,2)==1)

30 imgRGBW(i,j,k) = img(i,j,k); %white component

31 end;

32 end;

33 end;

34 end;

Ground Truth Reference Image to WRGB CFA Equivalent Conversion Function (a 90° clockwise shift

of the preceding function block used in the ACR and EDCR algorithms)

1 %==

2 % Author: Kinyua Wachira, Univ. of Nairobi

3 % Date: 21-01-2016 (Completion)

4 % File: function_ConvertToRGBWCFA.m

5 % Desc: a function to convert an RGB image to its Bayer equivalent

6

7 % Notes: this function assumes the CFA is RGBW from top left clockwise

8 %==

9

10 function [imgWRGB]= function_ConvertToWRGBCFA(img)

11

12 %setup

13 [R,C,N] = size(img);

14 ImgWRGB = uint8(zeros(R,C,N));

15

16 %populate the Bayer CFA matrices

17 for i=1:1:R;

18 for j=1:1:C;

19 for k=1:1:N;

20 if (mod(i,2)==1 && mod(j,2)==1)

21 imgWRGB(i,j,k) = img(i,j,k); %white component

22 end;

23 if (mod(i,2)==1 && mod(j,2)==0)

24 imgWRGB(i,j,1) = img(i,j,1); %red component

25 end;

26 if (mod(i,2)==0 && mod(j,2)==0)

27 imgWRGB(i,j,2) = img(i,j,2); %green component

28 end;

29 if (mod(i,2)==0 && mod(j,2)==1)

30 imgWRGB(i,j,3) = img(i,j,3); %blue component

31 end;

32 end;

33 end;

34 end;

Bayerisation Algorithm (Author’s Implementation)

1 %==

2 % Name: fcn_bayerisation.m

3 % Author: Kinyua Wachira, Univ. of Nairobi

4 % Date: 2017 (development)

5 % Desc: a function to simulate the Bayer CFA

6 %

7 % Notes: the Bayer image is going to be grayscale

8 %==

9

94

10 function [imageBayer] = fcn_bayerisation(image)

11 %construct the Bayer representation

12 [R,C,k] = size(image);

13 imageBayer = uint8(zeros(R,C));

14

15 h = 0.125.* [0 0 -1.5 0 0; 0 2 0 2 0; -1.5 0 6 0 -1.5; 0 2 0 2 0;

16 0 0 -1.5 0 0];

17

18 image = h.*image;

19 image = function_ConvertToBayerCFA(image);

20 for i=1:1:R;

21 for j=1:1:C;

22 if (mod(i,2)==1 && mod(j,2)==1)

23 imageBayer(i,j) = image(i,j,1);

24 elseif (mod(i+j,2) == 1)

25 imageBayer(i,j) = image(i,j,2);

26 else

27 imageBayer(i,j) = image(i,j,3);

28 end;

29 end;

30 end;

Image Reading Function Block (Default MATLAB source implementation)

1 function [X, map, alpha] = imread(varargin)

2 %IMREAD Read image from graphics file.

3 % A = IMREAD(FILENAME,FMT) reads a grayscale or color image from the file

4 % specified by the string FILENAME. FILENAME must be in the current

5 % directory, in a directory on the MATLAB path, or include a full or

6 % relative path to a file.

7 %

8 % The text string FMT specifies the format of the file by its standard

9 % file extension. For example, specify 'gif' for Graphics Interchange

10 % Format files. To see a list of supported formats, with their file

11 % extensions, use the IMFORMATS function. If IMREAD cannot find a file

12 % named FILENAME, it looks for a file named FILENAME.FMT.

13 %

14 % The return value A is an array containing the image data. If the file

15 % contains a grayscale image, A is an M-by-N array. If the file contains

16 % a truecolor image, A is an M-by-N-by-3 array. For TIFF files containing

17 % color images that use the CMYK color space, A is an M-by-N-by-4 array.

18 % See TIFF in the Format-Specific Information section for more

19 % information.

20 %

21 % The class of A depends on the bits-per-sample of the image data,

22 % rounded to the next byte boundary. For example, IMREAD returns 24-bit

23 % color data as an array of uint8 data because the sample size for each

24 % color component is 8 bits. See the Remarks section for a discussion of

25 % bitdepths, and see the Format-Specific Information section for more

26 % detail about supported bitdepths and sample sizes for a particular

27 % format.

28 %

29 % [X,MAP] = IMREAD(FILENAME,FMT) reads the indexed image in FILENAME into

30 % X and its associated colormap into MAP. Colormap values in the image

31 % file are automatically rescaled into the range [0,1].

32 %

33 % [...] = IMREAD(FILENAME) attempts to infer the format of the file

34 % from its content.

35 %

36 % [...] = IMREAD(URL,...) reads the image from an Internet URL.

37 %

38 % Remarks

39 %

40 % Bitdepth is the number of bits used to represent each image pixel.

41 % Bitdepth is calculated by multiplying the bits-per-sample with the

42 % samples-per-pixel. Thus, a format that uses 8-bits for each color

95

43 % component (or sample) and three samples per pixel has a bitdepth of 24.

44 % Sometimes the sample size associated with a bitdepth can be ambiguous:

45 % does a 48-bit bitdepth represent six 8-bit samples or three 16-bit

46 % samples? The following format-specific sections provide sample size

47 % information to avoid this ambiguity.

48 %

49 % Format-Specific Information (Listed Alphabetically by Format)

50 %

51 % BMP -- Windows Bitmap

52 %

53 % Supported Compression Output

54 % Bitdepths None RLE Class Notes

55 % ---

56 % 1-bit x - logical

57 % 4-bit x x uint8

58 % 8-bit x x uint8

59 % 16-bit x - uint8 1 sample/pixel

60 % 24-bit x - uint8 3 samples/pixel

61 % 32-bit x - uint8 3 samples/pixel (1 byte padding)

62 %

63 % CUR -- Cursor File

64 %

65 % Supported Compression Output

66 % Bitdepths None Compressed Class

67 % --

68 % 1-bit x - logical

69 % 4-bit x - uint8

70 % 8-bit x - uint8

71 %

72 % Special syntaxes:

73 %

74 % [...] = IMREAD(...,IDX) reads in one image from a multi-image icon or

75 % cursor file. IDX is an integer value that specifies the order that the

76 % image appears in the file. For example, if IDX is 3, IMREAD reads the

77 % third image in the file. If you omit this argument, IMREAD reads the

78 % first image in the file.

79 %

80 % [A,MAP,ALPHA] = IMREAD(...) returns the AND mask for the resource,

81 % which can be used to determine transparency information. For cursor

82 % files, this mask may contain the only useful data.

83 %

84 % GIF -- Graphics Interchange Format

85 %

86 % Supported Output Class

87 % ---------------------------

88 % 1-bit logical

89 % 2-to-8 bit uint8

90 %

91 % Special syntaxes:

92 %

93 % [...] = IMREAD(...,IDX) reads in one or more frames from a multiframe

94 % (i.e., animated) GIF file. IDX must be an integer scalar or vector of

95 % integer values. For example, if IDX is 3, IMREAD reads the third image

96 % in the file. If IDX is 1:5, only the first five frames are returned.

97 %

98 % [...] = IMREAD(...,'Frames',IDX) is the same as the syntax above except

99 % that IDX can be 'all'. In this case, all of the frames are read and

100 % returned in the order that they appear in the file.

101 %

102 % Note: Because of the way GIF files are structured, all of the frames

103 % must be read when a particular frame is requested. Consequently, it is

104 % much faster to specify a vector of frames or 'all' for IDX than to call

105 % IMREAD in a loop when reading multiple frames from the same GIF file.

106 %

107 % HDF -- Hierarchical Data Format

108 %

109 % Supported Raster image Raster image Output

110 % Bitdepths with colormap without colormap Class Notes

96

111 % --

112 % 8-bit x x uint8

113 % 24-bit - x uint8 3 samples/pixel

114 %

115 % Special Syntaxes:

116 %

117 % [...] = IMREAD(...,REF) reads in one image from a multi-image HDF file.

118 % REF is an integer value that specifies the reference number used to

119 % identify the image. For example, if REF is 12, IMREAD reads the image

120 % whose reference number is 12. (Note that in an HDF file the reference

121 % numbers do not necessarily correspond with the order of the images in

122 % the file. You can use IMFINFO to match up image order with reference

123 % number.) If you omit this argument, IMREAD reads the first image in

124 % the file.

125 %

126 % ICO -- Icon File

127 %

128 % See CUR.

129 %

130 % JPEG -- Joint Photographic Experts Group

131 %

132 % Note: IMREAD can read any baseline JPEG image as well as JPEG images

133 % with some commonly used extensions.

134 %

135 % Supported Compression Output

136 % Bitdepths Lossy Lossless Class Notes

137 % --

138 % 8-bit x x uint8 Grayscale or RGB

139 % 12-bit x x uint16 Grayscale

140 % 16-bit - x uint16 Grayscale

141 % 36-bit x x uint16 RGB(Three 12-bit samples/pixel)

142 %

143 % JPEG 2000 - Joint Photographic Experts Group 2000

144 %

145 % Supported Compression Output

146 % Bitdepths Lossy Lossless Class

147 % (per sample)

148 % --

149 % 1-bit x x logical

150 % 2- to 8-bit x x uint8, int8

151 % 9- to 16-bit x x uint16, int16

152 %

153 % Note: Indexed JPEG 2000 images are not supported. Only JP2 compatible

154 % color spaces are supported for JP2/JPX files. By default, all image

155 % channels are returned in the order they are stored in the file.

156 %

157 % Special Syntaxes

158 %

159 % [...] = IMREAD(..., 'Param1', value1, 'Param2', value2, ...) uses

160 % parameter-value pairs to control the read operation.

161 %

162 % Parameter name Value

163 % -------------- -----

164 % 'ReductionLevel' A non-negative integer specifying the reduction in

165 % the resolution of the image. For a reduction

166 % level 'L', the image resolution is reduced by a

167 % factor of 2^L. The default value is 0 implying

168 % no reduction. The reduction level is limited by

169 % the total number of decomposition levels as

170 % provided by 'WaveletDecompositionLevels' field

171 % in the structure returned from IMFINFO function.

172 %

173 % 'PixelRegion' {ROWS, COLS}. IMREAD returns the sub-image

174 % specified by the boundaries in ROWS and COLS.

175 % ROWS and COLS must both be two-element vectors

176 % that denote the 1-based indices [START STOP]. If

177 % 'ReductionLevel' is greater than 0, then ROWS and

178 % COLS are coordinates in the reduced-sized image.

97

179 %

180 % 'V79Compatible' A logical value. If true, the image returned is

181 % transformed to gray-scale or RGB as consistent with

182 % previous versions of IMREAD (MATLAB 7.9 [R2009b]

183 % and earlier). Use this option to transform YCC

184 % images into RGB. The default is false.

185 %

186 % PBM -- Portable Bitmap

187 %

188 % Supported Raw ASCII (Plain) Output

189 % Bitdepths Binary Encoded Class

190 % --

191 % 1-bit x x logical

192 %

193 % PCX -- Windows Paintbrush

194 %

195 % Supported Output

196 % Bitdepths Class Notes

197 % --

198 % 1-bit logical Grayscale only

199 % 8-bit uint8 Grayscale or indexed

200 % 24-bit uint8 RGB (8-bit samples)

201 %

202 % PGM -- Portable Graymap

203 %

204 % Supported Raw ASCII (Plain) Output

205 % Bitdepths Binary Encoded Class

206 % --

207 % up to 16-bit x - uint8

208 % Arbitrary - x

209 %

210 % PNG -- Portable Network Graphics

211 %

212 % Supported Output

213 % Bitdepths Class Notes

214 % ---

215 % 1-bit logical Grayscale only

216 % 2-bit uint8 Grayscale only

217 % 4-bit uint8 Grayscale only

218 % 8-bit uint8 Grayscale or Indexed

219 % 16-bit uint16 Grayscale or Indexed

220 % 24-bit uint8 RGB (Three 8-bit samples/pixel)

221 % 48-bit uint16 RGB (Three 16-bit samples/pixel)

222 %

223 % Special Syntaxes:

224 %

225 % [...] = IMREAD(...,'BackgroundColor',BG) composites any transparent

226 % pixels in the input image against the color specified in BG. If BG is

227 % 'none', then no compositing is performed. Otherwise, if the input image

228 % is indexed, BG should be an integer in the range [1,P] where P is the

229 % colormap length. If the input image is grayscale, BG should be a value

230 % in the range [0,1]. If the input image is RGB, BG should be a

231 % three-element vector whose values are in the range [0,1]. The string

232 % 'BackgroundColor' may be abbreviated.

233 %

234 % If the ALPHA output argument is used (see below), then BG defaults to

235 % 'none' if not specified by the user. Otherwise, if the PNG file

236 % ontains a background color chunk, that color is used as the default

237 % value for BG. If ALPHA is not used and the file does not contain a

238 % background color chunk, then the default value for BG is 1 for indexed

239 % images; 0 for grayscale images; and [0 0 0] for RGB images.

240 %

241 % [A,MAP,ALPHA] = IMREAD(...) returns the alpha channel if one is

242 % present; otherwise ALPHA is []. If 'BackgroundColor' is specified by

243 % the user then ALPHA is []. Note that MAP may be empty if the file

244 % contains a grayscale or truecolor image.

245 %

246 % PPM -- Portable Pixmap

98

247 %

248 % Supported Raw ASCII (Plain) Output

249 % Bitdepths Binary Encoded Class

250 % --

251 % up to 16-bit x - uint8

252 % Arbitrary - x

253 %

254 % RAS -- Sun Raster

255 %

256 % Supported Output

257 % Bitdepths Class Notes

258 % --

259 % 1-bit logical Bitmap

260 % 8-bit uint8 Indexed

261 % 24-bit uint8 RGB (8-bit samples)

262 % 32-bit uint8 RGB with Alpha (8-bit samples)

263 %

264 % TIFF -- Tagged Image File Format

265 %

266 % NOTE: Images with a YCbCr photometric interpretation are converted to

267 % the RGB colorspace.

268 %

269 % Special Syntaxes:

270 %

271 % A = IMREAD(...) returns color data that uses the RGB, CIELAB, ICCLAB,

272 % or CMYK color spaces. If the color image uses the CMYK color space, A

273 % is an M-by-N-by-4 array.

274 %

275 % [...] = IMREAD(..., 'Param1', value1, 'Param2', value2, ...) uses

276 % parameter-value pairs to control the read operation. There are three

277 % different parameters you can use:

278 %

279 % Parameter name Value

280 % -------------- -----

281 % 'Index' A positive integer specifying which image to read

in

282 % a multi-image TIFF file. For example, if 'Index'

is

283 % 3, IMREAD reads the third image in the file.

284 %

285 % 'Info' A structure array; the output of IMFINFO. When

286 % reading images from a multi-image TIFF file,

passing

287 % the output of IMFINFO as the 'Info' parameter helps

288 % IMREAD locate the images in the file more quickly.

289 %

290 % 'PixelRegion' {ROWS, COLS}. IMREAD returns the sub-image

291 % specified by the boundaries in ROWS and COLS. ROWS

292 % and COLS must be either two- or three-element

293 % vectors. If two elements are provided, they denote

294 % the 1-based indices [START STOP]. If three

elements

295 % are provided, the indices [START INCREMENT STOP]

296 % allow image downsampling.

297 %

298 % XWD -- X Window Dump

299 %

300 % Supported Output

301 % Bitdepths ZPixmaps XYBitmaps XYPixmaps Class

302 % --

303 % 1-bit x - x logical

304 % 8-bit x - - uint8

305 %

306 % Please read the file libtiffcopyright.txt for more information.

307 %

308 % Example:

309 %

310 % imdata = imread('ngc6543a.jpg');

99

311 %

312 % See also IMFINFO, IMWRITE, IMFORMATS, FREAD, IMAGE, DOUBLE, UINT8.

313

314 % Copyright 1984-2015 The MathWorks, Inc.

315

316 [filename, fmt_s, extraArgs] = parse_inputs(varargin{:});

317

318 % Download remote file.

319 if (strfind(filename, '://'))

320

321 url = true;

322

323 if (~usejava('jvm'))

324 error(message('MATLAB:imagesci:imread:noJava'))

325 end

326

327 try

328 filename = urlwrite(filename, tempname);

329 catch %#ok<*CTCH>

330 error(message('MATLAB:imagesci:imread:readURL', filename));

331 end

332

333 else

334

335 url = false;

336

337 end

338

339 if (isempty(fmt_s))

340 % The format was not specified explicitly.

341

342 % Verify that the file exists.

343 fid = fopen(filename, 'r');

344 if (fid == -1)

345

346 if ~isempty(dir(filename))

347 error(message('MATLAB:imagesci:imread:fileReadPermission',

filename));

348 else

349 error(message('MATLAB:imagesci:imread:fileDoesNotExist',

filename));

350 end

351

352 else

353 % File exists. Get full filename.

354 filename = fopen(fid);

355 fclose(fid);

356 end

357

358 % Try to determine the file type.

359 [format, fmt_s] = imftype(filename);

360

361 if (isempty(format))

362 error(message('MATLAB:imagesci:imread:fileFormat'));

363 end

364

365 else

366 % The format was specified explicitly.

367

368 % Verify that the file exists.

369 fid = fopen(filename, 'r');

370 if (fid == -1)

371 % Couldn't open using the given filename; search for a

372 % file with an appropriate extension.

373 for p = 1:length(fmt_s.ext)

374 fid = fopen([filename '.' fmt_s.ext{p}]);

375

376 if (fid ~= -1)

100

377 % The file was found. Don't continue searching.

378 break

379 end

380 end

381 end

382

383 if (fid == -1)

384 if ~isempty(dir(filename))

385 error(message('MATLAB:imagesci:imread:fileReadPermission',

filename));

386 else

387 error(message('MATLAB:imagesci:imread:fileDoesNotExist',

filename));

388 end

389 else

390 filename = fopen(fid);

391 fclose(fid);

392 end

393

394 end

395

396 if isempty(fmt_s)

397 % Get format details.

398 fmt_s = imformats(format);

399 end

400

401 % Verify that a read function exists

402 if (isempty(fmt_s.read))

403 error(message('MATLAB:imagesci:imread:readFunctionRegistration',

fmt_s.ext{ 1 }));

404 end

405

406 if ((fmt_s.alpha) && (nargout == 3))

407

408 % Use the alpha channel.

409 [X, map, alpha] = feval(fmt_s.read, filename, extraArgs{:});

410

411 else

412

413 % Alpha channel is not requested or is not applicable.

414 alpha = [];

415 [X, map] = feval(fmt_s.read, filename, extraArgs{:});

416

417 end

418

419 % Delete temporary file from Internet download.

420 if (url)

421 delete_download(filename);

422 end

423

424

425

426 %--

427 function delete_download(filename)

428

429 try

430 delete(filename);

431 catch

432 warning(message('MATLAB:imagesci:imread:tempFileDelete', filename))

433 end

434

435

436

437

438 %--

439 function [filename, fmt_s, extraArgs] = parse_inputs(varargin)

440

441 filename = '';

101

442 fmt_s = struct([]);

443 extraArgs = {};

444

445 % Parse arguments based on their number.

446 switch(nargin)

447 case 0

448

449 % Not allowed.

450 error(message('MATLAB:imagesci:imread:inputParsing'));

451

452 case 1

453

454 % Filename only.

455 filename = varargin{1};

456 if ~ischar(filename)

457 error(message('MATLAB:imagesci:imread:badImageSourceDatatype'));

458 end

459

460 otherwise

461

462 % Filename and format or other arguments.

463 filename = varargin{1};

464

465 % Check whether second argument is a format.

466 if (ischar(varargin{2}))

467 fmt_s = imformats(varargin{2});

468 end

469

470 if (~isempty(fmt_s))

471 % The argument matches a format.

472 extraArgs = varargin(3:end);

473 else

474 % The argument begins the format-specific parameters.

475 extraArgs = varargin(2:end);

476 end

477

478 end

A.3 Functions comprising the Comparison Algorithm Block

MSE Evaluation Function (Author’s Implementation)

1 %measure MSE in a single channel

2 function [MSE] = fcn_measureMSESinglev2(obsImg,actImg,b)

3

4 if(nargin < 3)

5 b = 0;

6 End

7

8 if(b > 0)

9 actImg = actImg(b:size(actImg,1)-b, b:size(actImg,2)-b);

10 obsImg = obsImg(b:size(obsImg,1)-b, b:size(obsImg,2)-b);

11 End

12

13 diff = (actImg - obsImg);

14 diff = diff .* diff;

15

16 MSE = sum(diff(:)) / numel(diff) + 1e-32; %small positive factor to avoid

0 MSE

17

18 end

CPSNR Evaluation Function (Author’s Implementation)

102

1 %measure CPSNR

2 %obsImg = observedImage

3 %actImg = actualImage

4 %b = paddding border width

5

6 function [CPSNR] = fcn_measureCPSNRv2(obsImg,actImg,b)

7 peak = 255;

8

9 if(nargin < 3)

10 b = 0;

11 end

12

13 if(b > 0)

14 actImg = actImg(b:size(actImg,1)-b, b:size(actImg,2)-b,:);

15 obsImg = obsImg(b:size(obsImg,1)-b, b:size(obsImg,2)-b,:);

16 end

17

18 dif = (actImg - obsImg);

19 dif = dif .* dif;

20

21 MSE = sum(dif(:)) / numel(dif) + 1e-32; %small positive factor to avoid 0

MSE

22

23 CPSNR = 10 * log10(peak*peak / MSE);

24

25 end

SSIM Evaluation Function (source [131])

1 function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

2

3 % ==

4 % SSIM Index with automatic downsampling, Version 1.0

5 % Copyright(c) 2009 Zhou Wang

6 % All Rights Reserved.

7 %

8 % --

9 % Permission to use, copy, or modify this software and its documentation

10 % for educational and research purposes only and without fee is hereby

11 % granted, provided that this copyright notice and the original authors'

12 % names appear on all copies and supporting documentation. This program

13 % shall not be used, rewritten, or adapted as the basis of a commercial

14 % software or hardware product without first obtaining permission of the

15 % authors. The authors make no representations about the suitability of

16 % this software for any purpose. It is provided "as is" without express

17 % or implied warranty.

18 %--

19 %

20 % This is an implementation of the algorithm for calculating the

21 % Structural SIMilarity (SSIM) index between two images

22 %

23 % Please refer to the following paper and the website with suggested usage

24 %

25 % Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image

26 % quality assessment: From error visibility to structural similarity,"

27 % IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,

28 % Apr. 2004.

29 %

30 % http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

31 %

32 % Note: This program is different from ssim_index.m, where no automatic

33 % downsampling is performed. (downsampling was done in the above paper

34 % and was described as suggested usage in the above website.)

