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Abstract

The aim of this project is to �nd the numerical solution of one dimensional

,steady incompressible Burgers’ equation by using the Runge-Kutta method.

We shall solve the equation by �rst converting the non-linear Navier Stokes

equation into the non-linear viscous burgers equation by using the Or-

lowski and Sobczyk transformation(OST).After solving we will represent

the solutions graphically.

In chapter one,we look at the historical background of Burgers’Equations(BE)

and its applications, ways in which �uid motion is described how �uid mo-

tion is classi�ed.We will also consider the concept of Dimensional Analysis

with the main focus on similarity and dimensionless numbers.We shall

derive some common non-dimensional numbers as well. In this chapter ,we

consider the equations that govern �uid �ow,the momentum equations and

the Navier -Stokes equations (NSE) in the various coordinate systems and

their derivations.

In chapter two, we will look at some literature review on Burgers’Equations.

We shall look at the methodology in chapter three with emphasis on the

Orlowski and Sobczyk transformation(OST)as a method of transforming

the Navier-Stokes equation to Burgers’ Equation.We will also discuss some

types of Runge-Kutta methods.

Finally chapter four we will solve the one-dimensional Burgers’Equation

for steady incompressible �ow numerically using fourth order Runge-Kutta

method(RK4) and represent the solutions graphically.
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1 INTRODUCTION

The Burgers’ equations are an example of non-linear partial di�erential
equations which are obtained by reducing the Navier- stokes Equations
by using the Cole-Hopf transformation.They are model equations that
describe the interaction of convection and di�usion.They are non-linear in
nature since they possess the advection and di�usion terms.There are no
general methods of solving these equations analytically.

These equations arise from the Navier- Stokes equations without the pres-
sure term.They are rare equations whose solutions can be obtained analyt-
ically or numerically.Analytical solutions are important since they verify
the accuracies of numerical solutions.
In this paper we shall solve one- dimensional incompressible steady flow
Burgers’ equation numerically.

1.1 Historical Background

The Burgers’ equation is a special form of the Navier-Stokes and the con-
tinuity equations which was introduced by Bateman who first studied it
in his article 1939−1965, where he used it as a mathematical model on
the study of turbulence theory. This equation is obtained by simplifying
the Navier-Stokes (NSE),by dropping the pressure term.It is a fundamental
partial di�erential equation in fluid mechanics. The Burgers’ Equation (BE)
is also referred to as the non-linear di�usion equation a�er J.M Burgers.
The full solution of one dimensional Burgers’ Equation was found by Cole
and Hopf. The general form of the BE is

ut +uux = ν∇
2uxx,

where u(x,t)represents the velocity the subscripts x and t denote partial
derivatives and ν is the coe�icient of kinematic viscosity. The viscid BE
represents advective non-linearlity and a Reynolds number defined from
the di�usion term. This can be wri�en as;

ut +uux =
1

Re
uxx.



2

Whereas the inviscid BE is;

ut +uux = 0.

1.1.1 Applications of Burgers’Equation

The solution of Burgers’ equations are used in various fields of pure mathe-
matics, applied mathematics and physical science. In cosmology,it is used
to approximate and understand the formation and distribution of ma�er on
large scales. In hydrodynamics,it’s used as a standard model of turbulence
used to study propagation of nonlinear waves and shock formation. The
other uses are in describing processes in gas dynamics,nonlinear accos-
tics,heat conduction,plasma physics and as a model for physical events
like elastic and hydrodynamic waves. In order to solve the one dimen-
sional Burgers’ equations which are non-linear in nature,A.Orlowski and
K.Sobczyk presented a transformation of inhomogeneous Burgers’ equa-
tion to homogeneous form,in 1989. We shall use the Orlowski and Sobczyk
transformations (OST) to reduce the non-linear NSE equation to non -linear
BE and then solve it.

1.2 Ways of Describing Fluid Motion

There are two ways of describing fluid motion:

(i) Lagrangian: In this method the position and the velocity of individual
particles is tracked.This motion is based on Newton’s laws of motion.This
method is di�iculty to use practically since;

a. the fluid consists of very many molecules,

b. interaction between molecules are hard to describe or model.

(ii) Eulerian: This method gives the description of the flow field in terms
of the velocity,acceleration,pressure ,temperature and e.t.c as functions
of position and time . Its a�ention is based on a fixed point in space. It’s
useful since we consider the flow in a particular region and not based
on individual particles.
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1.2.1 Streamlines,pathlines and streaklines

These are lines which are used to describe fluid motion. Streamlines or
lines of flow are curves drawn in a fluid such that the tangent at each point
at any time is in the direction of fluid velocity at that point. Pathlines are
curves drawn in a fluid such that individual fluid particle travels along this
curve. Streaklines are lines formed by all particles passing a given point in
the flow.

1.3 Classification of Fluid Flow

There are various classifications of fluid flow namely;

• Kinematic and Dynamic �ow �elds

In kinematic flow field,we consider the velocity field alone whereas in
dynamic flow field we consider the forces acting on the particles.

• Uniform and Non-uniform Flow

A flow is said to be uniform if the flow velocity is constant i.e if the
velocity is the same in magnitude and direction at every point or is con-
stant with space whereas it’s non-uniform if the flow velocity changes
at a given instant and at every point or the flow changes over space.

• Steady and Unsteady Flow

The flow is said to be steady if the fluid flow conditions e.g veloc-
ity,pressure,temperature,applied magnetic field and cross-sectional area
are independent of time while it’s said to be unsteady if the flow vari-
ables depend on time.

• Steady Uniform Flow and non-uniform Flow

In steady uniform flow the conditions do not change with position in the
stream or with time ,whereas in steady non-uniform flow the conditions
change from point to point in the stream but they don’t change with
time.

• Unsteady Uniform Flow and Unsteady Non-uniform �ow

For unsteady uniform flow,at a given instant in time the conditions at
every point are constant but they change with time while for unsteady
non-uniform flow,the conditions vary from point to point and also they
vary with time at every point.
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• Laminar and Turbulent �ow

Laminar flow refers to the motion of particles in an orderly manner.In
this flow,the fluid particles move in a straight line parallel to the bound-
ary walls and the fluid particles do not encounter a disturbance along
their path. Turbulence flow refers to a disorderly manner of flow of
particles with di�erent velocities and energies.This occurs if the fluid
particle encounter a disturbance suddenly while flowing.

• Internal and External Flows

Internal flows are flows which are completely bounded by solid sur-
faces.They include flows through pipes,ducts,nozzles,di�users,sudden
expansions and contractions,valves and fi�ings. Open channel flow is
the internal flow of liquids in which the duct does not fully flow i.e where
there is a free surface subject to a constant pressure.Examples of such
flows are flows in rivers,irrigation ditches and aqueducts. External flows
are flows over bodies immersed in an unbounded fluid.They include
flows over spheres and streamlined bodies(e.g airfoils,auto mobiles and
airplanes)

1.3.1 Other Classifications of Fluid Flow

Fluid flow can also be classified in terms of a nondimensional parameter
called the the Mach(Ma) number,which is given as;

Ma =
V
c
,

where, V is the representative velocity and c is the speed of sound in a fluid.
If;

• Ma < .3 the flow is incompressible

• Ma > .3 the flow is compressible

• Ma = 1 the flow is sonic

• Ma > 1 the flow is supersonic
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1.4 DIMENSIONAL ANALYSIS

Dimensional Analysis o�ers a method which can be used to reduce a
complex physical problem to a simplest and most economical form,that is,
it involves simplification of physical problems by appealing to dimensional
homogeneity to reduce the number of relevant variables. It’s principle use
is to reduce from a study of the dimensions of variables in any physical
system certain limitations on the form of any possible relationship between
close variables. At it’s heart is the concept of similarity. Dimensional
analysis is useful for the following purposes:

• presenting and interpreting experimental data,

• checking equations,

• physical modelling,

• establishing the relative importance of a particular physical phenomena,

• a�acking problems not amenable to a direct theoretical solution and

• reducing the number of appropriate parameters for the problem in a
question by neglecting some in order to simplify it hence easing it’s
solution.

1.4.1 Non-dimensionalization

This is the process of writing di�erential equations in a non-dimensional
form by using dimensionless variables which are obtained through proper
use of characteristic scales.

1.4.2 Non-dimensionalization procedure

The dimensional variable is transformed into a non-dimensional one by
dividing it by a quantity composing of one or more physical properties
having the same dimensions as the original one. For example, spatial coor-
dinates are divided by a characteristic length;velocity by a characteristic
velocity;pressure by a reference dynamic pressure and time by the ratio of
the characteristic length to a reference velocity.
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Types of Similarity

There are three types of similarity,namely;

(i)Geometrical Similarity:
Two systems are said to be geometrically similar if the ratio of corre-
sponding lengths in the two systems is constant so that one is a scale
model of the other.

(ii) Dynamical similarity:
Two systems are said to be dynamically similar if the ratio of the several
forces acting on corresponding fluid elements are the same in both
systems.

(iii) Kinematic similarity:
Systems are kinematically similarity if the ratio of all the corresponding
velocities are the same.

1.4.3 Non-Dimensional Numbers

These are quantities describing certain physical systems with no units
a�ached to them since they are ratios. They don’t change regardless of the
type of unit of measurement used.

1.4.4 Derivation Of common Non-Dimensional Numbers

The derivation of these numbers is based on dimensional analysis as applied
to fluid dynamical problems and by considering forces on a small volume
of fluid,given by the ratio of inertial force to resisting force.
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Inertial Force

To derive this force ,let L be the characteristic length in the system to be
considered and t be the typical time. Then,

mass of the element,m = ρL3

acceleration,a =
L
t2

Inertial force = mass×acceleratio

= ρL3× L
t2

= ρL2× (
L2

t
)2

But velocity,v =
L
t
.

Therefore,
inertial force = ρL2V 2.

Reynolds Number ,Re

If the motion is controlled by the viscous resistance ,then the ratio of the
inertial force to the viscous force is the same i.e.

viscous force = viscous shear stress×area

But
velocity gradient =

v
L

Therefore,

viscous force = µ
v
L
×L2

= µvL,
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Thus,

Re =
inertial force
viscous force

=
ρL2v2

µvL
,

where ρ is the density of the fluid and µ is the coe�icient of dynamic viscos-
ity, Re= LV

ϑ
where ϑ = µ

ρ
is the coe�icient of kinematic friction L is the characteristic length

and v is the mean fluid velocity. The Reynolds number can be used to de-
termine whether the flow is lamina or turbulent. Laminar flow occurs when
Re < 500000 while turbulent flow occurs when Re > 500000.

