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ABSTRACT

In function spaces, the set C(Y,Z) of continuous functions from the topological space Y to the

topological space Z is considered. Topologies are defined on this set to form the function space

Cτ(Y,Z). Topological properties such as compactness, and separation axioms, as well as split-

ting and admissibility properties of topologies defined on the set C(Y,Z) have been studied in

this space. In bitopological spaces, topological concepts such as compactness, disconnected-

ness, separation axioms among others, have been generalized to the space (Y,τ1,τ2) and rela-

tionship between these generalized topological properties and the corresponding properties on

the spaces (Y,τ1) and (Y,τ2) studied.

By combining these two fields and generalizing concepts in function spaces to topologized sets

of continuous functions defined on bitopological spaces, the following function spaces are ob-

tained; s−Cτ(Y,Z), p−Cω(Y,Z), (1,2)−Cϕ(Y,Z) and (2,1)−Cξ (Y,Z). In the spaces p−

Cω(Y,Z) and s−Cτ(Y,Z), pairwise splitting (p-splitting), pairwise admissible (p-admissible),

supremum splitting (s-splitting) and supremum admissible (s-admissible) topologies are de-

fined, and relationship with splitting and admissible topologies on 1−Cς (Y,Z) and 2−Cζ (Y,Z)

established. It is proved that if both the spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) have splitting (ad-

missible) topology, then the spaces s−Cτ(Y,Z) and p−Cω(Y,Z) have p-splitting (p-admissible)

and s-splitting (s-admissible) topologies respectively. Separation axioms are generalized to

the space p−Cω(Y,Z) and compared with separation axioms defined on the spaces (Z,δi) for

i = 1,2, 1−Cς (Y,Z) and 2−Cζ (Y,Z), (Z,δ1,δ2), as well as on the space s−Cτ(Y,Z). It is

shown that the space p−Cω(Y,Z) is a pT◦, pT1, pT2 and pregular, if the spaces (Z,δ1) and

(Z,δ2) both are T◦, T1, T2 and regular. The space p−Cω(Y,Z) is also shown to be pT◦, pT1,

pT2 and pregular, if the space (Z,δ1,δ2) is pairwise-T◦, pairwise-T1, pairwise-T2 and pairwise

regular. The space p−Cω(Y,Z) is also proved to be pT0, pT1, pT2 and pregular, if the spaces

1−Cς (Y,Z) and 2−Cζ (Y,Z) are both T0, T1, T2 and regular. Separation axioms defined on the

space s−Cτ(Y,Z) are also compared with those defined on p−Cω(Y,Z). It is proved that the

space s−Cτ(Y,Z) is T0, T1 and T2, if the space p−Cω(Y,Z) is pT0, pT1 and pT2. The concept

of compactness is also extended to closed subsets of the spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z)

in the space s−Cτ(Y,Z), this culminates into a proof of a variant of Arzela-Ascoli theorem.
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NOTATIONS TERMINOLOGIES AND DEFINITIONS

Most of these notations and terminologies can be found in general topology books, others are

product of this work.

(Y,τ1,τ2) A bitopological space in which the set Y 6= φ is assigned

unique topologies τ1 and τ2.

(Y,τ1∨ τ2) A topological space in which the set Y 6= φ is assigned the

topology τ1∨ τ2 generated by basis τ1∪ τ2.

ZY Collection of all functions mapping set Y to the set Z.

C(Y,Z) Collection of all continuous functions mapping topological

space Y to the topological space Z.

s−C(Y,Z) Collection of all continuous functions mapping (Y,τ1∨ τ2) to

(Z,δ1∨δ2).

p−C(Y,Z) Collection of all continuous functions mapping (Y,τ1,τ2) to

(Z,δ1,δ2).

d−C(Y,Z) Collection of all continuous functions mapping (Y,τ1∧ τ2) to

(Z,δ1∧δ2).

1−C(Y,Z) Collection of all continuous functions mapping (X ,τ1) to (Y,δ1).

2−C(Y,Z) Collection of all continuous functions mapping (X ,τ2) to (Y,δ2).

(1,2)−C(Y,Z) Collection of all continuous functions mapping (X ,τ1) to (Y,δ2).

(2,1)−C(Y,Z) Collection of all continuous functions mapping (X ,τ2) to (Y,δ1).

τco Compact-open topology or k-topology.

τp Point-open topology or topology of pointwise convergence.

Cτ(Y,Z) A function space in which a topology τ is defined on the set

C(Y,Z).

τ(E) The class of all topologies that can be generated from the non

empty set E.

∨
α τα The ”join” of topologies τα ; it is a topology whose basis is

x



the set τ1∪ τ2.

∧
α τα The ”meet” of topologies τα ; it is the topology generated from

the intersection of all τα topologies.

OZ(Y ) The collection of open sets in the space Y for every open set

in the space Z.

Directed system ∆ A partially ordered system with the property that for any µ,µ
′ ∈

∆, there exist a µ” ∈ ∆ with µ” ≥ µ and µ” ≥ µ
′

(Birkhoff,

1948).

Even continuity A family F of mappings of X to Y is evenly continuous if for

every x ∈ X , every y ∈Y and any neighbourhood V of y, there

exists a neighbourhood U of x and a neighbourhood W of y

such that e[(F ∩M({x},W ))×U ]⊂V (Engelking, 1989).

∆-directed set A function on a directed system ∆ with values in the space Y

and it is also denoted by {yµ}µ∈∆ (Birkhoff, 1948).

Generalized topology Let Y be a non empty set. A collection τ of subsets of Y is

called a generalized topology on Y , if φ ∈ τ and τ is closed

under arbitrary union (Csaszar, 2002).

Jointly continuous A topology τ on the set C(Y,Z) is jointly continuous if the

function e : Cτ(Y,Z)×Y → Z is continuous (Kelley, 1955).

Lattice A partly ordered set P any two of whose elements for exam-

ple, x and y, have a g.l.b. or ’meet’ (x∧ y), and l.u.b. or ’join’

(x∨ y). Let E consist of the subgroups of any group, and let

inclusion mean set-inclusion, then the terms ’join’ and ’meet’

have their usual meaning of union and intersection (Birkhoff,

1948).

N-open set A set A of the space (Y,τ1,τ2) is called an ”N-open set”, if

and only if it is open in the space (Y,τ1 ∨ τ2), where τ1 ∨ τ2

is the supremum topology on Y containing τ1 and τ2 (Jabbar

and Nasir, 2010).
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N-compactness A space (Y,τ1,τ2) is said to be an ”N-compact space”, if and

only if every N-open cover of Y has a finite subcover (Jabbar

and Nasir, 2010).

Open function A function f : X → Y is called an open function, if the image

of every open set in X is open in Y .

Tube lemma Consider the product space X ×Y , where Y is compact. If N

is an open set of X ×Y containing the slice x◦×Y of X ×Y ,

then N contains some tube W ×Y about x◦×Y , where W is a

neighbourhood of x◦ ∈ X (Munkres, 2000).

Totally disconnected A bitopological space (Y,τ1,τ2) is said to be totally discon-

nected if for every two distint points x and y, there exist a

disconnection Y = A|B with x ∈ A and y ∈ B

Submap If G⊂ Y and H ⊂ Z and f : Y → Z, then the function f |G,H :

G→ H is called a submap provided f (G)⊂ H.
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CHAPTER ONE

INTRODUCTION

1.1 Background information

The study of function spaces dates back to the nineteenth century. It came about from the need

to study convergence of sequences of functions. Function spaces have since been incorporated

in various areas of mathematics. In set theory, the set ZY of all mappings from the set Y to the set

Z is considered. In general topology, a topology such as compact-open topology or point-open

topology can be assigned to a collection of continuous functions defined on a topological space

Y to a topological space Z. In algebraic topology, the study of homotopy theory is essentially

that of discrete invariants of function spaces. In linear algebra, the set of all linear transforma-

tions mapping a vector space U to a vector space V over the same field, forms a vector space.

These vector spaces when defined over a topological field form topological vector spaces, which

are studied in functional analysis as Hilbert spaces and Banach spaces.

Let ZY denote the set of all the functions from a topological space Y to a topological space

Z. Suppose Y is a finite set consisting of the elements y1,y2,y3,y4....,yn and has a discrete

topology, then ZY is the collection of all functions mapping each element of the space Y to

the space Z. Each of such functions can be considered as an n-tuple of points in Z. That is

( f (y1), f (y2), f (y3)......, f (yn)) can be viewed as a set of points in Z (Belk, 2015). The set

ZY can therefore be associated with the Cartesian power Zn = Z × Z × Z.....× Z (n times).

Generally, ZY can be expressed as ∏
y∈Y

Zy. If the collection of all the functions mapping Y to Z

are continuous, then such a collection is represented by the notation C(Y,Z), which forms the

function space Cτ(Y,Z) when a topology τ is assigned to it (Georgiou et al., 1996).

Different topologies are defined on the set C(Y,Z) to form the function space Cτ(Y,Z). One of

the common topology defined on the set C(Y,Z) is the topology (τp) of pointwise convergence,

this topology is defined by the subbasis S(y,V ) = {g ∈ C(Y,Z) : g(y) ∈ V}, where y ∈ Y and

V is open in the space Z (Kelley, 1955). It borrows its name from pointwise convergence of

a sequence of points, only that in this case, a sequence of functions is considered. In product

spaces, topologies are defined either by using product of open sets (box topology) or by using

inverses of projection mappings (product topology). Suppose U and V are any two open sets in

Y and Z respectively, then U ×V form the basis for box topology on Y ×Z. If π1 : Y ×Z→ Y

and π2 : Y ×Z → Z are projection mappings, then π
−1
1 (U) = (U ×Z) and π

−1
2 (V ) = (Y ×V )

1



are open sets in Y × Z. The subbasis for the space Y × Z generated by the sets of the form

S = π
−1
1 (U)∪π

−1
2 (V ) is called product topology (Munkres, 2000). Suppose Y = {a,b}, then

ZY = Z×Z. If U is open in Z, then S(a,U) =U×Z = π
−1
1 (U) and S(b,U) = Z×U = π

−1
1 (U).

The pre-image π
−1
1 (U) is an open set in the subbasis for Z×Z, hence, topology of pointwise

convergence is equivalent to product topology, but this only holds when Y is a finite set (Belk,

2015). If B is the subbasis for the topological space Z, then the subbasis for the topology of

pointwise convergence on the set C(Y,Z), constitutes sets of the form S(y,B) = {y ∈ Y,B ∈B}

(Dugundji, 1978). If the class {Uy}y∈Y of open sets is contained in the space Z, then the product

∏
y∈Y

Uy = { f ∈ C(Y,Z) : f (y) ∈Uy,∀ y ∈ Y} is an open box contained in the set C(Y,Z). The

collection of all open boxes forms a basis for the box topology on the set C(Y,Z). The product

topology and box topology coincide when Y is a finite set. If B is the basis for a topological

space Z, then the collection {∏By : By ∈ B,∀ y ∈ Y} forms the basis for the box topology on

ZY (Munkres, 2000).

The subbases for the set-open topologies defined on the set C(Y,Z), consist of sets from both the

space Y and the space Z. A good example of a set-open topology is the compact-open topology

(τco), whose subbasis consist of sets of the form S(U,V ) = { f ∈ C(Y,Z) : f (U) ⊂ V}, for U

compact in the space Y and V open in the space Z (Fox, 1945). For the family B of sets forming

the subbasis for the space Z, the collection S(U,V ) = {U ⊂Y,V ∈B} of sets, forms the subbasis

for the set-open topology on the set C(Y,Z) (Dugundji, 1978). If U is open, then S(U,V ) forms

the subbasis for open-open topology, if U is closed or bounded, then S(U,V ) forms a subbasis

for closed-open topology or bounded-open topology respectively. Some of these topologies

are equivalent under given conditions. For example, the topology of pointwise convergence is

equivalent to the closed-open topology, whenever Y is a T2 compact space. The topology of

pointwise convergence is equivalent to compact-open topology, provided all compact subsets of

the space Y are finite sets, or Y is a T1 space. The compact-open topology is equivalent to the

topology of pointwise convergence, provided that Y is a discrete space (Porter, 1993).

Topologies defined on function spaces are classified as either admissible or splitting, this is

done by use of the notion of continuous functions defined on product spaces (Fox, 1945; Arens,

1946), or by use of ”continuous convergence” of directed sets (generalized sequences) (Arens

and Dugundji, 1951), or even by use of exponential functions as was done by Engelking (1989).

A topology τ defined on the set C(Y,Z) is said to be admissible, if whenever an open set W

containing f (y) in the space Z is given, there is an open set V containing y in the space Y and

2



an open set U containing f in the space Cτ(Y,Z), such that f ∈U and y ∈V implies f (y) ∈W .

Explicitly, the definition above by Arens (1946) states that a topology τ is admissible, if the

evaluation function e : Y ×C(Y,Z)→ Z is continuous.

Let X be another topological space such that h maps the space X×Y at y ∈Y for each x ∈ X , to

the space Z, and h∗ maps the space X to the space Cτ(Y,Z). By defining the function h∗x = h(x),

where h∗x(y) = h(x,y) for every y ∈ Y , one is bound to note that the functions h and h∗ have a

one-to-one correspondence either; when Y is regular and locally compact, or when the spaces X

and Y satisfy the first countability axiom and the set C(Y,Z) has compact-open topology (Fox

1945), or when X ×Y is a k-space (Dugundji, 1978). Actually, the spaces Z(X×Y ) and (ZY )X

have been shown by Engelking (1989) to be homeomorphic to one another. The continuity of

the function h basically depends on the topologies defined on the spaces X , Y and Z, this is

unlike the continuity of h∗, where only the topology defined on the set C(Y,Z) come into play.

Since the continuity of the evaluation mapping (e) can be used to show that the continuity of

h∗ implies the continuity of h, it follow that τ is also an admissible topology on the set C(Y,Z)

if and only if the continuity of h∗ implies the continuity of h (Arens and Dugundji, 1951). A

topology τ is also termed splitting, if the continuity of the function h implies the continuity of

the function h∗. These definitions of admissible and splitting topologies coincides with those

defined using also generalized sequences by Arens and Dugundji (1951), or those defined using

exponential functions by Engelking (1989).

At any one time, there is at most one proper admissible topology. Such topology is both the

greatest splitting topology and least admissible topology, and it is called splitting-admissible

topology (Arens and Dugundji, 1951). This topology is the intersection of all topologies de-

fined on the set C(Y,Z) that satisfy the admissibility property, or the union of all the topologies

satisfying the splitting property (Georgiou et al., 2007). The k-topology will always satisfy ad-

missibility property, provided that the space Y is regular and locally compact. If no restrictions

are attached to the spaces Y and Z, then the k-topology will satisfy the splitting property (Fox,

1945). An admissible topology will always be finer than a splitting topology, any topology finer

than admissible topology will always be an admissible topology, and any topology courser than

a splitting topology will always be a splitting topology (Engelking, 1989). A good example of

admissible topology is the discrete topology, while a good example of splitting topology is the

indiscrete topology.

Birkhoff (1948) defines a lattice to be a partially ordered set P for which any two elements be-

3



longing to it have a greatest lower bound (g.l.b) or ”meet” denoted by
∧

, and a least upper bound

(l.u.b) or ”join” denoted by
∨

. If E is any non empty set, then the class τ(E) of all topologies

of E forms a lattice. The lattice τ(E) of all splitting topologies will always satisfy the split-

ting property, while the topology
∨

α τα is the greatest splitting topology (Arens and Dugundji,

1951). Any k-topology is the greatest splitting topology either when Y is a completely regu-

lar space and Z is any arbitrary space, or when Z is a metric space containing non-degenerate

arc. The fact that
∧

α τα is courser than any τα , makes τ(E) fail to form a lattice of admissible

topologies as shown by Arens and Dugundji (1951).

For arbitrary families A of spaces X and A◦ of spaces X◦ subspaces of X , splitting and ad-

missible topologies have been defined on the set C(Y,Z) with respect to these arbitrary fami-

lies. These topologies are (A,A◦)-splitting and (A,A◦)-admissible respectively. Splitting and

admissible topologies have further been shown to coincide with (A,A◦)-splitting and (A,A◦)-

admissible topologies respectively (Georgiou, 2009). If τ1 and τ2 are any two topologies defined

on the set C(Y,Z) with respect to (A,A◦), such that τ1⊂ τ2 and τ2 is (A,A◦)-splitting, then τ1 is

also (A,A◦)-splitting, and if τ1 is (A,A◦)-admissible, then τ2 is (A,A◦)-admissible (Georgiou,

2009). Generalization of splitting and admissible topologies has also been extended to function

spaces defined on generalized topological spaces by Gupta and Sarma (2015). In particular, it

has been shown that a topology τ defined on the set C(Y,Z), whose subbasis consist of sets from

the generalized topology of Y and Z, is typically admissible.

The concepts of jointly continuous and evenly continuous as defined by Kelley (1955), have

a relation with the evaluation function defined on the space Cτ(Y,Z). A topology τ defined

on the set C(Y,Z) is termed jointly continuous by Kelley (1955), if the evaluation function

e : Cτ(Y,Z)×Y → Z is continuous. Thus, any admissible topology is jointly continuous and so

is any other topology finer than the admissible topology. The set F subset of C(Y,Z) is termed

evenly continuous, if e[(F ∩ S({y},W ))×U ] ⊂ V (Engelking, 1989). Therefore, a topology τ

defined on F is jointly continuous or admissible, if F is evenly continuous. The concept of

jointly continuous and evenly continuous are important in proving compactness for a closed

subset F of Cτ(Y,Z) in Ascoli theorem (Kelley, 1955).

Generally, for any set-open topology defined on the set C(Y,Z), the topological properties of the

space Y and Z interact with those of the space Cτ(Y,Z). These interactions are what makes the

study of function spaces interesting. In particular, emphasis is given on topological properties

of the set C(Y,Z) that can be deduced from those of the spaces Y and Z. For example, the
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separation axioms T0, T1, T2, regular and completely regular, defined on the space Cτ(Y,Z),

where τ is a compact-open topology, solely depends on the space Z having the same separation

properties (Arens, 1946).

Let Y be a non empty set, two topologies τ1 and τ2 can be defined on Y to form a bitopo-

logical space denoted by (Y,τ1,τ2) (Kelly, 1963). An investigation of a set with two different

topologies defined on it, makes it possible on some occasions to obtain a combined effect, that

is, to get more information than one would acquire if one considered the same set with each

topology separately. Good examples are the generalized separation axioms defined by Kelly

(1963), which comprise of; pairwise Hausdorff, pairwise regular, pairwise completely regular

and pairwise normal spaces. In general the pattern of these axioms involves mixing of the two

topologies of the bitopological space in a certain way. For example, (Y,τ1,τ2) is said to be

pairwise Hausdorff, if two unique points can be separated by disjoint τ1-open and τ2-open set.

The space (Y,τ1,τ2) is pairwise regular, if a τ1-closed (τ2-closed) set and a point not belong-

ing to this set, can be separated by disjoint τ2-open (τ1-open) and τ1-open (τ2-open) sets, and

finally pairwise normal, if disjoint τ1-closed and τ2-closed sets can be separated by disjoint

τ2-open and τ1-open sets respectively. Other combined effects include; pairwise open cover

by Fletcher et al. (1969), pairwise compactness by Swart (1971) and Kim (1968) and pairwise

connectedness by Pervin (1967), among others.

The concept of continuity of functions in topological spaces has also been extended to bitopo-

logical spaces. The function f : (X ,τ1,τ2)→ (Y,µ1,µ2) is defined to be pairwise continuous

(resp. pairwise open, pairwise closed), if the functions f : (X ,τ1)→ (Y,µ1) and f : (X ,τ2)→

(Y,µ2) are continuous (resp. pairwise open, pairwise closed) (Pervin, 1970). The function f

is also defined by Dvalishvili (2005) to be (i, j)-continuous, if the function f : (Y,τi)→ (Z,δ j)

is continuous for i, j ∈ {1,2}, i 6= j. The function f : (Y,τ1,τ2) −→ (Z,δ1,δ2) is defined to be

pairwise1-continuous (p1-continuous) by Tallafha et al. (1999), if it is both (i, j)-continuous and

( j, i)-continuous. The function f is also defined to be a p-homeomorphism, if f is a bijection, p-

continuous and f−1 is also p-continuous (Dvalishvili, 2005). The concept of p-continuous and

p-homeomorphism has been used to generalize topological properties to bitopological spaces.

It is a general observation that the study of function spaces in particular the space Cτ(Y,Z), has

generally concentrated on topologies defined on it and properties of these topologies, as well

as conditions under which such properties of topologies hold. Separation axioms as well as

compactness have also been studied on the function space Cτ(Y,Z). While studies of topological
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concepts such as connectedness, separation axioms and compactness have also been done on

bitopological spaces, it would be interesting to observe how properties studied on function

spaces would vary when generalized to a topologized set of continuous functions between two

bitopological spaces.

1.2 Research problem

The study of function spaces on topological spaces has generally concentrated on topologies de-

fined on set of continuous functions between topological spaces, properties of those topologies,

as well as conditions under which such properties hold. Separation axioms and compactness

have also been studied in function spaces. In bitopological spaces, generalized topological prop-

erties and how such properties interact with the topological properties in individual spaces are

explored. There is need to check whether properties of function spaces as well as bitopological

spaces can be generalized to sets of continuous functions between two bitopological spaces.

It would also be interesting to observe how these generalized properties compare with known

results both in function spaces and bitopological spaces.

1.3 Objectives

1.3.1 General objective

This work investigates properties of function spaces and bitopological spaces on sets of s and p

continuous functions defined on bitopological spaces, and how they relate to properties of sets

of continuous functions defined on topological spaces, as well as to properties of bitopological

spaces.

1.3.2 Specific objectives

The specific objectives of this study were to;

(i) Define function spaces p−Cω(Y,Z), s−Cτ(Y,Z), (1,2)−Cϕ(Y,Z) and (2,1)−Cξ (Y,Z),

and establish the relationship among them, as well as with the spaces 1−Cς (Y,Z) and

2−Cζ (Y,Z).

(ii) Establish the relationship between p-splitting (p-admissible) and s-splitting (s-admissible)

topologies defined on the spaces p−Cω(Y,Z) and s−Cτ(Y,Z) respectively, and splitting

and admissible topologies defined on 1−Cς (Y,Z) and 2−Cζ (Y,Z).
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(iii) Investigate separation axioms on the spaces p−Cω(Y,Z) and s−Cτ(Y,Z), and how they

relate to the separation axioms defined on the spaces (Z,δi) for i = 1,2, (Z,δ1,δ2), 1−

Cς (Y,Z) and 2−Cζ (Y,Z) and also on s−Cτ(Y,Z).

(iv) Investigate compactness of closed subsets of 1−Cς (Y,Z) and 2−Cζ (Y,Z) in the space

s−Cτ(Y,Z).

