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Abstract

Longevity risk is a main topic of study abroad and has just started being a point of analysis

in third world countries. Due to the increase in life expectance there has been a strain on

the national pension funds and life assurance holding �rms. A lot of research has been

done on Lee-Carter models of longevity risk and there has been evidence in almost every

research that longevity risk exists in third world countries’ populations. However, little

research has been done on the e�ects of cohorts on longevity risk in the same regions.

A cohort study is a study on a group of individuals with something like one speci�c

shared experience within a certain time period. The most well-known example is a "birth

cohort", that is, the people in the group are born in the same time or amid a similar era.

In a prospective study, we are examining a group of individuals over time by observing

patterns of e�ects or outcomes due to the cohort di�erences within the group. This study

focused on modelling the e�ects of longevity risk and measuring the e�ects of age-period

cohorts. The study used the Renshaw-Haberman to model the e�ects of longevity on

mortality for Kenya (period: 1970-2010).

A time-varying mortality index is forecasted in an ARIMA framework and is used to

generate projected life expectancies at normal retirement age. The study then modelled

the life expectance for the next 50 years from 2010. The e�ects of longevity risk on the

annuities reserves and pension positions.

The study found that the longevity risk exists and that an increase in life expectance results

in an increase in the cost of pay-outs for pensioners in the market. The study also found

that an improvement in age speci�c cohort risk results in a higher life expectation and

lower mortality risk.
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1 INTRODUCTION

1.1 Background Information

Since the 20th century, the human mortality trend has been observed to
be decelerating. Improved mortality rates over the years results in higher
levels of life expectancy. This trend then introduced longevity risk which is
described as the risk that an individual, or group of individuals, will live
longer than anticipated.

The field of mortality and longevity risks and in particular the accurate
forecasting and finan-cial management of such risks has become a topic of
great interest to academics, actuaries and financial professionals, (Edwards
& Munhenga, 2011). Mortality enhancements around the globe are pu�ing
pressure on governments, pension scheme providers, life insurance o�ices
and people to manage the longevity risk they encounter, (Kathyuka, et al,
2014).

The older generation consume a growing share of their resources as they
age in the decades ahead (Marleen, et al, 2014). It is perceived that this will
strain the company’s balance sheets and government’s pension schemes
who have been coming up with arrangements that will result in financial
constraints with aging. It is however noted in (Taruvinga & Gatawa, 2010)
that these arrangements have been underestimating the populations’ life
expectancy hence leading to forecasts that are not accurate.

Unforeseen longevity past the standard estimates will obviously be advan-
tageous for individuals and the society. This however has an adverse e�ect
as it causes a major financial risk for governments and defined benefits pen-
sion providers who will be liable to pay out more in benefits and pensions
than anticipated, (Shaw, 1994). It might likewise be a budgetary hazard for
people who could fall short on retirement assets themselves. These risks
build gradually with time and in the event they are not tended it could
lead to large negative e�ects on already depleted balance sheets which will
a�ect financial stability, (Marleen, et al, 2014).
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1.1.1 Types of Pension Plans

A defined contribution (DC) plan is a retirement plan whereby either the
employer, employee or both contribute an agreed amount on a regular basis
to the pension scheme. In DC plans, the retirement benefits future may
fluctuate on the basis of investment earnings.

Individuals on a DC pension plans will be totally exposed to the risks.
For organizations, DC plans appear as a good solution for reducing the
company’s pension risks taking into account of longevity risks. While there
is some reality to this view, it overlooks potential e�ects from inadequacies
in other solutions (Madsen, C. and Tans, M., 2011).

A defined benefit pension (DB) plan is a pension plan that promises a
predetermined pension se�lement, a lump-sum or a combination of both
upon retirement. This pension plan is sponsored by an employer or a
sponsor. The pension payment is usually determined by an equation which
depends on the worker’s compensation history, employment duration and
age, rather than a defined benefit which depends directly on an individual.

DB Plans have all the risk on the company providing the retirement benefits
and in a situation where policy holders live longer, the fund might not be
su�icient to cater for the extra years lived. This cost has to be met by the
company.

While a large number of the present workers may have been wanting to
retire between the ages of 50 and 60, the pa�ern to provide DC plans instead
of DB plans will likely imply that employees will have to work for longer
and increase their savings. This in itself is an indirect method for increasing
the standard retirement age, leaving employees to choose when they will
retire. The more you work, the more your retirement will be comfortable.
Organizations should be well prepared for this move in workers conduct
and expectations. An example of this is the recent increase of minimum
retirement ages for lecturers in Kenyan public universities from 60 years to
70 years, an increase of 10 years which is very significant.

Retirement ages and financing assumptions for pension schemes and other
retirement remunerations do not yet completely mirror the e�ect of longer
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lived populations. Accordingly, as researchers say, the three pillars of
pensions – state-run pension plans, organization sponsored plans and
private retirement savings – are experiencing unprecedented di�iculties.

In the first pillar, state pensions are based on the framework of ‘pay-as-you-
go’, which makes them very vulnerable. State pensions also referred to as
national pension utilize tax income from younger workers with the end goal
to pay the older generation. In Kenya, there is a large population between
the ages 0-35. Thus there is a large working population. An example of
a national retirement plan in Kenya is the National Social Security Fund
(NSSF) which is a service organization which gives standardized savings
security to every single Kenyan worker in all sectors by receiving their
contributions, managing the scheme funds, processing and eventually
paying out benefits to entitled members or dependants.

In the second pillar, company-sponsored retirement plans have it such that
the employer also contributes towards the employees’ retirement. These
are an example of defined contribution (DC) pension scheme which uses the
contributions and any interest earned on investment of the contributions to
pay the retirees. In spite of the fact DC plans are, by definition, not subject
to funding requirements, beneficiaries still expect them to be appropriately
supported with the end goal to have the capacity to pay for their retirement.
As longevity increases, more funds should be saved.

A�er assessing the longevity risk, the benefit provider (or sponsor) should
then look for appropriate solutions. The process of mitigating longevity
risk can be referred to as de-risking. To do this, the identified longevity
risk should be correctly measured and priced. Longevity risk is just one
of several risks faced by pension plans and it should not be addressed in
isolation. Other pension risks include interest rate risks, equity risk, and
inflation among others.

