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Abstract

Background: Demographic and Health Surveys (DHS) provide data on a wide scope
of risk-factors of under-five child survival. Missing covariate data is inevitable in the
DHS under-five survival data since data is collected retrospectively and on a large
number of covariates. We studied the missing data problem on the risk-factors of
under-five child survival in DHS data sets.

Methods: Random survival forests model was first used for selecting the highly
predictive risk factors from a pool of over 400 covariates, from which a subset of
50 covariates was selected. Multiple imputation by chained equations (MICE) and
random forests were applied to handle missing covariate data. Imputed data was then
analyzed using random survival forests and Cox-regression models.

Results: The results showed that missingness in covariates was more related to the
time to event (52%) than the event status (19%) response variables. The ranking
of under-five risk factors from imputed data sets was closely related to the ranking
from the observed values, albeit, multiple imputation led to increase in the variable
importance scores. The unadjusted estimates from the Cox-regression model based
on imputed values were closely similar to the estimates from the observed values.
However, minimal discrepancies in estimates were observed in covariates with over
30% missing data. Random forests approach shown potential for producing estimates
much closer to the true estimates with high level of missing than MICE.

Conclusion: Multiple imputation shown potential to produce estimates closely similar
to the true estimates even with high missingness. Random forests imputation shown
potential to perform better than MICE imputation strategies. The current study
results may need to be validated using a larger simulation study and other non-response
models for decisive conclusions to be made.
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1 Introduction

This chapter is divided into five subsections that include; background, statement of the
problem, objectives, justification, and scope. The background includes an overview of child
mortality, missing data, survival analysis, and classification and regression trees.

1.1 Child mortality

Child mortality estimated as rate of dying between 0 to 59 months is the principal measure
for child well-being UNDESA (2015). Tremendous achievements have been made worldwide
in reducing child deaths in the past two decades (Unicef, 2015). The figure 1 shows
that the rate of child mortality has significantly decreased from 94/1000 deaths in 1990
to 41/1,000 in 2016, confirming a 55% reduction in child mortality in a period of 26
years. Globally, low and middle income countries (LMICs) account for about 99% of the
under-five child deaths registered and sub-Saharan African (SSA) alone, accounts for about
50% of the under-five child deaths registered in the LMICs annually (Unicef, 2015).

Figure 1. Global trends in under-five child mortality. Source: WHO estimates

Despite this progress, more efforts are still needed to realize the Sustainable Development
Goal of preventing neonatal and child mortality and achieving below 25/1000 child deaths
in every nation (Unicef, 2015). The figure 2 shows that diarrhea (29.6%), malaria (29.5%)
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and AIDS (17.3%) are the most prevalent causes of neonatal mortality in the sub-Saharan
African region by 2016 while Phenomena (22.5%), malaria (15.3%) and diarrhea (14.5%)
were the most prevalent causes of post-neonatal mortality in the same region and year
respectively. Albeit, 30.1% of the child deaths aged 1-59 months were accounted by other
causes.

Figure 2. Causes of under-five child deaths in SSA. Source: UNICEF, 2016

Demographic and Health Surveys also collect data on a broad scope of risk factors of
under-five child mortality. DHS are a series of national representative surveys that collect
routine data on demographioc and child health indicators. DHS data sets provide a good
source to understand some of the social, economic, demographic, enviromental, community
and health risk-factors. Several studies Masanja et al. (2008); Susuman et al. (2016);
Susuman and Hamisi (2012); Nasejje et al. (2015) have previously used DHS data sets
to study the risk-factors of under-five child mortality in SSA. Several risk factors such
as residing in rural areas, short preceding birth intervals, high parity, male children, high
number of births and low mother’s education were indicated as significant predictors of
child survival. A study by (Nasejje et al., 2015) on under-five child survival using the
Uganda DHS further identified high level of missing covariate data as one of the limitations
to studying more important covariates. Several studies reviewed in this thesis did not
report how they handled missing data, even when missing data was present in their data
sets.

1.2 Missing data

1.2.1 Overview

Missing cases happens when there’s no observed values for the given variable(s) or for the
entire observation/unit. Missing data is inevitable in social and health sciences research
(Allison, 2001). Missing values occur at two stages/levels of analysis namely; unit and
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item stages (Azur et al., 2011). At unit level, missing data happens when data values
are not recorded for a respondent for reasons such as the respondent is unavailable or
refuses to complete the survey. At item level, missing data occurs when data is partially
missing for the respondent i.e. data is recorded for some variables and not recorded
for some variables. The reasons for this missing data may include refusal/forgetting
to answer some of the questions, and skip patterns in the questionnaire. However, in
longitudinal studies or randomized controlled trials, missing cases may occur due to loss
to follow-up, withdrawal from the study, and death if not the study’s interest (Allison, 2001)

Demographic and Health Surveys (DHS) experience both unit and item level missing
data. Information from the 2015-2016 Tanzania Demographic and health Survey (TDHS)
indicate that data was missing at unit level in 3% out of the total 13,634 eligible women
identified. In this thesis, our focus is on item level missing data in the 2015-2016 TDHS.
Data on item level is missing in over 60% of the data collected in the Demographic and
Health Surveys. It’s important to note that data is collected retrospectively for the previous
five years in the DHS, and this plays a bigger role on the item level missingness. Data
is also missing in DHS due to the skip patterns that are observed in the DHS Woman’s
questionnaire.

Missing data has also been reported in earlier reviews. (Peugh and Enders, 2004) assessed
the prevalence of missing cases in education and psychology research. They found out that
48% of the articles reviewed contained missing data, and over 90% of the articles with
missing data applied the conventional complete case or pair-wise deletion analysis methods.
Several limitations of complete case analysis have been discussed in literature (Graham,
2009). If missing data is not handled properly it may lead to invalid statistical inferences
(Graham, 2009). (Allison, 2001) indicated that the best way to deal with unobserved
observations is to avoid them. Missing data may be avoided at the data collection stage
by having strict data monitoring and collection teams that ensure complete records are
achieved or follow up cases that record missing data. The use of electronic data collection
systems like Open Data Kit (ODK) that are pre-programmed to limit missing information
are handy in preventing the missing data problem.

There are other several alternatives of handling missing data that include imputation,
weighting and maximum likelihood estimation techniques (Little and Rubin, 1989; Schafer
and Graham, 2002). When handling missing observations, it is very paramount to pay
attention to the following aspects;

• Proportion of missingness

• Pattern of missing data

• Missing data mechanisms
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The three items above are described in our methods section.

1.2.2 Missing data imputation techniques

There are several techniques that are used in handling missing data. They include but not
limited to;

Complete case analysis (CCA)

CCA refers to the analysis of only complete observations i.e. observations with missing cases
do not form part of the analysis. When data is missing completely at random (MCAR) i.e
when the probability of missing does not depend on the observed or unobserved, complete
case analysis will be unbiased, otherwise, CCA will produce biased or unbiased estimates
under the following scenarios (Little and Rubin, 2014);

• If the response variable (Yi) is MAR or NMAR, complete case will be biased

• If the missingness in covariates (Xi) is dependent on the values of Yi, the complete
case will be biased.

Data is said to be MAR (Missing at random) if the probability of missing depends on the
observed values where as data is said to MNAR (Missing not at random) if the probability
of missing depends only on the unobserved values.

Single Imputation

First, imputation refers to taking draws or means from the posterior distribution of the
observed values (Little and Rubin, 2014). Single imputation means that only a single draw
is taken. There are two approaches of generating data under single imputation; explicit
(direct) and implicit (indirect) modeling (Little and Rubin, 2014). Explicit modeling
approaches include the use of means, regression, and stochastic regression. Implicit
methods use hot-deck, substitution, and cold deck. Mean imputation is further broken
down into conditional and unconditional mean imputation methods. We discuss the
different single imputation approaches below;
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Unconditional mean imputation

Let Xij represent a value of Xj for observations i = 1,2, ....,n. Let x̄ represent the
respondent data mean. The missing cases are estimated by the computed value x̄. When
the likelihood of missing is independent of observed or unobserved values, the variance
estimates will be unbiased. Otherwise, estimates from this approach produce biased
estimates (Little and Rubin, 2014).

Imputing means within adjustment cells

This approach is commonly used in surveys where observations are classified into B

adjustment classes. The respondent mean is the same for the non-respondent mean if in
one class, assuming equal sampling weighs. Let x̄jB be the observed mean for a variable
Xj in class B. Then the resultant mean of X from imputed data is

1
m

B∑
j=1

( bj∑
i=1

xij +
mj∑

i=bj+1
x̄jB

)
= 1
m

B∑
j=1

mj x̄jB = x̄wc (1)

Regression imputation (RI)

RI method replaces unobserved data with the predicted values from a regression of
unobserved cases on observed cases (Little and Rubin, 2014). Let X1,X2, ....,Xm−1 be
completely observed and Xm be observed for only the first k observations and unobserved
for n− k observations. RI estimates the regression of Xm on X1,X2, ....,Xm−1 based
on k complete cases, and then fills the missing values with regression predictions. The
missing values are imputed using the regression equation

x̂im = β̂m.012....m−1 +
m−1∑
j=1

β̄mj.12....m−1xij , (2)

where β̂m.012....m−1 is the intercept and β̄mj.12....m−1 is the regression coefficient of Xj in
the regression of Xm on X1,X2, ....,Xm−1 based on k observed values.

Stochastic regression imputation

Under this approach, missing observations are replaced by predictions from the regression
line plus residuals drawn to account for the uncertainty in the predicted observations. Let
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X1,X2, ....,Xm−1 be complete cases and Xm be observed only for the first k observations
and unobserved for the last n− k observations. Stochastic regression estimates the
regression of Xm on X1,X2, ....,Xm−1 based on k complete values. Imputed values are
predictions from the conditional draw.

x̂im = β̂m.012....m−1 +
m−1∑
j=1

β̄mj.12....m−1xij +Uim, (3)

Where Uim is the disturbance term with mean zero and variance σ̂mj.12....m−1

Hot deck imputation

In this approach, missing observations of a respondent are replaced by observations from
the similar "donor" in the observed data (Andridge and Little, 2010). This approach is
recommended for missing data imputation in cases where missingness is less than 10%
and the data is either MAR or MCAR (Andridge and Little, 2010). Consider a sample h
from a population of H units. If a out of H units are observed for a variable X, where
i= 1,2, ...,h and a < h. The mean of X may be estimated as the mean of the observed
and imputed data, written as follows;

x̄HD =
{
ax̄A+ (h−a)x̄∗MR

}
/h (4)

where x̄A is the mean of the respondent units, and

x̄∗MR =
a∑
i=1

Qixi
h−a

where Qi is the number of times xi is as an imputed value of X, with ∑m
i=1Qi = h−a,

the number of unobserved units.

Last observation carried forward

This technique is most applied in longitudinal studies where there are loss to follow up
cases. It has been previously applied in medical studies (Pocok, 1983) but (Molenberghs
et al,2004) reported that the approach produces biased estimates even under MCAR.
Little and Rubin (2014) provides a description of the mathematical implementation of
the approach. Suppose yi = yi1, .....,yih is a (h ∗ 1) observed vector of outcomes for
an individual i, with a possibility of having missing data. Let Ri denote the missing
value indicator, with Ri=0 if not missing, and Ri = 1 if an individual drops out between
observation times (h−1) and h. Then data is observed for yi1, .....,yi,h−1, and missing
for (yih, .....,yiH). Therefore, for an individual i with missing values, missing values are
taken as the last respondent observed/recorded value.



7

Multiple imputation (MI)

MI is a missing observation handling approach that handles missing data by substituting
every missing case with multiple values (Rubin, 1976; Little and Rubin, 2014). MI
approach provides valid statistical inferences, especially under MCAR and MAR missing
data mechanisms, and overcomes the limitations that come with single imputation by
generating multiple complete data sets that can be analyzed and results pooled to form valid
inferences. MI is insensitive to violations of the non-normality assumption, which makes
it further appealing. According to (Little and Rubin, 2014), m multiple imputations are
drawn from the known distribution of Xmis. When using MI, missing cases are estimated
based on Bayesian iterative simulation methods that are based on the posterior predictive
distribution of the unobserved cases. Two main methods used for drawing imputed values
under multiple imputation are;

• Data augmentation

• Gibb’s sampling algorithm (Gibb’s sampler)

The other approaches used to generate multiple imputations include;

• Resampling

• Random forests

• Monte-carlo simulation models

Data augmentation (DA)

DA is defined as the iterative approach of simulating the posterior distribution of θ based
on the Expectation Maximization (EM) algorithm and multiple imputation. This method
is further discussed by (Rubin, 1987; Little and Rubin, 2014). The equation (5) shows the
posterior distribution for the model when data is either MAR or MCAR.

f(θ|Xobs,M)≡ f(θ|Xobs) = constant×f(θ)×f(Xobs|θ) (5)

where fp(θ) is a prior distribution and f(Xobsθ) is the distribution of the observed cases.
According to (Little and Rubin, 2014), data augmentation is a modification of the Expec-
tation Maximization (E-M)algorithm when the sample size is not large. The E step under
EM algorithm corresponds to imputation (I), and M step corresponding to posterior (P).
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First, start with initial values θ(0) chosen from an approximation to the posterior density
of θ. Let θ(t) represent a value of θ drawn at iteration t;

IStep: Draw X
(t+1)
mis with the function f(Xmis|Xobs, θ

(t))
PStep: Draw θ(t+1) with the function f(θ|Xobs,X

(t+1)
mis )

The above iterative procedure yields an imputed value from the joint posterior func-
tion of Xmis, θ given Xobs. DA can be run m times to compute m independent and
identically distributed imputations.

Gibbs sampling

The Gibbs sampler is named after a great physicist Josiah Willard Gibbs who introduced
it and is further described by (Geman and Geman, 1987). It is defined as an iterative
simulation approach that draws imputations from the joint distribution. The Gibbs
sampling algorithm is described by (Little and Rubin, 2014) as follows. The Gibbs sampler
generates draws from the distribution f(x1, .....,xk) of k random variables. The initial
values x(0)

1 , ......,x
(0)
k are drawn in someway from the predictive distribution of Xmis. For

every new iteration (t+ 1), imputed values are draws from the sequence of k conditional
distributions given the values x(t)

1 , ......,xkm
(t) from the previous imputation iteration t ;

x
(t+1)
1 ∼ f(x1|x(t)

2 ,x
(t)
3 , .....,x

(t)
k ).

x
(t+1)
2 ∼ f(x2|x(t+1)

1 ,x
(t)
3 , .....,x

(t)
k ).

x
(t+1)
3 ∼ f(x3|x(t+1)

1 ,x
(t+1)
2 ,x

(t)
4 , .....,x

(t)
k ).

