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ABSTRACT 

The use of numerical climate models for accurate simulation of weather and climate information 

is very crucial for optimum planning and management of weather related activities. The current 

study applied the Weather Research and Forecasting (WRF) model as the primary research tool in 

simulating the extreme rainfall characteristics over East Africa (EA) region.  

The study focused on the customization of the WRF model through the simulations and evaluation 

of Kain-Fritsch (KF), Kain-Fritsch with a moisture-advection based trigger function (KFT), Grell 

Dévényi (GRELL) and Betts Miller Janjic (BML) cumulus parameterization schemes (CPSs) to 

identify which scheme improves simulation of the various rainfall characteristics for the wettest 

and driest years over the EA region. For higher skill and accuracy in the model simulations and 

proper customization of WRF model over the region, three adjustable parameters from the cumulus 

schemes namely the sub-grid scale cloud–radiation coupling, adjustment time scale (ATS) and 

entrainment based on the lifting condensation level (LCL) were identified and tested.  

The main rainfall characteristics analyzed included the number of rainy days (NRD), intensity of 

rainy days (IRD) and the frequency of rainfall intensity (FRI) during the core rainfall seasons of 

March-April-May (MAM) and October-November-December (OND). The model evaluation was 

done using daily Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) and 

ERA-Interim reanalysis. 

The evaluation/ error analysis metrics adopted in the study were root mean square error (RMSE), 

mean bias error, spatial correlation (SC), coefficient of variation (CV), Taylor diagram and box 

and whisker plots. The atmospheric dynamics calculated included the convergence and divergence 

analyses, vertically inter-grated moisture fluxes (VIMF) and vertical velocity. 

Generally, the cumulus schemes succeeded in reproducing the observed rainfall features associated 

with large scale systems like the Inter-tropical convergence zone (ITCZ). The GRELL scheme 

favored drier rainfall conditions over the eastern parts of the region. The KF and KFT schemes 

generated wetter rainfall conditions mainly confined to the western parts of the region.   

The analyses of observed NRD showed that the western and eastern parts of the region were 

characterized by more and fewer NRD respectively. These were fairly reproduced by the KF, KFT 

and GRELL CPSs. The BML scheme alternated the areas under wet or dry rainfall biases. 
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The Indian Ocean, Congo Basin and eastern parts of the region experienced persistent rainfall 

biases. More NRD over the western parts of the equatorial region were mostly related to light 

rainfall intensity (1-10mm/day). The biases associated with the heavy rainfall (>20mm/day) events 

were in most cases very low in the KF and GRELL cumulus schemes. The schemes simulated too 

many rainy days under the light rainfall category over the western and eastern parts of the region, 

the heavy rainfall events were quite well reproduced over the same locations by the KF scheme.  

The simulations of vertically inter-grated moisture flux (VIMF), vertical velocity circulations and 

upper level (200hPa) divergence/convergence showed a steady easterly moisture transport 

characterized by the development of anti-cyclonic flow over the northern part of Madagascar and 

along EA coasts were fairly simulated by the KF and GRELL schemes. The moisture convergence 

biases were found to be larger continentally as well as over parts of the nearby Indian Ocean, 

corroborating the observed larger rainfall biases noted over parts of East Africa region.   

In conclusion, the study has provided a unique way of isolating the deficiencies and limitations of 

four cumulus parameterization schemes used in the WRF model in simulating extreme rainfall. A 

robust analyses and evaluation of suite of model simulations resulted to the identification of the 

modified Kain-Fritsch scheme (KF-new) as the most suitable for application in WRF model in 

order to improve simulations of key rainfall characteristics of East Africa rainfall. By adopting a 

more robust user relevant metrics makes the findings more relevant contributing useful knowledge 

that can lead to improved numerical weather prediction (NWP) tools/systems over EA region.   

The tuning and testing of the specific adjustable parameters within the cumulus schemes led to the 

identification of the best cumulus scheme that can be used to improve the predictability of rainfall 

characteristics over the region. This contributes to the new knowledge and understanding of how 

choice and use of specific cumulus parameterization schemes in WRF model can influence the 

predictability and prediction of East Africa rainfall. The information from this study is an 

important contribution to the previous and ongoing research aimed at appropriately customizing 

numerical weather prediction models and climate modelling systems to skillfully/accurately 

predict and project climate and weather changes over the East Africa region. 
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CHAPTER ONE 

1. Background of the Study  

This chapter gives the introduction together with the background information required for this 

study. It also gives the specific objectives and statement of the problem under investigation. Most 

socio-economic development activities within the countries of the East Africa (EA) are negatively 

impacted by extreme weather and climate events, with rainfall related hazards being the major 

drivers of the regional disasters.  

The understanding of rainfall patterns and characteristics in terms of rainfall amount, the 

associated intensities and their frequencies (FRI) is therefore fundamental for disaster risk 

reduction and building resilience to climate smart socio-economic development that effectively 

addresses the challenges associated with the risks of climate variability and change. 

Furthermore, improved and better knowledge on the intra-seasonal rainfall characteristics is very 

useful for planning purposes to sectors like agriculture, hydrology, and for urban planning. Within 

the African continent, one of the impacts of a changing climate will be the alteration of regional 

rainfall characteristics including rainfall amount and their frequencies, onset, cessation and 

duration (Pohl et al., 2017). Amongst the rainfall characteristics, the number of rainy days together 

with their intensities greatly impacts on the quality of the Agricultural activities within the East 

Africa region. 

Related studies over the EA region are scarce and limited despite their relative importance to the 

economy. A study by Sun et al. (2006) on the seasonal rainfall characteristics found that the 

seasonal mean rainfall variability both in space and time is a product of the variability in the 

individual rainfall characteristics. The correct formulation and strategies in the numerical 

forecasting tools would provide better understanding of the various rainfall characteristics 

(Cristiano et al., 2017; Kim et al., 2018).  

Furthermore, over the EA region, the complexity in the terrain, undulating topography and the 

interactions of the Inter-tropical convergence zone (ITCZ) together with the local circulations 

present complex climate systems that the current RCMs are not able to fully represent. The 

complexity of the regional climate details coupled with the huge computational demand to study 

detailed rainfall characteristics partly has hampered the continuity in the provision of accurate and 
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reliable rainfall forecasts over the region (Von et al., 2000; Cretat et al., 2015). The rainfall 

predictability therefore must consider known processes that majorly drive the rainfall including 

the interactions between the large-scale and local scale systems (Ogallo, 1989; Okoola, 1999; 

Mistry and Conway, 2003; Anyah et al., 2006; Kim et al., 2012). 

Over the tropics and particularly Equatorial East Africa (EEA) region, the rainfall processes are 

majorly convective in nature due to strong solar insolation (Davies et al., 2009; Pohl et al., 2011). 

The understanding of the convective processes and their representation at sub grid-scale within 

RCMs is a step geared towards improving the seasonal rainfall forecasts, reducing risks and shocks 

associated with too extreme climate conditions. 

Several studies including Anyah and Semazzi (2006); Segele et al.(2009); Pohl et al. (2011); 

Zaroug et al. (2014); Sun et al.(2014); Opijah et al. (2014); Ngaina, (2015); Ogwang et al.(2015a, 

b); Argent et al.( 2015); Ntwali et al.(2016) and Kerandi et al. (2017) have used RCMs to evaluate 

rainfall characteristics. These studies reported that the RCMs succeed in most cases in reproducing 

the rainfall gradient due to the large-scale systems like the ITCZ. The model inconsistencies in 

simulating orography induced rainfall has also been reported in some of these studies. These 

studies found systemic model deficiencies (biases) in rainfall and temperature simulations. 

A robust climate modelling aimed at identifying the strength and weakness of the model physics 

for climate simulations and forecasting clearly lacked in these regional studies. The current study 

therefore aimed at identifying the best cumulus scheme that provide skillful rainfall simulations 

for the specified rainfall characteristics during wet and dry rainfall years over the EA region. 

1.1 Statement of the Problem  

The East Africa region is characterized by extreme episodic rainfall that negatively impacts the 

economy of the region annually. These extreme rainfall at daily-seasonal timescale are driven by 

amongst others local scale dynamics like convective processes that are not quite well understood 

in the NWP models. There are very little research efforts using dynamical tools geared towards 

addressing such limitations in understanding. This implies that there is no clear information on the 

extent to which a particular RCM can be applied for full maximization of its climate information.  

Furthermore, there is no clear sub grid-scale information over the region that details the extent to 

which convective schemes could be modified to bring in scale awareness for improving high-

resolution rainfall characteristics.  
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Lack of new conceptual approach to better improve methodology and implementation of essential 

mechanisms and processes has limited the creation of new knowledge and science advancement 

in the NWP processes. The application of regional climate models (RCMs) with broader range of 

physical parameterization schemes broaden the maximization and understanding of the challenges 

associated with the NWP for reduction of sector specific climate related risks. 

In many of the previous modeling studies, the treatment of cumulus parameterization schemes in 

NWP have not been subjected to extensive evaluation. Such comprehensive tests are critical since 

most RCMs are developed and tested over mid-latitude regions and therefore not accustomed to 

the unique convective rainfall characteristics over the tropics. This, implies that the NWP models 

should be uniquely customized to improve on the simulations of different rainfall characteristics. 

The current study contributed towards filling this gap.  

1.2 Objective of the Study 

The overall objective of the study was to investigate how four cumulus parameterization schemes 

simulate specific rainfall characteristics during wet and dry years. The specific objectives used to 

achieve the main objective were to: 

i. Determine the skill of four cumulus parameterization schemes in simulating intra-seasonal 

rainfall characteristics  

ii. Establish the skill of the cumulus schemes in simulating the atmospheric circulations and 

dynamics  

iii. Determine the specific adjustable parameters within the cumulus schemes that can be 

customized to improve rainfall simulations  

1.3 Research Questions 

The various research questions that the study aimed to address were as follows: 

i. What are the significant differences in using different cumulus parameterization schemes in 

WRF model simulations of salient rainfall characteristics over East Africa? 

ii. How well can the WRF model simulate key East Africa rainfall formation processes during 

wet and dry rainfall seasons?  

iii. Are there some adjustable parameters in the WRF model cumulus parameterization schemes 

that are sensitive to the simulations of wet and dry conditions over East Africa? 
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1.4 Justification for the Study 

Agriculture forms the backbone of the economy of the region that mainly depends on seasonal 

rainfall. The high variability of seasonal rainfall associated with climate extremes affects 

agriculture. Therefore, knowledge about the quality of the seasonal forecasts would provide early 

warning information to farmers and other users of climate information for preparedness to alleviate 

the devastating impacts associated with the climate extremes.  

This provision of early warning information has been made possible by use of dynamical models 

in prediction. Over the EA region, rainfall is mostly convective in nature. This implies that the 

identification and documentation of robust model physical schemes relevant for the region is very 

important. The use of high-resolution RCM model in the region in the recent past has continued to 

encourage more detailed analyses of the African Regional Climate Outlook Forums (RCOFs) 

using improved datasets and methodologies. Few studies over the region using NWP tools to 

model rainfall processes include (Okeyo 1987; Mukabana and Piekle 1996; Pohl et al., 2011; 

Kerandi et al., 2017). There is still no consensus on suitable configurations of model physics that 

will be accurate in successfully reproducing observed regional climate characteristics. 

Many studies on physical parameterization schemes outside the region, highlights the importance 

of the cumulus schemes in determining the rainfall variability; despite being least studied and 

documented over the East Africa region (Cretat and Pohl 2012; Cook and Vizy 2013). The research 

and documentation of a set of model physical configurations suitable for studying specific extreme 

rainfall conditions is therefore undisputable. This necessitates the demand to study the intra-

seasonal rainfall characteristics over the EA region and to conduct further sensitivity experiments 

with RCMs like WRF due to relatively high uncertainties associated with the model physics. 

Several efforts have been made by research institutions like Inter-Governmental Authority on 

Development Climate Prediction and Applications Center (ICPAC), National Meteorological and 

Hydrological Services (NMHSs), regional universities and other institutions to improve the 

prediction and early warning systems of the regional climate, but limitations still exist in the 

forecasts. These limitations offer a potential challenge in providing timely high-quality forecasts. 

The ability to fully maximize the use of the available climate information in reducing sector 

specific climate related risks in support of disaster risk reduction and sustainable development is 

also hampered.  

http://link.springer.com/article/10.1007/s00704-016-1890-y#CR35
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1.5 The Study and Analysis Domains  

The East Africa (EA) region was the study domain for the current study. The EA region consists 

of five countries Kenya, Burundi, Rwanda, Tanzania and Uganda, bounded by the latitudes 6 °N 

and 12 °S and longitudes 28 °E and 45 °E. Figure 1 shows the topography of the EA study region. 

The region is bordered by complex topographical features that include the Ethiopian highlands to 

the Northeast and East African highlands to the southwest. Some of the East Africa high mountains 

and top highlands include Kenya (5199 metres), Kilimanjaro (5895 metres), Elgon (4321 metres), 

Aberdare Ranges (3999 metres) and the Mau escarpment (3098 metres), (Otieno and Anyah 2013 

b). The chains of the complex mountains provide stable sources for some of the major rivers within 

the region (Nicholson 2014). The Lake Victoria basin, Indian Ocean and the western and eastern 

highlands forms key unique physical features of the region. The rainfall driving systems are 

complex and vary across time latitude and longitude within the region. This provides unique 

rainfall regimes over the region (Mutemi et al., 2007). 
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To provide a more objective understanding of the rainfall characteristics and their distributions, 

homogeneous zones with their representative stations developed by Omondi et al. (2013) was used. 

To lower the variability associated with the meteorological datasets from the individual stations, 

it more scientific to cluster rainfall stations into homogeneous climate zones. This aids in critical 

understanding of the mechanisms associated with climate variability. The process also reduces the 

number of variables which describe the regional climate variability (Ogallo 1988; Indeje 2000; 

Mutemi 2003; Nyakwada 2009). Figure 2 shows the homogeneous zones and their representative 

stations developed by Omondi et al. (2013) spread across the study domain for both the MAM and 

OND rainfall seasons. 

Figure 1: A topography map of covering part of East Africa and Greater Horn 

regions (source: Himeidan and Kweka 2012) 
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Figure 2: Homogeneous zones for East Africa during MAM (left panel) and OND (right 

panel) (source: Omondi et al., 2013) 

It is on this basis that the current study developed the analysis sub-domains for the study. Figure 

3 shows the analysis domain used for computations of annual cycles and various rainfall statistics. 

The zones were developed based on their representations on the homogenous zones and uniform 

rainfall characteristics. For the uniformity and for purposes of providing fair comparison of the 

CPSs, the same sub-domains were used for both the seasons. These zones were closely linked to 

those earlier developed Ogallo (1989), Indeje (2000) and Anyah and Semmazzi (2007). 
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Figure 3: Study Area with four Sub-domains SEA, NEA, LVB and CEA utilized for analysis 

in this study during MAM and OND seasons. The shaded area shows the extent covered by 

the Lake Victoria basin 

The four sub-domains were; Near Equatorial Africa (NEA), Southern East Africa (SEA), Coastal 

East Africa (CEA) and Lake Victoria Basin (LVB) utilized for analysis. The NEA sub-domain 

rainfall pattern is basically driven by the ITCZ, ENSO, IOD and local scale interactions. The 

rainfall pattern over the region is linked with the strength of the jets in the upper tropical Indian 

Ocean, surface westerly winds that reinforce the easterly oceanic temperature gradient and form 

part of the equatorial zonal-vertical circulation cell (Anyah et al.,2006; Endris et al.,2013; 

Gudoshava 2016).  
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Over both NEA and SEA sub-domains, the land-sea breezes, land use, moisture flux, monsoon 

winds, and Congo air mass are key local and large-scale systems driving rainfall over the sub-

domains (Cook and Vizy 2013; Ogwang et al., 2015a). The regional topography over these sub-

mains also contributes significantly to the formation of local perturbations through coupling with 

the vertical components of wind speeds. This promotes the formation and development of clouds, 

precipitation and thunderstorms (Indeje et al., 2000; Oettli and Camberlin 2005; Ogwang et al., 

2014).  

Furthermore, over the SEA sub-domain, the complex topography characterized by mountains and 

water bodies in the western parts of Tanzania modulates rainfall pattern significantly. The complex 

rainfall systems influence the seasonal interactions within the ITCZ and the perturbations in the 

global circulations and changes in local circulation systems (Luhunga and Djolov 2017). The 

seasonal movement of the ITCZ causes both NEA and SEA domains to experience either unimodal 

or bimodal rainfall regimes. Areas like southern, southwestern, central and western parts of the 

SEA region experience uni-modal type of rainfall. 

The interactions of the land-sea breezes, moisture flux from Congo and the inland lakes, and 

monsoonal winds play crucial role in modulating the internal climate dynamics over the LVB and 

CEA sub-domains (Godushava 2016). The upslope (katabatic) and downslope (anabatic) winds 

over the inland mountains and the coastal highlands plays key role in regulating the temperatures 

over these sub-domains (Anyah et al., 2006). 

There are four main rainfall seasons that characterize these sub-domains. The MAM and OND 

rainfall seasons are basically experienced within the NEA and LVB sub-domains. The southern 

parts of Tanzania region besides MAM season, experiences also the November-December-

January-February (NDJF), similar to the CEA sub-domains (Nicholson 2014). These rainy seasons 

are majorly associated with the progression of the ITCZ across the region. The presence of the 

water bodies generates land/sea and land/lake breezes because of the water and land temperature 

contrasts due to the differential diurnal heating/cooling (Nikulin et al., 2012).  

These domains were considered based on the unique rainfall seasons MAM and OND they 

experience and the rainfall mechanisms whose interplay modulates the weather and the 

atmospheric circulations (Mutemi et al., 2007; Anyah and Qiu, 2012; Otieno et al., 2018). 
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CHAPTER TWO 

2 Literature Review  

In this chapter, a detailed review of the seasonal rainfall variability and rainfall characteristics, and 

its impacts on regional economy, definition of wet and dry years, regional climate modeling efforts 

and the current modeling framework are highlighted. 

2.1 The East Africa Extreme Rainfall 

Many studies over the region have been undertaken that linked East Africa (EA) seasonal rainfall 

anomalies with El Niño and La Niña years. The seasonal migration of the ITCZ, the El Niño 

Southern Oscillation Index (ENSO) and the associated remote teleconnections have been linked 

to the deficient or excess rainfall over East Africa region (Endris et al., 2013). The linkages of EA 

rainfall with ENSO have been found to be stronger during the October-November-December 

(OND) than March-April-May (MAM) season. In most cases, the excess/deficient rainfall have 

resulted into flooding and drought (Indeje and Semazzi 2000; Bowden and Semazzi 2007; Owiti 

et al., 2008; Shongwe et al., 2011). 

The ENSO (Ogallo 1988; Indeje and Semazzi 2000; Segele et al., 2009; Diro et al., 2012) and the 

IOD (Saji et al., 1999; Ummenhofer et al., 2009) are suggested to be the dominant drivers of the 

rainfall variability over EA region. Similar studies over the region have characterized the years 

based on these indices (Behera et al., 2005; Harou et al., 2006; Endris et al., 2013; Zaroug et al., 

2014; Ogwang et al., 2015b; Endris et al., 2017). 

The East Africa extreme rainfall, are also linked to the atmospheric circulation and the shifts in 

the ITCZ. For example, a study by Uhe et al.( 2018) found that the interactions of the atmospheric 

circulations and the observed patterns of SST variability drives some of the recent drying trends 

for MAM seasonal rainfall. This has also been reported by Rowell et al. (2015) who confirmed 

that the evolving patterns of anomalous SSTs is primarily one of the causes of the decline in East 

Africa long rainfall. Furthermore, Hoell et al. (2017) explained that the interaction of internal 

variability and anthropogenic forcing potentially enhances the drying trend compared to internal 

variability acting alone. This eventually results to the observed rainfall variabilities causing early 

and late transitions between wet and dry periods (Souverijns et al., 2016). 

The Madden Julian Oscillation (MJO) which is a tropical fluctuation of the weather systems 

greatly modulates the intra-seasonal rainfall characteristics. It is an eastward progression of cloud 
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band near the equatorial region. The EA rainfall responds through this MJO forcing in a 

unidirectional way, allowing seasonal rectification and interannual modulation by seasonal MJO 

amplitude. The impact of MJO coupled with Quasi Biennial Oscillation (QBO) accounts for 

between 30–60% of the annual rainfall variability (Vellinga and Milton 2018).  

According to Pohl and Camberlin (2006), the major phases of the MJO that leads to wet spells 

over the highland parts of the western region are associated with the development of large-scale 

convection in the Africa/Indian Ocean region. However, over the eastern parts of the coastal 

region, the MJO phases leading to wet spells are often associated with suppressed deep convection 

in the Africa/Indian Ocean region. The out of the phase MJO causes the deficiency in the East 

Africa rainfall. A study by Hogan et al. (2015) postulated of a robust seasonal rainfall dependency 

on the MJO transitional phases. The evolution of the phases has the effect of either enhancing or 

suppressing tropical convections over the inland highlands and the coastal lowlands.  

2.2 Seasonal Rainfall Characteristics and Regional Economic Impact  

The growing demand for accurate climate forecasts at local scales relevant to end-users is a clear 

manifestation that rainfall forecasting still needs more research. Over the EA region, sectors like 

Agriculture, Energy, Power, Transport, and Wind amongst others heavily depend on rainfall (Njau 

2010; Gitau 2011; Kipkogei et al., 2017). A study by Owiti and Zhu (2012) reported that seasonal 

rainfall patterns characterized by delayed onset, depressed rainfall amounts impacts negatively on 

the rainfall dependent economy making the region more vulnerable to the extreme climate events.  

Study by Mwangi et al. (2014) reported that the greatest percentage of the gross domestic product 

(GDP) of the region is driven by rain-fed economic activities. The 1997 flooding and 2011 drought 

experienced over most parts of the EA region and neighboring countries of the Horn of Africa 

were the worst on record (Lyon and DeWitt 2012). Yang et al. (2014) used the climate models 

from Coupled Model Inter-comparison Project phase five (CMIP5) to study EA rainfall, and 

reported distinct biases differing in magnitude between the long and short rainfall seasons. 

Through proper customization, credible climate information can be derived from climate models. 

This supports better understanding of underlying climate processes involved. The climate 

forecasting tools over the region should be able to represent the highly variable nature and the 

complexity of the regional climate systems. There is significant progress made since the first 

generation of global circulation models in modeling the physical processes of the climate systems. 
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The model errors and inaccurate climate forecasts still pose threat to socio-economic needs of the 

society (Diro et al., 2012).  

One of the major issues in the regional climate modelling is the gap between the synoptic-scale 

state variables drifting away from the small scale forcing. The utilization of advanced climate 

model physics helps in bridging this gap and their interaction together over a given region (Chen 

et al., 2010; Miguez-Macho et al., 2004). Therefore, accurate and reliable climate information and 

services becomes very crucial to the rain dependent economy and their future sustainability. 

2.3 Modeling the Seasonal Rainfall Characteristics  

The regional climate models (RCMs) are potent tools for studying the intra-seasonal rainfall 

characteristics. This is due to their relatively higher resolution than global models capable of 

resolving the local scale processes to much higher accuracy (Cretat et al., 2012). Furthermore, 

RCMs are found to provide plausible solutions for regional climate details than general circulation 

models (GCMs), (Hudson and Jones 2002). A realistic regional climate information must take into 

consideration regional and global details. The dynamical downscaling of global systems by RCMs 

is used to bridge this gap.  

According to studies by Sun et al. (2006) and Pohl et al. (2017), the eminent impact of climate 

change would be severe on the intra-seasonal rainfall characteristics over the African continent. 

A study by Jones and Hudson (2002) used RCM to study present and future climate over South 

Africa. The study found that the hydrological cycle was strongly simulated compared to the 

projected increase in rainfall intensity, magnitude of the moisture fluxes and soil moisture. The 

rainfall biases were found to be associated with the decrease in both the NRD and their intensity. 

The study further found that the projected climate over EA region was wetter, due to an increase 

in rainfall intensity rather than a change in the number of rain-days. 

Some of the regional RCM based studies on research mode focusing on rainfall at annual, seasonal, 

monthly and daily time scales with little attention on the rainfall characteristics include (Dai et al., 

2004; Nicholson 2014;  Kipkogei et al., 2016; Nicholson 2017). Attempts to investigate such 

rainfall characteristics over the region include Camberlin and Okoola (2003), Kijazi and Reason 

(2005), Gitau et al. (2013, 2015) and Dunning et al. (2017). These studies reported that seasonal 

rainfall depends more strongly on the onset than cessation dates. The onset and cessation dates 

being independent of NRD and IRD. Earlier studies by Chen et al. (1996), Dai and Deser (1999), 
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Dai (2006) and Camberlin et al. (2009), reported that the unreasonable simulations rainfall patterns 

and amounts generated by most regional climate models (RCMs) partly stem from incorrect 

combinations of rainfall frequency and intensity. 

Earlier research by Mapande and Reason (2005), Pohl and Camberlin (2006a, b) and Okoola et al. 

(2008) investigated the relationship between the wet spells and the associated atmospheric 

dynamics. Over the western Tanzania region, during wet years, the onset was found to begin earlier 

and ends late during the OND season. The number of moderate wet spells, although not necessarily 

more intense, were recorded in dry years. The extended wet spells were found to be associated 

with anomalous westerly flow at 850 hPa over Equatorial Africa. During the OND seasons, wet 

spells were associated with weak westerlies along the coast over the equatorial Indian Ocean 

(Okoola et al., 2008). Studies focusing on the rainfall characteristics such as NRD, FRI and the 

intensity of wet and dry spells (Moron et al., 2013) have pointed out that the predictability of wet 

days is much better than mean rainfall intensity with short rains better predicted than the long rains. 

For any successful downscaling of the rainfall characteristics over the region, proper customization 

and evaluation of the model is paramount. The downscaling provides critical information on the 

model strengths and weaknesses for a specific region would be (Small et al., 1999; Bergant et al., 

2007). This involves customization of model physics and dynamics to optimize the model 

performance (Kain 2004; Ratna et al., 2013; Zheng et al., 2016). The consideration of the size and 

location of the simulation’s domain (Seth and Giorgi 1998; Leduc and Laprise 2009; Davis et al., 

2009; Rauscher et al., 2010), the lateral boundary conditions (Diaconescu et al., 2007; Sylla et al., 

2009), the resolution and the model physics (e.g. Flaounas et al., 2011; Pohl et al., 2011; Crétat et 

al., 2012) are key ingredients that can radically modify the simulated climate and thus the quality 

of the simulation.  