Marleen, et al, (2014), proposed that capital markets can provide vehicles to
hedge longevity risk adequately and trans¬fer this risk from those unable to
manage it to those who have the capacity to estimate its e�ect in exchange
of increased returns, for instance, life insurance o�ices.
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New capital market solutions have been innovated to enable transfer of
longevity risks. These include longevity (or survivor) bonds, longevity
(or survivor) swaps and mortality (or q-) forward contracts. The price
estimates for these products requires very accurate forecasts of mortality
rates, (Marleen, et al, 2014).

1.1.2 Mortality and Longevity Risks

DB pension schemes, companies, governments, insurers, reinsurers, long-
term healthcare providers and individuals are all subjected to the uncer-
tainties associated with increased life expectancy. Although some of these
uncertainties can be diversified by aggregating individual lives into large
groups, they cannot be eliminated completely and can have significant
economic consequences. These uncertainties are usually referred to as
“longevity risk”, or “mortality risk” (depending on the context), and have be-
come a vital concern for DB pension schemes and the respective interested
parties.

Despite the fact that the terms “longevity risk” and “mortality risk” are
frequently used interchangeably, they are in reality inverse sides of a simi-
lar coin. Though longevity is identified with the length of life, mortality
relates to the death rate. Therefore longevity risk describes the risk that an
individual, or group of individuals, will live longer than anticipated, while
mortality risk is usually used referred to as the risk that an individual, or
group of individuals, will live, in total, shorter than anticipated, that is,
their mortality will be higher than anticipated.

According to Edwards, et al (2011) a stochastic approach is is a be�er ap-
proach to assess the uncertainty and associated longevity risks adequately
by modelling life expectancy and mortality as it a�aches probabilities in
di�erent forecasts.

1.2 Notation, Definition and Terminologies

We will define q(x, t) to be the underlying aggregate death rate at age x in
year t. This is an unobservable rate. What we do observe relies upon how,
for instance, national statistics o�ices record deaths and population sizes.
However, in numerous nations we observe the crude death rate,mc(x, t),
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which is the number of deaths, D(x, t), aged x last birthday at the date of
death, during year t, divided by the Exposure, E(x, t) (the average popula-
tion aged x last birthday during year t).

Di�erent models have been developed to measure the e�ects of longevity
risk on reserves of annuities, life policies and pensions. The earliest and
generally famous one stochastic factor discrete-time model is the Lee and
Carter (1992) which postulates that the true underlying death rate mx,t=-
log(1−qx,t). This implies that longevity risk is not a�ected by cohorts i.e.
changes in age specific demographic parameters, lower infant mortality
rates. The Renshaw and Haberman (2006) was an extension of the Lee-
Carter Model as it includes cohort e�ects. This modification to the Lee-
Carter model was done to capture the e�ects that could be a�ributed to
the year of birth t − x.

Other models were built based on the Lee-Carter (1992) model and the
Renshaw-Haberman (2006) models. Currie (2006) proposes to be a simpli-
fied version of the Renshaw and Haberman (2006) model, where the age,
period and cohort e�ects influence mortality rates independently.

The P-Spline approach is essentially a penalized fi�ing process using ba-
sis splines (Currie et al., 2004; CMI 2006). Basis splines are a set of basic
functions which are constructed from cubic splines. Through the optimiza-
tion of a penalized likelihood or regression function, they are fi�ed to the
underlying data. According to Currie et al. (2004), the P-splines model
is shown to fit the mortality data be�er due to the local nature of the
parameters it is able to adapt more readily to variability in the mortality
rates. It does this with fewer parameters than the Lee Carter model. The
P-splines model also provides a much lighter forecast of future mortality
than the Lee Carter model. These models have been successfully utilized
in the developed countries which include, USA, English and Wales and
Sweden.

Due to the 2030 vision on improved health care and general improvement in
life, Kenya will have a higher life expectancy rate. As a result unanticipated
mortality improvements will be of most prominent significance at higher
ages and will cause providers of annuities and life insurance o�ices to su�er
losses in their life business. The issue is that retired people are as of now
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living much longer than expected. Thus, life insurers and retirement benefit
providers are paying out longer than expected resulting in diminished profit
margins. This will be a big coat to the pension companies 12 years from
now.

Previous studies have mainly concentrated on developed countries only,
due to the relatively large proportion of the population living beyond
retirement age. As a result, the financial impact of the demographic changes
in developing countries on retirement benefits has been ignored and may
pose future problems for companies dealing in these benefits as well as the
state managed NSSF.

The decrease in AIDS epidemic has been an especially crucial factor for
Africa. Life expectancy for Africans actually decreased in the 1990s due to
the ravages of Aids, (WHO, 2015). Globally, children born in 2015 had a life
expectancy of 71.4 years.

The Society of Actuaries in 2012, found that if the average life expectancy
in a population were to unexpectedly increase by four or five years, then
liabilities to pensions could increase by as much as 15% to 20% over an
extended period of time. The Society of Actuaries further provides frequent
updates to its mortality improvement factors, but the challenge for pension
companies is that timing and magnitude are uncertain. No one knows
when the next major change to life expectancy will occur.

Edwards & Munhenga, (2011) postulates that with regards to ge�ing ready
for retirement income security, planning monetary assets or even creating
shareholder value in public organizations, increasing life expectancy is
resulting in weakening accounting reports and increasing financial risk for
governments and individuals.

1.3 Problem Statement

Extensive research has been done on forecasting the e�ects of longevity
using the Lee-Carter model. A time-varying mortality index is forecasted
in an ARIMA framework which is then used to produce life expectancies
projections at normal retirement age. We also apply Lee-Carter mortality
projection techniques to the evaluation of retirement costs.
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Lee, R. (2002) established that the LC method is a valuable and fi�ing
approach to extrapolate the historical pa�erns in the level and age distribu-
tion of mortality. Conversely, extrapolation may not generally be a sensible
procedure to employ.

The method assumes a pa�ern of change in the age distribution of mortal-
ity, such that the mortality rates decline at di�erent ages maintaining the
same ratios a�er some time. But in practice, the general speed of decline
at di�erent ages may vary. Horiuchi & Wilmoth (1995) points that the mor-
tality rates at old ages were observed in Sweden to decline more gradually
than at other ages, yet in recent decades they have come to decline more
rapidly. In U.S.A, it is observed that there has been a slowdown in mortality
declines for ages 5 to 50 relative to the older and younger ages. Therefore
this method cannot consider such shi�s into account.

According to Cairns et al., (2009), the Lee-Carter model is unable to produce
a nontrivial correlation structure between the year-on-year changes in
mortality rates at di�erent ages. The LC model diminishes the mortality
development over time for all ages to one single time trend, the mortality
index. However, mortality as a function of one single time trend implies
perfect correlation between changes in mortality at all ages which does
not seem biologically reasonable.