1.4 Significance of the study

The theory of function spaces cuts across different areas of mathematics. In set theory, the

set ZY consisting of functions from the set Y to the set Z is studied. In algebraic topology,

homotopy theory is studied and deals with invariants in function spaces. In category theory,

function spaces are simply exponential objects. In topology, function spaces give a frame work

in which convergence of sequences of functions can be studied. All the studies above converge

in functional analysis, which basically deals with formulation of properties of transformations

of functions defined on some set to IR or C. While continuous functions have applications

in computer aided design systems, geo information systems and building information models

through establishing links between structured collections of “topological primitives” like edges,

vertices, faces, and volumes, other use of functions especially when studied in algebraic topol-

ogy is in modelling. One such modelling has been done on human connectome by Sizemore

et al. (2018). Some Hilbert spaces and Banach spaces are function spaces and have been used

in mathematical formulation of quantum mechanics. This study like many others, enriches

the field of function spaces with new concepts that could be applied in the field of functional

analysis, as well as algebraic topology.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Function spaces

Geometry beyond the Euclidean spaces IRn was advanced by Italian geometers such as Ascoli,

Arzel‘a and Hadamard, part of their work entailed the study of topology of pointwise conver-

gence and the topology of uniform convergence on function spaces. It was Frechet (1906) who

expounded further the concept of function spaces and distinguished it from the calculus of vari-

ations. Two important types of generalized spaces were isolated, the L-spaces, where the notion

of limit was based on an axiomatization of convergent sequences, and the L-spaces on which a

distance function could be defined. Frechet (1906) doctoral dissertation considered a distance

function d : X ×X → IR+ between any two general objects x and y of a given set X such that

they satisfied four axioms namely; d(x,y)≥ 0, d(x,y) = 0 if and only if x = y, d(x,y) = d(y,x),

and d(x,y) ≤ d(x,z)+ d(z,y), ∀ x, y and z in the set X . These postulates culminated into the

concept of supremum metric topology. The concept of function spaces on topological spaces

was picked up and expounded further by Fox (1945) who used compact-open topology to com-

pare continuity of the functions h : X ×Y → Z, for each fixed x ∈ X , and the continuity of the

function h∗ : X → Cτ(Y,Z). Fox (1945) was more concerned on other properties of the space

Y other than local compactness, for which the function h∗ would be continuous and correspond

to the continuous function h. Eventually, Fox (1945) was able to show that by restricting the

range of the space X , replacing the condition of local compactness on the space Y with the first

countability axiom and introducing compact-open topology on the set C(Y,Z), continuity of the

function h∗ implied continuity of the function h. This essentially meant that there existed an

onto function φ from the set C((X ×Y ),Z) to the set C(X ,Cτ(Y,Z)) as was shown by Morita

(1956). The function φ was also proved by Jackson (1951) and Brown (1964), to be a home-

omorphism, provided that the spaces X and Y were both locally separable, or that the space Y

was regular and locally compact.

One common property of topology τ defined on the set C(Y,Z) was admissibility. Arens (1946)

proved the property of admissibility using convergence of sequence of functions contained in

the set C(Y,Z). In particular, it was shown that when the space Y was locally compact and τ

was a k-topology defined on the set C(Y,Z), the sequence fn converged to the function f , if

and only if the sequence fn(yn) converged to the image f (y), whenever yn converged to y. This
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convergence implied that the k-topology τ was admissible and the strongest admissible topology

for which the evaluation function e : Cτ(Y,Z)×Y → Z was continuous. Evaluation function was

also formulated by Engelking (1989) using composition of continuous functions. Engelking

(1989) showed that if idY X × iX : Y X×X→Y X×X{p}, Σ : Y X×X{p}→Y {p} and iY : Y →Y {p}

were continuous functions, then the evaluation function e : Y X ×X → Y was equivalent to the

composite function iY−1 ◦Σ ◦ (idY X × iX). It is easily seen that there is a correlation between

the definition of admissible topology using evaluation function and using functions defined on

Cartesian product. For if X is replaced with Cτ(Y,Z), the function h∗ mapping X to Cτ(Y,Z),

becomes an identity function whose associated function h, is the evaluation function defined on

the Cartesian product Cτ(Y,Z)×Y . Topology τ defined on the set C(Y,Z) was also characterized

as splitting topology conversely to the characterization of admissible topology done by Arens

and Dugundji (1951).

The concepts of splitting and admissibility on topologies defined on the set C(Y,Z) have also

been proven using convergence and continuous convergence of directed sets. Arens and Dugundji

(1951) observed that a topology τ was admissible on the set C(Y,Z), if the sequence fn viewed

as a directed set of functions in C(Y,Z) converging continuously to f in C(Y,Z), the sequence

fn(yn) converged to f (y), whenever yn converged to y. It was also observed that a topology τ

satisfied splitting property, if for every directed system ∆ and ∆-directed set { fµ} in C(Y,Z), the

continuous convergence of the sequence fµ to f implied convergence of fµ to f with respect

to τ . The property of splitting topology was also shown by Arens and Dugundji (1951) to hold

when continuous convergence of the sequence fµ to f , implied convergence of the sequence fµ

to f in the space Cτ(Y,Z), and for the continuous function h : X ×Y → Z. Arens and Dugundji

(1951) also proved that the property of admissibility was satisfied, if the convergence of fµ to

f in C(Y,Z), implied continuous convergence of fµ to f . One interesting observation noted

by the duo was that the k-topology defined on the set C(Y,Z), where Y was a regular locally

compact space and Z was an arbitrary space, was an acceptable topology (both splitting and

admissible). A comparative analysis of topologies given to C(Y,Z) carried out by Arens and

Dugundji (1951) showed that; a topology coarser than splitting topology is splitting, a topol-

ogy finer than admissible topology is admissible and a splitting topology is coarser than an

admissible topology.

By considering arbitrary collection {tα} of splitting topologies as a lattice as defined by Birkhoff

(1948), Arens and Dugundji (1951) were able to show that
∧

α tα and
∨

α tα were also splitting
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topologies. The case was different for arbitrary collection of admissible topologies, even though

admissible topologies under the operation of ”join” resulted into another admissible topology.

This vaguely implied that the union and intersection of splitting topologies was also splitting

but only the union of admissible topologies was an admissible topology.

The relation between continuous functions h and h∗ extensively studied by Fox (1945) and

Arens and Dugundji (1951), can best be explained using exponential function φ studied by

Morita (1956) and Jackson (1951). If the continuity of h∗ is implied by that of h, then φ :

C((X ×Y ),Z))→ C(X ,C(Y,Z)) is easily seen to be a continuous function (Engelking, 1989).

Therefore, a topology τ satisfies splitting property, if for the mapping φ : C((X ×Y ),Z))→

C(X ,C(Y,Z)), every space X , and for an f ∈ C((X ×Y ),Z), the mapping φ( f ) belongs to

C(X ,C(Y,Z)). That is, if f ∈ C((X ×Y ),Z), then φ( f )(x) ∈ C(Y,Z) implying that φ((C(X ×

Y,Z))) ⊂C(X ,Cτ(Y,Z)). Conversely, τ is said to be admissible topology, if for every space X

and any g ∈C(X ,C(Y,Z)), the mapping φ−1(g) belongs to C((X×Y ),Z)), that is,

φ(C(X ,Cτ(Y,Z)))⊂ (C(X×Y,Z)) (Engelking, 1989).

Nets have also been used to characterize the concept of splitting and admissible topologies

in function spaces. McCoy and Ntantu (1988) observed that the net { fi} in the set C(X , IR)

converged to f in C(X , IR), if and only if for each x ∈ X , { fi(x)} converged to f (x) ∈ IR. A

topology τ on C(X , IR) was then shown to be splitting, if and only if whenever { fi} was a net

in C(X , IR) converging to f ∈C(X , IR) continuously, then { fi} converged to f ∈Cτ(X , IR). A

topology τ was also shown to be admissible if whenever { fi} was a net in C(X , IR) converging

to f ∈ C(X , IR), then { fi} converged continuously to f ∈ Cτ(X , IR). By viewing a directed

system as a net, the concepts of splitting and admissibility as captured by Arens and Dugundji

(1951) relates to the above concepts by McCoy and Ntantu (1988).

For the space Z satisfying the separation axioms T0, T1, T2, regular and completely regular,

Arens (1946) showed that the space Cτ(Y,Z) where τ was a compact-open topology, inherited

the same separation axioms. The above case failed to hold when Z was a normal space, this was

because the set C(Y,Z) was homeomorphic to the product ∏
y∈Y

Zy where each Zy was a copy of

Z, and the product of normal spaces need not be normal.

The topology of pointwise convergence is equivalent to the subspace topology defined on the

set C(Y,Z) generated by Tychonoff topology on ZY , and solely depended on the topology of the

space Z (Willard, 1970). This topology was shown by Kelley (1955) to be the least topology

for which the evaluation function was continuous. It is worth noting that if py : ZY → Z is a
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continuous mapping, then ZY
n⋂

i=1
p −1

yi
(U) = M(yi,U) for U open in Z, is the subbasis for the

topology of pointwise convergence on ZY (Engelking, 1989). One importance of topology of

pointwise convergence, is that it facilitates compactness for subsets of function spaces to be

defined. Kelley (1955) showed that for a set F ⊂C(Y,Z) to be compact relative to topology of

pointwise convergence, it was sufficient that the set F be pointwise closed in the space Cτ(Y,Z),

and for the set F(y) to have a compact closure for each point y in Y . Kelley (1955) showed that

the concept of even continuity and joint continuity were related by the statement; F is evenly

continuous if and only if for each y∈Y and z∈ Z and for each open set U containing z, there are

open sets V containing y and W containing z such that { f : f ∈ F and f (y) ∈W}×V is carried

into U by a natural map. The natural map here is simply the evaluation function. Using the

above statement relating even continuity and jointly continuity, Kelley (1955) was able to show

that, for a pointwise topology τ defined on the set F of evenly continuous functions, mapping a

normal space X to a regular space Y , the set F was also evenly continuous, and the topology τ

was jointly continuous on F.

The concept of jointly continuous topology and even continuity plays a critical role in the def-

inition of compactness on subsets of function spaces, which forms the basis for Arzela-Ascoli

theorem. Kelley (1955) showed that a subset F of Cτ(Y,Z), for a regular locally compact space

Y , a regular space Z and compact-open topology τ , was compact if and only if; F was closed in

Cτ(Y,Z), the closure of F(y) was compact for each y ∈ Y , and F was evenly continuous. The

subset F of C(Y,Z) was also shown to be evenly continuous, if it was compact relative to the

point-open topology.

For a singleton set X , Dugundji (1978) showed that the continuous mapping T : C(X ,Y )×

C(Y,Z)→C(X ,Z) was simply the evaluation function ω : C(Y,Z)×Y → Z defined by ω( f ,y) =

f (y). Dugundji (1978) also proved that for the spaces X , Y and Z, where A ⊂ X , B ⊂ Y were

compact and V open subset of the space Z, the class of sets (A×B,V ) formed the subbasis for k-

topology defined on the space C((X ×Y ),Z). Using this subbasis, it was possible for Dugundji

(1978) to provide an alternative proof of homeomorphism between the spaces C((X ×Y ),Z)

and C(X ,C(Y,Z)), different from that of Jackson (1951) and Brown (1964).

Recent studies in function spaces defined on topological spaces have mainly concentrated on

generalization of properties of topologies as well as characterization of compactness on function

space Cτ(Y,Z). Georgiou (2009) has extended the concept of splitting and admissible properties

of topologies defined on the set C(Y,Z) to the family (A,A◦) of the spaces (X ,X◦), where X◦ is
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a subspace of X . In particular a topology τ on C(Y,Z) is defined to be (A,A◦)-splitting, if for

every (X ,X◦) ∈ (A,A◦), the continuity of the map g : X ×Y → Z implied the continuity of the

map g∗|X◦ : X◦→Cτ(Y,Z), where g∗ : X →Cτ(Y,Z). Georgiou (2009) also defined a topology

τ on C(Y,Z) to be (A,A◦)-admissible, if for every (X ,X◦) ∈ (A,A◦), the continuity of the map

h : X→Cτ(Y,Z) implied the continuity of the map h∗|X◦×Y : X◦×Y → Z, where h∗ : X×Y → Z.

With these definitions, Georgiou (2009) was able to show that, if a topology τ defined on C(Y,Z)

was splitting (admissible), then it was also (A,A◦)-splitting (admissible). Gupta and Sarma

(2015, 2017), also generalized splitting and admissibility properties of topologies, to topologies

on function spaces defined on generalized topological spaces, as well as to topologies on sets

of continuous multifunctions from the space Y to the space Z, using continuous convergence of

generalized nets and nets respectively. Bartch and Pope (2011) have characterized compactness

on H subset of C(Y,Z) using subsets of the space Y and set-open topologies defined on the

set C(Y,Z), this was made possible by considering the set C(A,Z) where A was a subset of

the space Y and ensuring that H was evenly continuous for every A in the set-open topology.

The proof of compactness obtained was similar to the one earlier obtained by Bartch (2004)

using the concept of hyperspaces. To help expound further on the theory of function spaces,

there is need to consider function spaces defined on more richer spaces than those considered

by Georgiou (2009) and Gupta and Sarma (2015). One such space is the bitopological space

introduced by Kelly (1963).

2.2 Bitopological spaces

Concepts in topological spaces such as separation axioms, compactness, connectedness and

continuity among other, have been generalized to bitopological spaces and new results obtained.

Such results include pairwise separation axioms, pairwise compactness and pairwise continuity.

In the work of Reilly (1972), it was shown that pairwise T2 implied pairwise T1 which implied

pairwise T◦. Pairwise T1 was shown to imply T1 in both the spaces (Y,τ1) and (Y,τ2). In

Reilly’s (1972) work, it was also shown that if either the space (Y,τ1) or (Y,τ2) was T◦, then

the space (Y,τ1,τ2) was pairwise T◦, and if either the space (Y,τ1) or (Y,τ2) was T1, then the

space (Y,τ1,τ2) was pairwise T◦. Pairwise T◦ in the space (Y,τ1,τ2) did not necessarily imply

that (Y,τ1) or (Y,τ2) was a T◦ space.

The ’topologicalness’ of various separation axioms in bitopological spaces has been extensively

covered by Lal (1978). In the work, it was shown that the space (Y,τ1,τ2) was pairwise T◦, if
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and only if the space (Y,τ1∨ τ2) was T◦, and also if the spaces (Y,τ1) and (Y,τ2) were both T◦.

The space (Y,τ1,τ2) was shown to be pairwise T1, if the spaces (Y,τ1) and (Y,τ2) were both

T1, and also if the space (Y,τ1∨ τ2) was T1. Lal (1978) also proved that the space (Y,τ1∨ τ2)

was T2, if the space (Y,τ1,τ2) was pairwise T2, and regular if the space (Y,τ1,τ2) was pairwise

regular.

The concept of compactness in bitopological spaces was first introduced by Kim (1968), Kim

(1968) defined the space (Y,τ1,τ2) to be (1,2)-compact, if τ1(V ) = {φ ,X}∪{U ∪V : U ∈ τ1}

was compact for every non empty set V of τ2. If the space Y was both (1,2)-compact and (2,1)-

compact, then Y was said to be K-compact. Reilly (1972) noted that the space (Y,τ1,τ2) was

pairwise locally compact, if τ1 was locally compact with respect to τ2 and τ2 was locally com-

pact with respect to τ1. Swart (1971) observed that pairwise compactness in the space (Y,τ1,τ2)

implied compactness in the space (Y,τ1 ∨ τ2). Lal (1978) noted that the space (Y,τ1,τ2) was

pairwise compact, if and only if the space (Y,τ1∨τ2) was compact, and only if the spaces (Y,τ1)

and (Y,τ2) were compact. This was an extension of Mrsevic and Reilly (1996) work, which

compared compactness as defined by Swart (1971) and compactness as defined by Fletcher et

al. (1969). Jabbar and Nasir (2010) introduced the concept of N-open sets in space (Y,τ1,τ2)

and using this concept, defined N-compactness.
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CHAPTER THREE

CONTINUITY OF FUNCTIONS ON FUNCTION SPACES DEFINED
ON BITOPOLOGICAL SPACES

3.1 Introduction

In this chapter, the spaces (Y,τ1 ∨ τ2) and (Y,τ1,τ2) are considered, and s-continuous and

d-continuous function defined on them. Relationships among p-continuity, s-continuity, p1-

continuity and d-continuity are also established. In subsequent section, the spaces s−Cτ(Y,Z),

1−Cς (Y,Z), 2−Cζ (Y,Z), (1,2)−Cϕ(Y,Z) and (2,1)−Cξ (Y,Z) are defined, and continuous

functions between any two of them established. A homeomorphism is also established between

the spaces 1−Cς (Y,Z) and (2,1)−Cξ (Y,Z).

For the bitopological space (Y,τ1,τ2), topologies τ1 and τ2 when combined can form a base or

a subbasis for a topology defined on set Y . The notation τ1∨τ2 in this work will imply topology

defined on the set Y generated by the basis τ1 ∪ τ2. Such topology will be called supremum

topology. The set Y together with its supremum topology τ1∨τ2 will be denoted by (Y,τ1∨τ2).

The notation τ1∧τ2 will imply topology generated by the basis τ1∩τ2, thus the basis τ1∩τ2 for

the topology τ1∧ τ2 is simply the topology τ1∧ τ2.

3.2 Continuous functions defined on bitopological spaces

In this section, s-continuous and d-continuous functions are introduced, relationships among s-

continuous functions, p-continuous functions, p1-continuous functions and d-continuous func-

tions are studied.

The following definitions will be important in proving subsequent theorems.

Definition 3.2.1. ( Muturi N. E. et al., 2017). Subset A of a bitopological space (Y,τ1∨ τ2) is a

supremum-open set or simply s-open set, if A =V1∪V2, where V1 ∈ τ1 and V2 ∈ τ2.

Definition 3.2.2. ( Muturi N. E. et al., 2017). A function f : (Y,τ1 ∨ τ2) −→ (Z,δ1 ∨ δ2) is

s-continuous, if the inverse image of each s-open subset of Z is s-open in Y .

Definition 3.2.3. ( Muturi N. E. et al., 2017). A function f : (Y,τ1 ∧ τ2) −→ (Z,δ1 ∧ δ2) is

double-continuous (d-continuous), if for every V ∈ δ1∩δ2, f−1(V ) ∈ τ1∩ τ2.
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Theorem 3.2.4. (Muturi E. N. et al., 2017). The function f : (Y,τ1 ∨ τ2) −→ (Z,δ1 ∨ δ2) is

s-continuous, if the function f : (Y,τ1,τ2)−→ (Z,δ1,δ2) is p-continuous.

Proof. Let the function f be p-continuous, and let U1 ∈ δ1 and U2 ∈ δ2 such that U1 ∪U2 ∈

δ1∨δ2. Since f is p-continuous, then f−1(U1)∈ τ1 and f−1(U2)∈ τ2, implying that f−1(U1)∪

f−1(U2) ∈ τ1 ∨ τ2. But f−1(U1)∪ f−1(U2) = f−1(U1 ∪U2). Hence, the function f : (Y,τ1 ∨

τ2)−→ (Z,δ1∨δ2) is s-continuous. �

The converse of Theorem 3.2.4 is not always true as illustrated by the example below.

Example 3.2.5. Let τ1 = {Y,φ ,{a},{b},{a,b}} and τ2 = {Y,φ ,{c}} be topologies on Y =

{a,b,c}, and δ1 = {Z,φ ,{3}} and δ2 = {Z,φ ,{2}} be topologies defined on Z = {1,2,3}.

Let f : Y → Z be defined by f (a) = 1, f (b) = 2, and f (c) = 3, then the function f : (Y,τ1 ∨

τ2)−→ (Z,δ1∨δ2) is s-continuous but not p-continuous on (Y,τ1,τ2). Observe that (τ1∨τ2) =

{Y,φ ,{a},{b},{c},{a,b},{a,c},{b,c}} and (δ1∨δ2) = {Z,φ ,{2},{3},{2,3}}, and for every

U is open (δ1 ∨ δ2), f−1(U) is open in τ1 ∨ τ2), therefore f is s-continuous. But f is not p-

continuous since for the open set {2} ∈ δ2, f−1({2}) is not open in τ2.

Theorem 3.2.6. (Muturi E. N. et al., 2017). The function f : (Y,τ1 ∨ τ2) −→ (Z,δ1 ∨ δ2) is

s-continuous, if the function f : (Y,τ1,τ2)−→ (Z,δ1,δ2) is p1-continuous.

Proof. Let the function f be p1-continuous and let U1 ∈ δ1 and U2 ∈ δ2 such that U1 ∪U2 ∈

δ1 ∨ δ2. Since f is p1-continuous, then f−1(U1) ∈ τ2 and f−1(U2) ∈ τ1. Thus, f−1(U1)∪

f−1(U2) ∈ τ1∨ τ2. It remains to put f−1(U1)∪ f−1(U2) = f−1(U1∪U2). Hence, the function

f : (Y,τ1∨ τ2)−→ (Z,δ1∨δ2) is s-continuous. �

The converse of Theorem 3.2.6 is not always true as illustrated by the example below.

Example 3.2.7. Let τ1 = {Y,φ ,{a},{b},{a,b}} and τ2 = {Y,φ ,{c}} be topologies on Y =

{a,b,c}, and δ1 = {Z,φ ,{2}} and δ2 = {Z,φ ,{3}} be topologies defined on Z = {1,2,3}. Let

f : Y → Z be defined by f (a) = 1, f (b) = 2, and f (c) = 3, then the function f : (Y,τ1∨τ2)−→

(Z,δ1∨δ2) is s-continuous but not p1-continuous. Observe that (τ1∨τ2) = {Y,φ ,{a},{b},{c},

{a,b},{a,c},{b,c}} and (δ1∨δ2) = {Z,φ ,{2},{3},{2,3}}, and for every U is open (δ1∨δ2),

f−1(U) is open in τ1∨τ2), therefore f is s-continuous. But f is not p1-continuous since for the

open set {3} ∈ δ2, f−1({3}) is not open in τ1.

Remark 3.2.8. p-continuity and p1-continuity imply d-continuity as illustrated in the following

propositions.
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Proposition 3.2.9. (Muturi E. N. et al., 2017). Let the function f : (Y,τ1,τ2)−→ (Z,δ1,δ2) be

p-continuous, then the function f : (Y,τ1∧ τ2)−→ (Z,δ1∧δ2) is d-continuous.

Proof. Let U be open in δ1∧δ2, then U ∈ δ1∩δ2, implying that U ∈ δ1 and U ∈ δ2, this implies

further that f−1(U) ∈ τ1 and f−1(U) ∈ τ2. Therefore, f−1(U) ∈ τ1∩ τ2 implying that f−1(U)

is open in τ1∧ τ2. Thus f is d-continuous. �

Proposition 3.2.10. (Muturi E. N. et al., 2017). Let the function f : (Y,τ1,τ2)−→ (Z,δ1,δ2) be

p1-continuous, then the function g : (Y,τ1∧ τ2)−→ (Z,δ1∧δ2) is d-continuous.

Proof. The proof is similar to that of Proposition 3.2.9. �

Remark 3.2.11. The relationships between the spaces (Y,τ1 ∨ τ2), (Z,δi) for i = 1,2 and

(Z,δ1∧δ2) are established in the following propositions.

Proposition 3.2.12. (Muturi E. N. et al., 2017). The function h : (Y,τ1 ∨ τ2) −→ (Z,δi) is

continuous for i = 1,2, if the function f : (Y,τ1∨ τ2)−→ (Z,δ1∨δ2) is s-continuous.

Proof. The function g : (Z,δ1∨δ2)→ (Z,δi) is continuous since δi⊂ δ1∨δ2 for i= 1,2. There-

fore h = g◦ f is continuous as a composition of continuous functions. �

Proposition 3.2.13. (Muturi E. N. et al., 2017). The function ρ : (Y,τ1∨ τ2)−→ (Z,δ1∧δ2) is

continuous for i = 1,2, if the function f : (Y,τ1∨ τ2)−→ (Z,δ1∨δ2) is s-continuous.

Proof. Let h : (Z,δi)→ (Z,δ1∧δ2)for i = 1,2 and g : (Z,δ1∨δ2)→ (Z,δi) for i = 1,2, then h

and g are continuous functions since δ1∧δ2 ⊂ δi and δi ⊂ δ1∨δ2 for i = 1,2. Let ρ = h◦g◦ f ,

then ρ is a continuous function since it is a composition of continuous functions. �

3.3 Continuous functions on function spaces defined on bitopological spaces

For bitopological spaces (Y,τ1,τ2) and (Z,δ1,δ2), and the open continuous functions f : (Y,τ2)−→

(Y,τ1), g : (Z,δ1)−→ (Z,δ2) and h : (Y,τ1)−→ (Z,δ1), the following sets of continuous func-

tions can be defined. The set i−C(Y,Z) for i = 1,2, the set (i, j)−C(Y,Z) for i, j = 1,2 and

i 6= j, the set s−C(Y,Z), the set p−C(Y,Z) and the set d−C(Y,Z).

Different set-open topologies can be defined on sets of continuous functions. Such topolo-

gies include; point-open topology, compact-open topology, bounded-open topology, closed-

open topology and open-open topology, among others. In this section, subbasis for open-open

topologies on the sets 1−C(Y,Z), 2−C(Y,Z), (1,2)−C(Y,Z), (2,1)−C(Y,Z) and s−C(Y,Z)

16



are defined, giving rise to the function spaces 1−Cς (Y,Z), 2−Cζ (Y,Z), (1,2)−Cϕ(Y,Z),

(2,1)−Cξ (Y,Z) and s−Cτ(Y,Z). Functional relationships between these function spaces are

studied.