103

35 %

36 % Kindly report any suggestions or corrections to zhouwang@ieee.org

37 %

38 %--

39 %

40 %Input : (1) img1: the first image being compared

41 % (2) img2: the second image being compared

42 % (3) K: constants in the SSIM index formula (see the above

43 % reference). defualt value: K = [0.01 0.03]

44 % (4) window: local window for statistics (see the above

45 % reference). default widnow is Gaussian given by

46 % window = fspecial('gaussian', 11, 1.5);

47 % (5) L: dynamic range of the images. default: L = 255

48 %

49 %Output: (1) mssim: the mean SSIM index value between 2 images.

50 % If one of the images being compared is regarded as

51 % perfect quality, then mssim can be considered as the

52 % quality measure of the other image.

53 % If img1 = img2, then mssim = 1.

54 % (2) ssim_map: the SSIM index map of the test image. The map

55 % has a smaller size than the input images. The actual size

56 % depends on the window size and the downsampling factor.

57 %

58 %Basic Usage:

59 % Given 2 test images img1 and img2, whose dynamic range is 0-255

60 %

61 % [mssim, ssim_map] = ssim(img1, img2);

62 %

63 %Advanced Usage:

64 % User defined parameters. For example

65 %

66 % K = [0.05 0.05];

67 % window = ones(8);

68 % L = 100;

69 % [mssim, ssim_map] = ssim(img1, img2, K, window, L);

70 %

71 %Visualize the results:

72 %

73 % mssim %Gives the mssim value

74 % imshow(max(0, ssim_map).^4) %Shows the SSIM index map

75 %==

76

77

78 if (nargin < 2 || nargin > 5)

79 mssim = -Inf;

80 ssim_map = -Inf;

81 return;

82 end

83

84 if (size(img1) ~= size(img2))

85 mssim = -Inf;

86 ssim_map = -Inf;

87 return;

88 end

89

90 [M N] = size(img1);

91

92 if (nargin == 2)

93 if ((M < 11) || (N < 11))

94 mssim = -Inf;

95 ssim_map = -Inf;

96 return

97 end

98 window = fspecial('gaussian', 11, 1.5); %

99 K(1) = 0.01; % default settings

100 K(2) = 0.03; %

101 L = 255; %

102 end

104

103

104 if (nargin == 3)

105 if ((M < 11) || (N < 11))

106 mssim = -Inf;

107 ssim_map = -Inf;

108 return

109 end

110 window = fspecial('gaussian', 11, 1.5);

111 L = 255;

112 if (length(K) == 2)

113 if (K(1) < 0 || K(2) < 0)

114 mssim = -Inf;

115 ssim_map = -Inf;

116 return;

117 end

118 else

119 mssim = -Inf;

120 ssim_map = -Inf;

121 return;

122 end

123 end

124

125 if (nargin == 4)

126 [H W] = size(window);

127 if ((H*W) < 4 || (H > M) || (W > N))

128 mssim = -Inf;

129 ssim_map = -Inf;

130 return

131 end

132 L = 255;

133 if (length(K) == 2)

134 if (K(1) < 0 || K(2) < 0)

135 mssim = -Inf;

136 ssim_map = -Inf;

137 return;

138 end

139 else

140 mssim = -Inf;

141 ssim_map = -Inf;

142 return;

143 end

144 end

145

146 if (nargin == 5)

147 [H W] = size(window);

148 if ((H*W) < 4 || (H > M) || (W > N))

149 mssim = -Inf;

150 ssim_map = -Inf;

151 return

152 end

153 if (length(K) == 2)

154 if (K(1) < 0 || K(2) < 0)

155 mssim = -Inf;

156 ssim_map = -Inf;

157 return;

158 end

159 else

160 mssim = -Inf;

161 ssim_map = -Inf;

162 return;

163 end

164 end

165

166

167 img1 = double(img1);

168 img2 = double(img2);

169

170 % automatic downsampling

105

171 f = max(1,round(min(M,N)/256));

172 %downsampling by f

173 %use a simple low-pass filter

174 if(f>1)

175 lpf = ones(f,f);

176 lpf = lpf/sum(lpf(:));

177 img1 = imfilter(img1,lpf,'symmetric','same');

178 img2 = imfilter(img2,lpf,'symmetric','same');

179

180 img1 = img1(1:f:end,1:f:end);

181 img2 = img2(1:f:end,1:f:end);

182 end

183

184 C1 = (K(1)*L)^2;

185 C2 = (K(2)*L)^2;

186 window = window/sum(sum(window));

187

188 mu1 = filter2(window, img1, 'valid');

189 mu2 = filter2(window, img2, 'valid');

190 mu1_sq = mu1.*mu1;

191 mu2_sq = mu2.*mu2;

192 mu1_mu2 = mu1.*mu2;

193 sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;

194 sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;

195 sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

196

197 if (C1 > 0 && C2 > 0)

198 ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq +

C1).*(sigma1_sq + sigma2_sq + C2));

199 else

200 numerator1 = 2*mu1_mu2 + C1;

201 numerator2 = 2*sigma12 + C2;

202 denominator1 = mu1_sq + mu2_sq + C1;

203 denominator2 = sigma1_sq + sigma2_sq + C2;

204 ssim_map = ones(size(mu1));

205 index = (denominator1.*denominator2 > 0);

206 ssim_map(index) =

(numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(i

ndex));

207 index = (denominator1 ~= 0) & (denominator2 == 0);

208 ssim_map(index) = numerator1(index)./denominator1(index);

209 end

210

211 mssim = mean2(ssim_map);

212

213 return

FSIM/FSIMC Evaluation Function (source [131])

1 function [FSIM, FSIMc] = FeatureSIM(imageRef, imageDis)

2 % ==

3 % FSIM Index with automatic downsampling, Version 1.0

4 % Copyright(c) 2010 Lin ZHANG, Lei Zhang, Xuanqin Mou and David Zhang

5 % All Rights Reserved.

6 %

7 % --

8 % Permission to use, copy, or modify this software and its documentation

9 % for educational and research purposes only and without fee is here

10 % granted, provided that this copyright notice and the original authors'

11 % names appear on all copies and supporting documentation. This program

12 % shall not be used, rewritten, or adapted as the basis of a commercial

13 % software or hardware product without first obtaining permission of the

14 % authors. The authors make no representations about the suitability of

15 % this software for any purpose. It is provided "as is" without express

16 % or implied warranty.

17 %--

106

18 %

19 % This is an implementation of the algorithm for calculating the

20 % Feature SIMilarity (FSIM) index between two images.

21 %

22 % Please refer to the following paper

23 %

24 % Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang,"FSIM: a feature

similarity

25 % index for image qualtiy assessment", IEEE Transactions on Image

Processing, vol. 20, no. 8, pp. 2378-2386, 2011.

26 %

27 %--

28 %

29 %Input : (1) imageRef: the first image being compared

30 % (2) imageDis: the second image being compared

31 %

32 %Output: (1) FSIM: is the similarty score calculated using FSIM algorithm.

FSIM

33 % only considers the luminance component of images. For colorful

images,

34 % they will be converted to the grayscale at first.

35 % (2) FSIMc: is the similarity score calculated using FSIMc

algorithm. FSIMc

36 % considers both the grayscale and the color information.

37 %Note: For grayscale images, the returned FSIM and FSIMc are the same.

38 %

39 %---

40 %

41 %Usage:

42 %Given 2 test images img1 and img2. For gray-scale images, their dynamic

range should be 0-255.

43 %For colorful images, the dynamic range of each color channel should be 0-

255.

44 %

45 %[FSIM, FSIMc] = FeatureSIM(img1, img2);

46 %---

47

48 [rows, cols] = size(imageRef(:,:,1));

49 I1 = ones(rows, cols);

50 I2 = ones(rows, cols);

51 Q1 = ones(rows, cols);

52 Q2 = ones(rows, cols);

53

54 if ndims(imageRef) == 3 %images are colorful

55 Y1 = 0.299 * double(imageRef(:,:,1)) + 0.587 * double(imageRef(:,:,2)) +

0.114 * double(imageRef(:,:,3));

56 Y2 = 0.299 * double(imageDis(:,:,1)) + 0.587 * double(imageDis(:,:,2)) +

0.114 * double(imageDis(:,:,3));

57 I1 = 0.596 * double(imageRef(:,:,1)) - 0.274 * double(imageRef(:,:,2)) -

0.322 * double(imageRef(:,:,3));

58 I2 = 0.596 * double(imageDis(:,:,1)) - 0.274 * double(imageDis(:,:,2)) -

0.322 * double(imageDis(:,:,3));

59 Q1 = 0.211 * double(imageRef(:,:,1)) - 0.523 * double(imageRef(:,:,2)) +

0.312 * double(imageRef(:,:,3));

60 Q2 = 0.211 * double(imageDis(:,:,1)) - 0.523 * double(imageDis(:,:,2)) +

0.312 * double(imageDis(:,:,3));

61 else %images are grayscale

62 Y1 = imageRef;

63 Y2 = imageDis;

64 end

65

66 Y1 = double(Y1);

67 Y2 = double(Y2);

68 %%%%%%%%%%%%%%%%%%%%%%%%%

69 % Downsample the image

70 %%%%%%%%%%%%%%%%%%%%%%%%%

71 minDimension = min(rows,cols);

72 F = max(1,round(minDimension / 256));

107

73 aveKernel = fspecial('average',F);

74

75 aveI1 = conv2(I1, aveKernel,'same');

76 aveI2 = conv2(I2, aveKernel,'same');

77 I1 = aveI1(1:F:rows,1:F:cols);

78 I2 = aveI2(1:F:rows,1:F:cols);

79

80 aveQ1 = conv2(Q1, aveKernel,'same');

81 aveQ2 = conv2(Q2, aveKernel,'same');

82 Q1 = aveQ1(1:F:rows,1:F:cols);

83 Q2 = aveQ2(1:F:rows,1:F:cols);

84

85 aveY1 = conv2(Y1, aveKernel,'same');

86 aveY2 = conv2(Y2, aveKernel,'same');

87 Y1 = aveY1(1:F:rows,1:F:cols);

88 Y2 = aveY2(1:F:rows,1:F:cols);

89

90 %%%%%%%%%%%%%%%%%%%%%%%%%

91 % Calculate the phase congruency maps

92 %%%%%%%%%%%%%%%%%%%%%%%%%

93 PC1 = phasecong2(Y1);

94 PC2 = phasecong2(Y2);

95

96 %%%%%%%%%%%%%%%%%%%%%%%%%

97 % Calculate the gradient map

98 %%%%%%%%%%%%%%%%%%%%%%%%%

99 dx = [3 0 -3; 10 0 -10; 3 0 -3]/16;

100 dy = [3 10 3; 0 0 0; -3 -10 -3]/16;

101 IxY1 = conv2(Y1, dx, 'same');

102 IyY1 = conv2(Y1, dy, 'same');

103 gradientMap1 = sqrt(IxY1.^2 + IyY1.^2);

104

105 IxY2 = conv2(Y2, dx, 'same');

106 IyY2 = conv2(Y2, dy, 'same');

107 gradientMap2 = sqrt(IxY2.^2 + IyY2.^2);

108

109 %%%%%%%%%%%%%%%%%%%%%%%%%

110 % Calculate the FSIM

111 %%%%%%%%%%%%%%%%%%%%%%%%%

112 T1 = 0.85; %fixed

113 T2 = 160; %fixed

114 PCSimMatrix = (2 * PC1 .* PC2 + T1) ./ (PC1.^2 + PC2.^2 + T1);

115 gradientSimMatrix = (2*gradientMap1.*gradientMap2 + T2) ./(gradientMap1.^2 +

gradientMap2.^2 + T2);

116 PCm = max(PC1, PC2);

117 SimMatrix = gradientSimMatrix .* PCSimMatrix .* PCm;

118 FSIM = sum(sum(SimMatrix)) / sum(sum(PCm));

119

120 %%%%%%%%%%%%%%%%%%%%%%%%%

121 % Calculate the FSIMc

122 %%%%%%%%%%%%%%%%%%%%%%%%%

123 T3 = 200;

124 T4 = 200;

125 ISimMatrix = (2 * I1 .* I2 + T3) ./ (I1.^2 + I2.^2 + T3);

126 QSimMatrix = (2 * Q1 .* Q2 + T4) ./ (Q1.^2 + Q2.^2 + T4);

127

128 lambda = 0.03;

129

130 SimMatrixC = gradientSimMatrix .* PCSimMatrix .* real((ISimMatrix .*

QSimMatrix) .^ lambda) .* PCm;

131 FSIMc = sum(sum(SimMatrixC)) / sum(sum(PCm));

132

133 return;

134

135 %%

%%%%%%

136

137 function [ResultPC]=phasecong2(im)

108

138 % ==

139 % Copyright (c) 1996-2009 Peter Kovesi

140 % School of Computer Science & Software Engineering

141 % The University of Western Australia

142 % http://www.csse.uwa.edu.au/

143 %

144 % Permission is hereby granted, free of charge, to any person obtaining a

copy

145 % of this software and associated documentation files (the "Software"), to

deal

146 % in the Software without restriction, subject to the following conditions:

147 %

148 % The above copyright notice and this permission notice shall be included in

all

149 % copies or substantial portions of the Software.

150 %

151 % The software is provided "as is", without warranty of any kind.

152 % References:

153 %

154 % Peter Kovesi, "Image Features From Phase Congruency". Videre: A

155 % Journal of Computer Vision Research. MIT Press. Volume 1, Number 3,

156 % Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html

157

158 nscale = 4; % Number of wavelet scales.

159 norient = 4; % Number of filter orientations.

160 minWaveLength = 6; % Wavelength of smallest scale filter.

161 mult = 2; % Scaling factor between successive filters.

162 sigmaOnf = 0.55; % Ratio of the standard deviation of the

163 % Gaussian describing the log Gabor filter's

164 % transfer function in the frequency domain

165 % to the filter center frequency.

166 dThetaOnSigma = 1.2; % Ratio of angular interval between filter

orientations

167 % and the standard deviation of the angular

Gaussian

168 % function used to construct filters in the

169 % freq. plane.

170 k = 2.0; % No of standard deviations of the noise

171 % energy beyond the mean at which we set the

172 % noise threshold point.

173 % below which phase congruency values get

174 % penalized.

175 epsilon = .0001; % Used to prevent division by zero.

176

177 thetaSigma = pi/norient/dThetaOnSigma; % Calculate the standard deviation

of the

178 % angular Gaussian function used to

179 % construct filters in the freq.

plane.

180

181 [rows,cols] = size(im);

182 imagefft = fft2(im); % Fourier transform of image

183

184 zero = zeros(rows,cols);

185 EO = cell(nscale, norient); % Array of convolution results.

186

187 estMeanE2n = [];

188 ifftFilterArray = cell(1,nscale); % Array of inverse FFTs of filters

189

190 % Pre-compute some stuff to speed up filter construction

191

192 % Set up X and Y matrices with ranges normalised to +/- 0.5

193 % The following code adjusts things appropriately for odd and even values

194 % of rows and columns.

195 if mod(cols,2)

196 xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1);

197 else

198 xrange = [-cols/2:(cols/2-1)]/cols;

109

199 end

200

201 if mod(rows,2)

202 yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1);

203 else

204 yrange = [-rows/2:(rows/2-1)]/rows;

205 end

206

207 [x,y] = meshgrid(xrange, yrange);

208

209 radius = sqrt(x.^2 + y.^2); % Matrix values contain *normalised*

radius from centre.

210 theta = atan2(-y,x); % Matrix values contain polar angle.

211 % (note -ve y is used to give +ve

212 % anti-clockwise angles)

213

214 radius = ifftshift(radius); % Quadrant shift radius and theta so that

filters

215 theta = ifftshift(theta); % are constructed with 0 frequency at the

corners.

216 radius(1,1) = 1; % Get rid of the 0 radius value at the 0

217 % frequency point (now at top-left corner)

218 % so that taking the log of the radius

will

219 % not cause trouble.

220

221 sintheta = sin(theta);

222 costheta = cos(theta);

223 clear x; clear y; clear theta; % save a little memory

224

225 % Filters are constructed in terms of two components.

226 % 1) The radial component, which controls the frequency band that the filter

227 % responds to

228 % 2) The angular component, which controls the orientation that the filter

229 % responds to.

230 % The two components are multiplied together to construct the overall

filter.

231

232 % Construct the radial filter components...

233

234 % First construct a low-pass filter that is as large as possible, yet falls

235 % away to zero at the boundaries. All log Gabor filters are multiplied by

236 % this to ensure no extra frequencies at the 'corners' of the FFT are

237 % incorporated as this seems to upset the normalisation process when

238 % calculating phase congrunecy.

239 lp = lowpassfilter([rows,cols],.45,15); % Radius .45, 'sharpness' 15

240

241 logGabor = cell(1,nscale);

242

243 for s = 1:nscale

244 wavelength = minWaveLength*mult^(s-1);

245 fo = 1.0/wavelength; % Centre frequency of filter.

246 logGabor{s} = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));

247 logGabor{s} = logGabor{s}.*lp; % Apply low-pass filter

248 logGabor{s}(1,1) = 0; % Set the value at the 0 frequency

point of the filter

249 % back to zero (undo the radius

fudge).

250 end

251

252 % Then construct the angular filter components...

253

254 spread = cell(1,norient);

255

256 for o = 1:norient

257 angl = (o-1)*pi/norient; % Filter angle.

258

259 % For each point in the filter matrix calculate the angular distance from

110

260 % the specified filter orientation. To overcome the angular wrap-around

261 % problem sine difference and cosine difference values are first computed

262 % and then the atan2 function is used to determine angular distance.

263

264 ds = sintheta * cos(angl) - costheta * sin(angl); % Difference in sine.

265 dc = costheta * cos(angl) + sintheta * sin(angl); % Difference in

cosine.

266 dtheta = abs(atan2(ds,dc)); % Absolute angular

distance.

267 spread{o} = exp((-dtheta.^2) / (2 * thetaSigma^2)); % Calculate the

268 % angular filter

component.

269 end

270

271 % The main loop...

272 EnergyAll(rows,cols) = 0;

273 AnAll(rows,cols) = 0;

274

275 for o = 1:norient % For each orientation.

276 sumE_ThisOrient = zero; % Initialize accumulator matrices.

277 sumO_ThisOrient = zero;

278 sumAn_ThisOrient = zero;

279 Energy = zero;

280 for s = 1:nscale, % For each scale.

281 filter = logGabor{s} .* spread{o}; % Multiply radial and angular

282 % components to get the filter.

283 ifftFilt = real(ifft2(filter))*sqrt(rows*cols); % Note rescaling to

match power

284 ifftFilterArray{s} = ifftFilt; % record ifft2 of

filter

285 % Convolve image with even and odd filters returning the result in EO

286 EO{s,o} = ifft2(imagefft .* filter);

287

288 An = abs(EO{s,o}); % Amplitude of even & odd

filter response.

289 sumAn_ThisOrient = sumAn_ThisOrient + An; % Sum of amplitude responses.

290 sumE_ThisOrient = sumE_ThisOrient + real(EO{s,o}); % Sum of even filter

convolution results.

291 sumO_ThisOrient = sumO_ThisOrient + imag(EO{s,o}); % Sum of odd filter

convolution results.

292 if s==1 % Record mean squared filter

value at smallest

293 EM_n = sum(sum(filter.^2)); % scale. This is used for noise

estimation.

294 maxAn = An; % Record the maximum An over all

scales.

295 else

296 maxAn = max(maxAn, An);

297 end

298 end % ... and process the next scale

299

300 % Get weighted mean filter response vector, this gives the weighted mean

301 % phase angle.

302

303 XEnergy = sqrt(sumE_ThisOrient.^2 + sumO_ThisOrient.^2) + epsilon;

304 MeanE = sumE_ThisOrient ./ XEnergy;

305 MeanO = sumO_ThisOrient ./ XEnergy;

306

307 % Now calculate An(cos(phase_deviation) - | sin(phase_deviation)) | by

308 % using dot and cross products between the weighted mean filter response

309 % vector and the individual filter response vectors at each scale. This

310 % quantity is phase congruency multiplied by An, which we call energy.

311

312 for s = 1:nscale,

313 E = real(EO{s,o}); O = imag(EO{s,o}); % Extract even and odd

314 % convolution results.

315 Energy = Energy + E.*MeanE + O.*MeanO - abs(E.*MeanO - O.*MeanE);

316 end

111

317

318 % Compensate for noise

319 % We estimate the noise power from the energy squared response at the

320 % smallest scale. If the noise is Gaussian the energy squared will have a

321 % Chi-squared 2DOF pdf. We calculate the median energy squared response

322 % as this is a robust statistic. From this we estimate the mean.

323 % The estimate of noise power is obtained by dividing the mean squared

324 % energy value by the mean squared filter value

325

326 medianE2n = median(reshape(abs(EO{1,o}).^2,1,rows*cols));

327 meanE2n = -medianE2n/log(0.5);

328 estMeanE2n(o) = meanE2n;

329

330 noisePower = meanE2n/EM_n; % Estimate of noise

power.

331

332 % Now estimate the total energy^2 due to noise

333 % Estimate for sum(An^2) + sum(Ai.*Aj.*(cphi.*cphj + sphi.*sphj))

334

335 EstSumAn2 = zero;

336 for s = 1:nscale

337 EstSumAn2 = EstSumAn2 + ifftFilterArray{s}.^2;

338 end

339

340 EstSumAiAj = zero;

341 for si = 1:(nscale-1)

342 for sj = (si+1):nscale

343 EstSumAiAj = EstSumAiAj + ifftFilterArray{si}.*ifftFilterArray{sj};

344 end

345 end

346 sumEstSumAn2 = sum(sum(EstSumAn2));

347 sumEstSumAiAj = sum(sum(EstSumAiAj));

348

349 EstNoiseEnergy2 = 2*noisePower*sumEstSumAn2 + 4*noisePower*sumEstSumAiAj;

350

351 tau = sqrt(EstNoiseEnergy2/2); % Rayleigh parameter

352 EstNoiseEnergy = tau*sqrt(pi/2); % Expected value of

noise energy

353 EstNoiseEnergySigma = sqrt((2-pi/2)*tau^2);

354

355 T = EstNoiseEnergy + k*EstNoiseEnergySigma; % Noise threshold

356

357 % The estimated noise effect calculated above is only valid for the PC_1

measure.

358 % The PC_2 measure does not lend itself readily to the same analysis.

However

359 % empirically it seems that the noise effect is overestimated roughly by a

factor

360 % of 1.7 for the filter parameters used here.

361

362 T = T/1.7; % Empirical rescaling of the estimated noise effect to

363 % suit the PC_2 phase congruency measure

364 Energy = max(Energy - T, zero); % Apply noise threshold

365

366 EnergyAll = EnergyAll + Energy;

367 AnAll = AnAll + sumAn_ThisOrient;

368 end % For each orientation

369 ResultPC = EnergyAll ./ AnAll;

370 return;

371

372

373 %%

374 % LOWPASSFILTER - Constructs a low-pass butterworth filter.