The Lee-Carter method does not incorporate cohort e�ects in forecasted
mortality rates. The incorporation of cohort e�ect is a desirable property
of any stochastic mortality model. The failure to include cohort e�ects in a
population where such e�ects are present leads to inaccurate forecasts of
mortality.

The RH (2006) model is a modification of the LC (1992) model that includes
the cohort e�ects of mortality forecasting, provides an e�ective solution to
the mentioned limitations.
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1.4 Research Objectives

The research seeks to examine how longevity risk can influence defined
benefits pension schemes. In this regard, the research seeks to provide
the outcomes of estimating the Renshaw and Haberman (2006) model for
Kenya.

Furthermore, the research seeks to:

1 Analyze the uncertainty of future mortality and life expectancy out-
comes

2 Estimate future longevity risk.

3 Estimate future annuity pay-out value in the future

1.5 Scope of the Study

The study was investigating the impact of longevity risk on retirement
benefits in developing countries. This study was limited to retirement
benefit providers, for example, pension funds and insurance firms providing
pension retirement covers.

The researchers believed that Kenya would provide a suitable representation
of data and would therefore give reliable findings and results. We were
able to establish this through a correlation test with a developed country,
U.S.A, where this study has been undertaken several times.

1.6 Validity of the Study

The research focuses on the e�ects of longevity risk in the Kenyan pension
market and annuity providers market. This will help protect insurers, regu-
lators, pension providers against longevity risk. Forecasts of the duration
the population may live are vital on the grounds that they advise govern-
ment’s long-term forecasts of the incurred costs of public pensions and
other planning assumptions for a maturing society. Insurance companies
and benefit providers additionally forecasts the costs of annuity and other
products, in light of their policyholders or members. Actuaries are involved
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in both these areas. The modelling and forecasting of the mortality rates is
the key point in estimating the process of mortality-linked securities that
facilitates the emergence of liquid markets.
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2 LITERATURE REVIEW

2.1 Introduction

In this part, we summarize key developments accomplished so far in analy-
sis of longevity risk, mortality modelling and forecasting. Longevity risk is
now considered as one of the world’s most pressing financial risks as there
appears to be no slowdown in trend of improving life expectancy.

2.2 Longevity Risk and Pensions

According to Jones, (2013), longevity risk a�ects; (1) governments who need
to fund guaranteed retired individuals through pensions and healthcare
from a shrinking tax base, (2) corporate sponsors who financially support re-
tirement and medical coverage commitments to former employees accrued
over numerous years and, (3) people who may have decreased or no ability
to depend on governments or corporate sponsors to finance retirement.

The e�ect of the longevity risk on living benefits must be precisely faced.
Reinsurance arrangements and capital allocation can avail appropriate
tools to face this risk, (Edwards & Munhenga, 2011). Nevertheless, the
issue of "finding" the longevity risk by means of a possible sharing between,
say, the annuity provider and the annuitant ought to be considered.

Schoeni & Ofstedal, (2010) summarises the key topics of research on the
demography of ageing. These are population pa�erns (including mortality);
global comparisons; the financial aspects of ageing and the elements of
wellbeing in later life. There has been a global decline in fertility and mor-
tality rates from higher levels to lower levels and as a result, the world’s
population is growing older. Population aging is being experienced all over
the world. Developing nations are undergoing population aging at the
fastest rates with developed countries having had encountered it before.
They likewise talk about the aging of the older generation. The portion of
the older generation over the age of 80 is growing more quickly than the
older generation. This also varies among di�erent countries and regions
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in the world. Longevity has occurred in the past half a century and this
has been encouraged to a large extent by eradication of infectious diseases
and e�ective treatment and management of chronic diseases, (Edwards &
Munhenga, 2011). However, with the share of older people in the world
increasing, countries face troublesome di�iculties, with regard to health
care, retirement frameworks and labour market supply. Older persons con-
sume a larger amount of health care services, medications and extended
life implies that they are drawing retirement and other seniority benefits
for longer timeframes than previously. Moreover, as the extent of older indi-
viduals relative to those in their working year’s increases, national security
and pension programs that depend on the taxes of current workers to pay
retirees’ benefits (a “pay-as-you-go” scheme) turn out to be progressively
unsustainable, (Kathyuka, et al, 2014).

Recent pa�erns in mortality lead to the utilization of projected survival
models when pricing and reserving for life annuities and other long-term
living benefits, (Rizzuto & Orsini, 2012). Several projection models have
been proposed and are applied in actuarial practice. Nonetheless, the
future mortality trend is random and henceforth, whatever type of model is
adopted, systematic deviations from the forecasted mortality may happen.
At that point, a "model" (or a "parameter") risk emerges, which is plainly a
non-pooling risk. Changes in the mortality trend refer to both young and
old ages. When the random mortality trend at old ages is concerned, it is
usually referred to as "longevity risk", (Rizzuto & Orsini, 2012).

2.2.1 Valuation of Longevity Risk

Analysing longevity and its e�ects, forecasting of future mortality rates
is key for any pension firms, (Taruvinga & Gatawa, 2010). People have
always had an interest in the human lifespan. Forecasting mortality trends
has a long history in demography and actuarial science. Demographers
used mortality forecasts for population projections while actuaries used
then to project cash flows and assess premium and reserves in life o�ices
and pension annuities. Some organizations used the mortality forecasts to
support their policy decisions, (Trauth & Reimer-Hommel, 2000).
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Early mortality models were deterministic and did not consider the poten-
tial future improvements in mortality rates. They assumed future mortality
would behave the same way as current and past data. Earlier models in-
volved fi�ing a parametric curve mortality data. Abraham De Moivre was
probably the first person to mathematically model mortality in 1725. He
suggested that:

lx = k(1− x
86) for 12 ≤ x ≤ 86

Where lx is the number of individuals who are still alive at age x last birthday
from a total number of Individuals, l0 and k is a normalizing constant. The
assumption applied in this model is that all individuals ought to be dead
by age 86.

Over the past twenty years, various new methodologies were produced
with the end goal to forecast mortality using stochastic models. Stochastic
models appear to be more appealing than the prior deterministic models,
since they include a confidence error to each estimate.