...

x
(t+1)
k ∼ f(xk|x

(t+1)
1 ,x

(t+1)
2 , .....,x

(t+1)
k−1 )

(6)

The sequence x(t) = (x(t)
1 , ......,x

(t)
k ) converges to an imputation from a joint function of

X1, .......,Xk. The Gibbs sampler can be done independently t and m times to generate t
iterations and m imputations respectively from the joint function of θ and Xmis.

Expected-Maximization (EM) Procedure

The EM procedure is defined as an efficient process of computing the maximum likelihood
estimates in the presence of unobserved values (Borman, 2004). The EM algorithm doesn’t
provide imputed data as is the case of multiple imputation. The EM algorithm derives
its estimates directly by maximizing the likelihood function of the observed cases (Dong
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and Peng, 2013). Each cycle of the procedure involves two steps i.e. the expectation
(E) step followed by a maximization (M) step (Allison, 2012). Missing data is estimated
in the E-step given the available values and the parameters are estimated by conditional
expectation. The maximization of the likelihood function is done in the M-step using both
the imputed and observed data (Dong and Peng, 2013). Suppose ~X is a random vector
and θ is the unknown parameter to be estimated such that f( ~X|θ) is maximized. The
following likelihood function is used to estimate θ

L(θ) = lnf( ~X|θ) (7)

Maximizing equation (7) gives the values of θ. Therefore, after the nth iteration, θ is
estimated by θn satisfying the inequality,

L(θ)> L(θn) (8)

We also have to maximize the inequality;

L(θ)−L(θn) = lnf( ~X|θ)− lnf( ~X|θn) (9)

Therefore, if θ = θn, then L(θn) and L(θ) will be equal. We select θ given that L(θn) is
maximized under EM algorithm.

Full Information Maximum Likelihood Estimation (FIMLE)

FIMLE is a method of estimating missing values by maximizing the likelihood function
for every missing case given the available cases (Allison, 2012). Contrary to multiple
imputation, FIMLE doesn’t not provide imputed data sets, it only estimates parameters
directly using all the observations in the data sets by maximizing the likelihood function
(Dong and Peng, 2013). FIMLE is also known as Direct Maximum Likelihood Estimation.
The first step in FIMLE is construction of the likelihood function. Suppose we have n
independent records (i= 1,2, .....,n) on m variables (xi1,xi2, .....,xim).

L=
n∏
i=1

pi(xi1,xi2, .....,xim;θ) (10)

To get values of θ , we need to maximize the likelihood function L. Suppose the variables
xi1,xi2 are either MAR or MCAR. The joint probability for a given observation i is the
probability of observing the rest of the variables xi3, ......,xim. Suppose the missing values
are discrete, the joint probability is summed over all the possible values with missing data
as follows;

fi(xi3, ......,xim;θ) =
∑
xi1

∑
xi2

fi(xi1,xi2, .....,xim;θ) (11)
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If the missing data are continuous, then we have

fi(xi3, ......,xim;θ) =
∫
xi1

∫
xi2
fi(xi1,xi2, .....,xim;θ)dxi2 dxi1 (12)

The overall likelihood function is the product of the separate likelihood functions for all
the observations regardless of missing or non-missing cases. Assuming that there are p
observations with complete cases and n−p observations with incomplete cases, the overall
likelihood function becomes;

L=
p∏
i=1

fi(xi1,xi2, .....,xim;θ)
n∏

i=p+1
fi(xi3, ......,xim;θ) (13)

The likelihood function (13) is maximized to obtain parameter estimates θ. The limitation
for FIMLE is the problem of factorization of the likelihood functions that is very complex
practically.

(Bennett, 2001) provides a summary table of the different missing data approaches
discussed and their associated effects on the statistical inference as shown in Table 1.

Table 1. Missing data approaches and associated effects. Adapted from (Bennett, 2001)

Approach Bias Variability
Complete/Available case
(CC)

Biased if MAR/MNAR Gives lower standard errors

Mean methods (MM) Biased if MAR/MNAR Gives lower standard errors
Least observation carried for-
ward (LVCF)

Biased if MAR/MNAR Underestimates variance but
less than MM

Regression approach (RM) Biased only if MNAR Gives lower standard errors
Hot-deck method Biased only if MNAR Gives lower standard errors

but less than MM, LVCF &
RM

MI Biased only if MNAR Gives good estimates of stan-
dard errors

Markov Chain method Unbiased for all mechanisms Gives better estimates of stan-
dard errors

E-M procedure Biased only if MNAR Gives better estimates of stan-
dard errors

FIMLE Biased only if MNAR Gives accurate estimates of
standard errors

1.3 Survival analysis

1.3.1 Definition

(Kleinbaum and Klein, 2010) defines survival analysis as a set of statistical analysis
approaches where the outcome of interest is time to the event. Time may be in minutes,
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hours, days, weeks, months or years recorded from the start of the study until when an
event of interest occurs or until when the study period ends. Under survival analysis, time
is usually referred to as survival time
An event may refer to the condition or experience of interest that is being studied such
as a disease, recovery from the disease, relapse, remission, death, loss of a job,return to
a job, marriage dissolution. There are studies where more than one event is considered
at the same time in data analysis, the statistical problem is characterized as recurrent
events or competing risks problem.

1.3.2 Common functions in survival analysis

Survival function.
This is the basic quantile employed to describe time to event observations. This is the
probability of a subject surviving beyond time t.

S(t) = Pr(T > t) (14)

For a continuous random variable t,

S(t) = 1−P (T ≤ t) = 1−F (t)

= 1−
∫ ∞
t

f(x)dx

dS(t)
dt

=−d
∫∞
t f(x)dx
dx

−d(S(t)
dt

= f(t)

Therefore

f(t) =−dS(t)
dt
⇒ S(t) =

∫ ∞
t

f(x)dx

Properties of S(t)

• S(0) = 1

• S(+∞) = 0

• S(t) is an increasing function of t

Hazard function
This is defined as the likelihood that an event occurs at a time t given a subject has



12

survived upto or beyond time t.

h(t) = lim
h→0

P (t≤ T < t+h|T > t)
h

h(t) = lim
h→0

P (t≤ T < t+h)
hP (T > t)

h(t) = lim
h→0

S(t)−S(t+h)
hS(t)

h(t) = f(t)
S(t)

since

f(t) =−dS(t)
dt

h(t) =−dS(t)
dt

/S(t)

h(t) =−dln(S(t))
dt

Note that h(t) is also an increasing function.

Cumulative hazard function

H(t) =
∫ t

0
h(u)du

=
∫ t

0
−dln(S(u))

du

=−ln(S(t))

The mean residual life time is thus given by,

r(t) = E(T − t|T ≥ t)

=
∫∞
t (x+ t)f(x)dx

S(t)

=
∫∞
t S(x)dx
S(t)

The pth percentile tp is the solution of the equation S(tp) = 1−p

Censoring
A data point is said to be censored if the event time is unknown by the closure of the
study period. Censoring may occur in survival settings if there is loss to follow up, study
ends when the event has not occurred, or withdrawal from the study.
Let T (T ≥ 0) be a positive survival time random variable, t(t≥ 0) be the non-negative
specific value for T , δ (0-1) be the variable for censorship with 1 if events occurs and 0 if
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no event, and C(C ≥ 0) be the positive fixed censoring variable. We define the different
types of censoring as follows;

Right censoring. Right censoring occurs when a subject’s exact event time becomes
incomplete on the right side of the follow-up period due to loss to follow up or withdrawal or
study ending before event happening. Let C1, ....Cn be i.i.d random variables representing
the censoring time associated with T . Due to censoring, we can only observe the pairs:

(X1, δ1), .....,(Xn, δn)

where
Xi is min(Ti,Ci)

and
δi = I(Ti ≤ Ci)

where δi = δ1, δ2, ..., δn contain the censoring information.

Left censoring. This occurs when the outcome occurs prior to the start of the study/enrollment.
Due to this type of censoring, we only observe the pairs: (X1, δ1), .....,(Xn, δn)
where

Xi = Max(Ti,Ci) =

Ti if Ti ≤ Ci,
Ci if Ti > Ci

and

δi = I(Ti ≤ Ci) =

1 if Ti ≤ Ci,
0 if Ti > Ci

Interval censoring. This occurs when event is observed between two observation times.
Let the interval between the two periods be (Li,Ri) = (L1,R1), ...,(Ln,Rn), then if,

(Li,Ri) =

(0,CL) ; then left censoring
(CT ,∞) ; then right censoring

Double censoring. This occurs in studies where there are two related events, one followed
by the other e.g. disease progression where the onset of the disease is caused by a viral
infection. In such a scenario, there are three variables of interest; time to infection, time
between infection and the onset of the disease, and finally time to the onset of the disease
(Sun, 2007). Due to this type of censoring,we only observe the pairs: (X1, δ1), .....,(Xn, δn)
for i= 1,2, ...,n

Xi =Min(Max(Ti,Li),Ri)
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and

δi =


1 if Xi = Ti,

0 if Xi =Ri,

−1 if Xi = Li

Truncation. This occurs when only individuals who have met certain criteria are included
in the study eg. a study of life styles of retirees in a community. Anybody who has not
retired doesn’t qualify to be in this study and are thus truncated. There are two forms of
truncation;
Right truncation. This occurs when the everyone in the study has already registered the
outcome of interest.
Left truncation.This occurs when every subject has experienced the outcome of interest
before joining the study.

1.3.3 Parametric survival analysis models

These are survival models where the survival time is assumed to follow a given distribution.
The following parametric distributions are commonly used in survival analysis;

• Exponential, weibull, exponential, log-logistic, generalized gamma

Functions of some of the parametric distributions are shown in table below;

Table 2. Functions of some of the parametric distributions

Distribution f(t) S(t) h(t)

Exponential λexp(−λt) exp(−λt) λ

Weibull λptp−1exp(−λtp) exp(−λtp) λptp−1

Log-logistic λptp−1

(1+λtp)2
1

1+λtp
λptp−1

1+λtp

1.3.4 Cox regression

Cox regression model Cox (1972) is a mathematical model used to analyze survival data.
The model assumes the proportional hazards assumption i.e for a given predictor, the
hazard ration is constant over time. It’s of the form

h(t|X) = h0(t)exp(β1X1 + ...+βkXk)
= h0(t)exp(βtX)

(15)
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Where X1, ....,Xk are the predictors, h0(t) is the baseline hazard, and it’s function is
unspecified. This explains why Cox regression is referred to as a semi-parametric regression
model. The Parameters βs are estimated using the maximum likelihood estimation
technique. The Cox model is explored more in our methods section.

1.3.5 Parametric survival model vs. Cox regression model

Parametric survival model has the following characteristics;

• More consistent with theoretical survival function

• Very simplified

• Completeness i.e the known distribution for h(t) & S(t)

• The survival time assumes an underlying distribution

Cox PH model has the following characteristics;

• Less consistent with theoretical S(t)

• The distribution of survival time is unknown

• The baseline S(t) or h(t) are not specified

• The survival time doesn’t rely on assumed distribution

• The baseline is not necessary for estimation of the hazards ratio

1.4 Classification and regression trees (CART)

CART are a simple non-parametric procedure used for prediction and predictor selection
(Breiman et al., 1984). Under CART, the predictors are recursively partitioned into a set
of homogeneous classes such that there is homogeneity of observation in the same class
with respect to the outcome.
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Figure 3. A pictorial of a conditional tree: The figure was constructed from the Tanzania DHS
under-five child data. Observations in the final nodes are assumed to be homogeneous

1.4.1 Random Forests (RF)

RF is defined as a classifier that consists of a set of tree-structured classifiers

f(X,Θm),m= 1,2, ... (16)

Where Θm are iid random variables and each tree produces a single vote for the class for
every variable input X (Breiman, 2001). Random forests are an extension of the bagging
where randomness is introduced (Breiman, 2001). RF splits the nodes using the best split
point for a variable from a set of predictors randomly chosen at every node that provides
more gainful information. RF fitting is based on the following algorithm (Breiman, 2001)

• Draw ntree bootstrap samples from the original data. Reserve about 30% as test data
(out of bag (OOB))

• Grow a tree for each ntree bootstrap samples. At each node, use the best m<< p

predictors and choose the best split among the m candidate predictors.

• For each bootstrap sample, predict the OOB data using the ntree in the original
sample

• Compute the error rate which is called the OOB estimate by averaging the OOB
predictions.

1.4.2 Random Survival Forests
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Random survival forests (RSF) are also ensemble tree methods designed for right censored
observations (Ishwaran et al., 2008), and are an improvement of the random forests
(Breiman, 2001). Both RF and RSF are part of classification and regression trees (CART)
that are fully non-parametric. RSF were built to model complex interactions in the data
apparent in survival data (Ishwaran et al., 2008) and have been used successfully in high
dimensional cases where the covariates are greater than observations (Chen and Ishwaran,
2012). RSF tree nodes are built to maximize survival difference between two groups. RSF
variable importance ranking procedure has been shown to be more stable than step-wise
variable selection procedures and possesses high predictive performances. Unlike other
statistical methods that have been used before to model the risk factors of child deaths,
random survival forests have no restrictive assumptions that must be met before including
the variables in the models. Fitting many survival trees enables random survival forests to
estimate complex survival functions such as the non-proportional hazards with minimal
prediction error Ehrlinger (2016). Hsich et al. (2011) and Hamidi et al. (2016) previously
applied random survival forests for identification of important risk factors in systolic heart
failure and kidney graft failure patients respectively. The mathematical description and
implementation of RSF is discussed in our methods section.

1.5 Statement of the problem

Demographic and Health Surveys are a sequence of a national representative surveys
conducted in LMICs to provide data on population, demographic and health measures.
DHS data sets are good source of data on a wide scope of risk-factors of under-five child
mortality. However, missing covariate data is inevitable in the under-five child survival
DHS data sets since data is collected retrospectively and on a wide scope of risk-factors.
Nasejje et al. (2015) studied factors of child survival in Uganda and identified high level of
missingness on key covariates as a limitation to their study. Past studies either excluded
variables with missing data or conducted a complete case analysis (CCA). CCA reduces the
sample size and leads to reduced precison leading to underestimation of standard errors.
MI is a flexible strategy of estimating missing covariate data that caters for the uncertainty
about missing cases by creating many multiple imputed data sets, and pooling results from
each data Rubin (1987). We examine the impact of imputing missing covariate data on
the under-five child survival estimates using DHS data.

DHS data-sets are also composed of huge sets of variables and one is left with the
challenge of choosing which variable to include in the study for analysis. This choice has
to be statistical rather than by individual preference. Most studies have used litertaure
reviews to select factors to include in the study. Howvever, the use of literature review may
lead to exclusion of important covariates that have not been studied previously and is also
biased towards individual’s preference. Random Survival Forests (RSF) are a supplement of
RF that are grown to handle right censored survival data while retaining all the appealing
features of random forests Ishwaran et al. (2008). RSF have been shown to be sucessful in
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identifying and ranking variables by using the inbuilt variable importance measures Chen
and Ishwaran (2012). Unlike other statistical methods that have been used to model the
risk factors of child mortality, random survival forests have no restrictive assumptions
that must be met before including the variables in the models. The study applies random
survival forests to rank variables by their order of importance.