Definition 3.3.1. (Muturi E. N. et al., 2017). The collection S(U,V )i = { f ∈ i−C(Y,Z) : f (U)⊂

V} of sets, for U open in Y and V open in Z, forms the subbasis for the open-open topology

defined on i−C(Y,Z), for i = 1,2.

Definition 3.3.2. (Muturi E. N. et al., 2017). The collection S(U,V )(i, j) = { f ∈ (i, j)−C(Y,Z) :

f (U) ⊂ V} of sets, where U is an open set in Y and V is an open set in Z, forms the subbasis

for the open-open topology defined on (i, j)−C(Y,Z), for i, j = 1,2 and i 6= j.

Definition 3.3.3. (Muturi E. N. et al., 2017). The collection S(U,V )s = { f ∈ s−C(Y,Z) :

f (U)⊂V} of sets, for U ∈ τ1∨ τ2 and V ∈ δ1∨δ2, forms the subbasis for the supremum open-

open topology defined on s−C(Y,Z).

Remark 3.3.4. Let S(U1,V1) be open in 1−Cς (Y,Z) and S(U2,V2) be open in 2−Cζ (Y,Z).

From Definition 3.2.1, U1 ∪U2 = U is open in τ1 ∨ τ2 and V1 ∪V2 = V is open in δ1 ∨ δ2.

Therefore S(U,V )s is open in s−Cτ(Y,Z).

Continuous functions are established between the spaces (1,2)−Cϕ(Y,Z), (2,1)−Cξ (Y,Z),

1−Cς (Y,Z) and 2−Cζ (Y,Z). All topologies are assumed to be open-open topologies unless

specified.

Proposition 3.3.5. (Muturi E. N. et al., 2017). Let f : (Y,τ2) −→ (Y,τ1), g : (Z,δ1) −→

(Z,δ2) and h : (Y,τ1) −→ (Z,δ1) be open and continuous functions. Then the function µ :

1−Cς (Y,Z)−→ 2−Cζ (Y,Z) defined by µ(g, f )(h) = g◦h◦ f is continuous.

Proof. Let S(U,V )2 be open in 2−Cζ (Y,Z), then g◦h◦ f ∈ 2−Cζ (Y,Z). Now µ−1(S(U,V )2)=

{h∈ 1−C(Y,Z) : h( f (U))⊂ g−1(V ) f or U ∈ τ2 and V ∈ δ2}=S( f (U),g−1(V ))1, which is open

in 1−Cς (Y,Z). �

Proposition 3.3.6. (Muturi E. N. et al., 2017). Let f : (Y,τ2) −→ (Y,τ1) and h : (Y,τ1) −→

(Z,δ1) be open and continuous functions. Then the function ρ : 1−Cς (Y,Z) −→ (2,1)−

Cξ (Y,Z) defined by ρ f (h) = h◦ f is continuous.

Proof. Let S(U,V )2,1 be open in (2,1)−Cξ (Y,Z), then h◦ f ∈ (2,1)−Cξ (Y,Z). Now

ρ−1(S(U,V )2,1)={h ∈ 1−C(Y,Z) : h( f (U)) ⊂ V for U ∈ τ2 and V ∈ δ1}=S( f (U),V )1, which

is open in 1−Cς (Y,Z). �
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Proposition 3.3.7. (Muturi E. N. et al., 2017). Let g : (Z,δ1) −→ (Z,δ2) and h : (Y,τ1) −→

(Z,δ1) be open and continuous functions. Then the function ω : 1−Cς (Y,Z) −→ (1,2)−

Cϕ(Y,Z) defined by ωg(h) = g◦h is continuous.

Proof. Let S(U,V )1,2 be open in (1,2)−Cϕ(Y,Z), then g◦h ∈ (1,2)−Cϕ(Y,Z). The set

ω−1(S(U,V )1,2)={h ∈ 1−C(Y,Z) : h(U) ⊂ g−1(V ) for U ∈ τ1 and V ∈ δ2}=S(U,g−1(V ))1 is

open in 1−Cς (Y,Z). �

Proposition 3.3.8. (Muturi E. N. et al., 2017). Let f : (Y,τ2)−→ (Y,τ1), g : (Z,δ1 −→ (Z,δ2)

and h : (Y,τ1)→ (Z,δ1) be open and continuous functions. Then the following functions are

continuous;

(i) α : (2,1)−Cξ (Y,Z)−→ 1−Cς (Y,Z) defined by α(h◦ f ) = h f

(ii) β : 2−Cζ (Y,Z)−→ (1,2)−Cϕ(Y,Z) defined by β (g◦h◦ f ) = (g◦h) f

Proof. (i) Let U be open in τ2 and V be open in δ1, then S( f (U),V )1 is open in 1−Cς (Y,Z).

Now α−1S( f (U),V )1={(h◦ f )∈ (2,1)−C(Y,Z) : h( f (U))⊂V,U ∈ τ2 and V ∈ δ1}={(h◦ f )∈

(2,1)−C(Y,Z) : (h ◦ f )(U) ⊂ V,U ∈ τ2 and V ∈ δ1}=S(U,V )2,1, which is open in (2,1)−

Cξ (Y,Z).

(ii) Let U be open in τ2 and V be open in δ2, then S( f (U),V )1,2 is open in (1,2)−Cϕ(Y,Z). Now

β−1S( f (U),V )1,2={(g◦h◦ f )∈ 2−C(Y,Z) : g(h( f (U)))⊂V,U ∈ τ2 and V ∈ δ2}={(g◦h◦ f )∈

2−C(Y,Z) : (g◦h◦ f )(U)⊂V,U ∈ τ2 and V ∈ δ2}=S(U,V )2, which is open in 2−Cζ (Y,Z). �

Proposition 3.3.9. (Muturi E. N. et al., 2017). Let f : (Y,τ2)−→ (Y,τ1), g : (Z,δ1 −→ (Z,δ2)

and h : (Y,τ1)→ (Z,δ1) be open and continuous functions, then the function β ◦µ ◦α : (2,1)−

Cξ (Y,Z)−→ (1,2)−Cϕ(Y,Z) defined by (β ◦µ ◦α)g(h◦ f ) = (g◦h) f is continuous.

Proof. The function β ◦µ ◦α is a composite function of continuous functions defined in Propo-

sition 3.3.5 and Proposition 3.3.8. �

The lemma that follows help to prove the subsequent theorem.

Lemma 3.3.10. (Willard, 1970). Let Y be a regular space, if F is a compact subset of Y , U

open is open in Y and F ⊂U, then for some open set V in Y , F ⊂V ⊂V ⊂U.

Theorem 3.3.11. (Muturi E. N. et al., 2017). Let ς be a k-topology on 1−C(Y,Z), Y be

a regular and locally compact space, Z a Hausdorff space and S(U,V )1 be compact sub-

set of 1−Cς (Y,Z), then for the continuous functions µ : 1−Cς (Y,Z) −→ 2−Cζ (Y,Z) and
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β : 2−Cζ (Y,Z) −→ (1,2)−Cϕ(Y,Z) , the function T : C(1−Cς (Y,Z),2−Cζ (Y,Z))×C(2−

Cζ (Y,Z),(1,2)−Cϕ(Y,Z))→ C(1−Cς (Y,Z),(1,2)−Cϕ(Y,Z)) is continuous with respect to

closed-open topology.

Proof. Let (S(U,V )1,S(U,V )1,2) be neighbourhood of ω in C(1−Cς (Y,Z),(1,2)−Cϕ(Y,Z)),

then β−1(S(U,V )1,2 is open in 2−Cζ (Y,Z). Now, µ(S(U,V )1) ⊂ β−1(S(U,V )1,2. Since

µ(S(U,V )1) is compact, then by the lemma above, there exist an open set S(A,B)2 such that

µ(S(U,V )1)⊂ S(A,B)2⊂ S(A,B)2⊂ β−1(S(U,V )1,2). This implies that µ ∈ (S(U,V )1,S(A,B)2)

and β ∈ (S(A,B)2,S(U,V )1,2). Therefore, T ((S(U,V )1,S(A,B)2),(S(A,B)2,S(U,V )1,2))⊂

(S(U,V )1,S(U,V )1,2), implying that the function T is continuous. �

Theorem 3.3.12. (Muturi E. N. et al., 2017). Let f : (Y,τ2)−→ (Y,τ1) and h : (Y,τ1)→ (Z,δ1)

be open and continuous functions, then the function ρ : 1−Cς (Y,Z) −→ (2,1)−Cξ (Y,Z) de-

fined by ρ f (h) = h◦ f is a homeomorphism.

Proof. Let h1 and h2 be functions in 1−Cς (Y,Z), then ρ f (h1) = h1 ◦ f and ρ f (h2) = h2 ◦ f .

Suppose ρ f (h1) = ρ f (h2), then h1 ◦ f = h2 ◦ f , implying that h1 = h2. Hence, ρ f is a 1-1

function. The function ρ f is an onto function since for any h◦ f ∈ (2,1)−Cξ (Y,Z) their exist

the function h ∈ 1−Cς (Y,Z) and from Proposition 3.3.6, ρ f (h) = h◦ f is open and continuous.

Continuity of ρ
−1
f follows from Proposition 3.3.8 part (i). �

Proposition 3.3.13. (Muturi E. N. et al., 2017). The function j : 1−Cς (Y,Z)→ s−Cτ(Y,Z) is

continuous.

Proof. Let S(A,B)s be open in s−Cτ(Y,Z), then j−1(S(A,B)s) = { f ∈ s−C(Y,Z) : f (A) ⊂

B}= { f ∈ s−C(Y,Z) : f |1−C(Y,Z)(A)⊂ B}= S(A,B)1, which is open in 1−Cς (Y,Z). �

Proposition 3.3.14. (Muturi E. N. et al., 2017). The function j : 2−Cζ (Y,Z)→ s−Cτ(Y,Z) is

continuous.

Proof. Let S(A,B)s be open in s−Cτ(Y,Z), then j−1(S(A,B)s) = { f ∈ s−C(Y,Z) : f (A) ⊂

B}= { f ∈ s−C(Y,Z) : f |2−C(Y,Z)(A)⊂ B}= S(A,B)2, which is open in 2−Cς (Y,Z). �

Remark 3.3.15. From the results above, both 1−Cς (Y,Z) and 2−Cζ (Y,Z) can be considered

as subspaces of s−Cτ(Y,Z). The spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) will be important in

proving splitting and admissibility properties of topologies in p−Cω(Y,Z) and s−Cτ(Y,Z)

in the next chapter, as well as proving separation axioms and compactness on function spaces

defined on bitopological spaces in subsequent chapters.
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CHAPTER FOUR

SPLITTING AND ADMISSIBLE TOPOLOGIES DEFINED ON THE
SET OF CONTINUOUS FUNCTIONS BETWEEN

BITOPOLOGICAL SPACES

4.1 Introduction

For the bitopological spaces (Y,τ1,τ2) and (Z,δ1,δ2), the following sets of continuous functions

are considered. The set i−C(Y,Z) for i = 1,2, the set s−C(Y,Z) and the set p−C(Y,Z). In

this section, p-splitting, p-admissible, s-splitting and s-admissible topologies on p−C(Y,Z)

and s−C(Y,Z) respectively, are defined and explored. The relationship between splitting, p-

splitting and s-splitting, as well as admissible, p-admissible and s-admissible are established.

Exponential functions are defined on the space s−Cτ(Y,Z) and a simpler proof for comparing

s-splitting topology and s-admissible topology provided.

4.2 Pairwise splitting and pairwise admissible topologies defined on the

set p−C(Y,Z)

Definition 4.2.1. (Muturi E. N. et al., 2018(a)). The collection S((U,V ),(A,B))p = { f ∈ p−

C(Y,Z) : f (U) ⊂ V and f (A) ⊂ B} of sets, for U open in τ1, V open in δ1, A open in τ2 and

B open in δ2, forms the subbasis for the open-open topology on p−C(Y,Z). If U and A are

compact subsets of Y , then S((U,V ),(A,B))p forms the subbasis for compact open topology.

The results that follow, help to define p-splitting and p-admissible topologies on p−C(Y,Z).

The concept of pairwise continuity as well as splitting and admissible topologies defined on

both 1−C(Y,Z) and 2−C(Y,Z) are employed. These results culminates in the proof of pairwise

splitting and pairwise admissible topologies defined on p−C(Y,Z). The functions h and h∗ as

used here, are defined as follows; h∗(x) = hx, where hx : (Y,τi)→ (Z,δi), for i = 1,2, is defined

by hx(y) = h(x,y).

Proposition 4.2.2. (Muturi E. N. et al., 2018(a)). The function h∗ : (X ,σ)→ p−Cω(Y,Z) is

pairwise continuous if the functions h∗ : (X ,σ)→ 1−Cς (Y,Z) and h∗ : (X ,σ)→ 2−Cζ (Y,Z)

are continuous, where h : (X ,σ)× (Y,τi)→ (Z,δi) for i = 1,2.

Proof. Let h∗ : (X ,σ)→ 1−Cς (Y,Z) and h∗ : (X ,σ)→ 2−Cζ (Y,Z) be continuous functions.

Then for each fixed x ∈ X , the functions hx : (Y,τ1)→ (Z,δ1) and hx : (Y,τ2)→ (Z,δ2) are
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continuous. By definition of pairwise continuity, the function hx : (Y,τ1,τ2)→ (Z,δ1,δ2) is

continuous for each fixed x ∈ X . Since hx = h∗(x), then the function h∗ : (X ,σ)→ p−Cω(Y,Z)

is continuous. �

Proposition 4.2.3. (Muturi E. N. et al., 2018(a)). The function h : (X ,σ)×(Y,τ1,τ2)→ (Z,δ1,δ2)

is pairwise continuous for every fixed x ∈ X, if the induced functions h : (X ,σ)× (Y,τ1)→

(Z,δ1) and h : (X ,σ)× (Y,τ2)→ (Z,δ2) are continuous for every fixed x ∈ X.

Proof. Let h : (X ,σ)× (Y,τ1)→ (Z,δ1) and h : (X ,σ)× (Y,τ2)→ (Z,δ2) be continuous func-

tions for every fixed x ∈ X , then the functions hx : (Y,τ1)→ (Z,δ1) and hx : (Y,τ2)→ (Z,δ2)

are continuous. By definition of pairwise continuity, the function hx : (Y,τ1,τ2)→ (Z,δ1,δ2)

defined by hx(y) = h(x,y) is continuous for every fixed x ∈ X . Since h(x)(y) = h(x,y), then

hx(y) = h(x)(y) implying that the function h : (X ,σ)× (Y,τ1,τ2)→ (Z,δ1,δ2) is continuous for

every fixed x ∈ X . �

The Propositions above motivates the following Definitions.

Definition 4.2.4. (Muturi E. N. et al., 2018(a)). A topology ω on p−C(Y,Z) is said to be

pairwise splitting (p-splitting), if the continuity of the functions h : (X ,σ)× (Y,τ1)→ (Z,δ1)

and h : (X ,σ)×(Y,τ2)→ (Z,δ2) for every fixed x∈X, implies that of h∗ : (X ,σ)→ p−Cω(Y,Z)

for every x ∈ X.

Definition 4.2.5. (Muturi E. N. et al., 2018(a)). A topology ω on p−C(Y,Z) is said to be

pairwise admissible (p-admissible), if the continuity of the functions h∗ : (X ,σ)→ 1−Cς (Y,Z)

and h∗ : (X ,σ)→ 2−Cζ (Y,Z) implies that of h : (X ,σ)× (Y,τ1,τ2)→ (Z,δ1,δ2).

Remark 4.2.6. Using the Propositions and Definitions above, the proof of pairwise splitting

and pairwise admissibility of topologies defined on p−C(Y,Z) are established.

Theorem 4.2.7. (Muturi E. N. et al., 2018(a)). Let h : (X ,σ)×(Y,τ1)→ (Z,δ1) and h : (X ,σ)×

(Y,τ2)→ (Z,δ2) be continuous functions, then the compact-open topology ω defined on p−

C(Y,Z) is pairwise splitting.

Proof. Let h : (X ,σ)× (Y,τ1)→ (Z,δ1) and h : (X ,σ)× (Y,τ2)→ (Z,δ2) be continuous func-

tions and let x◦ ∈ X such that h∗(x◦) ∈ S((U,V )(A,B))p, where S((U,V )(A,B))p is open in

p−Cω(Y,Z). Therefore, h∗(x◦) ∈ S(U,V )1 and h∗(x◦) ∈ S(A,B)2, implying that x◦×U ⊂

h−1(V ) and x◦× A ⊂ h−1(B). Since U and A are compact, then by Munkres’s (2000) tube

lemma, there exist an open set W neighbourhood of x◦, such that W ×U ⊂ h−1(V ) and W ×A⊂
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h−1(B). This implies that h∗(W ) ⊂ S(U,V )1 and h∗(W ) ⊂ S(A,B)2, implying further that

h∗ : (X ,σ)→ 1−Cς (Y,Z) and h∗ : (X ,σ)→ 2−Cζ (Y,Z) are continuous functions. By Propo-

sition 4.2.2, the function h∗ : (X ,σ)→ p−Cω(Y,Z) is continuous and by Definition 4.2.4,

topology ω is pairwise splitting on p−C(Y,Z). �

Theorem 4.2.8. (Muturi E. N. et al., 2018(a)). Let h∗ : (X ,σ)→ 1−Cς (Y,Z) and h∗ : (X ,σ)→

2−Cζ (Y,Z) be continuous functions, then the compact-open topology ω defined on p−C(Y,Z)

is pairwise admissible for locally compact spaces (Y,τ1) and (Y,τ2).

Proof. Let ς and ζ be compact-open topologies on 1−C(Y,Z) and 2−C(Y,Z) respectively,

such that the evaluation functions e : 1−Cς (Y,Z)×Y → Z and e : 2−Cζ (Y,Z)×Y → Z

are continuous. Let h∗ : (X ,σ)→ 1−Cς (Y,Z) and h∗ : (X ,σ)→ 2−Cζ (Y,Z) be continu-

ous functions and i : (Y,τ1) → (Y,τ1) and i : (Y,τ2) → (Y,τ2) be identity functions. Then

e ◦ (g× i) : (X ,σ)× (Y,τ1)→ (Z,δ1) and e ◦ (g× i) : (X ,σ)× (Y,τ2)→ (Z,δ2) are continu-

ous functions. By Proposition 4.2.3, the function e◦ (g× i) : (X ,σ)× (Y,τ1,τ2)→ (Z,δ1,δ2) is

continuous for every fixed x ∈ X , and by Definition 4.2.5, topology ω defined on p−C(Y,Z) is

pairwise admissible. �

Remark 4.2.9. From Theorem 4.2.7 and Theorem 4.2.8, it is clear that if topologies ς and

ζ are splitting or admissible topologies on 1−C(Y,Z) and 2−C(Y,Z), then topology ω on

p−C(Y,Z) is p-splitting or p-admissible topology.

4.3 Supremum splitting and supremum admissible topologies defined on

the set s−C(Y,Z)

From Chapter Three, it was noted that if f ∈ p−C(Y,Z), then f ∈ s−C(Y,Z), but the converse

was not true. This result together with Proposition 4.2.2 and Proposition 4.2.3 motivates the

following two propositions. The function f and f ∗ as used here are defined as follows; f ∗(x) =

fx, where fx : (Y,τi)→ (Z,δi), for i = 1,2, is defined by fx(y) = f (x,y).

Proposition 4.3.1. (Muturi E. N. et al., 2018(a)). The function f : (X ,σ)× (Y,τ1 ∨ τ2)→

(Z,δ1∨δ2) is continuous, if the functions f : (X ,σ)×(Y,τ1)→ (Z,δ1) and f : (X ,σ)×(Y,τ2)→

(Z,δ2) are both continuous.

Proof. Let the functions f : (X ,σ)×(Y,τ1)→ (Z,δ1) and f : (X ,σ)×(Y,τ2)→ (Z,δ2) defined

by f (x)(y) = f (x,y) be both continuous. Define the associated function fx : (Y,τi)→ (Z,δi) for
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i = 1,2, by fx(y) = f (x,y), ∀x ∈ X . Then, the functions f and fx have a one to one correspon-

dence, and hence fx : (Y,τi)→ (Z,δi) for ∀x ∈ X and i = 1,2 is continuous. From Theorem

3.2.4, it follows that the function fx : (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is s-continuous ∀x ∈ X . Hence,

f : (X ,σ)× (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is continuous for every x ∈ X . �

Proposition 4.3.2. (Muturi E. N. et al., 2018(a)). The function f ∗ : (X ,σ) → s−Cτ(Y,Z)

is continuous, if the functions f ∗ : (X ,σ)→ 1−Cς (Y,Z) and f ∗ : (X ,σ)→ 2−Cζ (Y,Z) are

continuous.

Proof. Let f ∗ : (X ,σ)→ 1−Cς (Y,Z) and f ∗ : (X ,σ)→ 2−Cζ (Y,Z) be continuous functions.

Then, for the functions f : (X ,σ)× (Y,τ1)→ (Z,δ1) and f : (X ,σ)× (Y,τ2)→ (Z,δ2), the

associated functions fx : (Y,τ1)→ (Z,δ1) and fx : (Y,τ2)→ (Z,δ2) defined by fx = f ∗(x) ∀x∈X

are continuous. From Theorem 3.2.4, it follows that the function gx : (Y,τ1 ∨ τ2)→ (Z,δ1 ∨

δ2) is s-continuous ∀x ∈ X . Since fx = f ∗(x), then the function f ∗ : (X ,σ)→ s−C(Y,Z) is

continuous. �

Definition 4.3.3. (Muturi E. N. et al., 2018(a)). A topology τ on s−C(Y,Z) is said to be

supremum splitting (s-splitting), if the continuity of the functions f : (X ,σ)× (Y,τ1)→ (Z,δ1)

and f : (X ,σ)×(Y,τ2)→ (Z,δ2), for every fixed x∈X, implies that of g : (X ,σ)→ s−Cτ(Y,Z).

Definition 4.3.4. (Muturi E. N. et al., 2018(a)). A topology τ on s−C(Y,Z) is said to be

supremum admissible (s-admissible), if the continuity of the functions f ∗ : (X ,σ)→ 1−Cς (Y,Z)

and f ∗ : (X ,σ)→ 2−Cζ (Y,Z), implies that of f : (X ,σ)× (Y,τ1∨ τ2)→ (Z,δ1∨δ2), for each

x ∈ X.

Remark 4.3.5. Using the Propositions and Definitions above, the proof of supremum splitting

and supremum admissibility of topologies defined on s−C(Y,Z) are established.

Theorem 4.3.6. (Muturi E. N. et al., 2018(a)). A compact open topology τ is s-splitting, if

the continuity of the functions f : (X ,σ)× (Y,τ1)→ (Z,δ1) and f : (X ,σ)× (Y,τ2)→ (Z,δ2),

implies continuity of the function f ∗ : (X ,δ )→ s−Cτ(Y,Z).

Proof. Let f : (X ,σ)× (Y,τ1)→ (Z,δ1) and f : (X ,σ)× (Y,τ2)→ (Z,δ2) be continuous func-

tions for every fixed x∈ X . Then from Proposition 4.3.1, the function f : (X ,σ)×(Y,τ1∨τ2)→

(Z,δ1 ∨ δ2) is continuous. Let x◦ ∈ X where S(U,V )s is open in s−Cτ(Y,Z), then f ∗(x◦) ∈

S(U,V )s, implying that x◦×U ⊂ f−1(V ). Since U is compact, then by Munkres’s (2000) tube

lemma, there exist an open set W neighbourhood of x◦ such that W ×U ⊂ f−1(V ). This implies
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that f ∗(W )⊂ S(U,V )s, implying further that f ∗ : (X ,σ)→ s−Cτ(Y,Z) is continuous functions.

By Definition 4.3.3, topology τ is pairwise splitting on s−C(Y,Z). �

Theorem 4.3.7. (Muturi E. N. et al., 2018(a)). Let f ∗ : (X ,σ)→ 1−Cς (Y,Z) and f ∗ : (X ,σ)→

2−Cζ (Y,Z) be continuous functions, then the compact-open topology τ defined on s−C(Y,Z)

is s-admissible for locally compact spaces (Y,τ1) and (Y,τ2).