Lee and Carter (1992) shows how the LC model was used to forecast mortal-
ity rates in U.S.A. This model has been generally used for both demographic
and actuarial applications because, firstly, it produced satisfactory fits and
forecasts of mortality rates for di�erent nations. For instance, the Lee
Carter model was used in Japan, Austria, Australia, Belgium and the Nordic
countries. Secondly, the Lee-Carter model structure permits the construc-
tion of confidence intervals related to mortality projections. In spite of its
reasonable performance, the LC model had a few constraints (Lee 2000)
which caused negative responses. Because of this, new stochastic models
were produced with the most remarkable models being the Renshaw and
Haberman (2006) and Cairns et.al models (2006, 2007, and 2008).

Stochastic models vary significantly according to a number of key compo-
nents: number of sources of randomness driving mortality improvements
at di�erent ages, assumptions of smoothness in the age and period dimen-
sions, incorporation or not of cohort e�ects and the estimation method used.
The research will centre on the use of the RH model to model longevity
risk as it incorporates the cohort e�ects in the population.
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A cohort e�ect is a variation in health status because of di�erent elements
that each age cohort in a population is exposed to as environment and
society are changing, (Gustafsson, 2011). A cohort study is a study on a
group of individuals with something like one specific shared experience
within a certain time period, (Rizzuto & Orsini, 2012). The most well-known
example is a "birth cohort", that is, the people in the group are born in the
same time or amid a similar era (Gustafsson, 2011). In a prospective study,
which is the centre of this research, we are examining a group of individuals
over time by observing pa�erns of e�ects or outcomes due to the cohort
di�erences within the group. Then again, for a review examine information
is gathered dependent on certain result from past records. Regardless, a
cohort study (prospective or retrospective) can be said to be the last link in
the chain to confirm a link between disease and exposure.

2.3 Stochastic Models for Measuring Longevity Risks

Previous researches and studies used di�erent models to model mortality
and survival statistics of populations.

Suppose we have:

∗ β
(1)
x An age specific parameter; the set αx,x=0,1,. . . reflects the general

shape of the mortality schedule.

∗ β
(2)
x defines the speed of mortality rate by age to changes through time,

specified by k(2)t

∗ The period e�ect k(1)t =1 and k(2)t follows a one-dimensional random walk
with dri�:

k(2)t = k(2)t−1 +µ +Cξ
(2)
x,t

in which µ is a constant dri� term, C is a constant volatility and ξ
(2)
x,t is

a one-dimensional i.i.d N (0,1) error. The time trend of k(2)t signifies the
general speed of mortality improvement
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∗ δx,t is the error term, which has no long term trend

∗ γ
(i)
t−xrepresents the cohort e�ect

Then we have the following models:

2.3.1 Lee–Carter Model

Ronald Lee and Lawrence Carter (1992) first presented the Lee–Carter
(LC) model which was out of their work in the late 1980s and early 1990s
a�empting to use inverse projection of rates in historical demography,
(Lee & Carter, 1992). The United States Social Security Administration,
US Census Bureau, and United Nations have used this model in their
projections. It has turned into the most widely used mortality forecasting
model globally.

There have been extensions to the Lee–Carter model, most taking account
for missing years, correlated male and female populations and large scale
coherency in populations that share a mortality regime (western Europe,
for example), (Renshaw & Haberman, 2006).

This model is the still the most popular one stochastic factor discrete-time
model. Lee and Carter (1992) postulates that the true underlying death
rate, mx,t=- log (1−qx,t), satisfies the following equation:

log mx,t = β
(1)
x +β

(2)
x k(2)t +δx,t

Where:

γ
(1)
t−x = γ

(2)
t−x=1 , that is, the model has no cohort e�ect

2.3.2 Renshaw and Haberman Model

Renshaw and Haberman (2006) generalized the Lee–Carter Method to
capture the e�ects of cohorts. This modification to the Lee-Carter model
was done by simply including a cohort factor γ

(3)
t−x to capture e�ects that

could be a�ributed to the year of birth t-x.
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This model postulates that mx,t satisfies:

log mx,t = β
(1)
x +β

(2)
x k(2)t +β

(3)
x γ

(3)
t−x

Where period e�ect k(2)t follows (3.4) and γ
(3)
c is a cohort e�ect where c=t-x

is the year of birth. They postulated that cohort e�ect γ
(3)
c is modeled as

an ARIMA (1, 1, 0) process that is independent of k(2)t , i.e.

∆γ
(3)
c = µγ +αγ

(
∆γ

(3)
c−1 −µγ

)
+ αγZ(γ)

c

Chapter 3 provides a more detailed discussion of the Renshaw and Haber-
man model.

2.3.3 Currie Age-Period-Cohort Model

Currie (2006), simplified the Renshaw and Haberman model, where the
age, period and cohort e�ects influence mortality rates independently.

It was modelled as follows:

log mx,t = β
(1)
x + k(2)t + γ

(3)
t−x

2.3.4 P-Splines

According to Currie et al (2004), basis splines are a set of basic functions
constructed from cubic splines. To estimate the parameters they maximised
the following regression equation:

log mx,t = ∑i, j θi, jB
αy
i, j (x, t)

Where Bαy
i, j (x, t) pre-specified basis are functions with regularly-spaced

knots and θi j are parameters to be estimated.
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2.3.5 Cairns-Blake-Dowd 1 Model

This is the original CBD model developed by Cairns, et al. (2006). The
model postulates that mortality rates qx,t satisfy:

logit qx,t = k(1)t +(x− x̄)k(2)t

Where, β
(1)
x = 1, β

(2)
x = (x− x̄) and x̄ = 1

nα
∑i xi is the mean age over the

range of ages used in the analysis.

2.3.6 Cairns-Blake-Dowd 3 Model

This is the third generalization of the original CBD model. According to
Cairns et al., (2009), the impact of the cohort e�ect γ

(3)
c for any specific co-

hort diminishes over time that is, β
(3)
x decreases with x instead of remaining

constant. This leads to

logit qx,t = β
(1)
x k(1)t +β

(2)
x k(2)t +β

(3)
x γ

(3)
t−k

where

β
(1)
x =1, β

(2)
x = (x− x̄), β

(3)
x = (xc − x)

for some constant parameter xc to be estimated. This result is

logit qx,t = k(1)t + k(2)t (x− x̄)+ γ
(3)
t−x(xc − x)

2.4 Conceptual Framework

Prospective life tables give a view on the future development of mortality
rates. Surely, in most developed countries longevity has been improving
for a number of decades and a basic take at the standard life tables is
more restrictive and can underestimate the genuine advancement of future
mortality. The prospective life table o�ers a be�er view of the mortality
advancement.
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Mortality data on the population as a whole is of limited use unless it can
be broken down into subpopulations, in which individuals are grouped
according to common characteristics. The common characteristics among
members of such subpopulations provide greater insight into the drivers of
mortality and greater confidence in forecasting longevity.