The evaluation of the CPSs in regions that convective rainfall is prevalent cannot be over-

emphasized. It is a fundamental step to a successful utilization of regional climate information 

(Stensurd 2007). Over the EA and West Africa regions, the convective rainfall is frequent and 

therefore the evaluation of CPSs applied to specific region is inevitable. This helps in reducing the 

errors due to sub-grid scale processes (Giorgi and Marinucci 1996; Small et al., 1999; Giorgi and 

Means1999; Pal et al., 2007). Furthermore, the application and customization of different 
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convection schemes greatly influences the skill of rainfall simulations (Giorgi and Shields 1999; 

Segele et al., 2009). 

Evaluating RCMs over smaller regions with unique climate systems provide clear information on 

the model strengths and weaknesses. For example, Anyah and Semazi (2006), Mariotti et al. 

(2011) and Giorgi et al. (2012) applied WRF and RegCM4 models over LVB to assess the model 

performance in simulating lake temperature and precipitation. Besides the model biases found in 

these studies, large-scale moisture transported via the prevailing easterly trades were found to 

enhance Lake Basin precipitation considerably. The studies also successfully reproduced the 

general rainfall patterns associated with large-scale systems like the ITCZ.  

The statistical and dynamical modeling of East Africa rainfall have not been devoted to the intra-

seasonal rainfall characteristics. The advent of the dynamical downscaling was meant to 

supplement the limitations and challenges in the statistical downscaling (Ininda 2008 and 

Moufouma-Okia and Jones 2015). The dynamical downscaling involves the use of a regional 

climate model driven by GCM output to provide detailed climate information with higher accuracy 

(Tang et al., 2016). The information required by the RCM from GCM as a boundary conditions 

include winds, humidity, surface temperature and pressure at different atmospheric levels, but does 

not include prognostic variables like rainfall that is simulated by the RCM. 

Efforts to improve the regional climate forecasts have been quite tremendous with downscaling 

being used as the main strategy. The climate downscaling is supposed to bridge the gap between 

the large driving fields from the global models and the regional climate information from regional 

climate models. A single climate model may not completely provide full climate information (local 

and synoptic details). Studies by Otieno (2013), Otieno et al. (2014) and Kipkogei et al. (2016) 

used global models over the region for climate simulations. All their studies converged to a 

conclusion that regional climate details can only be achieved through a downscaling process.  

Previously, Anyah and Qiu (2012) and Endris et al. (2013) studied the long-term climate 

variability of the region using CMIP3 models for precipitation and temperature. The study found 

a consistent mismatch in rainfall peak and dislocation of moisture bearing systems like the ITCZ 

during the OND and MAM seasons. The rainfall peaks tended to shift while the changes in 

temperature and variability were relatively average.  
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The unrealistic representations of regional climate details by the GCMs have been attributed to a 

number of factors such as; low horizontal resolution; model internal inconsistency in the physics 

and dynamic formulations (Kim et al., 2012). And over the region, the regional complex terrain 

and undulating topography, the interaction of large-scale and local scale systems that forms major 

rainfall seasons, makes global models inadequate for regional studies. On the other hand, RCMs 

alone will not provide global signals needed for regional climate variability.  

Although the dynamical technique is computationally expensive, it is the most preferred option for 

regional climate modeling (Giorgi and Mearns 1999; Brown et al., 2008). Otieno and Anyah 

(2013a) and Korecha (2014) pointed out that over the EA region, downscaling of the GCM models 

has the potential to improve regional climate forecasting. These findings were also consistent with 

results from study by over Greater Horn of Africa (Otieno 2013). 

The use of regional models to downscale seasonal climate in Africa is capable of providing climate 

information with useful local detail, including realistic extreme events (Sylla et al., 2009). Denis 

et al. (2002) and Liu et al. (2012) summarized the sources of errors emanating from dynamical 

downscaling. The errors arise from mathematical formulation and strategy, spatial resolution 

differences between the driving data and the nested model, spin-up time, the frequency of updating 

the lateral boundary conditions (LBCs), physical parameterization inconsistencies, horizontal and 

vertical interpolation errors in domain size, quality of the driving data. 

Several studies over the EA region have concentrated on the short and medium range weather 

forecasting (Omondi 2010; Gitau 2011; Gichira 201; Sagero 2012; Koech 2014; Kipkogei et al., 

2016) and reported good simulations of regional circulation patterns but biases were inherent in 

the forecasts especially over the lake and mountainous region. Batte and Deque (2010) pointed out 

that the stabilization of the model skill increases when the model is run in climate mode than at 

weather mode due to adjustment in the boundary fields from lower boundary conditions. Their 

findings were later corroborated by Nicholson (2014) who found that the predictability of rainfall 

is achieved with correct lead time of up to two months. 

The low confidence in the climate models hinder their use for climate projection and attribution to 

the disaster and risk reduction. The study by Otieno and Anyah (2013a, b) assessed the skill of the 

global models from coupled model Inter-comparison project five (CMIP5) in climate projections 
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over the Greater Horn of Africa (GHA). The correct location of rainfall bearing systems was the 

strength of the simulation. The moisture from the Congo region, lakes and highlands regions was 

not properly simulated. The reason was attributed to physical inconsistencies and poorly controlled 

evolution of the large-scale systems in the model. The study recommended proper nudging of 

synoptic systems to minimize the contamination of the simulated solutions (Denis et al., 2002).  

Diro et al. (2012) used the third version of regional climate model (RegCM3) to downscale 

precipitation over EA using the European Center for Medium Range Weather Forecast (ECMWF) 

model. The study found the skill improvements in forecasts especially in reproducing the spatial 

and temporal patterns of rainfall and temperature. The ECMWF models could not simulate well 

the regional climate processes over mountainous regions. The inconsistency in the physics and 

parameterization schemes between the ‘parent’ and ‘daughter’ models contributed to the error. 

The consistency in the representation of climate physical processes between the RCMs and GCMs 

is important in any regional climate simulations; with coupled models preferred due to their ability 

to simulate the land-ocean-Atmosphere feedback processes (Ratman et al., 2013). Nyakwada et 

al. (2009) and Omondi (2010) used the atmospheric general circulation models (AGCMs) to 

simulate regional climate information over EA region. The results revealed the potency in using 

such GCMs for simulations but more diagnostic and accurate simulation strategies were required. 

Paeth et al. 2005) pointed out that downscaling has the ability to increase the resolution of the 

local climate details. However, the simulation of mesoscale and synoptic scale systems is still a 

challenge for the GCMs, especially over the tropics. 

One of the major achievements for the region in seasonal forecasting for the past 15 years has been 

the issuance of consensus forecasts over the GHA region. The forecasts are a hybrid of statistical 

and dynamical products; with dynamical products derived from the global producing centers which 

are downscaled by the WRF model. Studies by Marengo et al. (2003) and Otieno (2013, 2014) 

assessed the skill of the individual models from the global centers to simulate regional rainfall 

characteristics over GHA region. The studies showed higher skill in simulating rainfall over the 

EA region using the dynamical approach than the statistical models. The models however, showed 

biases in representing large-scale processes like the African Easterly Jets (AEJ) and Tropical 

Easterly Jet (TEJ), which are major drivers of regional rainfall over the Sahel region.  
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Studies by Endris et al. (2013) used the climate model products from Coordinated Regional 

Downscaling Experiment (CORDEX) to assess the changes in extreme temperature. The study 

found that the models are able to reproduce realistic climate information but are weak in capturing 

the dominant teleconnections around these areas are suppressed by the interactions between large-

scale and local scale forcing. 

Studies by Otieno and Anyah (2012) found a constant decrease in precipitation and increase in 

temperature attributed to westerly winds anomaly circulation from the Congo region. Good 

simulation was reported over the equatorial sector than the northern and southern parts of the EA 

region. Similar studies by Davis et al. (2009), Otieno (2013), Yang et al. (2014), and Otieno et al. 

(2014) revealed that GCMs tend to displace the moisture during the peak time and overestimate 

the precipitation in some locations.  

Extensive downscaling studies over the region have basically concentrated on using the RegCM4 

model (Anyah and Semazzi 2006; Dennis et al., 2009; Diro et al., 2012; Otieno and Anyah 2012; 

Ogwang et al., 2014; Ogwang et al., 2015b; Segele et al., 2015). Despite appreciable skill being 

reported, the clear understanding and quantification of local scale dynamics and its representations 

in RCM over EA region have remained a daunting task. Secondly, the studies have not been 

furthered to an extent of investigating the deficiencies arising from the model and under/over 

estimation of rainfall patterns.  

These studies focused very little on the rainfall characteristics and their representations in the 

numerical weather prediction (NWP) models. Using a regional model that is highly customizable 

for regional studies and with different physics options and parameterization schemes partly helps 

to address the uncertainties in rainfall forecasts. A regional model, WRF is currently being used 

for research and operational studies at different resolutions which has millions of physics and 

schemes customizable for any domain (Pohl et al., 2011; Cretat et al., 2015; Pohl et al., 2017). 

The knowledge and information of the rainfall characteristics would therefore be useful for 

planning purposes in sectors like agriculture, hydrology and urban planning. A detailed analysis 

of the rainfall characteristics is a pointer to the underlying mechanism and the associated rainfall 

drivers (Salih et al., 2018). The assessment of rainfall characteristics can provide insights into the 

fluctuations of forcing and the mechanisms that give rise to natural hazards, such as droughts and 
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floods and understanding of rainfall variability (Tennnant and Hewitson 2002). Such knowledge 

reveals model deficiencies and limitations to the climate modelers and developers. The current 

study is the latest effort in attaining higher forecasts skill through the provision of the best cumulus 

scheme over the EA region. 

2.3.1 Cumulus Parameterization Schemes 

The cumulus parameterization is the technique used in Numerical Weather Prediction (NWP) 

models to account for the effects of convective clouds and other moist processes that occur at 

relatively small-scale resolutions in the NWP models. Rainfall simulations and forecasting over 

the region have been found to be very sensitive to the cumulus parameterization schemes used in 

any RCM (Okeyo1987; Pohl et al., 2011; Gudoshava 2016). 

The cloud processes are very important aspects of NWP since they directly impact the timing, 

location, and intensity of precipitation. In many NWP models, the fractional cloudiness can 

influence atmospheric radiation budgets as well as the dynamics and thermodynamics of the 

atmosphere. The quantification of the coupling effect between the cloud and radiation processes 

in the atmosphere still remains a challenge since they occur at very high resolution with grid scales 

less than a kilometer. The effect of these processes can only be accounted for in the NWP through 

approximations/parameterization (Alaparty et al., 2012; Zheng et al., 2016). 

The rate at which cloud forms and turn into precipitation within a column of air depends on several 

environmental factors. These include amongst others convective available potential energy 

(CAPE), lifting condensation level (LCL), entrainment and detrainment rates based on LCL, 

adjustment time scale (ATS), cloud radiation coupling effect (CRCE) and vertical velocity rate. 

The understanding of these factors and how they influence convective activities is very crucial for 

NWP over the East Africa region. The current study isolated these variables for discussions since 

the understanding of how they affect convection is fundamental to the success of the current study. 

2.3.2 Convective Available Potential Energy  

The convective available potential energy (CAPE) determines the rate at which clouds form and 

later yield into precipitation in the atmosphere. CAPE is the amount of energy required to lift a 

parcel of air up to LCL point. It provides the maximum vertical velocity for convective up 

draughts. When a parcel of air rises within a vertical layer adiabatically, the CAPE can be 

calculated when it reaches the level of neutral buoyancy (equilibrium level) from the starting 
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height. The parcel of air continues to rise moist-adiabatically, until it reaches the level of free 

convection (LFC), where the air parcel can rise freely. 

The CAPE aids in the formation of deep convection that commonly causes rain especially over the 

tropics. For any convective clouds to form, the value of CAPE must remain positive (positive 

energy, CAPE>0), (Stensrud 2007). Large CAPE values imply sustained convective activities. 

2.3.3 Adjustment Time Scale   

The study by Fritsch and Chappell (1980) introduced the adjustment time scale (ATS) in the NWP 

models. The ATS is the time over which CAPE is reduced to stabilize the atmosphere. In most 

numerical models, the ATS (τ) is assigned a constant value (Perkey 1986). The estimation of the 

constant can be based on the mean tropospheric horizontal wind speed and grid resolution.  

The idea of assigning ATS a constant value in numerical models was later challenged by Stensrud 

(2007), citing the limitation it poses at high resolution grids or where there are strong winds. 

Bullock et al. (2015), found out that the magnitude of the ATS is one of the parameters that cause 

wet biases in simulated precipitation amounts at higher grid resolutions (Keil et al., 2014).  

To make cumulus schemes seamless across all the grid resolution, the magnitude of ATS should 

increase with increased grid resolution such that the atmospheric stability restoration is gradually 

taken over by the resolved convective processes. Most of the NWP parameters are tied to grid 

spacing of around 25 km (Kain 2004). The ATS expressed in Equation 1.2 follows Zheng et al. 

(2016) and Bechtold et al., (2008) definitions. 



















Dxw

h 25
ln1                             1.2 

In Equation 1.2,   is the adjustment time scale over which the atmosphere is stabilized, h is cloud 

depth (m), w is cloud-averaged vertical velocity (m/s) and Dx is the horizontal grid spacing (km). 

For a high resolution, longer timescales are associated with better simulations. Higher skill and 

accuracy in simulations is obtained when  .is set to medium timescale.  

If ATS is only a few hours shorter than the timescale of the large-scale flow, CAPE will be 

removed as fast as it is created. Similarly, if ATS is longer than 12 hours, convection is generated 

too slowly to remove CAPE. This occurs alongside local factors controlling the rate of CAPE 

removal. Globally, the ATS concept has been applied with success in examining rainfall biases 
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and in studying severe precipitation events in the Mediterranean using re-analysis dataset (Done 

et al., 2006; Molini et al., 2011; Done et al., 2012; Keil et al., 2014). 

2.3.4 Cloud- Radiation Coupling Effect 

The convective systems and associated cloudiness directly influence the regional and local 

atmospheric radiation budgets, as well as atmospheric dynamics and thermodynamics, through 

feedback processes. Most of the NWP models at sub grid-scale do not consider cloud–radiation 

feedback processes in their algorithm. There is inaccurate representations of radiation-cloud feed-

back processes in the current NWP. This according to Stephens (2005), is due to the complexity 

in representing the governing equations and the associated errors in the parameterization of the 

small scale processes. 

Studies by Pohl and Cretat (2014) and Herwehe et al. (2014) reported that lack of such cloud-

radiation feedback mechanisms results into biases in both regional weather and climate 

simulations. Alaparty et al. (2012) introduced a subgrid-scale cumulus cloudiness formulation in 

the Kain Fritsch (KF) cumulus scheme and the rapid radiative transfer model (RRTM). The 

inclusion of subgrid-scale cloud–radiation interactions were found to have realistic longwave and 

shortwave radiation variability, leading to the improvement of several meteorological parameters 

for both weather and climate time scales. 

Most of the current RCMs do not consider some of these tunable parameters in their closure 

schemes. The current study considered these parameters in the CPSs to assess their impact to the 

rainfall simulations. The WRF-ARW version 3.9 was the primary tool applied for research in the 

current study. The model flexibility in customization coupled with numerous physics differing in 

their closure schemes, was the basis for its choice in the study. 

2.3.5 Regional Research Studies with WRF Model  

The convective schemes are of primary importance for rainfall especially in regions receiving 

predominantly convective rainfall, such as tropical regions. Owing to the importance of convective 

processes for rainfall formation over the EA region, the current study used the four cumulus 

schemes namely the Grell Devenyi (GRELL), Betts Miller Janjic (BML), Kain-Fritsch (KF) and 

Kain-Fritsch with moisture advection (KFT) to assess their robustness in reproducing the rainfall 

characteristics over the EA region. The choice of these schemes was based on the previous studies 
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that found better results associated with some of them albeit their individual strengths and 

weakness (Pohl et al., 201; Ogwang et al., 2015a, b).  

Ngaina (2015) used the KF scheme to study the effects of aerosol-cloud-precipitation interactions 

for weather modification in East Africa. The study found appreciable skill of WRF model for 

weather modification. The observed biases in the simulations weakened the skill of WRF model 

in reproducing the key rainfall characteristics over the EA region. In studying the seasonal and 

inter-annual variability of hydro-meteorological services, Kerandi et al. (2017) found good skill 

in using WRF model to reproduce the annual cycle and inter-annual variability.  

A study by Cretat et al. (2012) tested three cumulus schemes namely; Kain-Fritsch, Grell Devenyi 

and Bettts Miller Janjic to assess their sensitivity in simulating seasonal climate and the associated 

uncertainties over South Africa. The study found out that, WRF simulates accurately seasonal 

large-scale rainfall characteristics. The rainfall biases were found to depend on the set of physical 

configurations applied. The Kain-Fritsch scheme was found to be associated with large wet biases; 

the Betts Miller Janjic was associated with under-estimation of rainfall, while biases in the Grell 

Devenyi were relatively lower. In a similar study, Ratna et al. (2013) found that, cumulus schemes 

control most of seasonal rainfall distribution, as well as their amounts. This was consistent by 

earlier studies by (Wang and Seaman 1997; Pohl et al., 2011). 

For a better representation of local scale details and processes in the NWP, Mukabana and Piekle 

(1996) found out that the large-scale monsoonal winds and the mesoscale circulations are key 

parameters to be considered in the NWP. Furthermore, the study found that high resolution RCM 

are capable of minimizing the model rainfall biases over the equatorial regime to a certain degree 

of accuracy. One of the major strength of the Kain-Fritsch and Grell Devenyi schemes is the ability 

to capture the rainfall extremes with reasonable accuracy; despite their characteristic nature of the 

wet and dry biases associated with them (Huang and Gao 2017). Other studies by Cretat et al. 

(2012; 2015) found that, in most cases the schemes are not able to accurately simulate the rainfall 

processes associated with the convergence zones like the ITCZ, and South Indian Convergence 

Zone (SICZ) for South Africa region. 
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CHAPTER THREE 

3 Theoretical Framework 

This chapter presents key physics and the dynamical attributes of WRF-ARW model used in the 

study. Also presented in the section is the modeling framework and the experimental design for 

the study. 

3.1 Weather Research and Forecasting Model  

The main research tool was the Weather Research and Forecasting (WRF-ARW) model applied in 

research mode. The WRF model is a non-hydrostatic model widely used for research and real-time 

forecasting. The model is largely preferred by the modeling community for NWP since it is offers 

large spectrum of capabilities for extensive range of applications to the scientific community 

(Cretat et al., 2012; Ratna et al., 2013). The ARW dynamic component incorporates both the 

compressible, non-hydrostatic Euler equations. The Euler equations are based on a terrain-

following mass conservation vertical coordinate (Skamarock et al., 2005; Skamarock 2008). The 

main physics in the WRF model are categorized as microphysics processes (MP), cumulus 

parameterization schemes (CPS), planetary boundary layer (PBL), land-surface model, and 

radiation. 

3.1.1 The Microphysics Processes  

In numerical models, the precipitation mainly has two components, the convective and non-

convective components. The micro-physics (MP) is responsible for the non-convective part of the 

precipitation. Based on the physical laws of thermodynamics in numerical weather models, the 

MP depletes the moisture within a given air column. The MP scheme is responsible for the 

generation, growth and dissipation rate of the cloud particles. Furthermore, the simulated water 

vapor, clouds and precipitation processes are governed by these schemes. The options for the MP 

differ in the number of phase changes of water and the number of interactions between clouds and 

precipitation particles. The sedimentation, collision, condensation-evaporation, aerosol activation, 

and collision-coalescence are the key microphysical processes.  

The aerosol size distribution assumes a single mode lognormal size distribution. The activation 

occurs when the ambient super saturation exceeds the critical super saturation for the given particle 

size (Petters and Kreidenweis 2007). There are various MP schemes in the WRF model including 

Kessler (1969); Lin (1983), WRF single moment 3 and 5 class and Eta (Ferrier 1994), WRF single 
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Scheme 6 Class, Goddard, Thompson, Milbrandt-Yau Double Moment and Morrison double 

moment (Jankov et al.,2011).  

3.1.2 Radiation Scheme  

The atmospheric and surface heat budgets form part of the radiation scheme in the numerical 

models. The energy budgets are derived from both longwave (LW) and shortwave (SW) 

components of the radiation spectrum. The infra-red and the gases emitted or absorbed by the 

surface form part of the longwave radiation. The shortwave radiation includes visible and ultra-

violet wavelengths. The upward flux is the reflection due to surface albedo. In the WRF model, 

there are several parameterized radiation schemes for both LW and SW.  

The interactions between radiation and cloud is key to the modulation of regional rainfall 

characteristics. Some examples of the radiative schemes applicable in WRF model include rapid 

radiative transfer model global (RRTMG), rapid radiative transfer model (RRTM), the geophysical 

fluid dynamics laboratory (GFDL) both for LW and SW schemes, NCAR community atmosphere 

model (CAM) schemes for both SW and LW, Dudhia SW, Goddard SW. A detailed description 

of these radiative schemes can be accessed in Skamarock (2008). 

3.1.3 Cumulus Scheme  

The convective part of the precipitation is determined by the cumulus schemes and their effects 

within a grid cell for both deep and shallow clouds. They describe the vertical fluxes due to 

unresolved updrafts and downdrafts as well as the entrainment and detrainment processes within 

a cloud cell. The cumulus schemes also provide the convective component of rainfall caused by 

convective eddies that are parameterized in the numerical models. There are various cumulus 

parameterized schemes developed for the WRF model. These include the Kain-Fritsch scheme, 

herein referred to as (KF) developed after (Kain  2004), Betts-Miller-Janjic scheme herein referred 

to as (BML) and developed after Betts (1986), Grell-Devenyi scheme known as (GRELL) and 

developed after Grell (1993).  

Other schemes developed for WRF model are the Tiedtke scheme, Grell-Freitas (GF) scheme with 

improved Grell Devenyi scheme that tries to smooth the transition to cloud-resolving scales 

(Arakawa 2004). The old Kain-Fritsch scheme assumes a deep convection using mass flux 

approach with downdrafts and CAPE removal time scale. A summary of the theory behind some 

of these schemes are briefly discussed in the next sub-sections. 
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3.1.3.1 Kain Fritsch   

The Kain Fritsch scheme (KF) is one of the examples of low-level control schemes. It is based on 

a mass flux parameterization and uses the Lagrangian parcel method, which can generally be 

grouped into three parts; the convective trigger function, the mass flux formulation, and the closure 

assumptions (Kain and Fritsch 1990, 1993; Stensurd 2007). The earlier version of the KF scheme 

was based on a simple cloud model with moist updrafts and downdrafts. The KF scheme has 

undergone rapid changes in its updraft/downdraft formulation and a closure assumption (Kain 

2004; Zheng et al., 2016).  

The basic theory behind the scheme considers how an air parcel is able to overcome the convective 

inhibition factors and activate the CAPE. The trigger function in the scheme adjusts the parcel 

buoyancy at the LCL level. Shallow convection is only permitted in the absence of non-buoyant 

parcel assuming the turbulent kinetic energy for mass flux rather than CAPE is available. Within 

a grid column of air, the convection is triggered when the parcel overcomes negative buoyancy. 

3.1.3.2 Betts-Miller Janjic   

The Betts-Miller-Janjic scheme also referred to as BML is an example of deep layer control 

convective schemes (Betts 1986; Betts and Miller 1986). The deep convection profiles and the 

relaxation time are variable and depend on the cloud efficiency, a non-dimensional parameter that 

characterizes the convective regime (Janjic 1994). The cloud efficiency depends on the heat 

changes on the precipitation, and mean temperature of the cloud. The shallow convection moisture 

profile is derived from the requirement that the entropy change be small and positive (Janjic 1994). 

The scheme uses transformed set of thermodynamic variables, based upon the concept of 

saturation points.  

In the scheme, the amount of CAPE is assumed to depend on the size of the environment that 

supplies it. For active convection to form, the height at which the cloud forms (cloud base) and the 

cloud top (the highest model level where the parcel is still buoyant), usually just below the 

equilibrium level must be determined. If the parcel is not afloat at any level, convection will not 

be activated at that level.  

The difference between the cloud base and cloud top is therefore used to determine whether 

convection forms or not. For example, if the difference between the cloud base and cloud top is 

less than 200 hPa, the deep convection scheme aborts and instead a shallow convection scheme is 
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used (Stensurd 2007). The scheme structure favors activation in cases with significant amounts of 

moisture at low and mid-levels and positive CAPE. As a result of the deep-layer control, large 

CAPE values in the lower layers are not a sufficient condition for atmospheric convection to be 

activated in this scheme. The scheme rearranges the thermal and moisture structures to conform to 

the new state established by deep convection (Betts 1986). The precipitation is expressed by 

Equation 2.3. 
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In Equation 2.3, q is the model’s specific humidity, q
R

 is the reference-profile specific humidity, 

  is the timescale over which the adjustment occurs, and pt and pb are the pressures at the cloud 

top and bottom, respectively and dp/g is the acceleration due to gravity. The scheme parameterizes 

the effects of shallow convection.  

3.1.3.3 Grell Devenyi  

The Grell Devenyi scheme (GRELL), Grell (1993), consider clouds as two steady-state 

circulations: an up-down draughts. No direct mixing occurs between the cloudy air and the 

environmental air except at the top and bottom of the circulations. The mass flux is constant with 

height and no entrainment or detrainment occurs along the cloud edges. The originating levels of 

the updraft and downdraft are given by the levels of maximum and minimum moist static energy, 

respectively. The scheme is activated when a lifted parcel attains moist convection. Condensation 

in the updraft is calculated by lifting a saturated parcel. The downdraft mass flux depends on the 

updraft mass flux.  