Froude Number,Fr

This occurs in the case of free-surface flows. It’s a measure of the resistance
of partially immersed objects moving through fluids. It’s given as the ratio
of the inertial force to the gravitational force. The resisting force in this
case is due to gravity.

Gravitational force = mass× acceleration due to gravity

= ρL3×g,

therefore,

Fr =
inertial force

gravitational force

=
ρL2v2

ρL3g

=
v√
Lg

High froude number implies higher fluid resistance.For free surface flow ;
the nature of the flow is determined by the value of the Froude number i.e;
Fr > 1-flow is supercritical,
Fr < 1-flow is subcritical,
Fr = 1 -flow is critical.
The flow at the interface between two regions is hydraulic jump.
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Mach number,Ma

This occurs in the case of compressible flows and is given as the ratio
of inertial force to the compressibility force or elastic force. For elastic
compression of a fluid,the elastic force depends on the bulk modulus K of
the fluid, i.e.

elastic force = KL2

Thus,

Ma =
inertial force

compressibility force

=
ρV 2L2

KL2

=
v√
K
ρ

.

Alternatively,the Mach number can be given as the ratio of the object’s
speed to the speed of sound in that medium,when it travels through any
medium.
This concept is used mostly to describe the speed of an aircra�.

Ma =
velocity of flow

velocity of sound
.

Flights are classified using mach numbers as ;

(i) sonic if Ma = 1

(ii) subsonic if Ma < 1

(iii)supersonic if Ma > 1

(iv)transonic if 0.8 < Ma < 1.3
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(v)hypersonic if Ma > 5

Weber Number,We

This occurs in cases of surface tension e�ects and is defined as the ratio of
the inertial force to that of surface tension.

surface tension = σL,

where σ is the surface tension per unit length. Thus

We =
inertial force

surface tension force

=
ρV 2L2

σL

=
ρV 2L

σ
.

This number is useful in droplet breakup and in thin film flow.It’s also useful
in analyzing multi phase flows involving interface between two di�erent
fluid flows.

Peclet number,Pe

In case of heat transfer it’s applied in forced convection and is given as the
ratio of heat transfer by convection to conduction.

Pe =
ρcpV L

k
= RePr.

or as the product of the Reynold number and Prandtl number.At low Pe,
heat transfer dominates by conduction ,as Pe increases convection gains
until it dominates at Pe = 1000. In case of mass transfer ,the Peclet number
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is given by the ratio of bulk mass transfer to di�usive mass transfer.

Pe =
V L
D

= ReSc

or as the product of the Reynolds number and the Schmidt number.
Large Re shows low dependence of the flow on downstream locations and
high dependence on upstream locations.

1.4.5 Equations Governing Fluid Flow

The equations governing fluid flow are;

• the equation of continuity,

• the equation of momentum,

• the energy equations.

However,in this paper we shall consider the first two equations.

The equation of continuity (equation of mass conservation)

This equation relates the flow field variables at a point in terms of the fluid
density ρ and fluid velocity vector,q

1.4.6 Deriving equation of continuity in cartesian coordinate system

Consider an infinitesmal element as shown in figure 8 below,as a small
volume in the xy-plane with a depth dz. Let us assume that the flow is in
the xy-plane and not in the z direction.

Then ,

change in mass inside the element = mass flow into the element−
mass flow out of the element
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Figure 1. Fluid Flow within a Parallelopiped

Let ρ be the density of the fluid, then the mass flow into the face AB1CD

= ρvdxdz, (1)

mass flow out of face BC1D1A1

= ρv+
∂ρv
∂y

dydz, (2)

Net mass flow through the two faces

= ρvdxdz− (ρv+
∂ (ρv)

∂y
dydz). (3)

Similarly mass flow into the face DCA1B

= ρudydz (4)
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mass flow out of the face AB1D1C1

= (ρu+
∂ (ρu)

∂x
)dydz, (5)

net mass flow through the two faces

= ρudydz− (ρu+
∂ (ρu)

∂x
)dydz, (6)

change in mass inside the element

=
∂ (ρdxdydz)

∂ t
. (7)

Therefore combining (3), (6) and (7) we get

ρudydz− (ρu+
∂ (ρu)

∂x
dydz+ρvdxdz− (ρv+

∂ (ρv)
∂y

)dxdz =
∂ (ρdxdydz)

∂ t
(8)

(8)simplifies to

∂ (ρu)
∂x

+
∂ρv
∂y

=−∂ρ

∂ t
. (9)

Di�erentiating (9) and including the z-direction we get

∂ρ

∂ t
+u

∂ρ

∂x
+ v

∂ρ

∂y
+w

∂ρ

∂ z
+ρ(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

) = 0. (10)

Where u,v and w are the velocity components in the x,y and z directions
respectively.
Equation(10) is the equation of continuity in three dimensions and in
cartesian or rectangular coordinate system. The equation is valid for all
types of fluid flow i.e for compressible,incompressible,steady and unsteady.
In vector form equation (3.10) is given as;

Dρ

Dt
+ρ∇.q = 0, (11)
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or as

∂ρ

∂ t
+∇.(ρq) = 0 (12)

(11) is the non-conservative form of mass conservation while (12) is the
conservative form of mass conservation where,

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂ z
q = uî+ vĵ+wk̂

Dρ

Dt
=

∂ρ

∂ t
+∇.(qρ)

= 0 is the material derivative
∂ρ

∂ t
is the partial or local derivative

q.∇ρ is the convective derivative

For steady flow,that is,when motion is independent of time (10) becomes;

u
∂ρ

∂x
+ v

∂ρ

∂y
+w

∂ρ

∂ z
+ρ(

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

) = 0 (13)

or in vector form

∇.(ρq) = 0. (14)

For incompressible flow ,that is, ρ is a constant.the equations reduce to;

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (15)

or
∇.q = 0

Other coordinate systems

(a)Cylindrical(r,θ ,z)

1
r

∂ rqr

∂ r
+

1
r

∂qθ

∂θ
+

∂qz

∂ z
= 0
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where;

x = rcosθ

y = rsinθ

z = z

and qr,qθ ,qzare the velocity components in the r,θ ,and z directions
respectively.

(b)spherical (r,θ ,Φ)

1
r2

∂ r2qr

∂ r
+

1
rsinθ

∂qθ sinθ

∂θ
+

1
rsinθ

∂qφ

∂φ
= 0

where

x = rsinφcosθ

y = rsinφsinθ

z = rcosφ

and qr,qθ ,qφ are the velocity components in the r,θ ,φ directions respec-
tively.
The equations stated above apply in the case of incompressible fluid
flow.
For compressible flow the equations are;

(c) cylindrical

∂ρ

∂ t
+

1
r

∂ρrqr

∂ r
+

1
r

∂ρqθ

∂θ
+

∂ρqz

∂ z
= 0

(d) spherical

∂ρ

∂ t
+

1
r2

∂ (ρr2qr)

∂ r
+

1
rsinθ

∂ρqθ sinθ

∂θ
+

1
r2sinθ

∂ρqφ

∂φ
= 0
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1.5 The momentum equations(Navier-Stokes equations)

These equations are based on the Newton’s second law of motion or law of
conservation of linear momentum for newtonian fluids. The equations are
commonly used in describing motion of fluids in models relating to ocean
currents,flow of water in pipes and turbulent flows. These equations are
also developed in so�ware packages used in designing mechanical machines
e.g airplanes,boats,cars and bicycles. They are also used in research fields
like in geophysics and in industries e.g chemical,biomedical,aeronautical
and chemical. These equations are a mathematical model describing the
behavior of fluids and consist of a set of second order non-linear partial
di�erential equations in four independent variables,momentum equations
and the continuity equations, describing the flow of viscous incompressible
fluids.

1.5.1 Derivation of Navier Stokes Equation in Vector form

The Navier Stokes equations are derived from the law of conservation of
mass and momentum conservation. Consider a viscous fluid occupying a
certain region such that if V is the volume enclosed by a surface S,which
moves with the fluid and contains the same fluid particles at all times as
shown in figure 9, below.
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Figure 2. Fluid Flow through a closed surface,S

Let dV be the volume element surrounding the fluid particle P,ρ be the
density of the fluid within the surface S. Then,

masso f theelement,m = ρdV. (16)

This mass remains constant throughout the flow.
Let q be the velocity of the fluid particl Then momentum M of the volume
V is given by;

M =
∫

ρqdv, (17)

with the integral carried over the entire volume.
If p is the normal pressure force with outward unit normal û,then the
surface force due to p is given by;

−
∫

pûds =−
∫

v
∇pdv (18)

Frictional force acting on the volume V is given by;∫
v

∇
2~qdv (19)
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The external force per unit mass acting on the fluid is~F.
Therefore the total force acting on the fluid with space S at any time is;∫

v
~Fρdv (20)

Adding 18,19 and 20,we get the total force acting on volume V as;∫
v
~Fρdv−

∫
v

∇pdv+
∫

v
µ∇

2~qdv (21)

By Newton’s second law of motion,which states that the rate of change of
linear momentum is equal to the total force acting on the mass of the fluid
,we get;

DM
Dt

=
∫

v
~Fρdv−

∫
∇pdv

v
+
∫

v
∆pdv+

∫
v

µ∇
2~qdv

DM
Dt

=
∫

v
(~Fρ−∇p+µ∇

2)dv
(22)

But from (17),

M =
∫

v
ρ~qdv

DM
Dt

=
∫

v

D~q
Dt

ρdv+
∫

v~q
D
Dt

(ρdv)

Therefore (22) becomes ;∫
v

D~q
Dt

.ρdv+
∫

v
~q

D
Dt

(ρdv) =
∫

v
(~Fρ−∇denp+µ∇

2~q)dv (23)

But from (16) ρdv = constant .Therefore D
Dt (ρdv) = 0 Taking volume V as

arbitrary in the region we have considered;

ρ
D~q
Dt

= ρ~F−∇p+µ∇
2~q

or

D~q
Dt

=~F− 1
ρ

∇p+ν∇
2~q (24)

This is the Navier Stokes equation in vector form.
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1.5.2 Navier Stokes equations in various coordinate systems

For a newtonian fluid flow and in vector form the Navier Stokes equation
is given by;

Dv
Dt

=−1
ρ

∇p+F+ν∇
2v

or
∂v
∂ t

+v.∇v =−1
ρ

∇p+ ν̃∇
2v+F

where ν = µ

ρ
is the kinematic viscosity

ρ is the density of the fluid
F is the external body forces
v.∇v is the advection term
∂v
∂ t is the acceleration term
1
ρ

∇p is the pressure term

ν∇2v is the velocity di�usion term
The advection and pressure terms are non-linear,the reason why Navier
Stokes equations are non-linear.
Also,

v = u~i+ vĵ+wk̂

where u,v,w are the velocity components in the x, y and z directions respec-
tively.