Outlined below are the state variables involved in stochastic mortality
models.

(i)Age E�ects (β (i)
x )

The age e�ects are either, non-parametric and estimated from historical
data or assume some particular functional form. Mortality forecasts were
performed within the same range of ages which made it unnecessary in
this thesis to simulate or extrapolate the age e�ects.

(ii)Period E�ects (k(i)t )

The elements of the period impact have been widely driven using random-
walk processes as far back as the presentation of the first Lee-Carter (1992)
model. The method behind this model has been enhanced by subsequent
authors with the end goal to improve the fit and place the model on more
secure statistical foundations, for instance, Brouhns et al. (2002), Booth et
al. (2002), Czado et al. (2005), and de Jong and Tickle (2006)).

For each of the three models, the period e�ects are more precisely described.
For example, in the third model (CBD Model), the dynamics of its period
e�ects are driven using a multivariate random walk with dri� and correlated
innovations to drive the dynamics of the period e�ect:

k(i)t = k(i)t−1 +µ
(i)
k +σ

(i)
k +Z(i)

k (t)

Where µ
(i)
k are the dri�s, σ

(i)
k are the volatilities and Z(i)

k (t) are the stan-
dard normal innovations that are correlated across the i components but
independent through time.
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(iii) Cohort E�ects (γ(i)c )

A cohort is a group of lives who were born during the same particular time
span. Cohort e�ects exist when mortality rates for a group of birth years
reduce systematically faster or slower than the neighbouring cohorts. The
cohort e�ects are estimated for years of birth C0 to C1, where the year of
birth is equal to t-x, hence the cohort e�ect for the ith component is γ

(i)
t−x.

The specification of a dynamic process which drives the cohort e�ect is
the principal challenge faced in building a suitable stochastic mortality
model. The usual starting point is the assumption that for a given model,
the dynamics of the cohort e�ect are independent of the period e�ect k(i).

Every models described are subjected to the same underlying assumption
that the age, period, and cohort e�ects are qualitatively di�erent in nature
and henceforth should be modelled in di�erent ways. They specifically
recognize a randomness in mortality rates at each age from one year onto
the next, maybe caused by local environmental factors for example, a
heat-wave, which is not observed between adjoining ages.

However, CBD models di�er from Lee Carter model and Renshaw and
Haberman model in that the LC model assumes a functional relationship
between mortality rates over adjacent ages within the same year which
results in smoothed mortality rates.

2.5 Desirable Properties of Stochastic Mortality
Models

CMI (2005, 2006) and Cairns et al., (2009) describes the desirable properties
for a desired model which include;

(a) Parsimony : Models which have fewer parameters are be�er than models
with more. All the models describes have a large number of parameters
which implies that none of them can be describes as parsimonious
according to Cairns et al., (2009. However, comparison can be done
whereby the models that have fewer parameters can be said to be more
parsimonious than those that have more parameters.
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(b) Transparency :This property looks into how a model is user friendly to en-
sure that users understands the model as well as the respective workings.
This help with eliminating the use of a given model being used inappro-
priately which may result in errors in mortality forecasting. There is also
subjectivity in transparency since di�erent user have di�erent level of
understanding, therefore, this makes it di�icult to analyse transparency
in all models.

(c) The ability to generate sample paths for the underlying (and unobservable)
death rates, m(x, t):This process is very necessary especially for tasks like
pricing longevity-linked financial instruments and developing hedging
strategies (Blake et al. 2006). None of the models described fails on this
criterion.

(d) Cohort e�ects incorporation:If the researcher believes there is a presence
of cohort e�ects then it is important to use a model that incorporates
cohort e�ects.

(e) Robustness:This looks into the robustness of the model’s parameter
estimates relative to changes in the period of data used to fit a given
model. It is therefore an important property since a model is said to be
robust if its parameter estimates will not charge even when a shorter
period is applied. If the estimates experience a given jump resulting in a
qualitative di�erent solution when a shorter period is applied then it is
evident to report that the given model yields results that lack robustness.

(f) The ability to produce a nontrivial correlation structure from one year to
the next given changes in mortality rates at di�erent ages:A correlation
structure is said to be trivial when a perfect correlation is experienced
between changes in mortality rates from one year onto the next. This
is seen in the LC model when there is a single time process. The RH
model additionally has a trivial correlation structure for the same reason
except at the youngest age. The CBD Models however do not allow
for a trivial correlation structure since they all incorporate two or more
underlying period risk factors.

Vital additional properties can be assessed only when we fit the model to
the available data:
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∗ The ability of goodness of fit to the data which produces forecasts that
are consistent.

∗ Robust parameter estimates relative to the data used.

∗ Given that these models are being used to forecast future mortality
rates, the outcomes ought to be “biologically reasonable”

2.6 Model Selection

As already discussed, there are numerous methodologies and models that
have been proposed to project mortality rates. Choosing the method to
be used ought to rely upon the data and their reliability, the resources
accessible for the research for which the projection is required. When
all is said and done, no mortality projection basis can ever be considered
“correct” or “perfect”.

Many of the projection methods talked about the potential drawbacks. For
instance, and as supported by Brouhns et al., (2002), univariate extrapola-
tion of the parameters of a mortality model can be misleading, and keeping
in mind that a multivariate time series model show that the parameters is
possible which can result in computational intractability.

It is worth noting that regardless of the type of method used for projection,
several problems arise when projecting mortality at exceptionally old ages,
specifically, due to the inaccuracies in the availed data and fluctuation be-
cause of the small exposures to risk. Modellers should review the qualitative
trade-o� between simplicity and accuracy.

The Renshaw and Haberman (RH) model is an improvement of the Lee
Carter (LC) model as it provides e�ective solutions to its limitations by
including cohort e�ects. This showed that it performs be�er than the LC
model. Unfortunately, we recognize issues with the robustness of parameter
estimates under the RH model, raising doubt about its reasonableness for
forecasting.

For this project, the Renshaw and Haberman (2006) model was used in
projecting mortality rates. The next chapter describes the Renshaw and
Haberman (2006) model in more detail.



21

3 Research Methodology

3.1 Introduction

In this part, we will summarize the model for analysing the data using the
Renshaw-Haberman model.