1.6 Objectives

1.6.1 Overall objective

The study’s main objective is to assess the effect of imputing missing covariate data on
the under-five child survival estimates using the DHS data sets.

1.6.2 Specific objectives

1. To identify the highly predictive risk-factors of under-five child mortality from a pool
of over 400 covariates

2. To assess the effect of imputing missing covariate data on the under-five child survival
outcome

3. To compare the performance of different imputation strategies

1.7 Justification

High level of missingness in DHS data sets has constantly limited the scope of variables
researchers can study Nasejje and Mwambi (2017). Identifying appropriate imputation
strategies for DHS and alike data-sets will help users of such data-sets to consider studying
a wide range of covariates. Proper handling of missing data in DHS data sets may also
help increase on the validity of the conclusions drawn. The study applies further highly
predictive models for variable selection on the imputed data to rank determinants of
under-five child mortality from a pool of over 400 variables. The study uses a statistical
approach to select variables as opposed to the contemporary use of literature that may
leave out important predictors in the study.

1.8 Scope

The study uses the under-five child survival data set from the Republic of Tanzania. The
study’s population includes only under-five children born five years preceding the date
of data collection ( August 22, 2015, through February 14, 2016). This study covers a
wide scope of covariates ranging from socio-demographic and -economic factors to health
access behaviors.
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2 Literature Review

2.1 Introduction

This chapter gives a brief outline of different subsections covered in this chapter. The
chapter reviews first the factors affecting child mortality mentioning the methodological
applications used. The study further reviews the different missing data handling techniques
that have been applied previously.

2.2 Factors affecting under-five child mortality

Mosley and Chen (1984) designed an analytic frame work that has beenfor several years
used for variable selection for child survival studies. The Mosley framework suggests that
child survival needs to be investigated more as a chronic condition with multi-factorial
origins rather than looking at it as acute-single cause phenomenon. The analytic framework
groups the factors affecting child survival into two broad categories; proximate/immediate
and socio-economic determinants.
The immediate factors include;

1. Maternal factors such as mother’s age, gravidity, birth spacing

2. Environmental factors such as air/food/water/insects contamination

3. Feeding deficiencies i.e. inappropriate calories and micro-nutrients

4. Injury related causes i.e accidents

5. Personal health measures i.e prevention and control of illnesses

The socio-economic and demographic factors are are subdivided into three groups as
follows;

• Individual level factors i.e parents,traditions/attitudes

• Household level factors i.e income

• Community level factors i.e health care systems, water source etc.



20

Susuman et al. (2016) studied the biological determinants of child survival in Tanzania.
They employed binary logistic regression to model the determinats. The study’s results
shown that high mother’s parity, short birth spacing, residing in rural areas significantly
led to high child deaths. Four of the factors considered under this study contained missing
data, and the researchers didnot mention how missing data was handled. Another study
conducted in Tanzania Susuman and Hamisi (2012) on under-five mortality identified
predictors such as poor mother’s education,early age at first birth, short birth intervals,
young mothers as significant contributors of under-five child survival in Tanzania. The
study crude and adjusted odds ratios arising from the binary lostic model that was used.
The study doesn’t explain how variables were selected and the basis for variable catego-
rizations. Armstrong Schellenberg et al. (2002) in a related study conducted in the 25
villages in the rural districts of Kilombero and Ulanga in the Southern Tanzania found
out that high number of child deaths occurred due to fatal illnesses as a result of poor
case management at the hospitals, low maternal education, nonexclusive breast feeding
and lack of attendance of weighing clinics. Another interesting finding related to cultural
practices was reported in this study. The study found out that there was a positive
relationship between child deaths and mothers carrying babies on their back while cooking.
The authors applied a binary logistic regression model to study the factors of child mortality.

Nasejje et al. (2015) conducted a study on understanding the predictors of under-five
child survival in Uganda including accounting for the household and community shared
random effects. This study found out that female headed households, male children and
high number of baby deliveries in the past one year were significant predictors of under-five
child deaths. The study used the Uganda Demographic and Health Survey data set and
applied the frequentist and Bayesian approaches to study child survival. The study shown
evidence of existence of unobserved shared effects at the household level but didn’t find
evidence to suggest existence of shared frailty effects at community level. This study
indicated high level of missing covariate data as a limitation to the study to explore more
important factors. The study further recommended the use of advanced models such as
survival trees instead of the popular cox proportional hazards model that have restrictive
assumptions.

Kozuki and Walker (2013) studied the link between long/short birth spacing periods
and child loss, and found out that short intervals increaed the risk of child deaths compared
to the middle interval. The study was conducted among the 47 low and income countries
using logistic regression. Other studies conducted in Nigeria Abu et al. (2015); Ezeh et al.
(2015); Yaya et al. (2017) reported earlier age at first sex, poverty, residing in rural areas,
short preceding birth interval, lack of formal education and long distance to health facilities
as significant factors associated with high under-five child deaths. These studies’ findings
are in sync with findings of similar studies reviewed above. The studies applied binary
logistic and Cox-PH regression analysis methods to select important predictors.



21

2.3 Empirical review of missing data imputation approaches

Several studies have been conducted to evaluate the missing data approaches. Ma et al.
(2011) conducted a study on the imputation approaches for unobserved binary responses
in cluster Randomized Controlled Trials (RCTs) using a real and simulated data set. The
study compared six different multiple imputation strategies that involved within- and
across-cluster scenarios. The researchers found out that different imputation scenarios
produce relatively similar findings with low missing values. However, the study found out
that when data missingness is high, the imputation approaches that ignore the clustering
underrated the standard errors of the treatment effect. The study concluded that strategies
that catered for within-and across-cluster design are appropriate for RCTs.

Grund et al. (2017) studied the applicability of multilevel models when carrying out
multiple imputations using simulated data sets. The study found out that multiple imputa-
tion with multilevel model structures provided less biased estimates than imputation models
that ignored the multilevel structures. However, the study reported that multilevel multiple
imputation with random slopes or interaction effects didn’t yield reliable estimates, and
recommended that future research should investigate multiple imputation using multilevel
models that include random slopes and interaction effects.

Marshall et al. (2009) compared different imputation missing explanatory data strategies
that included single imputation,and multiple imputation under different scenarios.The study
fit a Cox regression model using a re-sampled data of 1000 observations while imposing
different missingness mechanisms. The study reported that complete case analysis led
to inefficient estimates when there were 25% or larger missing values. The study further
found out that MI using predictive mean matching outperformed the other imputation
strategies by producing the least biased parameter estimates. Another study Soullier et al.
(2010) that examined the performance of MI under MCAR and MAR assumptions in
estimation of occurrence rate in a cohort study found out that estimates under MCAR
assumption were less biased compared to estimates computed under MAR. The confi-
dence interval coverage rates under MCAR were also higher than those of MAR assumption.

Shah et al. (2014) conducted a study comparing random forest and the parametric
imputation models for missing data imputation. The study reported no differences between
predictive mean matching (PMM) and linear regression imputation models. The study
found that random forests imputation models produced better estimates and confidence
interval coverage values. The study recommended that random forests should be tested
on larger and simulated data sets to assess it’s performance in these settings. The study
ignored clustering in the data and recommended that future research should consider using
hierarchical models for imputation and analysis.

Jerez et al. (2010) also compared the performance of different statistical and machine learn-
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ing approaches using a breast cancer data set. The study applied mean imputation,hot-deck
and multiple imputation as statistical techniques and multi-layer perception,self-organization
maps,and k-nearest neighbors as machine learning approaches. Multiple imputation was
done using MICE and Amelia packages in R software. The study found that machine learn-
ing approaches outperformed other techniques in missing data imputation and improved
significantly the accuracy of the predictions. Larsen (2011) compared full information
maximum likelihood estimation (FIMLE) with second level dependencies and missing data
imputation in a simulation study. The study reported that FIMLE produced less biased
estimates when compared with multiple imputation. The study also indicated that when a
more general imputation model than the analysis model is applied, better estimates were
realized.
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3 Data and statistical considerations

3.1 Data

In this thesis, we use data from the 2015-16 Tanzania DHS (TDHS), specifically the
under-five children data set. The aim of the 2015-16 TDHS was to examine the pat-
terns, levels, and trends of the health and population demographic measures. The survey
employed a two stage sampling design. At stage one, a total of 608 clusters consisting
of enumeration/community areas (EAs) drawn from the 2012 Tanzania Population and
Housing Census were sampled. At stage two, a systematic sample of 22 households were
sampled from each selected area. In total, 13,360 households were picked to participate in
the study, and only 12,767 had occupants. Out of 12,767 occupied households, 12,563
were successfully enumerated. The data set provides information on every under-five child
in the household including sex of the child, survival status of the child, birth interval, birth
status, and child’s weight at birth. The data also provides information on household and
community characteristics, health coverage, maternal and antenatal care, infant feeding
practices, and immunization coverage among others. The 2015-16 TDHS contains 10,233
observations and 1,253 variables. In this thesis, we define under-five child mortality as
children who die between 1-59 months in the five years preceding the survey leaving us
with 9,779 observations. The choice of 1-59 months was based on the need for the study
to accommodate some of the survival analysis models that assume time (T) to be greater
than zero (T>0). Our dependent variable was time to the event and event status. The
event status was coded as 1=dead, 0=alive, and all the children alive were right censored.

Out of the total 1,253 variables, more than half them were excluded from the actual
analysis data set using a procedure shown in Table 3.
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Table 3. Data cleaning

Reason for excluding the variable No. of variables
excluded

Remaining no.
of variables

Start - 1253
100% missing 320 933
Index to birth history 8 925
Interview and sampling process information 38 887
Variables used to generate needed variables i.e dates,
cmc

24 863

Variables recorded for only if child was alive 285 578
Flag variables/results of measurements 46 532
Assets variables used in the wealth index 26 506
Repeated/similar variables 98 408
Total considered 408

3.2 Statistical software and considerations

We used STATA version 13.0 College Station, TX: Stata Corp, USA for data cleaning
including variable selection, and categorization. The cleaned data set was exported to
R software version 3.4.1 and R Studio 1.1.153 R Foundation for Statistical Computing,
Vienna, Austria for imputation and random forests implementation procedures.
All tests were considered statistically significant at 5% level of significance.
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4 Random survival forests

In this thesis, we apply random survival forests (RSF) to select the highly predictive
risk-factors of under-five child survival from the pool of 406 covariates considered in our
thesis. RSF (Ishwaran et al., 2008) are highly predictive ensemble tree techniques applied
to analyze right censored survival data to identify important risk-factors. RSF are an
improvement of the random forests (Breiman, 2001) that fits right censored data. The
following procedures were applied to rank the predictive risk-factors.

4.1 Random survival forests algorithm

Random survival forests was fit applied the algorithm introduced by (Ishwaran et al., 2008)
shown below;

• Draw ntree training samples from the original data. Every training sample excludes ≈
37% of the cases as out of bag (OOB)/test data.

• Build a tree for every training data set. Randomly select m candidate variables (mtry)
at every node of the tree (m=√p). The node is split using m variable that maximize
survival difference between 2 daughter nodes. We applied log-rank splitting criterion
as measure of survival difference.

• Build the tree to its full size under the restriction that terminal node contains utmost
nodesize= 3 unique deaths.

• Calculate the cumulative hazard estimate (CHF) for every tree. The ensemble CHF is
an average of the CHFs for all the ntree trees.

• Compute an out-of-bag (OOB) prediction error rate for the tree using the OOB data

4.1.1 Log-rank splitting rule

Log-rank splitting rule plays a crucial role in the random survival forests algorithm by
acting as a measure of node separation that helps in identifying the best split at a given
node. The following log-rank splitting procedure (Ishwaran et al., 2008) was applied in
this study for node splitting. Let v be a node of a tree, n be the individuals within node v.
Let (T1,σ1), ......,(Tn,σn) represent the survival times and censoring of the n individuals.
Any split at node v on a given covariate x is of the form x≤ s and x > s. The value of s
is a random splitting value. Let t1 < t2 < ... < tN represent the individual survival times in



26

the node (v). Let di,j represent event set and Yi,j represent the risk set at time ti in the
daughter nodes j = 1,2. The log-rank test for a split at the value s for the predictor x is

L(x,s) =
∑N
i=1 (di1−Yi1 di

Yi
)√∑N

i=1
Yi1
Yi

(1− Yi1
Yi

)(Yi−di
Yi−1 )di

(17)

The best split at node v is decided by looking for the covariate x∗ and split value s∗ such
that |L(x∗, s∗)| ≥ |L(x,s)| ∀x and s. Other splitting rules are explained by (Ishwaran
et al., 2008).

4.1.2 Ensemble estimation

Ensemble estimation is based on the cumulative hazard function (CHF) for every tree built
in the forests. Consequently, ensemble CHF is obtained by averaging the CHF obtained on
every tree for all the ntrees.
The CHF estimate for a node v is the Nelson-Aalen estimator shown below

Ĥv(t) =
∑
tl,v≤t

dl,v
Yl,v

(18)

If we get R terminal nodes in the tree, we will have R estimates of Ĥv(t). All the
observations in v possess the same CHF. Every observation i contains a q-dimensional
covariate xi. Let H(t|xi) be the CHF for i. To estimate this value, drop xi down the
training tree. The CHF for i is the Nelson-Aalen estimator for X ′is in node v

Ĥ(t|Xi) = Ĥv(t) if Xi ∈ v (19)

Equation (19) defines the CHF for all the observations and the CHF for the tree. The CHF
in equation (19) is computed for one tree. To compute an ensemble CHF, we average over
ntree trees in the forest. It should be noted that every tree in the forest is built using an
independent training sample.

The bootstrap ensemble CHF for an observation i is

Ĥe(t|Xi) = 1
ntree

ntree∑
b=1

Ĥb(t|Xi) (20)

To compute the ensemble CHF for the OOB data, we let Ii,b = 1 if i is an OOB observation
for ntree training sample, and 0 if otherwise. The OOB ensemble CHF for the observation
i is written as follows

Ĥ∗e (t|Xi) =
∑ntree
b=1 Ii,bĤ

∗
b (t|Xi)∑ntree

b=1 Ii,b
(21)
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Ĥ∗e (t|Xi) is an average over the training samples where i is an OOB observation. Note
that Equation (20) uses all the ntrees in the training sample unlike equation (21) which
uses only the OOB/test observations.

4.1.3 Prediction error

The study estimated prediction error from the grown forest using the Harell’s concordance
index (C-index). The C-index estimates the likelihood that in a randomly chosen pair of
cases, the case that fails first has a worst predicted outcome (WPO). To estimate C-index,
we have to define what constitutes a WPO. Given a pair of cases (i, j), a case i will possess
a WPO than j if

N∑
k=1

Ĥ∗e (tk|Xj)<
N∑
k=1

Ĥ∗e (tk|Xi) (22)

Now that we know how to estimate a WPO, we compute the C-index using the following
rules;

1. Form all viable pairs of cases in the data

2. Omit those pairs whose shorter survival time (T ) is censored. Additionally, omit pairs
i and j if Ti = Tj unless i or j is an event. Al the remaining pairs are defined as
admissible pairs.