Heating and moistening in the Grell scheme are determined both by the mass fluxes and the 

detrainment at the cloud top and bottom. Grell and Devenyi (2002) introduced an ensemble 

cumulus scheme in which effectively multiple cumulus schemes and variants are run within each 

grid box and then the results are averaged to give the feedback to the model. The schemes use 

mass-flux type schemes, but with differing updraft and downdraft entrainment and detrainment 

parameters, and precipitation efficiencies. The CAPE, low-level vertical velocity and or moisture 

convergence are key parameters for determining the dynamic controls and closure schemes. 
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The convective precipitation is proportional to the integral of the moisture advected by updraft. 

The total amount of cloud water due to condensation is removed by rainfall leaving no residual. 

This scheme allows subsidence to the nearby areas or within the grid-point if resolution is greater 

than 10 km. Some of the regional studies applying GRELL, KF and BML CPSs include (Pohl et 

al., 2011; Argent et al., 2014; Kerandi et al., 2017). 

3.1.4 Planetary Boundary Layer  

The planetary boundary layer (PBL) is the lowest layer of the atmosphere where most processes 

are directly influenced by the earth’s surface. The vertical subgrid-scale fluxes due to eddy 

transports in the atmosphere occur within the PBL. The PBL plays a crucial role in determining 

the surface and upper level processes (Deardorff 1972). The PBL schemes determine the flux 

profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric 

tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire 

atmospheric column. The land surface fluxes and the turbulence that occurs in the PBL are crucial 

factors in the evolution of the atmosphere because their impact might propagate to the whole 

atmospheric column. 

An appropriate description of the turbulence permits heat distribution, moisture and momentum 

all over the atmosphere. Some of the processes like turbulence occur within the PBL and resolved 

such processes within the NWP. Since the surface influences the PBL and considering that the 

variety of surfaces on the earth is huge, resolving the turbulence adequately in a broad range of 

conditions is undoubtedly a challenge. A challenge associated with the description of the PBL is 

in its closure assumptions with non-linear characteristics of turbulence. 

3.1.5 Land Surface Scheme  

The land-surface models (LSMs) handle the initialization of the state of the ground and account 

for the surface forcing in the atmosphere. They provide the fluxes that determine the lower 

boundary condition for PBL schemes by describing the ground temperature, the soil moisture and 

temperature profiles, the canopy effects and the snow cover. The use of an appropriate 

sophisticated model that updates these variables is crucial from a climate point of view. 

3.1.6 The Convective Trigger Function   

For any convective process, a trigger mechanism is required. A trigger function is a set of criteria 

in a scheme that determines when, where and if the scheme is to be activated. The convection 
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initiation process occurs in small scales that cannot be explicitly represented in grid spacing of 

greater than 1km within the current NWP. Therefore, trigger functions aid in this through 

parameterized functions.  

The triggering convection simply put is the onset of convection which evolves through its life 

cycle. The function activates the CPSs if it detects the potential for deep convection. The principle 

behind convective trigger function is based on the identification of convectively unstable layer 

within the PBL. The primary differences between various trigger functions lies on the 

identification of the source layer of convection and how it realizes the convective instability for 

cloud development.  

Three factors believed to determine the convective instability of the boundary layer are; grid-scale 

vertical velocity (Kain and Fritsch 1992; Donner 1993; Bechtold et al., 2001), boundary layer 

moisture convergence (Kuo 1974; Tiedtke 1989), and CAPE (Arakawa and Schubert 1974; Zhang 

and McFarlane 1995). The treatment of the trigger functions in climate models is not well defined. 

This has been found to cause too much wet biases in the current NWP models (Dai 2006). 

There are many trigger functions based on different model assumptions. For example, trigger 

function based upon Fritsch Chapel Trigger (FCT), trigger function based on column integrated 

moisture convergence called Anthes Kuo Trigger (AKT), trigger function based upon the amount 

of convective inhibition called negative area trigger (NAT), trigger function based upon the depth 

between the LCL of a parcel and its level of free convection called lifting depth trigger (LDT), and 

trigger function that determines the boundary layer called boundary layer forcing check (BLFC). 

Summary and detailed descriptions of these functions can be found in (Kain and Fritsch 1992; 

Nguyen et al., 2008). 

The current study was carried into two main phases. The first phase involved subjecting the four 

CPSs to robust analyses to identify the best scheme that can simulate the various rainfall 

characteristics during extreme years. The second phase involved the identification of specific 

adjustable parameters within the cumulus schemes that need to be customized in order to improve 

and optimize the WRF model simulations for extreme rainfall over the East Africa region. The 

flow work was presented in a conceptual framework. Figure 4 illustrates the workflow and the 

various concepts involved at every stage of the work. 
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Figure 4: Conceptual framework of the study. The main elements of the framework were 

WRF-ARW model, cumulus parameters and adjustable parameters. 
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CHAPTER FOUR 

4 Data and Methodology 

This Chapter describes the data and their sources, methodologies, model and experimental 

procedure. 

4.1 Data 

The data used in the study included observed monthly point station datasets for rainfall obtained 

from ICPAC for some of the representative stations within the EA region, gridded datasets and 

simulated model output. The detailed descriptions of the individual datasets are in subsequent 

sections. The gridded datasets spanning from 1981 to 2016 were used for model validation as 

described in sub-sections 4.1.1. 

4.1.1 Description of Data used in the Study  

4.1.1.1 The Insitu-Data Observations 

The in-situ data from few selected stations based on the homogeneous zones described earlier in 

this work (section 1.4) was used to validate the gridded observational dataset. The in-situ data from 

National Meteorological and Hydro Meteorological Services (NMHS) were obtained from the 

IGAD Climate Prediction and Applications Center (ICPAC). The gridded datasets were applied 

for analyses due to sparse network of stations within EA region and or lack of daily station data 

for some critical stations within EA contributed to using gridded dataset.  

The three gridded datasets used included the Global Precipitation Climatology Project (GPCP), 

the Climate Research Unit (CRU) monthly dataset, and the Climate Hazards Group Infrared 

Precipitation with Station data (CHIRPS). The details of these datasets were briefly presented in 

subsequent sections. 

4.1.1.2 The Global Precipitation Climatology Project 

The Global Precipitation Climatology Project (GPCP) dataset resolution was at 2.5° by 2.5°. The 

GPCP rainfall estimate is a merged product of satellites and the station observations (Huffman et 

al., 2009). Several studies over the EA region have used the GPCP data to represent the observed 

data in evaluating the performance of the climate models (Shreck and Semmazi 2004; Bowden 
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and Semazzi 2007, Temesgen 2011; Endris et al., 2013; Yang et al., 2014). Detailed information 

about the data can be accessed from Adler et al. (2003). 

4.1.1.3 Climate Research Unit 

The monthly data from the Climate Research Unit (CRU) were used in this study. CRU is a gridded 

observed rainfall dataset obtained from the University of East Anglia. The CRU datasets have been 

interpolated at different regular spacing. For example, the datasets are available at regular spacing 

of 0.5°, 1.5°, 2.0° and 2.5°. For this study, the datasets at 0.5 ° regular spacing was used since its 

resolution is nearly similar to the model simulations (0.36 °). The datasets contain five climatic 

parameters namely; precipitation, surface temperature, diurnal temperature range (DTR), cloud 

cover and vapor pressure.  

In this study only, the rainfall was used for model evaluation. The CRU monthly datasets are 

derived from satellite data, model estimates and rain gauge data from ground stations. The final 

merged product is generated by combining the satellite and reanalysis data. It contains 

precipitation distributions with full global coverage and improved quality compared to the 

individual data sources. The comparisons of the CRU with other data sources revealed remarkable 

agreements over the global land areas and over tropical and subtropical oceanic areas. Studies 

within EA that have used CRU include but not limited to Omondi et al., (2009) and Kerandi et al. 

(2017). 

4.1.1.4 Climate Hazards Group Infrared Precipitation with Station  

The observed gridded data was provided by the Climate Hazards Group Infrared Precipitation with 

Station (CHIRPS) data. The CHIRPS data is a blend of actual station data with satellite estimates 

(Funk et al., 2015). The first part is obtained by calculating the percentage of time during the 

pentad that the Infra-red observations indicate cold cloud tops (<235° K), and converting that value 

into millimeters of precipitation by means of previously determined local regression with tropical 

rainfall measuring mission (TRMM) version 3B42 precipitation pentads. In the second part of the 

process, stations are blended with the CHIRPS data to produce the final product. 

The main data sources used in the creation of CHIRPS are monthly precipitation climatology. The 

climatology is temporally disaggregated at each grid cell location into 72 pentads (6-pentads per 

month) long-term average accumulated values, quasi-global geostationary, infrared satellite 

observations from NOAA and Climate Prediction Center (CPC). For each grid location in the 
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CHIRPs domain, the five nearest station observations are used to calculate an adjustment ratio for 

the CHIRPs value. Each station is assigned a weight proportional to the square of their expected 

correlation.  

The CHIRPS datasets are available at high resolution (0.05°, 0.25°). The interpolation is applied 

using rain gauge data with satellite estimates to supplement on the areas with no station network. 

The dataset has a longitudinal extent from 50°S to 50°N and runs from 1981 to present. CHIRPS 

were developed to deliver reliable, up to date, and more complete datasets. Both monthly and daily 

time series of the datasets are available. This study used daily resolution time series for model 

evaluation and skill assessment. Before using CHIRPS for analysis, it was validated with station 

data to check for its consistency with the climatology (Shukla et al., 2014; Funk et al., 2015; 

Appelhans and Nauss 2016). Studies by Dunning et al. (2016, 2017) and Kipkogei et al. (2017) 

have successfully used this new dataset for model evaluation and found robust skill. 

4.1.1.5 The Atmospheric Variables 

The daily data for atmospheric variables from ERA-Interim reanalysis (0.75° x 0.75 °) were used 

for model evaluation of atmospheric variables. The atmospheric fields (u and v wind vectors, 

specific humidity, and vertical pressure velocity (omega)) were drawn from the ECMWF center. 

The ERA-interim reanalysis has rigorously been used as a signature for atmospheric circulations 

(Pohl et al., 2006, 2011; Endris et al., 2013; Kerandi et al., 2017). 

4.2 Setting up WRF-ARW Model Domain 

Before any regional downscaling experiment is conducted, the choice of the domain size, setting 

up of the domain size, choice of Lateral Boundary Conditions (LBCs) and grid spacing are very 

important aspects of dynamical downscaling to be considered (Xue et al., 2007). The extent and 

domain size must be such that it satisfies the selection criteria of an optimal model domain to 

produce realistic regional climate simulations. Figure 5 shows simulation domain following 

recommendation by Davies et al. (2009) and Anyah et al. (2006) but with few modifications 

constraining the model domain over Congo airmass, Indian Ocean and Arabian highland which 

greatly impacts rainfall over the domain (Segele et al., 2015). The domain enclosed moisture 

sources i.e Congo region, Indian ocean and inland water bodies like Lake Victoria that are key in 

moisture source of the region. 
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The third version of WRF-ARW model was configured over the simulation domain. The domain 

was the most probable compromise to constrain the development of synoptic, mesoscale flows and 

the perturbations due to variations in circulations between the RCM and GCM. This criterion and 

choice of domain has been extensively used by Girogi and Shields (1999), Omondi (2010), and 

Otieno and Anyah (2012) for simulation experimental studies. 

 

 

4.2.1 The ‘Perfect’ Boundary Simulation 

The ERA-Interim reanalysis from European Centre for Medium-Range Weather Forecasts 

(ECMWF) was used to provide initial and lateral boundary conditions for the WRF model while 

sea surface temperature (SST) from NOAA was used to provide lower boundary forcing, updated 

every six hour. The lateral boundary forcing fields included geopotential height, air temperature, 

specific humidity and horizontal winds. The initial state conditions included surface pressure, sea 

level pressure, 2-m-height moisture, 2-m-height temperature, 10-m-height horizontal winds, soil 

moisture, soil temperature and skin temperature. The topographical information at 10-minute 

horizontal resolution was obtained from United State Geological Survey (USGS). The ERA-

Interim from ECMWF centre (Dee et al., 2011) was used for large scale forcing fields. The data 

is available from 1979 to current date at 6-hourly Integration timestamp. 

Figure 5: Model simulation domain centered over 150 W -750 E and 250 S-250 N 
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4.2.2 Experimental Design 

Four different simulations were performed for the widespread wettest and driest years using four 

cumulus schemes in the WRF model configured at 0.3° resolution (~36 km). A number of past 

numerical experiments have been centered on this resolution with good simulation being reported. 

For example, Wang and Seaman (1997) evaluated four different CPSs at nearly 36 km over 

Peninsula. Kerandi et al. (2017) evaluated WRF model over Kenya for hydrological studies at 

between 25-50 km. Studies by Pohl et al. (2011) and Pohl and Cretat (2014) evaluated WRF model 

over East Africa for atmospheric water and diurnal cycles at 60km, 36km and 12km horizontal 

resolutions respectively. Studies Cretat et al. (2012) and Cretat and Pohl (2012) used horizontal 

resolution of 35km over South Africa to evaluate WRF model for model internal variability. The 

current study used delineated wettest and driest years in its numerical integrations. 

The simulations were carried out over the domain 0 ° - 75 ° E and 20 °S – 27 °N (190 by 145 grid 

points) using a single nest domain. The integrations were initialized on the 1st day of the month 

preceding the season. The integration time-step was 3 minutes and model output data archived 

every 6 hours from the first day of the simulation. The simulations were conducted for each of the 

four months of the selected dry and wet years. A total of sixteen (16) months integration were 

carried out for all the selected wet and dry years. The first month of the simulations were used as 

spin-up to let the model adjust to atmospheric initial conditions.  

Four CPSs were applied together with PBL from Yonsei University Hong et al. (2006), MP of 

WRF Single Moment 6-class 6 (WSM6) (Hong and Lim 2006) and RRTMG for SW and LW 

radiations (Mlawer et al., 1997). The four CPSs were selected on the basis of their widespread use 

in numerical models and the representativeness of different closure assumptions. The cumulus 

schemes applied were the KF, KFT, GRELL and BML from WRFV-ARW. Table 1 gives a 

summary of the physics and experimental design used for the simulations. 
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Table 1: The Experimental Design and Summary and convective Schemes 

Experiment  Abbreviation Convection  Radiation  PBL  MP 

1 KF Kain-Fritsch RRTMG (Short 

and Longwave) 

Yonsei 

University 

scheme 

WRF Single-Moment 

6-class scheme 

2 KFT Kain-

Fritsch+Trigger 

Function 

RRTMG (Short 

and Longwave) 

Yonsei 

University 

scheme 

WRF Single-Moment 

6-class scheme 

3 GRELL Grell Schemes  

 

RRTMG (Short 

and Longwave) 

Yonsei 

University 

scheme 

WRF Single-Moment 

6-class scheme 

4 BML Betts Miller RRTMG (Short 

and Longwave) 

Yonsei 

University 

scheme 

WRF Single-Moment 

6-class scheme 

5 KF-new Kain-Fritsch RRTMG (Short 

and Longwave) 

Yonsei 

University 

scheme 

WRF Single-Moment 

6-class scheme 

 

The land surface information was provided by the 4-layer NOAH land surface model (Chen and 

Dudhia 2001). Surface data derived from United States Geological Survey (USGS) database, 

which describes a 24-category land-use index based on climatological averages. The effects of the 

nearby lakes were activated since there is a unique climate developed by the lake system. 

4.3 Methodology  

The various methods employed to achieve the four specific objectives were; standardized rainfall 

index (SRI), principal component analysis (PCA) and Composite Analysis to delineate wet and 

dry years. For model evaluation, root mean square error (RMSE), correlation(R) and coefficient 

of variation (CV) was applied. Also used were Taylor and Box and Whisker diagrams for model 

ranking and distribution.  

4.3.1 The Delineation of East Africa Extreme Rainfall 

The methods applied here to delineate the observed extreme wet and dry rainfall events during the 

period of study included the standardized rainfall index (SRI), principal component analysis (PCA) 

and composite analysis.  
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4.3.1.1 Standardized Rainfall Index 

This study focused on the wet and dry rainfall years during the March-April-May (MAM) and 

October-November-December (OND). The wet and dry years were first defined based on 

standardized rainfall index as had been used previously (Ogallo 1989; Okoola 1999; Camberlin et 

al., 2009). Several past studies within the region have converted the data into comparable indices 

before any analysis including Ogallo (1989); Okoola (1999); Mutai and Neil (2000); Philippon et 

al. (2002); Ogallo et al. (2008); Owiti et al. (2008); Gitau (2011), and Mwangi et al. (2014). 

4.3.1.2 The Varimax Principal Component Analysis  

The varimax rotation of the principal component analysis (PCA) is a statistical method for filtering 

the modes of variability within a meteorological dataset based on diagonalization of the auto-

covariance or auto-correlation matrix of a data set (Wilks 1995, 2006; Omondi et al., 2012). The 

principal components (PCs) are rendered more robust by taking linear combinations of the leading 

empirical orthogonal functions (EOFs) and projecting them back on the input data matrix to obtain 

the PCs. This is referred to as the rotated (R) EOFs. 

It is a widely used technique to extract the dominant modes of climate variability. It improves the 

physical interpretation of the PCA modes and helps to derive more localized components 

(Richman, 1986). The method assumes that the EOFs are weighted by the square roots of their 

respective eigen values. By rotating the EOFs, the large loadings are made larger while smaller 

loadings are made smaller.  

Over the EA region, the varimax PCA technique has been widely used to map similarities in 

temporal and spatial patterns. Such studies include Ogallo (1980), Okoola (1999), Dommenget 

(2007), Nyakwada (2009), Omondi (2010), Omondi et al. (2013), Otieno and Anyah (2013b), have 

employed the time mode (T-mode) and temporal mode (S-mode) characteristics. The S-mode 

clusters regions with similar temporal patterns of climate while T-mode clusters together years 

with similar spatial characteristics.  

In this study both S and T-mode characteristics of the varimax rotated patterns were used to show 

if all the wet and dry years are mapped within similar orthogonal functions. Thus T-mode EOFs 

solutions were used to determine if all the years clustered together as wet and dry years shared 

some commonality features. 
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4.3.1.3 The Scree Kaiser’s criterion 

The primary objective of the PCA method is to minimize the dimensionality of a dataset without 

losing crucial information. The critical question to ask is what determines the number of factor(s) 

to retain for rotation. The scree, Kaiser’s criterion and sampling errors tests by North et al. (1982); 

Richman (1986) and Ntale et al. (2003) is used to determine how many modes to be retained for 

rotation. It is based on the cumulative variance that explains the highest variability in the dataset. 

Adding more factors, beyond this point will yield no better results and hence is referred to as the 

cut-off point (Costello et al., 2005). Due to its wide-spread use in the atmospheric science field, 

the current study adopted this technique to determine how many factors to be retained for rotation. 

4.3.1.4 Composite Analyses 

Composite analysis involves averaging selected variables based on a given criteria to provide 

understanding of specific characteristics of the variables. The results of the composite analysis 

help to make inferences of associated patterns with a particular event (Okoola 1999; Koech 2014). 

The current study developed composites to provide understanding and general patterns of wet and 

dry events. This involved computing the average rainfall value from SRI at the specific grid points 

for the wet and dry cases. The averages of the meteorological variables and circulation parameters 

were also computed for these cases in order to identify dominant meteorological systems during 

extreme wet /dry years, as well as to understand how various model convective schemes are 

influenced by the circulation systems during the wet and dry conditions. Some studies over the 

region including Nicholson and Kim (1997), Okoola (1999) and Bowden and Semazzi (2007) 

isolated wet and dry years and their circulations patterns. These studies found that dry and wet 

rainfall composites follow a west-east rainfall gradient. 

4.3.2 The Determination of the skill of four cumulus parameterization schemes in 

simulating intra-seasonal rainfall characteristics  

The first specific objective aimed at assessing the skill of the model in providing information on 

sub-seasonal rainfall characteristics during MAM and OND seasons. The key rainfall 

characteristics analysed were number of rainy days (NRD), intensity of rainy days (IRD), and 

frequency of rainy days (FRI). A threshold for defining these various seasonal characteristics was 

first set and presented in Table 2. Some of the past studies that have adopted similar methods 

include Kijazi and Reason (2005, 2009). The WRF model evaluation was done using the 

coefficient of variation (CV), correlation analysis, RMSE and mean error bias. 
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Table 2: The summary of the Rainfall properties adopted for the study during MAM and 

OND Rainfall seasons over the EA region 

 

 Rainfall 

Characteristics 

Definition 

1 Mean Rainfall  The total amount of rainfall received per time (mm/day) over a given 

place 

2 Number of Rainy 

days (NRD) 

Any day that records at least 1mm/day within a rainy season  

3 Intensity of Rainy 

Days (IRD) 

Average rainfall amount recorded for any rainy day based on 3 different 

thresholds. (i) Light between 1-10mm/day (ii) Moderate between 10-

20mm/day (iii) Heavy above 20mm/day 

4 Frequency of 

rainfall intensities 

(FRI) 

The frequency of the rainfall intensities is defined based on (Dai 2006).  

The frequency was calculated as a percentage of the number of rainy days under each of the rainfall 

intensities divided by all the number of rainy days within a season using Equation 3.4. 

%100
NRD

IRD
FRI  ……………………………... (3.4) 

In Equation 3.4, FRI is the rainfall frequency for each category, IRD is the intensity of rainfall 

under each category, and NRD is the total number rainy days within a given season. 

4.3.2.1 The Mean Bias Error 

The mean bias error (MBE) measure is a statistical technique that assesses the model performance 

with respect to the observations. It highlights the model tendency to underestimate or overestimate 

meteorological quantities. The closer the model biases tends to zero, the more skillful the 

simulations become. A value below or above zero indicates a tendency to under or over forecast 

climate parameters respectively. The MBE measure was used to simulate how each of the model 

schemes represents the observed rainfall climatology using Equation 4.4. 

  
n

ii OM
n

MBE
1

1
       (4.4) 

In Equation 4.4, iM  and iO  are the model simulated and observed values respectively. The 

measure of bias shows the error between the models and observations. It is important to test the 

significance of the error calculated. The RMSE was used as a test measure for the error between 

the models and observation. 
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4.3.2.2 Root Mean Square Error 

The root mean square error (RMSE) measures magnitude of the absolute error between the model 

and observations outputs. For each of the composites, the error between the model simulation and 

the observations was computed. The RMSE serves to aggregate the errors into a single measure of 

predictive capability. The errors were calculated and evaluated for each of the composites using 

Equation 5.4. 

n

O
RMSE

n

i ii M 


 1

2)(
       (5.4) 

In Equation 5.4, O
i
are rainfall observations, M i

 is simulated model output, and n is the number 

of observations. For a perfect model, the RMSE should be as small as possible and almost tending 

to zero value for the verification period. Indeje and Semazzi (2000), Mutemi et al. (2007), Gitau 

et al. (2013) have applied the RMSE method in their studies.  

4.3.2.3 Correlation Analysis  

One of the simple but efficient statistical method to establish the linear relationship between model 

simulations and observations is the use of correlation analysis. The correlation coefficients range 

from negative one to positive one (-1 to 1). For a stronger relationship between any two variables, 

the correlation coefficients should be closer to positive one. An inverse relationship between the 

model and observation is indicated by negative correlation coefficients. The study calculated both 

temporal and spatial correlation coefficients between simulated rainfall and observed rainfall. 

4.3.2.4 Coefficient of Variability  

The coefficient of variability (CV) measures the deviation of the model from its mean 

observations. It is used to compare variability in the datasets when their mean is different. It is 

computed as the standard deviation divided by the arithmetic mean. In this study, CV was used to 

assess the variability associated with the calculated biases and the NRD and IRD. The equation 

6.4a is an expression for standard deviation. 

  
n

ix
x

n
x

1

21
         (6.4a) 

The mean for the data series was expressed in Equation 6.4b. 
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1
           (6.4b) 

The CV was computed by dividing the standard deviation (6.4a) by the mean values (6.4b). Studies 

in the region like Anyah and Qiu (2012) and Kisaka (2015) have used the method for model 

evaluation. 

4.3.2.5 Taylor Diagram  

The skill of the WRF model using the four schemes in simulating East Africa rainfall was assessed. 

The statistics were summarized in a Taylor diagram (Taylor et al, 2012). The Taylor diagram 

compares model performance in terms of their correlation coefficients, mean square difference and 

standard deviations. The statistical significance of relative differences and the degree to which 

observational errors and inherent variability limits the expected agreement between simulated and 

observed behaviors. 

4.3.3 The Establishment of the skill of the cumulus schemes in simulating the atmospheric 

circulations and dynamics  

The second specific objective examined how the various CPSs simulated the dominant 

atmospheric circulation patterns and dynamics during the wettest/driest cases. The dynamical 

quantities analyzed were vertical velocity (omega), Vertically Integrated Moisture Flux (VIMF), 

convergence/divergences and CAPE. 

4.3.3.1 Vertically Integrated Moisture Flux  

The vertically integrated moisture flux (VIMF) is a dynamical quantity in the conservation of the 

water vapor equation and was first calculated in the 1950s and 1960s as a vertically integrated 

quantity to predict rainfall associated with synoptic-scale systems. A scale analysis shows that 

surface moisture flux (MF) Convergence/Divergence (MFC/MFD) is directly proportional to the 

horizontal mass convergence/Divergence field, allowing MFC/MFD to be highly effective in 

highlighting mesoscale boundaries between different air masses near the earth’s surface that can 

be resolved by surface data and appropriate grid spacing in gridded analyses and numerical models. 

However, the effectiveness of boundaries in generating deep moist convection is influenced by 

many factors, including the depth of the vertical circulation along the boundary and the presence 
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of convective available potential energy (CAPE) and convective inhibition (CIN) near the 

boundary. The atmospheric water budget equation 7.4 was used to express and compute VIMF. 

PEMFD
t

PW 


      (7.4) 

In Equation 7.4, E is evaporation from the surface; MFD is the vertically integrated moisture 

divergence between the surface and top of the atmosphere, and 
t

PW


 is the temporal variation 

of precipitable water within air column. This term becomes negligible at seasonal timescales. 

This study focused on the capability of the various convective schemes to simulate rainfall and 

VIMF (Schneider et al., 2006; Trenberth et al., 2011; Newman et al., 2012; Berhane and Zaitchik 

2014). 