3.2 Fi�ing and Application of the Renshaw-Haberman Model

3.2.1 Data

In order to incorporate the cohort e�ect the research will apply the Renshaw-
Haberman model to the available data. The research will pick a particular
time interval and a particular age to check whether there are any indication
of cohort e�ects for those ages.

3.2.2 Definition of Parameters

- qx,t -The central death rate for age x at time t

- mx,t -Describes the logarithmically transformed age specific central
death rate

- ax- The average of,mx,t over time t, which describes the describing the
general mortality trend at di�erent ages

- kt - A time-trend index of the general mortality level at di�erent times.
kt captures the most essential pa�ern in death rates at all ages. Since
the mortality is a decreasing factor, we can anticipate that this index
will also decrease.

- b(1)x - Deviations from the age whenkt varies. b(1)x is an age-particular
constant which depict the relative speed of mortality changes at each
age, when kt is changing. The model takes into account both positive
and negative estimations of bx. A negative value of bx demonstrates to
us that the mortality rate for a particular age is raising with increasing
time.
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However, in practice, this normally does not make a di�erence in the
long run (Lee and Carter, 1992). At the point when the model is ad-
justed over a period that is su�iciently long, for the most part it has
similar characteristics (Lee and Miller, 2001), with a few special cases,
for example some of the European and Central nations (Scherp, 2007).

- Yt−x - A random cohort e�ect that is a function of the year of birth, t-x.

- b(0)x - Deviations from the age when Yt−x varies.

- ξx,t - The error term, including systematic as well as purely random
deviations.

3.2.3 The Renshaw-Haberman Formulae

Renshaw Haberman (2006) extended the Lee-Carter model by introducing
the first stochastic model with the cohort e�ect as follows:

log (qx,t) = mx,t = αx +b(1)x kt +b(0)x Yt−x

Where, αx is the main age mortality trend, b(1)x and b(0)x are parameters
which estimate the corresponding interactions with age kt which is a ran-
dom period e�ect and Yt−x a random cohort e�ect that is a function of
the year of birth, t-x. The restrictions the study will use to estimate the
parameters are:

kt = 0, ∑x b(0)x = 1; Yt−x = 0, ∑x b(1)x = 1
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3.2.4 Parameter Estimation for the Renshaw-Haberman Model

Let the random variable dx,t denote the number of deaths in a population
at age x and time t. We can estimate the central mortality rate qx,t as:

q̂x,t=
dx,t
ex,t

Where, dx,t represent the number of deaths and represent the matching
central exposure for any given subgroup. We let define the combination of
age and period, i.e. the cohort year. To get the best estimates we approach
a seven-step method).

1. To estimate the parameters in the Renshaw-Haberman model we use
pre-programmed so�ware for R named Life Metrics. As in the Lee-Carter
model we start to estimate the fixed age e�ects, but here we use the
singular value decomposition (SVD) method to find the least squares
solution.

αx = 1
T ∑t mx,t

2. A�er that we will a�empt to get suitable initial values:

b(1)x = b(0)x = 1
K

Estimate the simplified period-cohort predictor, with the constraints
that b(1,0)x =1 to get initial values for ktand γz.

Calculate the adapted values γ̂(âz, b̂
(1)
x , b̂(0)x , k̂t , γ̂z)

Calculate the deviance (yx,t , ŷx,t)

3. We continue by updating the parameter:

ŷz = ŷz + ∑x 2w(y−ŷ)

∑x 2w(b̂(1)x )2ŷ
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Where,w is either 0 for every empty data cells and 1 for every non-empty
data cell

Then we shi� the updated parameter such that ŷz = ŷz − ŷ1

Calculate the adapted values γ̂(âz, b̂
(1)
x , b̂(0)x , k̂t , γ̂z)

Calculate the deviance (yx,t , ŷx,t)

4. Update parameter b̂(1)x

b̂(1)x = b̂(1)x +∑x 2w(y−ŷ)
∑x 2w(ŷz)2ŷ

Calculate the adapted values γ̂(âz, b̂
(1)
x , b̂(0)x , k̂t , γ̂z)

Calculate the deviance (yx,t , ŷx,t)

5. Update parameter k̂t

k̂z = k̂z + ∑x 2w(y−ŷ)

∑x 2w(b̂(0)x )2ŷ

Then we shi� the updated parameter such that k̂t = k̂t − k̂1

Calculate the adapted values γ̂(âz, b̂
(1)
x , b̂(0)x , k̂t , γ̂z)

Calculate the deviance (yx,t , ŷx,t)

6. Update parameter b̂(0)x

b̂(0)x = b̂(0)x +∑x 2w(y−ŷ)
∑x 2w(k̂z)2ŷ

Calculate the adapted values γ̂(âz, b̂
(1)
x , b̂(0)x , k̂t , γ̂z)

Calculate the deviance (yx,t , ŷx,t)

7. Control the divergent convergence

∆D = D−Du
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Where, D is the deviance from step 3 and Du is the update deviance at
step 6 If ∆D > 1∗10(−6) => go to step 3

Stop iterate process when ∆D ≈ 0 and take the adapted parameters as
the ML estimates to the observed data.

Alternatively, stop if ∆D<0 for 5 updating cycles in a row and consider
using other starting values or declare the iterations non-convergent

8. When convergence is achieved, rescale the new interaction parameters,

b̂(1)x , b̂(0)x ,k̂t and γ̂t

b̂(1)x = b̂(1)x

∑x b̂(1)x
, b̂(0)x = b̂(0)x

∑x b̂(0)x
, k̂t =k̂t ∗ (∑x b̂(0)x )

In order to satisfy the age-period Lee-Carter model constraints:

∑x b̂(0)x = ∑x b̂(1)x = 1 and ∑x kt = 0

3.2.5 Forecasts for the Renshaw-Haberman Model αx and βx

For us to forecast future mortality rates, Lee and Carter assumes that ax,b
(1)
x

and b(0)x remain constant over time and the time trend k̂t is intrinsically
seen as a stochastic process. The time trend k̂t is additionally assumed to
be independent Yt−x. Lee et al., (1992) suggest using the following random
walk with dri� model for k̂t :

k̂t = k̂t−1 +θ +Cξt (1)

in which θ is a constant dri� term, C is a constant volatility and ξt is
a one-dimensional i.i.d N(0,1) error.
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An appropriate ARIMA (p,d,q) model for the mortality index kt is found by
carrying out the standard Box and Jenkins methodology (identification-
estimation-diagnosis). In general an ARIMA(0,1,0) with dri� is found to be
appropriate, however, other ARIMA forms give a be�er fit to some data
(Brouhns et al. 2002). As indicated in Booth et al. (2006), ARIMA(0,1,0) is a
sensible choice in the situations where there is a stable linear tendency in
the yearly mortality improvements, however would be inappropriate for the
cases characterised by regular dynamic changes in slope (i.e. non-linear).
All things considered, the authors have discovered that this model has
performed well in numerous large data applications, even when a more
complex model may have been shown by the shape of the period e�ects.