375 %

376 % usage: f = lowpassfilter(sze, cutoff, n)

377 %

378 % where: sze is a two element vector specifying the size of filter

379 % to construct [rows cols].

112

380 % cutoff is the cutoff frequency of the filter 0 - 0.5

381 % n is the order of the filter, the higher n is the sharper

382 % the transition is. (n must be an integer >= 1).

383 % Note that n is doubled so that it is always an even integer.

384 %

385 % 1

386 % f = --------------------

387 % 2n

388 % 1.0 + (w/cutoff)

389 %

390 % The frequency origin of the returned filter is at the corners.

391 %

392 % See also: HIGHPASSFILTER, HIGHBOOSTFILTER, BANDPASSFILTER

393 %

394

395 % Copyright (c) 1999 Peter Kovesi

396 % School of Computer Science & Software Engineering

397 % The University of Western Australia

398 % http://www.csse.uwa.edu.au/

399 %

400 % Permission is hereby granted, free of charge, to any person obtaining a

copy

401 % of this software and associated documentation files (the "Software"), to

deal

402 % in the Software without restriction, subject to the following conditions:

403 %

404 % The above copyright notice and this permission notice shall be included in

405 % all copies or substantial portions of the Software.

406 %

407 % The Software is provided "as is", without warranty of any kind.

408

409 % October 1999

410 % August 2005 - Fixed up frequency ranges for odd and even sized filters

411 % (previous code was a bit approximate)

412

413 function f = lowpassfilter(sze, cutoff, n)

414

415 if cutoff < 0 || cutoff > 0.5

416 error('cutoff frequency must be between 0 and 0.5');

417 end

418

419 if rem(n,1) ~= 0 || n < 1

420 error('n must be an integer >= 1');

421 end

422

423 if length(sze) == 1

424 rows = sze; cols = sze;

425 else

426 rows = sze(1); cols = sze(2);

427 end

428

429 % Set up X and Y matrices with ranges normalised to +/- 0.5

430 % The following code adjusts things appropriately for odd and even

values

431 % of rows and columns.

432 if mod(cols,2)

433 xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1);

434 else

435 xrange = [-cols/2:(cols/2-1)]/cols;

436 end

437

438 if mod(rows,2)

439 yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1);

440 else

441 yrange = [-rows/2:(rows/2-1)]/rows;

442 end

443

444 [x,y] = meshgrid(xrange, yrange);

113

445 radius = sqrt(x.^2 + y.^2); % A matrix with every pixel = radius

relative to centre.

446 f = ifftshift(1 ./ (1.0 + (radius ./ cutoff).^(2*n))); % The filter

447 return;

A.4 Test Bed Demosaicking Algorithm Blocks

Constant Difference Based Interpolation Algorithm (Author’s Implementation)

1 %==

2 %script: constantDiffBasedInterpolation.m

3 %author: Kinyua Wachira

4 %date: --/07/2014

5 %desc: a script that takes a Bayer filtered image and performs

6 % an extension of bilinear interpolation called constant

7 % difference based (CDB) interpolation on it

8 %==

9

10 %utility functions

11 clc; clear all; close all;

12

13 %load image

14 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

15 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

16 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

17 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim04.tif');

18 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

19 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

20

21 %establish the Bayer CFA representation

22 imgBayer = img2Bayer(img);

23

24 %extract the colour components

25 imgRed = double(imgBayer(:,:,1));

26 imgGrn = double(imgBayer(:,:,2));

27 imgBlu = double(imgBayer(:,:,3));

28

29 pad = 0; %padding region width for interpolation error

30

31 %interpolate the green component

32 fG = [0 1 0; 1 4 1;0 1 0]/4;

33 imgGrnInt = conv2(fG,imgGrn,'full');

34

35 %interpolate the red component, by first establishing it's difference, then

36 %doing interpolation -- the steps follow

37 [R,C] = size(imgRed);

38 %set up a matrix to hold the image differences

39 imgRedDiff = double(zeros(R,C));

40 %populate the difference matrix

41 for i=1:1:R;

42 for j=1:1:C;

43 if (mod(i,2)==1 && mod(j,2)==1)

44 imgRedDiff(i,j) = imgRed(i,j) - imgGrnInt(i+1,j+1);

45 end;

46 end;

47 end;

48 %interpolate the red component difference

49 fRB = [1 2 1; 2 4 2; 1 2 1]/4;

50 imgRedDiffInt = conv2(fRB,imgRedDiff,'full');

51 %establish the final red interpolation matrix

114

52 imgRedInt = imgRedDiffInt + imgGrnInt;

53

54 %interpolate the blue component, in a similar way to the red

55 [R,C] = size(imgBlu);

56 %set up a matrix to hold the image differences

57 imgBluDiff = double(zeros(R,C));

58 %populate the difference matrix

59 for i=1:1:R;

60 for j=1:1:C;

61 if (mod(i,2)==0 && mod(j,2)==0)

62 imgBluDiff(i,j) = imgBlu(i,j) - imgGrnInt(i+1,j+1);

63 end;

64 end;

65 end;

66 %interpolate the blue component difference

67 fRB = [1 2 1; 2 4 2; 1 2 1]/4;

68 imgBluDiffInt = conv2(fRB,imgBluDiff,'full');

69 %establish the final blue interpolation matrix

70 imgBluInt = imgBluDiffInt + imgGrnInt;

71

72 %finally reconstruct the image from its constitutent colour components

73 [R,C] = size(imgGrnInt);

74 imgCDBInt = uint8(zeros(R,C,3));

75 imgCDBInt(:,:,1) = uint8(imgRedInt);

76 imgCDBInt(:,:,2) = uint8(imgGrnInt);

77 imgCDBInt(:,:,3) = uint8(imgBluInt);

78

79 %results

80 %imtool(img);

81 %imtool(imgBayer);

82 %imtool(imgCDBInt);

83

84 %preconditioning img before PSNR

85 [R,C,dim] = size(img);

86 imgCDB = double(zeros(R,C,dim));

87 for i=1:1:R;

88 for j=1:1:C;

89 for k=1:1:dim;

90 imgCDB(i,j,k) = imgCDBInt(i+1,j+1,k);

91 end;

92 end;

93 end;

94

95 %pre-conditioning image to measure CIEDE2000 (if desired)

96 imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k));

97 imgCDBCrop = double(zeros(R-(2*pad),C-(2*pad),k));

98

99 for i=1:1:R-(2*pad);

100 for j=1:1:C-(2*pad);

101 for k=1:1:3;

102 imgCrop(i,j,k) = img(i+pad,j+pad,k);

103 imgCDBCrop(i,j,k) = imgCDB(i+pad,j+pad,k);

104 end;

105 end;

106 end;

107

108 %comparison measures

109 [PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgCDB,img,pad);

110 [CPSNR] = fcn_measureCPSNRv2(imgCDB,img,pad);

111 MSE = fcn_measureMSESinglev2(uint8(imgCDB(:,:,2)),uint8(img(:,:,2)),4);

112 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgCDB));

113 SSIM = ssim(img,uint8(imgCDB));

114 PSNR_R;

115 PSNR_G;

116 PSNR_B;

117 CPSNR;

115

Edge Directed Interpolation Algorithm (Author’s Implementation)

1 %==

2 %script: edgeDirectedInterpolation.m

3 %author: Kinyua Wachira

4 %date: --/07/2014

5 %desc: a script that takes a Bayer filtered image and performs

6 % simple edge directed interpolation as shown in fig [3] of

7 % gunturk article in 2005 Jan Issue of SPM

8 %==

9

10 %utility functions

11 clc; clear all; close all;

12

13 %load image

14 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

15 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

16 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

17 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

18 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

19 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

20

21 pad = 3; %padding region width for interpolation error

22

23 %obtain the 3D (colour) bayer CFA representation

24 imgBayer3D = img2Bayer(img);

25 [R,C,k] = size(img);

26

27 %----------------------------

28 %work on the green component

29 %----------------------------

30 imgGrn = double(imgBayer3D(:,:,2));

31 [R,C] = size(imgGrn);

32 %populate the image edges first so that all inner missing values with hade

33 %sufficient neighbours for edge directed interpolation

34 imgGrnInt = imgGrn;

35 if (mod(R,2) == 0 && mod(C,2) == 0)

36 imgGrnInt(1,1) = (imgGrn(2,1)+imgGrn(1,2))/2;

37 imgGrn(R,C) = (imgGrn(R-1,C)+imgGrn(R,C-1))/2;

38 for i=3:2:R-1; %left edge of image

39 imgGrnInt(i,1) = (imgGrn(i-1,1)+imgGrn(i+1,1))/2;

40 end;

41 for i=2:2:R-2; %right edge of image

42 imgGrnInt(i,C) = (imgGrn(i-1,C)+imgGrn(i+1,C))/2;

43 end;

44 for j=3:2:C-1; %top edge of image

45 imgGrnInt(1,j) = (imgGrn(1,j-1)+imgGrn(1,j+1))/2;

46 end;

47 for j=2:2:C-2; %bottom edge of image

48 imgGrnInt(R,j) = (imgGrn(R,j-1)+imgGrn(R,j+1))/2;

49 end;

50 end;

51

52 %populate the green plane using the simple edge directed interpolation

53 %algorithm

54 for i=1:1:R;

55 for j = 1:1:C;

56 if (mod(i+j,2)==0 && (i>1 && i<R) && (j>1 && j<C))

57 HD = abs(imgGrn(i,j-1) - imgGrn(i,j+1));

58 VD = abs(imgGrn(i-1,j) - imgGrn(i+1,j));

59 if (HD>VD)

60 imgGrnInt(i,j) = (imgGrn(i-1,j) + imgGrn(i+1,j))/2;

116

61 elseif (HD<VD)

62 imgGrnInt(i,j) = (imgGrn(i,j-1) + imgGrn(i,j+1))/2;

63 else

64 imgGrnInt(i,j) = ((imgGrn(i-1,j) + imgGrn(i+1,j)) + ...

65 (imgGrn(i,j-1) + imgGrn(i,j+1)))/4;

66 end;

67 end;

68 end;

69 end;

70

71 %----------------------------

72 %work on the red component

73 %----------------------------

74 imgRed = double(imgBayer3D(:,:,1));

75 imgRedInt = imgRed;

76 for i=1:2:R-1;%Red Horizontals

77 for j=2:2:C-2;

78 imgRedInt(i,j) = (imgRed(i,j-1) - imgGrnInt(i,j-1))/2 + ...

79 (imgRed(i,j+1) - imgGrnInt(i,j+1))/2 + ...

80 imgGrnInt(i,j);

81 end;

82 end;

83

84 for i=2:2:R-2;%Red Verticals

85 for j=1:2:C-1;

86 imgRedInt(i,j) = (imgRed(i-1,j) - imgGrnInt(i-1,j))/2 + ...

87 (imgRed(i+1,j) - imgGrnInt(i+1,j))/2 + ...

88 imgGrnInt(i,j);

89 end;

90 end;

91

92 for i=2:2:R-2; %Red in Blue pixel locations

93 for j=2:2:C-2;

94 imgRedInt(i,j) = (imgRed(i-1,j-1) - imgGrnInt(i-1,j-1))/4 + ...

95 (imgRed(i-1,j+1) - imgGrnInt(i-1,j+1))/4 + ...

96 (imgRed(i+1,j-1) - imgGrnInt(i+1,j-1))/4 + ...

97 (imgRed(i+1,j+1) - imgGrnInt(i+1,j+1))/4 + ...

98 imgGrnInt(i,j);

99 end;

100 end;

101

102 %----------------------------

103 %work on the blue component

104 %----------------------------

105 imgBlu = double(imgBayer3D(:,:,3));

106 imgBluInt = imgBlu;

107 for i=2:2:R;%Blue Horizontals

108 for j=3:2:C-1;

109 imgBluInt(i,j) = (imgBlu(i,j-1) - imgGrnInt(i,j-1))/2 + ...

110 (imgBlu(i,j+1) - imgGrnInt(i,j+1))/2 + ...

111 imgGrnInt(i,j);

112 end;

113 end;

114

115 for i=3:2:R-1;%Blue Verticals

116 for j=2:2:C;

117 imgBluInt(i,j) = (imgBlu(i-1,j) - imgGrnInt(i-1,j))/2 + ...

118 (imgBlu(i+1,j) - imgGrnInt(i+1,j))/2 + ...

119 imgGrnInt(i,j);

120 end;

121 end;

122

123 for i=3:2:R-1; %Blue in Red pixel locations

124 for j=3:2:C-1;

125 imgBluInt(i,j) = (imgBlu(i-1,j-1) - imgGrnInt(i-1,j-1))/4 + ...

126 (imgBlu(i-1,j+1) - imgGrnInt(i-1,j+1))/4 + ...

127 (imgBlu(i+1,j-1) - imgGrnInt(i+1,j-1))/4 + ...

128 (imgBlu(i+1,j+1) - imgGrnInt(i+1,j+1))/4 + ...

117

129 imgGrnInt(i,j);

130 end;

131 end;

132

133 %finally reconstruct the entire image from its interpolated planes

134 imgEdgeInt(:,:,1) = uint8(imgRedInt);

135 imgEdgeInt(:,:,2) = uint8(imgGrnInt);

136 imgEdgeInt(:,:,3) = uint8(imgBluInt);

137

138 %results

139 %imtool(img);

140 %imtool(imgBayer3D);

141 %imtool(uint8(imgGrnInt));

142 %imtool(uint8(imgRedInt));

143 %imtool(uint8(imgBluInt));

144 %imtool(imgEdgeInt);

145

146 %pre-conditioning image to measure CIEDE2000

147 imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k));

148 imgEdgeIntCrop = double(zeros(R-(2*pad),C-(2*pad),k));

149

150 for i=1:1:R-(2*pad);

151 for j=1:1:C-(2*pad);

152 for k=1:1:3;

153 imgCrop(i,j,k) = img(i+pad,j+pad,k);

154 imgEdgeIntCrop(i,j,k) = imgEdgeInt(i+pad,j+pad,k);

155 end;

156 end;

157 end;

158

159 % [PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgEdgeInt,img,pad);

160 % [CPSNR] = measureCPSNR(imgEdgeInt,img,pad);

161 % PSNR_R;

162 % PSNR_G;

163 % PSNR_B;

164 % CPSNR;

165

166 MSE = fcn_measureMSESinglev2(uint8(imgEdgeInt(:,:,2)),uint8(img(:,:,2)),4);

167 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgEdgeInt));

168 CPSNR = fcn_measureCPSNRv2(uint8(imgEdgeInt),uint8(img),4);

169 SSIM = ssim(img,uint8(imgEdgeInt));

170 %notes:

171 %1. this algorithm is too dependent on image dimensions especially when

172 % establishing the green component. I had to establish corner points

before

173 % I could even start interpolating. Can this be abstracted/ generalised?

174 %2. I did not bother with interpolating some edge areas in the blue and red

175 % images as there is insufficient information to interpolate - this led to

176 % some color artefacts at the edges of the image, however these errors are

177 % 1 pixel wide

178 %3. from subjective observation, the results here mirrored the images seen

179 % in gurturk's paper 2005 Jan SPM issue

180 %4. the algorithm can be found in its entirety in the Laroche Prescott

Patent

181 %5. there also seems to be a washout effect this algorithm is performing -

182 % colours are less vibrant than in the original

183

184

185 %NOTE WELL

186 %there was a time PSNR Blue was <<< other PSNR, this was because somewhere

187 %I forgot to define blue matrix as type double/ it was approximating

188 %everything to uint8... be very careful about datatype management... use

189 %double always when calculating

The Malvar-He-Cutler Algorithm (Author’s Implementation)

118

1 %==

2 % script: malvar_HE_CutlerMethod

3 % date: --/08/2014

4 % author: Kinyua Wachira

5 % desc: a script to perform the Malvar-He-Cutler demosaicking technique

6 %==

7

8 %utility fcns

9 %clc; clear all; close all;

10

11 %load image

12 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

13 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

14 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

15 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

16 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

17 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

18

19

20 pad = 2; %padding region width for interpolation error

21

22 %obtain 3D (color) Bayer image

23 imgBayer3D = img2Bayer(img);

24

25 %obtain the grayscale equivalent

26 [R,C,k] = size(imgBayer3D);

27 imgBayer = double(zeros(R,C));

28

29 for i=1:1:R;

30 for j=1:1:C;

31 if(mod(i,2)==1 && mod(j,2)==1)

32 imgBayer(i,j) = imgBayer3D(i,j,1);

33 elseif (mod(i+j,2)==1)

34 imgBayer(i,j) = imgBayer3D(i,j,2);

35 else

36 imgBayer(i,j) = imgBayer3D(i,j,3);

37 end;

38 end;

39 end;

40

41 %===============

42 %green component

43 %===============

44 imgGrn=double(zeros(R,C));

45 %green in green pixel locations

46 for i=1:1:R;

47 for j=1:1:C;

48 if(mod(i+j,2)==1)

49 imgGrn(i,j) = imgBayer(i,j);

50 end;

51 end;

52 end;

53 %green in red/blue pixel locations

54 for i=1+2:1:R-2;

55 for j=1+2:1:C-2;

56 if (mod(i+j,2)~=1)

57 imgGrn(i,j) = 0.125.* (-1*imgBayer(i-2,j) + 2*imgGrn(i-1,j) +

...

58 -1*imgBayer(i,j-2) + 2*imgGrn(i,j-1) + 4*imgBayer(i,j) + ...

59 2*imgGrn(i,j+1) - 1*imgBayer(i,j+2) + ...

60 2*imgGrn(i+1,j) -1*imgBayer(i+2,j));

61 end;

62 end;

119

63 end;

64

65 %=============

66 %red component

67 %=============

68 imgRed=double(zeros(R,C));

69 %red in red pixel locations

70 for i=1:1:R;

71 for j=1:1:C;

72 if(mod(i,2)==1 && mod(j,2)==1)

73 imgRed(i,j) = imgBayer(i,j);

74 end;

75 end;

76 end;

77 %red in green and blue pixel locations

78 for i=1+2:1:R-2;

79 for j=1+2:1:C-2;

80 if (mod(i+j,2)==1 && mod(i,2)==1)

81 imgRed(i,j) = 0.125.* (0.5*imgGrn(i-2,j) ...

82 - 1*imgGrn(i-1,j-1) - 1*imgGrn(i-1,j+1) ...

83 - 1*imgGrn(i,j-2) + 4*imgBayer(i,j-1) + 5*imgGrn(i,j) ...

84 + 4*imgBayer(i,j+1) - 1*imgGrn(i,j+2) ...

85 - 1*imgGrn(i+1,j-1) - 1*imgGrn(i+1,j+1) ...

86 + 0.5*imgGrn(i+2,j));

87 elseif (mod(i+j,2)==1 && mod(i,2)==0)

88 imgRed(i,j) = 0.125.* (-1*imgGrn(i-2,j) ...

89 - 1*imgGrn(i-1,j-1) + 4*imgBayer(i-1,j) - 1*imgGrn(i-1,j+1)

...

90 + 0.5*imgGrn(i,j-2) + 5*imgGrn(i,j) + 0.5*imgGrn(i,j+2) +

...

91 - 1*imgGrn(i+1,j-1) + 4*imgBayer(i+1,j) - 1*imgGrn(i+1,j+1)

...

92 - 1*imgGrn(i+2,j));

93 elseif (mod(i,2)==0 && mod(j,2)==0)

94 imgRed(i,j) = 0.125.* (-1.5*imgBayer(i-2,j) ...

95 + 2*imgBayer(i-1,j-1) + 2*imgBayer(i-1,j+1) ...

96 - 1.5*imgBayer(i,j-2) + 6*imgBayer(i,j) -

1.5*imgBayer(i,j+2) + ...

97 + 2*imgBayer(i+1,j-1) + 2*imgBayer(i+1,j+1) ...

98 - 1.5*imgBayer(i+2,j));

99 end;

100 end;

101 end;

102

103 %=============

104 %blue component

105 %=============

106 imgBlu=double(zeros(R,C));

107 %blue in blue pixel locations

108 for i=1:1:R;

109 for j=1:1:C;

110 if(mod(i,2)==0 && mod(j,2)==0)

111 imgBlu(i,j) = imgBayer(i,j);

112 end;

113 end;

114 end;

115 %blue in green and red pixel locations

116 for i=1+2:1:R-2;

117 for j=1+2:1:C-2;

118 if (mod(i+j,2)==1 && mod(i,2)==0)

119 imgBlu(i,j) = 0.125.* (0.5*imgGrn(i-2,j) ...

120 - 1*imgGrn(i-1,j-1) - 1*imgGrn(i-1,j+1) ...

121 - 1*imgGrn(i,j-2) + 4*imgBayer(i,j-1) + 5*imgGrn(i,j) ...

122 + 4*imgBayer(i,j+1) - 1*imgGrn(i,j+2) ...

123 - 1*imgGrn(i+1,j-1) - 1*imgGrn(i+1,j+1) ...

124 + 0.5*imgGrn(i+2,j));

125 elseif (mod(i+j,2)==1 && mod(i,2)==1)

126 imgBlu(i,j) = 0.125.* (-1*imgGrn(i-2,j) ...

120

127 - 1*imgGrn(i-1,j-1) + 4*imgBayer(i-1,j) - 1*imgGrn(i-1,j+1)

...

128 + 0.5*imgGrn(i,j-2) + 5*imgGrn(i,j) + 0.5*imgGrn(i,j+2) +

...

129 - 1*imgGrn(i+1,j-1) + 4*imgBayer(i+1,j) - 1*imgGrn(i+1,j+1)

...

130 - 1*imgGrn(i+2,j));

131 elseif (mod(i,2)==1 && mod(j,2)==1)

132 imgBlu(i,j) = 0.125.* (-1.5*imgBayer(i-2,j) ...

133 + 2*imgBayer(i-1,j-1) + 2*imgBayer(i-1,j+1) ...

134 - 1.5*imgBayer(i,j-2) + 6*imgBayer(i,j) -

1.5*imgBayer(i,j+2) + ...

135 + 2*imgBayer(i+1,j-1) + 2*imgBayer(i+1,j+1) ...