4.3.3.2 Vertical Velocity in Pressure Coordinates  

The vertical velocity (omega, ω) is a well-established measure of the large-scale vertical motion 

used to diagnose tropical circulation (Donner 1993; Bony et al., 2004; Schwendike et al., 2014; 

Oueslati and Bellon 2015). The omega analyses aids at understanding whether common 

precipitation biases are associated with vertical velocity motion properties. The negative (positive) 

values of ω are associated with upward (downward) motion. The current study used this technique 

to understand how rainfall biases are associated with the vertical uplift or sinking of motion during 

wet and dry years. 

4.3.4 The Determination of the specific Adjustable parameters within the cumulus schemes 

that can be customized to improve rainfall simulations  

The third objective aimed at obtaining higher skill and accuracy from the best CPS identified in 

Objectives 1 and 2. This was achieved through the CPS variable parameters identified based on 

recent interventions by scientists and their ability to bear greatest response to any adjusted 

parameter (Lin et al., 2013; Zheng et al., 2016). Once the saturation point (LCL) has been reached, 

the atmosphere regains its stability for new convective process to begin. This time is dictated by 

the adjustment time scale (ATS). The ATS is the time required for CAPE to be reduced from the 

environment once the saturation point has been achieved.  

In the current NWP, the ATS has a set default range of 800-3600 seconds implies that it takes 

about between 30-60 minutes for stability of the atmosphere to be regained once the convection 

https://link.springer.com/article/10.1007/s00382-016-3334-x#CR64
https://link.springer.com/article/10.1007/s00382-016-3334-x#CR69
https://link.springer.com/article/10.1007/s00382-016-3334-x#CR52
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occurred. Assigning such ATS ranges result to model hyper-activity giving too much rainfall. The 

current study had ATS range set to 800-18000 seconds, to lower the hyper-activity of the model 

(Bullock et al., 2015). Previous study by Zheng et al. (2016) found out that the ATS is one of the 

adjusted parameters with the greatest impact to the quality of simulated rainfall in the NWP. 

Another factor that modulates the quality of rainfall simulations is the cloud-radiation coupling.  

The absence of a mechanism to initiate the coupling effect in the regional climate models is one 

of the causes of model biases. The problem in NWP was first reported by Krishnamurti (1986). 

Alaparty et al. (2012) first introduced and tested this in WRF model. The interaction of cloud-

radiation reduces the passivity in the cloud, lowers the surface heating that causes too much 

precipitation. The study reported that the interaction of cloud –radiation physics leads to a more 

realistic simulation of attenuation of downward surface shortwave radiation. The reduced surface 

shortwave radiation moderates the surface forcing for convection and results in a notable reduction 

in precipitation biases. This study applied the moisture-based advection scheme in the KF scheme. 

Lastly, the entrainment based on lifting condensation level (LCL). It is based on varying the 

entrainment constant parameter that controls the magnitude of entrainment in a cloud cell. It is 

assumed to have a uniform value α = 0.03 (Tokioka et al., 1988). By varying the Tokioka 

Parameter (TP), the hyperactivity of subgrid-scale convection scheme can be regulated and biases 

reduced (Lin et al., 2013). Increasing the TP results to a decrease in the sub-grid scale precipitation 

hence an increase in the grid-scale precipitation. As a result, this adjustment in the TP provides 

rainfall simulations with minimal rainfall biases. 

This study used the TP value at 0.03. The study hypothesized that by varying any of these 

parameters in the model, the simulations would be improved and hence the forecasts. These factors 

impact greatly on dynamic cloud processes including cloud formation and growth. Their effects 

are greatest on cloud timing, location, and intensity of precipitation. This study varied these three 

variables in the Kain-Fritsch scheme and their combined response analyzed. It is important to note 

that the study did not analyze the individual response of each of these parameters due to 

computational constraints.  

To achieve the optimum configurations, several sensitivity experiments were conducted but only 

the three parameters listed here showed better skill response to each rainfall characteristics. The 

study therefore concentrated only on these parameters for more detailed and extensive sensitivity 
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experiments. Each simulation was analyzed to test the response of the WRF model to the mean 

seasonal rainfall for a period 10 days. Once the optimal level for the respective parameters were 

achieved, a full year simulation using all the adjusted parameters were done. The analyses 

however, were based on the combined effect of the three parameters. The detailed descriptions of 

these parameters are provided under the literature review section as well as Zheng et al. (2016). 

The methods used for evaluating the model performance were already discussed in sub-sections 

(4.2.2). 
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CHAPTER FIVE 

5 Results and Discussion 

This chapter presents the results and discussion obtained with the various methods that were used 

to investigate the three specific objectives. The results for the identification of the best scheme that 

simulate the various rainfall characteristics are presented first. This was followed by the results 

from the identification of specific adjustable parameters within the cumulus schemes to improve 

and optimize the WRF model simulations of extreme rainfall over the East Africa region.  

5.1 The Determination of the best Dataset for WRF model evaluation 

The rainfall stations within homogenous zones were correlated with CRU, GPCP and CHIRPS 

datasets. Only the station (s) that had higher correlation values in each zone were presented for 

analysis. The homogeneous representative stations were Bujumbura, Dagoretti, Entebbe, Lodwar, 

Iringa and Mwanza. Tables 3 and 4 show the results of the correlation between station rainfall data 

with CRU, GPCP and CHIRPS datasets. The CHIRPS data had the highest correlation coefficients 

with the station data at all stations during both MAM (Table 3) and OND (Table 4) seasons. The 

highest correlation between CHIRPS and station data was 0.97 over Lodwar during OND season; 

this represented R-square of 94%. This was an indication of CHIRPS data accounting for as high 

as 94% of the variance of the station’s rainfall data. This is important since CHIRPS data forms a 

critical component of most data that was used in many parts of this study. 

Table 3: The correlation coefficients between Station Rainfall Data and GPCP, CRU and 

CHIRPS datasets for selected stations. The years were from 1981-2016 over EA region 

during the MAM season 

 

 

 

 

 

 

 

 

 

 

 

 

Stations CHIRPS CRU GPCP 

Bujumbura 0.52 0.13 0.18 

Dagoreti 0.74 0.51 0.13 

Mwanza 0.94 0.75 0.20 

Iringa 0.78 0.58 0.13 

Lodwar 0.93 0.65 -0.47 

 Entebbe 0.91  0.45  0.38  
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Table 4: The correlation Coefficients between GPCP, CRU, CHIRPS and Station dataset for 

some selected stations from 1981-2016 over EEA region during OND season. 

 

 

 

 

 

The sample plotted time series of station rainfall, CRU, GPCP and CHIRPS data were given in 

Figure 6. The similarity in the patterns of positive and negative anomalies for the station rainfall 

and CHIRPS are quite evident. Therefore, all subsequent results in the study used CHIRPS as the 

observed data for the analyses. Throughout the analyses, the WRF model results were first 

interpolated into the CHIRPS grids for fair comparison with the observation. The regional studies 

like Funk et al. (2010; 2015), and Dunning et al. (2016) have used CHIRPS in the analyses over 

East Africa. The next section presents the results for the characterization of extreme wet and dry 

years over the East Africa region.  

 

Station CHIRPS CRU GPCP 

Bujumbura 0.72 0.47 0.02 

Dagoreti 0.78 0.51 0.40 

Mwanza 0.22 0.16 0.25 

Iringa 0.94 0.63 0.41 

Lodwar 0.97 0.25 0.31 

Entebbe 0.94 0.59 0.30 
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Figure 6: Inter-annual variability of standardized rainfall anomaly from CRU, CHIRPS, GPCP and station observations during 

MAM (left panel) and OND (right panel) over, Bujumbura, Iringa, and Dagoreti stations. 
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5.2 The Delineation of East Africa Extreme Rainfall years 

In this section, the results from the three methods used to delineate wet and dry years were 

independently presented and compared. The methods applied included standardized rainfall index 

(SRI), principal component analysis (PCA) and composite analysis. 

5.2.1 Standardized Rainfall Index 

Figure 7 shows the time series for standardized rainfall Index (SRI) from CHIRPS datasets. An 

index threshold of 0.5 / (-0.5) was used for any wet/ (dry) year respectively. The major wet years 

isolated during MAM season were 1987,1988,1989,1990,1991,1992, 1998, 2003, 2007, 2010, 

2012 and 2015, while the major MAM dry season years were 1984, 1993,1996, 2000, 2006, 2008, 

2009. The wet years delineated for OND season were 1982, 1987, 1991, 1997, 2002, 2004, 2006, 

2009, and 2015 and for dry cases the years were 1983, 1984, 1988, 1995, 1999, 2007, 2010, and 

2013. Most of these dry and wet years have been isolated in some past studies including Okoola 

(1999), Nyakwada (2009), Owiti et al. (2008) and Philipon et al. (2015), among others. Many of 

these extremes also occurred during major ENSO years. The Indian Ocean Dipole (IOD) indices 

were also strong in some of these years. 
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Figure 7: The Inter-annual variability of mean Rainfall (mm) from CHIRPS during MAM (top panel) and OND (bottom 

panel) seasons over NEA, SEA and EA sub-domains for the period 1981-2016. 
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5.2.2 Varimax PCA Analysis  

In this study, both S and T-modes characteristics of the varimax rotations were used to delineate 

the major spatial and temporal rainfall characteristics for the MAM and OND seasons. The results 

for scree test were first presented. 

5.2.2.1 Scree Test Method 

The selection of the PCA modes for rotation was done using Scree test. Figure 8 shows the results 

for the scree test during the MAM and OND seasons. The first four modes accounted for 32.3% 

and 66.4% of total MAM and OND rainfall variance respectively. Therefore, only these four 

modes were subjected to rotation by varimax.  

 

 

 

 

 

 

 

Figure 8: The Scree’s test selection of dominant principal components for rotation during 

(a) MAM (b) OND rainfall seasons over Equatorial East Africa. 

5.2.3 Varimax PCA Analysis  

Figure 9a shows the first four varimax rotated PCA modes during MAM season. From the varimax 

rotation, the four modes accounted for over 43% (72%) of the total variance during the MAM 

(OND) seasons. The first PCA mode accounted for 16.5% of the spatial rainfall variance during 

MAM season. The PCA modes had negative loadings over most of the region, with few locations 

having small positive loadings over the southern sector of the region. The second rotated PCA 

mode accounted for 11.6%, while the third and fourth rotated modes accounted for 9.6% and 7.5% 

of the spatial rainfall variance respectively. All the four rotated PCA modes accounted for only up 

to 43% of the total MAM rainfall. Similar results have been observed from previous studies 

(Ogallo 1989; Indeje et al., 2000; Schreck and Semazzi 2004; Omondi et al., 2012). 
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During the OND season, Figure 9b, the first rotated PCA modes accounted for 51.7% of the spatial 

rainfall variance over the region, with large positive loadings over the whole region. The maximum 

loadings were concentrated over the Equatorial parts of the Great Rift Valley. The second PCA 

mode accounted for 10.8% of the spatial rainfall variance over the region.  

The spatial patterns for the second PCA mode displayed a dipole pattern (positive and negative 

loadings over the northern and southern parts of the Equator). The sum total variance of the third 

and fourth PCA modes accounted for only 8.3% of spatial rainfall variance. 

The first two modes were the most dominant accounting for about 62% of the total spatial rainfall 

variance. The first two PCA modes can adequately represent temporal and spatial rainfall variance 

of the rainfall during the OND season in the region. However, the first two PCA modes during 

MAM season cannot adequately be used to represent the rainfall variability since their sum total 

variance were only 28%.  

The patterns of the first PCA mode during OND season may be representative of mean rainfall 

variability of the region. The configurations of the second PCA mode reflected the commonly 

observed ENSO region signals and migration of the meridional arm of the ITCZ (Ogallo et al., 

1988; Indeje 2000; Indeje et al., 2006). 

The PCA T-mode solutions were used to isolate the years with similar spatial patterns. The T-

mode PCA loadings were classified into large positive and negative loadings. Figures 10 and 11 

show the T-PCA modes during the MAM and OND seasons respectively. Only the first two PCA 

T-modes were used to delineate the wet and dry years. The time coefficients of the dominant PCA 

modes represent the dry and wet rainfall years in areas where the specific mode has high variances 

and coefficients for the S-mode solutions. Thus, the first two MAM and OND PCA modes are able 

to provide more representative characteristics of rainfall during their respective seasons.  

According to PC1 during MAM (Figure 10), the average cold ENSO events were pronounced in 

the decades 1980–1990 resulting to depressed rainfall in the region. The PC2 during the MAM 

season represented a dipole spatial pattern over the region. The third mode could be related to the 

inter-annual trend mode and variability (Bowden and Semazzi 2007). The MAM T-mode results 

were integrated with care since their variance was very low. It was clear that the representation of 
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the MAM rainfall using the T-mode is very challenging since all dominant PCA modes accounted 

for only 43% of the variance. 

Figure 11 represented the T-mode characteristics during the OND season. The PC1 and PC2 during 

OND season showed large positive and negative loading patterns spread throughout the time slice 

period. Table 5 summarizes the wet and dry years from PCA analyses mainly from the first and 

second PC modes. The time series from PC1 and 2 modes during OND season indicated some 

consistence with ENSO variability (Ogallo 1988; Indeje et al., 2000). Previous studies based on 

the PCA analyses to characterize wet and dry years, associated these positive and negative loading 

patterns with the wet and dry rainfall signals (North et al., 1982; Ogallo 1989; Okoola 1996; 

Camberlin and Philipon 2002; Omondi et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The S-mode for (a) MAM and (b) OND) loading patterns for the Varimax rotated 

EOFs over East Africa. The blue (red) shadings denote areas with wet (dry) rainfall 

anomalies over the period 1981-2016. The first four PC modes accounted for 45% and 70% 

of the total rainfall variance during MAM and OND seasons respectively. 

a b 
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Figure 10: The T-mode Varimax rotated PCA modes during the MAM season loading 

patterns over East Africa region between 1981 to 2016. The blue (red) bars represent positive 

(negative) loading patterns. 

 
Figure 11: The T-mode Varimax rotated PCA for the OND season loading patterns over East 

Africa region between 1981 to 2016. The blue (red) bars represent positive (negative) loading 

patterns. 
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Table 5: The Wet and Dry Years from PCA analyses between 1981to 2016 during MAM 

and OND seasons over East Africa 

MAM season 

 Positive loadings Negative loadings 

PC1 1984, 1992, 2000, 2004, 2007, 2008, 2010, 2011, 

2014 

1985, 1986, 1987, 1988, 1989, 

1990, 1992 

PC2 1986, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 

1999, 2002, 2006, 2011, 2014 

1985, 1987, 1988, 1990, 1997, 

2003, 2004, 2005, 2007, 2009, 

2010, 2012, 2013 

OND season 

 Positive loadings Negative loadings 

PC1 1997, 2002, 2006, 2011, 2015 1984, 1985, 1986, 1998, 1999, 

2005, 2010 

PC2 1985, 1986, 1988, 1989, 1991, 2000, 2004, 2006, 

2008, 2012 

1987, 1990, 1993, 1994, 1995, 

1996, 1997, 1998, 1999, 2001, 

2002, 2003, 2005, 2010, 2011, 

2014 

 

The results from SRI and PCA analyses isolated the widespread wettest (driest) years of 

1989,1997, 1998, 2006, 2012, 2015 (1984, 1988, 2000, 2007, 2008, 2010). All these years except 

2012 and 2007 had previously been isolated as dry and wet by Okoola (1999), Owiti et al. (2008) 

and Philipon et al. (2015). These years were therefore subjected to composite analyses.   

5.2.4 Composite Analyses 

Figures 12 and 13 show rainfall anomalies of individual years and their corresponding wet and dry 

composites during MAM and OND seasons respectively. During the MAM season, the wet and 

dry rainfall anomalies were not as strong as was observed during OND season (Figures 12 and 13). 

This is due to both local and large-scale mixed rainfall drivers that are not very easy to isolate. 

There was a strong signal of wet and dry rainfall anomalies during OND season in each case 

(Figures 12 and 13), a characteristic of the large-scale systems that dominate the season which was 

easily isolated by the first PC modes. These common characteristics of wet and dry conditions 

during OND season had been associated with El Niño (La Niña) years over Equatorial East Africa 

(Ogallo 1988, 1989; Owiti et al., 2008; Ogwang et al., 2015a). Therefore, all the analyses were 

based on the wet and dry composites during MAM and OND rainfall seasons. 
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Figure 12: The rainfall anomalies (mm/day) for the wet years during MAM (top: 1989, 1998 

and 2012) and OND (bottom: 1997, 2006 and 2015) rainfall seasons. The corresponding 

composites are placed to the right of the individual years. The blue and red shadings denote 

areas with positive and negative rainfall anomalies respectively. The anomalies are 

calculated from a base period of 1981-2016.  
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Figure 13: The rainfall anomalies (mm/day) for the dry years during MAM (top: 1984, 2000 

and 2008) and OND (bottom: 1988, 2007 and 2010) rainfall seasons.  The corresponding 

composites are placed to the right of the individual years. The blue and red shadings denote 

areas with positive and negative rainfall anomalies respectively. The anomalies are 

calculated from a base period of 1981 to 2016.  

 

In summary, this study found that the first few eigenvectors (modes) are useful in explaining the 

rainfall variability over East Africa. The coherence between the rainfall and its variability in the 

dataset was higher during OND season than MAM season. Studies by North et al. (1982), and 

Richman et al. (1986) found that cutting the eigenvectors to about 3 to 4 factors usually generate 

robust results useful for explaining the variability. The time coefficients of the dominant PCA 

modes give a better representative of the dry and wet rainfall variability.  

This study for the first time demonstrated that the rainfall drivers for the wet and dry years can 

actually be isolated through the rotated EOFs. The interpretation of the PCA modes to delineate 
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wet and dry signals however needs to be done with care. This is because the interaction of local 

and large-scale makes the variability very low during the MAM season. 

5.3 The Determination of the skill of four cumulus parameterization schemes in simulating 

intrinsic rainfall characteristics during the wettest and driest years 

The first objective of the study sought to assess the reproducibility of the cumulus parameterization 

schemes (CPSs) on mean rainfall patterns, number of rainy days (NRD), Intensity of rainy days 

(IRD) and frequency of rainfall intensity (FRI) (Table 2). 

5.3.1 The Spatial and Temporal Daily Rainfall Distribution and the associated model 

Biases  

This section presented results from mean rainfall both spatially and temporally, model biases and 

associated error metrics.  

5.3.1.1 Spatial Mean Rainfall Distribution 

Figures 14 and 15 show daily rainfall patterns for wettest and driest years during the MAM and 

OND seasons. 

 
Figure 14: The mean daily rainfall (mm/day) for CHIRPS, BML, GRELL, KF and KFT 

schemes for the wet composites for the MAM (top) and the OND (bottom) seasons 
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During MAM season (Figure 14), rainfall was observed to be concentrated on the western 

Equatorial belt of the region according to CHIRPS (Figure 14a). Rainfall above 25 mmday-1 was 

observed over the western parts of Kenya, much of the central parts of Uganda, the shores of Lake 

Victoria and the western parts of southern Tanzania. Much of the eastern parts of Kenya and central 

parts of Tanzania recorded depressed rainfall of less than 5mm/day. The maximum rainfall of 

above 35 mmday-1 was received over the slopes of Mount Kenya. The maximum rainfall was over 

the equatorial and northern parts of the region. 

The KF and KFT schemes simulations were closer to the observations over the western parts of 

the EA region (Figure 14d, e). The KF schemes fairly simulated the observed rainfall over the 

northern and western parts of Tanzania. Comparatively, the simulations by KFT scheme were 

much better (Figure 14e). The BML and GRELL CPS presented low rainfall amount over much 

of Kenya and correctly simulated rainfall over the western equatorial including northern parts of 

Tanzania, Burundi and Rwanda (Figure 14b, c). The KF and KFT schemes on the other hand 

correctly reproduced rainfall location and intensity in some instances.  

During the OND season for wet years (Figure 14f-j), rainfall was confined to the western parts of 

the equator and the central and eastern parts of Kenya (Figure 14f). The BML and GRELL CPS 

correctly simulated rainfall over the western parts of the Equator but overestimated their intensities 

(Figure 14f, g, h), however the CPS simulated a drier condition over Kenya and Tanzania (Figure 

14g, h).  

The schemes can be viewed as either simulating excess rainfall (i.e KF and KFT schemes) resulting 

to wetter rainfall biases or simulate fewer rainfall resulting to drier rainfall biases (i.e. GRELL and 

BML schemes). For example, rainfall amount of about 25mm/day was observed to the northern 

parts, and southern parts of Tanzania (Figure 14a). In the BML and GRELL CPSs (Figure 14b, c), 

rainfall over the same locations were depressed or misplaced. On the other hand, KF and KFT 

schemes correctly simulated rainfall over the western parts of the equator, but overestimated their 

intensity. The Figure 15 shows rainfall simulations for the dry composites during MAM and OND 

rainfall seasons. 
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Figure 15: The mean daily Rainfall (mm/day) for CHIRPS, BML, GRELL, KF and KFT 

schemes during dry years for the MAM (top) and OND (bottom) seasons. 

 

The rainfall of the range 10 to 20 mm/day was observed over the western parts of the Equator and 

the lower southern parts of Tanzania during the MAM season (Figure 15a). The central Tanzania 

region and the North Eastern and Eastern parts of Kenya witnessed drier rainfall condition (Figure 

15a). For the OND season, rainfall was further depressed with average rainfall of below 10mm/day 

simulated over the north western parts of Tanzania, the Equator, coastal and central parts of Kenya 

(Figure 15f).  

The CPSs reasonably reproduced much better rainfall during the OND than the MAM seasons. 

Specifically, BML and GRELL CPS correctly simulated the rainfall location but under-estimated 

the rainfall amount (Figure 15b, c). The KF and KFT CPSs, on the other hand, correctly reproduced 

the rainfall location but over-estimated the rainfall amount (Figure 15d, e). During the OND 

season, the GRELL and BML schemes simulated rainfall correctly over western parts of the region 

but failed to reproduce rainfall over mountainous area of Kenya (Figure 15f, g, h). The KF scheme 

simulated convincing results albeit weakly simulating rainfall over the Kenyan highlands and 

mountainous area (Figure 15i, j). Better rainfall produced in KFT scheme over Tanzania and Kenya 

(Figure 15j) is an indication of the additive effects of moisture-based trigger function in KF 

scheme. 
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Figure 16 demonstrate the clear differences between KF and GRELL schemes through the wet 

minus dry analyses. The results revealed that the GRELL scheme is a drier scheme and KF is a 

wetter scheme during MAM season. The BML reproduced both dry and wet rainfall conditions 

alternately. The OND season was quite closer to the observations. All the CPSs reproduced the 

East-west rainfall gradient. 

 

Figure 16: The observed and simulated wet minus dry rainfall (mm/day) for CHIRPS, 

GRELL, BML, KF and KFT CPS. The top (MAM) and bottom (OND) seasons. The blue 

(orange) shadings denote areas with enhanced wetness (dryness). 

The rainfall simulations were more skillful during the drier years than wetter years. The OND 

rainfall season is easily simulated by the schemes than the MAM season for both cases (Figures 

14 and 15). The skillful rainfall simulation during the OND season is due to the strong spatial 

coherence that has been partially associated with the ENSO signals and stronger during the OND 

season. This is not the case for the MAM season, where rainfall is majorly driven by the complex 

interaction of both local and large-scale systems (Ogallo 1989).  

The location of maximum rainfall to the equator and the northern parts and minimum rainfall to 

the southern and eastern parts of EA region during the MAM and OND seasons was consistent 

with the rainfall climatology. The climatology mainly depends on the location and migratory arm 
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of the ITCZ (Ogallo 1989; Nicholson 1996; Okoola 1998, 1999). The reduction in rainfall amount 

in the KFT scheme was due to the introduction of cloud feedback mechanism to the radiation in 

the scheme. The feedback mechanism reduces the passivity of cloud to the shortwave radiation so 

that the surface evaporation due to heating is minimized (Alarparty et al., 2009).  

The observed rainfall differences in the GRELL and KF schemes could be attributed to the 

variations in their closure assumptions schemes. The KF is a low-level control cumulus scheme 

based on a mass flux approach. It considers the Langragian parcel theory to determine the level at 

which convection is activated. The GRELL scheme treats cloud as a one-dimensional system with 

downdraft and updraft branches at the top and bottom of the cloud. Both dynamic and trigger 

moisture controls are assumed to be a combination of closure assumption based on CAPE, low-

level vertical velocity or moisture convergence.  

The BML scheme on the other hand, is a convection inhibitor. It is a deep-layer control convective 

scheme, and assumes that the energy to raise the air parcel depends on the size of the environment. 

In the absence of buoyant air at any level, convection will not be activated. The scheme design 

favors the activation of convection within the vicinity of significant moisture at low and middle 

level between 300-500hPa (Wang and Seaman 1997). 

The EA region is characterized by the moisture convergence, emanating from the Indian Ocean 

and the Congo Basin at lower levels. Both GRELL and KF schemes are associated with sinking 

and rising of air which makes them suitable for process studies over the region (Pohl et al., 2011). 

From the analyses, it may be concluded that, GRELL, KFT and KF schemes are suitable in 

simulating mean rainfall patterns over the East Africa region. The GRELL scheme, however, was 

better for drier years only. 