A�er discovering an appropriate ARIMA model the variable, the mortality
index kt can be forecasted. Let k̂tn+s denote the s-period ahead forecast
of the mortality index. Then in case of the Poisson Lee-Carter model, the
expected value of future death count is given by

E[Dx,tn+s] = Ex,tn+sm̂x,tn+s (2)

Where is Ex,tn+s the future exposure and is the m̂x,tn+s forecast of future
death rate with

m̂x,tn+s = exp(α̂x + β̂xk̂x,tn+s) (3)

Using m̂x,tn+s we can calculate other quantities of interest, such as life
expectancies, life annuity premiums, etc.

3.2.6 So�ware Analysis of the Renshaw-Haberman Model
Using R

The main calculation for the study is to forecast future mortality using
survival analysis. To get even be�er estimates and to forecast mortality we
proceed by using the statistical program R. Since the selected methodology
involves iterations, it may not be possible to get good parameter values for
the Renshaw- Haberman method using Excel. The codes used to get the
results are summarised in section: Appendix B.
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4 Data Analysis

4.1 Data Collection

4.1.1 Mortality Data Sources in Kenya

There are 3 main data collection sources:

1. Mortality data from specific pensions plans, life insurance and
annuity providers

The data is mainly collected from policyholders’ files. The data mainly
comes from signup forms and claims or maturity activations. The data
provide best sources for forecasting future mortality for these populations
and projecting future insolvency risks. This data source is not public and is
usually subjective to the specific policy provider’s needs.

2. Aggregate mortality data compiled by industry bodies

The data is collected by bodies that manage di�erent bodies or govern dif-
ferent insurers and pension providers in a specific geolocation i.e. countries,
unions or even counties/provinces. The data is largely inconsistence in that
the bodies that provide data year by are di�erent period by period. The
industry bodies are not actively collecting data as they focus mainly on the
delivery methods, pricing and liquidity but have no data analysis tools to
collect data e�ectively.

3. National population mortality data

Kenya has one of the largest population basis risks in the world this is
due to poor data collection by the hospitals and the registrar of death.
Furthermore, the data is normally not published for the public to use.
E�orts are being put by the government to have the data published and
refined.
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4.1.2 Sample Data

National population data was used in the research to analyse the Renshaw
- Haberman model. Due to the unavailability of data in Kenya, the research
used historical raw data from the USA. The data is covering ages 65-90 for
reference years 1970-1985 and ages 65-95 for reference years 1986-2010.

The set of data is contained in the file: sampleData.r. The Mortality experi-
ence in the USA in these years has similarities with the data in Kenya in
the same period and we conducted a correlation test to determine whether
there exists a linear relationship between the two mortality experiences as
well as measure the direction of the relationship.

4.1.3 Correlation Analysis

The USA-Kenya correlation coe�icient results for the male and female
populations are 0.98765 and 0.95667 respectively, that is, the coe�icients
tend to 1 as the data sets increases. Thus, there is strong correlation between
the two mortality data sets have a strong relationship. The r-codes for the
analysis are in Appendix B.

4.2 Fi�ing the Renshaw-Haberman model using R

The main purpose for fi�ing the model is to predict future mortality which
is forecasting life expectancy. To get the best estimates we will use the
statistical program R. We will also analyse the residual plot to test the
validity of fi�ing the model.
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4.2.1 Parameter Estimation

Figure 1. Age-Period-Cohort Regression: USA data 1970-2010 (male)

4.2.2 Residual Analysis

In order to determine the validity of the Renshaw-Haberman model has
a relatively good-fit to the data used in the study. We analysed the error
terms εx,t . The εx,t ∼ N(o,σ2

ε ), i.e. it has a zero mean Gaussian distribution
and it reflects the mortality data set influences captured by the model. The
error should also have a relatively small variance.
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Table 1. Residual Analysis Results

Term Value

Mean 0.00987

Skewness -0.10187

Kurtosis 0.600394

The variance is captured in the appendix. We can observe that the mean
is a value close to zero. The residuals are slightly skewed to the le� while
the kurtosis statistic is low implying that residuals have a flat top near
the mean rather than a sharp peak relative to a normal distribution. To
further test the residuals we used a qq-plot to see if the residuals meet
the conditions of the hypothesis that the Renshaw and Haberman model
follows a normal distribution.

Figure 2. QQ Plot for the Residual Data

The qq line is 45◦, however the data has heavy tails, thus the dataset doesn’t
adhere to the assumption that we made above but this is largely due to
the long period of data analysis. According to Trauth & Reimer-Hommel,
(2000), the error terms for the Renshaw-Haberman model have thicker tails
then the normal distribution and is slightly skewed. This is largely due to
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the number of years understudy i.e. 40 years for the period understudy
(1970-2010).

4.3 Reserving with Renshaw-Haberman

4.3.1 Forecasting

In section 4.2.1 the study used historical data of the time trend index of the
general mortality index, kt . The study performed a linear regression and
assumed that mortality will follow the same curve the following 50 years
i.e. period (2011, 2060). By using di�erent time periods the study will get
predictions of future life expectation.

The expectation of life for retirees is projected to improve in the future
as predicted by the Renshaw-Haberman. Figure 4 shows an illustration
of the forecasted mortality index over a 60 year prediction horizon. The
predicted mortality index indicates a general drop in future mortality rates.
Improved life expectancy implies that retirees will live for longer than
expected, therefore longevity risk is present.
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Figure 3. Mortality index Forecasts

The probability of dying was calculated using the Renshaw-Haberman
formula as follows:

qx,t = e(ax+b(1)x kt+b(0)x Yt−x)

The simulation will be then be used to estimate the life expectancy of for a
person aged 60, in the year 2010 at time intervals (2015, 2020, 2025, . . . ,
2050, 2055, 2060), as follows:

ex,t =
∫

∞

0 (t px)dt =
∫

∞

0 (1−t qx)dt
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Figure 4. Summary of Life Expectance at age 60 in year 2010

Figure 4 shows that the life expectancy will increase by a steady factor of
approximately 15% for the next 60 years from 2010. This is largely due to
the increase in health care and the low infant mortality recorded in the
year 2010 i.e. the cohort analysis year.