Proof. Let ς and ζ be compact-open topologies on 1−C(Y,Z) and 2−C(Y,Z) respectively

and let f ∗ : (X ,σ)→ 1−Cς (Y,Z) and f ∗ : (X ,σ)→ 2−Cζ (Y,Z) be continuous functions,

then by Proposition 4.3.2, the function f ∗ : (X ,σ)→ s−Cτ(Y,Z) is continuous. Let i : (Y,τ1∨

τ2)→ (Y,τ1 ∨ τ2) be an identity function and let e : s−Cτ(Y,Z)× (Y,τ1 ∨ τ2)→ (Z,δ1 ∨ δ2)

be an evaluation mapping. Since τ is compact-open topology, then the evaluation mapping e is

continuous and the composite mapping e◦ ( f ∗× i) : (X ,σ)× (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is also

continuous in Y for each x ∈ X . By Definition 4.3.4, topology τ is s-admissible. �

Remark 4.3.8. From Theorem 4.3.6 and Theorem 4.3.7, it is clear that if topologies ς and ζ are

splitting or admissible topologies on 1−C(Y,Z) and 2−C(Y,Z), then topology τ on s−C(Y,Z)

is s-splitting or s-admissible topology.

4.4 Exponential mappings defined on the space s−Cτ(Y,Z)

Consider the topological spaces (X ,σ), (Z,δ1∨δ2) and (Y,τ1∨ τ2), and where (Y,τ1∨ τ2) is a

locally compact Hausdorff space.

Definition 4.4.1. (Muturi E. N. et al., 2018(a)). Consider the exponential mapping Λ : C(X ×

Y,Z)→C(X ,s−Cϕ(Y,Z)), defined by Λ( f )(x)(y) = f (x,y) for each f ∈C(X×Y,Z), x∈ X and

y ∈ Y . A topology ϕ on s−C(Y,Z) is called s-splitting topology, if Λ is a continuous function

with respect to ϕ .

Definition 4.4.2. (Muturi E. N. et al., 2018(a)). Consider the exponential mapping Λ−1 :

C(X ,s−Cϕ(Y,Z)) → C(X ×Y,Z), defined by Λ−1((g)(x,y)) = g(x)(y) where g ∈ C(X ,s−

Cϕ(Y,Z)) for each (x,y) ∈ X ×Y . A topology ϕ on s−C(Y,Z) is called s-admissible topol-

ogy, if the function Λ−1 is continuous with respect to ϕ .

Proposition 4.4.3. McCoy and Ntantu (1988) The function Λ−1◦Λ : C(X×Y,Z)→C(X×Y,Z)

is continuous.
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Proof. Observe that (Λ−1 ◦Λ( f ))(x,y) = Λ−1(Λ( f ))(x,y) = Λ( f )(x)(y) = f (x,y). Implying

that Λ−1 ◦Λ( f ) = f . Hence, Λ−1 ◦Λ is an identity function and therefore continuous. �

Proposition 4.4.4. McCoy and Ntantu (1988) The function Λ ◦Λ−1 : C(X ,s−Cϕ(Y,Z)) →

C(X ,s−Cϕ(Y,Z)) is continuous.

Proof. Observe that (Λ◦Λ−1( f ))(x)(y) = Λ(Λ−1( f ))(x)(y) = Λ−1( f )(x,y) = f (x)(y). Imply-

ing that Λ◦Λ−1( f ) = f . Hence, Λ◦Λ−1 is an identity function and therefore continuous. �

Proposition 4.4.5. (Muturi E. N. et al., 2018(a)). the exponential mapping Λ : C(X ×Y,Z)→

C(X ,s−Cϕ(Y,Z)), defined by Λ( f )(x)(y) = f (x,y) for each f ∈C(X×Y,Z), x ∈ X and y ∈ Y ,

is a homeomorphism.

Proof. From Proposition 4.4.3 and Proposition 4.4.4, it follows that Λ is a homeomorphism.

�

Proposition 4.4.6. (Muturi E. N. et al., 2018(a)). The function i :C(X ,s−Cϕ1(Y,Z))→C(X ,s−

Cϕ2(Y,Z)) is continuous if and only if ϕ2 ⊂ ϕ1.

Proof. The function i is continuous if and only if S(W,S(U,V )) ∈ ϕ2 implies that

i−1(S(W,S(U,V ))) ∈ ϕ1, but i is an identity function, therefore, i−1(S(W,S(U,V ))) =

S(W,S(U,V )). Hence, i is continuous if and only if S(W,S(U,V ))∈ ϕ2 implies S(W,S(U,V ))∈

ϕ1. �

Theorem 4.4.7. (Muturi E. N. et al., 2018(a)). Let ϕ1 and ϕ2 be topologies defined on the

function space s−C(Y,Z).

(i) If ϕ1 is an s-splitting topology on s−C(Y,Z) and ϕ2 ⊂ ϕ1, then ϕ2 is also an s-splitting

topology on s−C(Y,Z).

(ii) If ϕ1 is an s-admissible topology on s−C(Y,Z) and ϕ1 ⊂ ϕ2, then ϕ2 is also an s-

admissible topology on s−C(Y,Z).

(iii) If ϕ1 is an s-splitting topology on s−C(Y,Z) and ϕ2 an admissible topology on s−C(Y,Z),

then ϕ1 ⊂ ϕ2.

Proof.

(i) Let ϕ1 be s-splitting topology, then by Definition 4.4.1 the function Λ : C(X ×Y,Z)→

C(X ,s−Cϕ1(Y,Z)), defined by Λ( f )(x)(y) = f (x,y) for each f ∈C(X ×Y,Z), x ∈ X and
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y ∈ Y , is continuous with respect to ϕ1. Let ϕ2 be any other topology such that ϕ2 ⊂

ϕ1, then by Proposition 4.4.6, the function i : C(X ,s−Cϕ1(Y,Z))→ C(X ,s−Cϕ2(Y,Z))

is continuous. Now the composite function i ◦Λ : C(X ×Y,Z)→ C(X ,s−Cϕ2(Y,Z)) is

continuous with respect to ϕ2, implying that ϕ2 is also s-splitting topology.

(ii) Let ϕ1 be s-admissible topology, then by Definition 4.4.2 the function Λ−1 : C(X ,s−

Cϕ1(Y,Z))→C(X×Y,Z) defined by Λ−1((g)(x,y))= g(x)(y) where g∈C(X ,s−Cϕ(Y,Z))

for each (x,y) ∈ X×Y , is continuous with respect to ϕ1. Let ϕ1 ⊂ ϕ2, then by Proposition

4.4.6, the function i : C(X ,s−Cϕ2(Y,Z))→ C(X ,s−Cϕ1(Y,Z)) is continuous. Now the

composite function Λ−1 ◦ i : C(X ,s−Cϕ2(Y,Z))→C(X×Y,Z) is continuous with respect

to ϕ2. Hence, ϕ2 is also s-admissible topology.

(iii) Let ϕ1 be a s-splitting topology, then by Definition 4.4.1 the function Λ : C(X ×Y,Z)→

C(X ,s−Cϕ1(Y,Z)), defined by Λ( f )(x)(y) = f (x,y) for each f ∈C(X ×Y,Z), x ∈ X and

y∈Y , is continuous with respect to ϕ1. Let ϕ2 be s-admissible topology, then by Definition

4.4.2 the function Λ−1 : C(X ,s−Cϕ1(Y,Z))→ C(X ×Y,Z) defined by Λ−1((g)(x,y)) =

g(x)(y) where g ∈C(X ,s−Cϕ(Y,Z)) for each (x,y) ∈ X ×Y , is continuous with respect

to ϕ1. Now the composite function Λ ◦Λ−1 : C((X ,σ),s−Cϕ2(Y,Z))→ C((X ,σ),s−

Cϕ1(Y,Z)) is continuous by Proposition 4.4.6, implying that ϕ1 ⊂ ϕ2. �

26



CHAPTER FIVE

SEPARATION AXIOMS ON FUNCTION SPACES DEFINED ON
BITOPOLOGICAL SPACES

5.1 Introduction

In this chapter, separation axioms are introduced on the space p−Cω(Y,Z). The relation-

ship between these separation axioms and those defined on the spaces (Z,δi) for i = 1,2,

(Z,δ1,δ2), 1−Cς (Y,Z), 2−Cζ (Y,Z) and s−Cτ(Y,Z) are established. A number of the

results obtained concurs with the results of Reilly (1972) on bitopological spaces, those of

Lal (1978) on pairwise concepts in bitopological spaces, as well as those of Arens (1946)

on function spaces.

The role of separation axioms on the function spaces p−Cω(Y,Z) and s−Cτ(Y,Z) is that

it allows restrictive conditions that give rise to more stronger properties defined on this

spaces, such properties include but not limited to continuity of functions, splitting and

admissibility properties and compactness.

5.2 Separation axioms on the space p−Cω(Y,Z)

Separation axioms defined on the function space Cτ(Y,Z) are generalized to the space

p−Cω(Y,Z) of pairwise continuous functions between bitopological spaces. The notation

pTi for i = 0,1,2 and pregular, denotes separation axioms defined on p−Cω(Y,Z), to dif-

ferentiate them from pairwise separation axioms defined on bitopological space (Y,τ1,τ2)

and normally denoted by p−Ti for i = 0,1,2 and p-regular.

The definition of separation axioms are generalized to function space p−Cω(Y,Z) as

follows.

Definition 5.2.1. (Muturi E. N. et al., 2018(b)). A function space p−Cω(Y,Z) is said to be

a pT◦-space, if for any two distinct functions f and g in p−Cω(Y,Z), there exist an open

set S((U1,V1)(A1,B1))p = { f ∈ p−Cω(Y,Z) : f (U1)⊂V1 and f (A1)⊂ B1} neighborhood

of f not containing g, or S((U2,V2)(A2,B2))p = {g∈ p−C(Y,Z) : g(U2)⊂V2 and g(A2)⊂

B2} neighborhood of g not containing f .
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Definition 5.2.2. (Muturi E. N. et al., 2018(b)). A function space p−Cω(Y,Z) is said to

be a pT1-space, if for any two distinct functions f and g in p−Cω(Y,Z), there exist open

sets S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) : f (U1)⊂V1 and f (A1)⊂ B1} neighborhood

of f not containing g, and S((U2,V2)(A2,B2))p = {g ∈ p−Cω(Y,Z) : g(U2) ⊂ V2 and

g(A2)⊂ B2} neighborhood of g not containing f .

Definition 5.2.3. (Muturi E. N. et al., 2018(b)). A function space p−Cω(Y,Z) is said

to be a pT2-space, if for any two distinct functions f and g in p−C(Y,Z), there exist

disjoint open sets S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) : f (U1)⊂V1 and f (A1)⊂ B1}

and S((U2,V2)(A2,B2))p = {g∈ p−C(Y,Z) : g(U2)⊂V2 and g(A2)⊂ B2} neighborhoods

of f and g respectively.

Definition 5.2.4. (Muturi E. N. et al., 2018(b)). A function space p−Cω(Y,Z) is said to

be a pregular space, if for any two distinct functions f and g in p−C(Y,Z) and a closed

set S((U,V)(A,B) in p−C(Y,Z) such that g /∈ S(U,V)(A,B), there exist disjoint open

sets S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1} containing

S((U,V)(A,B) and S((U2,V2)(A2,B2))p = {g∈ p−C(Y,Z) : g(U2)⊂V2 and g(A2)⊂B2}

neighborhood of g.

Remark 5.2.5. For convenience, the following notations will also be used. If both the

spaces (Z,δ1) and (Z,δ2) and both the function spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) have

a topological property P, then it will be denoted by b−P, and if the bitopological space

(Z,δ1,δ2) has the property P, then it will be denoted by p−P.

5.3 Comparison of separation axioms defined on the spaces p−Cω(Y,Z),

(Z,δ1), (Z,δ2) and (Z,δ1,δ2)

In this section, relationships between separation axioms defined on the spaces p−Cω(Y,Z),

(Z,δ1) and (Z,δ2) are established.

Theorem 5.3.1. (Muturi E. N. et al., 2018(b)). Let (Z,δ1) and (Z,δ2) be b−T◦ spaces,

then p−Cω(Y,Z) is a pT◦ space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y∈Y , f (y) 6= g(y)

and let (Z,δ1) and (Z,δ2) be b−T◦ spaces. Then there exist an open set U1 ∈ δ1 such that

f (y) ∈U1, g(y) /∈U1 and U2 ∈ δ2 such that f (y) ∈U2 and g(y) /∈U2 or V1 ∈ δ1 such that

g(y)∈V1, f (y) /∈V1 and V2 ∈ δ2 such that g(y)∈V2, f (y) /∈V2. Hence, there exist an open
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set S(({y},U1)({y},U2))p in p−Cω(Y,Z) neighbourhood of f not containing g or an open

set S(({y},V1)({y},V2))p in p−Cω(Y,Z) neighborhood of g not containing f . Therefore,

the space p−Cω(Y,Z) is a pT◦ space. �

Theorem 5.3.2. (Muturi E. N. et al., 2018(b)). Let (Z,δ1) and (Z,δ2) be b−T1 spaces,

then p−Cω(Y,Z) is a pT1 space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y∈Y , f (y) 6= g(y)

and let (Z,δ1) and (Z,δ2) be b− T1 spaces. Then there exist an open set U1 and V1 in

δ1 such that f (y) ∈ U1, g(y) /∈ U1 and g(y) ∈ V1, f (y) /∈ V1, and also U2 and V2 in δ2

such that f (y) ∈U2, g(y) /∈U2 and g(y) ∈ V2, f (y) /∈ V2. Hence, there exist an open set

S(({y},U1)({y},U2))p in p−Cω(Y,Z) neighbourhood of f not containing g and open set

S(({y},V1)({y},V2))p in p−Cω(Y,Z) neighborhood of g not containing f . Therefore, the

space p−Cω(Y,Z) is a pT1 space. �

Theorem 5.3.3. (Muturi E. N. et al., 2018(b)). Let (Z,δ1) and (Z,δ2) be b−T2 spaces,

then p−Cω(Y,Z) is a pT2 space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y∈Y , f (y) 6= g(y)

and let (Z,δ1) and (Z,δ2) be b−T2 spaces. Then there exist disjoint open sets U1 ∈ δ1 and

V1 ∈ δ1 and also U2 ∈ δ2 and V2 ∈ δ2 such that f (y)∈U1 and g(y)∈V1, and also f (y)∈U2

and g(y) ∈V2 respectively. Hence, there exist disjoint open sets S(({y},U1)({y},U2))p in

p−Cω(Y,Z) neighbourhood of f and S(({y},V1)({y},V2))p in p−Cω(Y,Z) neighborhood

of g. Therefore, the space p−Cω(Y,Z) is a pT2 space. �

Theorem 5.3.4. (Muturi E. N. et al., 2018(b)). Let the spaces (Z,δ1) and (Z,δ2) be b-

regular, then p−Cω(Y,Z) with compact open topology ω is a pregular space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that ∀y ∈ Y f (y) 6= g(y) and

let S((Ui,Vi)(U j,(Vj))

= { f ∈ p−C(Y,Z) : f (Ui) ⊂ Vi and f (U j) ⊂ Vj)} for Ui ∈ τ1, Vi ∈ δ1, U j ∈ τ2 and

Vj ∈ δ2 for i, j = 1,2,3,4....n be the neighbourhood system for f . Since Ui and U j are

compact, then both f (Ui) and f (U j) are also compact, and since (Z,δ1) and (Z,δ2)

are b-regular spaces, then there exist open sets Ai and B j in δ1 and δ2 respectively, for

i, j = 1,2,3,4....n, such that f (Ui) ⊂ Ai, f (U j) ⊂ B j, Ai ⊂ Vi and B j ⊂ Vj. This implies

that S((Ui,Ai)(U j,B j))⊂ S((Ui,Ai)(U j,B j))⊂ S((Ui,Vi)(U j,Vj)). Suppose that
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S((Ui,Ai)(U j,B j))⊂ S((Ui,Ai)(U j,B j)), let g /∈ S((Ui,Vi)(U j,Vj)), then it follows that g /∈

S((Ui,Ai)(U j,B j)), implying further that for some point y∈Y , g(y)∈ Ai
c and g(y)∈ B j

c.

Thus, S(({y},Ai
c)({y},B j

c)) is a neighbourhood system for g which does not intersect

S((Ui,Ai)(U j,B j)). Since S((Ui,Ai)(U j,B j))⊂ S((Ui,Ai)(U j,B j)), then S((Ui,Ai)(U j,B j))

⊂ S((Ui,Vi)(U j,Vj)). Therefore the sets
n⋂

i=1
S(({y},Ai

c)({y},B j
c)) and

n⋂
i, j=1

S((Ui,Vi)(U j,Vj)) are disjoint open sets containing g and
n⋂

i=1
S((Ui,Ai)(U j,B j)) re-

spectively, hence p−Cω(Y,Z) is a pregular space. �

The subsequent theorems presents the relationships between separation axioms defined on

the spaces p−Cω(Y,Z) and (Z,δ1,δ2).

Theorem 5.3.5. (Muturi E. N. et al., 2018(b)). Let (Z,δ1,δ2) be p−T◦ space, then p−

Cω(Y,Z) is a pT◦ space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y ∈ Y , f (y) 6=

g(y), since (Z,δ1,δ2) is a p− T◦ space, then there exist an open set U1 ∈ δ1 containing

f (y) but not g(y) or V2 ∈ δ2 containing g(y) but not f (y). Suppose there exist an open

set U1 ∈ δ1 containing f (y) but not g(y), then by pairwise continuity of f , there is also an

open set U2 ∈ δ2 also containing f (y) but not g(y). Suppose there exist an open set V2 ∈ δ2

containing g(y) but not f (y), then by pairwise continuity of g, there is also an open set V1 ∈

δ1 containing g(y) but not f (y). Either way, there exist an open set S(({y},U1)({y},U2))p

in p−Cω(Y,Z), neighbourhood of f not containing g, or an open set S(({y},V1)({y},V2))p

in p−Cω(Y,Z), neighborhood of g not containing f . Therefore, the space p−Cω(Y,Z) is

a pT◦ space. �

Theorem 5.3.6. (Muturi E. N. et al., 2018(b)). Let (Z,δ1,δ2) be p−T1 space, then p−

Cω(Y,Z) is a pT1 space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y ∈ Y , f (y) 6=

g(y), since (Z,δ1,δ2) is a p−T1 space. Then there exist an open set U1 ∈ δ1 neighbourhood

of f (y) and not g(y) and an open set V2 ∈ δ2 neighbourhood of g(y) and not f (y). But

since f and g are both τ1− δ1 and τ2− δ2 continuous, it follows that there exist U2 ∈ δ2

neighbourhood of f (y) and not g(y) and V2 ∈ δ2 neighbourhood of g(y) and not f (y).

Hence, there exist an open set S(({y},U1)({y},U2))p in p−Cω(Y,Z) neighbourhood of

f not containing g and open set S(({y},V1)({y},V2))p in p−Cω(Y,Z) neighborhood of g

not containing f . Therefore, the space p−Cω(Y,Z) is a pT1 space. �
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Theorem 5.3.7. (Muturi E. N. et al., 2018(b)). Let (Z,δ1,δ2) be totally disconnected

p−T2 space, then p−Cω(Y,Z) is a pT2 space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y ∈ Y , f (y) 6=

g(y), since (Z,δ1,δ2) is a totally disconnected p−T2 space, then there exist disjoint open

sets U1 ∈ δ1 and V2 ∈ δ2 containing f (y) and g(y) respectively, such that U1∪V2 =Y . But

since f and g are both τ1−δ1 and τ2−δ2 continuous, it follows that there exist open sets

U2 ∈ δ2 containing f (y) and V1 ∈ δ1 containing g(y). Suppose U2 = V2
c ∈ δ2 and V1 =

U1
c ∈ δ1. Now, V2

c∪U1
c = (V2∩U1)

c = (φ)c = Y , implying that U2∪V1 = Y , Now, U2∩

V1 =V2
c∩U1

c = (V2∪U1)
c =Y c = φ . Therefore the sets U2 and V1 are disjoint open sets,

neighbourhoods of f (y) and g(y) respectively. Therefore the sets S(({y},U1)({y},U2))p

and S(({y},V1)({y},V2))p in p−Cω(Y,Z) are disjoint open sets, neighbourhoods of f and

g respectively. Hence, p−Cω(Y,Z) is a pT2 space. �

Theorem 5.3.8. (Muturi E. N. et al., 2018(b)). Let the space (Z,δ1,δ2) be pairwise regu-

lar, then p−Cω(Y,Z) is a pregular space.

Proof. Let f and g be unique functions in p−C(Y,Z) such that ∀y ∈ Y f (y) 6= g(y) and

let S((Ui,Vi)(U j,(Vj)) = { f ∈ p−C(Y,Z) : f (Ui) ⊂ Vi and f (U j) ⊂ Vj)} for Ui ∈ τ1,

Vi ∈ δ1, U j ∈ τ2 and Vj ∈ δ2 for i, j = 1,2,3,4....n be the neighbourhood system for f .

Now, Ui and U j are both compact, therefore f (Ui) and f (U j) are also compact. Since

(Z,δ1,δ2) is pairwise regular space and f is pairwise continuous, then δ1 regularity with

respect to δ2 implies that there exist open sets B j in δ2 for j = 1,2,3,4....n, such that

f (Ui) ⊂ B j and B j ⊂ Vj. Since f (U j) ⊂ Vj and B j ⊂ Vj, then there exist some B j’s

such that f (U j) ⊂ B j and B j ⊂ Vj. This implies that S(U j,B j) ⊂ S(U j,B j) ⊂ S(U j,Vj).

Suppose that S(U j,B j) ⊂ S(U j,B j), let g /∈ S(U j,Vj), then it follows that g /∈ S(U j,B j),

implying further that for some point y ∈ Y , g(y) ∈ B j
c. Thus, S({y},B j

c) is a neigh-

bourhood system for g which does not intersect S(U j,B j). Since S(U j,B j) ⊂ S(U j,B j),

then S(U j,B j) ⊂ S(U j,Vj). Therefore
n⋂

j=1
S({y},B j

c) and
n⋂

j=1
S(U j,Vj) are τ2− δ2 dis-

joint open sets neighbourhoods of g and
n⋂

i=1
S(U j,B j) respectively. Now, δ2 regularity

with respect to δ1 implies that there exist open sets Ai in δ1 for i = 1,2,3,4....n, such

that f (U j) ⊂ Ai and Ai ⊂ Vi. But f (Ui) ⊂ Vi and Ai ⊂ Vi, therefore there exist Ai’s such

that f (Ui) ⊂ Ai and Ai ⊂ Vi. This implies that S(Ui,Ai) ⊂ S(Ui,Ai) ⊂ S(Ui,Vi). Suppose

that S(Ui,Ai) ⊂ S(Ui,Ai), let g /∈ S(Ui,Vi), then it follows that g /∈ S(Ui,Ai), implying
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further that for some point y ∈ Y , g(y) ∈ Ai
c. Thus, S({y},Ai

c) is a neighbourhood sys-

tem for g which does not intersect S(Ui,Ai). Since S(Ui,Ai) ⊂ S(Ui,Ai), then S(Ui,Ai) ⊂

S(Ui,Vi). Therefore
n⋂

i=1
S({y},Ai

c) and
n⋂

i=1
S(Ui,Vi) are τ1− δ1 disjoint open sets, neigh-

bourhoods of g and
n⋂

i=1
S(Ui,Ai) respectively. Let f ∈ S(Ui,Ai) and f ∈ S(U j,B j) imply

that f ∈ S((Ui,Ai),(U j,B j)), then
n⋂

i, j=1
S(({y},Ai

c)({y},B j
c)) and

n⋂
i, j=1

S((Ui,Vi)(U j,Vj))

are disjoint open sets neighbourhoods of g and
n⋂

i, j=1
S((Ui,Ai),(U j,B j)) respectively in

p−Cω(Y,Z). Therefore p−Cω(Y,Z) is a pregular space. �

5.4 Comparison of separation axioms between the spaces p−Cω(Y,Z),

s−Cτ(Y,Z), 1−Cς (Y,Z) and 2−Cζ (Y,Z)

The relationships between separation axioms defined on the spaces p−Cω(Y,Z), 1−

Cς (Y,Z) and 2−Cζ (Y,Z) are established in this section.