3. For each admissible pair where Ti 6= Tj , count 1 if the shorter T has a WPO. Count
0.5 if the predicted outcomes are tied. For each admissible pair where Ti = Tj and
both are events, count 1 if predicted outcomes are tied and count 0.5 if otherwise. For
each admissible pair where Ti = Tj but both are not events, count 1 if the event has a
WPO and count and count 0.5 if otherwise.
We define the concordance as the sum of the total counts for all the admissible pairs.

4. The concordance index (C-index) = Concordance
Admissible

Using the same procedure, compute the OOB estimate of C denoted as C∗∗ using the
OOB cases. The OOB prediction error (PE∗∗) is computed as 1−C∗∗. It is important
know that 0≤ PE∗∗ ≤ 1. The prediction error rate of 0.5 equates to a random toss, and
the error rate of 0 equates to perfect prediction.

4.1.4 Variable Importance

Best predictors for under-five child survival were selected based on variable importance
(VarImp) measure (Ishwaran et al., 2008). VarImp can be interpreted in-terms of mis-
classification. The VarImp for X quantifies the increase or decrease in the mis-classification
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error on the OOB cases if X were unavailable. To compute VarImp for a risk-factor X,
the OOB cases are dropped down their training survival tree. Whenever the split for X
is met, the daughter node is assigned randomly. The new ensemble CHF is calculated,
and the resulting prediction error is computed. The VarImp for X is then computed as
the New Prediction error obtained after conducting random assignments subtracting the
Original Prediction error. Large values of VarImp show risk factors with high predictive
potential while zero or negative values of VarImp show predictors with no predictive ability.

4.1.5 RSF missing data imputation

Random survival forests have inbuilt measures of handling observations with missing data
(Ishwaran et al., 2008) when splitting the variables at the parent node. The following steps
are are applied only for observations with missing entries for the m candidate variables at
node v.

1. For every node v, impute missing values before for splitting. Let X0
r,v represent the

observed values for the rth coordinate of the X-covariates in the training data in node
h. Let f(X0

r,v) be the posterior distribution of X0
r,v

2. For every case in the training data in node v with missing data for the rth coordinate,
impute missing data by making draws from f(X0

r,v). Redo this step for every r.

3. Split the node v using the imputed data applying the splitting rules described above.

4. After splitting the parent node v, reset the imputed values in the daughter node to
missing.

5. Redo as in step 1 above for every node until the tree has reached it’s saturation point.

6. The OOB cases are also imputed using the same rule.

4.2 Results

We fit the random survival model basing on the procedures above on the total of 408
variables. Figure 4 shows the variable ranking of the risk-factors that were considered in
the data set.
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Figure 4. The left figure shows the prediction error rate and the right figure shows the the
ranking of risk factors of under-five child mortality by order of importance. The prediction

error rate was about 12%.

The table 4 below shows the variable importance scores for the first 10 highly ranked
risk-factors. Based on (Ishwaran et al., 2008), all predictors with VarImp < 0.002 are less
predictive. Table 4 shows that only 7 risk factors were highly predictive. Predictor b12
contains 70% missing data.
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Table 4. VarImp scores in-order of high importance

Risk-factor VarImp score

v137-total no. of under-five children 0.015
v208-no. of births in last one year 0.005
m4-child’s breast feeding status 0.004
m5-months of breastfeeding 0.003
v238-births in last 3 years 0.003
v136-total no. of HH members 0.002
b12-Succeeding birth interval 0.002

v113-Source of drinking water 0.001
sreg1-region of residence 0.001
... < 0.001

Our motivation was to assess the imputation approaches in a large data setting. Hence
considered the first 50 highly ranked predictors for our next section.
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5 Multiple Imputation (MI)

In this thesis, we applied MI techniques to impute unobserved covariate values. MI is
a flexible missing data imputation strategy that handles missing data using three steps
(Rubin, 1987) namely; imputation of multiple data sets, analysis of individual data sets
separately and pooling results of multiple data sets together to come up with model
estimates.

5.1 Proportion of missingness

The proportion of missingness plays an important role in deciding the choice of missing
data approach. Prior reviews suggest that 5% or less missingness in the data may not
affect the validity of the statistical inferences (Schafer, 1999). There’s however, no clear
consensus on the proportion of missing data that’s statistically acceptable to produce valid
inferences. (Bennett, 2001) suggests that if the data contains more than 10% missingness,
the statistical inferences will be biased.

Out of the total 50 covariates considered, 23 (46%) covariates had missing cases. Average
missing rate was 18% (0.01% to 92%). No specific code for skip patterns was created,
hence covariates with missing data due to skips were treated as missing. Nonetheless,
complete case analysis would produce unbiased estimates.

Variable type
Out of the total 23 variables with missing data, 5 were numeric, 4 were binary, 1 was
ordinal(> 2 levels) and 13 were unordered (> 2 levels).

5.2 Missing data patterns

Missing data pattern relates to the structure of the missing data matrix and doesn’t relate
to the association between the unobserved values and the available values. There are three
missing data patterns that are discussed in literature (Dong and Peng, 2013) namely;

• Univariate missing data pattern

• Monotone missing data pattern

• Arbitrary missing data pattern
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Let Y represent a data matrix with variables Y1,Y2, ...,Ym. Data is said to possess a
univariate missing data pattern if the same respondents have unobserved cases on one
or more of the m-variables. The univariate missing data pattern will be prevalent in the
data set if data is missing due to the design or skip patterns such that the same group
of participants that don’t meet the skip or design criteria will miss a given set of information.

A data-set containing variables Y1,Y2, ...,Yp is said to possess a monotone missing data
pattern if in the event that data on a variable (Yj) is unobserved for a particular respondent,
all succeeding variables (Yj+1,Yj+2, ...,Ym) are as well partially unobserved. Such a missing
data pattern occurs in longitudinal studies where whenever a subject drops out at a given
time point, all future measurements for the same subject are unobserved.

A data set is said to possess an arbitrary missing data pattern, also known as gen-
eral missing data pattern if the data is missing randomly for any given respondent or
variables.

The choice of the imputation model must take into account the type of missing data
pattern for valid imputations and consequent statistical inferences to be realized. For
example if a data set possesses a monotone or univariate missing data pattern and the
variables are continuous, imputation models that assume multivariate normality or that
use propensity scores are appropriate namely regression, predictive mean matching and
propensity scores (Schenker and Taylor, 1996). If the data are ordinal or nominal, logistic
regression or discriminant function methods respectively are appropriate. However if data
possess an arbitrary/general missing data pattern, Markov Chain Monte Carlo (MCMC)
(Schafer and Olsen, 1998) or the chained equations are appropriate. Random forests
imputation methods (Breiman, 2001; Doove et al., 2014) have the potential to model
all the complexities and interactions and are appropriate for any type of missing data
pattern. In this thesis, we focus more on both chained equations and random forests
multiple imputation strategies.

5.2.1 Checking for missing data pattern

• Requires knowledge of the data. For-example, we don’t expect monotone pattern in
this study, not a longitudinal study

• There are several graphical tests (Templ et al., 2011) that are used to check for the
pattern of missing data pattern.

Figures 5 and 6 show that our under-five child survival data possessed both univariate and
arbitrary missing data patterns.
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Figure 5. Missing data pattern plot. Shows the presence of univariate pattern and some spots
of arbitrary pattern

Figure 6. Shows the presence of arbitrary and som spots of univariate pattern

We concluded that there was a presence of both arbitrary and univariate missing data
patterns in the under-five child survival data set.

5.3 Missing data mechanisms

Missing data mechanisms bring out the underlying associations between the observed and
missing parts of the data. The choice of the missing data approach is also dependent on
the unobserved data mechanism. Based on (Rubin, 1987) rules, there are three forms
of missing data mechanisms namely; missing at random (MAR), missing completely at
random (MCAR) and missing not at random (MNAR). Let Yi represent incomplete variable,
Ri be the response indicator (Ri=1 if Yi is missing), Xi be the fully observed variable.
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5.3.1 Missing at Random

The variable Yi is said to be MAR if the likelihood of Ri is conditionally dependent on the
observed values of Yi given Xi.

P (Yi/Xi,Ri = 1) = P (Yi/Xi,Ri = 0) (23)

For-example, if we assume that the likelihood of reporting information on immunization
status depends on whether the child is alive or dead, then the missing data mechanism for
immunization is MAR. Most of the statistical imputation softwares assume that is MAR.

5.3.2 Missing Completely at Random

The variable Yi is said to be MCAR if the probability of Ri is independent of the unobserved
values of Yi and the values of fully observed variable Xi.

P (Ri/Yi,Xi) = P (Ri) (24)

This in simple terms implies that the probability of missing under MCAR doesn’t depend
on either observed or unobserved values. Statistically, parameter estimates derived with
complete case analysis when data is MCAR are unbiased. However the statistical power
of the tests will reduce due to reduced sample size. MCAR also leads to larger standard
errors (Rubin, 1987). (Allison, 2001) suggests that both MACR and MAR are ignorable
missing data mechanisms.

5.3.3 Missing Not at Random

The variable Yi is said to be MNAR if the distribution of Ri is dependent on the unobserved
values of Yi given Xi i.e the probability of missing depends only on the unobserved data.

P (Yi/Xi,Ri = 1) 6= P (Yi/Xi,Ri = 0) (25)

MNAR is also known as "non-ignorable" missing data. In such a case, (Rubin, 1987)
suggested that Yi and Ri must be modeled jointly together under MNAR assumption for
valid inferences to be made.

5.3.4 Checking for missing data mechanism

In this thesis, we checked for the presence of MAR and MCAR assumption. To check for
MAR, we created an R indicator variable with 1 if missing and 0 if observed for every
variable with missing data. We conducted the two sample t-test for numeric variables
(Dong and Peng, 2013) and chi-square test for factor variables.
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The two sample t-test statistic tests the null hypothesis

H0 : µ1 = µ2

. It written as

t= x̄1− x̄2√
s2

1
n1

+ s2
2
n2

(26)

Where s2
1 and s2

2 are the corresponding variances.

The chi-square test assesses the association between two groups. It tests the null hypothesis

H0 : There is no association between two groups

It is computed as

χ2 =
∑(Oi−Ei)2

Ei
(27)

Where Ei = row sums×column sums
n and the degrees of freedom is (r−1)(c−1).

Table 5 shows results from the MAR tests. The results showed that missingness in
11 covariates was related to the time to event and missingness in four covariates was
related to the event variable. The results also shown that MAR was present in 60% of the
covariates.
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Table 5. MAR assumption

Missing covariate Prop. missing Proportion of covariates predicting
missingness in the missing covariate
data (MAR)

Is MAR related to
the response variables
(Y=Yes, N=No)

MAR Present MAR Abscent time to event event/status
v113 0.05 43.1 56.9 N N
v221 0.05 66.7 33.3 Y N
v155 <0.01 7.8 92.2 N N
v3a00y 0.36 80.4 19.6 Y Y
v3a00z 0.36 80.4 19.6 Y Y
v3a08j 0.64 80.4 19.6 Y N
v426 0.01 47.1 52.9 N Y
v457 0.01 19.6 80.4 N N
v503 0.05 66.7 33.3 Y N
v511 0.05 66.7 33.3 Y N
v603 0.31 74.5 25.5 Y N
v604 0.31 74.5 25.5 Y N
v605 <0.01 7.8 92.2 N N
v616 0.31 76.5 23.5 Y N
v741 0.16 70.6 29.4 Y N
b12 0.7 76.5 23.5 Y Y
m6 <0.01 17.6 82.4 N N
m18 0.01 29.4 70.6 N N
s313b 0.92 66.7 33.3 N N
v446 0.01 23.5 76.5 N N
v626 <0.01 3.9 96.1 N N

We also checked the data for missing completely at random (MCAR) assumption using
LittleMCAR test under the BaylorEdPsych package (Beaujean, 2012). The LittleMCAR
test assesses the null hypothesis

H0 :Data is MCAR

The results from the MCAR tests shown a p value = 0.000 suggesting that data was not
MCAR. In conclusion, we assumed that MAR was a plausible assumption for our data.

In this thesis, we apply two multiple imputation approaches namely; Multiple Impu-
tation by Chained Equations (MICE)Buuren and Groothuis-Oudshoorn (2011) and Random
Forests (Breiman, 2001) imputation implemented under the MICE framework.
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5.4 Multiple Imputation by Chained Equations

Multiple Imputation by Chained Equations (MICE) (Buuren and Groothuis-Oudshoorn,
2011) is a MI approach that imputes data by specifying the imputation model of each
variable with incomplete cases by using a set of conditional densities. MICE comes with
three good features; 1) accounting for the process that generated the data, 2) mantaining
the relations in the data and 3) mantaining the uncertainty about these relations. Because
MICE approach specifies an imputation function for each variable with unobserved data, it’s
appropriate for univariate missing data pattern that requires specific variable distributions
i.e predictive mean matching for numeric variables and logistic regression for factor variables
(Rubin, 1987; Schenker and Taylor, 1996). MICE further draws imputations based on
the Bayesian Gibb’s sampling algorithm Geman and Geman (1987) that’s appropriate for
arbitrary missing data pattern (Little and Rubin, 2014). This then makes MICE approach
appropriate for the two types of missing data patterns. The MICE imputation process is
described below;

Let X = (X1,X2, ...,Xm) be a set partially observed random variables. MICE draws
imputations from the unconditional distribution function of X i.e f(X). MICE assumes
that the distribution of X is fully specified by a vector of unknown parameters (θ). The first
step is to obtain the multivariate distribution of θ. MICE attains the posterior distribution
of θ by sampling frequentatively from the conditional densities of the form;

P (X1|X2,X3, ...,Xm, θ)
...

P (Xm|X1,X2, ...,Xm−1, θ)

(28)

θ1, ....., θm represent parameters of the respective conditional distributions. Starting with
a rough draw from Xobs, the tth iteration of the chained equations is a Gibbs sampler
(Geman and Geman, 1987; Little and Rubin, 2014) that successively draws

θ
∗(t)
1 ∼ P (θ1|Xobs

1 ,X
(t−1)
2 , .....,X(t−1)

m )

X
∗(t)
1 ∼ P (X1|Xobs

1 ,X
(t−1)
2 , .....,X(t−1)

m , θ
∗(t)
1 )

...