5.3.1.2 Temporal Rainfall Distribution 

The variability and the spread in the model schemes were assessed based on the box and whisker 

plots over NEA, SEA, CEA and LVB sub-domains. Figures 17 and 18 show the box-plots for the 

simulated rainfall distribution during wettest composites for MAM and OND seasons respectively. 
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Figure 17: The boxplot for daily rainfall distribution from CHIRPS, GRELL, BML, KF and KFT CPS during wet composites for 

(a) MAM and (b) OND seasons over NEA, SEA, LVB and CEA sub-domains. The boxes have lines at the lower, median, and 

upper quartile values. The whiskers are lines extending from each end of the box to 1.5 inter-quartile ranges. 
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Over the CEA region for MAM season (Figure 17a), only BML scheme was closest to the 

observation in terms of mean values. The rest of the CPSs either underestimated or overestimated 

the mean values. Similar observations were replicated over LVB sub-domain. The BML and 

GRELL CPSs were closest to the observation over NEA region. Better distribution was found over 

SEA region in GRELL and KFT schemes. During the OND season (Figure 17b), the KF and KFT 

schemes mean values and rainfall distribution pattern were closer to the observation, the GRELL 

and BML CPSs underestimated the mean values over CEA region. Over LVB, only the GRELL 

scheme mean values were closest to the observation. Over NEA only KFT scheme was most 

skillful with most of the CPSs being skillful over SEA region except the KFT scheme. Fewer 

extreme rainfall values above 30mm/day were recorded in most of the CPSs. 
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Figure 18: The box-plots for daily rainfall distribution from CHIRPS, GRELL, BML, KF and KFT CPS during dry composites for 

(a) MAM and (b) OND seasons over NEA, SEA, LVB and CEA sub-domains. The boxes have lines at the lower, median, and upper 

quartile values. The whiskers are lines extending from each end of the box to 1.5 inter-quartile ranges.  
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Figure 18 shows the simulated rainfall distribution and the observation during drier years over 

CEA, LVB, NEA and SEA regions. Most of the CPSs mean values were in close agreement with 

the observations over most of the regions. The temporal mean rainfall distribution showed that the 

simulations of KFT and BML tended to be closer to the observations in terms of median and mean 

values during both MAM and OND seasons as shown in Figures 18a and b. The GRELL scheme 

mean values were in most cases closer to the observations than KF and KFT CPSs.  

The reproducibility of the mean rainfall pattern by the CPSs was evident in the rainfall gradient as 

a result of the large-scale systems like the ITCZ. Although, the temporal variability was not quite 

well reproduced in all the CPS, the KF and KFT simulations were consistently closer to the 

observed values. The OND season was better reproduced than the MAM season. In terms of 

temporal rainfall distribution, the KF was the best, while GRELL CPS was the best during dry 

years only. 

5.3.2 Model Bias Analysis 

In order to understand the variation between the model estimate and observation, the differences 

between model schemes and rainfall were analyzed and their associated RMSE and SC calculated 

per grid point over the EA region. 

5.3.2.1 Spatial Model Biases 

Figures 19-20 show seasonal rainfall amounts and associated biases against CHIRPS over EA 

domain during MAM and OND for wet and dry years respectively. The model biases strongly 

varied from one scheme to another. A recurrent spatial structure was however observed over 

central parts of Kenyan Coastal region during MAM and the western parts of the equatorial region 

during the OND season. The BML and GRELL CPSs simulated a drier bias over most parts of 

Kenya and weak wetter bias over the southern and western parts of the EA region. The KF scheme 

reproduced a stronger wetter bias over the western parts of EA and a drier bias to the south. The 

reverse situation occurred in the KFT scheme where a wetter bias dominated southern and western 

parts of EA during the MAM season (Figures 19a, b, c, d). 

The spatial rainfall structures in the BML, KF and KFT schemes were common across each during 

the OND season. For example, all the schemes except GRELL simulated strong north-south 

rainfall gradient, where wetter biases confined to the North and dry bias to the south of the EA 

region (Figure 19e, g, h). A similar rainfall structure was observed during the MAM season where 
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the northern parts of the EA recorded drier bias while the southern parts of the region recorded a 

wetter bias (Figure 19a, b, d). This spatial structure was enhanced in the KF and BML schemes 

(Figure 19e and g).  

 

Figure 19: The differences between simulated and observed rainfall (mm/day) for the 

composite of wet years. The top panel is for the MAM season and the bottom panel is for the 

OND season. The blue (orange) shadings denote positive (positive) rainfall differences over 

the region.  

In all the schemes, a dry bias was found around the central parts of Kenya especially the areas of 

Mount Kenya during MAM and OND seasons. The western parts of EA region presented a 

consistent wetter bias irrespective of the season and the CPS used. Although all the CPSs presented 

different rainfall spatial biases, the KF scheme reproduced a dry or wet bias comparatively during 

MAM and OND seasons. 
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Figure 20: The differences between simulated and observed mean rainfall (mm/day) for the 

composite of dry years. The top panel is the MAM season and bottom panel is the OND 

season. The blue (orange) shadings denote positive (negative) differences over the region.   

A similar observation was made for the case of the drier years as was depicted in Figure 20. The 

biases varied from one scheme to another. The KFT and KF CPSs had wetter biases around 

Tanzania and central parts of north eastern Kenya in KFT schemes during MAM season (Figure 

20d). The GRELL and BML simulated a strong dry bias to the East and wet bias to the western 

parts of EA region (Figures 20a and b). There were smaller biases around the central Kenya and 

south eastern parts of Tanzania in GRELL and KF schemes (Figures 20f and g). A strong-weak 

dry bias was evident in the KFT and GRELL schemes over mountainous areas of Kenya (Figures 

20f, h).  

These dry biases over mountainous areas could be as a result of poor simulation of the orographic 

effect in the schemes. Also, the localized rainfall driving systems over these areas are poorly 

simulated. The study hypothesized that the resolution used in the simulation could in part 

contribute to the observed biases. The rainfall biases were clearly depended on the scheme used. 

There were fewer biases in the KFT and the GRELL CPSs during the OND season than the MAM 
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season (Figures 19 and 20). The KF scheme was associated with wet biases, with a greatest 

reduction of the same in the KFT CPS, attributed to the moisture-based trigger function introduced 

in the scheme.  

The CPSs simulated successfully the north-south rainfall gradient which could be as a result of the 

meridionally oriented the ITCZ arms. During the MAM and OND seasons, the ITCZ migrates 

from the south to the north, and vice versa. As it moves, both its zonal and meridional alignment 

produces rainfall within its vicinity (McHugh, 2006). It could be deduced that the schemes do not 

properly capture the rainfall over these locations hence the observed biases especially during 

MAM season. 

Studies by Separovic et al. (2008) and Sanchez-Gomez et al. (2009) pointed out that RCM models 

traditionally produce the largest uncertainties at the central parts of their domain or near the 

outflow boundary. Such rainfall patterns are believed to be related to the uncertainties in the 

latitudinal variation of the ITCZ, a basic morphological feature of rain-bearing system over the 

EA region. Similar rainfall biases have been found by (Cretat et al., 2012; Marteua et al., 2015). 

The reduced rainfall biases in the model over the western Equatorial parts and central Kenya have 

also been reported by Njeri (2012). The study documented that a well-defined structure of the 

ITCZ produces less noise. These large rainfall biases imputed the observed wetter rainfall 

conditions generated by the KF and KFT schemes. The drier biases further explained the observed 

drier rainfall conditions associated with the GRELL scheme (Figures 14 and 15).  

The large and small values of RMSE in KF and KFT schemes signified the relative differences in 

the simulated rainfall between the two CPSs. The larger (smaller) RMSE values represented how 

far (close) the model simulations become closer to the observation. Based on this, the GRELL and 

BML schemes succeeded in getting smaller RMSE values during the drier years than wetter years. 

The large biases in the KF scheme during the wettest and driest years were greatly reduced in the 

KFT schemes giving RMSE values closer to the observation. Tables 6 and 7 shows a summary of 

RMSE values computed over SEA, NEA, CEA and LVB sub-domains. 
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Table 6: The RMSE (mm/day) computed between the observation and GRELL, BML, KF 

and KFT schemes during MAM and OND seasons for the composite of wet years. The 

average was done over the NEA, SEA, CEA and LVB sub-domains. 

 

 

 

 

 

 

 

 

The GRELL and BML CPSs simulated relatively low RMSE across all the sub-domains. The KFT 

CPSs had the highest RMSE followed by KF scheme during MAM season. The errors were least 

over NEA and largest over LVB sub-domains. During the OND season, KFT and KF cumulus 

schemes reproduced the least errors. Comparatively, the RMSE were smaller during the OND 

season than the MAM season as shown in Table 6. 

The analyses for the composite of dry years showed BML scheme simulated the smallest RMSE 

values comparatively as shown in Table 7 during MAM and OND seasons. The KFT scheme 

similarly simulated fairly low RMSE values. Comparatively, the RMSE values during OND 

season were lower. Over the NEA sub-domain, the KFT, BML and KF schemes simulated low 

RMSE values, over SEA and CEA domains, GRELL and BML schemes were most skillful during 

MAM season. For OND season, KFT and GRELL schemes were most skillful over NEA, CEA 

and SEA regions. It was evident from these analyses that the four CPSs skill drastically vary based 

on the sub-domain and the season. The CPSs consistently simulated larger RMSE values over 

LVB and CEA sub-domains than over SEA and NEA sub-domains. This perhaps signifies a 

weakness in the schemes to reproduce the cloud processes and the associated local scale dynamics. 

Scheme/Region NEA (MAM) SEA (MAM) CEA(MAM) LVB(MAM) 

GRELL 0.9 0.9 0.3 0.6 

BML 0.2 0.6 0.4 2.8 

KFT 4.3 1.8 3.6 4.6 

KF 1.2  1.5 3.9 3.5 

 NEA (OND) SEA (OND) CEA(OND) LVB(OND) 

GRELL 3.0 2.1 2.4 0.7 

BML 1.3 1.3 2.5 2.6 

KFT 0.2 0.5 0.4 4.5 

KF 0.9 0.8 1.5 4.2 
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Table 7: The RMSE (mm/day) computed between the observation and GRELL, BML, KF 

and KFT schemes during MAM and OND seasons for the composite of dry years. The 

average was done over the NEA, SEA, CEA and LVB sub-domains. 

 

 

 

 

 

 

 

 

The relatively higher skill (low RMSE) over NEA and SEA domains during the OND season had 

been reported by Ogallo (1989) to be due to the well prescribed and aligned Indo-pacific SST 

influence. Owing to the known nature of the region, where the land areas and water bodies 

constitute key physical features, the KF and GRELL CPSs become better options for studying 

rainfall characteristics over the East Africa region. 

5.3.2.2 Temporal Model Biases 

The study also assessed how the model biases evolved with time over the four sub-domains. 

Figures 21-22 showed rainfall biases at daily timescale during MAM and OND seasons for the wet 

composites. For MAM season, the variability with respect to amplitude in the rainfall biases was 

low and reduced during over the NEA and SEA regions (Figure 21a and b). The errors were larger 

over LVB and CEA regions. The KF and KFT schemes were consistent in simulating the negative 

and positive peaks low rainfall peaks. The GRELL and BML simulations were inadequate. During 

the OND season, the errors were relatively smaller within the first 20days of the season and became 

very “noisy” as the season progressed over all the sub-domains. Comparatively SEA and CEA 

regions had smallest error values within the first 15days (Figure 22b and d). The GRELL and KF 

schemes consistently simulated low rainfall biases and less variability across all the domains.  

Scheme/Region NEA (MAM) SEA (MAM) CEA(MAM) LVB(MAM) 

GRELL 2.3 1.3 0.9 1.1 

BML 1.2 0.5 0.8 2.4 

KFT 0.3 2.3 1.6 1.6 

KF 1.5 1.7 2.4 3.1 

 NEA (OND) SEA (OND) CEA(OND) LVB(OND) 

GRELL 1.2 1.4 1.7 1.0 

BML 1.8 1.3 0.8 2.1 

KFT 0.9 2.2 2.8 4.6 

KF 1.3 1.4 1.2 3.2 
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Figure 21: Spatially averaged rainfall biases (mm/day) for the BML, GRELL, KF and KFT 

schemes over the NEA, SEA, CEA and LVB domains for the composite of wet years during 

MAM season. The model biases were calculated with reference to CHIRPS 

 

 

Figure 22: Spatially averaged rainfall biases (mm/day) for the BML, GRELL, KF and KFT 

schemes over the NEA, SEA, CEA and LVB domains for composite of wet years during OND 

season. The model biases were calculated with reference to CHIRPS 
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Similar analyses were applied for dry composites as shown in Figures 23 and 24 during MAM and 

OND seasons respectively. The errors were relatively smaller for BML and KFT schemes during 

MAM season but progressively became larger as the season progressed. The last 5 days of the 

season also registered a reduction in the error amplitude (Figure 23). The OND season on the other 

hand simulated even further low amplitude (Figure 24). This was expected since the composited 

dry years signal is stronger during the OND season than MAM season. All the CPSs simulated 

low biases except KF CPS over LVB and CEA domains (Figure 24c and d).  

 

Figure 23: Spatially averaged rainfall biases (mm/day) for the BML, GRELL, KF and KFT 

schemes over the NEA, SEA, CEA and LVB domains for composite of dry years during 

MAM season. The model biases were calculated with reference to CHIRPS 

 

The CPSs were skillful in simulating the alternating dry and wet rainfall peaks especially during 

the wettest years (Figure 23 and 24). The GRELL and KFT CPSs on average simulated weak 

positive and negative biases during the OND and MAM seasons. The overestimation of rainfall in 

the KF scheme was evident in the larger biases during the wet rainfall season. One of the possible 

explanations for the variability in the rainfall biases could emanate from the uncertainties in the 

observational dataset. A study by Sylla et al. (2013) found that uncertainty in the observational 

dataset is a one of the factors limiting a rigorous evaluation of climate models over Africa.  
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Figure 24: Spatially averaged rainfall biases (mm/day) for the BML, GRELL, KF and KFT 

schemes over the NEA, SEA, CEA and LVB domains for composite of dry years during OND 

season. The model biases were calculated with reference to CHIRPS 

 

Based on the above analysis, we conclude that KF simulates wetter biases associated with large 

rainfall amount over the western parts of the region. The BML and GRELL schemes performed 

well during drier years than wet years. The trigger function reduces these biases in the KFT 

scheme. One important observation here is the error growth as the season progresses in the 

schemes. This signifies the importance of the reduced time-slice for better rainfall reproducibility 

for the convective rainfall processes over the region.   

One of the issues that lowers the quality of the NWP solutions is exponential error growth. The 

error growth emanates from the baroclinic and conditional instability associated with unstable 

vertical distribution of energy (Selz and Craig 2015). According to Zhang et al. (2007), the error 

growth has three unique phases. The first phase consists of fast small-scale error growth caused by 

the convective instability and moist convective processes. These errors rapidly dissipate into 

individual convective cells. At time-scale level, this could be within the first 10-15 days of the 

model integration. For the second phase, the convective cells slowly adjust to the balanced motions 

of the baroclinic instability; which is up-scaled into the third phase beyond the 20th day of the 

model integrations. In terms of the model physics and dynamics, the inaccurate forcing and 
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parameterizations used to represent the sub-grid scale processes are ingredients for the model 

deficiency and error growth (Danforth et al., 2007). Based on this explanation, the deterioration of 

the CPSs skill beyond the 15th day could emanate from the parameterization schemes used in the 

simulations.  

A consistent pattern in the simulations revealed that the WRF model schemes simulate rainfall 

features better during the dry years than the wet years. This is due to the fact that whenever the 

moisture criteria in the scheme is not reached, the scheme is not activated so that the difference 

between observed and simulated rainfall remains smaller. These findings were in close agreement 

with those from Marteau et al. (2015). In their study they found that, WRF model is skillful in 

reproducing dry rainfall conditions than wet conditions.  

The studies by Flaounas et al. (2011), Pohl et al. (2011) and Cre´tat et al. (2012) found out that 

the rainfall biases in the climate models are related to too many rainy days with high rainfall 

intensity. The smaller errors and rainfall underestimation in GRELL and BML schemes could be 

related to few summation rainy days and their intensity. The seasonal dependency of the CPSs in 

rainfall simulations as was depicted in Figures 21, 22, 23 and 24 suggest that the choice of a 

physical package of the model is partly responsible for the accuracy of the rainfall forecasts over 

the EA region where convective activities are prevalent. From these analyses, it may be concluded 

that the KFT and GRELL schemes were therefore suitable in reproducing the temporal rainfall 

biases. 

5.3.2.3 Seasonal Rainfall Migration   

In this section we examine how the various CPSs simulations represent the seasonal rainfall over 

the regions of maximum rainfall. Figures 25-26 show the latitude-time variations of the observed 

and simulated daily rainfall during for MAM and OND seasons for wet and dry years. 
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Figure 25: The space-time cross-section of rainfall (mm/day) averaged over longitude 29°E 

and 36°E for (a) CHIRPS (b) BML (c) GRELL (d) KF (e) KFT during MAM season for the 

composite of wet years.  

 

The start of the season was marked by rainfall occurring from the 20th day in the south, and then 

a rainfall break occurred from 35th day as it shifts to the north. A weakening rainfall situation sets 

in that persisted towards the end of the season (Figure 25a). All the schemes succeeded in 

reproducing rainfall band from south-north as the season progressed. The KFT scheme reasonably 

simulated the rainfall amount and the location but failed to reproduce the rainfall timing. The BML 

and KF schemes overestimated the rainfall amount, while GRELL underestimated rainfall 

intensity (Figures 25b, c, d, and e). During the OND season (Figure 26), rainfall band was to the 

north and shifted to the south as the season progressed. High rainfall amount were confined 

towards the end season. All the schemes reproduced the rainfall band but overestimated the rainfall 

amount. The GRELL scheme underestimated the rainfall amount (Figure 26c). 
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Figure 26: The space-time cross-section of rainfall (mm/day) averaged over longitude 29°E 

and 36°E for (a) CHIRPS (b) BML (c) GRELL (d) KF (e) KFT during OND season for the 

composite wet years.  

 

The simulation for dry years (Figure 27) also revealed the same rainfall pattern as for the wet years 

but clearly and distinctively was characterized by two distinct features. The first one is the 

persistence of enhanced rainfall within the equatorial belt, between 2 °S and 2 °N, throughout the 

season. The second feature is an apparent retreat in observed rainfall amount in the middle of the 

season, which was weakly reproduced in the simulations. The rainfall break was reflected in the 

quantity of the observed rainfall whereby relatively more rainfall occurred at the beginning of the 

season. This was common in the KFT and KF schemes (Figure 27b, d, e).  
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Figure 27: The space-time cross-section of rainfall (mm/day) averaged over longitude 29°E 

and 36°E for (a) CHIRPS (b) BML (c) GRELL (d) KF (e) KFT during MAM season for the 

composite dry years.  

 

 
Figure 28: The space-time cross-section of rainfall (mm/day) averaged over longitude 29°E 

and 36°E for (a) CHIRPS (b) BML (c) GRELL (d) KF (e) KFT during the OND season for 

the composite of dry years.  

 

This feature was even better reproduced during the OND season than the MAM season (Figure 

28e). The wet rainfall conditions simulated over the Equatorial region could be as a result of the 

sustained strong convective activities confined within the latitude 2°S -2°N and longitude 20°E - 

30°E (Figures 27-28); a likely manifestation of the WRF model’s ability to capture localized 

convection (Anyah and Semmazi 2007). The time-latitude evolution of the simulated seasonal 
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rainfall exhibited a quasi-stationary mode associated with high rainfall throughout the season 

within the equatorial belt and a feature associated with the movement of the ITCZ driven 

southward-northward regions of rainfall maximum.  

The results from the time-latitude confirmed the fact that, strong sustained convection within the 

equatorial region (2 °S-2 °N and 20°E-30°E) induces wetter conditions in the KF scheme. This 

wetter rainfall condition was reduced in the KFT scheme. Such wetter conditions is a likely 

manifestation of the WRF model ability to capture localized convection (Anyah and Semmazi 

2007) within the equatorial strip. Anyah et al. (2006) found that over the equatorial region the 

enhanced rainfall is induced by local topography and inland lakes. The orientation of the lakes 

astride to the equator sandwiched on both sides by high mountains, oriented in the north–south 

direction on both sides provides an enabling environment for frequent development of active 

convection and precipitation throughout the season (Waliser and Gautier 1993).  

Although out of the scope for the current study, other physical dynamical processes that plays role 

in determining the simulation of rainfall characteristics in terms of rainfall location, intensity and 

timing and the associated equatorial rainfall maximum include solar radiation, topography, SST 

forcing, and remote teleconnections to the western parts of Africa and Indian monsoon systems 

(Cook and Vizy 2013). Furthermore, the rainfall maximum shift is associated with the meridional 

movement of the African Easterly Jet (AEJ), a feature more dominant over West Africa. 

The Kain-Fritsch and Grell-Devenyi schemes are far separated by their rainfall amount and 

simulated rainfall biases. The GRELL CPS favors a drier rainfall pattern associated with drier 

biases, while the KF CPS favors a wetter rainfall pattern associated with its wetter biases. The 

KFT scheme potentially minimized the wet rainfall biases in the KF scheme by lowering the 

passivity of the long and short-wave radiation. The simulations by the BML scheme was associated 

with mixed rainfall signal. On the basis of this, the KF scheme outperformed all the other CPSs, 

and therefore was the most suitable for the EA region. Similar findings had been reported by Pohl 

et al. (2011) over the region but did not clearly separate these schemes in terms of the wet and dry 

years. 

It can be concluded that the KFT and KF schemes are suitable in separating the wet and dry rainfall 

characteristics over the region. The GRELL scheme only reproduced drier rainfall patterns better. 
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5.3.3 Intra-seasonal Rainfall Characteristics  

This section presents results from the analyses of various intra-seasonal rainfall characteristics 

including number of rainy days (NRD), intensity of rainy days (IRD) and frequency of rainfall 

intensity (FRI).  

5.3.3.1 Number of Rainy Days   

Figures 29 and 30 show the biases in the simulated NRD for wet and dry years respectively. There 

were more NRD above 40 days simulated over the northern parts of the Equatorial region in all 

the schemes as was illustrated in the Figures 29a, b and c except in the KFT scheme shown in 

Figure 29d where it underestimated the NRD by above 30 days over most parts of the region during 

the MAM season. The KFT scheme, however, had minimum biases in the NRD between (5-

10days) over the western Equatorial region. These biases in the NRD were underestimated during 

OND over the southern parts of the region in the GRELL, BML and KF schemes (Figures 29e, f, 

g). The KFT scheme simulated the minimum NRD over the same locations and few NRD over the 

Equatorial and Eastern parts of the domain (Figures 29h).  

 

Figure 29: The differences between simulated and observed NRD (days) by (a) GRELL (b) 

BML (c) KF and (d) KFT CPSs for the composite of wet years during MAM season and (e) 

GRELL (f) BML (g) KF (h) KFT during OND season. The blue (orange) shadings denote 

areas with positive (negative) differences in the NRD.  
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For the dry years, the CPSs simulated fewer NRD between 15 to 30 days to the southern and 

overestimated by over 20 days over the Equatorial and Northern sector of the region during MAM 

season as was depicted in Figures 30a, b and c. The biases in the KFT CPS were reduced by 

between 8 to 12 days over the equatorial region. During the OND season, there were fewer NRD 

simulated over the southern parts of the region in all the CPSs except for the KFT scheme shown 

in Figures 30e, f and g. The KFT scheme simulated between 5 to 20 days more over the northern 

parts of Tanzania and above 10 days over the northern equatorial region (Figure 30h). In general, 

the OND season was relatively better simulated with reduced biases than during the MAM season. 

Reduced biases in NRD were mostly confined over the northern part of the Equatorial region and 

the northern parts of Tanzania. The simulated biases in the NRD were relatively smaller during 

drier years than wetter years. The GRELL scheme simulated fewer NRD and KF simulated more 

NRD. 

 
Figure 30: The differences between simulated and observed NRD (days) by (a) GRELL (b) 

BML (c) KF and (d) KFT CPSs for the composite of dry years during MAM season and (e) 

GRELL (f) BML (g) KF (h) KFT during OND season. The blue (orange) shadings denote 

areas with positive (negative) differences in the NRD.  
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These analyses revealed that the regions with EA domain with more (less) rainfall (Figures 14 and 

15), coincided with the areas under more (fewer) NRD (Figures 29 and 30). All the CPSs captured 

the area of maximum NRD (northern and western parts of Equatorial region). All the schemes 

overestimated the NRD over these locations. The over-estimation of the NRD was common over 

the highland areas and lake regions. As Ratna et al. (2013) reported, most RCMs have bias in 

generating orography-induced rainfall.  

In terms of the number of rainy days, it can be concluded that, large rainfall amounts over the 

equatorial northern part of the domain are associated with more NRD while the underestimation 

of rainfall over southern parts and eastern regions results from fewer NRD. The GRELL and KF 

schemes succeeded in reproducing these rainfall patterns. This study is the first in the region to 

demonstrate the separation of rainfall activities by the KF and GRELL schemes. 

5.3.3.2 Rainfall Intensities  

In order to investigate rainfall intensity, three rainfall categories (i) 1-10mm/day (ii) 11-20mm/day 

(iii) >20mm/day were defined based on the WMO rainfall indices (Ongoma et al.,2018). These 

categories were referred to as light, moderate and heavy rainfall categories respectively in this text. 

The spatial distribution of the wettest and driest rainfall years for the NRD was analyzed based on 

these three categories.  

Figures 31 and 32 show the biases in the simulated rainfall intensities of the NRD for light, 

moderate, and heavy rainfall categories during wet years for the MAM and OND seasons. The 

NRD under the light categories were overestimated between 4 to 12 days over the western 

Equatorial region, central parts of Kenya and Tanzania in the GRELL, BML and KFT schemes as 

shown in Figures 31a, b and d. The KF scheme underestimated the intensity of rainy days by 1-

5days (Figure 31c). For the moderate intensities, the GRELL, BML and KFT schemes (Figures 

31e, f, and h) weakly underestimated rainfall biases from 1 to 4 days. The KF scheme 

overestimated the NRD between 4 to 8 days as shown in Figure 31g.  

For heavy rainfall intensities, the schemes performed with reduced biases in the intensities. For 

example, over the central parts of Kenya, Tanzania and the coastal strips of Kenya the biases in 

the rainfall intensities were between 1 to 4 days. The KF and KFT schemes overestimated the NRD 

over the equatorial region under this category (Figures 31k, l) but correctly simulated the NRD 

over the eastern, central and southern parts of the region.  



80 

 

 
Figure 31: The differences between simulated and observed rainfall Intensities of the NRD 

for composite of wet years (1992, 1998 and 2007) during MAM season. The top, middle and 

bottom panels represents the light (1-10mm/day), moderate (11-20mm/day) and heavy 

(>20mm/day) rainfall intensities respectively over East Africa region. The blue (dark orange) 

shadings denote areas with negative (positive) differences. 