Theorem 5.4.1. (Muturi E. N. et al., 2018(b)). The function space p−Cω(Y,Z) is a pT◦-

space, if and only if the function spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) are b−T◦-spaces.

Proof. Let f and g be unique functions in p−C(Y,Z) such that for every y∈Y , f (y) 6= g(y)

and let 1−Cς (Y,Z) and 2−Cζ (Y,Z) be b−T◦ spaces. Since f and g are both τ1−δ1 and

τ2− δ2 continuous, there exist open sets S({y},U1) and S({y},U2) neighbourhoods of f

but not g, or S({y},V1) and S({y},V2) neighbourhoods of g but not f for U1, V1 ∈ δ1

and U2, V2 ∈ δ2. Hence, there exist an open set S(({y},U1)({y},U2))p in p−Cω(Y,Z)

neighbourhood of f not containing g or open set S(({y},V1)({y},V2))p in p−Cω(Y,Z)

neighborhood of g not containing f . Therefore, p−Cω(Y,Z) is a pT◦ space.

Conversely, Suppose p−Cω(Y,Z) is a pT◦ space, then for any two functions f and g in

p−C(Y,Z) such that f (y) 6= g(y) for ∀y∈Y , there exist an open set S(({y},U1)({y},U2))p

in p−Cω(Y,Z) neighbourhood of f not containing g or an open set S(({y},V1)({y},V2))p

in p−Cω(Y,Z) neighborhood of g not containing f . If S(({y},U1)({y},U2))p is in p−

Cω(Y,Z), then S(({y},U1)({y},U2))p = { f ∈ p−C(Y,Z) : f (y) ⊂U1 and f (y) ⊂U2} =

{{ f ∈ p−C(Y,Z) : f (y) ⊂ U1} and { f ∈ p−C(Y,Z) : f (y) ⊂ U2}}. Now, { f ∈ p−

C(Y,Z) : f (y)⊂U1}= { f ∈ 1−C(Y,Z) : f (y)⊂U1}= S({y},U1) and { f ∈ p−C(Y,Z) :

f (y) ⊂U2} = { f ∈ 2−C(Y,Z) : f (y) ⊂U2} = S({y},U2). These two sets are open and

are both neighborhood of f in 1−Cς (Y,Z) and 2−Cζ (Y,Z) respectively.
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If S(({y},V1)({y},V2))p is in p−Cω(Y,Z), then in a similar manner, two open sets

S({y},V1) and S({y},V2) both neighborhood of g in 1−Cς (Y,Z) and 2−Cζ (Y,Z) are

obtained. Either way, there exist open sets S({y},U1) in 1−Cς (Y,Z) and S({y},U2) in

2−Cζ (Y,Z) neighborhoods of f but not g or S({y},V1) in 1−Cς (Y,Z) and S({y},V2)

in 2−Cζ (Y,Z) neighborhoods of g but not f . Hence, 1−Cς (Y,Z) and 2−Cζ (Y,Z) are

b−T◦-spaces. �

Theorem 5.4.2. (Muturi E. N. et al., 2018(b)). The function space p−Cω(Y,Z) is a pT1-

space, if and only if the function spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) are b−T1-spaces.

Proof. Let f and g be unique functions in p−C(Y,Z) such that ∀y ∈ Y f (y) 6= g(y), and

let 1−Cς (Y,Z) be a T1 space such that S(U1,V1) is neighborhood of f and not g and

S(U2,V2) is neighborhood of g and not f . Let 2−Cζ (Y,Z) also be a T1 space such that

S(A1,B1) is a neighborhood of f and not g and S(A2,B2) is neighborhood of g and not

f . Since f and g are both τ1− δ1 and τ2− δ2 continuous, then S((U1,V1)(A1,B1))p =

{ f ∈ p−C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1} is a neighborhood of f and not g and

S((U2,V2)(A2,B2))p = {g ∈ p−C(Y,Z) : g(U2)⊂V2 and g(A2)⊂ B2} is neighborhood of

g and not f . Hence, p−Cω(Y,Z) is a pT1 space.

Conversely, let p−Cω(Y,Z) be a pT1 space and let f and g be unique functions in p−

C(Y,Z) such that ∀y∈Y f (y) 6= g(y), then there exist two open sets S((U1,V1)(A1,B1))p =

{ f ∈ p−C(Y,Z) : f (U1)⊂V1 and f (A1)⊂B1} for U1 open in τ1, V1 open in δ1, A1 open in

τ2 and B1 open in δ2, neighborhood of f not containing g and S((U2,V2)(A2,B2))p = {g ∈

p−C(Y,Z) : g(U2)⊂V2 and g(A2)⊂ B2} for U2 open in τ1, V2 open in δ1, A2 open in τ2

and B2 open in δ2, neighborhood of g not containing f . But S((U1,V1)(A1,B1))p = { f ∈

p−C(Y,Z) : f (U1)⊂ V1 and f (A1)⊂ B1} = { f ∈ 1−C(Y,Z) : f (U1)⊂ V1} = S(U1,V1)

and S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1} = { f ∈ 2−

C(Y,Z) : f (A1) ⊂ B1} = S(A1,B1) which are both neighborhoods of f not containing g

in 1−Cς (Y,Z) and 2−Cζ (Y,Z) respectively. Similarly S(U2,V2) and S(A2,B2) are both

neighborhoods of g not containing f in 1−Cς (Y,Z) and 2−Cζ (Y,Z) respectively. Hence,

S(U1,V1) in 1−Cς (Y,Z) and S(A1,B1) in 2−Cζ (Y,Z) are neighborhoods of f not con-

taining g, and S(U2,V2) in 1−Cς (Y,Z) and S(A2,B2) in 2−Cζ (Y,Z) are neighborhoods

of g not containing f . Therefore, 1−Cς (Y,Z) and 2−Cζ (Y,Z) are b−T1 spaces. �
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Theorem 5.4.3. (Muturi E. N. et al., 2018(b)). The function space p−Cω(Y,Z) is a pT2-

space, if and only if the function spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) are b−T2-spaces.

Proof. Let f and g be unique functions in p−C(Y,Z) such that ∀y∈Y f (y) 6= g(y), and let

1−Cς (Y,Z) be a T2 space such that S(U1,V1) and S(U2,V2) are disjoint open sets, neigh-

bourhoods of f and g respectively. Also, Let 2−Cζ (Y,Z) be a T2 space such that S(A1,B1)

and S(A2,B2) are disjoint open sets, neighbourhoods of f and g respectively. Now, pair-

wise continuity of f and g allows one to pick S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) :

f (U1) ⊂ V1 and f (A1) ⊂ B1} and S((U2,V2)(A2,B2))p = {g ∈ p−C(Y,Z) : g(U2) ⊂ V2

and g(A2) ⊂ B2} as disjoint open sets in p−Cω(Y,Z), containing f and g respectively.

Hence p−Cω(Y,Z) is a pT2 space.

Conversely, let p−Cω(Y,Z) be a pT2-space and let f and g be unique functions in p−

C(Y,Z) such that ∀y ∈ Y f (y) 6= g(y), then there exist two disjoint open sets

S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) : f (U1)⊂V1 and f (A1)⊂ B1} for U1 open in τ1,

V1 open in δ1, A1 open in τ2 and B1 open in δ2, neighborhood of f , and S((U2,V2)(A2,B2))p

= {g ∈ p−C(Y,Z) : g(U2) ⊂ V2 and g(A2) ⊂ B2} for U2 open in τ1, V2 open in δ1,

A2 open in τ2 and B2 open in δ2, neighborhood of g. But S((U1,V1)(A1,B1))p = { f ∈

p−C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1}={{ f ∈ p−C(Y,Z) : f (U1) ⊂ V1} and { f ∈

p−C(Y,Z) : f (A1) ⊂ B1}}. Now { f ∈ p−C(Y,Z) : f (U1) ⊂ V1} = { f ∈ 1−C(Y,Z) :

f (U1)⊂V1}= S(U1,V1), and { f ∈ p−C(Y,Z) : f (A1)⊂B1}= { f ∈ 2−C(Y,Z) : f (A1)⊂

B1}= S(A1,B1). These two sets are open and are both neighborhood of f in 1−Cς (Y,Z)

and 2−Cζ (Y,Z) respectively. In a similar manner, S(U2,V2) and S(A2,B2) are both open

set, neighborhood of g in 1−Cς (Y,Z) and 2−Cζ (Y,Z) respectively. Now, S(U1,V1) and

S(U2,V2) in 1−Cς (Y,Z) are disjoint open neighborhoods of f and g respectively. Also,

S(A1,B1) and S(A2,B2) in 2−Cζ (Y,Z) are disjoint open neighbourhood of f and g re-

spectively. Therefore, 1−Cς (Y,Z) and 2−Cζ (Y,Z) are b−T2 spaces. �

Theorem 5.4.4. (Muturi E. N. et al., 2018(b)). The function space p−Cω(Y,Z) is a

pregular space, if the function spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) are b-regular spaces.

Proof. let f and g be unique functions in p−C(Y,Z) such that ∀y ∈ Y f (y) 6= g(y),

and let 1−Cς (Y,Z) and 2−Cζ (Y,Z) be b-regular. Then for a closed set S(U1,V1) in

1−Cς (Y,Z) such that f /∈ S(U1,V1), there exist disjoint open sets S(A1,B1) and S(C1,D1)

such that f ∈ S(A1,B1) and S(U1,V1)⊂ S(C1,D1). Similarly, for a closed set S(U2,V2) in
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2−Cζ (Y,Z) such that f /∈ S(U2,V2), there exist disjoint open sets S(A2,B2) and S(C2,D2)

such that f ∈ S(A2,B2) and S(U2,V2)⊂ S(C2,D2). Since f is pairwise continuous, we have

that f ∈ S((A1,B1)(A2,B2)). Now, suppose g∈ S(U1,V1)⊂ S(C1,D1) and g∈ S(U2,V2)⊂

S(C2,D2) imply that g ∈ S((U1,V1)(U2,V2)), then g ∈ S((U1,V1)(U2,V2))⊂

S((C1,D1)(C2,D2)). Now S((U1,V1)(U2,V2)) is a closed subset of p−Cω(Y,Z) not con-

taining f , and S((C1,D1)(C2,D2)) and S((A1,B1)(A2,B2)) are disjoint open sets contain-

ing S((U1,V1)(U2,V2)) and f respectively. Therefore p−Cω(Y,Z) is a pregular space. �

Comparison of separation axiom on the spaces s−Cτ(Y,Z) and p−Cω(Y,Z) is carried

out in the theorems that follow. The normal definition of separation axiom on the space

Cτ(Y,Z) hold for the space s−Cτ(Y,Z).

Theorem 5.4.5. (Muturi E. N. et al., 2018(b)). Let p−Cω(Y,Z) be a pT◦-space, then the

function space s−Cτ(Y,Z) is a T◦-space.

Proof. Let p−Cω(Y,Z) be a pT◦, then for any distinct functions f and g in p−C(Y,Z)

such that f (y) 6= g(y) ∀y ∈ Y , there exist an open set S((U1,V1)(A1,B1))p = { f ∈ p−

C(Y,Z) : f (U1)⊂V1 and f (A1)⊂ B1} for U1 open in τ1, V1 open in δ1, A1 open in τ2 and

B1 open in δ2, neighborhood of f not containing g, or S((U2,V2)(A2,B2))p = {g ∈ p−

C(Y,Z) : g(U2)⊂V2 and g(A2)⊂ B2} for U2 open in τ1, V2 open in δ1, A2 open in τ2 and

B2 open in δ2, neighborhood of g not containing f . Since p-continuity imply s-continuity,

the set S((U1,V1)(A1,B1))p can also be expressed as follows, S((U1,V1)(A1,B1))p = { f ∈

s−C(Y,Z) : f |(U1,V1)(U1) ⊂ V1 and f |(A1,B1)(A1) ⊂ B1} = { f ∈ s−C(Y,Z) : f (U) ⊂

V f or U = U1∪A1 and V = V1∪B1} = S(U,V )s which is a neighborhood of f and not

g. Also, S((U2,V2)(A2,B2))p = {g ∈ s−C(Y,Z) : g|(U2,V2)(U2) ⊂ V2 and g|(A2,B2)(A2) ⊂

B2}= {g ∈ s−C(Y,Z) : g(A)⊂ B f or A =U2∪A2 and B =V2∪B2}= S(A,B)s which is

a neighborhood of g and not f . Hence, the function space s−Cτ(Y,Z) is a T◦-space. �

Theorem 5.4.6. (Muturi E. N. et al., 2018(b)). The function space s−Cτ(Y,Z) is a T1

space, if the function space p−Cω(Y,Z) is a pT1 space.

Proof. Let p−Cω(Y,Z) be a pT1 space and let f and g be unique functions in p−C(Y,Z)

such that ∀y ∈ Y f (y) 6= g(y), then there exist two open sets S((U1,V1)(A1,B1))p = { f ∈

p−C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1} for U1 open in τ1, V1 open in δ1, A1 open in

τ2 and B1 open in δ2, neighborhood of f and not g and S((U2,V2)(A2,B2))p = {g ∈ p−

C(Y,Z) : g(U2)⊂V2 and g(A2)⊂B2} for U2 open in τ1, V2 open in δ1, A2 open in τ2 and B2
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open in δ2, neighborhood of g and not f . Now, since p-continuity imply s-continuity, the

set S((U1,V1)(A1,B1))p can also be expressed as follows, S((U1,V1)(A1,B1))p = { f ∈

s−C(Y,Z) : f |(U1,V1)(U1) ⊂ V1 and f |(A1,B1)(A1) ⊂ B1} = { f ∈ s−C(Y,Z) : f (U) ⊂

V f or U = U1 ∪ A1 and V = V1 ∪ B1} = S(U,V )s which is a neighborhood of f and

not g, and S((U2,V2)(A2,B2))p = {g ∈ s−C(Y,Z) : g|(U2,V2)(U2)⊂V2 and g|(A2,B2)(A2)⊂

B2}= {g ∈ s−C(Y,Z) : g(A)⊂ B f or A =U2∪A2 and B =V2∪B2}= S(A,B)s which is

a neighborhood of g and not f . Hence, the space s−Cτ(Y,Z) is a T1 space. �

Theorem 5.4.7. (Muturi E. N. et al., 2018(b)). The function space s−Cτ(Y,Z) is an

T2-space, if the function space p−Cω(Y,Z) is a pT2 space.

Proof. Let p−Cω(Y,Z) be a pT2 space and let f and g be unique functions in p−C(Y,Z)

such that ∀y∈Y f (y) 6= g(y), then there exist two disjoint open sets S((U1,V1)(A1,B1))p =

{ f ∈ p−C(Y,Z) : f (U1)⊂V1 and f (A1)⊂ B1} for U1 open in τ1, V1 open in δ1, A1 open

in τ2 and B1 open in δ2, neighborhood of f and S((U2,V2)(A2,B2))p = {g ∈ p−C(Y,Z) :

g(U2)⊂V2 and g(A2)⊂ B2} for U2 open in τ1, V2 open in δ1, A2 open in τ2 and B2 open in

δ2, neighborhood of g. Since p-continuity imply s-continuity, the set S((U1,V1)(A1,B1))p

can also be expressed as follows, S((U1,V1)(A1,B1))p = { f ∈ s−C(Y,Z) : f |(U1,V1)(U1)⊂

V1 and f |(A1,B1)(A1) ⊂ B1} = { f ∈ s−C(Y,Z) : f (U) ⊂ V f or U = U1 ∪ A1 and V =

V1∪B1}= S(U,V )s. Similarly, S((U2,V2)(A2,B2))p = {g∈ s−C(Y,Z) : g|(U2,V2)(U2)⊂V2

and g|(A2,B2)(A2)⊂ B2}= {g∈ s−C(Y,Z) : g(A)⊂ B f or A=U2∪A2 and B=V2∪B2}=

S(A,B)s. The sets S(U,V )s and S(A,B)s are disjoint open sets neighbourhoods of f and g

respectively. Therefore, the space s−Cτ(Y,Z) is a T2 space. �
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CHAPTER SIX

COMPACTNESS ON SUBSETS OF SETS OF CONTINUOUS
FUNCTIONS DEFINED ON BITOPOLOGICAL SPACES

6.1 Introduction

Let Fs be a subset of the space s−Cτ(Y,Z), F1 a subset of the space 1−Cς (Y,Z) and F2 a

subset of the space 2−Cζ (Y,Z). In this chapter, joint continuity of topologies defined on

F1 and F2 as well as even continuity of the same sets are introduced. Compactness is also

proven for the subsets F1 of 1−Cς (Y,Z) and F2 of 2−Cζ (Y,Z) in the space s−Cτ(Y,Z).

The following definitions and lemma by Kelley (1955) and Engelking (1989) are consid-

ered.

Definition 6.1.1. (Kelley, 1955). A topology τ for the set C(Y,Z) is said to be jointly

continuous if and only if the function e : Cτ(Y,Z)×Y → Z is continuous.

Definition 6.1.2. (Engelking, 1989). A set F is an evenly continuous subset of Cτ(Y,Z)

if ∀y ∈ Y , ∀z ∈ Z and a neighbourhood V of z, there exist a neighbourhood U of y and

a neighbourhood W of z such that for all f ∈ Fs with f (y) ∈W, then f (U) ⊂ V . That

is, e(F ∩S({y},W )×U)⊂V , where e is the evaluation function on Cτ(Y,Z) and τ is the

topology of pointwise convergence.

Lemma 6.1.3. (Engelking, 1989). For every pair Y and Z of topological spaces, any

subset A of Y and any closed subset B of Z, the set S(A,B) is closed in the space C(Y,Z)

with topology of pointwise convergence.

6.2 Even continuity for the subsets F1 of 1−Cς (Y,Z) and F2 of 2−

Cζ (Y,Z) and their jointly continuous topologies.

In this section, even continuity for the subset F1 of 1−Cς (Y,Z) and joint continuity of the

induced topology on F1 is proven, the proofs of the same for F2 subset of 2−Cζ (Y,Z) can

be done in a similar manner.

Proposition 6.2.1. Let Fs ⊂ s−Cτ(Y,Z) be an evenly continuous family of mappings and

let τ be the topology of pointwise convergence, then the induced topology τFs on Fs is

jointly continuous.
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Proof. Let f ∈ Fs, y ∈ Y , z = f (y) and let V be the neighbourhood of z in Z. It suffices

to show that the restriction e|Fs×(Y,τ1∨τ2) of the evaluation mapping e is continuous with

respect to topology τFs for Fs. Since Fs is evenly continuous, there exist an open set U

neighbourhood of y and an open set W neighbourhood of z such that e(Fs∩ S({y},W )×

U)⊂V . Now, the set Fs∩S({y},W ) is open in topology τFs for Fs whenever W is open in

Z. Since the evaluation mapping is continuous, we have that e|Fs×(Y,τ1∨τ2)(Fs∩S({y},W )×

U)⊂V , hence e|Fs×(Y,τ1∨τ2) is continuous, implying that τFs is jointly continuous. �

Proposition 6.2.2. Let Fs be evenly continuous subset of s−Cτ(Y,Z) and let F1 be a

subset of 1−Cς (Y,Z), if τ and ς are topologies of pointwise convergence, then the induced

topology ςF1 on F1 is jointly continuous.

Proof. It suffices to show that the restriction e|F1×(Y,τ1∨τ2) : F1× (Y,τ1∨τ2)→ (Z,δ1∨τ2)

is continuous with respect to topology ςF1 for F1. Let Fs be evenly continuous, then from

Proposition 6.2.1 the mapping e|Fs×(Y,τ1∨τ2) : Fs× (Y,τ1∨τ2)→ (Z,δ1∨τ2) is continuous.

From Proposition 3.3.13 function h : 1−Cς (Y,Z)→ s−Cτ(Y,Z) is a continuous mapping,

therefore the submap h|F1,Fs : F1→ Fs is continuous. Let i : (Y,τ1∨τ2)→ (Y,τ1∨τ2) be an

identity mapping, then the composite function e|Fs×(Y,τ1∨τ2) ◦ (h|F1,Fs× i) = e|F1×(Y,τ1∨τ2) :

F1× (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is continuous, implying that ςF1 is jointly continuous. �

Proposition 6.2.3. Let (Y,τ1∨τ2) be an arbitrary topological space, (Z,δ1∨δ2) a regular

space, Fs a compact subspace of s−Cτ(Y,Z) and topology cFs on Fs jointly continuous, if

(F1,cF1) is a compact subspace of 1−Cς (Y,Z), then F1 is evenly continuous.

Proof. Since (Z,δ1 ∨ δ2) is a regular space, it follows that s−Cτ(Y,Z) is a Hausdorff

space with a topology τ of pointwise convergence. Now, the induced topology τFs on Fs

is also a topology of pointwise convergence, hence the identity function i : (Fs,cFs)→

(Fs,τFs) is continuous. Since (Fs,τFs) is also a Hausdorff space, then cFs and τFs coincide,

implying that τFs is also jointly continuous. If ςF1 is an induced topology on F1, then by

Proposition 6.2.2, ςF1 is also jointly continuous. Suppose that y ∈ Y , z ∈ Z, and U is an

open neighbourhood of z. Let W be a closed neighbourhood of z such that W ⊂ U , if

∀ f ∈ K ⊂ F1, f (y) ∈W , then (K,ςF1) is closed by Lemma 6.1.3. Now, (K,ςF1) is a closed

subset of a compact space (F1,cF1), hence (K,ςF1) is also compact. Since ςF1 is jointly

continuous, then e|F1×(Y,τ1∨τ2) is continuous, hence for the compact set K×{y} contained
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in e|F1×(Y,τ1∨τ2)
−1(U), there exist an open set V of y such that e|F1×(Y,τ1∨τ2)(K ×V ) ⊂

e(K×V )⊂U , hence F1 is evenly continuous. �

Proposition 6.2.4. Let (Y,τ1∨τ2) be an arbitrary topological space, (Z,δ1∨δ2) a regular

space, Fs an evenly continuous compact subset of s−Cτ(Y,Z) and τ a topology of point-

wise convergence. If F1 is a closed subset of 1−Cς (Y,Z), then F1 is evenly continuous in

the space s−Cτ(Y,Z).

Proof. Let y ∈ Y , z ∈ Z and V a neighbourhood of z. Since the space Z is regular, then for

any open set V neighbourhood of z, there exist an open set W neighbourhood of z such that

W ⊂V . The set S({y},W ) is a closed subset of s−Cτ(Y,Z) by Lemma 6.1.3, since a com-

pact subset of a regular space (which is a hausdorff space) is closed, then Fs∩S({y},W ) is

closed. Now, Fs∩S({y},W ) is a closed subset of a compact space Fs, therefore it is com-

pact. Since F1 ∩ S({y},W ) ⊂ Fs ∩ S({y},W ) is closed, then F1 ∩ S({y},W ) is also com-

pact. Fs is evenly continuous, therefore by Proposition 6.2.2, the function e|F1×(Y,τ1∨τ2) is

continuous, and for the compact set (F1 ∩ S({y},W ))×{y}, there exist open set U sub-

sets of (Y,τ1 ∨ τ2) containing {y}, such that e|F1×(Y,τ1∨τ2)(F1 ∩ S({y},W )×U) ⊂ e(F1 ∩

S({y},W )×U)⊂V . Hence F1 is evenly continuous. �

The following lemma by McCoy and Ntantu (1988) is considered in proving the next

proposition.

Lemma 6.2.5. (McCoy and Ntantu, 1988). Let Fs be evenly continuous subset of s−

Cτ(Y,Z), then Fs is evenly continuous in the space s−Cτ(Y,Z).

Proposition 6.2.6. Let (Y,τ1 ∨ τ2) be an arbitrary topological space, (Z,δ1 ∨ δ2) a reg-

ular space, Fs an evenly continuous subset of s−Cτ(Y,Z) and τ a topology of pointwise

convergence. If F1 is a closed subset of 1−Cς (Y,Z), then the closure of F1 in the space

s−Cτ(Y,Z) is evenly continuous.