θ∗(t)m ∼ P (θm|Xobs
m ,X

(t)
1 , .....,X

(t)
m−1)

X∗(t)m ∼ P (Xm|Xobs
m ,X

(t)
1 , .....,X

(t)
m−1, θ

∗(t)
m )

(29)

X
(t)
j = (Xobs

j ,X
∗(t)
j ) is the jth imputed random variable at iteration t. Prior imputa-

tions/runs X∗(t−1)
j enter X∗(t)j through its iteration with other variables. This process is

repeated t times to generate t imputations . To achieve m imputations, the process is
repeated m times. Below is a description of the MICE procedure in lay terms as described
by (Azur et al., 2011) below;
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1. Start with a simple a draw say mean as the imputed value for all unobserved variables.

2. Set the simple draw for the individual variable (X) to be imputed to missing

3. Regress the observed values of X on the rest of the variables in the imputation model.
X is treated as the outcome and other variables as explanatory.

4. Replace the unobserved values of X with the predictions from the regression model.

5. Repeat steps 2–4 for every incompletely observed variable.

6. To achieve i iteration times, repeat steps 2-5 for every iteration.

7. To achieve m imputations, repeat steps 2-6 to create m multiple imputed data sets.

MICE approach also has the potential to adjust for clustering in the data set by treating
the cluster variables as class variables in the imputation function such that imputations
are done with in classes. In this thesis, we adjust for the community level (enumeration
area) and household level clusters in the imputation model as described in Table 6.

5.4.1 Univariate imputation models used in MICE

Out of the total 23 covariates that contained missing data, 4 were binary, 13 were unordered
(> 2 levels), 1 was ordered and 5 were continuous. The idea of chained equations is
hinged on the fact that for every variable type, an appropriate univariate or multivariate
distribution is used. (Buuren and Groothuis-Oudshoorn, 2011) provides the details of
the different distribution that are used in the MICE package that has been applied for
this study. They include; logistic regression (logreg) for binary data, multinomial logistic
regression (polyreg) for unordered variables with > 2 levels, ordinal/proportional odds
logistic regression (polr) for ordered variables with > 2 levels, and predictive mean matching
(pmm) for numeric data. Below is a description of the four imputation models;

Logistic regression

Logistic regression (logreg) model combines a set of predictor variables to estimate the
likelihood that the event of interest will take place. It estimates the probability of a subject
being a member of the category of interest. The predictor can take on any form but the
response is a binary category. The logistic mathematical model is is expressed as follows;

Log( Pi
1−Pi

) = β0 +β1X1 + .....+βpXp (30)
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where β‘s are the model coefficients, Xs are the predictors, and Pi is the probability
of observing a 1 in the response variable. The parameters βs are estimated by using
maximum likelihood estimation of the likelihood function constructed from the binomial
distribution. An observation is predicted to belong to belong to the class (0,1) with the
highest probability.

Multinomial logistic regression

Multinomial logistic regression model is an addition of the binary logistic regression model
when the response variable has > 2 nominal levels. The response variable is dummy
variable expressed into m 1/0 indicator variables. Therefore, if there are m nominal levels,
there will be m− 1 indicator variables. The multinomial logistic regression estimates
discrete binary logistic regression models for ever m−1 dummy variables. Each of m−1
model has its own intercept and regression coefficients. The m−1 binary logistic models
are fitted simultaneously as follows;

Log
(p(y = 2)
p(y = 1)

)
= β02 +β12X1 +β22X2 + ...+βp2Xp

Log
(p(y = 3)
p(y = 1)

)
= β03 +β13X1 +β23X2 + ...+βp3Xp

...

Log
(p(y =m)
p(y = 1)

)
= β0m+β1mX1 +β2mX2 + ...+βpmXp

(31)

The first category is assumed to be the reference category for each binary model. The
parameters β′s are estimated by using maximum likelihood estimation of the likelihood
function constructed from the multinomial distribution. There are basically m equations
that are used to computed the probability that an observation is a member of any of the
m categories. An observation is predicted to belong to the category with the highest
probability.

Ordinal logistic regression

Ordinal logistic regression is used when the categorical variable has > 2 ordered levels i.e
socio-economic status, education level etc. The model is of the form

log
(p(y ≤ cj)
p(y > cj)

)
= β0j +β1jX1 +β2jX2 + ...+βpjXp (32)
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If the predictors don’t depend on the categories but the intercept does, then we have
Proportional odds logistic regression

log
(p(y ≤ cj)
p(y > cj)

)
= β0j +β1X1 +β2X2 + ...+βpXp (33)

An observation is predicted to belong to the category with the highest probability.

Predictive mean matching (pmm)

Pmm is an imputation approach that uses the usual linear regression model to make
predictions (Vink et al., 2014). Under the pmm, the imputations are based on the observed
values and it has the potential to preserve the non-linearity even when the structured part
of the model used for imputation is not correct. The following is the pmm algorithm used
for imputing the missing values.

1. Regress Yobs on Xobs to estimate the parameters β̂,σ̂, and Σ̂ by applying the ordinary
least squares (OLS) approach. The normal regression model of the form Yi =Xt

iβ+εi
is applied.

2. Estimate σ2
∗ as σ2

∗ =Σ̂T Σ̂/Q, where Q is a χ2 with n− r degrees of freedom.

3. Draw β∗ from a multivariate normal function centered at β̂ with variance matrix
σ2
∗(Xt

obsXobs)−1

4. Calculate Ŷobs =Xobsβ̂ and Ŷmis =Xmisβ
∗

5. For each Ŷmis,i, find D = |Ŷobs− Ŷmis,i|.

6. Draw one value randomly from (D(1),D(2),D(3)), where D(1),D(2) and D(3) are the
3 least objects in the set D and use the matching entry in Yobs,i as the imputed value

5.5 Random forests imputation within the MICE framework

Random forests (Breiman et al., 1984; Breiman, 2001) is a recursive partitioning approach
that is applied to predictions and variable selection by splitting the data into homogeneous
classes. Recursive partitioning identifies the best predictive split of the outcome variable
by searching via all the explanatory variables and picking the variables that provide more
gainful information (Breiman, 2001). Random forests imputation algorithm within the
mice framework was proposed by (Doove et al., 2014) using the random forests procedure
by (Breiman, 2001). The algorithm is described as follows;
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Let X be a data matrix. Let Xobs and Xmis represent the observed and unobserved data.
Let p represent the number of variables.

1. For each variable in Xmis, start with a simple random draw from the Xobs.

2. For each variable in Xmis, the first imputation is drawn using the following procedure;

(a) Draw b training samples using only Xobs

(b) Build one tree on every training sample drawn in step 2(a) using random input
selection for every split. For every split, m candidate variables are tried, usually
m=√p. Gini impurity criterion is used for node splitting. This leads to b trees,
where each tree contains many nodes. Each node includes a subset of Xobs called
donors.

(c) For cases in Xmis, choose which node they will end up according to the b trees
resulting into k nodes with donors per member of Xmis

(d) For cases in Xmis, take all donors from the k nodes in step 2(c) together and
randomly select one Xobs value from the donors. Replace Xmis values with the
imputed values.

3. Repeat step 2 to achieve t iteration times

4. Redo steps 1-3 m times to generate m imputed data sets

This algorithm is inbuilt in the MICE package and is applied to generate multiple imputed
data under the random forests imputation strategy. Random forests uses the Gini impurity
as a measure of how a randomly selected item from a set would be mis-labeled if it was
labeled randomly according to the distribution of labels in the subset. Consider a set of
items with R classes, let i ∈ 1, ..,R, let fi be the proportion of an item with label i in the
set R. The Gini impurity is computed as

GI =
R∑
i=1

fi
∑
k 6=i

fk =
R∑
i=1

fi(1−fi)

Where 1−fi is the probability of mistakenly classifying i. The Gini index will be zero if all
the items are classified in one class. A split that minimizes the impurity is selected.

Auxiliary variables In addition to the 50 highly ranked covariates by RSF, we included in
the imputation model; the demographic characteristics that were not highly ranked, survey
sample weighting variable and the two cluster variables.
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5.6 Set up of the imputation model

We set up the imputation model using the quickpred() function introduced by (Buuren
and Groothuis-Oudshoorn, 2011). The quickpred() function allows specification of the
variables to be included for every variable with missing data, minimum correlation to be
used, and any variables to be excluded. To improve the quality of our imputations, we
set the minimum correlation as 10% and this allowed about 10 to 15 covariates to be
included in the imputation model for every covariate. To further improve the imputations,
we included all the auxiliary variables, time to event and event variables as predictors in
the predictor matrix. Table 6 describes the different imputation strategies used.
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Table 6. Description of the imputation strategies (HH-Household, EA-Enumeration Area,
RF-random forest)

Imputation
Strategy

Description

MICE Flat We included in the predictor matrix all the covariates that had at
least 10% correlation with the missing values in a missing covariate
and observed values in another variable. The event, time, and aux-
iliary variables were treated like other covariates in the imputation
model. For every variable type, we used the mice inbuilt models
described in this section

MICE HH We included in the predictor matrix all the covariates that had at
least 10% correlation with the missing values in a missing covariate
and observed values in another variable. The event, time, and aux-
iliary variables were treated like other covariates in the imputation
model. For every variable type, we used the mice inbuilt models
described in this section. We treated the household cluster variable
as a class variable in the imputation model.

MICE EA We included in the predictor matrix all the covariates that had at
least 10% correlation with the missing values in a missing covariate
and observed values in another variable. The event, time, and aux-
iliary variables were treated like other covariates in the imputation
model. For every variable type, we used the mice inbuilt models
described in this section. We treated the enumeration areas cluster
variable as a class variable in the imputation model.

MICE RF We included in the predictor matrix all the covariates that had
at least 10% correlation with the missing values in a variable and
observed values in another variable. The event, time, and auxiliary
variables were treated like other covariates in the imputation model.
The method for imputation was specified as random forests (“rf”)
under the mice package. We used ntree=100.

5.7 Creation of multiple imputed data sets

Deciding on the number of imputations is dependent on the proportion of missing infor-
mation in the data set. (Rubin, 1987) suggested a formula that is based on relatively
efficiency (RE) that can be used to determine the number of imputations required to
achieve a relatively higher efficiency.

RE = [1 + γ

m
]−1
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Where γ is the proportion of information missing due to the missing data. Prior reviews
suggest that imputations ranging from 5 to 10 are adequate to generate plausible impu-
tations (Schafer and Olsen, 1998). We considered 10 imputations and 20 iterations per
imputation strategy as appropriate for our thesis leading to 10 multiple imputed data sets
per imputation strategy.

5.8 Selection of the best imputation strategy

To identify the imputation strategy to provided better imputations, we conducted diagnostic
checks on the quality of imputations, analyzed imputed data using random survival forests
and Cox regression model. We examined the performance of the imputation strategies
based on the average estimated parameters, probability values, confidence intervals, and
the corresponding standard errors.

5.8.1 Assessing convergence

To examine the convergence of the Gibb’s sampling algorithm, we examined the parallel
imputation streams for the mean and standard deviation of the imputation using the
convergence plots introduced by Buuren and Groothuis-Oudshoorn (2011). For healthy
convergence to be realized, the resulting streams must freely intermix with each other with
no explicit directions, that is to say that the variations between cycles is no greater than
the variations with each individual cycle.

5.8.2 Diagnostic checking

Imputed data should ideally exhibit the same distributional properties as the observed
data values. We used summary statistics and frequency distributions of both imputed and
original data for some variables to assess the closeness of the imputed data to the original
data. We used density plots of different variables as a diagnostic measure of the quality
of the imputation strategies. Density plot show marginal distributions of the observed vs.
imputed values for a given variable. Large differences may imply that the observed values
could not provide enough information to provide plausible imputations or the imputation
model used was not appropriate.

5.8.3 Statistical inference of the imputed data

After conducting diagnostic checks on the imputed data, we conducted separate statistical
inference analysis on the imputed data for each imputation strategy. We analyzed the
imputed data using random survival forests (RSF) and Cox regression model. RSF model
procedures are already described in our previous sections. The Cox regression analysis was
based on the Rubin rules (Rubin, 1987) that involve two steps; 1) analyzing individual (m)
data sets separately and 2) the pooling results from the individual data sets together.
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Rubin analysis procedures

Let H denote the coefficient estimate from the Cox regression model. Let Ĥl denote the
estimate from the lth imputed data. Let F̂l denote the estimate of the variance of Ĥl for
lth imputed data.

The pooled estimate of H is given by

H̄ = 1
m

m∑
l=1

Ĥl (34)

Ĥl accounts for sampling uncertainty. H̄ accounts for both the sampling and missing data
uncertainty.

The variance of H̄ is composed of ; the with-in-imputation variance (F̄ ) and the between-
imputation-variance (G).
The with-in-imputation variance (F̄ ) is computed as follows

F̄ = 1
m

m∑
l=1

F̄l (35)

F̄l is the lth imputation variance of Ĥl.

The variance between the m-imputed data sets (G) is computed as follows

G= 1
m−1

m∑
l=1

(Ĥl− H̄)(Ĥl− H̄)t (36)

The resulting total variance is estimated as follows

T = F̄ +G+ G

m

= F̄ + (1 + 1
m

)G
(37)

The term G
m is the imputation error, the extra imputation variance arising from the fact

that H̄ is based on finite m.

Variance ratios
1. Proportion of variance attributable to the missing data

λ= G+G/m

T
(38)
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2. Relative increase in variance due to non-response

r = G+G/m

F̄
(39)

Relationship between r and λ

r = λ

1−λ (40)

3. Fraction of information about H missing due to missing data

γ = r+ 2/(v+ 3)
1 + r

(41)

v is the degrees of freedom

Relationship between γ and λ

γ = v+ 1
v+ 3λ+ 2

v+ 3 (42)

Statistical inference for H̄

1. Confidence Interval
The 100(1−α)% confidence interval of H̄ is computed as

H̄± t(v,1−α/2)
√
T (43)

Where t(v,1−α/2) is the t-distribution quantile with v degrees of freedom and α level of
significance.

2. P value
From the test of the null hypothesis that H=H0, we estimate the p-value as follows

Pj = Pr
[
F1,v >

(H0− H̄)2

T

]
(44)

H0 is the specified value of H, H̄ is the pooled estimate, v is the degrees of freedom, T
is total variance

Computation of the degrees of freedom
The degrees of freedom Vm or the adjusted V ∗m is computed by the following formula.

Vm = (m−1)[1 + 1
r

]2

= m−1
λ2

(45)
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Vm assumes n=∞
The adjusted formula V ∗m

V ∗m = Vm ∗V ∗0
Vm+V ∗0

(46)

V ∗0 is the estimated observed data degrees of freedom that accounts for missing data. V ∗0
is computed as

V ∗0 = V0 + 1
V0 + 3 (47)

Where V0 = n−k

Cox-Proportional Hazards model

We applied the Cox-Proportional Hazards regression model (Cox, 1972) to study the effects
of covariates on the time-to-event response variable. Th formula for the Cox model of an
observation given covariates (X1, ...,Xm) is as follows

λ(t|X) = λ0(t)exp(β1X1 + ...+βmXm)
= λ0(t)exp(βtX)

(48)

Where λ0(t) is the baseline hazard, and assumes no distribution and doesn’t depend on
the values of covariates. Consider two observations with covariates X and X∗, the ratio
of their hazards is

HR(t) = λ(t|X)
λ(t|X∗)

= λ0(t)exp(βtX)
λ0(t)exp(βtX∗)

= exp
( m∑
i=1

βi(X−X∗)
)

(49)

HR(t) is known as the hazard ratio and compares the hazard of having an event with
covariate value X to the hazard of having an event with covariate value X∗. The propor-
tional hazards assumption assumes that HR(t) is constant over time.