  

During the OND season for wet years, parts of the western equatorial region received minimum 

number of rainy days associated with light rainfall categories (Figures 32a, b, c, d). There was 

underestimation of the NRD under light categories, overestimation of NRD under moderate and 

heavy rainfall intensities. Over the eastern, north eastern, coastal parts of Kenya and Tanzania, 

rainfall under light category were overestimated, and underestimated under heavy rainfall 

intensities. The spatial distribution of different rainfall intensities were well captured by the CPSs 
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under heavy rainfall intensities over the western parts of Tanzania and Kenya. The KF scheme 

consistently overestimated the NRD under moderate and heavy rainfall intensities, and under-

estimated the light rainfall categories. Comparatively, the overestimation of NRD in KF was 

reduced in KFT. The GRELL scheme generated fewer NRD under both rainfall categories.  

The GRELL and KFT schemes indicated better simulation under heavy rainfall categories 

(simulated minimum biases of 1 to 5 days). The KF scheme was not any better under any rainfall 

category since it consistently underestimated or overestimated the NRD. These analyses indicate 

that over the western parts of the equatorial region, the areas that predominantly receive high 

rainfall are also associated with many NRD. 
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Figure 32: The differences between simulated and observed rainfall intensities of NRD for 

the composite of wet years during the OND season. The top, middle and bottom panels 

represents the light (1-10mm/day), moderate (11-20mm/day) and heavy (>20m/day) rainfall 

intensities respectively over East Africa region. The blue (orange) shadings denote areas with 

positive (negative) differences. 

 

For dry years during MAM season (Figure 33), light rainfall intensity was mostly underestimated 

over western Equatorial parts by about 8 days. The underestimation was pronounced in GRELL 

scheme while the BML simulated a west-east rainfall gradient (Figures 33a and b). The 

overestimation of NRD in the KF scheme (Figures 33c) was clearly reduced in KFT scheme 

(Figures 33d) by about 10 days. The moderate rainfall intensities were mostly underestimated in 
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GRELL and BML schemes as shown in Figures 33e, f and h by about 10 days. Under heavy rainfall 

intensity, the biases were smaller. The GRELL simulated these intensities better (Figures 33i); the 

BML, KF and KFT schemes (Figures 33j, k, l) overestimated the NRD under heavy rainfall 

intensity over the equatorial region by about 8 days. Better results and simulations were found 

over the southern parts of Tanzania and the central parts of Kenya.  

For the dry years during the OND season (Figure 34), the biases were relatively smaller, the rainfall 

intensity under light rainfall were clearly overestimated (Figure 34a, b ,c and d) and reasonably 

simulated with low biases between 1 to 3 days as was illustrated in Figures 34i,j,k and l. The KFT 

scheme had smaller biases compared to the KF schemes (Figures 34k). Throughout the analyses, 

the study revealed that the areas with the maximum NRD (Western Equatorial region, Figures 14 

and 15) are predominantly associated with light rainfall categories while the areas with minimum 

NRD (Eastern, central, and coastal parts of the region) are associated with heavy rainfall intensities 

over the EA region during the MAM and OND seasons.  
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Figure 33: The Spatial patterns of the average NRD according to three rainfall intensity 

categories for the composite of dry years during the MAM season. The (a), (b), (c), (d) denote 

light rainfall category, (e), (f), (g), (h) denote moderate category and (i), (j), (k), (l) denote 

heavy rainfall intensities simulated by the BML, GRELL, KF and KFT schemes over EA 

region. 
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Figure 34: The Spatial patterns of the average NRD according to three rainfall intensity 

categories for the composite of dry years during the OND season. The (a), (b), (c), (d) denote 

light rainfall category, (e), (f), (g), (h) denote moderate category and (i), (j), (k), (l) denote 

heavy rainfall intensities simulated by the BML, GRELL, KF and KFT schemes over EA 

region. 

 

From the above analyses, it can be concluded that high rainfall amount reproduced by the KF 

scheme was as a result of too many rainy days under the light intensities. Similarly, the drier 

rainfall patterns in the GRELL CPS emanated from fewer NRD. The over-estimation was higher 

in KF and reduced in KFT schemes. The western equatorial region received rainfall of above 
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20mm/day, and moderate rainfall over eastern parts of the region. In most cases, the KF and 

GRELL had closer rainfall agreement over southern parts of the region and coastal cities of the 

study domain. The moderate rainfall category was poorly simulated by the schemes. The CPSs 

generated more rainy days under the light rainfall category; compensated by fewer rainy days 

under heavy-moderate rainfall intensities. Similar findings had been reported by Cretat et al. 

(2011). From the analyses of the rainfall intensities, the GRELL and KFT schemes were most 

skillful in reproducing heavy-moderate rainfall intensities. 

5.3.3.3 The Relative Frequency of the Rainfall Intensities 

In this section, the study analyzed how often the rainfall intensities occur. This was done by 

dividing the NRD for any given category by the total NRD and expressed in percentage points to 

give relative rainfall frequency. Figure 35 shows the relative frequencies of the various rainfall 

intensities during the wet years of the MAM season. Light rainfall occurred more frequently and 

was overestimated by over 40% over Eastern, Central and Southern parts of the region by GRELL, 

BML, KF and KFT schemes (Figure 35a, b, c and d). Similarly, over the western parts of the 

equatorial region, rainfall occurred less frequent and were mostly underestimated by about 20%. 

The heavy rainfall intensity was less frequent and in certain instances underestimated by about 

20% over the central parts of Kenya, eastern parts of Tanzania and northern parts of Kenya.  

The simulations were better over the western parts of the Equatorial region (Figure 35i, j, k, and 

l). All the CPSs considerably overestimated the rainfall frequency during the MAM season but 

with differing magnitude of light precipitation over the central parts of Kenya, and southern parts 

of Tanzania. The KFT scheme generated fewer biases under light rainfall intensity over the western 

and central parts of Tanzania. The biases under the heavy rainfall category were reduced relatively 

by about 20%. This probably implied that the cumulus schemes reasonably reproduce the rainfall 

amount under the heavy rainfall intensity. In the KF and KFT schemes, the rainfall intensities were 

slightly over-estimated by about 10-20% compared to about 20-50% under light intensities 

(Figures 35a, b, c, d).  

The simulations for moderate frequency were not so distinct and as such clear differences in the 

frequency biases could not be noticed. During the OND season (Figure 36), the GRELL and BML 

cumulus schemes (Figures 36a and b) overestimated the frequency of light rainfall intensity (40-

60%) over the coastal parts of Tanzania and Kenya, central and eastern parts of Kenya. Over the 
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western parts of the equatorial region, the light rains were less frequent and in certain cases 

underestimated by the cumulus schemes. Under heavy rainfall intensity, there was reasonable 

agreement between the schemes and observation in GRELL and BML (Figures 36i, j) over the 

western equatorial parts of the region. The KF scheme overestimated the frequencies over these 

regions whilst the KFT scheme reasonably reproduced the frequency over southern and western 

parts of Kenya (Figures 36k, l).  

Most of the CPSs simulated the heavy rainfall frequency better than the light rainfall frequency 

(Figures 35 and 36) over the western parts of equatorial region; and generally reproduced the large-

scale pattern probably due to the ITCZ. Although there was general overestimation and 

underestimation of the frequencies of heavy and light rainfall, the results suggest that the climate 

models experience too many rainy days with light rainfall, but perform rather well in simulating 

the heavy rainfall frequency (Sun et al., 2006). 
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Figure 35: The differences between simulated and observed rainfall frequencies (%) for the 

wet composite during the MAM season. The (a), (b), (c), (d) denote light rainfall category, 

(e), (f), (g), (h) denote moderate category and (i), (j), (k), (l) denote heavy rainfall intensities 

simulated by the BML, GRELL, KF and KFT schemes over EA region. The difference was 

taken with respect to CHIRPS data. The blue (dark orange) shadings denote areas with 

positive (negative) differences. 

The overestimation of rainfall and the biases in KF and subsequent reduction of the same in KFT 

scheme; and the underestimation of the same by GRELL cumulus scheme was mostly generated 

due to higher or fewer NRD in the light rainfall intensity concentrated over western equatorial 

parts of the region. For the heavy rainfall category, most of the schemes reproduced both their 

intensity and frequency reasonably. It is inferable that light rains are more frequent while heavy 

rains are less frequent.  
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Figure 36: The differences between simulated and observed rainfall frequencies (%) for the 

wet composite during the OND season. The (a), (b), (c), (d) denote light rainfall category, (e), 

(f), (g), (h) denote moderate category and (i), (j), (k), (l) denote heavy rainfall intensities 

simulated by the BML, GRELL, KF and KFT schemes over EA region. The difference was 

taken with respect to CHIRPS data. The blue (dark orange) shadings denote areas with 

positive (negative) differences. 
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Figure 37: The differences between simulated and observed rainfall frequencies (%) for the 

dry composite during the MAM season. The (a), (b), (c), (d) denote light rainfall category, 

(e), (f), (g), (h) denote moderate category and (i), (j), (k), (l) denote heavy rainfall intensities 

simulated by the BML, GRELL, KF and KFT schemes over EA region. The difference was 

taken with respect to CHIRPS data. The blue (orange) shadings denote areas with positive 

(negative) differences 

 

For the dry MAM season (Figure 37), the frequency of light rainfall intensities was overestimated 

by the CPSs over the eastern, central, southern and northern parts of the region by between 20 and 

60 %. Over the western equatorial part, there was a consistent underestimation of the rainfall 
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frequency by about 30%. The biases in the heavy rainfall frequency were smaller. All the CPS 

reproduced heavy rainfall frequency over the equatorial region (Figures 37a, b, c, i, j, k, l). The 

moderate rainfall (11-20mm/day) were not skillfully resolved like for the light and heavy rainfall 

events. The biases during the OND season for dry years (Figure 38) showed better simulations of 

heavy rainfall frequency, with larger biases observed under light rainfall intensity especially in 

KFT and KF schemes (Figure 38c and d).  

 
Figure 38: The differences between simulated and observed rainfall frequencies (%) for the 

dry composite during the OND season. The (a), (b), (c), (d) denote light rainfall category, (e), 

(f), (g), (h) denote moderate category and (i), (j), (k), (l) denote heavy rainfall intensities 

simulated by the BML, GRELL, KF and KFT schemes over the EA region. The difference 

was taken with respect to CHIRPS data. The blue (orange) shadings denote areas with 

positive (negative) differences 
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From the analyses, it can be deduced that the regions with more NRD predominantly receive high 

amount rainfall seasonally, whilst the regions with fewer NRD predominantly receive low rainfall. 

Over the region, light rainfall intensity (1-10mm/day) occur more often which was consistently 

overestimated by the CPSs. All the CPSs simulated well the rainfall intensity under heavy rainfall 

(>20mm/day), as well as their frequencies. The analyses for the frequency of rainfall intensity 

revealed a consistent pattern in the KFT and GRELL simulations. 

5.3.4 Ranking the Schemes based on Taylor Diagram  

The study summarized the skill of the CPSs based on their rainfall pattern and their amplitude of 

the observed rainfall in a Taylor diagram. Figures 39 and 40 show the spatial pattern correlation 

(r), root mean square difference, and the amplitude of variation (standard deviation) of seasonal 

mean rainfall for CHIRPS, GRELL, BML, KF and KFT CPSs during the MAM and OND seasons 

for wet and dry composites over NEA, SEA, CEA and LVB sub-domains, respectively. 

During the wet years (Figure 39), the CPSs were most skillful over SEA and LVB sub-domains 

with correlation coefficients ranging between 0.4-0.6. The KF, KFT and GRELL schemes 

simulated correlation values of about 0.5 during the MAM season as shown in Figure 39. The 

OND season was poorly replicated in all the domains except over SEA and LVB where KFT 

scheme simulated correlation values of 0.65 and 0.4 respectively.  

For the dry composites (Figure 40), the GRELL and KFT CPSs were most skillful with mean 

correlation values of 0.8 and 0.6 respectively over NEA region during the MAM season. The 

GRELL and BML CPSs simulated correlation of 0.5 and 0.4 respectively. Over SEA and CEA 

sub-domains the correlation values for all the CPSs were about 0.5 except for the BML scheme 

that had poor relationship with the rainfall mechanism here. Similar correlation coefficients were 

recorded during the OND season (Figures 40e-h). During this season, the KFT and BML schemes 

simulated correlation values of 0.6 and 0.4 respectively over NEA and SEA sub-domains. The 

simulations over LVB and CEA domains were poor. Smaller RMSD of about 2.3 mm/day was 

simulated by the KF and BML schemes over NEA and SEA sub-domains. The KF, KFT and 

GRELL schemes in most cases had RMSD ranging between 1.5 to 6mm/day with standard 

deviation of 1.5. From the above analyses, the KF and KFT were most skillful; the GRELL was 

most skillful during drier years.
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Figure 39: Taylor diagram displaying statistical comparison of seasonal mean rainfall for BML (brown), GRELL (black), KF(red) and 

KFT(blue) with observations over (a) NEA (b) SEA (c) CEA (d) LVB sub-domains during the MAM season and (e) NEA (f) SEA (g) CEA 

and (h) LVB sub-domains during the OND season. The blue and green curves represent standard deviation (SD) and root mean square 

differences (RMSD) respectively for the composite of wet years 
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Figure 40: Taylor diagram displaying statistical comparison of seasonal mean rainfall for BML (brown), GRELL (black), KF(red) 

and KFT(blue) with observations over (a) NEA (b) SEA (c) CEA (d) LVB sub-domains during the MAM season and (e) NEA (f) 

SEA (g) CEA and (h) LVB sub-domains during the OND season. The blue and green curves represent standard deviation (SD) and 

root mean square differences (RMSD) respectively for the composite of dry years 
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The KF and GRELL schemes are known to have a dipole effect, where KF is associated with 

wetness and GRELL is associated with dryness, the BML having compensating effect between the 

KF and GRELL (Pohl et al., 2011). The GRELL and KF schemes are suitable for use over the EA 

region due to moisture convergence emanating from the Indian Ocean and the Congo basin at 

lower levels. To this extent, the simulation using the KF scheme were satisfactory for studying the 

rainfall characteristics over the region; with additive effects found when trigger function is used. 

The suitability of the GRELL scheme was clearly manifested during dry years.  Again the study 

found the KF scheme to outscore all the rest of the CPS. 

From the above analyses, the CPSs can be classified into two main categories. The first category 

as those favoring wetter rainfall conditions, more NRD, light intensity and less frequency. The 

second category is those favoring drier rainfall conditions, less NRD, heavy rainfall intensity. The 

KF and GRELL CPSs fall into the first and second category respectively. The BML simulations 

are between KF and GRELL CPSs. 

The observed rainfall biases, NRD and the associated IRD in the CPSs result into a weaker 

reproducibility nature of seasonal rainfall characteristics around the mountainous areas and the 

vicinity of the ITCZ (Vanvyve et al., 2008). The CPSs reproduced the east-west rainfall gradient 

driven by the large-scale systems like the ITCZ during both the MAM and OND seasons. The 

trigger function in the KFT scheme certainly brings in additive effects by lowering the biases in 

the KF scheme. The drier years were better simulated than wetter years. This is partly due to the 

sensitivity of the CPSs to the strong thermal forcing during drier years.  

Rainfall characteristics including the spatio-temporal variability patterns of daily rainfall have 

been found to be better reproduced during drier years than wetter years (Crétat et al., 2011; Crétat 

and Pohl 2012, 2015). These findings therefore agree with the previous researchers. The WRF 

model tends to simulate wetter (drier) conditions mostly related to more(less) rainfall frequent over 

the equatorial region. More rainfall of light category (1-10mm/day) frequented the region and was 

consistently overestimated in the CPSs. On the other hand, heavy rainfall exceeding 20mm/day 

frequented the region less and was well reproduced by the CPSs. It could be deduced that the 

rainfall intensity contributes less to the mean rainfall. Studies by Tennant and Hewitson (2002) 

over South Africa reported that a season with a high total rainfall generally has a higher number 

of heavy rain days and not necessarily an increase in light rain days. 
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The wettest biases and rainfall overestimation in the KF and the driest biases and underestimation 

of rainfall in the GRELL and BML schemes have been previously reported by (Ratna et al., 2013; 

Pohl et al., 2014). The biases were found to stem from atmospheric conditions that were too 

unstable and large moisture convergence advected from the tropics (Ratna et al., 2013). Based on 

the analyses of mean rainfall patterns, the error analyses, and the analyses of rainfall 

characteristics, it was concluded with certainty that the KF scheme is suitable for reproducing 

rainfall characteristics over the equatorial region. The GRELL scheme is mostly suitable for 

studying rainfall characteristics during dry years. 

5.4 Establishment of the circulation features associated with the various convective 

schemes  

The second objective aimed at establishing the skill of the four CPSs in reproducing the circulation 

features and atmospheric dynamics. The quantities analyzed were; vertically inter-grated moisture 

flux (VIMF), upper level divergence/convergence, omega analyses and convective available 

potential energy (CAPE).   

5.4.1 The Vertically Integrated Moisture Flux  

The results for VIMF patterns observed during the wet and dry years were presented here for both 

the MAM and OND seasons. Figures 41 and 42 show the integrated moisture flux during the MAM 

and OND seasons for the wet and dry years, respectively.  

During the MAM season, there was enhanced moisture transport into East Africa region from the 

southeast Indian Ocean in GRELL CPS as illustrated Figure 41a. For the BML, KF and KFT 

schemes, strong moisture transport was observed over the northeastern Indian Ocean and Arabian 

high regions as was illustrated in Figures 41c, 41e and 41g. Regions of moisture convergence were 

seen over parts of the Congo region, southern parts of the region and around the northern parts of 

Ethiopia in all the CPSs. Over the Indian Ocean, there was no convergence of moisture 

(divergence), a weak cyclonic circulation characterized the central parts of the Indian Ocean. In 

the KF and KFT CPSs, enhanced moisture convergence could be seen around the Congo region 

and the western parts of Ethiopia (Figure 41c and d). During the OND season (Figure 42), strong 

moisture transport was observed around Equatorial region from the Indian Ocean in all the CPSs 

(Figure 42a, b, c and d).  
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Although the CPS moisture flux and convergence were somehow similar, they showed quantitative 

differences in both the moisture flux, and convergence/divergence biases. 

The regions that had positive biases in VIMF convergence and divergence coincided with regions 

of positive and negative rainfall biases (Figures 14,15,16 and 17) as was simulated by the KF 

scheme. The moisture flux bias showed enhanced VIMF being transported to the southern parts of 

the Indian Ocean and northern parts into western parts of the equatorial region. This has the 

potential to generate wetter rainfall conditions over the same areas. 
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Figure 41: Spatial patterns of vertically Integrated moisture convergence and divergence 

(from 850 to 300 hPa) and the associated differences (x 103 ) (shaded) and moisture fluxes 

(arrows) from (a) GRELL (b) BML (c) KF and (d) KFT convective schemes for the composite 

of wet years(1989,1998 and 2012) during the MAM season. The differences were calculated 

with respect to ERA interim reanalysis. The orange and blue shading denotes positive and 

negative values representing areas of moisture divergence and convergence respectively. 
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Figure 42: Spatial patterns of vertically Integrated moisture convergence and divergence 

(from 850 to 300 hPa) and the associated differences (x 103 ) (shaded) and moisture fluxes 

(arrows) from (a) GRELL (b) BML (c) KF and (d) KFT convective schemes for the composite 

of wet years(1997, 2006 and 2015) during the OND season. The differences were calculated 

with respect to ERA interim reanalysis. The orange and blue shading denotes positive and 

negative values representing areas of moisture divergence and convergence respectively.  
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The GRELL CPS moisture flux bias was found to have an outflow of moisture over the western 

parts of the region, resulting in a negative moisture flux convergence that generates less rainfall 

over the regions. The moisture transport during the OND season (Figure 41 and 42), was more 

enhanced around the Congo basin in nearly all the CPS. A weak cyclonic flow develops in GRELL 

scheme (Figure 40a) over Indian Ocean. A moderate easterly flow over the Indian Ocean were 

observed in the KFT scheme, while enhanced easterly moisture transport were common in the KF 

CPS (Figure 41 and 42c, d). For rainfall to be sustained, moisture transport has to be steady. The 

convergence was enhanced over the land than the ocean.   

For the case of dry years, there was a weak moisture convergence over the entire region as was 

depicted in Figure 43 for both MAM and OND season. The KF and KFT schemes, however, 

experienced more enhanced moisture convergence around the Congo basin during OND season 

(Figure 44c and d). The GRELL and BML moisture transport were weaker. The seasons were 

riddled with weak moisture flows and convergence in GRELL and BML CPSs. To this extent, it 

could be deduced that part of the reason why KF and GRELL CPSs generated too many or fewer 

NRD was related to the enhanced moisture transport. The differences in the moisture 

convergence/divergence corresponded well with those from rainfall. 

Over the Congo region, the moisture transport was away from the Equatorial region, cutting the 

supply of moisture into the region. As had earlier been reported by Segele et al. (2009) and 

Philipon and Camberlin (2002), near the tip of the Horn of Africa, north easterlies are enhanced in 

conjunction with anomalous high-pressure cells that develops over the Arabian Sea region. These 

northeasterly winds advect moist air toward the Ethiopian highlands and this by extension impact 

the East Africa rainfall regimes. From the analysis of moisture and circulation, it was evident that 

the rainfall biases employ a strong relationship with the moisture flux and the convergence and 

divergence. The inability of the WRF model using the CPSs to correctly simulate the large-scale 

flow patterns and or changes in the sea surface temperatures over the key moisture sources could 

have contributed to the simulated moisture flux biases. Such inadequacy in the RCMs had been 

earlier reported by Yang et al. (2015). Secondly, the domain not covering much of Indian Ocean 

to the west and Congo region could have contributed to the observed moisture flux biases.   
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Figure 43: Spatial patterns of vertically Integrated moisture convergence and divergence 

(from 850 to 300 hPa) and the associated differences (x 103 ) (shaded) and moisture fluxes 

(arrows) from (a) GRELL (b) BML (c) KF and (d) KFT cumulus schemes for the composite 

of dry years(1984, 2000 and 2008) during the MAM season. The differences were calculated 
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with respect to ERA interim reanalysis. The orange and blue shading denotes positive and 

negative values representing areas of moisture divergence and convergence respectively.  

 
Figure 44: Spatial patterns of vertically Integrated moisture convergence and divergence 

(from 850 to 300 hPa) and the associated differences (x 103 ) (shaded) and moisture fluxes 

(arrows) from (a) GRELL (b) BML (c) KF and (d) KFT cumulus schemes for the composite 

of dry years(1988, 2007 and 2010) during the OND season. The differences were calculated 

with respect to ERA interim reanalysis. The orange and blue shading denotes positive and 

negative values representing areas of moisture divergence and convergence respectively.  
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It may be assumed that the deficiency in rainfall over EA can be as a result of lack/weak moisture 

transport agent, obstruction by the mountains within the region and also wrong alignment of 

circulation patterns. The study by Okoola (1999) reported that, the reduced frequency of lower 

tropospheric westerly winds is due to the barrier effect of the north–south mountain chains which 

allow only the most intense westerly winds to cross the mountains into the EA region.  

The easterly moisture transport evidently contributes to the rainfall cycles of the EA region 

characterized by cyclonic activities over the highlands in the northern parts of Madagascar. This 

was corroborated by the steady easterly flow and development of cyclonic activity over northern 

Madagascar and along the EA coasts during the OND and MAM seasons. These were best 

replicated in the KF and GRELL schemes. Similar findings had been reported by Chen et al. 

(2010). The easterly moisture flux during wet years over the tropical Indian Ocean has been found 

to contribute to moisture advection towards EA and to favor moist convective processes (Cretat 

et al., 2011). Although noisy, the moisture convergence biases were larger over landmass as well 

as over parts of the nearby Indian Ocean, corroborating the observed larger rainfall biases noted 

over many parts of East Africa. From the analyses of VIMF, it may be concluded that GRELL and 

KFT schemes reproduced moisture fluxes and circulations best during both wet and dry years.  

5.4.2 Deep Convection associated with rainfall biases 

The analyses were extended on the deep convection over the region during the widespread wet and 

dry years. As proxies to deep convection, we analyzed the horizontal mass fluxes (wind) at 200hPa, 

together with their divergence (interpreted as large-scale conditions favoring deep ascents), and 

omega at 500hPa (the mass center of the air column, in the free atmosphere above the PBL), Cook 

(1999). The horizontal wind fields and the divergence at the 200hpa pressure level were utilized. 

Figures 45 and 46 show the horizontal mass flux and divergence during the MAM and OND 

seasons for the composite of wet years. 
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Figure 45: Horizontal mass fluxes (vectors) and upper level divergence (shaded, ×104 s-1) at 

the 200hpa for the composite of wet years (1989, 1998 and 2012) during the MAM season. 

The orange and blue shadings denote positive and negative values representing areas of 

moisture divergence and convergence, respectively. 
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Figure 46: Horizontal mass fluxes (vectors) and upper level divergence (shaded, ×104 s-1) at 

the 200hpa for the composite of wet years (1997, 2006 and 2015) during the OND season. The 

orange and blue shadings denote positive and negative values representing areas of moisture 

divergence and convergence, respectively.  
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During the wet years for the MAM season (Figure 45), the divergence was weaker in all the CPSs 

over the western parts of the region and the eastern parts of the Indian Ocean comparatively. The 

moisture convergence (negative divergence) was stronger over the northern parts of the region 

around the Arabian high. This suggests that the areas that experienced divergence at upper levels 

(200hPa), experienced low level (850hPa) convergence and vice-versa; this is referred to as dines 

compensation law (Wiin-Nielsen 1973). The GRELL and BML CPSs underestimated the 

divergence and convergence observed in the ERA-interim (Figures 45b and c) but reproduced 

fairly the circulation pattern. Although, the KF and KFT CPSs overestimated the magnitude of 

divergence/convergence, they fairly reproduced the regions of divergence/convergence as was 

illustrated in Figure 45d and 45e.  

During the OND season, the divergence was more enhanced in ERA-interim reanalysis but weakly 

reproduced in all the CPSs except KF scheme, as was shown in Figures 46a, b, c and d. The CPSs 

reproduced the divergence/convergence patterns correctly, however, the wind flow and direction 

were poorly represented. 
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Figure 47: Horizontal mass fluxes (vectors) and upper level divergence (shaded, ×104 s-1) at 

the 200hpa for the composite of dry years (1984, 2000 and 2008) during the MAM season. 