Proof. Since Fs is evenly continuous, then by Proposition 6.2.4, the set F1 is also evenly

continuous in the space s−Cτ(Y,Z), and by Lemma 6.2.5, the closure of F1 in the space

s−Cτ(Y,Z) is evenly continuous. �
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6.3 Compactness criterion for the closed subsets F1 of 1−Cς (Y,Z) and

F2 of 2−Cζ (Y,Z) in the space s−Cτ(Y,Z)

In this section, the proof of compactness for the closed subset F1 of 1−Cς (Y,Z) in the

space s−Cτ(Y,Z) is provided. The proof of compactness of the subset F2 of 2−Cζ (Y,Z)

in the space s−Cτ(Y,Z) can be done in a similar manner.

The following is an Arzela Ascoli theorem.

Theorem 6.3.1. Kelley (1955). Let C be a family of all continuous functions from a regular

locally compact space X to a regular space Y , and let C have the compact-open topology.

Then the subset F of C is compact if and only if;

(a) F is closed in C,

(b) the closure of F(x) is compact for each x ∈ X, and

(c) F is evenly continuous.

The theorem that follows is a variant of the above Arzela Ascoli theorem.

Theorem 6.3.2. Let (Y,τ1∨ τ2) be regular locally compact space, (Z,δ1∨δ2) be regular

space and Fs be evenly continuous subset of s−Cτ(Y,Z). A closed subset F1 of 1−Cς (Y,Z)

where ς is compact open topology, is compact in the space s−Cτ(Y,Z) if and only if F1(y)

is compact ∀y ∈ Y .

Proof. Let F1(y) be compact ∀y ∈ Y where F1(y) = e(F1×{y}) ⊂ Z, then by Tychonoff

theorem, the product ∏
y∈Y

F1(y) is compact, since F1 is a closed subset of ∏
y∈Y

F1(y), then

F1 ⊂ ∏
y∈Y

F1(y), implying that F1 is pointwise compact as a closed subset of a compact

space. Since Fs is evenly continuous, then by Proposition 6.2.4, F1 is evenly continuous

and by Proposition 6.2.6, F1 is also evenly continuous, implying that e1 = e|F1×(Y,τ1∨τ2)

is continuous, that is e1 : F1× (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is continuous with respect to the

induced topology pF1
of pointwise convergence on F1. Let ςF1 be the induced compact

open topology on F1, then pF1
⊂ ςF1

and the function h : (F1,ςF1
) → (F1, pF1

) from a

compact space to a Hausdorff space is a homeomorphism, hence the induced topology of

pointwise convergence pF1
on F1, coincides with the induced compact open topology ςF1

on F1. Now, e1 : F1× (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is continuous with respect to the induced

compact open topology τF1
, this implies that (F1,ςF1

) is compact. Since F1 is a closed set,

then F1 = F1, implying that F1 is compact.
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Conversely, let F1 be closed subset of 1−Cς (Y,Z) compact in the space s−Cτ(Y,Z). Since

Fs is evenly continuous, it follows from Proposition 6.2.4 that F1 is also evenly continuous,

and therefore e1 = e|F1×(Y,τ1∨τ2) is continuous, that is, e1 : F1× (Y,τ1∨ τ2)→ (Z,δ1∨δ2)

is pointwise continuous, since pF1
⊂ ςF1

on F1, then e1 : F1× (Y,τ1∨ τ2)→ (Z,δ1∨δ2) is

also continuous with respect to the induced compact open topology ςF1
on F1. Now, since

F1 is compact, then the image of a F1 under e1 is compact in the space (Z,δ1 ∨ δ2). It

follows that e1(F1×{y}) is a compact subset of Z, but e(F1×{y}) = F1(y), futhermore, a

compact subset of a Hausdorff space is closed. Hence F1(y) is compact ∀y ∈ Y . �
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CHAPTER SEVEN

CONCLUSION AND FURTHER RESEARCH

7.1 Conclusion

By considering continuous functions from bitopological space (Y,τ1,τ2) to the bitopolog-

ical space (Z,δ1,δ2), the following sets of continuous functions are defined; p−C(Y,Z),

s−C(Y,Z), (1,2)−C(Y,Z), (2,1)−C(Y,Z) and d−C(Y,Z). A function f is s-continuous

if it is p-continuous or p1-continuous, the converse of this relation is not true. If f is

p-continuous or p1-continuous, then f is also d-continuous. The composition of the

open continuous functions f : (Y,τ2)−→ (Y,τ1), g : (Z,δ1)−→ (Z,δ2) and h : (Y,τ1)−→

(Z,δ1) give rise to the continuous functions; µ : 1−Cς (Y,Z) −→ 2−Cζ (Y,Z) defined

by µ(g, f )(h) = g ◦ h ◦ f , ρ : 1−Cς (Y,Z) −→ (2,1)−Cξ (Y,Z) defined by ρ f (h) = h ◦ f ,

ω : 1−Cς (Y,Z)−→ (1,2)−Cϕ(Y,Z) defined by ωg(h) = g◦h, α : (2,1)−Cξ (Y,Z)−→

1−Cς (Y,Z) defined by α(h ◦ f ) = h f and β : 2−Cζ (Y,Z) −→ (1,2)−Cϕ(Y,Z) defined

by β (g◦h◦ f ) = (g◦h) f . The function ρ : 1−Cς (Y,Z) −→ (2,1)−Cξ (Y,Z) defined by

ρ f (h) = h◦ f is a homeomorphism, while 1−Cς (Y,Z) and 2−Cζ (Y,Z) are established as

subspaces of s−Cτ(Y,Z).

Pairwise splitting, pairwise admissibility, supremum splitting and supremum admissibility

properties of topologies are introduced on the spaces p−Cω(Y,Z) and s−Cτ(Y,Z) respec-

tively. These properties of topologies depends on splitting and admissibility of topologies

defined on 1−Cς (Y,Z) and 2−Cζ (Y,Z). Exponential mapping is defined on the space

s−Cτ(Y,Z) and comparison of topologies defined on s−C(Y,Z) made. A simpler proof

is provided that shows that any topology finer than s-admissible topology is s-admissible,

any topology courser than s-splitting topology is s-splitting, while s-splitting topology is

always courser than s-admissible topology.

Separation axioms are generalized on the space p−Cω(Y,Z) and redefined as pT◦, pT1,

pT2 and pregular. It is shown that the space p−Cω(Y,Z) is a pT◦, pT1, pT2 and pregular

if the spaces (Z,δ1) and (Z,δ2) both are T◦, T1, T2 and regular. The space p−Cω(Y,Z)

is also shown to be is pT◦, pT1, pT2 and pregular if the space (Z,δ1,δ2) is pairwise-T◦,

pairwise-T1, pairwise-T2 and pairwise regular. The space p−Cω(Y,Z) is proved to be pT0,

pT1, pT2 and pregular if the spaces 1−Cς (Y,Z) and 2−Cζ (Y,Z) are both T0, T1, T2 and
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regular. Separation axioms defined on the space s−Cτ(Y,Z) are also compared with those

defined on p−Cω(Y,Z). It is proved that the space s−Cτ(Y,Z) is T0, T1 and T2, if the

space p−Cω(Y,Z) is a pT0, pT1 and pT2 space.

The evaluation functions are shown to be continuous when restricted to the subsets F1

and F2 of 1−Cς (Y,Z) and 2−Cζ (Y,Z) respectively. Furthermore, if F1 and F2 are closed,

then they are evenly continuous in the space s−Cτ(Y,Z), provided Fs is evenly continuous

compact subset of s−Cτ(Y,Z). The closures of F1 and F2 are also shown to be evenly

continuous under specific conditions. Finally, it is proven that the closed sets Fi for i =

1,2, are compact in the space s−Cτ(Y,Z), if and only if F1(y) for i = 1,2 is compact,

∀y ∈ Y .This is a slight variation of Arzela Ascoli theorem on compactness of subsets of

function spaces.

7.2 FURTHER RESEARCH

This thesis sets the groundwork for more generalization of properties of function spaces

to topologized sets of continuous functions defined on bitopological spaces. It also makes

it possible to generalize more bitopologicals concepts to these new spaces. It would also

be interesting to see how a pair of topologies can be defined on function spaces defined on

topological spaces or even bitopological spaces, allowing generalization of concepts such

as pairwise continuity, pairwise separation axioms, pairwise compactness and pairwise

connectedness among other concepts to these new function spaces. Converses of some

of the theorems involving splitting and admissibility of topologies, separation axioms and

compactness defined on s−Cτ(Y,Z) and p−C(Y,Z), remain as open problems.
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Abstract

In this paper, relationships between continuous functions defined on the spaces (Y, τ1, τ2), (Y, τ1 ∨ τ2),
(Y, τ1 ∧ τ2) and (Y, τi) for i = 1, 2 are examined. Function spaces s − Cτ(Y,Z), p − Cω(Y,Z), 1 − Cς(Y,Z),
2 − Cζ(Y,Z), (1, 2) − Cϕ(Y,Z) and (2, 1) − Cξ(Y,Z) are defined and continuous functions between them
explored. A homeomorphism is also established between the spaces 1 − Cς(Y,Z) and (2, 1) − Cξ(Y,Z).

Keywords: s-continuity, i-continuity, p-continuity, p1-continuity, d-continuity, open-open topology.
2010 MSC: 54A10, 54C35, 54E55.

1. Introduction

For any two topological spaces Y and Z, C(Y,Z) denotes the set of continuous functions from Y to Z.
The two commonly defined topologies on C(Y,Z) are compact open topology denoted by τco and point
open topology denoted by τp. Fox [1] defined compact open topology to be the topology generated by the
subbasis S(U,V) = { f ∈ C(Y,Z) : f (U) ⊂ V}, for U compact subset of Y and V open subset of Z. Point open
topology stems from the notion of convergence sequence of functions and is generated by the subbasis
S(y,V) = { f ∈ C(Y,Z) : f (y) ∈ V}, for y ∈ Y and V open subset of Z. Both compact open topology and
point open topology have been shown to be open-open topologies by Porter [5]. The set C(Y,Z) on which
topology τ is defined, is called a function space and is denoted by Cτ(Y,Z).

The notion of bitopological space where two topologies τ1 and τ2 are defined on a non empty set Y and
denoted by (Y, τ1, τ2), is due to Kelly [2]. The concept of pairwise continuity on bitopological spaces is due
to Pervin [3].

In this paper, the spaces (Y, τ1, τ2) and (Y, τ1 ∨ τ2) are considered and s-continuous, p1-continuous and d-
continuous function defined on them. Relationships between p-continuity, s-continuity, p1-continuity and d-
continuity are also explored. Finally, the spaces s−Cτ(Y,Z), p−Cω(Y,Z), 1−Cς(Y,Z), 2−Cζ(Y,Z), (1, 2)−Cϕ(Y,Z)
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and (2, 1) − Cξ(Y,Z) are defined and continuous functions between them studied. A homeomorphism is
also established between the spaces 1 − Cς(Y,Z) and (2, 1) − Cξ(Y,Z).

2. Preliminaries

For the bitopological space (Y, τ1, τ2), topologies τ1 and τ2 when combined can form a base or a subbasis
for a topology on the set Y. The notation τ1 ∨ τ2 in this paper will imply topology on the set Y generated
by the basis τ1 ∪ τ2. Such topology will be called supremum topology on the set Y. The set Y together with
its supremum topology τ1 ∨ τ2 will be denoted by (Y, τ1 ∨ τ2).

The following definitions are used in this paper.

Definition 2.1. [3] A function f : (Y, τ1, τ2) −→ (Z, δ1, δ2), is said to be pairwise continuous (p-continuous)
if the induced functions f : (Y, τ1) −→ (Z, δ1) and f : (Y, τ2) −→ (Z, δ2) are continuous.

Definition 2.2. [6] A function f : (Y, τ1, τ2) −→ (Z, δ1, δ2) is said to be (i, j)-continuous, if the function
f : (Y, τi) → (Z, δ j) is continuous for i, j ∈ {1, 2}, i , j. The function f : (Y, τ1, τ2) −→ (Z, δ1, δ2) is called
pairwise1-continuous (p1-continuous) if it is both (i, j)-continuous and ( j, i)-continuous.

The following definitions are introduced in this paper.

Definition 2.3. A subset A of a bitopological space (Y, τ1 ∨ τ2) is called a supremum-open set or simply
s-open set if A = U1 ∪U2, where U1 ∈ τ1 and U2 ∈ τ2.

Definition 2.4. A function f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2), is said to be a s-continuous, if the inverse image
of each s-open subset of Z is s-open in Y.

Definition 2.5. A function f : (Y, τ1, τ2) −→ (Z, δ1, δ2) is said to be double-continuous (d-continuous), if for
every U ∈ δ1 ∩ δ2, f−1(U) ∈ τ1 ∩ τ2.

Among the commonly studied topologies on the set C(Y,Z) of continuous functions, is the class of set-
set topologies which comprise of compact open topology, point open topology, closed open topology
and bounded open topology among others. Some of these topologies are equivalent under some given
conditions. For example the point open topology is equivalent to the closed open topology whenever the
Y is a T2 compact space, the point open topology is equivalent to the compact open topology provided all
compact subsets of of the space Y are finite sets, and the compact open topology on C(Y,Z) is equivalent to
point open topology provided Y is a discrete space [5].

For bitopological spaces (Y, τ1, τ2) and (Z, δ1, δ2), the following sets of continuous functions can be defined.
The set i−C(Y,Z) of all i-continuous functions for i = 1, 2, the set i, j−C(Y,Z) of all (i, j)-continuous functions
for i, j = 1, 2 and i , j, the set s − C(Y,Z) of all s-continuous functions, the set p − C(Y,Z) of all pairwise
continuous functions and the set d − C(Y,Z) of all double continuous functions.

Definition 2.6. The sets of the form S(U,V) = { f ∈ C(Y,Z) : f (U) ⊂ V} for U open in Y and V open in Z,
defines the subbasis for the open-open topology τ on the set C(Y,Z) [5]. If U is a compact subset, then
S(U,V) defines the subbasis for compact open topology τ on C(Y,Z) [1].

Definition 2.7. The sets of the form S(y,V) = { f ∈ C(Y,Z) : f (y) ∈ V} for y ∈ Y and V open in Z, defines the
subbasis for the point open topology τ on the set C(Y,Z).

From the above definitions, the following definitions are introduced.

Definition 2.8. The sets of the form S(U,V)i = { f ∈ i − C(Y,Z) : f (U) ⊂ V} for U open in Y, V open in Z,
defines the subbasis for the open-open topology on the set i − C(Y,Z) for i = 1, 2.
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Definition 2.9. The sets of the form S(U,V)(i, j) = { f ∈ (i, j) − C(Y,Z) : f (U) ⊂ V} for U open in Y, V open in
Z, defines the subbasis for the open-open topology on the set (i, j) − C(Y,Z) for i, j = 1, 2, i , j.

Definition 2.10. The sets of the form S(U,V)s = { f ∈ s − C(Y,Z) : f (U) ⊂ V} for U ∈ τ1 ∨ τ2 and V ∈ δ1 ∨ δ2,
defines the subbasis for the supremum open-open topology on the set s − C(Y,Z).

Definition 2.11. The sets of the form S(U,V)d = { f ∈ d − C(Y,Z) : f (U) ⊂ V} for U ∈ τ1 ∩ τ2 and V ∈ δ1 ∩ δ2,
defines the subbasis for the minimum open-open topology τ on the set d − C(Y,Z).

3. Continuous functions defined on bitopological spaces

In this section, s-continuous and d-continuous functions are introduced, relationships between s-continuous
functions, p-continuous functions, p1-continuous functions and i-continuous functions are studied.

Theorem 3.1. The function f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) is s-continuous if the function f : (Y, τ1, τ2) −→
(Z, δ1, δ2) is p-continuous.

Proof. Let the function f be p-continuous and let U1 ∈ δ1 and U2 ∈ δ2 such that U1 ∪U2 ∈ δ1 ∨ δ2. We need
to show that f−1(U1 ∪ U2) is open in τ1 ∨ τ2. Since f is p-continuous, then f−1(U1) ∈ τ1 and f−1(U2) ∈ τ2,
this implies that f−1(U1) ∪ f−1(U2) ∈ τ1 ∨ τ2. But f−1(U1) ∪ f−1(U2) = f−1(U1 ∪ U2), hence the function
f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) is s-continuous. �

Corollary 3.2. Let function f : (Y, τ1∨τ2) −→ (Z, δ1∨δ2) be s-continuous, then the function1 : (Y, τi) −→ (Z, δi)
is i continuous for i = 1, 2.

Proof. The function 1 is continuous as a submap of s-continuous function f . �

The converse of theorem 3.1 is not always true as shown by the following example.

Example 3.3. Let τ1 = {Y, φ, {a}, {b}, {a, b}} and τ2 = {Y, φ, {c}} be topologies on Y = {a, b, c}, and δ1 = {Z, φ, {3}}
and δ2 = {Z, φ, {2}} be topologies defined on Z = {1, 2, 3}. Let f : Y→ Z be defined by f (a) = 1, f (b) = 2, and
f (c) = 3, then the function f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) is s-continuous but not p-continuous on (Y, τ1, τ2).

Theorem 3.4. The function f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) is s-continuous if the function f : (Y, τ1, τ2) −→
(Z, δ1, δ2) is p1-continuous.

Proof. Let the function f be p1-continuous and let U1 ∈ δ1 and U2 ∈ δ2 such that U1 ∪U2 ∈ δ1 ∨ δ2. We need
to show that f−1(U1 ∪ U2) is open in τ1 ∨ τ2. Since f is p1-continuous, then f−1(U1) ∈ τ2 and f−1(U2) ∈ τ1,
thus f−1(U1) ∪ f−1(U2) ∈ τ1 ∨ τ2. It remains to put f−1(U1) ∪ f−1(U2) = f−1(U1 ∪ U2), hence the function
f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) is s-continuous. �

The converse of theorem 3.4 is not always true as shown by the following example.

Example 3.5. Let τ1 = {Y, φ, {a}, {b}, {a, b}} and τ2 = {Y, φ, {c}} be topologies on Y = {a, b, c}, and δ1 = {Z, φ, {2}}
and δ2 = {Z, φ, {3}} be topologies defined on Z = {1, 2, 3}. Let f : Y→ Z be defined by f (a) = 1, f (b) = 2, and
f (c) = 3, then the function f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) is s-continuous but not p1-continuous.

Proposition 3.6. Let the function f : (Y, τ1, τ2) −→ (Z, δ1, δ2) be p-continuous, then the function 1 : (Y, τ1 ∧

τ2) −→ (Z, δ1 ∧ δ2) is d-continuous.

Proof. The function 1 is continuous as a submap of p-continuous function f . �

Proposition 3.7. Let the function f : (Y, τ1, τ2) −→ (Z, δ1, δ2) be p1-continuous, then the function 1 : (Y, τ1 ∧

τ2) −→ (Z, δ1 ∧ δ2) is d-continuous.

Proof. The function 1 is continuous as a submap of p1-continuous function f . �

Proposition 3.8. Let the function f : (Y, τ1 ∨ τ2) −→ (Z, δ1 ∨ δ2) be s-continuous, then the function 1 :
(Y, τ1 ∧ τ2) −→ (Z, δ1 ∧ δ2) is d-continuous.

Proof. The function 1 is continuous as a submap of s-continuous function f . �
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4. Continuous functions defined on function spaces

In this section, subbasis for open-open topologies on sets s − C(Y,Z), p − C(Y,Z), 1 − C(Y,Z), 2 − C(Y,Z),
(1, 2) − C(Y,Z) and (2, 1) − C(Y,Z) are defined, giving rise to the function spaces s − Cτ(Y,Z), p − Cω(Y,Z),
1−Cς(Y,Z), 2−Cζ(Y,Z), (1, 2)−Cϕ(Y,Z) and (2, 1)−Cξ(Y,Z). Functional relationships between these function
spaces are studied. All topologies here are assumed to be open-open topologies unless specified.

Proposition 4.1. Let f : (Y, τ2) −→ (Y, τ1), 1 : (Z, δ1) −→ (Z, δ2) and h : (Y, τ1) −→ (Z, δ1) be open and
continuous functions. Then the function µ : 1 − Cς(Y,Z) −→ 2 − Cζ(Y,Z) defined by ρ(1, f )(h) = 1 ◦ h ◦ f is
continuous.

Proof. Let S(U,V)2 be open in 2 − Cζ(Y,Z), then 1 ◦ h ◦ f ∈ 2 − Cζ(Y,Z). Now µ−1(S(U,V)2)={h ∈ 1 − C(Y,Z) :
h( f (U)) ⊂ 1−1(V) f or U ∈ τ2 and V ∈ δ2}=S( f (U), 1−1(V))1, which is open in 1 − Cς(Y,Z). �

Proposition 4.2. Let f : (Y, τ2) −→ (Y, τ1) and h : (Y, τ1) −→ (Z, δ1) be open and continuous functions. Then
the function % : 1 − Cς(Y,Z) −→ (2, 1) − Cξ(Y,Z) defined by % f (h) = h ◦ f is continuous.

Proof. Let S(U,V)2,1 be open in (2, 1) − Cξ(Y,Z), then h ◦ f ∈ (2, 1) − Cξ(Y,Z). Now %−1(S(U,V)2,1)={h ∈
1 − C(Y,Z) : h( f (U)) ⊂ V for U ∈ τ2 and V ∈ δ1}=S( f (U),V)1, which is open in 1 − Cς(Y,Z). �

Proposition 4.3. Let 1 : (Z, δ1) −→ (Z, δ2) and h : (Y, τ1) −→ (Z, δ1) be open and continuous functions. Then
the function ω : 1 − Cς(Y,Z) −→ (1, 2) − Cϕ(Y,Z) defined by ω1(h) = 1 ◦ h is continuous.

Proof. Let S(U,V)1,2 be open in (1, 2) − Cϕ(Y,Z), then 1 ◦ h ∈ (1, 2) − Cϕ(Y,Z). The set ω−1(S(U,V)1,2)={h ∈
1 − C(Y,Z) : h(U) ⊂ 1−1(V) for U ∈ τ1 and V ∈ δ2}=S(U, 1−1(V))1 is open in 1 − Cς(Y,Z). �

Proposition 4.4. Let f : (Y, τ2) −→ (Y, τ1), 1 : (Z, δ1 −→ (Z, δ2) and h : (Y, τ1)→ (Z, δ1) be open and continuous
functions. Then the following functions are continuous;

(i) α : (2, 1) − Cξ(Y,Z) −→ 1 − Cς(Y,Z) defined by α(h ◦ f ) = h f

(ii) β : 2 − Cζ(Y,Z) −→ (1, 2) − Cϕ(Y,Z) defined by β(1 ◦ h ◦ f ) = (1 ◦ h) f

Proof. (i) Let U be open in τ2 and V be open in δ1, then S( f (U),V)1 is open in 1 − Cς(Y,Z). Now
α−1S( f (U),V)1={(h ◦ f ) ∈ (2, 1) − C(Y,Z) : h( f (U)) ⊂ V,U ∈ τ2 and V ∈ δ1}={(h ◦ f ) ∈ (2, 1) − C(Y,Z) :
(h ◦ f )(U) ⊂ V,U ∈ τ2 and V ∈ δ1}=S(U,V)2,1, which is open in (2, 1) − Cξ(Y,Z).
(ii) Let U be open in τ2 and V be open in δ2, then S( f (U),V)1,2 is open in (1, 2) − Cϕ(Y,Z). Now
β−1S( f (U),V)1,2={(1 ◦ h ◦ f ) ∈ 2 − C(Y,Z) : 1(h( f (U))) ⊂ V,U ∈ τ2 and V ∈ δ2}={(1 ◦ h ◦ f ) ∈ 2 − C(Y,Z) :
(1 ◦ h ◦ f )(U) ⊂ V,U ∈ τ2 and V ∈ δ2}=S(U,V)2, which is open in 2 − Cζ(Y,Z). �

Proposition 4.5. Let f : (Y, τ2) −→ (Y, τ1), 1 : (Z, δ1 −→ (Z, δ2) and h : (Y, τ1)→ (Z, δ1) be open and continuous
functions, then the function β◦µ◦α : (2, 1)−Cξ(Y,Z) −→ (1, 2)−Cϕ(Y,Z) defined by (β◦µ◦α)1(h◦ f ) = (1◦h) f
is continuous.

