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ABSTRACT

The global debate on climate change needs to be furnished with accurate and precise 

measurement of biomass in agricultural landscapes. Wood density is a supporting 

parameter for biomass estimation; however, empirical methods for wood density 

determination are destructive and complex, as are conventional wet chemistry analyses 

of carbon and nitrogen. Thus a low cost and non-destructive method of estimation is 

required. Infrared Spectroscopy coupled with chemometrics multivariate techniques 

offers a fast and non-destructive alternative for obtaining reliable results without 

complex sample pre-treatments. This study sought to develop a prediction model for 

estimation of wood density, carbon and nitrogen across species using Infrared 

Spectroscopy.

Empirical data for determination of these parameters were obtained from coring 77 trees 

sampled from three benchmark sites (Lower, Middle and Upper Yala blocks) along Yala 

basin in Western Kenya. Samples from cored holes in the tree (branch, stem and roots) 

were used to estimate wood biovolume and density. Models for estimation of these 

parameters were derived from scanning 404 cores using diffuse reflectance Infrared 

Spectroscopy and reference values for carbon and nitrogen obtained using a Carbon- 

Nitrogen analyzer. Partial least squares regression, using first derivative spectra pre

treatment, was used to develop a model based on different calibrations sets. Models were 

compared on the basis of the accuracy of prediction using the coefficient of 

determination (R2), Standard Error of Calibration (SEC) and Standard Error of Prediction 

(SEP).
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Calculated wood density range was 0.20-0.95gcm 3 with the mean being 0.59 gem"3, 

while IR predicted 0.25-0.95 gem 3 (mean 0.53 gem"3) in the Near Infrared Region (NIR) 

and 0.32-0.86 gem 3 (mean 0.53 gem"3) in the Mid Infrared Region (MIR). Measured 

carbon range was 40%-52% (mean 48%), while IR predicted 44%-51% (mean 48%) in 

NIR region and 46%-51% (mean 48%) in MIR region. Measured nitrogen range was 

0.09-0.48% (mean 0.28%), while IR predicted 0.18%-0.47% (mean 0.24%) in NIR 

region and 0.18%-0.38% (mean 0.24%) in MIR region. Values of SEC were low relative 

to laboratory analytical errors. Interactions between densities with tree species and tree 

parts showed significant effect (p<0.001), while the interactions between tree parts and 

species showed no significant effect. Values averaged to the species level predicted 

much better than the individual core models with R2>0.57 for all the parameters. This 

suggests large variations within species that cannot be predicted using IR.

The data generated here on densities were comparable with those given in a global wood 

density database. On the other hand, carbon content varied among species but not 

between the sites, an indication that the often assumed default value of 50% carbon in 

wood is over estimation of tree carbon and would lead to over estimation of the total 

carbon stocks. NIR region gave better predictions than MIR, although the prediction 

performance was insufficient to recommend Infrared Spectroscopy as a practical method
•V

for direct determination of wood density and carbon content across species when
***'

different percentages were used.
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CHAPTER ONE

INTRODUCTION

1.1 General

Landscape monitoring approaches that deals with complex tropical agroforestry systems 

can provide opportunities for smallholders to benefit from carbon trading (Shepherd and 

Walsh, 2007). Rapid measurements of tree biovolume has been done from field surveys 

but information on density (specific gravity) and carbon content of tropical tree species is 

sparse. Research to acquire this information by developing rapid and low cost method 

and a model that can be applied across species is needed. In addition, there is need for a 

better understanding in assessing the variation in wood density and carbon 

concentrations among different species as density is related to wood quality traits (Pliura 

et al., 2007).

Infrared (IR) Reflectance Spectroscopy is a promising tool for rapid assessment of 

physical and chemical parameters such as density, carbon and nitrogen contents for trees 

(Shepherd and Walsh, 2007). The spectroscopic technique utilizes the specificity of 

absorption frequencies of the molecules owing to the fact that molecules rotate or vibrate 

by absorbing discrete energies (Hoffmeyer and Pedersen, 1995). The frequencies of these 

vibrations are determined by the shape of the molecular potential energy surfaces, the 

masses of the atoms, the bond strength and associated vibronic coupling (Sherman,



This method has been extended to assess non-chemical characteristics of solid wood and 

showed capability for determination of mechanical, anatomical and physical properties, 

including basic densities (Hein and Chaix, 2009), determination of constituents in dried 

and ground wood (Mroczyket al„ 1992; Hoffmeyer and Pedersen, 1995), and moisture 

content (Pedersen et al., 1993).