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂ z

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

From the expressions above we can resolve the NSE in cartesian form by
substituting them in the vector form equation to get;
x-component:

∂u
∂ t

+
∂u
∂x

+
∂u
∂y

+
∂u
∂ z

=−1
ρ

∂ p
∂x

+ν(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 )+Fx

The y-component:

∂v
∂ t

+
∂v
∂x

+
∂v
∂y

+
∂v
∂ z

=−1
ρ

∂ p
∂y

+ν(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2 +Fy
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The z-component:

∂w
∂ t

+
∂w
∂x

+
∂w
∂y

+
∂w
∂ z

=−1
ρ

∂ p
∂ z

+ν(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2 )+Fz

Where Fx,Fy and Fz are the components of force in the x ,y and z-directions
respectively.
cylindrical coordinate system-(r,θ ,z)
For an incompressible fluid with constant kinematic ν and constant density
ρ ;
r-component:

Dvr

Dt
−

v2
θ

r
=−1

ρ

∂ρ

∂ r
+Fr +ν [∇2vr−

vr

r2 −
2
r2

∂vθ

∂θ
]

θ component:

Dvθ

Dt
+

vθ vr

r
=− 1

rρ

∂ p
∂θ

+Fθ +ν [∇2vθ −
vθ

r2
∂vr

∂θ
]

z-component:

Dvz

t
=−1

ρ

∂ p
∂ z

+Fz +ν∇
2vz

where vr ,vθ and vz are the velocity components in the r,θ ,andz directions
respectively.
p is the pressure and
Fr,Fθ ,Fz are the force components in the r,θ ,andzdirections respectively.
Also

D
Dt

=
∂

∂ t
+ vr

∂

∂ r
+

vθ

r
∂

∂θ
+ vz

∂

∂ z
is the material or the Lagrangian derivative.

∇
2 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 +
∂ 2

∂ z2

is the Laplacian operator.
Spherical coordinate system (r,θ ,φ)
r-component:

Dvr

t
+

v2
θ
+ vφ 2

r
=−1

ρ

∂ p
∂ r

+Fr+ν [∇2vr−
2vr

r2 −
2
r2

∂vθ

∂θ
− 2vθ cotθ

r2 − 2
r2sinθ

∂φ

∂φ
]
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θ -component:

Dvθ

t
+

vθ vr

r
−

v2
θ

cotθ
r

=− 1
rρ

∂ p
∂θ

+Fθ +ν [∇2vθ +
2
r2

∂vr

∂θ
− vθ

r2sin2θ
− 2cotθ

r2sinθ

∂vφ

∂φ
]

φ -component:

Dvφ

t
+

vφ vr

r
+

VθV φcotθ
r

=− 1
rsinθ

∂ p
∂φ

+Fφ +ν [∇2vφ +
2

r2sinθ

∂vr

∂φ
− vφ

r2sinθ
+

2cotθ
r2sinθ

∂vθ

∂vφ

]

where vr,vθ ,vφ are the velocity components in the r,θ ,φ directions respec-
tively,p is the pressure,ρ is the density and Fr,Fθ ,Fφ are the body forces in
the r ,θ ,and φ directions respectively.
The Lagrangian/material derivative is:

D
Dt

=
∂

∂ t
+ vr

∂

∂ r
+

vθ

r
∂

∂θ
+

vφ

rsinθ

∂

∂φ

The Laplacian operator is :

∇
2 =

1
r2

∂

∂ r
+

1
r2sinθ

∂

∂θ
+

1
r2sin2θ

∂ 2

∂φ 2

Note:
For a non-viscous fluid the Navier Stokes equations in vector form reduce to:

Du
Dt

= Fx−
1
ρ

∂ p
∂x

Dv
Dt

= Fy−
1
ρ

∂ p
∂y

Dw
Dt

= Fz−
1
ρ

∂ p
∂ z

These are the Euler’s equations of motion in cartesian form.

Non-dimensionalization of the Navier- Stokes equations

To transform a dimensional variable into a dimensionless one,we divide
that variable with a quantity consisting of one or more physical properties
which have the same dimension as the original variable. Consider the
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Navier Stokes equations without body forces:

∂v
∂ t

+v.∇v =−1
ρ

∇p+ν∇
2v (25)

and
∇.v = 0

To non-dimensionalize these equations ,we divide the special coordinates
by a characteristic length ,L,the velocity divided by a characteristic veloc-
ity,U and time divided by the ratio of characteristic length to a reverence
velocity.The dimensional variables are;

v∗ =
v
U

x∗ =
x
L

y∗ =
y
L

z∗ =
z
L

t∗ =
tU
L

p∗ =
p

ρU2

∇
∗ = L∇

(∇∗)2 = L2
∇

2

Substituting for dimensionless variables in the equations above we obtain;
Mass conservation:

∇.v = 0
1
L

∇
∗.(U.v∗) = 0

U
L

∇
∗.v∗ = 0

Dividing the above equation by U
L we get:

∇
∗.v∗ = 0
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which is dimensionless mass conservation equation.
For the conservation of momentum equation:

U2

L
(
∂v∗

∂ t∗
+v∗.∇∗v∗) =−U2

L
∇
∗p∗+

νU
L2 (∇∗)2v∗ (26)

Dividing the equation above by U2

L we get;

∂v∗

∂ t∗
+v∗.∇∗v∗ =−∇

∗p∗+
ν

LU
(∇∗)2v∗ (27)

But
ν

LU
=

1
Re

Therefore the dimensionless momentum equation is ;

∂v∗

∂ t∗
+v∗.∇∗v∗ =−∇

∗p∗+
1

Re
(∇∗)2v∗ (28)

This is also the Navier-Stokes equation in non-dimensionalized form.

1.6 Problem Statement

The Burgers’ Equations,though non-linear in nature have been solved both
analytically and numerically by various scholars.Most solutions that have
been obtained are for unsteady fluid flows.This prompted us to find a solu-
tion for the steady fluid flow.
In this project we converted the Navier- Stokes equation to Burgers’ Equa-
tion by using the Orlowski and Soczyk transformation together with the
Reynolds number(dimensionless)to make the equation non-dimensional.
We solved the Burgers’ Equation numerically by using the fourth order
Runge-Ku�a method and represented the solutions graphically.

1.6.1 Objectives of This Project

The Main objective of this paper was to: solve the one dimensional Burgers’
equation for steady flow numerically and represent the solution graphically.

The specific objectives were to;
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(i) explain Dimensional Analysis and derive some common non-dimensional
numbers.

(ii) discuss the equations governing fluid flow and their representation in
various coordinate systems.

(iii) convert the Navier- Stokes equation to Burgers’ equation
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2 Literature Review

The Burgers’ Equations are important equations that govern fluid flow.Since
these equations are non-linear in nature,we don’t have a general method of
solving them analytically.However various scholars have solved the Burg-
ers’ equations both analytically and numerically.These have been done
mostly for one dimensional unsteady fluid flow. Various studies on one
dimensional Navier-Stokes equations coupled by one dimensional viscous
Burgers’ equations have been carried out in order to solve Burgers’ equa-
tion.
Neijib Smaoui,”Analyzing the dynamics of forced Burgers’ equation”,
numerically studied the long-time dynamic of a system of reaction-di�usion
equation arising from the viscous Burgers’ equation which is one dimen-
sional Navier Stokes Equation without the pressure term.
Young,McDonough,” Exact solution to Burgers equation exhibiting
erratic turbulent-like behaviour”,studied on exact solution to a 1-D
Burgers equation which exhibited erratic turbulent-like behaviour. They
also mentioned that the governing equation is analogous to 1-D Navier
Stokes Equation and proposed a model that provides a proper tool of testing
numerical algorithm.
Kurt,Cenesiz,Tasbozer,(2016),”Exact Solution for the conformable Burg-
ers’ Equation by the Cole-Hopf transform” ,used the Cole-Hopf trans-
form to solve conformable Burgers’ Equation.
Azad , Andallah,(2014),”Generating Exact Solutions of the 2-D incom-
pressible Navier-Stokes equation”,studied on analytical solution of 2-D
NSE by using the method of separation of variables a�er converting the
NSE to Burgers’ equation ,followed by heat equation which is linear and
can be solved.
Aminikhah,(2013),”An Analytical Approximation for coupled viscous
Burgers’ Equation” ,used the laplace transform and homotopy pertuba-
tion method to obtain approximate solutions of homogeneous and non-
homogeneous coupled Burgers equations.
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Srivastata,Tamsir,(2013),”Generating Exact solution of 3D coupled un-
steady nonlinear generalized viscous Burgers’ Equation”, derived a
general analytical solution of the 3D homogeneous coupled unsteady non-
linear viscous Burgers’ equation via Cole-Hopf transform and separation
of variables.
Dehghan,Hamidi,Shakourifar,(2007), ”The Solution of coupled Burg-
ers’ equation using Adomian-Pade technique”,studied on analytical
solution to 1D coupled Burgers’ Equation using Adomain decomposition
method.
Yan,Yue,(2003),”Variable Separable Solutions for the (2+1)-dimensional
Burgers Equation”,generated variable solution for the (2+1)-dimensional
Burgers’ Equation.
Hon,Mao,(1998)”An e�icient numerical scheme for Burgers’ equation”,used
variety of numerical techniques based on finite-di�erence,finite-element
and boundary element methods to solve Burgers’ equation fo small values
of the kinematic viscosity,ν ,which correspond to steep fronts in the propa-
gation of dynamic waveforms.
Debnath,1(1997),” Partial Di�erential Equations for Scientists and En-
gineers”,studied Burgers’ Equation as a mathematical model in various
areas like gas dynamics ,heat conduction and elasticity theory.
Orlowski ,Soczyk,(1989),” Rep.Math.Phys”, presented a transformation of
inhomogeneous Burgers’ equation to homogeneous form.
Fletcher,(1983),”Generating exact solution of the two dimensional Burg-
ers’ equation”,generated exact solution of the two dimensional Burgers’
equation.
Caldwell, Wanless, Cook,(1981),”A Finite Element approach to Burgers’
Equation” ,used the finite element method to solve numerically Burgers’
equation for small values of kinematic viscosity.
Jeng and Meecham,(1972),” Solution of forced Burgers’equation”,studied
the linearlization of the non-linear Burgers’ equation by the Cole-Hopf
transformation.
Cole,(1951),” A �asilinear Parabolic equations occurring in aerody-
namics,”,independently showed that the Burgers’ Equation can be trans-
formed into the linear di�usion equation and be solved analytically for
initial conditions.
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Bateman,(1915),”Some recent researches on the motion of fluids”,introduced
the one dimensional quasi-linear parabolic partial di�erential equation and
gave it’s steady solutions.
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3 Methodology

To obtain the solution of Burgers’ Equation,we first convert the Navier-
Stokes Equation to Burgers’ Equation by using the Orlowski and Sobczyk
transformation(OST) then using the fourth order Runge-Ku�a method we
get its numerical solution.