To estimate the parameter estimates (β), we obtain the maximum likelihood estimates of
the Cox-partial likelihood function. We use a partial likelihood function as opposed to the
usual likelihood function since the function is based on the event set only.
Let T1 < T2 < ... < TD be distinct ordered event times, Let i represent the individual with
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an event T (i), let R(t) denote the risk set at time T .
The Cox-partial likelihood is given by

L(β) =
D∏
j=1

[ exp(βtXj)∑
i∈R(T ) exp(βtXi)

]
(50)

The log-partial likelihood

log
(
L(β)

)
=

D∑
j=1

[
βtXj− log

( ∑
i∈R(T )

exp(βtXi

)]
(51)

Maximizing the log
(
L(β)

)
by solving equation (52) gives β

∂log
(
L(β)

)
∂βi

= 0 (52)

The variance of β is computed as var(β) = I−1 where I is the Fisher-information matrix
computed as follows I = E

[(
∂logL(β)
∂βi

)
×
(
∂logL(β)
∂βj

)]
From the β, we derive the Wald and Likelihood ratio tests of global hypothesis

H0 : β = β0

Under H0, we get
1. Wald test

χ2
w = (β−β0)tI(β)(β−β0) χ2

p (53)

2. Partial Likelihood ratio

χ2
LR = 2(log(L(β))−2log(L(β0)) χ2

p (54)

The 95% CI for β is computed as[
β−Zα/2se(β),β+Zα/2se(β)

]
(55)

Where alpha is the significance level and Z is the statistic from the normal distribution.
The 95% CI for hazard ratio is constructed as

exp
[
β−Zα/2se(β),β+Zα/2se(β)

]
(56)

In case of ties, we apply the Breslow approximation of the L(β) as follows;

L(β) =
D∏
j=1

[ exp(βt)∑k∈Dj
Xj)(∑

i∈R(T ) exp(βtXi)
)dj

]
(57)
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Testing the proportional hazards assumption

We assessed the proportional hazards assumption using the statistical test based on the
scaled Schoenfeld residual tests under the survival package in R. For every variable, the
test correlates the scaled Schoenfeld residuals with time to assess the independence of
residuals against time.
From the partial likelihood, the parameter β are estimated from

d∑
i=1

(
xi−E[xi|R(ti)]

)
= 0 (58)

Where

E[xi|R(ti)] =
∑
i∈R(t)xi exp(xtiβ)∑
i∈R(t) exp(xtiβ)

The schoenfeld residuals are defined as follows;

ri = xi−E[xi|R(ti)] (59)

The plot of ri against the ranks of survival times is used to assess violations from the PH
assumption. For PH to be met, the line representing the coefficients should be a horizontal
line since hazard ratio is constant over time. Systematic deviations from the horizontal
line are suggestive of the PH violation.

5.9 Results

5.9.1 Distribution of missingness of covariates by demographic characteristics

Table 7 indicates the relationship between missingness of some of the partially observed
variables with the demographic characteristics and response variables. The results show
that other than age of the respondent, missingness on succeeding birth interval (b12) was
significantly related with observed values of the rest of the demographic characteristics
and response variables. Data on succeeding birth interval was more likely to be observed
for observations with long time to event data than those with short time to event (42
vs. 23). The information on succeeding birth interval was also more likely to be missing
for the alive children than the dead children (79% vs. 41%). Missing data on succeeding
birth interval was also more likely to happen for female headed households than the male
headed households (77% vs. 68%), for those residing in urban areas than rural areas (79%
vs. 67%), for the rich than the poor (77% vs. 64%) and for the single than the married
(92% vs. 68%). Additionally, missing data on succeeding birth interval was more likely to
happen for the observations with secondary level than those with no education (77% vs.
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63%) and for those employed than the unemployed (75% vs. 71%). Missingness in source
of water was also significantly related to to time, respondent’s education, age, occupation,
wealth index, and marital status. Similarly, missingness in preferred waiting time for a child
was also significantly related to time,sex of household head, respondent’s education, age,
occupation, wealth index, and marital status.

Table 7. Relationship between missingness in covariates and demographic characteristics

Characteristics
Partially observed covariates [Obs. = Observed | Mis. = Missing | *Significant at 5% level of
significance]
Succeeding birth interval (b12) Source of drinking water (v113) Preferred waiting time for a/ an-

other child
Obs. Mis. P value Obs. Mis. P value Obs. Mis. P value

Response variables
Time (mean) 42.3 22.6 0.000* 28.6 26.1 0.003* 27.6 30.5 0.000*
Event status (%)
Alive 29.1 70.8 0.000* 95.4 4.6 0.276 69.1 30.9 0.658
Dead 58.6 41.4 93.9 6.1 70.3 29.7
Demographic variables
Place of residence(%)
Urban 21.3 78.7 0.000* 94.9 5.1 0.306 67.7 32.3 0.112
Rural 32.5 67.5 95.4 4.6 69.5 30.5
Sex of Household head(%)
Male 31.4 68.6 0.000* 94.9 5.1 0.306 85.7 78.8 0.000*
Female 22.7 77.3 95.4 4.6 14.3 21.2
Respondent’s education level(%)
None 36.7 63.3 0.000* 96.1 3.9 0.000* 66.9 33.1 0.000*
Primary 29.5 70.5 95.8 4.2 66.3 33.7
Secondary 22.8 77.2 92.8 7.2 81.2 18.8
Higher 27.1 72.9 90.6 9.4 76.5 23.5
Respondent’s age 29.4 29.4 0.863 29.5 26.8 0.000* 27.1 34.5 (mean) 0.000*
Respondent’s occupation (%)
No work 29.3 70.7 0.000* 93.6 6.4 0.000* 74.8 25.2 0.000*
Employee 25.2 74.8 93.6 6.4 72.5 27.5
Self-employed 31.0 69.0 96.1 3.9 66.8 33.9
Wealth index (%)
Poorer/Poor 36.0 64.0 0.000* 96.2 3.8 0.001* 68.7 31.3 0.002*
Middle 29.5 70.5 94.9 5.1 66.5 33.5
Rich/Richer 23.1 76.9 94.5 5.5 71.0 29.0
Marital status (%)
Never 8.0 92.0 0.000* 95.5 4.5 0.000* 79.2 20.8 0.000*
Married 32.2 67.8 95.6 4.4 70.2 29.8
Widow 22.8 77.2 91.8 8.2 30.4 69.6
Divorced 22.2 77.8 92.9 7.1 60.9 39.1

5.9.2 Log-rank test of the observed vs. missing

Table 8 shows results from the two sample log-rank test that compared the survival time
of the observed vs. missing. The results shows that survival difference was significantly
different in only four covariates (19%).
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Table 8. Results from the two sample log-rank test (observed vs. missing)

Covariate P value Covariate P value

v113 0.189 v221 0.265
v155 0.818 v3a00y 0.009*
v3a00z 0.009* v3a08j 0.751
v426 0.007* v457 0.857
v503 0.277 v511 0.265
v603 0.428 v604 0.478
v616 0.491 v741 0.298
b12 0.000* m6 0.258
m18 0.921 s316b 0.634
v446 0.365 v626 0.804
v705 0.718

Figure 7. Kaplan Meier plots of covariates stratified by missing and observed. 0=Observed
and 1=missing. For-example the KM curves for b12 (suceeding birth interval) shows that

survival time was significantly higher for the missing cases than for the observed cases while
the KM curve for v113 shows that survival time was higher-not significant for the observed

cases than for the missing cases
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5.9.3 Implementing multiple imputation

Out of the total 23 covariates with missing data in the imputation model, 3 covariates
were not imputed across the four imputation approaches. Two of these covariates had
over 60% missing data. One covariate that had 36% missing records was only imputed for
MICE RF and MICE EA imputation strategies. The proceeding analysis doesn’t include
these variables.

5.9.4 Convergence of the imputation iterations

Table 9 shows how the variables converged after the several iterations. For convergence
to be achieved, no parallel streams should be observed in the imputations. The results
indicate that random forests achieved better convergence (90%) than the rest of the
imputation strategies. Treating household numbers and enumeration areas as classes in
the imputation model showed no large effect on the convergence.

Table 9. Convergence of the imputation iterations

Imputation strategy Health Convergence Unhealthy
Convergence

MICE Flat Imputation (%) 55 45

MICE HH Imputation (%) 60 40

MICE EA Imputation (%) 55 45

RF Imputation (%) 90 10
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Figure 8. Both scenarios of healthy and unhealthy convergence. Variables v741 and v503 show
health convergence while variable v221 shows the unhealthy convergence

5.9.5 Comparison of the marginal distributions of the imputed vs. observed

The study used density plots to check the marginal distributions of the observed vs.
imputed. The results indicate that MICE RF imputation strategy produced imputations
that were more closely similar with the observed for most of the variables (56%) compared
to the other imputation strategies. There are no large observed differences for the flat
imputation and the two strategies that treated clusters as classes in the imputation model.

Table 10. Comparison of marginal density plots of imputed vs. observed values by imputation
strategy

Imputation strategy Comparison of marginal density plots of imputed vs. observed

Completely iden-
tical

Fairly identical Completely non-
identical

MICE Flat Imputation (%) 17 39 44

MICE HH Imputation (%) 22 33 44

MICE EA Imputation (%) 17 39 44

RF Imputation (%) 56 22 22
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Figure 9. A case of a variable with a completely identical marginal distribution for observed vs.
imputed values. Variable v511 achieved completely identical marginal distributions for all the

imputation strategies

Figure 10. Variable v113 shows a case of a variable with a fairly-completely identical marginal
distribution for observed vs. imputed values.
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Figure 11. Variable m6 shows a case of a variable with a non-completely identical marginal
distribution for observed vs. imputed values.

5.9.6 Summary statistics of the imputed data sets

The study analyzed the data from multiple imputed data sets to compare the means and
proportions of the variables with missing data. Table 11 shows that overall the standard
errors of the means and proportions were smaller after multiple imputation compared to
the complete case analysis. For continuous variables, the results from the imputation
strategies were closely related except for one continuous variable (v616) that contained an
outlier and RF approach produced mean much closer to the observed mean. The mean
(SE) at complete case was 83.2(3.32), 115.1(1.01) for MICE Flat, 120.1(1.03) for MICE
HH, 113.2(1.00) for MICE EA and 66.4(0.78) for MICE RF. For categorical variables, the
findings from the four imputation strategies were closely related for all the imputation
strategies except for variable v3a00z that had a larger proportion of missing data (36%)
where random forests produced estimates much closer to the true estimates. The results
suggest that with low proportion of missingness, any of the imputation strategies can be
used. However, in cases of high level of missingness and outliers, random forests may
perform better. Overall, there are no large observed differences from the estimates from
the two MICE strategies that treated household and community clusters as class variables
and the MICE Flat strategy.
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Table 11. Means and proportions with the corresponding standard errors for covariates with
missing data by imputation strategy

Variable Missing (%)
Comparison of summaries/proportions per imputation strategy against the complete case (CC)
analysis

CC MICE Flat Imputation MICE HH Imputation MICE EA Imputation MICE RF Imputation

Succeding birth interval (b12), mean (SE) 70 28.1(0.16) 25.3(0.03) 23.6(0.03) 25.6(0.03) 25.3(0.02)

v3a00z, % (SE) 36
No 0.08(0.003) 0.21(0.001) 0.11(0.001) 0.24(0.001) 0.06(0.001)
Yes 0.92(0.003) 0.79(0.001) 0.88(0.001) 0.76(0.001) 0.94(0.001)

v604, % (SE) 31
<= 12 months 0.10(0.004) 0.14(0.001) 0.16(0.001) 0.14(0.001) 0.08(0.001)
1 years 0.30(0.006) 0.33(0.001) 0.33(0.001) 0.32(0.001) 0.44(0.002)
2 years 0.52(0.006) 0.36(0.001) 0.36(0.001) 0.36(0.001) 0.41(0.002)
3 years 0.06(0.003) 0.04(0.001) 0.04(0.001) 0.04(0.001) 0.04(0.011)
4 years 0.03(0.002) 0.12(0.001) 0.11(0.001) 0.13(0.001) 0.02(0.000)

v616, mean (sd) 31 83.2(3.32) 115.1(1.01) 120.1(1.03) 113.2(1.00) 66.4(0.78)

v503, % (SE) 5
Once 0.84(0.004) 0.84(0.001) 0.84(0.001) 0.84(0.001) 0.84(0.001)
More than once 0.16(0.004) 0.16(0.001) 0.16(0.001) 0.16(0.011) 0.16(0.001

v511, mean (sd) 5 18.54(0.037) 18.53(0.011) 18.53(0.011) 18.53(0.011) 18.53(0.011)

v113, % (SE) 5
Piped water 0.38(0.005) 0.38(0.001) 0.38(0.001) 0.38(0.001) 0.39(0.001)
Borehole 0.03(0.002) 0.03(0.001) 0.03(0.001) 0.03(0.001) 0.03(0.001)
Well 0.33(0.005) 0.32(0.001) 0.32(0.001) 0.32(0.001) 0.32(0.001)
Surface water 0.24(0.004) 0.24(0.001) 0.24(0.001) 0.24(0.001) 0.24(0.001)
Others 0.01(0.001) 0.01(0.000) 0.015(0.000) 0.01(0.000) 0.01(0.000)

5.9.7 Application of random survival forests on the imputed data sets

We applied random survival forests model on the imputed data from the different strategies
and compared the variable importance scores. RSF Before represents the RSF model fit
using the original data set applying the RSF inbuilt measures of treating missing data.
The results indicate that the prediction error rate from the imputed data was much smaller
(1.00%-1.16%) compared to the error rate from the RSF fit on the observed data (12.34%).
The results also indicate that the VarImp scores were similar across the four imputation
strategies. However, the VarImp scores from the RSF model on the observed data set
were very small. Basing on the VarImp threshold of 0.002 (Ishwaran et al., 2008) that
suggests that covariates with VarImp of less than 0.002 are regarded as noisy and thus
less-predictive, our results indicate that all the 47 predictors after multiple imputation were
highly predictive. Basing on the RSF model fit on the observed data, only 10 predictors
were highly predictive. Even though the importance scores are largely different, the ranking
of the risk-factors was related with minimal discrepancies as shown in Figure 12. Basing
on the ranking of the RSF model for the observed data set, the following risk-factors were
highly predictive of under-five child mortality in Tanzania. They include v137-number
of under-five children in the household, v208-number of births in the last 5 five years,
m4-child’s breast feeding history, m5-number of months child breast fed, v238-number
of under three children, v136-total number of household members, b12-succeeding birth
interval, sreg1-country area zones, v404-currently breast feeding, b0-child’s birth status.
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Table 12. Random survival forests variable importance scores by imputation strategy.