136 - 1.5*imgBayer(i+2,j));

137 end;

138 end;

139 end;

140

141 %====================

142 %final reconstruction

143 %====================

144 imgMCH = zeros(R,C,k);

145

146 imgMCH(:,:,1) = imgRed;

147 imgMCH(:,:,2) = imgGrn;

148 imgMCH(:,:,3) = imgBlu;

149

150

151 %results

152 %imtool(img);

153 %imtool(imgBayer3D);

154 %imtool(uint8(imgBayer));

155 %imtool(uint8(imgGrn));

156 %imtool(uint8(imgRed));

157 %imtool(uint8(imgBlu));

158 %imtool(uint8(imgMCH));

159

160 %pre-conditioning image to measure CIEDE2000 (if desired)

161 imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k));

162 imgMCHCrop = double(zeros(R-(2*pad),C-(2*pad),k));

163

164 for i=1:1:R-(2*pad);

165 for j=1:1:C-(2*pad);

166 for k=1:1:3;

167 imgCrop(i,j,k) = img(i+pad,j+pad,k);

168 imgMCHCrop(i,j,k) = imgMCH(i+pad,j+pad,k);

169 end;

170 end;

171 end;

172

173 %[PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgMCH,img,pad);

174 %[CPSNR] = measureCPSNR(imgMCH,img,pad);

175 %SSIM = ssim(img,uint8(imgMCH));

176

177 MSE = fcn_measureMSESinglev2(uint8(imgMCH(:,:,2)),uint8(img(:,:,2)),4);

178 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgMCH));

179 CPSNR = fcn_measureCPSNRv2(uint8(imgMCH),uint8(img),4);

180 SSIM = ssim(img,uint8(imgMCH));

181

182 %PSNR_R;

183 %PSNR_G;

184 %PSNR_B;

185 %CPSNR;

The Edge Strength Filter Based Interpolation Algorithm (Author’s Implementation)

121

1 %==

2 % Name: ESFBI_v1.m

3 % Author: Kinyua Wachira

4 % Date: 24/09/2014

5 % Desc: an implementation of the Edge Strength Filter Based

6 % Interpolation technique from seen in IEEE TIP v21 n1 2012

7 % (05770218)

8 %

9 % Notes: did not convert dmap to d'map because I did not understand

10 % how the neighbours are generated dmap is quincunx in nature

11 %

12 % 25/9 Almost done just need to find out why the R,B plane is a bit low

13 % in the image quality

14 % Finished the ESFBI algorithm, used W =0.5 (non-adaptive) and only one

15 % updation loop. And a border size pad of 4 pixels

16 %==

17

18 %utility fcns

19 clc; clear all; close all hidden;

20

21 %load image and establish Bayer CFA pattern

22 %load image

23 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

24 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

25 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

26 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

27 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

28 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

29

30 imgBayer = fcn_bayer(img);

31

32 %==

33 % Preamble

34 %==

35 imgBayer = double(imgBayer);

36 [R,C] = size(imgBayer);

37 [imgRed,imgGrn,imgBlu] = deal(double(zeros(R,C)));

38 imgESFBI = deal(double(zeros(R,C,3)));

39 padBorder = 4;

40 %populate Red, Green and Blue planes with information from Bayer (what is

41 %known)

42 for i = 1:1:R;

43 for j=1:1:C;

44 if (mod(i,2)==1 && mod(j,2)==1) %red

45 imgRed(i,j) = imgBayer(i,j);

46 elseif (mod(i+j,2)==1) %green

47 imgGrn(i,j) = imgBayer(i,j);

48 else %blue

49 imgBlu(i,j) = imgBayer(i,j);

50 end;

51 end;

52 end;

53

54 %==

55 % Generate the S map - that is the edge strength map %border size of 1

56 %==

57 Smap = double(zeros(R,C));

58

59 for i=1+1:1:R-1;

60 for j=1+1:1:C-1;

61 Smap(i,j) = abs(imgBayer(i-1,j-1) - imgBayer(i+1,j+1))/2 ...

62 + abs(imgBayer(i-1,j+1) - imgBayer(i+1,j-1))/2 ...

63 + abs(imgBayer(i-1,j) - imgBayer(i+1,j)) ...

122

64 + abs(imgBayer(i,j-1) - imgBayer(i,j+1));

65 end;

66 end;

67

68

69 %==

70 % Green Plane Interpolation

71 %==

72 %generate the Hmap and Vmap in the R,B regions

73 [Hmap,Vmap,dmap] = deal(double(zeros(R,C)));

74

75 for i=1+2:1:R-2;

76 for j=1+2:1:C-2;

77 if ~(mod(i+j,2)==1)

78 Hmap(i,j) = sum(sum(Smap(i-2:i+2,j-2:j+1)-Smap(i-2:i+2,j-

2+1:j+1+1)));

79 Vmap(i,j) = sum(sum(Smap(i-2:i+1,j-2:j+2)-Smap(i-2+1:i+1+1,j-

2:j+2)));

80 end;

81 end;

82 end;

83

84 %generate the dmap

85 %here 0 means invalid location, 128 means H, 255 means V

86 for i=1+2:1:R-2;

87 for j=1+2:1:C-2;

88 if ~(mod(i+j,2)==1)

89 if (Hmap(i,j)<Vmap(i,j))

90 dmap(i,j) = 128;

91 else

92 dmap(i,j) = 255;

93 end;

94 end;

95 end;

96 end;

97

98 %perform the interpolation

99 for i=1+3:1:R-3;

100 for j=1+3:1:C-3;

101 if ~(mod(i+j,2)==1)

102 %directional estimations

103 GH = (imgGrn(i,j-1) + imgGrn(i,j+1))/2 + ...

104 (2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2))/4;

105

106 GV = (imgGrn(i-1,j) + imgGrn(i+1,j))/2 + ...

107 (2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j))/4;

108

109 BHneg = (imgBayer(i,j-2) + imgBayer(i,j))/2 + ...

110 (2*imgGrn(i,j-1) - imgGrn(i,j-3) - imgGrn(i,j+1))/4;

111

112 BHpos = (imgBayer(i,j) + imgBayer(i,j+2))/2 + ...

113 (2*imgGrn(i,j+1) - imgGrn(i,j-1) - imgGrn(i,j+3))/4;

114

115 BVneg = (imgBayer(i-2,j) + imgBayer(i,j))/2 + ...

116 (2*imgGrn(i-1,j) - imgGrn(i-3,j) - imgGrn(i+1,j))/4;

117

118 BVpos = (imgBayer(i,j) + imgBayer(i+2,j))/2 + ...

119 (2*imgGrn(i+1,j) - imgGrn(i-1,j) - imgGrn(i+3,j))/4;

120

121 if (dmap(i,j)==128)

122 imgGrn(i,j) = imgBayer(i,j) + (GH - imgBayer(i,j))/2 ...

123 + (imgGrn(i,j-1) - BHneg)/4 + (imgGrn(i,j+1) - BHpos)/4;

124 elseif (dmap(i,j)==255)

125 imgGrn(i,j) = imgBayer(i,j) + (GV - imgBayer(i,j))/2 ...

126 + (imgGrn(i-1,j) - BVneg)/4 + (imgGrn(i+1,j) - BVpos)/4;

127 end;

128 end;

129 end;

123

130 end;

131

132

133 %doing the green channel update

134 c = 0.1;

135 W = 0.5;

136

137 for i=1+3:1:R-3;

138 for j=1+3:1:C-3;

139 if ~(mod(i+j,2)==1)

140 %set up the update parameters

141 D1 = abs(Smap(i,j) - Smap(i-1,j)) + abs(Smap(i-1,j) - Smap(i-

2,j)) +...

142 abs(Smap(i-2,j) - Smap(i-3,j)) +c;

143 D2 = abs(Smap(i,j) - Smap(i,j-1)) + abs(Smap(i,j-1) - Smap(i,j-

2)) +...

144 abs(Smap(i,j-2) - Smap(i,j-3)) +c;

145 D3 = abs(Smap(i,j) - Smap(i,j+1)) + abs(Smap(i,j+1) -

Smap(i,j+2)) +...

146 abs(Smap(i,j+2) - Smap(i,j+3)) +c;

147 D4 = abs(Smap(i,j) - Smap(i+1,j)) + abs(Smap(i+1,j) -

Smap(i+2,j)) +...

148 abs(Smap(i+2,j) - Smap(i+3,j)) +c;

149

150 M1 = D2.*D3.*D4;

151 M2 = D1.*D3.*D4;

152 M3 = D1.*D2.*D4;

153 M4 = D1.*D2.*D2;

154 MT = M1+M2+M3+M4;

155

156 gUP = imgBayer(i,j) + ...

157 W.*(imgGrn(i,j) - imgBayer(i,j)) + ...

158 (1-W).*((M1/MT).*(imgGrn(i-2,j) - imgBayer(i-2,j)) ...

159 + (M2/MT).*(imgGrn(i,j-2) - imgBayer(i,j-2)) ...

160 + (M3/MT).*(imgGrn(i,j+2) - imgBayer(i,j+2)) ...

161 + (M4/MT).*(imgGrn(i+2,j) - imgBayer(i+2,j)));

162

163

164 imgGrn(i,j) = gUP;

165 end;

166 end;

167 end;

168

169 %==

170 % Red and Blue Plane Interpolation

171 %==

172 %in the opposing planes

173 e=0; %needed to add this to prevent the regions of homogeneity from giving

174 %a NaN error

175

176 for i=1+2:1:R-2;

177 for j=1+2:1:C-2;

178 if (mod(i+j,2)==0) %red in blue pixels and blue in red pixels

179 M1 = abs(imgGrn(i-2,j-2) - imgGrn(i,j)) + ...

180 abs(imgGrn(i-1,j-1) - imgGrn(i+1,j+1)) + ...

181 abs(imgGrn(i,j) - imgGrn(i+2,j+2))+e;

182 M2 = abs(imgGrn(i-2,j+2) - imgGrn(i,j)) + ...

183 abs(imgGrn(i-1,j+1) - imgGrn(i+1,j-1)) + ...

184 abs(imgGrn(i,j) - imgGrn(i+2,j-2))+e;

185

186 if (mod(i,2)==1 && mod(j,2)==1) %red pixel location

187 imgBlu(i,j) = imgGrn(i,j) ...

188 - ((M2./(2.*(M1+M2))).*((imgGrn(i-1,j-1)-imgBlu(i-1,j-1)) +

(imgGrn(i+1,j+1)-imgBlu(i+1,j+1)))) ...

189 - ((M1./(2.*(M1+M2))).*((imgGrn(i-1,j+1)-imgBlu(i-1,j+1)) +

(imgGrn(i+1,j-1)-imgBlu(i+1,j-1))));

190 end;

191 if (mod(i,2)==0 && mod(j,2)==0) % blue pixel location

124

192 imgRed(i,j) = imgGrn(i,j) ...

193 - ((M2./(2.*(M1+M2))).*((imgGrn(i-1,j-1)-imgRed(i-1,j-1)) +

(imgGrn(i+1,j+1)-imgRed(i+1,j+1)))) ...

194 - ((M1./(2.*(M1+M2))).*((imgGrn(i-1,j+1)-imgRed(i-1,j+1)) +

(imgGrn(i+1,j-1)-imgRed(i+1,j-1))));

195 end;

196 end;

197 end;

198 end;

199

200 %in the green plane

201 for i=1+2:1:R-2;

202 for j=1+2:1:C-2;

203 if (mod(i+j,2)==1) %green pixel locations

204 if (mod(i,2)==1) %red rows/blue cols

205 imgRed(i,j) = imgGrn(i,j) - ...

206 ((imgGrn(i,j-1)-imgRed(i,j-1))+(imgGrn(i,j+1)-

imgRed(i,j+1)))/2;

207 imgBlu(i,j) = imgGrn(i,j) - ...

208 ((imgGrn(i-1,j)-imgBlu(i-1,j))+(imgGrn(i+1,j)-

imgBlu(i+1,j)))/2;

209 end;

210 if (mod(i,2)==0) %blue rows/red cols

211 imgRed(i,j) = imgGrn(i,j) - ...

212 ((imgGrn(i-1,j)-imgRed(i-1,j))+(imgGrn(i+1,j)-

imgRed(i+1,j)))/2;

213 imgBlu(i,j) = imgGrn(i,j) - ...

214 ((imgGrn(i,j-1)-imgBlu(i,j-1))+(imgGrn(i,j+1)-

imgBlu(i,j+1)))/2;

215 end;

216 end;

217 end;

218 end;

219

220

221 %==

222 % Results

223 %==

224 imgESFBI(:,:,1) = imgRed;

225 imgESFBI(:,:,2) = imgGrn;

226 imgESFBI(:,:,3) = imgBlu;

227

228 % imtool(img);

229 % imtool(uint8(imgBayer));

230 % imtool(uint8(imgRed));

231 % imtool(uint8(imgGrn));

232 % imtool(uint8(imgBlu));

233 % imtool(uint8(imgESFBI));

234 %imtool(uint8(dmap));

235

236 % [PSNR(1),PSNR(2),PSNR(3)] =

fcn_measurePSNRv2(uint8(imgESFBI),img,padBorder);

237 % PSNR = PSNR';

238

239

240 MSE = fcn_measureMSESinglev2(uint8(imgESFBI(:,:,2)),uint8(img(:,:,2)),4);

241 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgESFBI));

242 CPSNR = fcn_measureCPSNRv2(uint8(imgESFBI),uint8(img),4);

243 SSIM = ssim(img,uint8(imgESFBI));

The Wang Algorithm (Author’s Implementation)

1 %==

2 % script: wangMethod

3 % date: --/--/2015

4 % author: Kinyua Wachira

125

5 % desc: a script to perform the Wang demosaicking technique from SPIE

6 % v8420 of 2012

7 %==

8

9 %utility functions

10 clc; clear all; close all;

11

12 %load image and establish Bayer CFA pattern

13 %load image

14 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

15 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

16 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

17 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

18 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

19 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

20

21

22 pad = 2; %padding region width for interpolation error

23

24 %obtain the 3D (colour) Bayer CFA representation

25 imgBayer3D = img2Bayer(img);

26

27 %convert 3D Bayer to 2D (grayscale) equivalent

28 [R,C,k] = size(imgBayer3D);

29 imgBayer = double(zeros(R,C));

30 for i=1:1:R;

31 for j=1:1:C;

32 if (mod(i+j,2)==1)

33 imgBayer(i,j) = imgBayer3D(i,j,2);

34 elseif (mod(i,2)==1 && mod(j,2)==1)

35 imgBayer(i,j) = imgBayer3D(i,j,1);

36 else

37 imgBayer(i,j) = imgBayer3D(i,j,3);

38 end;

39 end;

40 end;

41

42 %=========================

43 %green plane interpolation

44 %=========================

45 imgGrnEst = double(zeros(R,C));

46 imgGrn = double(zeros(R,C));

47

48 for i=1:1:R;

49 for j=1:1:C;

50 if (mod(i+j,2)==1)

51 imgGrnEst(i,j) = imgBayer(i,j);

52 imgGrn(i,j) = imgBayer(i,j);

53 end;

54 end;

55 end;

56

57 %1st interpolation

58 for i=1+2:1:R-2;

59 for j=1+2:1:C-2;

60 if (mod(i+j,2)~=1)

61 Hgrad = abs(imgBayer(i,j-2)-imgBayer(i,j)) +

abs(imgBayer(i,j+2)-imgBayer(i,j))...

62 + abs(imgGrn(i,j-1)-imgGrn(i,j+1));

63 Vgrad = abs(imgBayer(i-2,j)-imgBayer(i,j)) +

abs(imgBayer(i+2,j)-imgBayer(i,j))...

64 + abs(imgGrn(i-1,j)-imgGrn(i+1,j));

65 if (Hgrad < Vgrad)

126

66 imgGrnEst(i,j) = (imgGrn(i,j-1)+imgGrn(i,j+1))/2 + ...

67 (2.*imgBayer(i,j)-imgBayer(i,j-2)-imgBayer(i,j+2))/4;

68 else

69 imgGrnEst(i,j) = (imgGrn(i-1,j)+imgGrn(i+1,j))/2 + ...

70 (2.*imgBayer(i,j)-imgBayer(i-2,j)-imgBayer(i+2,j))/4;

71 end;

72 end;

73

74 end;

75 end;

76

77 %2nd interpolation

78 for i=1+2:1:R-2;

79 for j=1+2:1:C-2;

80 if (mod(i+j,2)~=1)

81 Hgrad = abs(imgBayer(i,j-2)-imgBayer(i,j)) +

abs(imgBayer(i,j+2)-imgBayer(i,j))...

82 + abs(imgGrnEst(i,j-1)-imgGrnEst(i,j+1));

83 Vgrad = abs(imgBayer(i-2,j)-imgBayer(i,j)) +

abs(imgBayer(i+2,j)-imgBayer(i,j))...

84 + abs(imgGrnEst(i-1,j)-imgGrnEst(i+1,j));

85 Ngrad = abs(imgBayer(i-2,j-2)-imgBayer(i,j)) +

abs(imgBayer(i+2,j+2)-imgBayer(i,j))...

86 + abs(imgGrnEst(i-1,j-1)-imgGrnEst(i+1,j+1));

87 Pgrad = abs(imgBayer(i+2,j-2)-imgBayer(i,j)) + abs(imgBayer(i-

2,j+2)-imgBayer(i,j))...

88 + abs(imgGrnEst(i-1,j+1)-imgGrnEst(i+1,j-1));

89

90 grad = [Hgrad,Vgrad,Ngrad,Pgrad];

91 Thres = min(grad);

92

93 if (Thres==Hgrad)

94 imgGrn(i,j) = (imgGrnEst(i,j-1) + imgGrnEst(i,j+1))/2 ...

95 + (2*imgBayer(i,j)-imgBayer(i,j-2)-imgBayer(i,j+2))/4;

96 elseif (Thres==Vgrad)

97 imgGrn(i,j) = (imgGrnEst(i-1,j) + imgGrnEst(i+1,j))/2 ...

98 + (2*imgBayer(i,j)-imgBayer(i-2,j)-imgBayer(i+2,j))/4;

99 elseif (Thres==Ngrad)

100 imgGrn(i,j) = (imgGrnEst(i-1,j-1) + imgGrnEst(i+1,j+1))/2

...

101 + (2*imgBayer(i,j)-imgBayer(i-2,j-2)-

imgBayer(i+2,j+2))/4;

102 else

103 imgGrn(i,j) = (imgGrnEst(i-1,j+1) + imgGrnEst(i+1,j-1))/2

...

104 + (2*imgBayer(i,j)-imgBayer(i-2,j+2)-imgBayer(i+2,j-

2))/4;

105 end;

106 end;

107 end;

108 end;

109

110 %=======================

111 %red plane interpolation

112 %=======================

113 imgRed = double(zeros(R,C));

114

115 %red in red pixel locations

116 for i=1:1:R;

117 for j=1:1:C;

118 if (mod(i,2)==1 && mod(j,2)==1)

119 imgRed(i,j) = imgBayer(i,j);

120 end;

121 end;

122 end;

123

124 %red in green pixel locations

125 for i=1+1:1:R-1;

127

126 for j=1+1:1:C-1;

127 if (mod(i,2)==1 && mod(i+j,2)==1)

128 imgRed(i,j) = imgGrn(i,j) + ...

129 (imgRed(i,j-1)-imgGrn(i,j-1) + imgRed(i,j+1)-

imgGrn(i,j+1))/2;

130 end;

131 if (mod(i,2)==0 && mod(i+j,2)==1)

132 imgRed(i,j) = imgGrn(i,j) + ...

133 (imgRed(i-1,j)-imgGrn(i-1,j) + imgRed(i+1,j)-

imgGrn(i+1,j))/2;

134 end;

135 end;

136 end;

137

138 %red in blue pixel locations

139 for i=1+1:1:R-1;

140 for j=1+1:1:C-1;

141 if(mod(i,2)==0 && mod(j,2)==0)

142 imgRed(i,j) = imgGrn(i,j) + ...

143 (imgRed(i-1,j-1)-imgGrn(i-1,j-1) + imgRed(i-1,j+1)-imgGrn(i-

1,j+1) + ...

144 imgRed(i+1,j-1)-imgGrn(i+1,j-1) + imgRed(i+1,j+1)-

imgGrn(i+1,j+1))/4;

145 end;

146 end;

147 end;

148 %========================

149 %blue plane interpolation

150 %========================

151 imgBlu = double(zeros(R,C));

152

153 %blue in blue pixel locations

154 for i=1:1:R;

155 for j=1:1:C;

156 if (mod(i,2)==0 && mod(j,2)==0)

157 imgBlu(i,j) = imgBayer(i,j);

158 end;

159 end;

160 end;

161

162 %blue in green pixel locations

163 for i=1+1:1:R-1;

164 for j=1+1:1:C-1;

165 if (mod(i,2)==0 && mod(i+j,2)==1)

166 imgBlu(i,j) = imgGrn(i,j) + ...

167 (imgBlu(i,j-1)-imgGrn(i,j-1) + imgBlu(i,j+1)-

imgGrn(i,j+1))/2;

168 end;

169 if (mod(i,2)==1 && mod(i+j,2)==1)

170 imgBlu(i,j) = imgGrn(i,j) + ...

171 (imgBlu(i-1,j)-imgGrn(i-1,j) + imgBlu(i+1,j)-

imgGrn(i+1,j))/2;

172 end;

173 end;

174 end;

175

176 %blue in red pixel locations

177 for i=1+1:1:R-1;

178 for j=1+1:1:C-1;

179 if(mod(i,2)==1 && mod(j,2)==1)

180 imgBlu(i,j) = imgGrn(i,j) + ...

181 (imgBlu(i-1,j-1)-imgGrn(i-1,j-1) + imgBlu(i-1,j+1)-imgGrn(i-

1,j+1) + ...