3.0.1 The Orlowski and Sobczyk Transformation-OST

The OST is defined as;
x′ = x−φ(t)

t ′ = t

u′(x′, t ′) = u(x, t)−W (t)

where
W (t) =

∫ t

0
f (τ)dτ =

∫ t

0
W (τ)dτ

and
φ(t) =

∫ t

o
W (τ)dτ

The transformed derivatives are substituted in (28) to get the transformed
Navier Stokes equation which is analogous to non-linear dimensionless

form of Burgers equation. The process is: NSE OST−−→ BE

3.0.2 Runge-Ku�a Methods

These are numerical methods which are used to solve di�erential equations
by involving successive approximations.They are a family of implicit and
explicit iterative methods used to obtain approximate solutions to ordinary
di�erential equations(ODE).
They were developed by a German mathematician C.Runge and M.W.Ku�a
in 1900.
The following is the list of Runge-Ku�a methods:

• Explicit Runge -Ku�a methods
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• Adaptative Runge- Ku�a methods

• Implicit Runge -Ku�a methods

• Nonconfluent Runge -Ku�a methods

Explicit Runge-Kutta Method

The common one is the ′′RK4′′ which is also re�ered to as classical Runge-
Ku�a method or the Runge-Ku�a method. The formular for this method is
given as

v′ = f (x,v)

v(x0) = v0

where v is an unknown function(scalar or vector)of the space x,which we
want to approximate. Taking h > 0 as the step size then;

vn+1 = vn +
1
6
(k1 +2k2 +2k3 + k4)

for n = 0,1,2,3, ...... where

k1 = h f (xn,vn)

k2 = h f (xn +
h
2
,vn +

k1

2
)

k3 = h f (xn +
h
2
,vn +

k2

2
)

k4 = h f (xn +h,vn + k3)

Here vn+1 is the RK4 approximation of vxn+1 . We obtain the next value
vn+1 by the sum of the current value vn and the weighted average of four
increments with each increment being the product of the size of the interval
,h. Also,

• k1 is the increment based on the slope at the beginning of the interval
,using v (Euler’s method)

• k2 is the increment based on the slope at the midpoint of the interval
,using v and k1
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• k3 is the increment based on the slope at the midpoint ,using v and k2

• k4 is the increment based on the slope at the end of the interval,using v
and k3

The RK4 is a fourth order method which implies that the local truncation
error is of order O(h5) while the total accumulated error is of order O(h4)
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4 Solution of One-dimensional Steady Incompressible
Burgers’ Equation

4.1 Numerical Solution of One-dimensional steady Incompressible
Burgers’ Equation

In this section,we are going to solve numerically one dimensional steady
Burgers’ Equation (1D BE)of the form:

vvx =
1

Re
vxx, (29)

where v,represents the velocity,subscripts x represent derivatives with re-
spect to x .

4.1.1 Governing Equations

The governing equations of fluid flow are the equations of continuity and
momentum.
In dimensionalized form these equations are given as;
The equation of continuity

∂v∗

∂x∗
= 0, (30)

The equation of momentum

∂v∗

∂ t∗
+ v∗

∂v∗

∂x∗
=−1

ρ

∂ p∗

∂x∗
+ν

∂ 2v∗

∂x∗2
, (31)

where ρ is the density of the fluid which is constant and ν is the kinematic
viscosity.
Using the dimensionless definitions,
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v∗ = v
U ,x∗ = x

L ,t∗ = tU
L ,p∗ = p

ρU2

where L is the characteristic length and U is the characteristic velocity.
We convert the dimensionalized governing equations into non-dimensional
ID NSE as;

vx = 0

,

vt + vvx =−px +
1

Re
vxx, (32)

where 1
Re =

ν

UL is the Reynolds number.
Le�ing −px = f (t) then equation (6.4)can be wri�en as

vt + vvx = f (t)+
1

Re
vxx, (33)

The Burgers’ Equation for steady flow and without the pressure term is;

vvx =
1

Re
vxx. (34)

4.1.2 To Obtain Numerical solution of 1D Burgers’ Equation

To obtain numerical solution of (29) we first reduce the NSE equation to
Burgers’ equation by using Orlowski and Sobczyk Transformation(OST).
The OST is defined as

x′ = x−φ(t) (35)

t ′ = t (36)

v′(x′, t ′) = v(x, t)−W (t), (37)

where
W (t) =

∫ t

0
f (τ)dτ

φ(t) =
∫ t

0
W (τ)dτ
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. But
W (τ) =

∫ t

0
f (τ)dτ

= [F(τ)]t0

= F(t)−F(0)

. And
φ(t) =

∫ t

0
W (τ)dτ

=
∫ t

0
F(τ)−F(0)dτ

= [G(τ)− τF(0)

= G(t)− tF(0)−G(0).

Substituting these in (30),(31),(32) we get

x′ = x−G(t)+ tF(0)+G(0)

t ′ = t

v′(x′, t ′) = v(x, t)−F ′(t)+F ′(0).

Again,

∂v
∂ t

=
∂

∂ t
[v′+F(t)−F(0)]

=
∂v′

∂ t
+ f (t)

=
∂v′

∂x′
.
∂x′

∂ t
+

∂v′

∂ t ′
.
∂ t ′

∂ t
+ f (t).

=
∂v′

∂x′
.

∂

∂ t
[x−G(t)+ tF(0)+G(0)]+

∂v′

∂ t
.
∂ t
∂ t

+ f (t)

=
∂v′

∂x′
.[−F(t)+F(0)]+

∂v′

∂ t ′
+ f (t).

Also

∂v
∂x

=
∂

∂x
[v′+F(t)−F(0)]

=
∂v′

∂x
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=
∂v′

∂x′
.
∂x′

∂x
+

∂v′

∂ t ′
.
∂ t ′

∂x

=
∂v′

∂x′
.

∂

∂x
[x−G(t)+ tF(0)+G(0)]+

∂v′

∂ t ′
.
∂ t
∂x

,

=
∂v′

∂x′
.

Again

∂ 2v
∂x2 =

∂

∂x
[
∂v
∂x

]

=
∂

∂x
[
∂v′

∂x′
]

=
∂

∂x′
[
∂v′

∂x′
].[

∂x′

∂x
]+

∂

∂ t ′
[
∂v′

∂x′
][

∂ t ′

∂x
]

=
∂ 2v′

∂x′2
.

∂

∂x
[x−G(t)+ tF(t)+G(0)]+

∂ 2v′

∂x′∂y
[
∂ t
∂x

]

=
∂ 2v′

∂x′2
,

substituting the transformed derivatives in (28),we get

v′x′[−F(t)+F(0)]+ v′t ′+[v′+F(t)−F(0)]v′x′ = f (t)+
1

Re
(v′x′x′

⇒ v′t ′+ v′v′x′ =
1

Re
(v′x′x′). (38)

From (27) ,we get

v′x′ = 0.

Therefore ,(33) is the transformed 1D NSE on application of OST,and is
analogous to the non-dimensional form of the Burgers’ equation which is ;

∂v∗

∂ t∗
+ v∗

∂v∗
∂x∗

=
1

Re
∂ 2v∗

∂x∗2
.

For steady flow,the above reduces to;

v∗
∂v∗
∂x∗

=
1

Re
∂ 2v∗

∂x∗2
.
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This equation can also be wri�en as:

vv
′
=

1
Re

v
′′
. (39)

Next we solve equation (34) with initial conditions

v0(x) = 0

v
′
o(x) = 1

v(x) = sin(πx)

Since equation(39) is a second order ordinary di�erential equation it cannot
be solved directly,hence we convert it to first order di�erential equation by;
let

v′ = u (40)

then this equation becomes;

vu =
1

Re
u′

This implies that;

u′ = Reuv (41)

we then solve equations (40)and (41),the set of first order ordinary di�eren-
tial equations for;

0≤ x≤ 2

by using the fourth order Runge-Ku�a (RK4) method , taking di�erent step
sizes,h,for a particular Reynold number and varying the Reynold numbers
for a specific step size we will solve the equation.
In our case we will take two Reynold numbers i.e Re = 5 and Re = 10,and
two step sizes i.e h = 0.2 and h = 0.15.
We will use the Matlab to compute the results, the computation is a�ached
at the end of this project.
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Solving for h=0.2,Re=5

x0 = 0

k1 = h f (x0,v0,u0) = 0.2
l1 = hg(x0,v0,u0) = 0
k2 = h f (x0 +

h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.2

l2 = hg(x0 +
h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.31415926535898

k3 = h f (x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.23141592653590

l3 = hg(x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.35755727034308

k4 = h f (x0 +h,v0 + k3,u0 + l3) = 0.27151145406862
l4 = hg(x0 +h,v0 + k3,u0 + l3) = 0.79795214265009
v1 = v0 +