The results will then be used to compute the mean annuity present value
of annuities as follows:

ᾱx =
∫

∞

0 (vt
t px)dt =

∫
∞

0 [vt(1−t qx)]dt

The following assumptions were made in calculating the actuarial mean
present value (MPV) of a yearly annuity of 1 monetary unit payable on
retirement:

• The retirement age, ‘x’, is 60 at year 2010

• The payments are made continuously as people retire at any given time

• The risk free interest rate, ‘i’, is at 9 % as per the CBK rate for 2018,
October

• Inflation rate, ‘r’, is at 5.53% as KNBS in 2018
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Table 2. Summary of Life Expectancy and MPV of Annuities as at year 2010

Year ex,t āx

2015 28.80 10.140

2020 28.95 10.614

2025 29.20 10.817

2030 29.35 10.912

2035 29.43 11.233

2040 29.55 11.446

2045 29.57 11.644

2050 29.60 12.256

2055 29.60 12.403

2060 29.78 12.667

These results are also displayed in the below Figure 5

Figure 5. Summary MPV of Annuities as at year 2010

From figure 5 due to the increase in life expectance we have increased MPV
at the same period, which is normally not the case for life annuities.
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The Renshaw and Haberman model forecasts show an improvement of
life expectancy at retirement age for persons born in recent years. The
actuarial present value of a yearly annuity of 1 monetary unit payable to
retirees born recently is also calculated to be higher. The Renshaw and
Haberman mortality projections imply that the cost of life insurance and
pension annuities in future is expected to increase due to the reduction of
mortality.
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5 Conclusions & Recommendations

5.1 Results Summary

The main objective for the study was to examine the e�ects of DB pension
liabilities caused by longevity risk. To assess this risk, a stochastic approach
was found ideal since it allows probabilities to be a�ached in di�erent
forecasts.

5.1.1 Future Mortality & Life Expectation

Due to the low child mortality in year 2010 the population increase resulted
in higher expectation rate for the population in the same year. The future
mortality will result in higher life expectation. This postulates that the
longevity risks for pension companies are going to be high in the next 3
decades.

5.1.2 Renshaw-Haberman Model Future Pay-Out Values for the Annuities

The model did not fit the data as the error terms were not normally dis-
tributed to therefore the model failed the goodness of fit test. However,
the model was viable for the study because the anomaly was largely due
to the large data set. A larger data set with one of the parameters set as
time will have a high variability around the mean.

The cohort e�ect of the research was birth and the be�er the infant mor-
tality resulted in a higher expectation of life for the population when they
reach the retirement age of 60 as per the research. The lower the infant life
mortality the higher survival rates of retirees in the future.

The Renshaw-Haberman model isolates the cohort e�ects and models
mortality. It also provides the data analytics with a clear understanding of
the e�ects of the specific cohort.
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The Renshaw-Haberman (RH) modification to the Lee-Carter model incor-
porates the cohort e�ect, hence, provides the best fit. Despite this strength,
the model raised problem in relation to the robustness of its parameter
estimates which questions its suitability for forecasting.

5.2 Limitations of the Study

The data which was used for the study didn’t belong to the Kenyan popu-
lations and thus any changes in the cohort e�ects might not be the best
representative of the Kenyan cohort e�ects. The period of analysis is in the
past; hence the research will only be important for academic purposes and
not for practical industry use in the Kenyan market.

5.3 Recommendations of the Study

The data used in the study is the USA, thus for future studies, data from
actual developing countries should be used even though similarities in the
data exist between the countries. Shortcomings may be encountered as a
result of using the US data to forecast the Kenyan scenario. For instance,
U.S. may experience a greater longevity risk than Kenya due to their medical
advancements, be�er lifestyle and other factors.

Longevity risk needs a very e�icient model to anticipate the expected
costs that will be incurred if the risk occurs hence the best and the most
recommended model is the Cairns-Blake-Dowd (2008) Model (CBD-4).

According to this model, for any specific cohort its cohort e�ect impact
reduces over time opposed to remaining constant like what the other
models suggest. This is one of the major reasons as to why the CBD-4
model is highly recommended for calculating the longevity risk. Another
reason is that it assumes a functional relationship between mortality rates
in adjacent ages.
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Appendix

Appendix A: Stochastic Mortality Models Formulae

Model Formula

Lee Carter (1992) log mx, t = β
(1)
x +β

(2)
x k(2)t

Renshaw and Haberman (2006) logm(x, t) = β
(1)
x +β

(2)
x k(2)t +β

(3)
x γ

(3)
t−x

Currie (2006) logm(x, t) = β
(1)
x +n−1

α k(2)t +n−1
α γ

(3)
t−x

Currie, Durban, and Eilers (2004) logm(x, t) = ∑i, j θi, jβ
αy
i, j (x, t)

CBD-1 logit q(x, t) = k(1)t +(x− x̄)k(2)t

CBD-2 logit q(x, t) = k(1)t +(x− x̄)k(2)t + γ
(3)
t−x

CBD-3 logit q(x, t) = k(1)t +(x− x̄)k(2)t +((x− x̄)2 − σ̄2
x )+ γ4

t−x

CBD-4 logitq(x, t) = β
(1)
x k(1)t +β

(2)
x k(2)t +β

(3)
x γ

(3)
t−x

Appendix B: R-Codes Snippets
The study used the Lifemetrics data set imbedded in the R codes library:

1. Data Correlation Analysis (Kenya and USA mortality tables)
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2. Fi�ing the Renshaw-Haberman Model

The data for the model was standardised to a Lee carter model and the
inbuilt data analytic code was used: “fit701. . . ”
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Appendix C: Statistical Data

1. Summary of MPV and Expectation of Life for Women

Year ex,t āx

2015 28.80 10.140

2020 28.95 10.614

2025 29.20 10.817

2030 29.35 10.912

2035 29.43 11.233

2040 29.55 11.446

2045 29.57 11.644

2050 29.60 12.256

2055 29.60 12.403

2060 29.78 12.667

2. Variance for Residuals (a�er every 10 years)

Year Variance

1970 3.455

1975 5.698

1980 2.908

1985 1.345

1990 0.234

1995 56.890

2000 2.678

2005 29.698

2010 34.567
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