Variable
VarImp scores by imputation strategy

RSF Be-
fore

MICE Flat MICE HH MICE EA MICE RF

v137 0.039 0.156 0.16 0.156 0.162
v208 0.018 0.088 0.090 0.087 0.090
m4 0.012 0.055 0.054 0.052 0.057
m5 0.009 0.041 0.040 0.041 0.042
b12 0.005 0.036 0.035 0.040 0.044
v136 0.005 0.059 0.057 0.056 0.059
v238 0.005 0.052 0.052 0.053 0.053
sreg1 0.002 0.052 0.051 0.052 0.053
v404 0.002 0.027 0.029 0.031 0.028
b0 0.002 0.019 0.019 0.019 0.020

v511 0.001 0.031 0.031 0.031 0.031
v426 0.001 0.028 0.028 0.028 0.028
v446 0.001 0.034 0.034 0.033 0.035
s1017 0.001 0.010 0.010 0.010 0.010
m8 0.001 0.027 0.027 0.027 0.027
v113 0.001 0.035 0.035 0.034 0.037
v744e 0.001 0.027 0.026 0.025 0.028
v477 0.001 0.022 0.022 0.022 0.023
v3a00z 0.001 0.005 0.006 0.004 0.009
...
Error rate 12.34% 1.00% 1.03% 1.02% 1.16%
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(a) Variable ranking based on the original data
set

(b) Variable ranking based on the imputed data
from the random forests approach

Figure 12. Shows random survival forests under-five risk factor ranking of the 47 risk-factors
based on both the imputed data and original data. The risk factor ranking is comparable with
minimal discrepancies observed. The prediction error rate from the imputed data set is smaller
than the error rate from the original data set. The ranking of the imputed data sets from the
three MICE strategies was very closely similar to the ranking from the random forests approach
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Figure 13. Partial plots for top nine predictors selected using the observed data set while using
inbuilt random survival forests missing data handling technique. Values on the vertical axis
show expected mortality for predictor, after correcting for all other predictors. Dashed lines

are for numeric predictors and box plots are for categorical variables. For example, the plot for
b12-succeeding birth interval shows that mortality was decreasing with increasing birth

interval. Plot for v208-birth in the last years shows that mortality was increasing with increase
in the number of births. The plot for m4 shows that mortality was higher in categories

94(never breast fed), 93 (ever breastfed) and 95 (still breastfeeding) respectively
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5.9.8 Testing Proportional Hazards assumption

We first checked for PH assumption on each of the 47 covariates before and after multiple
imputation. We plotted the scaled Schoenfeld residuals against time and also conducted
the scaled Schoenfeld residual proportional hazards test to assess for PH assumption.
Figures 14 and 15 show plots of the proportional hazards tests for two of the covariates.
For PH to be met, the Schoenfeld residual test must return a P value greater than 0.05
and the residuals plot must be a model estimates are constant over time (i.e should lie
along the horizontal line).

Figure 14. A case of a covariate satisfying PH assumption
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Figure 15. A case of a covariate that doesn’t satisfy PH assumption

Table 13 shows a summary of results from the PH assumption. The results indicated that
a total of 34 covariates were satisfying the PH assumption before multiple imputation and
only 10 covariates were satisfying the PH assumption after imputing data. This result was
the same across all the imputation strategies. This result suggests that multiple imputation
affected the proportional hazards assumption in the data.

Table 13. Testing for Cox Proportional Hazards assumption before and after multiple
imputation

Description
Imputation Strategy

CC Mice Flat Mice HH Mice EA Mice RF

Met PH ,n (%) 34(0.74) 10(0.22) 10(0.22) 10(0.22) 10(0.22)

Failed, n (%) 12(0.26) 36(0.78) 36(0.78) 36(0.78) 36(0.78)

5.9.9 Multivariate Cox-PH regression analysis [Rubin’s analysis]

Table 14 shows findings from the multivariate Cox regression analysis. The results indicated
that estimates from the complete case analysis were largely different from the estimates
from the multiple imputed data sets. The differences in results of the complete case
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analysis and multiple imputation are attributable to the significant reduction in sample size
under the complete case analysis. A total of 6,525 observations out of 9,779 were deleted
from the complete case analysis due to missingness. This result confirms the undesirable
effects of complete case analysis in the presence of missing data. The table further reveals
that the effect of the covariates v426, v525, and v604 on the response was altered after
multiple imputation. The findings from the three MICE strategies (MICE Flat, MICE HH,
MICE EA) are comparably similar. There are some observable differences in the estimates
of MICE RF and other three MICE approaches. A thorough comparison of the imputation
strategies is done based on the Univariate Cox regression model shown in Table 15.

Table 14. Multivariate Cox regression analysis of imputed data from the four imputation
strategies

Covariate
Missing(%) Complete Case MICE Flat MICE HH MICE EA MICE RF

Est,SE Est,SE R Est,SE R Est,SE R Est,SE R
v511(β1) 5% 0.00,0.036 -0.01,0.022 0.021 -0.01,0.022 0.034 -0.01,0.022 0.040 -0.01,0.022 0.034
v626(β1) 0.02% NA,0.000 -0.27,0.301 0.527 -0.15,0.210 0.258 -0.31,306 0.506 -0.06,0.170 0.003
v626(β2) 0.12,0.230 0.20,0.153 0.012 0.21,0.153 0.021 0.22,0.153 0.013 0.14,0.158 0.014
V426(β1) 1% -0.39,0.532 -0.02,0.270 0.006 -0.02,0.270 0.021 -0.02,0.269 0.020 -0.01,0.270 0.001
V426(β2) 0.18,0.223 0.16,0.136 0.010 0.15,0.137 0.025 0.14,0.138 0.021 0.15,0.138 0.202
V426(β3) 0.54,0.396 0.58,0.241* 0.008 0.58,0.241* 0.015 0.56,0.242* 0.009 0.60,0.245* 0.060
v525(β1) 0% -0.08,0.049 -0.07,0.030* 0.011 -0.07,0.030* 0.013 -0.07,0.030* 0.013 -0.07,0.030* 0.006
v3a00z(β1) 36% -0.20,0.339* -0.40,0.217 0.122 -0.36,0.209 0.117 -0.39,0.213 0.077 -0.47,0.220* 0.134
V446 (β1) 1% 0.001,0.040 0.004,0.023 0.008 0.01,0.023 0.009 0.01,0.024 0.009 0.004,0.023 0.017
v741(β1) 17% 0.07,0.220 -0.03,0.138 0.022 -0.05,0.139 0.039 -0.04,0.138 0.029 -0.06,0.148 0.160
v741(β2) -0.46,0.433 -0.19,0.249 0.062 -0.15,0.242 0.053 -0.16,0.253 0.116 -0.14,0.256 0.136
v741(β3) 0.13,1.018 0.42,0.518 0.157 0.40,0.526 0.138 0.38,0.515 0.137 0.35,0.511 0.045
v604(β1) 31% -0.10,0.307 0.24,0.212 0.267 0.28,0.199 0.174 0.29,0.198 0.137 -0.24,0.237 0.225
v604(β2) -0.26,0.318* -0.04,0.204 0.112 0.01,0.203 0.110 0.02,0.208 0.108 -0.37,0.233 0.117
v604(β3) -1.45,1.046* -1.41,0.729 0.010 -1.17,0.809 0.296 -1.20,0.737 0.059 -1.40,0.710 0.254
v604(β4) -0.09,0.750 0.12,0.324 0.477 0.23,0.390 0.577 0.25,0.274 0.296 0.04,0.450 0.139
v213(β1) 0% 0.60,0.250* 0.37,0.177* 0.009 0.37,0.177* 0.006 0.37,0.176* 0.004 0.42,0.180* 0.010

5.9.10 Univariate Cox-PH regression analysis [Rubin rules]

The study decided to fit the univariate Cox-PH model after the multivariate Cox-PH model
led to invalid conclusions on the comparison of complete cases vs. imputed data as a
result of the reduction in sample size. Table 15 shows that the model estimates and the
corresponding standard errors for the fully observed covariates remained unchanged after
multiple imputation in all the four imputation strategies. For partially observed covariates
with low missing data, the estimates, standard errors and the probability values of the
covariates remained similar with the estimates from the observed values. However, for the
partially observed covariates with high missing data, random forests imputation strategy
produced parameter estimates that were closely related to the complete case compared to
the other three imputation strategies. There were no larger differences in the estimates
arising from the imputation strategies that treated clusters as class variables compared
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to the MICE Flat imputation. The proportion of relative increase in variance (R) due
non-response was zero for all covariates with below 1% missing data, it however increased
with increase in missing data. Even though parameter estimates are closely related on
most of the covariates in the four imputation strategies, there are observed variations in R
based on the imputation strategy.

Table 15. Univariate Cox regression analysis of imputed data from the four imputation
strategies [Rubin’s analysis]

Covariate
Missing(%) Complete Case MICE Flat MICE HH MICE EA MICE RF

Est,SE Est,SE R Est,SE R Est,SE R Est,SE R
v511(β1) 5% -0.05,0.020* -0.05,0.019* 0.014 -0.05,0.019* 0.023 -0.05,0.019* 0.023 -0.05,0.019* 0.028
v626(β1) 0.02% -0.22,0.161 -0.22,0.162 0.000 -0.22,0.162 0.000 -0.22,0.162 0.000 -0.22,0.162 0.000
v626(β2) 0.23,0.150 0.23,0.150 0.000 0.23,0.150 0.000 0.23,0.150 0.000 0.23,0.150 0.000
V426(β1) 1% 0.04,0.269 0.03,0.269 0.005 0.03,0.269 0.020 0.02,0.269 0.020 0.04,0.269 0.022
V426(β2) 0.22,0.136 0.23,0.134 0.011 0.21,0.135 0.018 0.21,0.136 0.034 0.22,0.135 0.017
V426(β3) 0.69,0.240* 0.69,0.239* 0.009 0.69,0.239* 0.016 0.66,0.239* 0.004 0.70,0.242* 0.056
v525(β1) 0% -0.09,0.025* -0.09,0.025* 0.000 -0.09,0.025* 0.000 -0.09,0.025* 0.000 -0.09,0.025* 0.000
v3a00z(β1) 36% -0.59,0.215* -0.21,0.363 0.782 -0.36,0.282 0.563 -0.14,0.370 0.810 -0.60,0.218* 0.141
V446 (β1) 1% -0.01,0.022 -0.01,0.022 0.010 -0.01,0.022 0.017 -0.01,0.022 0.013 -0.01,0.022 0.008
v741(β1) 17% -0.20,0.140 -0.21,0.131 0.024 -0.22,0.133 0.048 -0.21,0.132 0.026 -0.21,0.142 0.170
v741(β2) -0.20,0.248 -0.23,0.247 0.058 -0.18,0.241 0.054 -0.20,0.252 0.113 -0.18,0.255 0.138
v741(β3) -0.37,0.509 0.34,0.516 0.155 0.27,0.517 0.116 -0.31,0.514 0.142 -0.31,0.511 0.049
v604(β1) 31% -0.10,0.222 0.16,0.205 0.247 0.20,0.196 0.177 0.23,0.195 0.107 -0.26,0.221 0.211
v604(β2) -0.43,0.218* -0.11,0.196 0.093 -0.07,0.196 0.101 -0.05,0.201 0.093 -0.38,0.213 0.089
v604(β3) -1.88,0.731* -1.58,0.725* 0.007 -1.35,0.110* 0.304 -1.47,0.733* 0.057 -1.52,0.700* 0.250
v604(β4) -0.13,0.449 0.03,0.333 0.524 0.14,0.371 0.549 0.20,0.266 0.283 -0.073,0.446 0.136
v213(β1) 0% 0.44,0.165* 0.44,0.165* 0.000 0.44,0.165* 0.000 0.44,0.165* 0.000 0.44,0.165* 0.000
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6 Discussion and conclusions

6.1 Discussion

The present study set out to solve the problem of under-five child survival missing covariate
data in the Demographic and Health Survey (DHS) data sets. We used the data from
the 2015-16 Tanzania DHS data to conduct risk-factor selection and perform multiple
imputation. Our study findings have shown that multiple imputation can potentially solve
the problem of missing data whenever studying the risk-factors of under-five child survival.
Our study findings are in support of prior studies that found multiple imputation to be
a plausible strategy for handling missing data in survival settings (Van Buuren et al.,
1999; Eisemann et al., 2011). The study findings from the convergence plots suggest that
imputations under the random forests strategy achieved better convergences compared
to other imputation strategies. This finding is in contrast with a prior finding that found
random forests to have achieved poor converges compared to predictive mean matching
and polytomous regression in a cancer study (Eisemann et al., 2011). Bureen (2001)
(Buuren and Groothuis-Oudshoorn, 2011) points out that non-convergence may indicate
a problem with the variable and this should be investigated further. Our investigations
suggest that two of the variables with non-convergence in the four strategies had utmost
two observations with missing data. However, our results also shown that some variables
converged for some imputation strategies and didn’t converge for other strategies indicating
that sometimes the choice of imputation strategy may affect the convergence process. Our
study further indicated that that random forests imputation strategy achieved more closely
identical marginal distributions for imputed vs. observed values compared to the other
imputation strategies. This result suggests that random forests approach has the potential
to produce imputations that are more closely related to the observed values compared to
the three MICE strategies. Prior studies reviewed focused on reporting of the parameter
estimates and bias arising from the imputations while ignoring the convergence or the
marginal distribution of the observed vs. imputed values. Our study findings suggested
that covariates that achieved both healthy convergences and completely identical marginal
distributions produced good model estimates. This is an area that needs to be emphasized
in reporting for future research.

The present study results also indicated that treating the two cluster variables as classes
in the imputation model had no observed effects on the findings. This result suggests
that there were either no big variations in the observations within the clusters or treating
clusters as classes in the imputation model without adjusting the imputation method may
not necessarily mean that within cluster imputation will be done. The two cluster variables
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were also not ranked among the among the first 100 predictors of under-five child mortality
confirming the insignificance of the clusters in the study’s data set. The study findings
further reveal that in the presence of low missing data, the four multiple imputation
strategies produced similar results and were more closely similar to the estimates from the
observed values. However, in the presence of high level of missingness, random forests
shown much potential to achieve parameter estimates closely related to the estimates
from the observed values. Previous studies have shown mixed results on the performance
of random forests in comparison to other imputation strategies (Eisemann et al., 2011;
Shah et al., 2014). Our study results also indicated that in the presence of outliers in
the covariates, random forests were more likely to produce better imputations than the
predictive mean matching strategy. Prior reviews have shown random forests to possess
the ability to model any complexities in the data(Doove et al., 2014).