1
6(k1 +2k2 +2k3 + k4) = 0.22239055119007

u1 = u0 +
1
6(l1 +2l2 +2l3 + l4) = 1.35689753567570

x1 = 0.2

k1 = h f (x1,v1,u1) = 0.27137950713514
l1 = hg(x1,v1,u1) = 0.79756436034218
k2 = h f (x1 +

h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 0.35113594316936

l2 = hg(x1 +
h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 1.42037472679943

k3 = h f (x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 0.41341697981508

l3 = hg(x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 1.67230681216784

k4 = h f (x1 +h,v1 + k3,u1 + l3) = 0.60584086956871
l4 = hg(x1 +h,v1 + k3,u1 + l3) = 2.88094453420621
v2 = v1 +

1
6(k1 +2k2 +2k3 + k4) = 0.62344492163552

u2 = u1 +
1
6(l1 +2l2 +2l3 + l4) = 3.00087619775619
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x2 = 0.4

k1 = h f (x2,v2,u2) = 0.60017523955124
l1 = hg(x2,v2,u2) = 2.85400286247105
k2 = h f (x2 +

h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 0.88557552579834

l2 = hg(x2 +
h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 4.42787762899172

k3 = h f (x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 1.04296300245041

l3 = hg(x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 5.21481501225205

k4 = h f (x2 +h,v2 + k3,u2 + l3) = 1.64313824200165
l4 = hg(x2 +h,v2 + k3,u2 + l3) = 7.81358666114715
v3 = v2 +

1
6(k1 +2k2 +2k3 + k4) = 1.64017667797726

u3 = u2 +
1
6(l1 +2l2 +2l3 + l4) = 7.99303866544048

x3 = 0.6

k1 = h f (x3,v3,u3) = 1.59860773308810
l1 = hg(x3,v3,u3) = 7.60183150776629
k2 = h f (x3 +

h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 2.35879088386472

k3 = h f (x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 2.55275868869973

l3 = hg(x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 10.32612580848193

k4 = h f (x3 +h,v3 + k3,u3 + l3) = 3.66383289478448
l4 = hg(x3 +h,v3 + k3,u3 + l3) = 10.76773471209180
v4 = v3 +

1
6(k1 +2k2 +2k3 + k4) = 4.15443330681084

u4 = u3 +
1
6(l1 +2l2 +2l3 + l4) = 17.67717815694958
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x4 = 0.8

k1 = h f (x4,v4,u4) = 3.53543563138992
l1 = hg(x4,v4,u4) = 10.39038462280161
k2 = h f (x4 +

h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 4.57447409367008

l2 = hg(x4 +
h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 7.06795117635995

k3 = h f (x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 4.24223074902591

l3 = hg(x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 6.55460697754485

k4 = h f (x4 +h,v4 + k3,u4+l3) = 4.84635702689889
l4 = hg(x4 +h,v4 + k3,u4 + l3) = 0
v5 = v4 +

1
6(k1 +2k2 +2k3 + k4) = 8.49030036409097

u5 = u4 +
1
6(l1 +2l2 +2l3 + l4) = 23.94976164538478

x5 = 1.0

k1 = h f (x5,v5,u5) = 4.78995232907696
l1 = hg(x5,v5,u5) = 0
k2 = h f (x5 +

h
2,v5 +

k1
2 ,u5 +

l1
2 ) = 4.78995232907696

l2 = hg(x5 +
h
2,v5 +

k1
2 ,u5 +

l1
2 ) =−7.40088335965321

k3 = h f (x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) = 4.04986399311163

l3 = hg(x5 +
h
2,v5 +

k2
2 ,u0 +

l2
2 ) =−6.25738399389341

k4 = h f (x5 +h,v5 + k3,u5 + l3) = 3.53847553029827
l4 = hg(x5 +h,v5 + k3,u4 + l3) =−10.39931866153557
v6 = v5 +

1
6(k1 +2k2 +2k3 + k4) = 12.82497711471637

u6 = u5 +
1
6(l1 +2l2 +2l3 + l4) = 17.66378608394665
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x6 = 1.2

k1 = h f (x6,v6,u6) = 3.53275721678933
l1 = hg(x6,v6,u6) =−10.38251295979285
k2 = h f (x6 +

h
2,v6 +

k1
2 ,u6 +

l1
2 ) = 2.49450592081004

l2 = hg(x6 +
h
2,v6 +

k1
2 ,u6 +

l1
2 ) =−10.09048841252126

k3 = h f (x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) = 2.52370837553720

l3 = hg(x6 +
h
2,v6 +

k2
2 ,u0 +

l2
2 ) =−10.20861482327995

k4 = h f (x6 +h,v6 + k3,u6 + l3) = 1.49103425213334
l4 = hg(x6 +h,v6 + k3,u6 + l3) =−7.09028920755342
v7 = v7 +

1
6(k1 +2k2 +2k3 + k4) = 15.33501379165256

u7 = u7 +
1
6(l1 +2l2 +2l3 + l4) = 7.98528464412187

x7 = 1.8

k1 = h f (x7,v7,u7) = 1.59705692882437
l1 = hg(x7,v7,u7) =−7.59445699526373
k2 = h f (x7 +

h
2,v7 +

k1
2 ,u7 +

l1
2 ) = 0.83761122929800

l2 = hg(x7 +
h
2,v7 +

k1
2 ,u7 +

l1
2 ) =−4.18805614649000

k3 = h f (x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) = 1.17825131417537

l3 = hg(x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) =−589125657087686

k4 = h f (x6 +h,v6 + k3,u6 + l3) = 0.41880561464900
l4 = hg(x7 +h,v7 + k3,u7 + l3) =−1.99153904436464
v8 = v7 +

1
6(k1 +2k2 +2k3 + k4) = 16.34294506338925

u7 = u7 +
1
6(l1 +2l2 +2l3 + l4) = 3.02784773172818
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x8 = 1.6

k1 = h f (x8,v8,u8) = 0.60556954634564
l1 = hg(x8,v8,u8) =−2.87965431560959
k2 = h f (x8 +

h
2,v8 +

k1
2 ,u8 +

l1
2 ) = 0.31760411478468

l2 = hg(x8 +
h
2,v8 +

k1
2 ,u8 +

l1
2 ) =−1.28473563172108

k3 = h f (x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) = 0.47709598317353

l3 = hg(x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) =−1.92989379167704

k4 = h f (x8 +h,v8 + k3,u8 + l3) = 0.21959078801023
l4 = hg(x8 +h,v8 + k3,u8 + l3) =−0.64536113365847
v8 = v7 +

1
6(k1 +2k2 +2k3 + k4) = 16.74537181843463

u8 = u7 +
1
6(l1 +2l2 +2l3 + l4) = 1.36880201571747

x9 = 1.8

k1 = h f (x9,v9,u9) = 0.27376040314349
l1 = hg(x9,v9,u9) =−0.80456163814694
k2 = h f (x9 +

h
2,v9 +

k1
2 ,u9 +

l1
2 ) = 0.19330423932880

l2 = hg(x9 +
h
2,v9 +

k1
2 ,u9 +

l1
2 ) =−0.29867147518661

k3 = h f (x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) = 0.24389325562483

l3 = hg(x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) =−0.37683580400753

k4 = h f (x9 +h,v9 + k3,u9 + l3) = 0.19839324234199
l4 = hg(x9 +h,v9 + k3,u9 + l3) = 0.0
v10 = v9 +

1
6(k1 +2k2 +2k3 + k4) = 16.96979659100009

u10 = u9 +
1
6(l1 +2l2 +2l3 + l4) = 1.00953931629493
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n xn vn

0 0.0 0.0

1 0.2 0.222391

2 0.4 0.623445

3 0.6 1.640177

4 0.8 4.154433

5 1.0 8.490300

6 1.2 12.824977

7 1.4 15.335014

8 1.6 16.342945

9 1.8 16.745372

10 2.0 16.969796

Table 5.5: Numerical values for 1D Burgers’ equation, RK4 method, h=0.2,
Re=5.

Solving for h=0.2,Re=10

x0 = 0

k1 = h f (x0,v0,u0) = 0.2
l1 = hg(x0,v0,u0) = 0
k2 = h f (x0 +

h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.2

l2 = hg(x0 +
h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.61803398874989

k3 = h f (x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.26180339887499

l3 = hg(x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.80901699437495

k4 = h f (x0 +h,v0 + k3,u0 + l3) = 0.36180339887499
l4 = hg(x0 +h,v0 + k3,u0 + l3) = 2.12662702088010
v1 = v0 +

1
6(k1 +2k2 +2k3 + k4) = 0.24756836610416

u1 = u0 +
1
6(l1 +2l2 +2l3 + l4) = 1.83012149785496

x1 = 0.2
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k1 = h f (x1,v1,u1) = 0.36602429957099
l1 = hg(x1,v1,u1) = 2.15143685268512
k2 = h f (x1 +

h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 0.58116798483950

l2 = hg(x1 +
h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 4.70174776321801

k3 = h f (x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 0.83619907589279

l3 = hg(x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 6.76499263077897

k4 = h f (x1 +h,v1 + k3,u1 + l3) = 1.71902282572679
l4 = hg(x1 +h,v1 + k3,u1 + l3) = 16.34887860067568
v2 = v1 +

1
6(k1 +2k2 +2k3 + k4) = 1.06753190723122

u2 = u1 +
1
6(l1 +2l2 +2l3 + l4) = 8.73575420474742
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x2 = 0.4

k1 = h f (x2,v2,u2) = 1.74715084094948
l1 = hg(x2,v2,u2) = 16.61639192235565
k2 = h f (x2 +

h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 3.408790033185049

l2 = hg(x2 +
h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 34.08790033185049

k3 = h f (x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 5.15594087413453

l3 = hg(x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 51.55940874134534

k4 = h f (x2 +h,v2 + k3,u2 + l3) = 12.05903258921855
l4 = hg(x2 +h,v2 + k3,u2 + l3) = 114.6882152419192
v3 = v2 +

1
6(k1 +2k2 +2k3 + k4) = 6.22347278136576

u3 = u2 +
1
6(l1 +2l2 +2l3 + l4) = 59.16895842319184

x3 = 0.6

k1 = h f (x3,v3,u3) = 11.83379168463837
l1 = hg(x3,v3,u3) = 112.5460469415472
k2 = h f (x3 +

h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 23.08839637879309

l2 = hg(x3 +
h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 186.7890504330861

k3 = h f (x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 61.20437207887429

l3 = hg(x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 246.8529019711795

k4 = h f (x3 +h,v3 + k3,u3 + l3) = 61.20437207887429
l4 = hg(x3 +h,v3 + k3,u3 + l3) = 282.4323291878441
v4 = v3 +