The orange and blue shadings denote positive and negative values representing areas of 

moisture divergence and convergence, respectively. 
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For the dry years during the MAM season (Figure 47), strong divergences over the western parts 

of the region and weak divergence over the Indian Ocean were observed in the ERA-Interim re-

analysis and the CPSs (Figure 47a, b, c, d and e). However, the CPSs had a bias towards generating 

the divergences over the Indian Ocean. 

The GRELL portrayed a weak easterly flow into the equatorial region (Figure 47b). The BML and 

KF schemes reasonably simulated the easterly wind patterns; the KFT scheme overestimated the 

wind speed but located the correct regions under divergence (Figures 47b, c, d, and e). The 

divergent of easterly flow along the equator was poorly developed.  
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Figure 48: Horizontal mass fluxes (vectors) and upper level divergence (shaded, ×104 s-1) at 

the 200hpa for the composite of dry years (1988, 2007 and 2010) during the OND season. The 

orange and blue shadings denote positive and negative values representing areas of moisture 

divergence and convergence, respectively 
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The results for the OND dry years (Figure 48) revealed similar divergent and convergent patterns. 

Generally, the wet years were found to be associated with intensification of the upper level 

divergence and strong easterlies flow into the equatorial region, while dry years were associated 

with weakening of the upper level divergence especially over the Indian Ocean and the Congo 

region. 

The stronger westerly winds during the wet years were seen to promote the ascent of warm air by 

enhancing the circulation along the equatorial African coasts and surface convergence. The 

intensification of the westerly flow displaces the ITCZ northward and intensifies the convergence 

associated with it. The ascending motion associated with the ITCZ sinks into the tropical rain belt 

contributing to its intensification. The areas under divergence/convergence biases corresponded 

well with areas of low and high rainfall amount (Figures 14 and 15). From the analyses of 

horizontal mass fluxes and the associated divergence, it was evident that all the CPSs fairly 

reproduced the observed divergences/convergences and the associated circulation regimes. 

5.4.3 Vertical Velocity in Pressure Coordinates 

It was imperative to investigate how rainfall biases under various rainfall characteristics (Section 

5.4.3) are associated with biases in vertical velocity (omega). The Figures 49 and 50 show omega 

differences between ERA-Interim and the CPSs during the MAM and OND seasons respectively 

for the composite of wet years. During the MAM season (Figure 49a and b), there was more 

sinking of air in the schemes compared to the re-analysis around the central and eastern parts of 

Kenya and Southern parts of Tanzania. Over the western parts of equatorial region and Congo 

region, there was stronger ascent in the schemes than in the reanalysis. The ascent over the Indian 

Ocean and Congo region was even enhanced during the OND season for the wet years (Figures 

50).  
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Figure 49: The omega (x102 Pa s-1) differences between the cumulus schemes and ERA-I 

during MAM season (1989, 1998 and 2012) for composite of wet years. The negative 

(positive) values of ω are associated with upward (downward) motion. The orange shading 

indicates reduced uplift in the model compared with the reanalysis and blue enhanced uplift.  
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Figure 50: The omega (x102 Pa s-1) differences between the cumulus schemes and ERA-I 

during the OND season (1997, 2006 and 2015) for composite of wet years. The negative 

(positive) values of ω are associated with upward (downward) motion. The orange shading 

indicates reduced uplift in the model compared with the reanalysis and blue indicates 

enhanced uplift.  
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For the dry years (Figures 51 and 52), there was more enhanced ascent over the western and Indian 

ocean in the CPSs than in the ERA-interim reanalysis. 

 

Figure 51: The omega (x102 Pa s-1) differences between the cumulus schemes and ERA-I 

during the MAM season for the composite of dry years (1984, 2000 and 2008). The negative 

(positive) values of ω are associated with upward (downward) motion. The orange shading 

indicates reduced uplift in the model compared with the reanalysis and blue enhanced uplift.  
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Figure 52: The omega (x102 Pa s-1) differences between the cumulus schemes and ERA-I 

during the OND season for composite of dry years (1988, 2007 and 2010). The negative 

(positive) values of ω are associated with upward (downward) motion. The orange shading 

indicates reduced uplift in the model compared with the reanalysis and blue enhanced uplift. 

 

The omega and rainfall biases did not match exactly but meaningful deductions could be drawn 

from the analyses. For example, in the previous section (Section 5.4.3), wet (dry) rainfall biases 

of rainfall were confined to the western (eastern) parts of equatorial region, over these locations 
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there were sinking (rising) of air. A salient feature of strong rising air was found over the Kenya 

highlands. The rising of air was pronounced over the western equatorial parts of the region and the 

Indian Ocean. For dry years, there were more sinking of air than rising over Indian Ocean, Congo 

and equatorial parts of the region. The southern parts of Tanzania were dominated by rising 

motion. This is true since the dry years were observed to be deficient of moisture and transport 

mechanism (Section 5.5.1).  

The convective processes that results into rainfall activity are activated when there is uplift to 

create a region of low pressure. The CPSs largely were able to simulate the migration of tropical 

convection due to the ITCZ. The maximum uplift occurred over much of the eastern parts of 

equatorial region, and in the southern parts of equator. The chief moisture sources over the equator 

(Congo region and Indian Ocean) were riddled by the maximum ascent. 

This suggests that WRF model generate overly strong convection overland and tropical oceans, a 

deviation from the recent work by Johnson et al. (2017) who reported that regional climate models 

generate strong convection over Indian Ocean than land although their studies used different 

RCMs from the one under the current study. The dry years were dominated by descent while the 

wet years were characterized by ascent. This could be associated with the complex topography 

over the region (Mutemi et al., 2007; Ogwang et al., 2015a).  

It can be reported that the simulated rainfall biases were associated with low level divergence 

(sinking) and upper level convergence (rising of air), a finding that largely agreed with previous 

work by Ogwang et al. (2015b). The recent study by James et al. (2017) reported that over tropical 

Africa, the areas with too much or too little precipitation are related to the vertical rising/sinking 

of air. It may be concluded from the results of vertical velocity (omega) that KF and GRELL CPSs 

were more robust in representing the vertical circulations features and the associated divergence 

and convergences. 

5.4.4 Atmospheric Convective Instability  

To establish atmospheric convective stability, CAPE was used as a proxy to convection. The 

figures 53 and 54 show the analyses of CAPE for the composite of wet and dry years respectively. 

The estimated CAPE values from ERA-interim were above 100J/kg over the western parts of the 

region and below 40J/kg over the eastern parts of Kenya, central and southern parts of the region 
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during wet years. The MAM season had sustained large CAPE values above (100 J kg-1) confined 

within the equatorial belt (5°S-5°N) throughout the season. During the OND season (Figure 53, 

bottom); convection was more intense and confined within the equatorial region in KF and KFT 

schemes and slightly weaker in GRELL and BML CPSs (Figure 53). |For the dry years, CAPE 

values were below 70 J kg-1 both for MAM and OND seasons as was displayed in Figure 54. The 

GRELL and KF scheme generated the highest level of instability (large and low CAPE values). 

This seemed to produce highly convective unstable atmosphere. This could have triggered the 

simulation of the wettest and driest rainfall biases over the EA region (Section 5.4.3).  

 

Figure 53: The estimated Available Potential Energy (CAPE) (J/kg), values from cumulus 

schemes and ERA interim during MAM (top) and OND (bottom) panels for composite of wet 

years. 
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Figure 54: The estimated Available Potential Energy (CAPE) (J/kg), values from cumulus 

schemes and ERA interim during MAM (top) and OND (bottom) panels for composite of dry 

years. 

 

The analyses of the CAPE have shown that due to strong instability, the model reproduces too 

many rainy days and wetter conditions. Although the differences between individual CPSs in terms 

of CAPE were not distinct, the KF and GRELL produced large and small values of CAPE resulting 

to wetter and drier conditions they simulated respectively. Based on the analyses of CAPE, the 

Kain-Fritsch scheme provided better characteristics of atmospheric convective stability.  

The mean rainfall have a direct link to the atmospheric circulations and dynamics. The KF and 

GRELL CPSs were consistent in their atmospheric simulations and provided clear response to the 

rainfall conditions. The Betts Miller simulations were not quite consistent and were seen as 

convection inhibitor (Pohl et al., 2011). The strong VIMF to the western sides of the domain 

corresponded well to the areas under high rainfall, high NRD and low Intensity. The upper level 

divergence which in turn induces low level convergence was consistent with the moisture fluxes 

over western equatorial and eastern parts of the region. The eastern parts of the region experienced 

less VIMF due to low level convergence. 

From all the analyses done under this section, Kain-Fritsch cumulus scheme provided consistent 

and better simulations across the time periods. The GRELL scheme stood out to be better during 
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drier years only. The moisture fluxes, convergence and divergences therefore provide better 

convective signatures for rainfall over the region.  

In the third and last objective, the study assessed three tunable parameters in Kain-Fritsch scheme. 

This was done to demonstrate the extent to which the scheme can be tuned for value addition in 

the forecasts and simulations. The tunable parameters of KF scheme were extensively described 

in section 2.3.1. 

5.5 The Determination of the Specific Adjustable parameters within the cumulus schemes 

that can be customized to improve simulations of Extreme Rainfall characteristics  

As described in the previous section, this section assessed the value addition derived in using Kain-

Fritsch scheme for rainfall simulations and forecasting when its parameters are tuned. Here, the 

study assessed the impact of using old Kain-Fritsch (KF-old) and new Kain-Fritsch (KF-new) for 

the wet and normal years of 1997 and 1998 during MAM and OND seasons.  

5.5.1 Mean Rainfall Pattern and associated Biases   

Figures 55 and 56 show spatial mean rainfall for the KF-old and KF-new cumulus schemes. Also 

presented in Figure 57 is the rainfall biases for the years 1997 and 1998 respectively during the 

MAM and OND seasons. 
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Figure 55: The daily mean rainfall (mm/day) for CHIRPS, KF-old, and KF-new during the 

MAM (top) and OND (bottom) seasons for the year 1997. 

 

There were small differences between the KF-new and KF-old simulations, although KF-new 

simulations were conspicuously robust over the western equatorial sector as shown in Figures 55 

and 56. The KF-new simulations were, however, the best in the simulating the observed rainfall 

distribution. This was evident from the simulations during the OND season of 1998 as depicted in 

Figures 56d and e. 
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Figure 56: The daily mean rainfall (mm/day) for CHIRPS, KF-old, and KF-new during the 

MAM (top) and OND (bottom) seasons for the year 1998. 

It was evident that rainfall biases were greatly reduced in the KF-new scheme compared to KF-

old scheme, as shown in Figure 57. These biases were least in KF-new during OND rainfall seasons 

(Figure 57h), over the western equatorial parts of the region.  
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Figure 57: The rainfall biases (mm/day) for 1997 (top) and 1998 (bottom) during the MAM 

and OND seasons. The blue (orange) shadings denote areas where rainfall is overestimated 

(underestimated). 
 

5.5.2 Seasonal Rainfall migration  

The time-latitude (hovmöller) was analyzed to establish how the KF-new scheme reproduces 

rainfall migration due to the ITCZ over the region within the longitude 28°E to 42°E for the years 

1997 and 1998. Figure 58 present a time-latitude of rainfall evolution with the longitude 28°E to 

42°E. 

https://en.wikipedia.org/wiki/Hovm%C3%B6ller_diagram
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Figure 58: The rainfall (mm/day) time-latitude evolution averaged over longitude 29°E and 

36°E for CHIRPS, KF-old and KF-new cumulus schemes. The top panel is for 1997 and the 

bottom panel is for 1998.  

 

The rainfall reproducibility was high between the two cumulus schemes. High rainfall amount 

above 10 mm day-1 was confined to the southern parts of the equator during the start of the year 

and migrated to the north from March to May. The peak of the rainfall was attained during the 

month of April. The rain shifted further north from the month of July up to September with a small 

break during June (Figure 58a). This was correctly reproduced in KF-old and KF-new schemes 

(Figures 58b, c). The maximum rainfall band corresponded to the EEA short rainy seasons in the 

month of November.  

It could be seen that the EA region experiences three distinct maximum rainfall bands in April, 

July-August and November. These maximum rainfall timings corresponded well with the peak 

rainfall seasons of MAM, June-July August (JJA) and OND seasons as was depicted in Figures 

58d, e and f). Based on the analyses of mean rainfall, rainfall biases and evolution, the KF-new 

scheme was the best although smaller differences in the rainfall simulations between the two 

schemes existed. 

5.5.3 Temporal Rainfall Evolution and distribution from KF-old and KF-new schemes 

The Figures 59 and 60 show the results from the annual cycle for mean monthly rainfall over NEA, 

SEA and LVB regions for 1997 and 1998, respectively. The reproducibility of the distinct rainfall 

seasons over the four sub-domains in KF-new scheme was adequate as shown in Figure 59 for the 
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year 1997. The main rainfall season reproduced adequately was the MAM season, the OND season 

was only reproduced under NEA region. For the 1998 (Figure 60), the KF-old simulation of rainfall 

seasonality was not well defined, but the KF-new scheme succeeded in simulating the observed 

rainfall pattern. The KF-old scheme missed both the rainfall direction and its magnitude.  

In terms of temporal rainfall distribution, the box and whisker plots were used to evaluate the 

variability and the spread in the model schemes over the NEA, SEA, CEA and LVB sub-domains. 

The figures 61 and 62 show rainfall distributions during the years 1997 and 1998, respectively. 

Over the NEA and SEA regions, the rainfall distribution in the KF-new CPS was closer to the 

observation than over other sub-domains for both 1997 and 1998 (Figures 61 and 62). In most 

cases, the median value of the KF-new was closest to the rainfall observations. The median values 

in the KF-old scheme were closer to the observations in certain instances, but generally the values 

deviated from the observed values. The analyses here for rainfall annual cycles and rainfall 

distribution clearly showed that, the new Kain-Fritsch scheme outperformed the KF-old scheme. 

The KF-new scheme successfully reproduced peak rainfall months in April and July/August 

reasonably well. This notwithstanding the overly wet conditions generated during the retreat phase 

in August–September compared to observations. The extended wet rainfall conditions during the 

retreat phase of JJA season is believed to stem from persistent rainy days over the LVB region 

associated with the lake evaporation (Anyah and Semazzi 2007; Sylla et al., 2013). 

These results showed that the KF-new scheme during the year 1998 was very skillful in 

reproducing the large-scale systems associated with the ITCZ and the SST. These systems are 

known to be dominant during the OND and MAM seasons over the EA region (Ogallo et al., 1989; 

Segele et al., 2009; Gitau et al., 2013). The rainfall annual cycle over LVB revealed strong 

convective activity during the main rainfall seasons (MAM and OND). It can be concluded from 

these analyses that KF-new scheme was more skillful in reproducing the distribution and annual 

rainfall cycles associated with large-scale systems like the ITCZ. One important outcome here was 

the variability in the annual cycles across the four sub-domains.  
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Figure 59: The rainfall annual cycles from the KF-new, KF-old and CHIRPS over NEA, 

SEA, CEA and LVB sub-domains of East Africa for the year 1997. The black, red and green 

colors represent CHIRPS, KF-old and KF-new schemes respectively. 

 

Figure 60: The rainfall annual cycles from the KF-new, KF-old and CHIRPS over NEA, 

SEA, CEA and LVB sub-domains of East Africa for the year 1998. The black, red and green 

colors represent CHIRPS, KF-old and KF-new schemes respectively.
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Figure 61: The boxes and whiskers for daily rainfall distribution from CHIRPS, KF-old and KF-new during (a) MAM and (b) 

OND seasons over NEA, SEA, CEA and LVB sub-domains for the year 1997.The boxes have lines at the lower, median, and upper 

quartile values. 
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Figure 62: The boxes and whiskers for daily rainfall distribution from CHIRPS, KF-old and KF-new during (a) MAM and (b) OND 

seasons over NEA, SEA, CEA and LVB sub-domains for the year 1998.The boxes have lines at the lower, median, and upper quartile 

values. 
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The quantitative analyses for KF-new and KF-old schemes were done based on the correlation, 

standard deviation (SD) and root mean square differences (RMSD) and results summarized in a 

Taylor diagram. Figures 63 and 64 show Taylor diagrams for MAM and OND seasons during the 

year 1997. In most cases, the KF-new scheme simulated correlation mean value of 0.5 while KF-

old correlation values were below 0.4. The corresponding RMSD differences in most cases were 

between 1.2 to 3.0 mm/day (Figures 63 and 64). 
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Figure 63: Taylor diagram displaying statistical comparison of seasonal mean rainfall for the KF-new (brown) and KF-

old (black) schemes over (a) NEA (b) SEA (c) LVB (d) CEA sub-domains for the year 1997 MAM season. The blue and 

green curves represent standard deviation (SD) and root mean square differences (RMSD) respectively 
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Figure 64: Taylor diagram displaying statistical comparison of seasonal mean rainfall for the KF-new (brown) and KF-old (black) 

schemes over (a) NEA (b) SEA (c) LVB (d) CEA sub-domains for the year 1997 OND season. The blue and green curves represent 

standard deviation (SD) and root mean square differences (RMSD) respectively 
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5.5.4 Intra-Seasonal Rainfall Characteristics 

In this section, the performance of the KF-new scheme in simulating the number of rainy days 

(NRD), intensity of rainy days (IRD) and the frequency of rainy days (FRI) were further analyzed.  

5.5.4.1 Number of Rainy Days  

From Figure 65 for 1997 during the MAM season, the KF-old scheme simulated more NRD to the 

northern parts and fewer NRD to the southern parts of the region as shown in Figure 65a. Similarly, 

in the KF-new scheme (Figure 65b), more NRD over almost the entire region (positive biases) 

were simulated. The OND season was characterized by fewer NRD over the southern and 

equatorial parts of the region in both the CPSs (Figure 65d); this implied good agreement between 

the model and the observation over this region and season. The simulations during 1998 were 

relatively better for the OND than MAM season. The KF-new scheme simulated least biases 

especially for the OND season. For example, the KF-new scheme simulated biases of the range 0-

4 mm/day over the western parts of the equatorial region (Figure 65d and h). 

 

Figure 65: The differences between simulated and the observed NRD (days) for KF-old and 

KF-new cumulus schemes. The top panel is for the year 1997 for MAM and OND seasons. 

The bottom panel is for the year 1998 for the MAM and OND seasons. The dark blue 

(orange) shadings denote positive (negative) differences.  
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It is evident from these analyses that, the number of rainy days directly impact on the seasonal 

rainfall amount as had previously been reported. The inspection of KF-new and KF-old CPSs 

revealed that KF-new was better and more skillful in reproducing these rainfall characteristics.  

5.5.4.2 Intensity of Rainy Days  

Figures 66 and 67 show the biases in the intensities of the NRD for the light (1–10 mm/day), 

moderate (11-20 mm/day) and heavy rainfall intensities (>20 mm/day) for 1997 and 1998. The 

NRD under the light rainfall category was slightly overestimated by about 15days over the western 

equatorial region, central parts of Kenya and northern parts of Tanzania in KF-old during the MAM 

season (Figure 66a). The overestimation of light rainfall intensity was also evident over the 

southern and central parts of Tanzania in KF-new as shown in Figure 66b. During the OND season, 

the KF-old and KF-new schemes were in close agreement with the observations over the western 

part of the equatorial region (there were fewer days that were either over-(under)estimated).  

Over the eastern parts of the region, slight overestimated of the light rainfall intensity was realized 

(Figure 66c, d). The moderate rainfall intensity was characterized by underestimation of NRD 

mostly over the entire region, with few pockets of more NRD over the northern parts of the region 

(middle panel).  

For heavy rainfall intensity, the CPSs overestimated NRD by about 8 days to the western and 

southwestern parts of the region. The central parts had good agreement with the observations. The 

eastern parts and coastal regions of the domain experienced few NRD. This was pronounced in 

KF-new during OND season as was shown in Figure 66. Comparatively, there was a tendency by 

the CPSs to overestimate rainfall under light rainfall intensities, and simulated fairly the heavy 

rainfall intensity over the western parts of the equatorial region.  

For the 1998 simulations (Figure 67), the observations were similar to the year 1997 except that 

both the KF-old and KF-new schemes overestimated the NRD during the MAM season over the 

entire domain. This was contrasted by the consistent simulation of fewer NRD with good 

agreement between the CPSs and the observation over the western parts of equatorial region and 

the western parts of Tanzania (Figures 67a, b, c and d). The biases in NRD during OND season 

were greatly reduced. The moderate rainfall intensity was characterized by fewer NRD over 

western and southern parts of domain and slightly more NRD to the northwestern parts of region. 
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Comparatively, the OND season had fewer NRD overestimated over the equatorial region. The 

eastern parts, experienced fewer NRD with the western parts of Kenya, central and southwestern 

parts of Tanzania simulated correct NRD (Figure 67k, l). In general, better simulations were 

realized over the southern parts and the coastal parts of the region under heavy rainfall intensity.   

 
Figure 66: The differences between simulated and observed rainfall intensity (days) during 

the year 1997. The top, middle and bottom panels represent the light (1-10mm/day), 

moderate (11-20mm/day) and heavy (>20 mm/day) rainfall intensities respectively for both 

the MAM and OND seasons. The blue (orange) shadings denote positive (negative) 

differences.  
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Figure 67: The differences between simulated and observed rainfall intensity (days) during 

the year 1998. The top, middle and bottom panels represent the light (1-10mm/day), 

moderate (11-20mm/day) and heavy (>20 mm/day) rainfall intensities respectively for both 

the MAM and OND seasons. The blue (orange) shadings denote areas of positive (negative) 

differences. 

 

It was evident that, the rainfall biases from the WRF model is attributable to the many number of 

rainy days simulated by the model. The intensity of rainy days does not necessarily contribute to 

the mean rainfall. Using the KF-new CPS provided better and improved simulations than using 

KF-old scheme. We can conclude that there were slight improvements in the simulation rainfall 

intensity using KF-new scheme compared to the KF-old scheme. 
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5.5.4.3 Relative Frequency of Rainy Days  

In the previous section, the study assessed the reproducibility of the mean rainfall, rainy days and 

their intensities. This section present results from simulated rainfall frequencies; this offered 

understanding how the WRF model reproduce such rainfall characteristics. Figures 68 and 69 show 

the biases in the simulated rainfall frequencies under the various rainfall intensities for the year 

1997 and 1998, respectively, during the MAM and OND seasons.  

It was observed that for 1997 (Figure 68), the light rainfall intensity occurred more frequently 

(overestimated by about 20%) over the eastern, central and southern parts of the region in all the 

schemes (Figures 68a, b, c, d). During the MAM season, the lowest biases in NRD for light rainfall 

intensity were observed over the northern parts of equatorial region. The KF-new biases were 

reduced greatly over the same regions (Figure 68b and d).  

The heavy rainfall occurred less frequently (underestimated by about 15%) over the central parts 

of Kenya and eastern parts of Tanzania (Figures 68i, j, k, l). The equatorial parts and western parts 

of Tanzania reproduced rainfall closest to the observations (Figures 68i, j, k, and l). Similar 

observations were made for the year 1998 (Figure 69) with the exception of KF-old during OND 

season that presented rather fewer NRD over the entire domain (Figure 69c).  

All the cumulus schemes considerably overestimated rainfall frequency during MAM season but 

with differing magnitude of light precipitation over the central parts of Kenya, and southern parts 

of Tanzania. The CPSs tended to reproduce heavy rainfall fairly well and overestimated the light 

rainfall intensity. The simulations for moderate frequency were not so distinct and as such clear 

differences in the cumulus frequency biases could not be noticed. 

From these analyses, the region with wettest or driest rainfall biases was related to more or few 

NRD. The simulations of rainfall by KF-new CPS were better, with reduced biases in rainfall, 

rainfall intensity and frequency. The areas with the maximum NRD are predominantly associated 

with heavy rainfall categories while the areas with minimum NRD are associated with light rainfall 

intensities over the EA region. This observation implied that, rainfall over East Africa are always 

frequent but of light intensity. The seasonal rainfall pattern is least characterized by the heavy 

rainfall intensity, while the light rainfall intensity occurs most often. 
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Figure 68: The differences between simulated and observed rainfall frequency (%) during 

the year 1997. The top, middle and bottom panels represent the light (1-10mm/day), 

moderate (11-20mm/day) and heavy (>20mm/day) rainfall intensities, respectively for the 

MAM and OND seasons. The blue (orange) shading represent positive (negative) differences 

implying areas that receive higher (low) rainfall under each category. 



136 

 

 

Figure 69: The differences between simulated and observed rainfall frequency (%) during 

the year 1998. The top, middle and bottom panels represent the light (1-10mm/day), 

moderate (11-20mm/day) and heavy (>20mm/day) rainfall intensities, respectively for the 

MAM and OND seasons. The blue (orange) shading represent positive (negative) differences 

implying areas that receive higher (low) rainfall under each category. 

 

Although the KF-new and KF-old CPSs performed well in simulating heavy rainfall with reduced 

biases during the OND season and in some cases MAM season, they tended to overestimate the 

light rainfall intensities. The general overestimation and underestimation of the heavy and light 

rainfall, suggest that the climate models experience too many rainy days under light rainfall, but 
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perform rather well in simulating the heavy rainfall events (Sun et al., 2006). Based on the analyses 

of rainfall frequency, the study found KF-new to be most accurate in simulating the rainfall 

characteristics.  

5.5.5 Simulated Atmospheric Dynamics and circulations     

The analyses were extended to establish whether the improvements in the KF-new simulations 

were related to better realignment of the atmospheric quantities. Specifically, the study analyzed 

the VIMF, upper level divergence and convective stability of the atmosphere.  

5.5.5.1 Vertically Integrated Moisture Flux   

The Figures 70 and 71 show the integrated moisture flux during MAM and OND seasons for the 

years 1997 and 1998, respectively. During the MAM and OND seasons for the 1997 (Figure 70), 

there were enhanced moisture convergence over the entire domain in the reanalysis (Figures 70a 

and b) and smaller areas under moisture divergence. The moisture transport was more 

southeasterly and westerly flows during the MAM season (Figure 70a). A reverse situation was 

seen during OND season (Figure 70b) where moisture transport was more of easterlies and north 

easterlies into the equatorial region.  