Our study findings from the random survival forests model shown that multiple imputation
led to the increase in the variable importance scores and as a result all the covariates
became highly predictive after multiple imputation. Even though the importance scores
significantly increased, the ranking of the covariates in order of importance showed minimal
discrepancies comparable to the ranking obtained using the original data relying on the
RSF inbuilt missing data technique. Random survival forests imputes missing data by
drawing a random value from the distribution of the observed values for the variable missing
for each tree before splitting the parent node. Imputed data is however not used in the
daughter nodes and ensemble cumulative hazard estimates (Ishwaran et al., 2008). Further
research is needed to assess the missing data approach employed in RSF in-comparison to
multiple imputation strategies. Our results also indicated that the variable importance and
ranking from the four imputation strategies were closely similar, if not similar. This finding
suggests that any of the imputation strategies could potentially be used to impute data as
long as the objective of the study was risk factor prediction. The study findings further
revealed that multiple imputation greatly affected the proportional hazards assumption in
the data including the fully observed variables that were included in the imputation model.
This finding suggests that much as multiple imputation doesn’t alter the observed values,
it may affect the original data structure. This concern has also been reported elsewhere
(Pedersen et al., 2017). However, our results from the univariate cox-regression model that
was fit based on the Rubin (Rubin, 1976) analysis rules suggest that multiple imputation
never altered the effect of the risk-factors on the response. This finding further highlights
the potential of multiple imputation in handling missing data in survival settings.
The present study shown that the under-five risk factors that were highly ranked compared
well with the risk factors obtained in prior reviews. Some of the highly ranked under-five
risk factors that have been found to be significant predictors of under-five mortality in
earlier studies included succeeding birth (Susuman et al., 2016), total number of children
ever born, number of under five children in a household, number of under three children in
a household (Nasejje and Mwambi, 2017). Our study results have shown covariates related
to breastfeeding were highly predictive of under-five child survival. The different country
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area zones in Tanzania have also been found to be highly predictive of under-five child
survival. Modeling studies may be used to assess the effect of these covariates on child
mortality in Tanzania. Finally, random survival forests have shown potential to perform
well in the presence of many covariates, albeit the procedure was computationally time
consuming. Multiple imputation with random forests has also been found to be found to
be computationally expensive in time compared to the rest of the imputation strategies.

6.2 Study strengths and limitations

Our study applied highly predictive models to identify risk factors of under-five mortality
from a pool of over 400 covariates and uses multiple imputation, a flexible missing data
approach that incorporates imputation uncertainty by pooling results from the multiple
imputed data. Our study results may not be used to draw definitive conclusions since we
don’t use a simulation framework to validate them.

6.3 Future research

Our study has considered multiple imputation while treating clusters as class variables.
Future research should consider multilevel imputation using clusters as levels. There are
however methodological challenges with this approach especially with factor variables with
more-than two levels. Future research should also consider investigating the proposed
imputation strategies using the simulation frameworks and conduct sensitivity analysis as
well.

Extensions of the cox proportional hazards model such as extended cox model and stratified
cox model may be helpful in overcoming the proportional hazards assumption.

6.4 Recommendations

Our study suggests that most of the missing data in DHS data is actually due to skips
in the questionnaire. DHS may need to start using specific codes at data collection or
cleaning stages to represent skip patterns rather than treating data as missing in their
online published data sets. This will also help the users of DHS data sets in knowing the
true missing values.

6.5 Conclusion

Multiple imputation has shown potential to produce estimates for studying under-five child
survival that are closely similar to the true estimates even in the presence of high missing
data. Random forests imputation strategy shown potential to perform better than the
three mice imputation strategies in achieving healthy convergences, closely similar marginal
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distributions of imputed vs. observed data and model estimates. The current study results
may need to be validated using a more robust simulation study and other non-response
models for decisive conclusions to be made.



68

References

Abu, I. N., Madu, I. A., and Ajaero, C. K. (2015). The prevalence and determinants of
under-five mortality in benue state, nigeria. SAGE Open, 5(4):2158244015611938.

Allison, P. D. (2001). Missing data, volume 136. Sage publications.

Allison, P. D. (2012). Handling missing data by maximum likelihood. In SAS global forum,
volume 23. Statistical Horizons Haverford, PA, USA.

Andridge, R. R. and Little, R. J. (2010). A review of hot deck imputation for survey
non-response. International statistical review, 78(1):40–64.

Armstrong Schellenberg, J. R., Nathan, R., Abdulla, S., Mukasa, O., Marchant, T. J.,
Tanner, M., and Lengeler, C. (2002). Risk factors for child mortality in rural tanzania.
Tropical Medicine & International Health, 7(6):506–511.

Azur, M. J., Stuart, E. A., Frangakis, C., and Leaf, P. J. (2011). Multiple imputation by
chained equations: what is it and how does it work? International journal of methods
in psychiatric research, 20(1):40–49.

Beaujean, A. (2012). Bayloredpsych: R package for baylor university educational psychology
quantitative courses. R package version 0.5, URL http://CRAN. R-project. org/package=
BaylorEdPsych.

Bennett, D. A. (2001). How can i deal with missing data in my study? Australian and
New Zealand journal of public health, 25(5):464–469.

Borman, S. (2004). The expectation maximization algorithm-a short tutorial. Submitted
for publication, pages 1–9.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
regression trees. CRC press.

Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained
equations in r. Journal of statistical software, 45(3).

Chen, X. and Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics,
99(6):323–329.

Cox, D. R. (1972). Regression models and life-tables. In Breakthroughs in statistics, pages
527–541. Springer.

Dong, Y. and Peng, C.-Y. J. (2013). Principled missing data methods for researchers.
SpringerPlus, 2(1):222.



69

Doove, L. L., Van Buuren, S., and Dusseldorp, E. (2014). Recursive partitioning for missing
data imputation in the presence of interaction effects. Computational Statistics & Data
Analysis, 72:92–104.

Ehrlinger, J. (2016). ggrandomforests: Exploring random forest survival. arXiv preprint
arXiv:1612.08974.

Eisemann, N., Waldmann, A., and Katalinic, A. (2011). Imputation of missing values of tu-
mour stage in population-based cancer registration. BMC medical research methodology,
11(1):129.

Ezeh, O. K., Agho, K. E., Dibley, M. J., Hall, J. J., and Page, A. N. (2015). Risk factors
for postneonatal, infant, child and under-5 mortality in nigeria: a pooled cross-sectional
analysis. BMJ open, 5(3):e006779.

Geman, S. and Geman, D. (1987). Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. In Readings in Computer Vision, pages 564–584. Elsevier.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual
review of psychology, 60:549–576.

Grund, S., Lüdtke, O., and Robitzsch, A. (2017). Multiple imputation of missing data for
multilevel models: Simulations and recommendations. Organizational Research Methods,
page 1094428117703686.

Hamidi, O., Poorolajal, J., Farhadian, M., and Tapak, L. (2016). Identifying important
risk factors for survival in kidney graft failure patients using random survival forests.
Iranian journal of public health, 45(1):27.

Hsich, E., Gorodeski, E. Z., Blackstone, E. H., Ishwaran, H., and Lauer, M. S. (2011).
Identifying important risk factors for survival in patient with systolic heart failure using
random survival forests. Circulation: Cardiovascular Quality and Outcomes, 4(1):39–45.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008). Random survival
forests. The annals of applied statistics, pages 841–860.

Jerez, J. M., Molina, I., García-Laencina, P. J., Alba, E., Ribelles, N., Martín, M., and
Franco, L. (2010). Missing data imputation using statistical and machine learning
methods in a real breast cancer problem. Artificial intelligence in medicine, 50(2):105–
115.

Kleinbaum, D. G. and Klein, M. (2010). Survival analysis, volume 3. Springer.

Kozuki, N. and Walker, N. (2013). Exploring the association between short/long preceding
birth intervals and child mortality: using reference birth interval children of the same
mother as comparison. BMC public health, 13(3):S6.



70

Larsen, R. (2011). Missing data imputation versus full information maximum likelihood
with second-level dependencies. Structural Equation Modeling: A Multidisciplinary
Journal, 18(4):649–662.

Little, R. J. and Rubin, D. B. (1989). The analysis of social science data with missing
values. Sociological Methods & Research, 18(2-3):292–326.

Little, R. J. and Rubin, D. B. (2014). Statistical analysis with missing data. John Wiley &
Sons.

Ma, J., Thabane, L., Dolovich, L., and Akhtar-Danesh, N. (2011). Imputation strategies for
missing binary outcomes in cluster randomized trials. BMC medical research methodology,
11(1):18.

Marshall, A., Altman, D. G., Royston, P., and Holder, R. L. (2009). Combining estimates
of interest in prognostic modelling studies after multiple imputation: current practice
and guidelines. BMC medical research methodology, 9(1):57.

Masanja, H., de Savigny, D., Smithson, P., Schellenberg, J., John, T., Mbuya, C., Upunda,
G., Boerma, T., Victora, C., Smith, T., et al. (2008). Child survival gains in tanzania:
analysis of data from demographic and health surveys. The Lancet, 371(9620):1276–
1283.

Mosley, W. H. and Chen, L. C. (1984). An analytical framework for the study of child
survival in developing countries. Population and development review, 10(0):25–45.

Nasejje, J. B. and Mwambi, H. (2017). Application of random survival forests in under-
standing the determinants of under-five child mortality in uganda in the presence of
covariates that satisfy the proportional and non-proportional hazards assumption. BMC
Research Notes, 10(1):459.

Nasejje, J. B., Mwambi, H. G., and Achia, T. N. (2015). Understanding the determinants
of under-five child mortality in uganda including the estimation of unobserved household
and community effects using both frequentist and bayesian survival analysis approaches.
BMC public health, 15(1):1003.

Pedersen, A. B., Mikkelsen, E. M., Cronin-Fenton, D., Kristensen, N. R., Pham, T. M.,
Pedersen, L., and Petersen, I. (2017). Missing data and multiple imputation in clinical
epidemiological research. Clinical Epidemiology, 9:157.

Peugh, J. L. and Enders, C. K. (2004). Missing data in educational research: A review of
reporting practices and suggestions for improvement. Review of educational research,
74(4):525–556.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.



71

Rubin, D. B. (1987). The calculation of posterior distributions by data augmentation:
Comment: A noniterative sampling/importance resampling alternative to the data
augmentation algorithm for creating a few imputations when fractions of missing infor-
mation are modest: The sir algorithm. Journal of the American Statistical Association,
82(398):543–546.

Schafer, J. L. (1999). Multiple imputation: a primer. Statistical methods in medical
research, 8(1):3–15.

Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art.
Psychological methods, 7(2):147.

Schafer, J. L. and Olsen, M. K. (1998). Multiple imputation for multivariate missing-data
problems: A data analyst’s perspective. Multivariate behavioral research, 33(4):545–571.

Schenker, N. and Taylor, J. M. (1996). Partially parametric techniques for multiple
imputation. Computational statistics & data analysis, 22(4):425–446.

Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., and Hemingway, H. (2014).
Comparison of random forest and parametric imputation models for imputing missing
data using mice: a caliber study. American journal of epidemiology, 179(6):764–774.

Soullier, N., de La Rochebrochard, E., and Bouyer, J. (2010). Multiple imputation for
estimation of an occurrence rate in cohorts with attrition and discrete follow-up time
points: a simulation study. BMC medical research methodology, 10(1):79.

Sun, J. (2007). The statistical analysis of interval-censored failure time data. Springer
Science & Business Media.

Susuman, A. S. and Hamisi, H. F. (2012). Under-5 mortality in tanzania: A demographic
scenario. Iranian journal of public health, 41(12):8.

Susuman, A. S., Hamisi, H. F., and Nagarajan, R. (2016). Bio-demographic factors
affecting child loss in tanzania. Genus, 72(1):10.

Templ, M., Alfons, A., Kowarik, A., and Prantner, B. (2011). Vim: visualization and
imputation of missing values. R package version, 2(3).

UNDESA (2015). World population prospects: The 2015 revision, key findings and advance
tables. Technical report, United Nations Department of Economic and Social Affairs
and Population Division.

Unicef (2015). Levels & Trends in Child Mortality: Report 2015: Estimates Developed by
the UN Inter-Agency Group for Child Mortality Estimation. United Nations Children’s
Fund.



72

Van Buuren, S., Boshuizen, H. C., Knook, D. L., et al. (1999). Multiple imputation of
missing blood pressure covariates in survival analysis. Statistics in medicine, 18(6):681–
694.

Vink, G., Frank, L. E., Pannekoek, J., and Buuren, S. (2014). Predictive mean matching
imputation of semicontinuous variables. Statistica Neerlandica, 68(1):61–90.

Yaya, S., Ekholuenetale, M., Tudeme, G., Vaibhav, S., Bishwajit, G., and Kadio, B. (2017).
Prevalence and determinants of childhood mortality in nigeria. BMC public health,
17(1):485.


	Abstract
	Declaration and Approval
	Dedication
	Acknowledgments
	Introduction
	Child mortality
	Missing data
	Overview
	Missing data imputation techniques

	Survival analysis
	Definition
	Common functions in survival analysis
	Parametric survival analysis models
	Cox regression
	Parametric survival model vs. Cox regression model

	Classification and regression trees (CART)
	Random Forests (RF)
	Random Survival Forests

	Statement of the problem
	Objectives
	Overall objective
	Specific objectives

	Justification
	Scope

	Literature Review
	Introduction
	Factors affecting under-five child mortality
	Empirical review of missing data imputation approaches

	Data and statistical considerations
	Data
	Statistical software and considerations

	Random survival forests
	Random survival forests algorithm
	Log-rank splitting rule
	Ensemble estimation
	Prediction error
	Variable Importance
	RSF missing data imputation

	Results

	Multiple Imputation (MI)
	Proportion of missingness
	Missing data patterns
	Checking for missing data pattern

	Missing data mechanisms
	Missing at Random
	Missing Completely at Random
	Missing Not at Random
	Checking for missing data mechanism

	Multiple Imputation by Chained Equations
	Univariate imputation models used in MICE

	Random forests imputation within the MICE framework
	Set up of the imputation model
	Creation of multiple imputed data sets
	Selection of the best imputation strategy
	Assessing convergence
	Diagnostic checking
	Statistical inference of the imputed data

	Results
	Distribution of missingness of covariates by demographic characteristics
	Log-rank test of the observed vs. missing
	Implementing multiple imputation
	Convergence of the imputation iterations
	Comparison of the marginal distributions of the imputed vs. observed
	Summary statistics of the imputed data sets
	Application of random survival forests on the imputed data sets
	Testing Proportional Hazards assumption
	Multivariate Cox-PH regression analysis [Rubin's analysis]
	Univariate Cox-PH regression analysis [Rubin rules]


	Discussion and conclusions
	Discussion
	Study strengths and limitations
	Future research
	Recommendations
	Conclusion
	References