1
6(k1 +2k2 +2k3 + k4) = 36.26353111086456

u4 = u3 +
1
6(l1 +2l2 +2l3 + l4) = 282.4323291878441
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x4 = 0.8

k1 = h f (x4,v4,u4) = 56.48646583756882
l1 = hg(x4,v4,u4) = 332.0191157344556
k2 = h f (x4 +

h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 89.68837741101437

l2 = hg(x4 +
h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 277.1523281791760

k3 = h f (x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 84.20169865548643

l3 = hg(x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 260.1975583978347

k4 = h f (x4 +h,v4 + k3,u4 + l3) = 108.5259775171357
l4 = hg(x4 +h,v4 + k3,u4 + l3) = 0
v5 = v4 +

1
6(k1 +2k2 +2k3 + k4) = 121.7289636921489

u5 = u4 +
1
6(l1 +2l2 +2l3 + l4) = 516.8854773359236

x5 = 1.0

k1 = h f (x5,v5,u5) = 103.3770954671847
l1 = hg(x5,v5,u5) = 0
k2 = h f (x5 +

h
2,v5 +

k1
2 ,u5 +

l1
2 ) = 103.3770954671847

l2 = hg(x5 +
h
2,v5 +

k1
2 ,u5 +

l1
2 ) =−319.4527932848146

k3 = h f (x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) = 71.43181613870327

l3 = hg(x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) =−220.7364512592597

k4 = h f (x5 +h,v5 + k3,u5 + l3) = 59.22980521533280
l4 = hg(x5 +h,v5 + k3,u5 + l3) =−348.1440600172842
v6 = v5 +

1
6(k1 +2k2 +2k3 + k4) = 207.0997510078645

u6 = u5 +
1
6(l1 +2l2 +2l3 + l4) = 278.7983858183516
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x6 = 1.2

k1 = h f (x6,v6,u6) = 55.75967716367032
l1 = hg(x6,v6,u6) =−327.7471590939480
k2 = h f (x6 +

h
2,v6 +

k1
2 ,u6 +

l1
2 ) = 22.98496125427551

l2 = hg(x6 +
h
2,v6 +

k1
2 ,u6 +

l1
2 ) =−185.9522426975859

k3 = h f (x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) = 37.16445289391172

l3 = hg(x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) =−300.6667397782177

k4 = h f (x6 +h,v6 + k3,u6 + l3) =−4.37367079197323
l4 = hg(x6 +h,v6 + k3,u6 + l3) = 41.59608106835929
v7 = v6 +

1
6(k1 +2k2 +2k3 + k4) = 235.7138901192097

u7 = u6 +
1
6(l1 +2l2 +2l3 + l4) = 68.90021198881888

x7 = 1.4

k1 = h f (x7,v7,u7) = 13.78004239776378
l1 = hg(x7,v7,u7) =−131.0559911721673
k2 = h f (x7 +

h
2,v7 +

k1
2 ,u7 +

l1
2 ) = 0.67444328054704

l2 = hg(x7 +
h
2,v7 +

k1
2 ,u7 +

l1
2 ) =−6.74443280547044

k3 = h f (x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) = 13.10559911721673

l3 = hg(x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) =−131.0559911721673

k4 = h f (x7 +h,v7 + k3,u7 + l3) =−12.43115583666969
l4 = hg(x7 +h,v7 + k3,u7 + l3) = 118.2273176354524
v8 = v7 +

1
6(k1 +2k2 +2k3 + k4) = 240.5320520119800

u8 = u7 +
1
6(l1 +2l2 +2l3 + l4) = 20.82862507348715
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x8 = 1.6

k1 = h f (x8,v8,u8) = 4.16572501469743
l1 = hg(x8,v8,u8) =−39.61839920321715
k2 = h f (x8 +

h
2,v8 +

k1
2 ,u8 +

l1
2 ) = 0.20388509437571

l2 = hg(x8 +
h
2,v8 +

k1
2 ,u8 +

l1
2 ) =−1.64946506249693

k3 = h f (x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) = 4.00077850844774

l3 = hg(x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) =−32.36697804064271

k4 = h f (x8 +h,v8 + k3,u8 + l3) =−2.30767059343111
l4 = hg(x8 +h,v8 + k3,u8 + l3) = 13.56414741967829
v9 = v8 +

1
6(k1 +2k2 +2k3 + k4) = 242.243822831322

u9 = u8 +
1
6(l1 +2l2 +2l3 + l4) = 5.14743540851746

x9 = 1.8

k1 = h f (x9,v9,u9) = 1.02948708170349
l1 = hg(x9,v9,u9) =−6.05117324050929
k2 = h f (x9 +

h
2,v9 +

k1
2 ,u9 +

l1
2 ) = 0.42436975765256

l2 = hg(x9 +
h
2,v9 +

k1
2 ,u9 +

l1
2 ) =−1.31137467013420

k3 = h f (x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) = 0.89834961469007

l3 = hg(x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) =−2.77605297829419

k4 = h f (x9 +h,v9 + k3,u9 + l3) = 0.47427648604465
l4 = hg(x9 +h,v9 + k3,u9 + l3) = 0
v10 = v9 +

1
6(k1 +2k2 +2k3 + k4) = 242.9348160018711

u10 = u9 +
1
6(l1 +2l2 +2l3 + l4) = 2.77643065228978
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n xn vn

0 0.0 0.0

1 0.2 0.247568

2 0.4 1.067532

3 0.6 6.223473

4 0.8 36.263531

5 1.0 121.728964

6 1.2 207.099751

7 1.4 235.713890

8 1.6 240.532052

9 1.8 242.243823

10 2.0 242.9348160

Table 5.6: Numerical values for 1D Burgers’ equation, RK4 method, h=0.2,
Re=10.
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Solving for h=0.15,Re=5

x0 = 0

k1 = h f (x0,v0,u0) = 0.15
l1 = hg(x0,v0,u0) = 0
k2 = h f (x0 +

h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.15

l2 = hg(x0 +
h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.17508402289193

k3 = h f (x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.16313130171689

l3 = hg(x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.19041123042794

k4 = h f (x0 +h,v0 + k3,u0 + l3) = 0.17856168456419
l4 = hg(x0 +h,v0 + k3,u0 + l3) = 0.40532654204816
v1 = v0 +

1
6(k1 +2k2 +2k3 + k4) = 0.15913738133300

u1 = u0 +
1
6(l1 +2l2 +2l3 + l4) = 1.18938617478132

x1 = 0.15

k1 = h f (x1,v1,u1) = 0.17840792621720
l1 = hg(x1,v1,u1) = 0.40497751790421
k2 = h f (x1 +

h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 0.20878124006001

l2 = hg(x1 +
h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 0.67796284442466

k3 = h f (x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 0.22925513954905

l3 = hg(x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 0.74444651474896

k4 = h f (x1 +h,v1 + k3,u1 + l3) = 0.29007490342954
l4 = hg(x1 +h,v1 + k3,u1 + l3) = 1.17337763258085
v2 = v1 +

1
6(k1 +2k2 +2k3 + k4) = 0.38322997947714

u2 = u1 +
1
6(l1 +2l2 +2l3 + l4) = 1.92658181958670
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x2 = 0.3

k1 = h f (x2,v2,u2) = 0.28898727293800
l1 = hg(x2,v2,u2) = 1.33494713311838
k2 = h f (x2 +

h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 0.38910830792188

l2 = hg(x2 +
h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 1.7944600809564

k3 = h f (x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 0.42379572354518

l3 = hg(x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 1.95768097474601

k4 = h f (x2 +h,v2 + k3,u2 + l3) = 0.58263941914991
l4 = hg(x2 +h,v2 + k3,u2 + l3) = 2.87733080532743
v3 = v2 +

1
6(k1 +2k2 +2k3 + k4) = 0.79946910531415

u3 = u2 +
1
6(l1 +2l2 +2l3 + l4) = 3.88033713694155

x3 = 0.45

k1 = h f (x3,v3,u3) = 0.58205057054123
l1 = hg(x3,v3,u3) = 2.87442281080161
k2 = h f (x3 +

h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 0.79763228135135

l2 = hg(x3 +
h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 3.97586723612132

k3 = h f (x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 0.88024061325033

l3 = hg(x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 4.38763562602567

k4 = h f (x3 +h,v3 + k3,u3 + l3) = 1.24019591444508
l4 = hg(x3 +h,v3 + k3,u3 + l3) = 5.89748202957811
v4 = v3 +

1
6(k1 +2k2 +2k3 + k4) = 1.66246781767909

u4 = u3 +
1
6(l1 +2l2 +2l3 + l4) = 8.13015556438716
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x4 = 0.6

k1 = h f (x4,v4,u4) = 1.21952333465807
l1 = hg(x4,v4,u4) = 5.19907288248256
k2 = h f (x4 +

h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 1.60945380084427

l2 = hg(x4 +
h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 6.86142476636087

k3 = h f (x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 1.73413019213514

l3 = hg(x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 7.39294526016749

k4 = h f (x4 +h,v4 + k3,u4 + l3) = 2.32846512368320
l4 = hg(x4 +h,v4 + k3,u4 + l3) = 8.23236739356381
v5 = v4 +

1
6(k1 +2k2 +2k3 + k4) = 3.36832722506244

u5 = u4 +
1
6(l1 +2l2 +2l3 + l4) = 15.12018561923768

x5 = 0.75

k1 = h f (x5,v5,u5) = 2.26802784288565
l1 = hg(x5,v5,u5) = 8.01868933812171
k2 = h f (x5 +

h
2,v5 +

k1
2 ,u5 +

l1
2 ) = 0.71390170035913

l2 = hg(x5 +
h
2,v5 +

k1
2 ,u4 +

l1
2 ) = 1.86506306892960

k3 = h f (x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) = 2.40790757305537

l3 = hg(x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) = 6.2906415445048

k4 = h f (x5 +h,v5 + k3,u5 + l3) = 3.21162403105322
l4 = hg(x5 +h,v5 + k5,u5 + l3) = 4.96223202569210
v6 = v5 +