182 imgBlu(i+1,j-1)-imgGrn(i+1,j-1) + imgBlu(i+1,j+1)-

imgGrn(i+1,j+1))/4;

183 end;

184 end;

185 end;

128

186

187 %====================

188 %final reconstruction

189 %====================

190 imgWang = zeros(R,C,k);

191 imgWang(:,:,1) = imgRed;

192 imgWang(:,:,2) = imgGrn;

193 imgWang(:,:,3) = imgBlu;

194

195 %results

196 %imtool(img);

197 %imtool(imgBayer3D);

198 %imtool(uint8(imgBayer));

199 %imtool(uint8(imgGrnEst));

200 %imtool(uint8(imgGrn));

201 %imtool(uint8(imgRed));

202 %imtool(uint8(imgBlu));

203 %imtool(uint8(imgWang));

204

205 %pre-conditioning image to measure CIEDE2000 (if desired)

206 imgCrop = uint8(zeros(R-(2*pad),C-(2*pad),k));

207 imgWangCrop = double(zeros(R-(2*pad),C-(2*pad),k));

208

209 for i=1:1:R-(2*pad);

210 for j=1:1:C-(2*pad);

211 for k=1:1:3;

212 imgCrop(i,j,k) = img(i+pad,j+pad,k);

213 imgWangCrop(i,j,k) = imgWang(i+pad,j+pad,k);

214 end;

215 end;

216 end;

217

218 % [PSNR_R, PSNR_G, PSNR_B] = measurePSNR(imgWang,img,pad);

219 % [CPSNR] = measureCPSNR(imgWang,img,pad);

220 % PSNR_R;

221 % PSNR_G;

222 % PSNR_B;

223 % CPSNR;

224 %

225 % [observedLAB,actualLAB,diffLAB] = measureLAB(uint8(imgWang),img,pad);

226 % [diffdelta00] = measureDELTA00(uint8(imgWangCrop),imgCrop);

227

228 % padBorder = 4;

229 %

230 % [PSNR(1),PSNR(2),PSNR(3)] =

fcn_measurePSNRv2(uint8(imgWang),img,padBorder);

231 % PSNR = PSNR';

232 % CPSNR = fcn_measureCPSNRv2(uint8(imgWang),img,padBorder);

233 % SSIM = ssim(img,uint8(imgWang));

234 % [FSIM,FSIMc] = FeatureSIM(img,uint8(imgWang));

235

236 MSE = fcn_measureMSESinglev2(uint8(imgWang(:,:,2)),uint8(img(:,:,2)),4);

237 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgWang));

238 CPSNR = fcn_measureCPSNRv2(uint8(imgWang),uint8(img),4);

239 SSIM = ssim(img,uint8(imgWang));

Multi-scale Gradient Based Interpolation Algorithm (Author’s Implementation)

1 %==

2 % Name: MGBI_v1.m

3 % Author: Kinyua Wachira

4 % Date: --/--/2015

5 % Desc: an implementation of Multi-gradient Based Interpolation

6 % seen in IEEE TIP v22 n1 2013 (06253257)

129

7 %

8 % Notes: will try to make note of any assumptions here

9 % 1. i think at this stage diffH, diffV are correct

10 % 2. created DHmap and DVmap

11 % 3. managed to create the green plane - has a border of 4

12 % also not implemented the green update section using

13 % w,ws,wn,we,ww yet

14 %

15 %

16 % 18/9 4. implemented the green updation stage, since w not given

17 % picked w=0.5 - seen improvment i.e kodim19 -> PSNR_G from 41.6174 to

18 % 43.2833

19 %

20 % 5. only performed one updation iteration for this algorithm

21 % implementation

22 %

23 % 24/9 My implementation of this algorithm fails at white-only regions

24 % -this has resulted in problems for kodim 06 08 10 15 20 23 24 that

25 % all have large white regions in the image --> need to determine

26 % whether this is due to bad coding or is it inherent from the

27 % algorithm itself

28 %==

29

30 %utility fcns

31 clc; clear all; close all hidden;

32

33 %load image and generate the Bayer representation

34 %load image

35 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

36 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

37 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

38 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

39 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

40 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

41

42

43 imgBayer = fcn_bayer(img);

44

45 %generate maps

46 [R,C] = size(imgBayer);

47 imgBayer = double(imgBayer);

48 [rGHmap, RHmap, rGVmap, RVmap] = deal(double(zeros(R,C))); %used deal to do

multiple variable initialisation

49 [bGHmap, BHmap, bGVmap, BVmap] = deal(double(zeros(R,C)));

50

51 %error term to prevent

52 err=0;

53 padBorder =4;

54

55 %rGHmap, RHmap, bGHmap, BHmap - all horizontal maps

56 %NOTE: here G_row (RED) = i is odd, j is even

57 % G_row (BLUE) = i is even, j is odd

58 for i=1:1:R;

59 for j=1+2:1:C-2;

60 if (mod(i,2) == 1 && mod(j,2) == 1) %rGHmap

61 rGHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ...

62 + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2)));

63 end;

64 if (mod(i,2) ==1 && mod(i+j,2) == 1) %RHmap

65 RHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ...

66 + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2)));

67 end;

68 if (mod(i,2) == 0 && mod(j,2) == 0) %bGHmap

130

69 bGHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ...

70 + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2)));

71 end;

72 if (mod(i,2) ==0 && mod(i+j,2) == 1) %BHmap

73 BHmap(i,j) = (0.5.*(imgBayer(i,j-1) + imgBayer(i,j+1))) ...

74 + (0.25*(2*imgBayer(i,j) - imgBayer(i,j-2) - imgBayer(i,j+2)));

75 end;

76 end;

77 end;

78

79 %rGVmap, RVmap, bGVmap, BVmap - all vertical maps

80 %NOTE: here G_col (RED) = i is even, j is odd

81 % G_col (BLUE) = i is odd, j is even

82 for i=1+2:1:R-2;

83 for j=1:1:C;

84 if (mod(i,2)==1 && mod(j,2)==1) %rGVmap

85 rGVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ...

86 + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j)));

87 end;

88 if (mod(i,2)==0 && mod(i+j,2)==1) %RVmap

89 RVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ...

90 + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j)));

91 end;

92 if (mod(i,2)==0 && mod(j,2)==0) %bGVmap

93 bGVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ...

94 + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j)));

95 end;

96 if (mod(i,2)==1 && mod(i+j,2) ==1) %BVmap

97 BVmap(i,j) = (0.5*(imgBayer(i-1,j) + imgBayer(i+1,j))) ...

98 + (0.25*(2*imgBayer(i,j) - imgBayer(i-2,j) - imgBayer(i+2,j)));

99 end;

100 end;

101 end;

102

103 %establish the diffH and diffV maps

104 [diffH, diffV] = deal(double(zeros(R,C)));

105

106 for i=1:1:R;

107 for j=1+2:1:C-2;

108 if (mod(i,2)==1 && mod(j,2)==1)

109 diffH(i,j) = rGHmap(i,j) - imgBayer(i,j);

110 end;

111 if (mod(i,2)==1 && mod(i+j,2)==1)

112 diffH(i,j) = imgBayer(i,j) - RHmap(i,j);

113 end;

114 if (mod(i,2)==0 && mod(j,2)==0)

115 diffH(i,j) = bGHmap(i,j) - imgBayer(i,j);

116 end;

117 if (mod(i,2)==0 && mod(i+j,2)==1)

118 diffH(i,j) = imgBayer(i,j) - BHmap(i,j);

119 end;

120 end;

121 end;

122

123 for i=1+2:1:R-2;

124 for j=1:1:C;

125 if (mod(i,2)==1 && mod(j,2)==1)

126 diffV(i,j) = rGVmap(i,j) - imgBayer(i,j);

127 end;

128 if (mod(i,2)==0 && mod(i+j,2)==1)

129 diffV(i,j) = imgBayer(i,j) - RVmap(i,j);

130 end;

131 if (mod(i,2)==0 && mod(j,2)==0)

132 diffV(i,j) = bGVmap(i,j) - imgBayer(i,j);

133 end;

134 if (mod(i,2)==1 && mod(i+j,2)==1)

135 diffV(i,j) = imgBayer(i,j) - BVmap(i,j);

136 end;

131

137 end;

138 end;

139

140 %establish the absolute difference maps (DHmap,DVmap)

141 [DHmap, DVmap] = deal(double(zeros(R,C)));

142

143 for i=1:1:R;

144 for j=1+3:1:C-3;

145 DHmap(i,j) = abs(diffH(i,j-1) - diffH(i,j+1));

146 end;

147 end;

148 for i=1+3:1:R-3;

149 for j=1:1:C;

150 DVmap(i,j) = abs(diffV(i-1,j) - diffV(i+1,j));

151 end;

152 end;

153

154 clear i j

155

156 %==

157 [imgRed,imgGrn,imgBlu] = deal(double(zeros(R,C)));

158 %for red in red pixels

159 for i=1:1:R;

160 for j=1:1:C;

161 if (mod(i,2)==1 && mod(j,2)==1)

162 imgRed(i,j) = imgBayer(i,j);

163 end;

164 end;

165 end;

166 %for green in green pixels

167 for i=1:1:R;

168 for j=1:1:C;

169 if (mod(i+j,2) == 1)

170 imgGrn(i,j) = imgBayer(i,j);

171 end;

172 end;

173 end;

174 %for blue in blue pixels

175 for i=1:1:R;

176 for j=1:1:C;

177 if (mod(i,2)==0 && mod(j,2)==0)

178 imgBlu(i,j) = imgBayer(i,j);

179 end;

180 end;

181 end;

182 %==

183

184 %==

185 % Green Plane Interpolation

186 %==

187 f = [0.25, 0.5, 0.25];

188 %note we are looking for the missing components in the green plane

189

190 %for green in red pixels

191 %gmap --> can be grmap or gbmap depending on place

192 gmap = double(zeros(R,C));

193 for i=1+4:1:R-4;

194 for j=1+4:1:C-4;

195 if ~(mod(i+j,2)==1)

196 %establish the weights

197 wV = 1/(sum(sum(DVmap(i-2:i+2,j-2:j+2),2)));

198 wH = 1/(sum(sum(DHmap(i-2:i+2,j-2:j+2),2)));

199 %construct the gmap

200 gmap(i,j) = (wH.*(diffH(i,j-1:j+1)*f') + wV.*(f*diffV(i-

1:i+1,j)))...

201 /(wV+wH);

202 end;

203 end;

132

204 end;

205

206 %green channel update

207 ggmap = double(zeros(R,C));

208 for i=1+4:1:R-4;

209 for j=1+4:1:C-4;

210 if ~(mod(i+j,2)==1)

211 %establish weights

212 w = 0.5;

213 wN = 1/((sum(sum(DVmap(i-4:i,j-1:j+1),2)))+err);

214 wS = 1/((sum(sum(DHmap(i:i+4,j-1:j+1),2)))+err);

215 wW = 1/((sum(sum(DVmap(i-1:i+1,j-4:j),2)))+err);

216 wE = 1/((sum(sum(DHmap(i-1:i+1,j:j+4),2)))+err);

217 wT = wN + wS + wW + wE;

218 %construct the ggmap

219

220 ggmap(i,j) = (gmap(i,j).*(1-w)) + ...

221 (w.*(wN.*gmap(i-2,j) + wS.*gmap(i+2,j) + ...

222 wW.*gmap(i,j-2) + wE.*gmap(i,j+2))/wT);

223

224 if (mod(i,2)==1 && mod(j,2)==1)

225 %get the green contents in red pixels

226 imgGrn(i,j) = imgRed(i,j) + ggmap(i,j);

227 end;

228 if (mod(i,2)==0 && mod(j,2)==0)

229 %get the green contents in red pixels

230 imgGrn(i,j) = imgBlu(i,j) + ggmap(i,j);

231 end;

232 end;

233 end;

234 end;

235

236 %==

237 % Red and Blue Plane Interpolation

238 %==

239 prb = 1/32.*[0 0 -1 0 -1 0 0;

240 0 0 0 0 0 0 0;

241 -1 0 10 0 10 0 -1;

242 0 0 0 0 0 0 0;

243 -1 0 10 0 10 0 -1;

244 0 0 0 0 0 0 0;

245 0 0 -1 0 -1 0 0];

246

247 [Rmap,Bmap] = deal(double(zeros(R,C)));

248

249 %for the red in blue pixels, and blue in red pixels data

250 for i=1+4:1:R-4;

251 for j=1+4:1:C-4;

252 if (mod(i,2)==0 && mod(j,2)==0)

253 Rmap(i,j) = imgGrn(i,j) - sum(sum(ggmap(i-3:i+3,j-3:j+3).*prb));

254 imgRed(i,j) = Rmap(i,j);

255 end;

256 if (mod(i,2)==1 && mod(j,2)==1)

257 Bmap(i,j) = imgGrn(i,j) - sum(sum(ggmap(i-3:i+3,j-3:j+3).*prb));

258 imgBlu(i,j) = Bmap(i,j);

259 end;

260 end;

261 end;

262

263 %for the red or blue in green pixel locations

264 for i=1+4:1:R-4;

265 for j=1+4:1:C-4;

266 if (mod(i+j,2)==1)

267 %establish the weights

268 wV = 1/(sum(sum(DVmap(i-2:i+2,j-2:j+2),2)));

269 wH = 1/(sum(sum(DHmap(i-2:i+2,j-2:j+2),2)));

270 %populate the red and blue planes

271 imgRed(i,j) = imgGrn(i,j) - ...

133

272 (wV.*((imgGrn(i-1,j)-imgRed(i-1,j)) + (imgGrn(i+1,j)-

imgRed(i+1,j))) ...

273 + wH.*((imgGrn(i,j-1)-imgRed(i,j-1)) + (imgGrn(i,j+1)-

imgRed(i,j+1))))...

274 /(2.*(wV+wH));

275 imgBlu(i,j) = imgGrn(i,j) - ...

276 (wV.*((imgGrn(i-1,j)-imgBlu(i-1,j)) + (imgGrn(i+1,j)-

imgBlu(i+1,j))) ...

277 + wH.*((imgGrn(i,j-1)-imgBlu(i,j-1)) + (imgGrn(i,j+1)-

imgBlu(i,j+1))))...

278 /(2.*(wV+wH));

279 end;

280 end;

281 end;

282

283 %==

284 % Final Reconstruction

285 %==

286 imgMGBI = double(zeros(R,C,3));

287 imgMGBI(:,:,1) = imgRed;

288 imgMGBI(:,:,2) = imgGrn;

289 imgMGBI(:,:,3) = imgBlu;

290

291 %==

292 % Results

293 %==

294

295 %imtool(img);

296 %imtool(uint8(imgBayer));

297 %imtool(uint8(rGVmap));

298 %imtool(uint8(RVmap));

299 %imtool(uint8(diffV));

300 %imtool(uint8(DVmap));

301 %imtool(uint8(imgMGBI));

302 %

303 % [PSNR(1),PSNR(2),PSNR(3)] =

fcn_measurePSNRv2(uint8(imgMGBI),img,padBorder);

304 % PSNR = PSNR';

305 % CPSNR = fcn_measureCPSNRv2(uint8(imgMGBI),img,padBorder);

306 % SSIM = ssim(img,uint8(imgMGBI));

307 % [FSIM,FSIMc] = FeatureSIM(img,uint8(imgMGBI));

308

309 MSE = fcn_measureMSESinglev2(uint8(imgMGBI(:,:,2)),uint8(img(:,:,2)),4);

310 [FSIM,FSIMc] = FeatureSIM(uint8(img),uint8(imgMGBI));

311 CPSNR = fcn_measureCPSNRv2(uint8(imgMGBI),uint8(img),4);

312 SSIM = ssim(img,uint8(imgMGBI));

The Average-based Colour Reconstruction Algorithm (Author’s Implementation)

1 %===

2 % Author: Kinyua Wachira

3 % Date: 25-10-2016

4 % Name: algorithm_AWCR.m

5 %

6 % Desc: Average-based Color Reconstruction is an algorithm proposed in

7 % 2007 by Honda et. al in "A novel Bayer-like WRGB color filter array for \

8 % CMOS image sensors".

9 % This is my implementation of it.

10 %

11 % Sections

12 % [1] Utility Functions

13 % [2] Load Image

14 % [3] Call function_Convert2WRGBCFA.m

15 % [4] Pre-Algorithm Setup

16 % [5a] Algorithm - White Pixel Centre Reconstruction

17 % [5b] Algorithm - Red Pixel Centre Reconstruction

134

18 % [5c] Algorithm - Green Pixel Centre Reconstruction

19 % [5d] Algorithm - Blue Pixel Centre Reconstruction

20 % [6] Display Result

21 %===

22

23 % [1] Utility Functions

24 clc; %clear command window

25 clear; %clear any prior variables in workspace

26 close all hidden; % close all figures

27

28 % [2] Load Image

29 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

30 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

31 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

32 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

33 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

34 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

35

36 % [3] Call function_Convert2WRGBCFA.m

37 imgWRGB = function_Convert2WRGBCFA(img);

38

39 % [4] Pre-Algorithm Setup

40 imgRes = double(imgWRGB);

41 [R,C,N] = size(imgRes);

42 pBord = 2; % Pixel Border width

43

44 % [5a] Algorithm - White Pixel Centre Reconstruction

45 for i=(1+pBord):1:(R-pBord);

46 for j=(1+pBord):1:(C-pBord);

47 if (mod(i,2)==1 && mod(j,2)==1) % white pixel

48 W =(imgRes(i,j,1) + imgRes(i,j,2) + imgRes(i,j,3)); % define W

49 Rav = 0.5.*(imgRes(i,j-1,1) + imgRes(i,j+1,1)); % define Rav

50 Gav = 0.25.*(imgRes(i-1,j-1,2) + imgRes(i-1,j+1,2) + ...

51 imgRes(i+1,j-1,2) + imgRes(i+1,j+1,2)); % define

Gav

52 Bav = 0.5.*(imgRes(i-1,j,3) + imgRes(i+1,j,3)); % define Bav

53 imgRes(i,j,1) = Rav./(Rav+Gav+Bav).*W; % compute Rw

54 imgRes(i,j,2) = Gav./(Rav+Gav+Bav).*W; % compute Gw

55 imgRes(i,j,3) = Bav./(Rav+Gav+Bav).*W; % compute Bw

56 end;

57 end;

58 end;

59

60 % [5b] Algorithm - Red Pixel Centre Construction

61 for i=(1+pBord):1:(R-pBord)

62 for j=(1+pBord):1:(C-pBord)

63 if (mod(i,2)==1 && mod(j,2)==0) % red pixel

64 imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ...

65 imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; % compute

Gr

66 imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i-1,j+1,3) + ...

67 imgRes(i+1,j-1,3) + imgRes(i+1,j+1,3) + ...

68 imgRes(i,j-1,3) + imgRes(i,j+1,3))./6; %compute

Br

69 end;

70 end;

71 end;

72

73 % [5c] Algorithm - Green Pixel Centre Construction

74 for i=(1+pBord):1:(R-pBord)

75 for j=(1+pBord):1:(C-pBord)

76 if (mod(i,2)==0 && mod(j,2)==0) % green pixel

135

77 imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j,1) + imgRes(i-

1,j+1,1) + ...

78 imgRes(i+1,j-1,1) + imgRes(i+1,j,1) +

imgRes(i+1,j+1,1))./6; % compute Rg

79 imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i,j-1,3) +

imgRes(i+1,j-1,3) + ...

80 imgRes(i-1,j+1,3) + imgRes(i,j+1,3) +

imgRes(i+1,j+1,3))./6; % compute Bg

81 end;

82 end;

83 end;

84

85 % [5d] Algorithm - Blue Pixel Centre Construction

86 for i=(1+pBord):1:(R-pBord)

87 for j=(1+pBord):1:(C-pBord)

88 if (mod(i,2)==0 && mod(j,2)==1) % blue pixel

89 imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j+1,1) + ...

90 imgRes(i+1,j-1,1) + imgRes(i+1,j+1,1) + ...

91 imgRes(i-1,j,1) + imgRes(i+1,j,1))./6; %

compute Rb

92 imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ...

93 imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; %

compute Gb

94 end;

95 end;

96 end;

97

98 % [6] Display Result

99 imgACR = uint8(imgRes);

100 % clear imgRes;

101 % imtool(img);

102 % imtool(imgACR);

103

104 MSE = fcn_measureMSESinglev2(uint8(imgACR(:,:,2)),uint8(img(:,:,2)),4);

105 CPSNR = fcn_measureCPSNRv2(imgACR,img,4); %border length of 4 is used

106 SSIM = ssim(imgACR,img);

107 [FSIM,FSIMc] = FeatureSIM(img,imgACR);

108 % end of M-file

109 %==

The Edge Detection-based Colour Reconstruction Algorithm (Author’s Implementation)

1 %===

2 % Author: Kinyua Wachira

3 % Date: 28-10-2016

4 % Name: algorithm_EDCR.m

5 %

6 % Desc: Edge Detection-based Color Reconstruction is

7 % an algorithm proposed in 2007 by Honda et. al in "High Sensitivity Color

8 % CMOS Image Sensor with WRGB Color Filter Array and Color Separation

9 % Process Using Edge Detection"

10 % This is my implementation of it.

11 %

12 % Sections

13 % [1] Utility Functions

14 % [2] Load Image

15 % [3] Call function_Convert2WRGBCFA.m

16 % [4] Pre-Algorithm Setup

17 % [5] Edge Detection Process

18 % [6a] Algorithm - White Pixel Centre, No Edge Detected, Reconstruction

19 % [6b] Algorithm - White Pixel Centre, Edge Detected, Reconstruction

20 % [6c] Algorithm - Green Pixel Centre Reconstruction

21 % [6d] Algorithm - Red Pixel Centre Reconstruction

22 % [6e] Algorithm - Blue Pixel Centre Reconstruction

136

23 % [7] Display Results

24 %===

25

26 % [1] Utility Functions

27 clc; %clear command window

28 clear; %clear any prior variables in workspace

29 close all hidden; % close all figures

30

31 % [2] Load Image

32 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\USC-

SIPI\sipi_im16.tiff');

33 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Kodak\kodim24.png');

34 %img = imread('C:\Users\Kinyua Wachira\Desktop\IMAGESETS\McM\mcm18.tif');

35 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Condat\codim30.tif');

36 %img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\ARRI\arri_im12.tif');

37 img = imread('C:\Users\Kinyua

Wachira\Desktop\IMAGESETS\Custom1\cusim15.jpg');

38

39

40 % [3] Call function_Convert2WRGBCFA.m

41 imgWRGB = function_Convert2WRGBCFA(img);

42

43 % [4] Pre-Algorithm Setup

44 imgRes = double(imgWRGB);

45 [R,C,N] = size(imgRes);

46 pBord = 2; % Pixel Border width

47 thres = 60; % Threshold Value

48

49 % [5] Edge Detection Process

50 imgEdge = uint8(zeros(R,C)); %setup an edge map to contain edge detection

information

51

52 for i=(1+pBord):1:(R-pBord)

53 for j=(1+pBord):1:(C-pBord)

54 if (mod(i,2)==1 && mod(j,2)==1) % white pixel

55 % horizontal edge |(G11+B11+G12) - (G21+B21+G22)|

56 if abs((imgRes(i-1,j-1,2)+imgRes(i-1,j,3)+imgRes(i-1,j+1,2)) -

(imgRes(i+1,j-1,2)+imgRes(i+1,j,3)+imgRes(i+1,j+1,2)))>thres

57 imgEdge(i,j) = 255;

58 % vertical edge |(G11+R11+G21) - (G12+R12+G22)|

59 elseif abs((imgRes(i-1,j-1,2)+imgRes(i,j-1,1)+imgRes(i+1,j-1,2))

- (imgRes(i-1,j+1,2)+imgRes(i,j+1,1)+imgRes(i+1,j+1,2)))>thres

60 imgEdge(i,j) = 255;

61 % left-handed diagonal edge |(R11+B21) - (B11+R12)|

62 elseif abs((imgRes(i,j-1,1)+imgRes(i+1,j,3))-(imgRes(i-

1,j,3)+imgRes(i,j+1,1)))>thres

63 imgEdge(i,j) = 255;

64 % right-handed diagonal edge |(B11+R11) - (R12+B21)|

65 elseif abs((imgRes(i-1,j,3)+imgRes(i,j-1,1))-

(imgRes(i,j+1,1)+imgRes(i+1,j,3)))>thres

66 imgEdge(i,j) = 255;

67 else

68 imgEdge(i,j) = 0;

69 end;

70 end;

71 end;

72 end;

73

74 % [6a] Algorithm - White Pixel, No Edge Detected, Reconstruction

75 for i=(1+pBord):1:(R-pBord)

76 for j=(1+pBord):1:(C-pBord)

77 if (mod(i,2)==1 && mod(j,2)==1 && imgEdge(i,j)==0) % white pixel

78 W =(imgRes(i,j,1) + imgRes(i,j,2) + imgRes(i,j,3)); % define W

79 Rav = 0.5.*(imgRes(i,j-1,1) + imgRes(i,j+1,1)); % define Rav

80 Gav = 0.25.*(imgRes(i-1,j-1,2) + imgRes(i-1,j+1,2) + ...

137

81 imgRes(i+1,j-1,2) + imgRes(i+1,j+1,2)); % define

Gav

82 Bav = 0.5.*(imgRes(i-1,j,3) + imgRes(i+1,j,3)); % define Bav

83 imgRes(i,j,1) = Rav./(Rav+Gav+Bav).*W; % compute Rw

84 imgRes(i,j,2) = Gav./(Rav+Gav+Bav).*W; % compute Gw

85 imgRes(i,j,3) = Bav./(Rav+Gav+Bav).*W; % compute Bw

86 end;

87 end;

88 end;

89

90 % [6b] Algorithm - White Pixel, Edge Detected, Reconstruction

91 for i=(1+pBord):1:(R-pBord)

92 for j=(1+pBord):1:(C-pBord)

93 if (mod(i,2)==1 && mod(j,2)==1 && imgEdge(i,j)==255) % white pixel

94 W =(imgRes(i,j,1) + imgRes(i,j,2) + imgRes(i,j,3)); % define W

95 Gav = 0.25.*(imgRes(i-1,j-1,2) + imgRes(i-1,j+1,2) + ...

96 imgRes(i+1,j-1,2) + imgRes(i+1,j+1,2)); % define

Gav

97 imgRes(i,j,1) = (imgRes(i,j-1,1)+imgRes(i,j+1,1))./2; % Rw = 0

98 imgRes(i,j,2) = Gav./(Rav+Gav+Bav).*W; % compute Gw

99 imgRes(i,j,3) = (imgRes(i-1,j,3)+imgRes(i+1,j,3))./2; % Bw = 0

100 end;

101 end;

102 end;

103

104 % [6c] Algorithm - Green Pixel Reconstruction

105 for i=(1+pBord):1:(R-pBord)

106 for j=(1+pBord):1:(C-pBord)

107 if (mod(i,2)==0 && mod(j,2)==0) % green pixel

108 imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j,1) + imgRes(i-

1,j+1,1) + ...