Proof. The function β ◦ µ ◦ α is a composite function of continuous functions defined in proposition 4.4 (i),
proposition 4.1 and proposition 4.4 (ii). �

Theorem 4.6. Let ς be compact open topology on 1 − C(Y,Z), Y be a regular and locally compact space, Z
a Hausdorff space and S(U,V)1 be compact subset of 1 − Cς(Y,Z), then the function T : C(1 − Cς(Y,Z), 2 −
Cζ(Y,Z)) × C(2 − Cζ(Y,Z), (1, 2) − Cϕ(Y,Z)) → C(1 − Cς(Y,Z), (1, 2) − Cϕ(Y,Z)) is continuous with respect to
closed open topology.

Proof. To prove this theorem, we consider the following lemma by Willard [4].
In a regular space, if F is compact, U open and F ⊂ U, then for some open set V, F ⊂ V ⊂ V ⊂ U.
Let (S(U,V)1,S(U,V)1,2) be neighbourhood of ω in C(1 − Cς(Y,Z), (1, 2) − Cϕ(Y,Z)), then from proposi-
tion 4.4 (ii), β−1(S(U,V)1,2 is open in 2 − Cζ(Y,Z). Now, µ(S(U,V)1) ⊂ β−1(S(U,V)1,2. Since µ(S(U,V)1) is
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compact, then by the above lemma, there exist an open set S(A,B)2 such that µ(S(U,V)1) ⊂ S(A,B)2 ⊂

S(A,B)2 ⊂ β
−1(S(U,V)1,2). This implies that µ ∈ (S(U,V)1,S(A,B)2) and β ∈ (S(A,B)2,S(U,V)1,2). Therefore

T((S(U,V)1,S(A,B)2), (S(A,B)2,S(U,V)1,2)) ⊂ (S(U,V)1,S(U,V)1,2) implying that the function T is continu-
ous. �

Theorem 4.7. The function % : 1−Cς(Y,Z) −→ (2, 1)−Cξ(Y,Z) defined by % f (h) = h◦ f is a homeomorphism.

Proof. Let h1 and h2 be functions in 1−Cς(Y,Z), then % f (h1) = h1◦ f and % f (h2) = h2◦ f . Suppose % f (h1) = % f (h2),
then h1 ◦ f = h2 ◦ f , implying that h1 = h2, hence % f is a 1-1 function. The function % f is an onto function since
for any h ◦ f ∈ (2, 1)−Cξ(Y,Z) their exist the function h ∈ 1−Cς(Y,Z) and from proposition 4.2, % f (h) = h ◦ f
is open and continuous. Continuity of %−1

f follows from Proposition 4.4 (i). �

Proposition 4.8. The function j : 1 − Cς(Y,Z)→ s − Cτ(Y,Z) is continuous.

Proof. Let S(U,V)s be open in s−Cτ(Y,Z), then j−1(S(U,V)s) = { f ∈ s−C(Y,Z) : f (U) ⊂ V} = { f ∈ s−C(Y,Z) :
f |1−C(Y,Z)(U) ⊂ V} = S(U,V)1, which is open in 1 − Cς(Y,Z). �

Proposition 4.9. The function j : 2 − Cζ(Y,Z)→ s − Cτ(Y,Z) is continuous.

Proof. The proof is similar to that of Proposition 4.8. �
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ABSTRACT 
In this paper, p-splitting, p-admissible, s-splitting and s-admissible topologies on the sets p−C(Y, Z) and s−C(Y, Z) are 
defined and their properties explored. exponential functions are introduced in function spaces and s-splitting and s-
admissible topologies defined on s-C(Y, Z) compared using these mappings. 
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1. INTRODUCTION 
 
Let X, Y and Z be topological spaces, the set of all continuous functions from Y to Z is denoted by C(Y, Z). This set 
when given a topology τ forms the function space Cτ(Y,Z). For any function h : X × Y → Z which is continuous in Y for 
each fixed x ∈ X, there is an associated map h∗ : X → Cτ(Y,Z). The function h∗ is defined as follows, h∗(x) = hx, where        
hx(y) = h(x, y) for every y ∈ Y (Fox [3]). Arens and Dugundji [1] defines a topology τ defined on C(Y, Z) to be splitting, 
if the continuity of the mapping h implies the continuity of the mapping h∗. Topology τ defined on C(Y, Z) is said to be 
admissible, if the continuity of the mapping h∗ implies the continuity of the mapping h. The latter is also defined, if the 
evaluation mapping e: Cτ(Y, Z) × Y → Z defined by e(f, y) = f(y) is continuous. For the bitopological spaces (Y, τ1, τ2) 
and (Z, δ1, δ2) introduced by Kelly [4], the following sets of continuous functions have been defined. The set i−C(Y, Z) 
of all i-continuous functions for i=1,2, the set p−C(Y,Z) of all pairwise continuous functions and the set s−C(Y, Z) of all 
supremum continuous functions (Muturi et.al [6] and Dvalishvili [2]). In this paper, we generalize bitopological 
concepts to function spaces defined on bitopological space and introduce p-splitting, p-admissible, s-splitting and        
s-admissible topologies on the set p−C(Y, Z) and s−C(Y, Z). exponential functions are also defined on function spaces 
and and s-splitting and s-admissible topologies defined on the set s−C(Y, Z) compared. 
 
2. PRELIMINARIES 
 
The following definition are important in this work. 
 
Definition 2.1: (Pervin [5]). A function f : (Y,τ1,τ2) → (Z,δ1,δ2), is said to be pairwise continuous (p-continuous) if the 
induced functions f : (Y,τ1) → (Z,δ1) and f : (Y,τ2) → (Z,δ2) are continuous. 
 
Definition 2.2: (Muturi et al. [6]). A subset A of a bitopological space (Y,τ1∨τ2) is called a supremum-open set or 
simply s-open set if A = U1∪U2, where U1 ∈ τ1 and U2 ∈ τ2. 
 
Definition 2.3: (Muturi et al. [6]). A function f : (Y,τ1∨τ2) → (Z,δ1∨ δ2), is said to be s-continuous, if the inverse image 
of each s-open subset of Z is s-open in Y . 
 
Definition 2.4: The set of all pairwise continuous functions from the bitopological space (Y,τ1,τ2) to the bitopological 
space (Z,δ1,δ2) is denoted by p−C(Y,Z), and the set of all supremum continuous function from the bitopological space 
(Y,τ1 ∨ τ2) to the bitopological space (Z,δ1 ∨ δ2) is denoted by s−C(Y,Z). 
 
Definition 2.5: The sets of the form S((U,V),(A,B))p = {f ∈ p−C(Y,Z) : f(U) ⊂ V and f(A) ⊂ B} for U open in τ1, V open 
in δ1, A open in τ2 and B open in δ2, defines the subbasis for the open-open topology on the set p−C(Y,Z). 

Corresponding Author: N. E. Muturi*, 
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3. PAIRWISE SPLITTING AND PAIRWISE ADMISSIBLE TOPOLOGIES DEFINED ON THE SET          
    p−C(Y, Z) 
 
In this section, we explore pairwise splitting and pairwise admissible topologies defined on the set p−C(Y, Z). 
 
Proposition 3.1: The function h : (X, σ) × (Y, τ1, τ2) → (Z, δ1, δ2) is pairwise continuous in Y for each fixed x ∈ X, if the 
functions h : (X, σ) × (Y, τ1) → (Z, δ1) and h : (X, σ) × (Y, τ2) → (Z, δ2) are continuous in Y for each fixed x ∈ X. 
 
Proof: Let h : (X, σ) × (Y, τ1) → (Z, δ1) and h : (X, σ) × (Y, τ2) → (Z, δ2) be continuous functions in Y for each fixed       
x ∈ X, then the functions hx : (Y, τ1) → ( Z, δ1) and hx : (Y, τ2) → ( Z, δ2) are continuous. By definition of pairwise 
continuity, the function hx : (Y, τ1, τ2) → ( Z, δ1, δ2) is continuous for each x ∈ X. Since hx(y) = h(x, y) and                     
h(x) (y) = h(x, y), then hx(y) = h(x)(y), implying that the function h : (X, σ) × (Y, τ1, τ2) → (Z, δ1, δ2) is continuous in Y 
for each fixed x ∈ X.  
 
Proposition 3.2: The function h∗ : (X, σ) → p−Cω(Y, Z) is pairwise continuous, if the functions h∗ : (X, σ) → 1−Cς(Y, Z) 
and h∗ : (X, σ) → 2−Cζ(Y, Z) are continuous, where h : (X, σ)×(Y, τi) → (Z, δi) for i = 1,2. 
 
Proof: Let h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions. Then for each fixed x ∈ X, the 
functions hx : (Y, τ1) → (Z, δ1) and hx : (Y, τ2) → (Z, δ2) are continuous. By definition of pairwise continuity, the function     
hx : (Y, τ1, τ2) → (Z, δ1, δ2) is continuous for each x ∈ X. Since hx = h∗(x), then the function h∗ : (X, σ) → p−Cω(Y, Z) is 
continuous. 
 
From the above propositions, we introduce the following definitions. 
 
Definition 3.3: A topology ω on p−C(Y, Z) is said to be pairwise splitting (p-splitting) if the continuity of the functions 
h : (X, σ) × (Y, τ1) → ( Z, δ1) and h : (X, σ) × (Y, τ2) → ( Z, δ2) in Y for each fixed x ∈ X, implies that of                             
h∗ : (X,σ) → p−Cω(Y,Z). 
 
Definition 3.4: A topology ω on p−C(Y, Z) is said to be pairwise admissible (p-admissible) if the continuity of the 
functions h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) implies that of h : (X, σ) × (Y, τ1, τ2) → (Z, δ1, δ2) in Y for 
each fixed  x ∈ X. 
 
Theorem 3.5: Let h : (X, σ) × (Y, τ1) → (Z, δ1) and h : (X, σ) × (Y, τ2) → (Z, δ2) be continuous functions, then the 
compact open topology ω defined on p−C(Y, Z) is pairwise splitting. 
 
Proof: Let h : (X, σ)×(Y, τ1) → (Z, δ1) and h : (X, σ)×(Y, τ2) → (Z, δ2) be continuous functions in Y for each fixed x ∈ X, 
and let x0 ∈ X such that h∗(x0) ∈S((U, V)(A, B))p, where S((U, V)(A,B))p is open in p−C(Y, Z). Then h∗(x0) ∈ S(U, V)1 and 
h∗(x0) ∈ S(A, B)2, implying that x0 × U ⊂ h−1(V) and x0 × A ⊂ h−1(B). Since U and A are compact, then by tube lemma 
there exist an open set W neighbourhood of x0  such that W × U ⊂ h−1(V) and W × A ⊂ h−1(B), this implies that         
h∗(W) ⊂ S(U, V)1 and h∗(W) ⊂ S(A, B)2, implying further that h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) are 
continuous functions. By proposition 3.2, the function h∗ : (X, σ) → p−Cω(Y, Z) is continuous and by definition 3.3, 
topology ω is pairwise splitting on p−C(Y, Z).  
 
Theorem 3.6: Let h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions, then the compact open 
topology ω defined on p−C(Y, Z) is pairwise admissible for locally compact spaces (Y, τ1) and (Y, τ2). 
 
Proof: Let ς and ζ be compact open topologies on 1 ( , )C Y Z−   and 2 ( , )C Y Z−  respectively such that the evaluation 

functions :1 ( , )e C Y Z Y Zς− × →  and : 2 ( , )e C Y Z Y Zς− × →  are continuous. Let h∗ : (X, σ) → 1−Cς(Y, Z) and  
h∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions and i : (Y, τ1) → (Y, τ1) and i : (Y, τ2) → (Y, τ2) be identity functions, 
then e ◦ (h∗ × i) : (X, σ) × (Y, τ1) → (Z, δ1) and e ◦ (h∗ × i) : (X, σ) × (Y, τ2) → (Z, δ2) are continuous functions. By 
proposition 3.1, the function e◦(h∗×i) : (X, σ)×(Y, τ1, τ2) → (Z, δ1, δ2) is continuous in Y for each fixed x ∈ X and by 
definition 3.4, topology ω defined on p−C(Y, Z) is pairwise admissible.  
 
Remark 3.7: From theorem 3.5 and theorem 3.6, we conclude that τ on p−C(Y, Z) is p-splitting or p-admissible 
topology if ς and ζ are splitting or admissible topologies on 1−C(Y, Z) and 2−C(Y, Z) respectively. 
 
4. SUPREMUM SPLITTING AND SUPREMUM ADMISSIBLE TOPOLOGIES DEFINED ON THE SET          
    s-C(Y, Z) 
 
In this section, supremum splitting and supremum admissible topologies are introduced on the set s−C(Y, Z). 
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Definition 4.1: A topology τ on s−C(Y, Z) is said to be supremum splitting (s-splitting) if the continuity of the functions               
f : (X, σ) × (Y, τ1) → (Z, δ1) and f : (X, σ) × (Y, τ2) → (Z, δ2) in Y for each fixed x ∈ X, implies that of f ∗ : (X, σ) → 
s−Cτ(Y, Z). 
 
Definition 4.2: A topology τ on s−C(Y, Z) is said to be supremum admissible (s-admissible) if the continuity of the 
functions f ∗ : (X, σ) → 1−Cς(Y, Z) and f ∗ : (X, σ) → 2−Cζ(Y, Z), implies that of f : (X, σ) × (Y, τ1 ∨ τ2) → (Z,δ1∨ δ2) in Y 
for each fixed x ∈ X. 
 
Proposition 4.3: The function f : (X, σ) × (Y, τ1 ∨ τ2) → (Z, δ1 ∨ δ2) is continuous if the functions f : (X, σ) × (Y, τ1) →  
(Z, δ1) and f : (X, σ) × (Y, τ2) → (Z, δ2) are continuous. 
 
Proof: Let the functions f : (X, σ) × (Y, τ1) → (Z, δ1) and f : (X, σ) × (Y, τ2) → (Z, δ2) be continuous in Y for each fixed     
x ∈ X. then the associated functions fx : (Y,τ1) → (Z, δ1) and fx : (Y, τ2) → (Z,δ2) defined by fx(y) = f(x, y), are continuous 
∀x ∈ X. From theorem 3.1 [6], it follows that the function fx : (Y, τ1 ∨ τ2) → (Z, δ1 ∨ δ2) is s-continuous ∀x ∈ X. Since 
fx(y) = f(x, y) and f(x)(y) = f(x, y), then fx(y) = f(x)(y) and hence f : (X, σ)×(Y, τ1∨τ2) → (Z, δ1∨δ2) is continuous in Y for 
each fixed x ∈ X. 
 
Proposition 4.4: The function f ∗ : (X, σ) → s−Cτ(Y, Z) is continuous if the functions f ∗ : (X, σ) → 1−Cς(Y, Z) and                                      
f ∗ : (X, σ) → 2−Cζ(Y, Z) are continuous. 
 
Proof: Let f ∗ : (X, σ) → 1−Cς(Y, Z) and f ∗ : (X, σ) → 2−Cζ(Y, Z) be a continuous functions, then for the functions           
f : (X, σ)×(Y, τ1) → ( Z, δ1) and f : (X, σ) × (Y, τ2) → ( Z, δ2), the associated functions fx : (Y, τ1) → ( Z, δ1) and                       
fx : (Y, τ2) → (Z, δ2) defined by fx = f ∗(x), ∀x ∈ X are continuous. From theorem 3.1 [6], it follows that the function         
fx : (Y, τ1∨τ2) → ( Z, δ1∨ δ2) is s-continuous ∀x ∈ X. Since fx = f ∗(x), then the function f ∗ :(X,σ) → s−C(Y,Z) is 
continuous. 
 
Theorem 4.5: A compact open topology τ is s-splitting if the continuity of the functions f : (X, σ)×(Y, τ1) → (Z, δ1) and   
f : (X, σ)×(Y, τ2) → (Z, δ2) implies continuity of the function f ∗ : (X, δ) → s−Cτ(Y, Z). 
 
Proof: Let f : (X, σ)×(Y, τ1) → (Z, δ1) and f : (X, σ)×(Y, τ2) → (Z, δ2) be continuous functions in Y for each fixed x ∈ X. 
Then from proposition 4.3, the function f : (X, σ)×(Y, τ1∨τ2) → (Z, δ1∨δ2) is continuous. Let x0 ∈ X and S(U,V)s be open 
in s−Cτ(Y, Z), then f ∗(x0) ∈ S(U, V)s, implying that x0 × U ⊂ f −1(V). Since U is compact, then by tube lemma, there exist 
an open set W neighbourhood of x0 such that W × U ⊂ f −1(V). This implies that  f ∗(W) ⊂ S(U,V)s, implying further that  
f ∗ : (X, σ) → s−Cτ(Y, Z) is continuous functions. By definition 4.1, topology 𝜏 is s-splitting on s−C(Y, Z).  
 
Theorem 4.6: Let f ∗ : (X, σ) → 1−Cς(Y, Z) and f ∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions, then the compact open 
topology τ defined on s−C(Y, Z) is s-admissible for locally compact spaces (Y, τ1) and (Y, τ2). 
 
Proof: Let ς and ζ be compact open topologies on 1−C(Y, Z) and 2−C(Y, Z) respectively, and let f ∗ : (X, σ) → 1−Cς(Y,Z) 
and f ∗ : (X, σ) → 2−Cζ(Y, Z) be a continuous functions, then by proposition 4.4, the function f ∗ : (X, σ) → s−Cτ(Y, Z) is 
continuous. Let i : (Y, τ1 ∨ τ2) → (Y, τ1 ∨ τ2) be an identity function and let e : s−Cτ(Y, Z) × (Y, τ1∨ τ2) → (Z, δ1∨ δ2) be 
an evaluation mapping. Since τ is compact open topology, then the evaluation mapping e is continuous and the 
composite mapping e◦(f ∗×i) : (X, σ) × (Y, τ1 ∨ τ2) → ( Z, δ1 ∨ δ2) is also continuous in Y for each fixed x ∈ X. By 
definition 4.2, topology τ is s-admissible.  
 
Remark 4.7: From theorem 4.5 and theorem 4.6, we note that if ς and ζ are splitting or admissible topologies on 
1−C(Y,Z) and 2−C(Y,Z) respectively, then τ on s−C(Y,Z) is s-splitting or s-admissible topology. 

 
5. EXPONENTIAL MAPPINGS DEFINED ON FUNCTION SPACES 
 
Let (X, σ), (Z, δ1∨δ2) be arbitrary spaces and let (Y, τ1∨τ2) be locally compact Hausdorff space. 
 
Definition 5.1: Consider the exponential mapping Λ : C(X × Y,Z) → C(X,s − Cϕ(Y, Z)), defined by Λ(f)(x)(y) = f(x, y) 
for each f ∈ C(X × Y,Z), x ∈ X and y ∈ Y . A topology ϕ on s−C(Y, Z) is called  s-splitting topology if Λ is a continuous 
function with respect to ϕ. 
 
Definition 5.2: Consider the exponential mapping Λ−1 : C(X, s−Cϕ(Y, Z)) → C(X × Y,Z), defined by Λ−1((g)(x, y)) = 
g(x)(y) where g ∈ C(X, s−Cϕ(Y, Z)) for each (x, y) ∈ X × Y . A topology ϕ on s−C(Y, Z) is called s-admissible topology if 
the function Λ−1 is continuous with respect to ϕ. 
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Proposition 5.3: The function Λ−1 ◦ Λ : C(X × Y, Z) → C(X × Y, Z) is continuous. 
 
Proof: Observe that (Λ−1 ◦ Λ(f))(x, y) = Λ−1(Λ(f))(x, y) = Λ(f)(x)(y) = f(x, y). Implying that Λ−1◦Λ(f) = f, hence Λ−1◦Λ is 
an identity function. 
 
Proposition 5.4: The function Λ ◦ Λ−1 : C(X, s−Cϕ(Y, Z)) → C(X, s−Cϕ(Y, Z)) is continuous. 
 
Proof: Observe that (Λ◦Λ−1(f))(x)(y) = Λ(Λ−1(f))(x)(y) = Λ−1(f)(x, y) = f(x)(y). Implying that Λ ◦ Λ−1(f) = f, hence          
Λ ◦ Λ−1 is an identity function.  
 
Remark 5.5:  From proposition 5.3 and proposition 5.4, it follows that Λ is a homeomorphism. 
 
Proposition 5.6: The function i : C(X, s−Cϕ1(Y, Z)) → C(X, s−Cϕ2(Y, Z)) is continuous if and only if ϕ2 ⊂ ϕ1. 
 
Proof: The function i is continuous if and only if S(W, S(U,V )) ∈ ϕ2 implies that i−1(S(W, S(U,V ))) ∈ ϕ1, but i is an 
identity function, therefore i−1(S(W, S(U, V))) = S(W, S(U, V)). Hence i is continuous if and only if S(W, S(U, V)) ∈ ϕ2 
implies S(W, S(U, V)) ∈ ϕ1.  
 
Theorem 5.7: The following statements are true; 

(i) Let ϕ1 be s-splitting topology on s−C(Y, Z) and let ϕ2 ⊂ ϕ1, then ϕ2 is also s-splitting topology on s−C(Y, Z). 
(ii) Let ϕ1 be s-admissible topology on s−C(Y, Z) and let ϕ1 ⊂ ϕ2, then ϕ2 is also s-admissible topology on s−C(Y, Z). 
(iii) Let ϕ1 be s-splitting topology on s−C(Y, Z) and let ϕ2 be admissible topology on s−C(Y, Z), then ϕ1 ⊂ ϕ2. 

 
Proof: 

(i) Let ϕ1 be s-splitting topology, then by definition 5.1 the function Λ : C(X × Y, Z) → C(X,s−Cϕ1(Y, Z)), defined by 
Λ(f)(x)(y) = f(x, y) for each f ∈ C(X × Y, Z), x ∈ X and y ∈ Y , is continuous with respect to ϕ1. Let ϕ2 be any other 
topology such that ϕ2 ⊂ ϕ1, then by proposition 5.6, the function i : C(X, s−Cϕ1(Y, Z)) → C(X, s−Cϕ2(Y, Z)) is 
continuous. Now the composite function i ◦ Λ : C(X × Y, Z) → C(X, s−Cϕ2(Y, Z)) is continuous with respect to 
ϕ2, implying that ϕ2 is also s-splitting topology. 

(ii) Let ϕ1 be s-admissible topology, then by definition 5.2 the function Λ−1 : C(X, s−Cϕ1(Y, Z)) → C(X ×Y, Z) 
defined by Λ−1((g)(x, y)) = g(x)(y) where g ∈ C(X, s−Cϕ(Y, Z)) for each (x, y) ∈ X×Y , is continuous with respect 
to ϕ1. Let ϕ1 ⊂ ϕ2, then by proposition 5.6, the function i : C(X, s−Cϕ2(Y, Z)) → C(X, s−Cϕ1(Y, Z)) is continuous. 
Now the composite function Λ−1◦i : C(X, s−Cϕ2(Y, Z)) → C(X ×Y, Z) is continuous with respect to ϕ2. Hence ϕ2 is 
also s-admissible topology. 