1
6(k1 +2k2 +2k3 + k4) = 5.32220562852375

u6 = u5 +
1
6(l1 +2l2 +2l3 + l4) = 20.00224062100001
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x6 = 0.9

k1 = h f (x6,v6,u6) = 3.00033609315000
l1 = hg(x6,v6,u6) = 4.63577420809943
k2 = h f (x6 +

h
2,v6 +

k1
2 ,u6 +

l1
2 ) = 3.34801915875746

l2 = hg(x6 +
h
2,v6 +

k1
2 ,u6 +

l1
2 ) = 1.31341277837805

k3 = h f (x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) = 3.09884205152835

l3 = hg(x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) = 1.21566535202475

k4 = h f (x6 +h,v6 + k3,u6 + l3) = 3.18268535202475
l4 = hg(x6 +h,v6 + k6,u6 + l3) =−2.48940840217685
v7 = v6 +

1
6(k1 +2k2 +2k3 + k4) = 8.50166293948148

u7 = u6 +
1
6(l1 +2l2 +2l3 + l4) = 21.20299309005701

x7 = 1.05

k1 = h f (x7,v7,u7) = 3.18044896350855
l1 = hg(x7,v7,u7) =−2.48765916097108
k2 = h f (x7 +

h
2,v7 +

k1
2 ,u7 +

l1
2 ) = 2.99387452643572

l2 = hg(x7 +
h
2,v7 +

k1
2 ,u7 +

l1
2 ) =−5.72853089923414

k3 = h f (x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) = 2.75080914606599

l3 = hg(x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) =−5.26344542898907

k4 = h f (x7 +h,v7 + k3,u7 + l3) = 2.39093214916019
l4 = hg(x7 +h,v7 + k6,u7 + l3) =−7.02677328254154
v8 = v7 +

1
6(k1 +2k2 +2k3 + k4) = 11.3451210156017

u8 = u7 +
1
6(l1 +2l2 +2l3 + l4) = 15.95326224006383
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x8 = 1.2

k1 = h f (x8,v8,u8) = 2.39298933600957
l1 = hg(x8,v8,u8) =−7.03281920299793
k2 = h f (x8 +

h
2,v8 +

k1
2 ,u8 +

l1
2 ) = 1.86552789578473

l2 = hg(x8 +
h
2,v8 +

k1
2 ,u8 +

l1
2 ) =−7.09279270473991

k3 = h f (x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) = 1.86102988315408

l3 = hg(x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) =−7.07569112655146

k4 = h f (x8 +h,v8 + k3,u8 + l3) = 1.33163566702686
l4 = hg(x8 +h,v8 + k8,u8 + l3) =−5.93248033581429
v9 = v8 +

1
6(k1 +2k2 +2k3 + k4) = 13.29631014526706

u9 = u8 +
1
6(l1 +2l2 +2l3 + l4) = 9.06955103983134

x9 = 1.35

k1 = h f (x9,v9,u9) = 1.36043265597470
l1 = hg(x9,v9,u9) =−6.06077186096184
k2 = h f (x9 +

h
2,v9 +

k1
2 ,u9 +

l1
2 ) = 0.9058746640256

l2 = hg(x9 +
h
2,v9 +

k1
2 ,u9 +

l1
2 ) =−4.40422687248562

k3 = h f (x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) = 1.03011564053828

l3 = hg(x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) =−5.00826731695304

k4 = h f (x9 +h,v9 + k3,u9 + l3) = 0.60919255843174
l4 = hg(x9 +h,v9 + k9,u9 + l3) =−3.04596279215872
v10 = v9 +

1
6(k1 +2k2 +2k3 + k4) = 14.26991114998175

u10 = u9 +
1
6(l1 +2l2 +2l3 + l4) = 4.41426386783169
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x10 = 1.5

k1 = h f (x10,v10,u10) = 0.66213958017475
l1 = hg(x10,v10,u10) =−0.75
k2 = h f (x10 +

h
2,v10 +

k1
2 ,u10 +

l1
2 ) = 0.60588958017475

l2 = hg(x10 +
h
2,v10 +

k1
2 ,u10 +

l1
2 ) =−2.94574401422154

k3 = h f (x10 +
h
2,v10 +

k2
2 ,u10 +

l2
2 ) = 0.44120877910814

l3 = hg(x10 +
h
2,v10 +

k2
2 ,u10 +

l2
2 ) =−2.14509072710068

k4 = h f (x10 +h,v10 + k3,u10 + l3) = 0.34037597110965
l4 = hg(x10 +h,v10 + k10,u10 + l3) =−1.51638605467825
v11 = v10 +

1
6(k1 +2k2 +2k3 + k4) = 14.78602986162344

u11 = u10 +
1
6(l1 +2l2 +2l3 + l4) = 2.33958794494458

x11 = 1.65

k1 = h f (x11,v11,u11) = 0.3509381914169
l1 = hg(x8,v8,u8) =−1.56344109214356
k2 = h f (x11 +

h
2,v11 +

k1
2 ,u11 +

l1
2 ) = 0.23368010983092

l2 = hg(x11 +
h
2,v11 +

k1
2 ,u11 +

l1
2 ) =−0.88845874778751

k3 = h f (x11 +
h
2,v11 +

k2
2 ,u11 +

l2
2 ) = 0.28430378565762

l3 = hg(x11 +
h
2,v11 +

k2
2 ,u11 +

l2
2 ) =−1.08093147328365

k4 = h f (x11 +h,v11 + k3,u11 + l3) = 0.18879847074914
l4 = hg(x8 +h,v8 + k8,u8 + l3) =−0.55486478380858
v12 = v11 +

1
6(k1 +2k2 +2k3 + k4) = 15.04864727053476

u12 = u11 +
1
6(l1 +2l2 +2l3 + l4) = 1.33007355859550
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x12 = 1.8

k1 = h f (x12,v12,u12) = 0.19951103378933
l1 = hg(x12,v12,u12) =−0.58634821665495
k2 = h f (x12 +

h
2,v12 +

k1
2 ,u12 +

l1
2 ) = 0.15553491754020

l2 = hg(x12 +
h
2,v12 +

k1
2 ,u12 +

l1
2 ) =−0.29760318048453

k3 = h f (x12 +
h
2,v12 +

k2
2 ,u12 +

l2
2 ) = 0.17719079525299

l3 = hg(x12 +
h
2,v12 +

k2
2 ,u12 +

l2
2 ) =−0.33903990855456

k4 = h f (x12 +h,v12 + k3,u12 + l3) = 0.14865504750614
l4 = hg(x8 +h,v8 + k8,u8 + l3) =−0.11627386416077
v13 = v12 +

1
6(k1 +2k2 +2k3 + k4) = 15.21758352168174

u13 = u12h +
1
6(l1 +2l2 +2l3 + l4) = 1.0007551544652

n xn vn

0 0.0 0.0

1 0.15 0.159137

2 0.3 0.383230

3 0.45 0.799470

4 0.6 1.662468

5 0.75 3.368327

6 0.9 5.322206

7 1.05 8.501663

8 1.2 11.345121

9 1.35 13.296310

10 1.5 14.269911

11 1.65 14.786030

12 1.8 15.048647

13 1.95 15.217584

Table 5.6: Numerical values for 1D Burgers’ equation, RK4 method, h=0.15,
Re=
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Solving for h=0.15,Re=10

x0 = 0

k1 = h f (x0,v0,u0) = 0.15
l1 = hg(x0,v0,u0) = 0
k2 = h f (x0 +

h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.15

l2 = hg(x0 +
h
2,v0 +

k1
2 ,u0 +

l1
2 ) = 0.35016804578386

k3 = h f (x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.17626260343379

l3 = hg(x0 +
h
2,v0 +

k2
2 ,u0 +

l2
2 ) = 0.41147687592790

k4 = h f (x0 +h,v0 + k3,u0 + l3) = 0.21172153138919
l4 = hg(x0 +h,v0 + k3,u0 + l3) = 0.96119563840998
v1 = v0 +

1
6(k1 +2k2 +2k3 + k4) = 0.16904112304279

u1 = u0 +
1
6(l1 +2l2 +2l3 + l4) = 1.41408091363892

x1 = 0.15

k1 = h f (x1,v1,u1) = 0.21211213704584
l1 = hg(x1,v1,u1) = 0.96296895098263
k2 = h f (x1 +

h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 0.28433480836953

l2 = hg(x1 +
h
2,v1 +

k1
2 ,u1 +

l1
2 ) = 1.84660686367931

k3 = h f (x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 0.35060765182179

l3 = hg(x1 +
h
2,v1 +

k2
2 ,u1 +

l2
2 ) = 2.27701455205287

k4 = h f (x1 +h,v1 + k3,u1 + l3) = 0.55366431985377
l4 = hg(x1 +h,v1 + k3,u1 + l3) = 4.47923843940745
v2 = v1 +

1
6(k1 +2k2 +2k3 + k4) = 0.50831801925650

u2 = u1 +
1
6(l1 +2l2 +2l3 + l4) = 3.69565595061466
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x2 = 0.3

k1 = h f (x2,v2,u2) = 0.55434839259220
l1 = hg(x2,v2,u2) = 4.85477270411524
k2 = h f (x2 +

h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 0.89070634540084

l2 = hg(x2 +
h
2,v2 +

k1
2 ,u2 +

l1
2 ) = 8.22905361993766

k3 = h f (x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 1.17152741408752

l3 = hg(x2 +
h
2,v2 +

k2
2 ,u2 +

l2
2 ) = 10.82350199651338

k4 = h f (x2 +h,v2 + k3,u2 + l3) = 2.17787369206921
l4 = hg(x2 +h,v2 + k3,u2 + l3) = 21.51060452945639
v3 = v2 +

1
6(k1 +2k2 +2k3 + k4) = 1.65109961986286

u3 = u2 +
1
6(l1 +2l2 +2l3 + l4) = 14.37907069502694

x3 = 0.45

k1 = h f (x3,v3,u3) = 2.15686060425404
l1 = hg(x0,v0,u0) = 21.30306071110701
k2 = h f (x3 +

h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 3.75459015758707

l2 = hg(x3 +
h
2,v3 +

k1
2 ,u3 +

l1
2 ) = 37.43016009162344

k3 = h f (x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 4.96412261112580

l3 = hg(x3 +
h
2,v3 +

k2
2 ,u3 +

l2
2 ) = 49.48819877807864

k4 = h f (x3 +h,v3 + k3,u3 + l3) = 9.58009042096584
l4 = hg(x3 +h,v3 + k3,u3 + l3) = 91.11207421556341
v4 = v3 +