109 imgRes(i+1,j-1,1) + imgRes(i+1,j,1) +

imgRes(i+1,j+1,1))./6; % compute Rg

110 imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i,j-1,3) +

imgRes(i+1,j-1,3) + ...

111 imgRes(i-1,j+1,3) + imgRes(i,j+1,3) +

imgRes(i+1,j+1,3))./6; % compute Bg

112 end;

113 end;

114 end;

115

116 % [6d] Algorithm - Red Pixel Reconstruction

117 for i=(1+pBord):1:(R-pBord)

118 for j=(1+pBord):1:(C-pBord)

119 if (mod(i,2)==1 && mod(j,2)==0) % red pixel

120 imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ...

121 imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; % compute

Gr

122 imgRes(i,j,3) = (imgRes(i-1,j-1,3) + imgRes(i-1,j+1,3) + ...

123 imgRes(i+1,j-1,3) + imgRes(i+1,j+1,3) + ...

124 imgRes(i,j-1,3) + imgRes(i,j+1,3))./6; %compute

Br

125 end;

126 end;

127 end;

128

129 % [6e] Algorithm - Blue Pixel Reconstruction

130 for i=(1+pBord):1:(R-pBord)

131 for j=(1+pBord):1:(C-pBord)

132 if (mod(i,2)==0 && mod(j,2)==1) % blue pixel

133 imgRes(i,j,1) = (imgRes(i-1,j-1,1) + imgRes(i-1,j+1,1) + ...

134 imgRes(i+1,j-1,1) + imgRes(i+1,j+1,1) + ...

135 imgRes(i-1,j,1) + imgRes(i+1,j,1))./6; %

compute Rb

136 imgRes(i,j,2) = (imgRes(i-1,j,2) + imgRes(i+1,j,2) + ...

137 imgRes(i,j-1,2) + imgRes(i,j+1,2))./4; %

compute Gb

138 end;

138

139 end;

140 end;

141

142 % [7] Display Result

143 imgEDCR = uint8(imgRes);

144 % clear imgRes;

145 % imtool(img);

146 % imtool(uint8(imgEdge));

147 % imtool(imgEDCR);

148

149 MSE = fcn_measureMSESinglev2(uint8(imgEDCR(:,:,2)),uint8(img(:,:,2)),4);

150 CPSNR = fcn_measureCPSNRv2(imgEDCR,img,10); %border length of 10 i used

151 SSIM = ssim(imgEDCR,img);

152 [FSIM,FSIMc] = FeatureSIM(img,imgEDCR);

153

154 % end of M-file

155 %==

A.5 Supplementary Functions

Analysis Function Used to Determine the Value of the Corrective Term ε (Author’s Implementation)

1 %==

2 % Name: fcn_epsilonAnalysis.m

3 % Author: Kinyua Wachira

4 % Date: 16/10/2014

5 % Desc: a function to write out PSNR values for an image by

6 % changing the value of epsilon

7 %

8 % Notes: modified on 4/11/2014 to cater for ssim

9 % modified on 5/11/2014 to analyses effect of different

10 % directional combinations on PSNR

11 %==

12

13 %==

14 % Preamble

15 %==

16

17 function [PSNRArray,SSIMArray,FSIMArray,GMSDArray] =

fcn_epsilonAnalysis(imgLoc,epsilonArray)

18

19 img = imread(imgLoc);

20 imgBayer = fcn_bayer(img);

21

22 [R,C] = size(imgBayer);

23 imgGRN = double(zeros(R,C));

24 for i=1:1:R;

25 for j=1:1:C;

26 if (mod(i+j,2)==1)

27 imgGRN(i,j) = imgBayer(i,j);

28 end;

29 end;

30 end;

31

32 %==

33 % Algorithm and Analysis in the Green Channel Using a Generic Weighting

34 % System

35 %==

36 % Green channel interpolation in the cardinal directions

37

38 max = length(epsilonArray);

39 [PSNRArray, SSIMArray, FSIMArray, GMSDArray] = deal(zeros(max,1));

40

41 for count = 1:1:max;

139

42 imgGrn = imgGRN;

43 e = epsilonArray(count);

44

45 for i=1+2:1:R-2;

46 for j=1+2:1:C-2;

47 if ~(mod(i+j,2)==1)

48 %initial estimates

49 GN = imgGrn(i-1,j) + 0.5.*(imgBayer(i,j) - imgBayer(i-2,j));

50 GS = imgGrn(i+1,j) + 0.5.*(imgBayer(i,j) - imgBayer(i+2,j));

51 GW = imgGrn(i,j-1) + 0.5.*(imgBayer(i,j) - imgBayer(i,j-2));

52 GE = imgGrn(i,j+1) + 0.5.*(imgBayer(i,j) - imgBayer(i,j+2));

53

54 %establish the gradients

55 dN = abs(imgGrn(i-1,j) - imgGrn(i-2,j-1))...

56 +abs(imgGrn(i-1,j) - imgGrn(i-2,j+1))+e;

57 dS = abs(imgGrn(i+1,j) - imgGrn(i+2,j-1))...

58 +abs(imgGrn(i+1,j) - imgGrn(i+2,j+1))+e;

59 dW = abs(imgGrn(i,j-1) - imgGrn(i-1,j-2))...

60 +abs(imgGrn(i,j-1) - imgGrn(i+1,j-2))+e;

61 dE = abs(imgGrn(i,j+1) - imgGrn(i-1,j+2))...

62 +abs(imgGrn(i,j+1) - imgGrn(i+1,j+2))+e;

63

64 wN = 1./dN;

65 wS = 1./dS;

66 wW = 1./dW;

67 wE = 1./dE;

68

69 %using 2 directions (6 possible combinations - 4C2)

70 % imgGrn(i,j) = (wN.*GN + wS.*GS)./(wN+wS);

71 % imgGrn(i,j) = (wN.*GN + wW.*GW)./(wN+wW);

72 % imgGrn(i,j) = (wN.*GN + wE.*GE)./(wN+wE);

73 % imgGrn(i,j) = (wS.*GS + wW.*GW)./(wS+wW);

74 % imgGrn(i,j) = (wS.*GS + wE.*GE)./(wS+wE);

75 % imgGrn(i,j) = (wW.*GW + wE.*GE)./(wW+wE);

76

77 %using 3 directions (4 possible combinations -4C3)

78 % imgGrn(i,j) = (wN.*GN + wS.*GS + wW.*GW)./(wN+wS+wW);

79 % imgGrn(i,j) = (wN.*GN + wS.*GS + wE.*GE)./(wN+wS+wE);

80 % imgGrn(i,j) = (wS.*GS + wW.*GW + wE.*GE)./(wS+wW+wE);

81 % imgGrn(i,j) = (wN.*GN + wW.*GW + wE.*GE)./(wN+wW+wE);

82

83 % %using 4 direction NSEW (1 combination - 4C4)

84 imgGrn(i,j) = (wN.*GN+wS.*GS+wW.*GW+wE.*GE)./(wN+wS+wW+wE);

85 end;

86 end;

87 end;

88

89 PSNRArray(count) = fcn_measurePSNRSinglev2(uint8(imgGrn),img(:,:,2),4);

90 SSIMArray(count) = ssim(img(:,:,2),uint8(imgGrn));

91 FSIMArray(count) = FeatureSIM(img(:,:,2),uint8(imgGrn));

92 % GMSDArray(count) = fcn_GMSD(double(img(:,:,2)),imgGrn);

93

94 end;

140

Appendix B: Detailed Simulation Result Data

B.1 Mean Square Error (MSE) Data

Table B.1 MSE evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

sipi_im1 5.81 5.98 5.10 5.55 6.94 6.73 8.83 4.60 5.68

sipi_im2 5.54 4.39 3.70 3.73 5.17 4.48 37.22 6.52 4.59

sipi_im3 3.27 2.10 2.28 1.82 3.52 2.39 4.43 13.10 3.15

sipi_im4 4.55 3.33 2.96 2.70 3.73 3.70 7.34 15.98 3.91

sipi_im5 6.33 4.95 4.32 4.73 7.55 6.02 10.54 5.45 5.85

sipi_im6 16.84 15.60 11.12 13.05 14.82 12.74 24.78 10.17 13.46

sipi_im7 2.43 2.01 2.31 2.46 6.38 5.17 4.20 15.32 2.61

sipi_im8 3.72 2.69 3.46 3.30 8.32 6.81 6.16 22.65 4.17

sipi_im9 4.03 4.10 2.88 3.90 4.36 4.19 7.11 4.93 3.19

sipi_im10 8.75 7.79 8.34 8.06 9.97 9.86 12.42 16.10 8.92

sipi_im11 29.55 28.07 25.34 26.17 26.47 24.98 41.47 26.71 27.59

sipi_im12 7.29 7.22 5.34 6.32 7.58 6.72 11.31 9.00 6.37

sipi_im13 5.54 4.56 2.76 3.74 4.39 3.88 8.70 8.09 4.55

sipi_im14 18.31 19.47 17.26 18.83 17.80 17.38 24.90 40.05 18.46

sipi_im15 9.69 9.37 9.23 9.05 10.32 10.43 14.89 25.85 9.76

sipi_im16 9.49 8.27 7.21 7.75 8.89 8.61 13.17 44.45 11.02

average 6.99 6.07 5.39 5.72 7.76 6.96 11.72 13.21 6.58 4

Table B.2 MSE evaluation of test bed demosaicking algorithms over the Kodak Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

kodim01 20.00 15.92 8.54 11.06 7.00 3.63 26.81 24.26 15.03

kodim02 5.65 6.06 2.80 4.05 3.08 2.70 8.18 4.82 4.82

kodim03 4.57 3.62 1.70 2.68 1.81 1.58 5.98 8.10 2.82

kodim04 5.17 5.30 1.72 3.61 1.72 1.70 8.26 7.31 3.33

kodim05 16.17 13.74 6.30 9.13 5.20 3.55 21.89 27.66 10.24

kodim06 14.11 11.02 6.19 7.13 4.74 2.55 18.46 14.52 9.62

kodim07 4.87 3.72 2.00 2.42 1.83 1.74 6.58 5.46 4.71

kodim08 22.10 13.07 12.31 10.47 10.27 5.44 31.63 57.76 17.29

kodim09 5.16 3.51 1.91 2.25 1.73 1.26 7.69 5.61 3.77

kodim10 4.73 3.44 1.62 2.39 1.48 1.34 6.95 6.85 3.14

kodim11 9.94 8.62 4.61 5.74 4.11 2.66 13.32 18.63 6.71

kodim12 5.08 3.93 2.05 2.51 1.96 1.62 6.72 9.12 3.17

kodim13 24.09 25.73 12.53 19.65 9.57 6.56 31.14 32.35 17.00

kodim14 11.54 11.31 4.94 7.30 4.37 3.48 15.18 7.43 7.53

kodim15 5.98 5.86 3.05 4.59 3.38 3.98 8.30 18.75 4.34

kodim16 8.29 6.98 3.18 4.15 2.80 1.41 11.00 5.98 5.08

kodim17 5.10 4.65 2.00 3.03 1.46 1.27 7.25 9.13 3.38

kodim18 11.27 11.63 4.75 7.98 4.13 3.32 15.42 12.23 7.56

kodim19 11.15 7.23 4.97 4.95 4.04 1.77 15.66 10.31 8.35

kodim20 5.95 5.21 2.66 3.64 2.52 15.25 7.82 6.78 3.78

kodim21 11.16 10.34 5.17 7.24 4.49 2.74 14.89 8.59 7.87

kodim22 8.83 8.96 3.98 6.40 0.98 3.13 11.71 9.11 6.44

kodim23 3.15 2.76 1.39 1.90 1.89 1.89 4.44 1.93 2.37

kodim24 12.24 10.61 6.00 8.23 5.86 8.22 16.74 14.17 8.89

average 8.42 7.19 3.62 4.95 3.13 2.74 11.57 10.40 5.91 5

141

Table B.3 MSE evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

mcm01 16.42 14.49 15.16 13.48 17.58 17.16 24.40 25.81 17.26

mcm02 7.56 6.34 5.33 5.33 7.00 6.33 11.38 12.88 6.56

mcm03 15.53 12.53 9.98 11.19 10.47 8.77 21.02 63.36 13.50

mcm04 8.83 4.94 7.95 6.05 7.59 6.96 11.93 31.13 8.40

mcm05 6.97 5.43 6.26 5.75 8.28 7.75 11.27 14.12 7.54

mcm06 3.44 3.16 3.78 3.79 7.63 7.22 6.49 5.24 4.86

mcm07 11.50 12.09 4.80 8.66 3.96 2.83 14.68 7.49 7.25

mcm08 6.22 4.96 3.25 3.74 2.94 2.41 8.67 23.56 4.49

mcm09 5.34 4.04 4.08 3.77 5.77 5.57 7.95 15.97 5.14

mcm10 3.95 3.65 2.78 2.94 4.89 4.63 7.14 12.93 3.37

mcm11 4.01 3.88 2.74 3.26 4.82 4.84 5.87 7.61 3.33

mcm12 5.63 3.92 3.00 2.76 5.02 4.30 8.76 9.89 3.75

mcm13 2.08 1.17 1.79 1.56 3.49 2.93 3.46 8.40 2.79

mcm14 3.02 2.71 2.37 2.47 3.52 3.28 4.56 9.64 2.82

mcm15 2.88 2.85 2.39 2.71 3.75 3.71 4.41 7.24 2.77

mcm16 14.54 12.81 9.26 10.52 13.72 13.10 19.19 8.71 11.09

mcm17 7.24 6.99 8.33 8.05 13.04 13.00 11.83 5.49 8.81

mcm18 11.92 9.39 7.67 8.25 8.97 8.25 16.44 20.26 9.51

average 6.39 5.27 4.71 4.88 6.44 5.87 9.61 12.72 5.86 4

Table B.4 MSE evaluation of test bed demosaicking algorithms over the Condat Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

codim01 13.18 10.43 7.99 8.05 8.48 7.12 18.67 16.66 10.27

codim02 7.60 6.31 5.22 5.05 6.46 5.73 11.26 14.19 5.95

codim03 6.83 5.48 4.11 4.43 5.46 4.92 9.62 8.19 6.22

codim04 9.46 6.51 6.29 5.32 6.25 5.04 13.30 24.87 7.18

codim05 7.26 6.71 4.89 5.70 6.41 5.73 10.51 4.37 6.26

codim06 5.87 4.21 4.44 3.86 5.54 5.06 8.90 4.30 5.64

codim07 11.44 9.12 6.80 7.51 7.60 10.32 15.15 19.54 8.47

codim08 10.47 7.91 7.25 6.90 7.74 6.10 15.16 3.13 8.22

codim09 22.09 20.86 16.53 17.63 16.74 16.71 31.55 7.17 17.84

codim10 6.59 3.15 3.49 2.62 4.10 3.05 9.82 27.35 8.33

codim11 19.79 20.72 18.60 21.05 23.13 22.29 30.43 9.17 21.39

codim12 17.42 11.57 11.22 9.76 9.60 7.17 24.74 5.44 14.17

codim13 16.16 13.10 11.03 11.16 10.81 9.48 22.83 27.49 13.35

codim14 3.73 2.97 3.42 3.18 5.37 4.76 6.38 12.59 4.75

codim15 11.92 9.10 8.80 7.76 9.00 7.29 16.75 12.57 9.30

codim16 4.29 3.44 3.67 3.38 5.16 4.81 6.61 12.50 4.75

codim17 7.79 6.14 7.23 6.03 9.27 33.60 13.10 4.25 8.16

codim18 7.12 5.00 5.23 4.37 6.40 5.13 11.50 4.25 7.13

codim19 6.45 5.14 3.14 3.82 3.75 2.48 8.97 4.20 4.08

codim20 6.88 4.93 5.59 4.32 7.08 6.75 10.31 3.19 6.37

codim21 3.82 3.13 2.40 2.29 2.61 1.97 5.66 4.83 3.22

codim22 11.65 11.77 8.65 10.46 9.14 10.20 16.47 6.78 10.04

codim23 2.05 1.31 0.67 0.81 0.86 1.04 3.24 1.32 1.30

codim24 17.00 14.29 9.09 11.48 9.08 7.49 23.00 29.28 13.65

codim25 2.24 1.40 2.23 1.82 4.40 4.41 4.48 1.84 2.45

codim26 11.20 8.75 7.32 6.74 7.45 4.85 15.74 5.18 7.23

codim27 14.61 13.23 8.46 9.56 8.39 6.99 20.57 26.55 11.59

codim28 2.36 1.88 2.22 2.08 3.88 3.68 4.07 2.00 2.28

codim29 3.33 3.25 2.80 2.94 4.44 4.50 5.26 2.39 2.95

codim30 12.10 8.00 8.37 6.70 8.64 6.97 18.02 12.38 10.32

average 7.84 6.12 5.42 5.27 6.45 5.96 11.72 7.43 6.82 6

142

Table B.5 MSE evaluation of test bed demosaicking algorithms over the ARRI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

arri_im1 3.46 3.38 2.55 2.53 4.38 4.40 2.50 31.62 4.16

arri_im2 2.43 2.23 1.35 1.25 2.14 2.18 2.27 9.00 3.44

arri_im3 0.65 0.50 0.48 0.52 0.67 2.08 0.81 4.99 1.26

arri_im4 1.48 1.27 1.64 1.45 2.09 2.11 1.90 1.52 1.95

arri_im5 0.82 0.76 0.56 0.58 0.91 0.89 0.90 0.82 0.82

arri_im6 1.67 1.44 1.27 1.19 2.01 2.00 1.61 8.95 2.27

arri_im7 5.45 4.17 3.42 2.72 4.38 4.28 6.10 17.08 6.75

arri_im8 1.34 1.10 1.47 1.30 2.33 2.40 1.69 1.11 1.85

arri_im9 5.47 0.69 2.26 0.40 2.59 3.87 9.36 23.60 5.80

arri_im10 1.22 1.08 1.48 1.43 2.39 2.34 1.88 1.59 1.82

arri_im11 2.51 1.76 2.11 1.39 3.18 3.04 3.03 1.34 4.76

arri_im12 6.95 5.11 5.17 4.83 7.66 7.71 10.55 2.84 7.13

average 2.14 1.53 1.63 1.29 2.40 2.72 2.54 4.32 2.85 8

Table B.6 MSE evaluation of test bed demosaicking algorithms over the Custom Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