Studies by Vizy and Cook (2003), reported that these moist southeasterly and easterlies flow from 

the Indian Ocean penetrates over eastern parts of Africa through a narrow break in the topography 

between the Ethiopian and east African Highlands. However, for the long-rains season 

westerly/easterly circulations occur in alternation over the region associated with either wet or dry 

rainfall conditions (Okoola 1999). 

There was strong moisture convergence over western sector of East Africa region, and strong 

moisture divergence over the northern parts of Sudan, eastern and central parts of Ethiopia 

simulated by both the KF-new and KF-old CPSs as shown in Figure 70c and d. These same areas 

were under moisture convergence and divergences in the ERA-interim re-analysis. Over the Indian 

Ocean, the CPSs simulated a weaker convergence of moisture. The simulations for the moisture 

convergence/divergence were better during the OND than for MAM season in the KF-new scheme.  

In general, the regions of strong moisture convergence were seen over parts of the Congo region, 

southern parts of the region and around the northern parts of Ethiopia in all the CPSs. There was a 

weak moisture convergence over the Indian Ocean. The northern parts of Sudan, Arabian high and 
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red sea regions were generally associated with moisture divergence; the moisture convergences 

were also seen along the Great Rift Valley channel in all the simulations. 

For the 1998 simulations (Figure 71), the moisture transport was from northeasterly direction into 

the region through the eastern parts of the Ethiopian highlands (Figure 71a). Weak moisture 

convergence was observed over the Congo region and weak divergence generally dominated the 

equatorial region (Figure 71a). During the OND season (Figure 71b), the East Africa region and 

parts of the Ethiopian highlands were dominated by strong moisture divergence. There were 

however, pockets of moisture convergence to the southern parts of Sudan. The moisture transport 

was more of southeasterly to the south and easterly to the northern parts of the region. The KF-old 

scheme over-estimated the moisture convergence over the Congo region, and fairly reproduced the 

weak divergence over the Indian Ocean during MAM season (Figure 71c). During the OND 

season, KF-old poorly reproduced the areas under moisture convergence. The moisture 

divergences along the channels of the Great Rift Valley were, however, well simulated by the KF-

old scheme (Figure 71d). 

The KF-new scheme reasonably reproduced the moisture sources, fluxes and intensity especially 

during OND season (Figures 71e, f). The regions of positive biases in moisture convergence and 

divergence were found to coincide with regions of positive and negative rainfall biases, number of 

rainy days, intensity of rainy days and their frequency (sections 5.5.1, 5.5.3.1 and 5.5.3.3). The 

reproducibility of the VIMF was better during the OND season than MAM season. As had been 

found earlier, the areas of maximum rainfall biases were associated with either divergence or 

convergence.  

The current study found that, the Arabian region that is least considered as moisture source for the 

region plays a significant role in the modulation of low-level convection through the entrance and 

exit of the jets at 200hPa (Segele et al., 2009, 2015). The biases in the simulated rainfall over the 

western parts of equatorial region could be attributed to either moisture divergence or convergence 

biases between 850 to 300hPa. From the moisture flux analyses based on the VIMF, KF-new 

reproduced moisture convergence/divergence better compared to the KF-old cumulus scheme. 
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Figure 70:The spatial patterns of vertically integrated moisture fluxes (from 850 to 300 hPa) 

moisture convergence and divergence (x 103) (shaded) and moisture fluxes (arrows) from 

ERA-interim reanalysis, KF-old and KF-new cumulus schemes for MAM and OND seasons 

during the year 1997. The orange and blue shading denote positive and negative values 

representing areas of moisture divergence and convergence respectively. 
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Figure 71:The spatial patterns of vertically integrated moisture fluxes (from 850 to 300 hPa) 

moisture convergence and divergence (x 103) (shaded) and moisture fluxes (arrows) from 

ERA-interim reanalysis, KF-old and KF-new cumulus schemes for MAM and OND seasons 

during the year 1998. The orange and blue shading denote positive and negative values 

representing areas of moisture divergence and convergence respectively 
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5.5.5.2 Deep Convection associated with rainfall biases 

The analyses of the deep convection over the region during the 1997 and 1998 years were also 

done. As had been explained previously (Section 5.4.2), the upper level (300 hpa) divergence and 

omega at 500 hPa were used as proxies to the deep ascent. Figures 72 and 73 show the horizontal 

mass flux and divergence during the MAM and OND seasons for the years 1997 and 1998 

respectively. 

 
Figure 72: Horizontal mass fluxes (vectors) and upper level divergence (shaded, ×104 s-1) at 

the 200hPa for MAM and OND season during 1997. The orange and blue shading denotes 

positive and negative values representing areas of moisture convergence and divergence 

respectively.  
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Figure 73: Horizontal mass fluxes (vectors) and upper level divergence (shaded, ×104 s-1) at 

the 200hPa for the MAM and OND seasons during 1998. The orange and blue shading 

denotes positive and negative values representing areas of moisture convergence and 

divergence respectively. 
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During 1997 MAM and OND seasons (Figure 72a and b), the divergence was weaker over the 

entire region. The circulations were more of westerly over the Indian Ocean, strong upper level 

jets to the northern and southern parts of the region during the MAM season. During the OND 

season, the flow was more of easterly with westerly jets around the northern and southern parts of 

the region. All the CPSs correctly simulated the regions of convergence and divergence but greatly 

overestimated their magnitude. The flow in the KF-old and the KF-new CPSs during MAM season 

was reversed (more of easterly) instead of westerly. The simulated divergences during the OND 

season for both the CPSs were closer to the observation. The overestimation of the convergence 

and divergence and generation of strong westerly winds could explain why the CPSs tended to be 

wetter and favored heavy rainfall intensity especially for the KF and KFT cumulus schemes.  

During the year 1998, the circulation in the ERA-interim for the MAM season (Figure 73a), were 

more of strong easterly over the Indian Ocean into the equatorial region. The convergence was 

enhanced over the northern parts of region around Arabian high, and red sea. The divergence was 

stronger over the Congo region (Figure 73a). The same was observed during the OND season, 

strong divergence to the west and strong convergence to the northern parts around the Arabian 

high region (Figure 73b). This suggests that areas under divergence at upper levels (300hPa), 

experienced low level (850hPa) convergence and vice-versa. A weak cyclonic flow around the 

Mozambique Channel and strong southerly winds, weak easterly winds were evident during the 

OND season. 

All the CPSs reproduced the observed circulation patterns during the OND season in the KF-new 

cumulus scheme. Noticeably, the CPSs replaced the convergence observed in ERA-interim during 

the OND season with strong divergence over the Indian Ocean. This has an effect of introducing 

low level convergence over the same area to produce biases in the model as was earlier observed 

with the other CPSs. 

The analyses here further confirmed that rainfall biases in the model could be associated with 

realignment of the circulations and divergence/convergence patterns. Comparatively, the KF-new 

simulations were quite consistent with the observations. The simulations between KF-old and KF-

new were quite distinct in terms of their reproducibility of the surface and atmospheric variables. 

The KF-new was therefore a robust a scheme in reproducing the divergence and convergences for 

both 1997 and 1998. 
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5.5.5.3 Vertical Velocity in Pressure Coordinates 

The vertical velocity (omega) was analyzed to establish if there exist any relationship between the 

vertical motion and the surface variables like precipitation. Figures 74-75 show omega differences 

between ERA-interim and KF-new and KF-old cumulus schemes during the MAM and OND 

seasons for 1997 and 1998, respectively.  

During the year 1997, there were more descent simulated by the CPSs over the northern and along 

the coastal parts of Kenya than in the observation for MAM season, as was illustrated in Figure 

74a and b. The descent in the KF-new scheme was more than in the ERA-interim (Figure 74b). 

Over the chief moisture sources of the Indian Ocean and Congo region, the CPSs experienced 

weaker ascent motion than in the reanalysis. The ascent was more enhanced during the OND 

season than MAM season (Figure 74c and d) in the schemes than in the reanalysis. For the year 

1998, during the MAM season the schemes simulated stronger sinking motion over most of the 

domain, especially over the northern parts of the region, as shown in Figure 75a and 75b. Over the 

Indian Ocean and Congo region, the schemes simulated more ascent motion than in the observation 

during the OND season (Figure 75c and d). 
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Figure 74: The omega (x102 Pa s-1) differences between the cumulus schemes and ERA-I 

during MAM (a,b) and OND (c, d) seasons for the year 1997. The negative (positive) values 

of ω are associated with rising (sinking) motion. The blue shading indicates rising and orange 

shading denotes sinking motion.  
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Figure 75: The omega (x102 Pa s-1) differences between the cumulus schemes and ERA-I 

during MAM (a,b) and OND (c, d) season for the year 1998. The negative (positive) values 

of ω are associated with rising (sinking) motion. The blue shading indicates rising and orange 

shading denotes sinking motion.  
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It is clear from these analyses that the CPSs tended to simulate wetter rainfall conditions as a result 

of stronger ascent compared to the weaker ascent in the reanalysis, notably over the Congo region 

and Indian Ocean. The regions that were too dry were associated with descent notably over the 

northern parts of the domain where large ω500mb bias relative to the ERA-interim reanalysis were 

observed. Similar findings had been reported by James et al. (2017) over the East Africa and West 

Africa regions.  

This denotes that WRF model generate overly strong convection overland and tropical oceans. It 

can be concluded here that model generate rainfall biases due to the influence of 

divergence/convergence motion. This was true for the cases of large omega biases relative to ERA-

interim. At the 500hPa, the divergence at low level results into vertical sinking and suppresses 

convection due to subsidence (Ogwang et al., 2015a). 

Studies by Hastenrath (1999) and Hastenrath et al. (2007) pointed out that the vertical motion, 

together with the fast surface westerly and enhanced subsidence results to the deficient rainfall at 

the coast of East Africa. Similar findings were highlighted by Ongoma et al. (2015). Their studies 

reported that, the low-level convergence during the MAM season must be coupled with slow 

moving south easterlies that partly transport moisture from the Indian Ocean to the equatorial 

region. In the presence of enhanced easterlies, moisture supply is cut short over to the equatorial 

East Africa region. This tends to create a regime of slowly moving equatorial westerly and 

decreased subsidence which results to the abundance rainfall over equatorial East Africa.  

The KFT scheme alleviated the wet rainfall biases in the KF scheme due to the moisture advection 

function introduced. The moist advection causes the delays in the initiation of convection; thus 

increasing the non-convective precipitation. Furthermore, the low temperature perturbation in the 

KFT scheme lowers the rate of solar heating at the surface (Choi et al., 2015). 

The moisture deficiency in the GRELL scheme is related to the cloud formulation structures in the 

scheme. The convective clouds in the scheme act to stabilize the environment as soon as the large-

scale processes destabilize it. Both entrainment and detrainment along the cloud edges are not 

allowed only at the top and bottom of the circulations (Gianotti et al., 2012). This assumption in 

the scheme inhibits the rapid generation of convective precipitation over East Africa characterized 

by very strong convection and fast moving westward projections (Laing et al., 2011). 
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Owing to the low level moisture and highly unstable atmosphere within the equatorial East Africa, 

the KF scheme generates too much rainfall to lower the instability (Kim et al., 2010). The BML 

scheme on the other hand, alternately over/under-estimate rainfall as a result of less latent heat 

released from simulated moisture amount in the scheme. The more frequent rainy days simulated 

under the heavy rainfall and light rainfall category in the KF and GRELL schemes could be 

attributed to phase errors of rainfall amount, and the peak time of the simulated rainfall intensity 

(Choi et al., 2015). The over-estimation of light rainfall intensity is a common problem in most of 

the numerical climate models (Salih et al., 2018). A study by Brisson et al. (2016) suggested that 

using convective permitting model would lower the biases associated with light rainfall intensities. 

This alleviates too much precipitation due to their conventional nature of being designed for deep 

clouds and not shallow clouds (Prein et al., 2015).  

 



149 

 

CHAPTER SIX 

6 Summary, Conclusion and the Recommendation of the study 

This chapter provides a summary of the study, key results and major conclusions drawn from the 

results. It also provides some recommendations for applications of the study findings and 

suggestions for future studies. 

6.1 Summary  

The main objective of the study was to identify the most suitable cumulus parameterization scheme 

(CPS) in the WRF model that provides more accurate results when used for simulating the extreme 

East Africa rainfall characteristics. The four CPSs used for the sensitivity experiments were; Kain-

Fritsch (KF), Kain-Fritsch with a moisture-advection based trigger function (KFT), Grell Dévényi 

(GRELL) and Betts Miller Janjic (BML). The simulated analyzed rainfall characteristics included 

number of rainy days (NRD), intensity of rainy days (IRD) and the frequency of rainfall intensity 

(FRI) and the associated atmospheric dynamics.  

The seasons considered were March-April-May (MAM) and October- November-December 

(OND). The methodologies adopted in the study were the standardized rainfall index (SRI), 

principal component analyses (PCA) and composite analyses to delineate the wet and dry years 

used in the study. The skill of the four CPSs were examined based on root mean square error 

(RMSE), mean bias error, spatial correlation (SC), coefficient of variation (CV), Taylor diagram 

and Box and whisker plots. The atmospheric dynamics calculated included the divergence 

analyses, vertically inter-grated moisture fluxes (VIMF) and vertical velocity. 

The value addition derived from the best scheme in simulating rainfall characteristics was achieved 

through the optimum configurations of its tunable parameters. These configurations were; 

adjustment time scale (ATS), cloud-radiation coupling and entrainment based on lifting 

condensation level (LCL). The Climate Hazards Group Infrared Precipitation with Station data 

(CHIRPS) and ERA-Interim reanalysis were the main dataset used for the model evaluation. 

The study identified the KF and the GRELL schemes as the most suitable CPSs for rainfall 

simulations that can provide better and more accurate forecasts. Higher skill and accuracy in the 

simulations was obtained with KF-new scheme when KF scheme was further tuned using the 

tunable parameters. The GRELL scheme, however, provided better forecast during the drier years 
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only. The BML CPS simulations were not consistent and skillful in most cases. There were 

however notable variations in simulating individual rainfall characteristics by the CPSs.  

The simulations of mean rainfall showed that the BML and KFT schemes simulated correctly the 

rainfall location but missed rainfall amount and timing in most cases. In terms of spatial 

correlation, KFT reproduced highest correlation value of 0.67 followed by GRELL 0.4 during the 

OND season. Relatively low correlation values (r=0.2) were noted during the MAM season. This 

clearly showed weak reproducibility of MAM rainfall systems by the CPSs.  

The BML scheme also provided realistic simulations of the NRD. The simulation of the IRD based 

on the light (1-10mm/day), moderate (11-20mm/day) and heavy (>20 mm/day) rainfall categories 

showed that all the CPSs fairly reproduced these rainfall characteristics. However, the KF CPS 

greatly over-estimated the light rainfall intensity, while the KFT scheme was the best in 

reproducing heavy-moderate rainfall intensities. The analyses for VIMF showed the KF scheme 

most skillful in reproducing the main easterly moisture transport characterized by cyclonic 

activities over northern Madagascar highlands. The overall analyses showed the KF scheme as the 

best, with GRELL having better skill during drier years only. Therefore, the KF scheme was further 

subjected to higher skill and accuracy analyses through tuning its parameters. 

The overall observations showed the superiority of KF-new simulations over KF-old scheme in-

terms of reproducing the rainfall characteristics. Closer inspection of the individual rainfall aspects 

and characteristics revealed some noticeable differences between the old and new KF scheme. The 

correlation coefficients improved from 0.36 to 0.52 for MAM and 0.38 to 0.54 for OND seasons 

during the year 1997 and slightly improved for the year 1998. In terms of the error analyses, the 

RMSE reduced from 3.1mm/day to 1.6mm/day for MAM and 2.2mm/day to 0.9mm/day during 

the OND seasons.  

Similarly, the RMSE values reduced in the year 1998 between the CPSs, from 3.2mm/day to 

2.9mm/day during MAM and 4.1mm/day to 1.4mm/day during OND seasons. The analyses were 

also done for the various rainfall characteristics like in the case of objective one. The KF-new 

scheme outperformed the KF-old scheme in simulating these three rainfall descriptive properties. 

The variations between the CPS were noted in simulations of individual rainfall properties.  
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During the OND season, correct number of NRD was simulated over southern and Equatorial parts 

of the region in both the CPSs. There was a slight improvement in simulation rainfall intensity 

using KF-new scheme over the western parts of equatorial region. In determining how often these 

rainfall events occur, rainfall frequency for each particular event was computed. The KF-new 

simulations were better compared to KF-old scheme in simulating rainfall frequency. Both the 

CPS however, tended to reproduce heavy rainfall fairly well and overestimated the light rainfall 

intensity. The simulations for moderate frequency were not satisfactory. Most of the CPSs are 

designed for deep clouds hence their observed simulation characteristics.  

The regions with wettest or driest rainfall biases were related to more or fewer NRD. The areas 

predominantly associated with heavy rainfall categories were associated with the maximum NRD, 

while the areas with light rainfall were associated with minimum NRD. This suggests that, light 

rainfall (1-10mm/day) occurred more frequently over the region but is poorly reproduced by the 

model. On the other hand, heavy rainfall events (>20mm/day) occurred less frequent and was 

correctly simulated by the WRF model 

6.2 Major Conclusions  

The representation of MAM rainfall using the T-mode is still challenging since the dominant PCA 

modes could only account for 43% of the variance. The first three modes of EOF during the OND 

season accounted for more than 70% of the total variance. This implies that the rainfall variability 

during the OND season can actually be isolated by the PCA analyses. 

The moisture-based advection trigger function when applied to Kain-Fritsch scheme drastically 

minimizes the wet rainfall biases and consequently improve on rainfall simulation skill. The KF 

scheme also provides better skill for simulating heavy rainfall events (>20mm/day). This implies 

that the KF scheme can be applied to provide realistic forecasts for weather systems occurring at 

meso-micro scales. 

The GRELL scheme is better for forecasting drier rainfall conditions. Thus, the scheme can 

provide useful information for drought forecasting and drier rainfall episodes. The similarity in the 

closure assumptions schemes for KF and GRELL is attributed to their adequate performance in 

rainfall simulations. Both schemes are based on the Langragian parcel method and thermal forcing. 

Applying this analogy, the current NWP formulation and dynamical processes needs to be based 
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upon the closure schemes similar to Kain-Fritsch and Grell Devenyi schemes so as to improve on 

the simulations of the East Africa rainfall characteristics and their spatial details.  

The KF and GRELL CPSs skillful rainfall simulations arise from their well-defined atmospheric 

simulations. The enhanced moisture transport from the Indian Ocean to the continental parts of the 

equatorial region is responsible for most of the observed and simulated rainfall characteristics. 

Over the western parts of the equatorial region, the enhanced vertical moisture transport 

corresponds well to the areas under high rainfall and too many rainy days. The eastern parts of the 

region predominantly receive depressed rainfall due to weak vertical moisture transport inland and 

weak low-level convergence.  

The observed biases in the simulated moisture flux by WRF model could be attributed to the model 

inability to correctly simulate the large-scale flow patterns and or changes in the sea surface 

temperatures over the key moisture sources. Secondly, the constrain on the domain extent towards 

the western Indian Ocean and Congo region could have contributed to the observed moisture flux 

biases. 

The study provided a unique way of isolating the deficiencies and limitations of four cumulus 

parameterization schemes used in the WRF model in simulating extreme East Africa rainfall. The 

study carried out robust analyses and evaluation of suite of model simulations to identify the 

modified Kain-Fritsch scheme (KF-new) as the most suitable for application in WRF model in 

order to improve simulations of rainy days, rainfall intensity and other spatio-temporal features of 

East Africa rainfall.  

Additionally, the study has also identified and tested three specific adjustable parameters within 

the cumulus schemes that can be customized to improve and optimize WRF model simulations of 

extreme rainfall. In many previous modeling studies, the treatment of cumulus parameterization 

schemes in NWP have not been subjected to extensive evaluation as provided in the current study. 

Such comprehensive evaluation is critical since most RCMs are developed and tested over mid-

latitude regions and therefore not accustomed to the tropical regions. The tropics have unique 

convective rainfall characteristics and thus require that models are uniquely customized to 

reproduce weather and climate simulations dominated by regional and mesoscale convective 

systems. This has led to identification of the best cumulus scheme that can be used in the WRF 

model to improve the simulations of different rainfall characteristics.  
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The study adopted a more robust user relevant metrics to evaluate the performance/skill of WRF 

model simulations of East Africa rainfall. This makes the findings more useful and relevant in 

improving numerical weather forecasting/tools for East Africa to generate more user-relevant 

climate information. 

The value of the ATS in the KF-new scheme can provide crucial information in determining how 

long it takes for multi-cell clouds (i.e tropical storms) to reach its maturity development stage. This 

can facilitate the tracking and monitoring of such severe weather systems for preparedness and 

reduced impact on the socio-economic sectors of the region. The cumulus parameterization 

schemes play crucial role in numerical modeling and rainfall space-time characteristics. The results 

from the current study are therefore very fundamental for the improvement of NWP tools and 

cumulus modifications processes over the region. 

6.3 Recommendations 

The recommendations were categorized under Researchers/Scientists, Users of climate services 

and policy makers. 

6.3.1 Researchers/Scientists 

The study recommends the use of new modified scheme (KF-new) by the various scientists and 

researchers from National Meteorological and Hydrological Services (NHMs), regional climate 

centers like ICPAC and institutions of higher learning. The current study tested only four cumulus 

parameterizations from WRF model due to computational limitations. In future and as a way of 

filling the research gap, investment on the high-performance computing capability at various 

research centers needs to be prioritized to provide a robust and extensive sensitivity analysis of the 

various physics options available in the regional climate models. This is very fundamental to the 

regional weather and climate downscaling of regional and local systems. This would enhance 

improved modeling, prediction and early warning. Further investigation on the ATS values needs 

to be explored to determine the optimum time for multi-cell development and tracking of storms 

development. 

6.3.2 Users of Climate Information  

The climate users should have confidence in the forecast’s information from the new modified 

Kain-Fritsch scheme for disaster risk reduction. The drought and flood sectors should consider 
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using the new modified Kain-Fritsch and GRELL cumulus schemes for their sectorial impact 

analyses.  

6.3.3 Policy Makers  

Although the current study provided key informative findings, they may not be fully recommended 

for specific policy intervention. The results from the study are useful in the integration for further 

development and customization of NWP to improve simulations of salient characteristics and 

patterns of East Africa rainfall. 

6.3.4 Further Research Work 

The convective rainfall over East Africa in NWP is significantly influenced by other factors 

including radiation transfer, land-atmosphere coupling influenced by land use and land cover. The 

current study flagged out these processes as important research topics for further studies over the 

region. 
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APPENDICES 

Appendix 1 

Table 8: The coefficient of variation (CV, %) for CHIRPS, GRELL, BML, KF and KFT 

cumulus schemes over the NEA, SEA, CEA and LVB sub-domains. The computations was 

done during the MAM and OND seasons for the composite of wet years over EA region  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: The coefficient of variation (CV, %) for CHIRPS, GRELL, BML, KF and KFT 

cumulus schemes over the NEA, SEA, CEA and LVB sub-domains. The computations were 

done during the MAM and OND seasons for the composite of dry years over EA region  

 

 

 

 

 

 

 

 

 

Scheme/Region NEA (MAM) SEA (MAM) CEA(MAM) LVB(MAM) 

CHIRPS 22.9 19.4 21.9 20.4 

GRELL 21.3 12.4 13.2 11.8 

BML 22.4 13.1 25.8 13.8 

KFT 29.2 48.7 20.7 23.6 

KF 36.9 12.0 21.9 14.1 

 NEA (OND) SEA (OND) CEA(OND) LVB(OND) 

CHIRPS 58.6 98.9 17.9 10.0 

GRELL 19.2 19.5 15.6 97.3 

BML 14.6 37.5 22.2 11.6 

KFT 49.9 17.7 13.5 14.8 

KF 69.3 58.8 57.5 18.8 

Scheme/Region NEA (MAM) SEA (MAM) CEA(MAM) LVB(MAM) 

CHIRPS 21.0 13.9 16.7 11.8 

GRELL 19.4 12.7 11.1 20.6 

BML 28.9 16.8 50.1. 13.2 

KFT 25.5 19.9 18.4. 17.0 

KF 13.5 10.9 20.1 10.4 

 NEA (OND) SEA (OND) CEA(OND) LVB(OND) 

CHIRPS 32.8 15.5 27.9 12.6 

GRELL 15.7 12.5 43.0 85.19 

BML 25.1 17.5 28.0 10.4 

KFT 28.7 23.6 31.0 19.5 

KF 13.7 13.8 18.7 10.2 
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Table 10: The coefficient of variation (CV, %) for the CHIRPS, KF-old and KF-new cumulus 

schemes over the NEA, SEA, CEA and LVB sub-domains. The computations was done 

during the MAM and OND seasons for the year 1997over EA region  

 

 

 

 

 

 

 

 

Table 11: The coefficient of variation (CV, %) for the CHIRPS, KF-old and KF-new cumulus 

schemes over the NEA, SEA, CEA and LVB sub-domains. The computations were done 

during the MAM and OND seasons for the year 1998 over EA region  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Scheme/Region NEA (MAM) SEA (MAM) CEA(MAM) LVB(MAM) 

CHIRPS 17.4 20.4 20.9 10.3 

KF-old 16.5 16.1 16.1 12.6 

KF-new 36.1 72.0 43.0 38.1 

 NEA (OND) SEA (OND) CEA(OND) LVB(OND) 

CHIRPS 15.6 98.9 16.9 10.2 

KF-old 16.0 20.9 11.4 13.4 

KF-new 10.2 20.0 18.6 11.5 

Scheme/Region NEA (MAM) SEA (MAM) CEA(MAM) LVB(MAM) 

CHIRPS 22.9 19.4 21.9 12.4 

KF-old 16.5 16.1 16.1 12.6 

KF-new 15.8 14.2 26.1 15.5 

 NEA (OND) SEA (OND) CEA(OND) LVB(OND) 

CHIRPS 38.4 26.8 42.2 16.3 

KF-old 16.0 20.9 23.0 13.4 

KF-new 11.4 17.4 18.5 12.2 