1
6(k1 +2k2 +2k3 + k4) = 6.51349571363712

u4 = u3 +
1
6(l1 +2l2 +2l3 + l4) = 62.08771280603936
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x4 = 0.6

k1 = h f (x4,v4,u4) = 9.31315692090590
l1 = hg(x4,v4,u4) = 88.57338576906869
k2 = h f (x4 +

h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 15.95616085368606

l2 = hg(x4 +
h
2,v4 +

k1
2 ,u4 +

l1
2 ) = 136.0486361266195

k3 = h f (x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 19.51680463040237

l3 = hg(x4 +
h
2,v4 +

k2
2 ,u4 +

l2
2 ) = 166.4081150773298

k4 = h f (x4 +h,v4 + k3,u4 + l3) = 34.27437418250538
l4 = hg(x4 +h,v4 + k3,u4 + l3) = 242.3564240537469
v5 = v4 +

1
6(k1 +2k2 +2k3 + k4) = 25.60240605886848

u5 = u4 +
1
6(l1 +2l2 +2l3 + l4) = 218.0615981778250

x5 = 0.75

k1 = h f (x5,v5,u5) = 32.70923972667375
l1 = hg(x5,v5,u5) = 231.2892521818743
k2 = h f (x5 +

h
2,v5 +

k1
2 ,u5 +

l1
2 ) = 50.0559336403133

l2 = hg(x5 +
h
2,v5 +

k1
2 ,u5 +

l1
2 ) = 261.5415348258102

k3 = h f (x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) = 52.32485483860951

l3 = hg(x5 +
h
2,v5 +

k2
2 ,u5 +

l2
2 ) = 273.3966155214384

k4 = h f (x5 +h,v5 + k3,u5 + l3) = 73.71873205488951
l4 = hg(x5 +h,v5 + k3,u5 + l3) = 227.8034100873406
v6 = v5 +

1
6(k1 +2k2 +2k3 + k4) = 77.4673308487030

u6 = u5 +
1
6(l1 +2l2 +2l3 + l4) = 472.8897586717770
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x6 = 0.9

k1 = h f (x6,v6,u6) = 70.93346380076655
l1 = hg(x6,v6,u6) = 219.1964578431702
k2 = h f (x6 +

h
2,v6 +

k1
2 ,u6 +

l1
2 ) = 87.37319813900432

l2 = hg(x6 +
h
2,v6 +

k1
2 ,u6 +

l1
2 ) = 68.55222116836116

k3 = h f (x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) = 76.07488038839364

l3 = hg(x6 +
h
2,v6 +

k2
2 ,u6 +

l2
2 ) = 59.68766322877340

k4 = h f (x6 +h,v6 + k3,u6 + l3) = 79.88661328508256
l4 = hg(x3 +h,v3 + k3,u3 + l3) =−124.9701961312768
v7 = v6 +

1
6(k1 +2k2 +2k3 + k4) = 157.0867032055445

u7 = u6 +
1
6(l1 +2l2 +2l3 + l4) = 531.3407637561375

x7 = 1.05

k1 = h f (x7,v7,u7) = 79.70111456342062
l1 = hg(x7,v7,u7) =−124.6800121983885
k2 = h f (x7 +

h
2,v7 +

k1
2 ,u7 +

l1
2 ) = 70.35011364854148

l2 = hg(x7 +
h
2,v7 +

k1
2 ,u7 +

l1
2 ) =−269.2182295829800

k3 = h f (x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) = 59.50974734469711

l3 = hg(x7 +
h
2,v7 +

k2
2 ,u7 +

l2
2 ) =−227.7339437304798

k4 = h f (x7 +h,v7 + k3,u7 + l3) = 45.54102300384866
l4 = hg(x7 +h,v7 + k3,u7 + l3) =−267.6834169597451
v8 = v7 +

1
6(k1 +2k2 +2k3 + k4) = 221.2470131311689

u8 = u7 +
1
6(l1 +2l2 +2l3 + l4) = 300.2961344586287
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x8 = 1.2

k1 = h f (x8,v8,u8) = 45.04442016879430
l1 = hg(x8,v8,u8) =−264.7644587328292
k2 = h f (x8 +

h
2,v8 +

k1
2 ,u8 +

l1
2 ) = 25.18708576383211

l2 = hg(x8 +
h
2,v8 +

k1
2 ,u8 +

l1
2 ) =−191.5241027089754

k3 = h f (x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) = 30.68011246562114

l3 = hg(x8 +
h
2,v8 +

k2
2 ,u8 +

l2
2 ) = 282.0006200561406

k4 = h f (x8 +h,v8 + k3,u8 + l3) = 87.34451317721538
l4 = hg(x8 +h,v8 + k3,u8 + l3) =−778.2453109295576
v9 = v8 +

1
6(k1 +2k2 +2k3 + k4) = 261.9342347653216

u9 = u8 +
1
6(l1 +2l2 +2l3 + l4) = 156.6200119639526

x9 = 1.35

k1 = h f (x9,v9,u9) = 23.49300179459289
l1 = hg(x9,v9,u9) =−209.3241787175130
k2 = h f (x9 +

h
2,v9 +

k1
2 ,u9 +

l1
2 ) = 7.79368839077942

l2 = hg(x9 +
h
2,v9 +

k1
2 ,u9 +

l1
2 ) =−75.78348160146479

k3 = h f (x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) = 17.80924067448303

l3 = hg(x9 +
h
2,v9 +

k2
2 ,u9 +

l2
2 ) =−173.1716993699013

k4 = h f (x9 +h,v9 + k3,u9 + l3) =−2.48275311089231
l4 = hg(x9 +h,v9 + k3,u9 + l3) = 24.82753110892307
v10 = v9 +

1
6(k1 +2k2 +2k3 + k4) = 273.97025256769259

u10 = u9 +
1
6(l1 +2l2 +2l3 + l4) = 42.88551037206558
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x10 = 1.5

k1 = h f (x10,v10,u10) = 6.43282655580984
l1 = hg(x10,v10,u10) =−64.32826555809837
k2 = h f (x10 +

h
2,v10 +

k1
2 ,u10 +

l1
2 ) = 1.60820663895246

l2 = hg(x10 +
h
2,v10 +

k1
2 ,u10 +

l1
2 ) =−15.63771761501219

k3 = h f (x10 +
h
2,v10 +

k2
2 ,u10 +

l2
2 ) = 5.25999773468392

l3 = hg(x10 +
h
2,v10 +

k2
2 ,u10 +

l2
2 ) =−51.14663578566566

k4 = h f (x10 +h,v10 + k3,u10 + l3) =−1.23916881204001
l4 = hg(x7 +h,v7 + k3,u7 + l3) = 11.04107496098400
v11 = v10 +

1
6(k1 +2k2 +2k3 + k4) = 277.1252636495329

u11 = u10 +
1
6(l1 +2l2 +2l3 + l4) = 11.74286080565391

x11 = 1.65

k1 = h f (x11,v11,u11) = 1.76142912084809
l1 = hg(x11,v11,u11) =−15.69444838571026
k2 = h f (x11 +

h
2,v11 +

k1
2 ,u11 +

l1
2 ) = 0.58434549191982

l2 = hg(x11 +
h
2,v11 +

k1
2 ,u11 +

l1
2 ) =−4.44339798027313

k3 = h f (x11 +
h
2,v11 +

k2
2 ,u11 +

l2
2 ) = 1.42817427232760

l3 = hg(x11 +
h
2,v11 +

k2
2 ,u11 +

l2
2 ) =−10.85992236594391

k4 = h f (x11 +h,v11 + k3,u11 + l3) = 0.1324407659560
l4 = hg(x11 +h,v11 + k3,u11 + l3) =−0.77846729031549
v12 = v11 +

1
6(k1 +2k2 +2k3 + k4) = 278.1117485520828

u12 = u11 +
1
6(l1 +2l2 +2l3 + l4) = 3.896268077577267
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x12 = 1.8

k1 = h f (x12,v12,u12) = 0.58444021163659
l1 = hg(x12,v12,u12) =−3.43525337246679
k2 = h f (x12 +

h
2,v12 +

k1
2 ,u12 +

l1
2 ) = 0.32679620870158

l2 = hg(x12 +
h
2,v12 +

k1
2 ,u12 +

l1
2 ) =−1.25059494829819

k3 = h f (x12 +
h
2,v12 +

k2
2 ,u12 +

l2
2 ) = 0.49064559051423

l3 = hg(x12 +
h
2,v12 +

k2
2 ,u12 +

l2
2 ) =−1.87761938652780

k4 = h f (x12 +h,v12 + k3,u12 + l3) = 0.30279730365742
l4 = hg(x12 +h,v12 + k3,u12 + l3) =−0.47367934213273
v13 = v12 +

1
6(k1 +2k2 +2k3 + k4) = 278.5321020710370

u13 = u12 +
1
6(l1 +2l2 +2l3 + l4) = 2.20204118020201

n xn vn

0 0.0 0.0

1 0.15 0.169041

2 0.3 0.508318

3 0.45 1.651020

4 0.6 6.513496

5 0.75 25.602406

6 0.9 77.467331

7 1.05 157.086703

8 1.2 221.247013

9 1.35 261.934235

10 1.5 273.970253

11 1.65 277.125263

12 1.8 278.111749

13 1.95 278.532102

Table 5.6: Numerical values for 1D Burgers’ equation, RK4 method, h=0.15,
Re=10
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Figure 3. Numerical solution of 1D Burgers’ equation taking h=0.15, h=0.2 and Re=5
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Figure 4. Numerical solution of 1D Burgers’ equation taking h=0.15, h=0.2 and Re=10
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4.2 DISCUSSIONS AND CONCLUSIONS

We have solved the equation numerically by using the Runge-Kutta method
of order four.
We have drawn �gures (3) and (4) for Re=5,Re=10 with space widths h=0.15
and h=0.20 respectively.
We notice that the velocity component increases exponentially with the spatial
coordinates,which is a new development.
We also notice that the graphs become smoother with reduced step size .
This implies that the error is reduced with decreased step size.
We �nally notice that the graphs become more smooth with reduced Reynold
number.
We would not compare the �ndings with other authors since the problem had
not been solved by them.However, we recommend that the solution of the same
problem be done with same method but valid Reynold numbers and valid step
sizes.
The other recommendation is to solve the same problem analytically and also
by using di�erent numerical methods.Once these are done, then the solutions
can be compared and the degree of the accuracy determined for each method
in order to draw a conclusion on which method is better as far as the degree of
accuracy is concerned.
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