cusim01 5.19 4.43 1.92 2.69 1.50 0.91 7.37 7.09 3.75

cusim02 3.33 3.24 1.22 2.03 1.23 0.71 4.62 3.18 2.05

cusim03 5.63 4.27 2.30 2.78 1.41 1.21 8.70 10.53 4.18

cusim04 7.80 8.21 2.12 4.62 1.36 0.95 9.82 5.95 4.30

cusim05 5.16 2.91 1.82 1.79 1.57 0.58 7.42 1.87 4.32

cusim06 6.32 4.72 2.16 2.81 1.85 1.42 8.75 9.79 4.96

cusim07 5.53 4.20 1.69 2.31 1.37 0.63 7.84 5.18 4.73

cusim08 5.01 4.41 1.61 2.56 1.35 5.83 6.96 11.53 3.46

cusim09 8.17 7.50 2.54 4.32 1.88 21.08 10.96 16.68 5.50

cusim10 7.57 7.63 2.64 4.46 1.66 4.51 10.10 4.50 4.78

cusim11 3.48 4.09 1.34 2.75 1.12 0.79 4.68 7.57 1.84

cusim12 2.59 3.08 0.77 1.71 0.85 0.58 3.40 1.98 1.55

cusim13 5.80 4.67 1.93 2.50 1.36 0.69 8.07 6.11 4.04

cusim14 0.97 1.03 0.27 0.61 0.42 0.63 1.16 1.37 0.63

cusim15 4.89 4.51 1.66 2.64 1.15 0.93 6.86 8.19 2.95

average 4.66 4.17 1.55 2.47 1.27 1.28 6.38 5.48 3.13 5

143

B.2 Colour Peak Signal-to-Noise Ratio (CPSNR) Data

Table B.7 CPSNR evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

sipi_im1 33.49 37.66 37.56 37.58 37.35 37.10 37.22 37.66 39.79

sipi_im2 34.57 39.47 39.16 39.54 38.92 38.62 37.61 37.80 39.23

sipi_im3 36.80 42.95 42.34 43.79 42.37 42.24 41.72 39.21 43.44

sipi_im4 36.01 40.70 40.10 41.16 39.87 39.46 38.83 37.41 42.80

sipi_im5 33.65 38.06 37.90 38.33 37.77 37.49 36.48 37.00 40.50

sipi_im6 29.55 34.79 35.15 35.31 35.11 35.16 34.05 34.72 35.51

sipi_im7 37.33 42.23 41.74 41.87 39.38 39.19 41.91 38.83 42.35

sipi_im8 35.81 40.92 40.26 40.69 38.21 38.05 39.94 37.01 41.05

sipi_im9 37.38 41.05 41.42 41.11 40.45 39.96 40.83 41.46 42.26

sipi_im10 33.19 37.43 37.68 37.42 36.92 36.61 38.18 37.57 41.86

sipi_im11 24.72 32.13 32.20 32.27 32.27 32.39 31.78 32.24 35.27

sipi_im12 33.91 37.80 37.88 38.01 37.57 37.44 37.31 37.51 38.05

sipi_im13 35.57 39.60 40.44 40.39 39.79 39.73 38.62 38.46 40.12

sipi_im14 28.95 34.16 34.32 34.30 34.24 34.25 34.31 33.44 34.63

sipi_im15 31.79 35.96 36.00 36.06 35.94 35.82 36.22 35.28 38.62

sipi_im16 32.47 36.81 37.24 37.04 36.68 36.72 36.22 33.78 38.66

average 33.27 38.12 38.11 38.31 37.60 37.44 37.48 36.76 39.54 1

Table B.8 CPSNR evaluation of test bed demosaicking algorithms over the Kodak Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

kodim01 29.15 35.15 36.08 36.67 38.21 40.73 33.25 33.19 39.21

kodim02 36.06 40.57 40.56 41.83 42.06 42.10 37.95 38.41 42.06

kodim03 36.95 41.60 42.19 42.71 44.38 44.49 39.54 38.98 45.25

kodim04 36.41 40.55 42.85 41.54 43.37 43.08 38.17 38.13 42.18

kodim05 29.58 36.33 37.61 37.37 39.70 40.85 34.39 33.79 37.86

kodim06 30.55 36.76 37.45 38.35 39.56 41.13 34.68 34.83 38.93

kodim07 36.39 41.93 41.87 43.24 44.14 43.98 39.32 39.13 43.83

kodim08 26.69 35.71 34.83 36.92 36.53 38.66 32.67 31.64 37.29

kodim09 35.31 41.64 42.30 43.48 43.13 45.21 38.51 38.59 42.28

kodim10 35.21 41.72 41.94 43.23 42.77 44.47 38.84 38.52 43.84

kodim11 32.00 38.24 38.93 39.68 40.59 42.36 36.07 35.49 42.26

kodim12 36.13 41.04 42.02 42.95 43.58 44.65 38.94 38.45 43.95

kodim13 26.47 33.68 34.91 34.56 37.08 38.38 32.76 32.55 37.09

kodim14 32.05 37.55 38.97 38.74 40.14 40.82 35.53 35.99 41.70

kodim15 35.06 39.99 41.23 40.82 41.78 40.48 38.78 37.17 41.19

kodim16 33.99 39.05 39.97 40.98 41.93 44.51 36.68 37.09 40.21

kodim17 34.81 41.13 42.56 42.78 45.08 45.37 38.82 38.23 43.75

kodim18 30.68 37.09 38.97 38.12 40.51 41.18 35.63 35.59 39.79

kodim19 31.14 38.69 38.66 40.24 40.52 43.38 35.46 35.74 40.79

kodim20 34.29 40.11 41.09 41.15 41.74 34.20 38.59 38.59 42.56

kodim21 31.33 37.39 38.42 38.56 40.34 41.65 35.82 36.21 41.92

kodim22 33.21 38.03 39.56 39.05 40.38 41.14 36.77 36.90 41.33

kodim23 38.24 43.01 44.23 44.05 44.11 43.17 41.11 41.68 45.65

kodim24 29.33 36.94 37.95 37.83 39.25 37.04 35.46 35.44 39.93

average 32.80 38.84 39.72 40.12 41.23 41.70 36.75 36.61 41.39 2

144

Table B.9 CPSNR evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

mcm01 27.73 34.76 34.43 34.73 33.97 33.84 34.03 33.84 34.19

mcm02 32.73 37.78 37.74 37.90 37.31 37.28 36.68 36.34 37.49

mcm03 29.17 35.82 36.28 36.24 36.74 37.10 34.37 32.04 36.54

mcm04 31.94 38.89 38.13 38.71 38.36 38.64 35.96 34.12 38.97

mcm05 32.72 38.07 37.76 37.99 37.09 37.01 37.08 36.68 37.55

mcm06 36.04 40.00 39.36 39.37 37.50 37.50 39.39 39.35 39.02

mcm07 32.69 36.81 38.66 37.89 40.71 41.61 35.72 36.08 38.84

mcm08 33.83 39.64 40.51 40.32 41.45 41.72 38.32 36.31 40.62

mcm09 34.80 39.73 39.56 39.61 38.61 38.49 38.14 36.93 39.47

mcm10 36.55 40.49 40.76 40.54 39.33 39.22 38.77 37.77 40.36

mcm11 37.42 41.29 41.81 41.37 40.57 40.24 40.26 39.69 41.65

mcm12 34.56 40.61 40.54 40.87 40.10 39.89 38.58 38.32 41.21

mcm13 38.74 43.08 42.26 42.96 41.43 40.99 41.29 39.82 42.10

mcm14 37.50 41.44 41.13 41.42 40.57 40.16 40.32 39.06 41.07

mcm15 37.71 41.63 41.37 41.46 40.52 40.13 40.79 39.91 41.40

mcm16 31.37 36.69 37.49 36.92 36.33 36.41 36.07 36.65 37.03

mcm17 31.78 36.93 36.75 36.27 35.14 35.10 36.74 37.28 36.73

mcm18 31.83 37.49 37.46 37.83 37.22 37.56 36.03 35.59 37.79

average 33.71 38.89 38.94 38.96 38.44 38.43 37.64 36.92 38.94 2

Table B.10 CPSNR evaluation of test bed demosaicking algorithms over the Condat Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

codim01 30.13 36.92 36.83 37.43 37.27 37.17 34.82 34.75 37.01

codim02 32.84 38.53 38.32 38.93 38.06 37.92 36.74 36.37 38.72

codim03 33.35 39.22 38.90 39.63 38.94 38.77 37.16 37.01 39.07

codim04 31.53 38.30 38.09 38.95 38.54 38.89 36.37 35.15 38.70

codim05 33.37 38.37 39.10 38.74 38.47 38.42 37.59 38.20 40.75

codim06 34.31 39.97 39.08 39.99 38.71 38.81 38.34 38.78 39.75

codim07 32.56 37.09 37.74 37.83 37.49 35.63 36.08 35.51 37.60

codim08 30.27 37.61 37.39 38.15 37.65 38.14 35.73 36.65 37.79

codim09 26.19 34.05 34.30 34.26 34.50 34.22 33.16 34.14 38.48

codim10 34.57 40.78 39.73 40.30 40.22 40.79 37.36 35.49 39.05

codim11 26.90 33.52 33.65 33.26 32.88 32.95 32.88 33.61 33.48

codim12 28.18 35.93 35.79 36.86 36.80 37.73 33.84 34.74 36.24

codim13 28.35 35.92 35.91 36.43 36.35 36.54 34.38 33.85 38.10

codim14 36.25 40.35 40.19 40.30 39.06 39.07 38.97 37.82 40.03

codim15 29.70 37.19 36.91 37.64 37.23 37.70 35.54 35.63 37.67

codim16 35.57 40.34 39.94 40.22 38.97 38.93 38.57 37.42 39.80

codim17 31.56 38.11 37.19 37.81 35.54 31.19 36.22 37.06 36.96

codim18 32.69 38.57 38.22 38.87 37.93 38.35 36.66 37.33 39.04

codim19 35.29 40.29 40.71 40.97 41.13 42.18 38.01 38.59 41.24

codim20 32.91 38.09 37.99 37.80 37.28 37.38 37.02 37.70 38.64

codim21 35.55 42.07 42.40 43.01 42.60 43.20 39.66 39.62 42.56

codim22 30.40 36.06 36.34 36.19 36.43 35.64 35.17 35.51 36.91

codim23 41.11 45.90 44.75 47.06 47.06 45.67 42.25 42.53 45.95

codim24 28.52 35.54 36.38 36.31 36.77 37.14 34.10 33.51 38.13

codim25 37.42 41.59 41.08 36.34 39.61 39.31 40.92 41.81 41.67

codim26 30.50 37.57 37.27 38.22 37.88 39.23 35.54 36.38 38.32

codim27 29.85 36.16 36.57 36.75 36.97 37.27 34.58 33.92 36.41

codim28 38.15 42.71 41.80 39.06 40.33 40.16 41.43 42.04 42.69

codim29 37.05 41.59 41.50 40.32 40.08 39.94 40.54 41.08 41.39

codim30 30.55 37.31 36.77 37.89 36.92 37.49 35.09 35.35 36.90

average 32.34 38.43 38.29 38.44 38.18 38.09 36.75 36.84 38.90 1

145

Table B.11 CPSNR evaluation of test bed demosaicking algorithms over the ARRI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

arri_im1 37.02 41.61 41.28 40.67 39.52 39.63 40.37 36.00 39.90

arri_im2 38.68 42.84 42.91 41.76 40.62 40.88 41.16 39.07 42.02

arri_im3 43.53 47.34 47.34 44.47 46.24 42.28 46.78 43.61 45.74

arri_im4 41.35 45.52 44.98 44.91 43.66 42.95 43.94 44.13 43.82

arri_im5 44.58 48.54 48.27 45.66 46.49 46.46 48.73 48.59 46.90

arri_im6 40.41 45.10 44.33 44.17 42.93 42.91 44.75 41.28 43.04

arri_im7 33.02 39.62 39.24 39.36 38.60 38.60 37.60 35.81 39.20

arri_im8 39.94 44.84 44.05 43.75 42.18 41.91 44.73 45.14 42.79

arri_im9 34.70 43.64 41.03 41.52 40.44 34.37 38.04 35.87 41.77

arri_im10 39.87 44.31 43.66 43.09 40.71 41.68 45.12 45.31 46.30

arri_im11 38.04 43.32 42.14 42.62 40.81 40.69 41.44 41.35 41.19

arri_im12 32.31 38.59 38.64 38.63 37.62 37.64 38.33 39.47 39.47

average 38.44 43.68 43.06 42.50 41.57 40.73 42.44 41.11 42.61 3

Table B.12 CPSNR evaluation of test bed demosaicking algorithms over the Custom Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

cusim01 36.50 40.98 42.56 42.79 42.74 45.48 38.43 38.33 43.46

cusim02 38.80 42.48 43.76 44.24 45.62 46.87 40.33 40.52 45.85

cusim03 37.19 41.76 43.38 43.37 44.12 44.82 37.99 37.36 42.41

cusim04 35.62 38.85 42.28 40.77 45.16 46.28 37.35 37.54 41.57

cusim05 35.86 42.68 42.66 44.91 45.08 48.28 38.54 39.31 42.49

cusim06 35.46 40.87 42.14 42.81 44.17 44.58 37.80 37.40 41.47

cusim07 36.47 41.24 42.97 43.78 44.46 47.13 38.07 38.14 44.21

cusim08 36.99 41.36 43.55 43.39 44.63 38.60 38.69 37.76 43.08

cusim09 34.93 39.22 41.72 41.23 39.83 33.47 36.85 35.99 41.13

cusim10 34.90 39.15 41.69 40.89 44.23 39.28 37.32 37.62 41.30

cusim11 39.05 41.44 44.57 43.02 46.65 47.70 40.37 39.64 44.84

cusim12 40.45 43.08 46.76 44.97 47.53 48.16 41.39 41.65 46.29

cusim13 36.15 41.13 42.76 43.37 45.69 47.86 38.16 38.12 42.43

cusim14 44.61 47.48 46.87 49.20 49.96 48.04 46.00 45.62 50.97

cusim15 37.46 41.17 42.52 42.73 45.80 43.48 39.16 38.53 42.78

average 37.29 41.48 43.32 43.39 44.99 44.45 39.04 38.84 43.55 3

146

B.3 Structure Similarity Index (SSIM) Data

Note: the SSIM values for image sipi_im1 to sipi_im8 of USC-SIPI were indeterminate in the ACR &

EDCR algorithms due to the implementation of the SSIM algorithm. To ensure uniform analysis over

all image sets, the geometric average was established using remaining images sipi_im9 to sipi_im16.

Table B.13 SSIM evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

sipi_im1 0.982 0.977 0.943 0.962 0.941 0.935 - - 0.937

sipi_im2 0.984 0.981 0.952 0.968 0.950 0.945 - - 0.945

sipi_im3 0.966 0.953 0.879 0.910 0.862 0.871 - - 0.866

sipi_im4 0.980 0.970 0.937 0.956 0.933 0.920 - - 0.932

sipi_im5 0.980 0.967 0.913 0.938 0.892 0.890 - - 0.892

sipi_im6 0.970 0.965 0.934 0.947 0.922 0.920 - - 0.922

sipi_im7 0.977 0.956 0.884 0.907 0.860 0.874 - - 0.878

sipi_im8 0.981 0.969 0.908 0.931 0.886 0.898 - - 0.902

sipi_im9 0.975 0.968 0.973 0.968 0.963 0.954 0.969 0.953 0.987

sipi_im10 0.953 0.940 0.942 0.937 0.929 0.911 0.953 0.951 0.976

sipi_im11 0.923 0.908 0.911 0.905 0.908 0.912 0.885 0.856 0.973

sipi_im12 0.968 0.959 0.952 0.957 0.952 0.946 0.954 0.949 0.955

sipi_im13 0.981 0.973 0.970 0.972 0.966 0.957 0.969 0.966 0.966

sipi_im14 0.934 0.926 0.933 0.930 0.934 0.930 0.937 0.930 0.932

sipi_im15 0.939 0.933 0.934 0.932 0.935 0.927 0.940 0.936 0.936

sipi_im16 0.981 0.976 0.977 0.974 0.970 0.959 0.972 0.957 0.965

average 0.956 0.948 0.949 0.947 0.944 0.937 0.947 0.937 0.961 1

Table B.14 SSIM evaluation of test bed demosaicking algorithms over the Kodak Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

kodim01 0.961 0.961 0.973 0.974 0.983 0.986 0.917 0.905 0.979

kodim02 0.976 0.972 0.975 0.978 0.975 0.971 0.943 0.921 0.978

kodim03 0.983 0.979 0.982 0.980 0.984 0.983 0.968 0.964 0.984

kodim04 0.990 0.989 0.989 0.984 0.987 0.979 0.979 0.976 0.982

kodim05 0.981 0.978 0.982 0.981 0.985 0.984 0.954 0.942 0.992

kodim06 0.964 0.960 0.971 0.974 0.980 0.956 0.926 0.913 0.975

kodim07 0.992 0.988 0.987 0.988 0.986 0.983 0.980 0.967 0.984

kodim08 0.967 0.969 0.972 0.978 0.980 0.980 0.923 0.907 0.977

kodim09 0.991 0.991 0.990 0.986 0.989 0.984 0.983 0.978 0.987

kodim10 0.991 0.993 0.992 0.988 0.990 0.981 0.984 0.978 0.988

kodim11 0.973 0.969 0.975 0.978 0.980 0.981 0.941 0.934 0.977

kodim12 0.978 0.977 0.982 0.984 0.985 0.985 0.958 0.953 0.984

kodim13 0.950 0.939 0.964 0.956 0.977 0.975 0.899 0.883 0.969

kodim14 0.977 0.972 0.978 0.978 0.981 0.978 0.948 0.915 0.976

kodim15 0.982 0.979 0.985 0.983 0.986 0.970 0.968 0.957 0.985

kodim16 0.969 0.966 0.971 0.977 0.978 0.979 0.936 0.908 0.975

kodim17 0.994 0.991 0.984 0.987 0.984 0.978 0.980 0.976 0.978

kodim18 0.987 0.983 0.984 0.981 0.984 0.981 0.972 0.966 0.981

kodim19 0.979 0.980 0.969 0.974 0.971 0.971 0.955 0.939 0.968

kodim20 0.980 0.971 0.972 0.972 0.954 0.851 0.959 0.952 0.971

kodim21 0.979 0.972 0.976 0.975 0.979 0.977 0.952 0.941 0.975

kodim22 0.976 0.970 0.976 0.974 0.977 0.975 0.949 0.935 0.974

kodim23 0.991 0.987 0.985 0.985 0.984 0.973 0.980 0.965 0.983

kodim24 0.976 0.972 0.978 0.977 0.982 0.973 0.948 0.937 0.979

average 0.979 0.975 0.979 0.979 0.981 0.972 0.954 0.942 0.979 2

147

Table B.15 SSIM evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

mcm01 0.959 0.952 0.948 0.947 0.927 0.913 0.949 0.936 0.954

mcm02 0.978 0.974 0.971 0.973 0.967 0.964 0.968 0.960 0.965

mcm03 0.980 0.974 0.974 0.973 0.971 0.966 0.958 0.934 0.971

mcm04 0.991 0.975 0.970 0.972 0.968 0.960 0.963 0.957 0.965

mcm05 0.975 0.968 0.959 0.963 0.949 0.943 0.965 0.955 0.960

mcm06 0.982 0.976 0.972 0.969 0.949 0.947 0.978 0.974 0.966

mcm07 0.977 0.970 0.976 0.975 0.981 0.977 0.954 0.921 0.976

mcm08 0.988 0.984 0.982 0.984 0.980 0.976 0.976 0.966 0.978

mcm09 0.985 0.981 0.974 0.977 0.968 0.963 0.977 0.971 0.970

mcm10 0.986 0.985 0.983 0.980 0.976 0.972 0.980 0.976 0.989

mcm11 0.981 0.977 0.977 0.974 0.966 0.962 0.981 0.972 0.970

mcm12 0.980 0.970 0.966 0.967 0.961 0.956 0.961 0.958 0.962

mcm13 0.982 0.972 0.963 0.966 0.958 0.950 0.967 0.965 0.978

mcm14 0.985 0.981 0.976 0.979 0.972 0.967 0.978 0.975 0.982

mcm15 0.983 0.978 0.971 0.971 0.964 0.959 0.974 0.971 0.976

mcm16 0.959 0.953 0.957 0.942 0.927 0.926 0.972 0.950 0.974

mcm17 0.975 0.972 0.972 0.962 0.946 0.943 0.977 0.951 0.980

mcm18 0.975 0.969 0.972 0.968 0.965 0.964 0.965 0.951 0.976

average 0.979 0.973 0.970 0.969 0.961 0.956 0.969 0.958 0.972 3

Table B.16 SSIM evaluation of test bed demosaicking algorithms over the Condat Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

codim01 0.976 0.970 0.972 0.973 0.974 0.953 0.950 0.939 0.975

codim02 0.986 0.977 0.970 0.972 0.967 0.949 0.970 0.967 0.968

codim03 0.986 0.982 0.979 0.981 0.974 0.959 0.970 0.960 0.973

codim04 0.980 0.977 0.975 0.977 0.973 0.967 0.961 0.953 0.974

codim05 0.980 0.975 0.975 0.971 0.970 0.963 0.966 0.928 0.971

codim06 0.972 0.968 0.960 0.963 0.948 0.948 0.968 0.933 0.965

codim07 0.983 0.972 0.963 0.962 0.953 0.905 0.963 0.956 0.969

codim08 0.979 0.975 0.976 0.977 0.975 0.974 0.958 0.885 0.975

codim09 0.965 0.960 0.972 0.965 0.968 0.947 0.942 0.897 0.970

codim10 0.992 0.988 0.980 0.983 0.978 0.971 0.978 0.970 0.974

codim11 0.990 0.987 0.987 0.982 0.976 0.974 0.984 0.944 0.979

codim12 0.981 0.977 0.973 0.975 0.973 0.973 0.963 0.895 0.974

codim13 0.984 0.982 0.982 0.981 0.980 0.965 0.971 0.960 0.980

codim14 0.994 0.989 0.983 0.984 0.979 0.975 0.987 0.982 0.989

codim15 0.988 0.980 0.971 0.971 0.969 0.966 0.971 0.962 0.970

codim16 0.991 0.987 0.982 0.984 0.978 0.974 0.981 0.973 0.979

codim17 0.990 0.987 0.981 0.982 0.904 0.771 0.980 0.958 0.970

codim18 0.974 0.971 0.967 0.972 0.964 0.963 0.949 0.888 0.972

codim19 0.988 0.979 0.972 0.973 0.971 0.970 0.971 0.938 0.972

codim20 0.976 0.972 0.970 0.967 0.961 0.959 0.962 0.903 0.965

codim21 0.994 0.990 0.986 0.987 0.985 0.982 0.984 0.976 0.983

codim22 0.974 0.970 0.973 0.970 0.973 0.936 0.959 0.937 0.984

codim23 0.997 0.993 0.989 0.990 0.989 0.985 0.991 0.955 0.987

codim24 0.977 0.972 0.974 0.971 0.971 0.969 0.952 0.943 0.992

codim25 0.990 0.988 0.985 0.985 0.976 0.972 0.989 0.982 0.980

codim26 0.970 0.961 0.967 0.962 0.967 0.968 0.951 0.892 0.979

codim27 0.987 0.984 0.985 0.986 0.985 0.979 0.970 0.959 0.982

codim28 0.982 0.976 0.971 0.971 0.958 0.955 0.977 0.936 0.980

codim29 0.993 0.991 0.990 0.988 0.982 0.980 0.992 0.956 0.984

codim30 0.973 0.969 0.967 0.970 0.962 0.955 0.948 0.928 0.961

average 0.983 0.978 0.976 0.976 0.969 0.956 0.969 0.941 0.976 3

148

Table B.17 SSIM evaluation of test bed demosaicking algorithms over the ARRI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

arri_im1 0.999 0.989 0.999 0.998 0.996 0.993 0.998 0.987 0.996

arri_im2 0.999 0.999 0.999 0.999 0.999 0.970 0.999 0.994 0.999

arri_im3 1.000 0.999 0.999 0.999 0.996 0.972 0.999 0.998 0.999

arri_im4 0.998 0.999 0.997 0.998 0.997 0.991 0.995 0.982 0.998

arri_im5 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

arri_im6 0.999 0.999 0.999 0.999 0.998 0.998 0.999 0.997 0.998

arri_im7 0.999 0.986 0.999 0.998 0.998 0.998 0.998 0.995 0.998

arri_im8 0.998 0.998 0.998 0.997 0.995 0.991 0.997 0.993 0.995

arri_im9 0.998 0.999 0.998 0.999 0.997 0.641 0.996 0.993 0.997

arri_im10 0.998 0.997 0.997 0.997 0.995 0.995 0.995 0.994 0.995

arri_im11 0.999 0.999 0.999 0.999 0.998 0.990 0.999 0.965 0.998

arri_im12 0.997 0.994 0.995 0.994 0.991 0.987 0.995 0.974 0.992

average 0.998 0.996 0.998 0.998 0.997 0.954 0.998 0.989 0.997 5

Table B.18 SSIM evaluation of test bed demosaicking algorithms over the Custom Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

cusim01 0.995 0.993 0.993 0.995 0.994 0.992 0.991 0.988 0.994

cusim02 0.995 0.991 0.991 0.993 0.992 0.989 0.992 0.985 0.990

cusim03 1.000 0.999 0.999 0.999 0.998 0.976 0.999 0.995 0.997

cusim04 0.998 0.997 0.996 0.997 0.996 0.993 0.996 0.989 0.999

cusim05 0.999 0.992 0.987 0.992 0.984 0.978 0.992 0.953 0.992

cusim06 0.997 0.995 0.994 0.996 0.994 0.987 0.993 0.988 0.997

cusim07 0.997 0.995 0.995 0.997 0.995 0.992 0.994 0.984 0.993

cusim08 0.997 0.992 0.992 0.995 0.984 0.950 0.991 0.988 0.993

cusim09 0.997 0.992 0.990 0.991 0.922 0.860 0.991 0.985 0.993

cusim10 0.996 0.992 0.993 0.994 0.988 0.947 0.991 0.974 0.992

cusim11 0.998 0.997 0.996 0.997 0.996 0.994 0.996 0.995 0.996

cusim12 0.996 0.993 0.994 0.994 0.994 0.988 0.993 0.967 0.996

cusim13 0.997 0.994 0.994 0.996 0.994 0.992 0.993 0.986 0.997

cusim14 0.999 0.998 0.995 0.997 0.995 0.984 0.996 0.995 0.996

cusim15 0.999 0.999 0.998 0.998 0.998 0.951 0.998 0.997 0.998

average 0.997 0.995 0.994 0.995 0.988 0.971 0.994 0.985 0.995 2

149

B.4 Feature Similarity Index with chrominance included (FSIMC) Data

Note: the FSIMC values for image sipi_im1 to sipi_im8 of USC-SIPI were indeterminate in the ACR &

EDCR algorithms due to the implementation of the FSIM algorithm. To ensure uniform analysis over

all image sets, the geometric average was established using remaining images sipi_im9 to sipi_im16.