(iii) Let ϕ1 be s-splitting topology, then by definition 5.1 the function Λ : C(X × Y, Z) → C(X, s−Cϕ1(Y, Z)), defined 
by Λ(f)(x)(y) = f(x, y) for each f ∈ C(X × Y, Z), x ∈ X and y ∈ Y, is continuous with respect to ϕ1. Let ϕ2 be           
s-admissible topology, then by definition 5.2 the function Λ−1 : C(X, s−Cϕ1(Y, Z)) → C(X × Y, Z) defined by 
Λ−1((g)(x, y)) = g(x)(y) where g ∈ C(X, s−Cϕ(Y, Z)) for each (x, y) ∈ X × Y, is continuous with respect to ϕ1. Now 
the composite function Λ◦Λ −1 : C((X, σ), s−Cϕ2(Y, Z)) → C((X, σ), s−Cϕ1(Y, Z)) is continuous by proposition 5.6, 
implying that ϕ1 ⊂ ϕ2.  
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Abstract

In this paper, we generalize separation axioms to the function space p−Cω(Y,Z) and study how they relate
to separation axioms defined on the spaces (Z, δi) for i = 1, 2, (Z, δ1, δ2), 1 − Cς(Y,Z) and 2 − Cζ(Y,Z). We
show that the space p − Cω(Y,Z) is pT◦, pT1, pT2 and pregular, if the spaces (Z, δ1) and (Z, δ2) are both T◦, T1,
T2 and regular respectively. The space p−Cω(Y,Z) is also shown to be pT◦, pT1, pT2 and pregular, if the space
(Z, δ1, δ2) is p − T◦, p − T1, p − T2 and p-regular respectively. Finally, the space p − Cω(Y,Z) is shown to be
pT◦, pT1, pT2 and pregular, if and only if the spaces 1 − Cς(Y,Z) and 2 − Cζ(Y,Z) are both T0, T1, T2, and only
if the spaces 1 − Cς(Y,Z) and 2 − Cζ(Y,Z) are both regular respectively.

Keywords: bitopological space, function space, separation axiom.
2010 MSC: 54A10, 54C35, 54D10, 54E55.

1. Introduction

The set of all continuous functions from a topological space Y to a topological space Z is denoted by
C(Y,Z). Several topologies have been defined on this set as seen in [3], [1] and [2]. The non empty set Y
when assigned two unique topologies τ1 and τ2, forms a bitopological space (Y, τ1, τ2) (see [5]). A number
of function spaces have been defined on sets of continuous functions between two bitopological spaces
(Y, τ1, τ2) and (Z, δ1, δ2), examples of such function spaces include; s−Cτ(Y,Z), p−Cω(Y,Z), 1−Cς(Y,Z) and
2 − Cζ(Y,Z) (see [8]).

Separation axioms allows one to separates points from points, points from closed sets and closed sets from
each other using open sets. These axioms play a critical role in topology in that, apart from characterizing
continuous mappings, they also provide restrictive conditions on which other topological properties and
structures can be defined on a given non empty set. Studies of separation axioms on function spaces are
covered in [1], [4] and [12]. Pairwise separation axioms have been introduced on bitopological spaces in
[5], while in [6] and [11], comparisons have been made between separation axioms defined on the spaces
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(Y, τ1) and (Y, τ2), (Y, τ1, τ2) and (Y, τ1 ∨ τ2). In this paper, we generalize separation axioms to the function
space p − Cω(Y,Z), and study how they relate to separation axioms defined on topological spaces (Z, δi) for
i = 1, 2, pairwise separation axioms defined on bitopological space (Z, δi, δ2), as well as separation axioms
defined on function spaces 1 − Cς(Y,Z) and 2 − Cζ(Y,Z).

2. Preliminaries

The following definitions are considered in this paper.

Definition 2.1. A function f : (Y, τ1, τ2) −→ (Z, δ1, δ2), is said to be pairwise continuous (p-continuous) or
τ1 − δ1 and τ2 − δ2 continuous, if the induced functions f : (Y, τ1) −→ (Z, δ1) and f : (Y, τ2) −→ (Z, δ2) are
both continuous (see [10]).

Definition 2.2. The collection S((U,V), (A,B))p = { f ∈ p − C(Y,Z) : f (U) ⊂ V and f (A) ⊂ B} of sets, for U
open in τ1, V open in δ1, A open in τ2 and B open in δ2, forms the subbasis for the open-open topology
ω on p − C(Y,Z) (the set of all pairwise continuous functions). If U and A are compact subsets of Y, then
S((U,V), (A,B))p forms the subbasis for compact open topology. The set of all pairwise continuous functions
endowed with topology ω is denoted by p − Cω(Y,Z) (see [9]) .

Definition 2.3. The space (Y, τ1, τ2) is said to be pairwise T◦ (p − T◦), if for each pair of distinct points of Y,
there is a τ1 open set or τ2 open set containing one of the points, but not the other (see [7]).

Definition 2.4. The space (Y, τ1, τ2) is said to be pairwise T1 (p−T1), if for each pair of distinct points x, y ∈ Y,
there is a τ1 open set U and a τ2 open set V, such that x ∈ U, y < U and x < V, y ∈ V (see [11]).

Definition 2.5. The space (Y, τ1, τ2) is said to be pairwise T2 (p−T2), if for two distinct points x, y ∈ Y, there
is a τ1 open set U and τ2 open set V, such that x ∈ U, y ∈ V and U ∩ V = φ (see [5]).

Definition 2.6. In the space (Y, τ1, τ2), τ1 is said to be regular with respect to τ2, if for each y ∈ Y and τ1
closed set F such that y < F, there exist τ1 open set U and τ2 open set V such that x ∈ U, F ⊂ V and U∩V = φ.
The space (Y, τ1, τ2) is said to be pairwise regular (p-regular), if it is both τ1 regular with respect to τ2 and
τ2 regular with respect to τ1 (see [5]).

Let (Y, τ1, τ2) and (Z, δ1, δ2) be bitopological spaces, and let U1 and U2 be open sets in τ1, V1 and V2 be open
sets in δ1, A1 and A2 be open sets in τ2 and B1 and B2 be open sets in δ2. Let pTi for i = 0, 1, 2 and pregular,
denote separation axioms defined on p − Cω(Y,Z), to differentiate them from pairwise separation axioms
defined on bitopological space (Y, τ1, τ2).

The following definitions are introduced.

Definition 2.7. A function space p−Cω(Y,Z) is said to be a pT◦-space, if for any two distinct functions f and
1 in p − C(Y,Z), there exist an open set S((U1,V1)(A1,B1))p = { f ∈ p − C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1}

neighborhood of f not containing 1, or S((U2,V2)(A2,B2))p = {1 ∈ p − C(Y,Z) : 1(U2) ⊂ V2 and 1(A2) ⊂ B2}

neighborhood of 1 not containing f .

Definition 2.8. A function space p − Cω(Y,Z) is said to be a pT1-space, if for any two distinct functions f
and 1 in p − C(Y,Z), there exist open sets S((U1,V1)(A1,B1))p = { f ∈ p − C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1}

neighborhood of f not containing 1, and S((U2,V2)(A2,B2))p = {1 ∈ p − C(Y,Z) : 1(U2) ⊂ V2 and 1(A2) ⊂ B2}

neighborhood of 1 not containing f .

Definition 2.9. A function space p − Cω(Y,Z) is said to be a pT2-space, if for any two distinct functions f
and 1 in p − C(Y,Z), there exist disjoint open sets S((U1,V1)(A1,B1))p = { f ∈ p − C(Y,Z) : f (U1) ⊂ V1 and
f (A1) ⊂ B1} and S((U2,V2)(A2,B2))p = {1 ∈ p − C(Y,Z) : 1(U2) ⊂ V2 and 1(A2) ⊂ B2} neighborhoods of f and
1 respectively.

Definition 2.10. A function space p−Cω(Y,Z) is said to be a pregular space, if for any two distinct functions f
and 1 in p−C(Y,Z) and a closed set S((U,V)(A,B) in p−C(Y,Z) such that 1 < S(U,V)(A,B), there exist disjoint
open sets S((U1,V1)(A1,B1))p = { f ∈ p − C(Y,Z) : f (U1) ⊂ V1 and f (A1) ⊂ B1} containing S((U,V)(A,B) and
S((U2,V2)(A2,B2))p = {1 ∈ p − C(Y,Z) : 1(U2) ⊂ V2 and 1(A2) ⊂ B2} neighborhood of 1.
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3. Comparison of separation axioms defined on the spaces p − Cω(Y,Z), (Z, δ1), (Z, δ2) and (Z, δ1, δ2)

Let P denote a topological property, If both the topological spaces (Z, δ1) and (Z, δ2), and both the function
spaces 1 − Cς(Y,Z) and 2 − Cζ(Y,Z) have the property P, then it will be denoted by b − P. In this section,
we establish the relationship between pT◦, pT1, pT2 and pregular separation axioms defined on the function
space p−Cω(Y,Z), and b−T◦, b−T1, b−T2 and b-regular separation axioms defined on the topological spaces
(Z, δ1) and (Z, δ2), as well as p − T◦, p − T1, p − T2 and p-regular separation axioms defined on bitopological
space (Z, δ1, δ2). We provide proof for pT2 and pregularity on p − Cω(Y,Z) whenever (Z, δ1) and (Z, δ2) are
b − T2 and b-regular spaces, and also pT◦, pT2 and pregularity on p − Cω(Y,Z), whenever (Z, δ1, δ2) is p − T0,
p − T2 and p-regular space. The proofs for the other separation axioms can be done in a similar manner.

Theorem 3.1. Let (Z, δ1) and (Z, δ2) be b − T2 spaces, then p − Cω(Y,Z) is a pT2 space.

Proof. Let f and 1 be unique functions in p−C(Y,Z) such that for every y ∈ Y, f (y) , 1(y), and let (Z, δ1) and
(Z, δ2) be b− T2 spaces. Then there exist disjoint open sets U1 ∈ δ1 and V1 ∈ δ1 and also U2 ∈ δ2 and V2 ∈ δ2
such that f (y) ∈ U1 and 1(y) ∈ V1, and also f (y) ∈ U2 and 1(y) ∈ V2 respectively. Now, the disjoint open sets
S(({y},U1)({y},U2))p and S(({y},V1)({y},V2))p in p − Cω(Y,Z), are neighbourhoods of f and 1 respectively in
the space p − Cω(Y,Z). Therefore, the space p − Cω(Y,Z) is a pT2 space. �

Theorem 3.2. Let the spaces (Z, δ1) and (Z, δ2) be b-regular, then p − Cω(Y,Z) with compact open topology
ω is a pregular space.

Proof. Let f and 1 be unique functions in p − C(Y,Z) such that ∀y ∈ Y f (y) , 1(y) and let S((Ui,Vi)(U j, (V j))
= { f ∈ p − C(Y,Z) : f (Ui) ⊂ Vi and f (U j) ⊂ V j)} for Ui ∈ τ1, Vi ∈ δ1, U j ∈ τ2 and V j ∈ δ2 for i, j = 1, 2, 3, 4....n
be the neighbourhood system for f . Since Ui and U j are compact, then both f (Ui) and f (U j) are also
compact, and since (Z, δ1) and (Z, δ2) are b-regular spaces, then there exist open sets Ai and B j in δ1

and δ2 respectively, for i, j = 1, 2, 3, 4....n, such that f (Ui) ⊂ Ai, f (U j) ⊂ B j, Ai ⊂ Vi and B j ⊂ V j. This
implies that S((Ui,Ai)(U j,B j)) ⊂ S((Ui,Ai)(U j,B j)) ⊂ S((Ui,Vi)(U j,V j)). Suppose that S((Ui,Ai)(U j,B j)) ⊂
S((Ui,Ai)(U j,B j)), let 1 < S((Ui,Vi)(U j,V j)), then it follows that 1 < S((Ui,Ai)(U j,B j)), implying further
that for some point y ∈ Y, 1(y) ∈ Ai

c and 1(y) ∈ B j
c. Thus, S(({y},Ai

c)({y},B j
c)) is a neighbourhood

system for 1 which does not intersect S((Ui,Ai)(U j,B j)). Since S((Ui,Ai)(U j,B j)) ⊂ S((Ui,Ai)(U j,B j)), then

S((Ui,Ai)(U j,B j)) ⊂ S((Ui,Vi)(U j,V j)). Therefore the sets
n⋂

i=1
S(({y},Ai

c)({y},B j
c)) and

n⋂
i, j=1

S((Ui,Vi)(U j,V j))

are disjoint open sets containing 1 and
n⋂

i=1
S((Ui,Ai)(U j,B j)) respectively, hence p − Cω(Y,Z) is a pregular

space. �

Theorem 3.3. Let (Z, δ1, δ2) be p − T◦ space, then p − Cω(Y,Z) is a pT◦ space.

Proof. Let f and 1 be unique functions in p − C(Y,Z) such that for every y ∈ Y, f (y) , 1(y), since (Z, δ1, δ2)
is a p − T◦ space, then there exist an open set U1 ∈ δ1 containing f (y) but not 1(y) or V2 ∈ δ2 containing
1(y) but not f (y). Suppose there exist an open set U1 ∈ δ1 containing f (y) but not 1(y), then by pairwise
continuity of f , we can find an open set U2 ∈ δ2 also containing f (y) but not 1(y). Suppose there exist an
open set V2 ∈ δ2 containing 1(y) but not f (y), then by pairwise continuity of 1, we can also find an open set
V1 ∈ δ1 containing 1(y) but not f (y). Either way, there exist an open set S(({y},U1)({y},U2))p in p − Cω(Y,Z),
neighbourhood of f not containing 1, or an open set S(({y},V1)({y},V2))p in p − Cω(Y,Z), neighborhood of 1
not containing f . Therefore, the space p − Cω(Y,Z) is a pT◦ space. �

Theorem 3.4. Let (Z, δ1, δ2) be totally disconnected p − T2 space, then p − Cω(Y,Z) is a pT2 space.

Proof. Let f and 1 be unique functions in p−C(Y,Z) such that for every y ∈ Y, f (y) , 1(y), since (Z, δ1, δ2) is a
totally disconnected p−T2 space, then there exist disjoint open sets U1 ∈ δ1 and V2 ∈ δ2 containing f (y) and
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1(y) respectively, such that U1 ∪V2 = Y. But since f and 1 are both τ1 − δ1 and τ2 − δ2 continuous, it follows
that there exist open sets U2 ∈ δ2 containing f (y) and V1 ∈ δ1 containing 1(y). Suppose U2 = V2

c
∈ δ2

and V1 = U1
c
∈ δ1. Now, V2

c
∪ U1

c = (V2 ∩ U1)c = (φ)c = Y, implying that U2 ∪ V1 = Y, Now, U2 ∩ V1 =
V2

c
∩ U1

c = (V2 ∪ U1)c = Yc = φ. Therefore the sets U2 and V1 are disjoint open sets, neighbourhoods of
f (y) and 1(y) respectively. Therefore the sets S(({y},U1)({y},U2))p and S(({y},V1)({y},V2))p in p−Cω(Y,Z) are
disjoint open sets, neighbourhoods of f and 1 respectively. Hence, p − Cω(Y,Z) is a pT2 space. �

Theorem 3.5. Let the space (Z, δ1, δ2) be pairwise regular, then p − Cω(Y,Z) is a pregular space.

Proof. Let f and 1 be unique functions in p − C(Y,Z) such that ∀y ∈ Y f (y) , 1(y) and let S((Ui,Vi)(U j, (V j))
= { f ∈ p − C(Y,Z) : f (Ui) ⊂ Vi and f (U j) ⊂ V j)} for Ui ∈ τ1, Vi ∈ δ1, U j ∈ τ2 and V j ∈ δ2 for i, j = 1, 2, 3, 4....n
be the neighbourhood system for f . Now, Ui and U j are both compact, therefore f (Ui) and f (U j) are
also compact. Since (Z, δ1, δ2) is pairwise regular space, then δ1 regularity with respect to δ2 implies that
there exist open sets B j in δ2 for j = 1, 2, 3, 4....n, such that f (U j) ⊂ B j and B j ⊂ V j. This implies that
S(U j,B j) ⊂ S(U j,B j) ⊂ S(U j,V j). Suppose that S(U j,B j) ⊂ S(U j,B j), let 1 < S(U j,V j), then it follows that
1 < S(U j,B j), implying further that for some point y ∈ Y, 1(y) ∈ B j

c. Thus, S({y},B j
c) is a neighbourhood

system for 1 which does not intersect S(U j,B j). Since S(U j,B j) ⊂ S(U j,B j), then S(U j,B j) ⊂ S(U j, (V j).

Therefore
n⋂

j=1
S({y},B j

c) and
n⋂

j=1
S(U j,B j) are τ2 − δ2 disjoint open sets neighbourhoods of 1 and

n⋂
i=1

S(U j,B j)

respectively. Now, δ2 regularity with respect to δ1 implies that there exist open sets Ai in δ1 for i = 1, 2, 3, 4....n,
such that f (Ui) ⊂ Ai and Ai ⊂ Vi. This implies that S(Ui,Ai) ⊂ S(Ui,Ai) ⊂ S(Ui,Vi). Suppose that
S(Ui,Ai) ⊂ S(Ui,Ai), let 1 < S(Ui,Vi), then it follows that 1 < S(Ui,Ai), implying further that for some point
y ∈ Y, 1(y) ∈ Ai

c. Thus, S({y},Ai
c) is a neighbourhood system for 1 which does not intersect S(Ui,Ai).

Since S(Ui,Ai) ⊂ S(Ui,Ai), then S(Ui,Ai) ⊂ S(Ui,Vi). Therefore
n⋂

i=1
S({y},Ai

c) and
n⋂

i=1
S(Ui,Vi) are τ1 − δ1

disjoint open sets, neighbourhoods of 1 and
n⋂

i=1
S(Ui,Ai) respectively. Let f ∈ S(Ui,Ai) and f ∈ S(U j,B j)

imply that f ∈ S((Ui,Ai), (U j,B j)), then
n⋂

i, j=1
S(({y},Ai

c)({y},B j
c)) and

n⋂
i, j=1

S((Ui,Vi)(U j,V j)) are disjoint open

sets neighbourhoods of 1 and
n⋂

i, j=1
S((Ui,Ai), (U j,B j)) respectively in p − Cω(Y,Z). Therefore p − Cω(Y,Z) is a

pregular space. �

4. Comparison of separation axioms defined on the spaces p − Cω(Y,Z), 1 − Cς(Y,Z) and 2 − Cζ(Y,Z)

The relationship between pT◦, pT1, pT2 and pregular separation axioms defined on the function space
p−Cω(Y,Z), and b−T◦, b−T1, b−T2 and b-regular separation axioms defined on function spaces 1−Cς(Y,Z)
and 2−Cζ(Y,Z), are established in this section. We provide proof for pT2 and pregular separation axioms on
p − Cω(Y,Z) whenever (Z, δ1) and (Z, δ2) are b − T2 and b-regular spaces, and also b − T2 property on (Z, δ1)
and (Z, δ2) whenever p − Cω(Y,Z) is a pT2 space. The proofs of the other separation axioms on the function
space p − Cω(Y,Z) can be done in a similar manner as that of pT2.

Theorem 4.1. The function space p − Cω(Y,Z) is a pT2-space, if and only if the function spaces 1 − Cς(Y,Z)
and 2 − Cζ(Y,Z) are b − T2-spaces.

Proof. Let f and 1 be unique functions in p−Cω(Y,Z) such that ∀y ∈ Y f (y) , 1(y), and let 1−Cς(Y,Z) be a T2
space such that S(U1,V1) and S(U2,V2) are disjoint open sets, neighbourhoods of f and 1 respectively. Also,
let 2 − Cζ(Y,Z) be a T2 space such that S(A1,B1) and S(A2,B2) are disjoint open sets, neighbourhoods f and
1 respectively. Now, pairwise continuity of f and 1 allows us to pick S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) :
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f (U1) ⊂ V1 and f (A1) ⊂ B1} and S((U2,V2)(A2,B2))p = {1 ∈ p − C(Y,Z) : 1(U2) ⊂ V2 and 1(A2) ⊂ B2} as
disjoint open sets in p − Cω(Y,Z), containing f and 1 respectively. Hence p − Cω(Y,Z) is a pT2 space.

Conversely, let p − Cω(Y,Z) be a pT2-space and let f and 1 be unique functions in p − Cω(Y,Z) such that
∀y ∈ Y f (y) , 1(y), then there exist two disjoint open sets S((U1,V1)(A1,B1))p = { f ∈ p−C(Y,Z) : f (U1) ⊂ V1
and f (A1) ⊂ B1} for U1 open in τ1, V1 open in δ1, A1 open in τ2 and B1 open in δ2, neighborhood of
f , and S((U2,V2)(A2,B2))p = {1 ∈ p − C(Y,Z) : 1(U2) ⊂ V2 and 1(A2) ⊂ B2} for U2 open in τ1, V2 open
in δ1, A2 open in τ2 and B2 open in δ2, neighborhood of 1. But S((U1,V1)(A1,B1))p = { f ∈ p − C(Y,Z) :
f (U1) ⊂ V1 and f (A1) ⊂ B1}={{ f ∈ p − C(Y,Z) : f (U1) ⊂ V1} and { f ∈ p − C(Y,Z) : f (A1) ⊂ B1}}. Now
{ f ∈ p − C(Y,Z) : f (U1) ⊂ V1} = { f ∈ 1 − C(Y,Z) : f (U1) ⊂ V1} = S(U1,V1), and { f ∈ p − C(Y,Z) : f (A1) ⊂
B1} = { f ∈ 2 − C(Y,Z) : f (A1) ⊂ B1} = S(A1,B1). These two sets are open and are both neighborhood of f
in 1 − Cς(Y,Z) and 2 − Cζ(Y,Z) respectively. In a similar manner, S(U2,V2) and S(A2,B2) are both open set,
neighborhood of 1 in 1 − Cς(Y,Z) and 2 − Cζ(Y,Z) respectively. Now, S(U1,V1) and S(U2,V2) in 1 − Cς(Y,Z)
are disjoint open neighborhoods of f and 1 respectively. Also, S(A1,B1) and S(A2,B2) in 2 − Cζ(Y,Z) are
disjoint open neighbourhood of f and 1 respectively. Therefore, 1 − Cς(Y,Z) and 2 − Cζ(Y,Z) are b − T2
spaces. �

Theorem 4.2. The function space p−Cω(Y,Z) is a pregular space, if 1−Cς(Y,Z) and 2−Cζ(Y,Z) are b-regular
spaces.

Proof. let f and 1 be unique functions in p − Cω(Y,Z) such that ∀y ∈ Y f (y) , 1(y), and let 1 − Cς(Y,Z)
and 2 − Cζ(Y,Z) be b-regular. Then for a closed set S(U1,V1) in 1 − Cς(Y,Z) such that f < S(U1,V1), there
exist disjoint open sets S(A1,B1) and S(C1,D1) such that f ∈ S(A1,B1) and S(U1,V1) ⊂ S(C1,D1). Similarly,
for a closed set S(U2,V2) in 2 − Cζ(Y,Z) such that f < S(U2,V2), there exist disjoint open sets S(A2,B2) and
S(C2,D2) such that f ∈ S(A2,B2) and S(U2,V2) ⊂ S(C2,D2). Since f is pairwise continuous, we have that
f ∈ S((A1,B1)(A2,B2)). Now, suppose 1 ∈ S(U1,V1) ⊂ S(C1,D1) and 1 ∈ S(U2,V2) ⊂ S(C2,D2) imply that
1 ∈ S((U1,V1)(U2,V2)), then 1 ∈ S((U1,V1)(U2,V2)) ⊂ S((C1,D1)(C2,D2)). Now S((U1,V1)(U2,V2)) is a closed
subset of p − Cω(Y,Z) not containing f , and S((C1,D1)(C2,D2)) and S((A1,B1)(A2,B2)) are disjoint open sets
containing S((U1,V1)(U2,V2)) and f respectively. Therefore p − Cω(Y,Z) is a pregular space. �

5. Conclusion

The function space p − Cω(Y,Z) is a pT◦, pT1, pT2 and pregular space, if the topological spaces (Z, δ1) and
(Z, δ2) are b − T◦, b − T1, b − T2 and b-regular spaces, and also if the bitopological space (Z, δ1, δ2) is p − T◦,
p−T1, p−T2 and p-regular space. The function space p−Cω(Y,Z) is also pT◦, pT1, pT2 and pregular, if and only
if the function spaces 1−Cς(Y,Z) and 2−Cζ(Y,Z) are b−T◦, b−T1 and b−T2, and only if the function spaces
1 − Cς(Y,Z) and 2 − Cζ(Y,Z) are b-regular spaces. The set C(Y,Z) can be expressed as a cartesian product∏
y∈Y

Zy. Since the product of normal spaces need not be normal, it follows that the space p − Cω(Y,Z) need

not be normal whenever (Z, δ1) and (Z, δ2) are both normal spaces, and also whenever (Z, δ1, δ2) is pairwise
normal. The results so far obtained can be extended to the space s − Cτ(Y,Z) and be used to characterize
compactness in the space s − Cτ(Y,Z).

—————————————————————-
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