Table B.19 FSIMC evaluation of test bed demosaicking algorithms over the USC-SIPI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

sipi_im1 0.980 0.974 0.939 0.957 0.936 0.928 - - 0.932

sipi_im2 0.981 0.977 0.947 0.963 0.944 0.938 - - 0.939

sipi_im3 0.962 0.944 0.872 0.901 0.853 0.852 - - 0.853

sipi_im4 0.976 0.966 0.932 0.950 0.926 0.911 - - 0.924

sipi_im5 0.974 0.961 0.907 0.931 0.884 0.879 - - 0.884

sipi_im6 0.963 0.957 0.927 0.939 0.913 0.908 - - 0.913

sipi_im7 0.974 0.953 0.882 0.904 0.856 0.867 - - 0.873

sipi_im8 0.978 0.966 0.905 0.927 0.883 0.891 - - 0.898

sipi_im9 0.997 0.995 0.976 0.988 0.973 0.938 0.981 0.939 0.986

sipi_im10 0.992 0.987 0.972 0.975 0.961 0.914 0.973 0.971 0.999

sipi_im11 0.977 0.974 0.962 0.964 0.958 0.924 0.957 0.934 0.986

sipi_im12 0.995 0.989 0.971 0.978 0.967 0.935 0.973 0.968 0.982

sipi_im13 0.996 0.992 0.975 0.980 0.964 0.929 0.976 0.974 0.986

sipi_im14 0.982 0.980 0.971 0.975 0.969 0.945 0.974 0.968 0.988

sipi_im15 0.990 0.987 0.977 0.981 0.974 0.950 0.978 0.971 0.988

sipi_im16 0.994 0.991 0.983 0.987 0.975 0.939 0.983 0.963 0.987

average 0.990 0.987 0.973 0.978 0.968 0.934 0.975 0.961 0.988 2

Table B.20 FSIMC evaluation of test bed demosaicking algorithms over the Kodak Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

kodim01 0.991 0.992 0.985 0.991 0.985 0.955 0.972 0.966 0.994

kodim02 0.995 0.989 0.977 0.985 0.977 0.929 0.975 0.940 0.990

kodim03 0.996 0.995 0.984 0.988 0.983 0.956 0.982 0.979 0.983

kodim04 0.997 0.996 0.988 0.990 0.987 0.964 0.986 0.979 0.988

kodim05 0.993 0.994 0.986 0.990 0.986 0.966 0.976 0.966 0.987

kodim06 0.990 0.991 0.983 0.988 0.982 0.933 0.971 0.964 0.984

kodim07 0.998 0.997 0.988 0.991 0.986 0.962 0.985 0.969 0.997

kodim08 0.987 0.992 0.986 0.991 0.987 0.971 0.968 0.959 0.981

kodim09 0.996 0.995 0.985 0.988 0.983 0.955 0.981 0.971 0.986

kodim10 0.996 0.995 0.983 0.986 0.979 0.947 0.979 0.968 0.990

kodim11 0.993 0.993 0.984 0.987 0.984 0.954 0.975 0.969 0.990

kodim12 0.995 0.995 0.990 0.991 0.986 0.964 0.984 0.979 0.989

kodim13 0.987 0.985 0.984 0.983 0.984 0.960 0.966 0.955 0.988

kodim14 0.995 0.995 0.980 0.987 0.979 0.959 0.975 0.942 0.988

kodim15 0.995 0.995 0.991 0.992 0.989 0.956 0.986 0.974 0.990

kodim16 0.993 0.993 0.970 0.975 0.970 0.936 0.965 0.936 0.983

kodim17 0.996 0.995 0.980 0.987 0.979 0.962 0.979 0.974 0.987

kodim18 0.993 0.991 0.983 0.986 0.983 0.960 0.976 0.965 0.984

kodim19 0.992 0.990 0.974 0.978 0.972 0.941 0.965 0.943 0.986

kodim20 0.994 0.992 0.982 0.984 0.957 0.864 0.978 0.970 0.988

kodim21 0.993 0.990 0.976 0.979 0.975 0.938 0.965 0.948 0.989

kodim22 0.995 0.992 0.975 0.979 0.974 0.937 0.972 0.956 0.999

kodim23 0.998 0.997 0.985 0.988 0.984 0.952 0.985 0.967 0.999

kodim24 0.989 0.985 0.976 0.977 0.970 0.928 0.967 0.957 0.999

average 0.994 0.993 0.982 0.986 0.980 0.948 0.976 0.962 0.989 3

150

Table B.21 FSIMC evaluation of test bed demosaicking algorithms over the McMaster-IMAX Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

mcm01 0.982 0.990 0.979 0.984 0.975 0.941 0.976 0.964 0.997

mcm02 0.990 0.995 0.987 0.991 0.986 0.970 0.984 0.973 1.000

mcm03 0.990 0.988 0.977 0.979 0.972 0.942 0.972 0.945 1.000

mcm04 0.973 0.988 0.968 0.976 0.956 0.920 0.967 0.954 0.983

mcm05 0.990 0.993 0.977 0.983 0.972 0.948 0.979 0.970 0.992

mcm06 0.988 0.996 0.981 0.988 0.978 0.950 0.983 0.978 0.999

mcm07 0.985 0.992 0.986 0.988 0.984 0.969 0.981 0.949 0.987

mcm08 0.986 0.994 0.989 0.991 0.987 0.976 0.986 0.976 0.992

mcm09 0.986 0.992 0.978 0.983 0.973 0.948 0.979 0.974 0.993

mcm10 0.992 0.996 0.985 0.989 0.982 0.962 0.986 0.981 0.994

mcm11 0.998 0.995 0.987 0.991 0.985 0.966 0.988 0.973 0.993

mcm12 0.996 0.992 0.968 0.972 0.963 0.925 0.969 0.966 0.979

mcm13 0.995 0.984 0.961 0.964 0.956 0.911 0.964 0.961 0.994

mcm14 0.998 0.994 0.984 0.988 0.981 0.962 0.986 0.983 0.993

mcm15 0.997 0.994 0.981 0.986 0.979 0.956 0.983 0.980 0.999

mcm16 0.997 0.995 0.988 0.990 0.984 0.969 0.986 0.959 0.990

mcm17 0.996 0.995 0.990 0.992 0.987 0.974 0.989 0.964 0.994

mcm18 0.993 0.993 0.981 0.986 0.978 0.959 0.970 0.958 0.989

average 0.991 0.993 0.980 0.984 0.977 0.953 0.979 0.967 0.993 1

Table B.22 FSIMC evaluation of test bed demosaicking algorithms over the Condat Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

codim01 0.983 0.992 0.978 0.983 0.976 0.934 0.972 0.957 0.987

codim02 0.985 0.993 0.980 0.985 0.977 0.940 0.979 0.971 0.997

codim03 0.995 0.993 0.981 0.985 0.978 0.941 0.978 0.967 0.977

codim04 0.994 0.992 0.980 0.985 0.977 0.952 0.975 0.967 0.987

codim05 0.996 0.989 0.975 0.978 0.971 0.939 0.973 0.920 0.986

codim06 0.993 0.994 0.986 0.992 0.985 0.972 0.985 0.934 0.988

codim07 0.983 0.988 0.971 0.975 0.962 0.903 0.967 0.954 0.985

codim08 0.988 0.988 0.975 0.979 0.970 0.948 0.971 0.892 0.986

codim09 0.988 0.985 0.979 0.980 0.974 0.934 0.969 0.914 0.987

codim10 0.995 0.992 0.971 0.979 0.967 0.928 0.971 0.957 0.985

codim11 0.989 0.991 0.983 0.986 0.979 0.961 0.979 0.924 0.987

codim12 0.988 0.988 0.977 0.983 0.976 0.948 0.964 0.867 0.986

codim13 0.989 0.990 0.982 0.986 0.980 0.947 0.972 0.956 0.997

codim14 0.990 0.993 0.981 0.986 0.978 0.954 0.982 0.972 0.987

codim15 0.989 0.990 0.974 0.981 0.972 0.946 0.968 0.950 0.998

codim16 0.998 0.996 0.986 0.990 0.984 0.968 0.986 0.977 0.988

codim17 0.990 0.985 0.971 0.976 0.944 0.911 0.968 0.931 0.988

codim18 0.992 0.988 0.971 0.976 0.964 0.938 0.967 0.895 0.985

codim19 0.990 0.991 0.976 0.980 0.971 0.947 0.973 0.913 0.976

codim20 0.990 0.993 0.976 0.981 0.974 0.942 0.975 0.917 0.978

codim21 0.990 0.989 0.977 0.981 0.971 0.945 0.976 0.963 0.986

codim22 0.989 0.993 0.987 0.989 0.985 0.934 0.982 0.952 0.979

codim23 0.990 0.999 0.993 0.996 0.992 0.978 0.991 0.950 0.987

codim24 0.989 0.991 0.979 0.983 0.977 0.951 0.973 0.967 0.968

codim25 0.990 0.996 0.985 0.990 0.984 0.962 0.986 0.966 0.975

codim26 0.991 0.988 0.970 0.975 0.968 0.937 0.963 0.882 0.975

codim27 0.989 0.994 0.988 0.991 0.987 0.969 0.983 0.969 0.982

codim28 0.990 0.995 0.978 0.985 0.976 0.948 0.980 0.933 0.976

codim29 0.988 0.997 0.992 0.994 0.990 0.978 0.991 0.938 0.987

codim30 0.982 0.988 0.972 0.977 0.965 0.935 0.968 0.945 0.975

average 0.990 0.991 0.979 0.984 0.975 0.946 0.976 0.940 0.984 3

151

Table B.23 FSIMC evaluation of test bed demosaicking algorithms over the ARRI Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

arri_im1 0.989 0.991 0.999 1.000 0.997 0.989 0.998 0.989 0.996

arri_im2 0.989 0.991 1.000 0.999 0.997 0.972 0.998 0.990 0.997

arri_im3 0.989 0.991 1.000 0.990 0.994 0.975 0.999 0.997 0.997

arri_im4 0.990 0.990 0.999 0.997 1.000 0.998 0.999 0.971 0.999

arri_im5 0.991 0.991 1.000 0.998 1.000 0.999 1.000 0.998 0.999

arri_im6 0.990 0.992 0.999 0.998 0.997 0.994 0.998 0.996 0.997

arri_im7 0.990 0.999 0.999 0.999 0.999 0.998 0.999 0.995 0.999

arri_im8 0.991 0.999 1.000 0.999 0.999 0.993 0.999 0.991 0.999

arri_im9 0.990 0.998 0.999 0.998 0.998 0.788 0.998 0.994 0.997

arri_im10 0.990 0.996 0.999 0.998 0.999 0.997 0.999 0.997 0.999

arri_im11 0.990 0.997 1.000 0.998 0.998 0.989 0.999 0.956 0.998

arri_im12 0.991 0.998 0.999 0.999 0.998 0.991 0.998 0.980 0.997

average 0.990 0.994 0.999 0.998 0.998 0.972 0.999 0.988 0.998 3

Table B.24 FSIMC evaluation of test bed demosaicking algorithms over the Custom Image Set

 CDBI EDI MHC Wang ESFBI MGBI ACR EDCR Prop Rank

cusim01 0.991 0.988 0.996 0.998 0.994 0.988 0.986 0.990 0.992

cusim02 0.993 0.988 0.995 0.997 0.994 0.984 0.990 0.983 0.992

cusim03 0.997 0.989 0.997 0.998 0.996 0.975 0.990 0.987 0.994

cusim04 0.998 0.989 0.998 0.999 0.998 0.995 0.998 0.986 0.996

cusim05 0.983 0.987 0.994 0.997 0.993 0.981 0.993 0.938 1.000

cusim06 0.989 0.988 0.996 0.997 0.994 0.982 0.995 0.987 0.993

cusim07 0.989 0.988 0.996 0.997 0.995 0.986 0.991 0.983 0.993

cusim08 0.989 0.987 0.995 0.997 0.988 0.939 0.993 0.991 0.991

cusim09 0.989 0.986 0.993 0.996 0.973 0.917 0.990 0.985 0.991

cusim10 0.989 0.986 0.995 0.997 0.989 0.929 0.995 0.970 0.999

cusim11 0.989 0.987 0.995 0.997 0.993 0.985 0.995 0.994 0.999

cusim12 0.990 0.987 0.993 0.996 0.991 0.969 0.994 0.964 0.999

cusim13 0.989 0.988 0.994 0.997 0.994 0.984 0.995 0.982 0.997

cusim14 0.990 0.989 0.997 0.998 0.996 0.982 0.998 0.997 0.997

cusim15 0.990 0.989 0.997 0.999 0.996 0.956 0.998 0.996 0.994

average 0.990 0.988 0.995 0.997 0.992 0.970 0.993 0.982 0.995 2

152

Appendix C: Image Sets and Camera Resolution Chart

The images provided below have been employed in the analysis of this work and are readily available

online or upon e-mail request to the author via the following addresses:

kinyua.wachira@students.uonbi.ac.ke or kinyua.wachira@gmail.com.

(a)

(b)

Figure C.1 The Dress image where (a) the blue and black version is the actual dress and (b) the white and gold

version was the image posted online (source [21])

mailto:kinyua.wachira@students.uonbi.ac.ke
mailto:kinyua.wachira@gmail.com

153

Figure C.2 The USC-SIPI Image Set: sipi_im01 to sipi_im16; viewed from top to bottom, left to right (source

[128])

154

Figure C.3 The Kodak Set: kodim01 to kodim24; viewed from top to bottom, left to right (source [123])

155

Figure C.4 McMaster-IMAX Set: mcm01 to mcm18; viewed from top to bottom, left to right (source [124])

Figure C.5 Condat Set: codim01 to codim30; viewed from top to bottom, left to right (source [125])

156

Figure C.6 The ARRI Set: arri_im01 to arri_im12; viewed from top to bottom, left to right (source [130])

157

Figure C.7 A Custom Image Set: cusim01 to cusim15; viewed from top to bottom, left to right; developed by the

author.

158

Table C.1 Resolution Specification Chart

Digital Camera Resolution Chart

Capture

Resolution

Video

Display*

Print Size***

2x3" 4x5"/4x6" 5x7" 8x10" 11x14" 16x20" 20x30"

320x240 Acceptable Good Acceptable Poor Poor Poor Poor Poor

640x480 (0.3

Megapixel)

Good Excellent Good Poor Poor Poor Poor Poor

800x600 Excellent Photo

Quality

Very Good Acceptable Poor Poor Poor Poor

1024x768 Excellent Photo

Quality

Excellent Good Acceptable Poor Poor Poor

1280x960 (1

Megapixel)

Excellent Photo

Quality

Photo

Quality

Very Good Good Poor Poor Poor

1536x1180 Excellent** Photo

Quality

Photo

Quality

Excellent Very Good Acceptable Poor Poor

1600x1200 (2

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Very Good Acceptable Acceptable Poor

2048x1536 (3

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Excellent Good Acceptable Acceptable

2240x1680 (4

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Very Good Good Acceptable

2560x1920 (5

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Excellent Very Good Very Good

3032x2008 (6

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Excellent Very Good

3072x2304 (7

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Excellent Excellent

3264x2448 (8

Megapixel)

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Excellent

10 Megapixel

and Above

Excellent** Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

Photo

Quality

* A television or computer display

** Will produce an excessively large file size that would be inappropriate for web applications

*** Using a typical Photo Quality Desktop printer

Where:

i. Poor: the image is noticeably pixelated

ii. Acceptable: only coarse details are visible in the image

iii. Good: coarse and fine details are visible in the image

iv. Very Good: image is an adequate scene representation for most people

v. Excellent: to the human eye, the image is indistinguishable from the original scene at a normal

viewing distance

vi. Photo Quality: on a photo-quality printer, to the human eye, the image is indistinguishable

from the original scene at a normal viewing distance

159

Appendix D: Human Trichromacity

The spectral curves derived from Hunt [16] are presented in Figures D.1 and D.2 for reference.

Figure D.1

Figure D.2

Figure D.1 (a) The probable sensitivity curves β, γ, and ρ determined by indirect methods together with the
spectral quality points of R, G, and B (b) Spectral sensitivity curves found from bleaching experiments on

pigments in the human retina

Figure D.2 The ρ, γ, β sensitivity curves and the spectral powers of light transmitted by red, green and blue

filters typically used in additive colour reproduction

160

Appendix E: Visual Artefacts and Aberrations

E.1 Selected Optical Effect Artefacts

Figure E.1 Selected images highlighting spherical aberration

Figure E.2 Image illustrating chromatic aberration

Figure E.3 Image illustrating comatic aberration

161

Figure E.4 Camera stills from the Star Trek films illustrating lens flare phenomena

Figure E.5 Selected images illustrating vignette effects

E.2 Image Noise Effects

Figure E.6 Types of image noise: (a) fixed pattern (b) random and (c) banded

162

E.3 Demosaicking Artefacts

(e)

Figure E.7 Selected images showing (a) Zipper effect (b) Colour Shifts (c)Moiré effect, (d) Blurring and (e)

Jaggies (source: [33])

E.4 Coloration and Exposure Shifts

Figure E.8 Image showing coloration shifts: (a) cool appearance, (b) warm appearance, (c) grey appearance
and (d) saturation effects (source [33])

Figure E.9 Image showing exposure shifts: (a) underexposure, (b) normal exposure and (c) overexposure

(source [33])

163

Appendix F: Publication Statistics

A general term search analysis was performed to identify the level of active interest in single sensor

image demosaicking. The three main image processing repositories: the IEEE Xplore library [141], the

Springer Link repository [142] and the SPIE Digital library [143] were queried to find the number of

times the terms ‘demosaicking’ and ‘demosaicing’ appeared in titles of journals and conference papers.

The results are shown below.

Table F.1 Search term statistics for the words 'demosaicking' and 'demosaicing' in a publication’s title

Search Term IEEE Xplore Library Springer Link Repository SPIE Digital Library

‘demosaicking’ 258 44 37

‘demosaicing’ 252 93 31

Figure F.1 Demosaicking publication trend in the IEEE Xplore repository

0

5

10

15

20

25

30

N
u

m
b
er

 o
f

P
u

b
li

ca
ti

o
n

s

Year of Publication

IEEE Xplore Repository Search Statistics for the area

of Demosaicking, December 1999 - June 2017

term: 'demosaicking' term: 'demosaicing'

164

Figure F.2 Demosaicking publication trend in the Springer Link repository

Figure F.3 Demosaicking publication trend in the SPIE Digital Library repository

0
2
4
6
8

10
12
14
16
18

N
u
m

b
er

 o
f

P
u
b
li

ca
ti

o
n

s

Year of Publication

Springer Link Repository Search Statistics for the

area of Demosaicking, 1999 - June 2017

term: 'demosaicking' term: 'demosaicing'

0

1

2

3

4

5

6

7

N
u

m
b
er

 o
f

P
u

b
li

ca
ti

o
n

s

Year of Publication

SPIE Digital Library Search Statistics for the

area of Demosaicking, 1999 - 2015

term: 'demosaicking' term: 'demosaicing'

165

Appendix G: Author’s Publications

G.1 First Publication – IEEE SPICES 2015

166

167

168

169

170

G.2 Second Publication - IEEE ICTRC 2015

171

172

173

174

G.3 Third Publication – IEEE EUROCON 2015

175

176

177

178

179

180

G.4 Fourth Publication – IEEE AFRICON 2015

181

182

183

184

185

G.5 Fifth Publication – IEEE AFRICON 2017

186

187

188

189

190

191

Appendix H: Results from Turnitin Plagiarism Checker

Figure H.1 Turnitin digital receipt

192

Figure H.2 Similarity statistics from Turnitin with bibliography and appendices included

Figure H.3 Similarity statistics from Turnitin with bibliography excluded

193

The updated Turnitin® statistics after implementing corrections are given below:

The updated digital receipt:

194

The Turnitin® statistics after implementing corrections (bibliography excluded):