The technique is non-destructive for evaluation of organic materials where particularly 

C-H, O-H, and N-H groups influence the properties to be assessed (Hoffmeyer and 

Pedersen, 1995). The technique is based on the principle of Lamberts-Beer law and its 

ability to measure C-H, O-H, and N-H bonds and extends its application to all 

biological materials including plant materials (Shepherd and Walsh, 2007).

IR Spectroscopy has been applied to both developed and developing countries 

particularly in agriculture for soil carbon and plant analysis but with limited use in 

poorer developing countries (Shepherd and Walsh, 2007). However, the high potential of 

IR Spectroscopy in accelerating agricultural development, at the same time safe-guarding 

the environment in these poorer countries in achieving millennium development goals 

has been recognised (Shepherd and Walsh, 2007).

Apart from the potential contribution of agricultural landscapes as carbon sinks, forests
•v

are the greatest essential source of oxygen in the world and acts as carbon dioxide store 

(Lindzen, 1997). Carbon dioxide, among other greenhouse gases is an influential gas 

leading to climate change (Lindzen, 1997). Therefore, estimation of carbon and wood 

density in trees across species using a single calibration model is necessary for 

assessment of above ground biomass in forest ecosystems.

2



Acquiring information on wood density is vital in gathering information on how much 

carbon is stored by a plant, as the density of wood depends on specific gravity and 

moisture content (Costa et al., 2009). However, trees do vary in their phenotypic traits, 

resulting from both genetic responses to selection pressures and phenotypic responses to 

the environment (Costa et al., 2009). Prediction of tree properties (physical and 

chemical) using IR Spectroscopy have not been extensively explored, unlike in soils 

where constituent soil properties have been predicted using both the Mid-Infrared and 

Near-Infrared region of the spectra (Ludwig et al., 2008).

In a study by Ludwig et al. (2008) on soil constituent prediction using IR Spectroscopy, 

Mid-Infrared Spectroscopy (MIR) gave superior performance to Near-Infrared 

Spectroscopy (NIR). However, the use of MIR region is still not sufficiently explored in 

tree property assessment. The superiority of MIR method is based on the assumption that 

the Mid-IR region is dominated by intense fundamental vibrational bands, whereas the 

Near-IR region is dominated by much weaker and broader signals from vibration 

overtones and combination bands (Janik et al., 1998; Ludwig et al., 2008; McCarty et 

al., 2002).

Studies in the diffuse-reflectance mode by Madari et al. (2006) and Ludwig et al. (2008) 

have challenged the assumed superiority and usefulness of MIR region in comparison 

with NIR in predicting soil constituents. Therefore, there is need to evaluate the 

usefulness of both MIR and NIR and analyze their spectra across tree species to derive a 

meaningful conclusion.
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1.2 Problem Statement and Justification

The currently available method of estimating carbon stored in live trees involves cutting 

down the trees, taking sample discs from different parts and then drying these discs 

(Kirby and Potvin, 2007). The dry weight (biomass) is then converted to carbon content, 

this method is accurate for a particular location, but has major short comings: It is 

destructive, time consuming, expensive, and therefore impractical for large scale 

analysis. This study proposes a reliable method for estimation of the physical and 

chemical parameters of trees using Infrared Spectroscopy coupled with multivariate 

analysis techniques. The main benefit of this method is the replacement of the more 

expensive and time-consuming analytical methods with less destructive method 

involving tree coring using carpenters auger for samples collection.

The assessment of the contribution of agricultural landscapes to global carbon budgets 

depends on the accuracy in estimation of agricultural landscapes carbon. Currently an 

estimate of 50% carbon for woody tissues and 45% for foliage and fine roots is widely 

accepted as a constant factor for conversion of biomass to carbon stock (Houghton, 

1996; Quanzhi et ai, 2009). This estimation using 50% default conversion factor for 

carbon introduces 10% bias in biomass estimation (Quanzhi et a l, 2009). The value is
•v.

bound to change depending upon the tree species and biomass tissue sampled, thus the 

need for accuracy in carbon and density estimation to reduce the uncertainties in biomass 

carbon estimation.
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1.3 Hypotheses

1. IR calibration models can be constructed to predict wood density and carbon 

concentration both within and across species in a single calibration.

2. There is variation in wood density and carbon concentration within and among 

species.

1.4 Objectives

The main objective was to develop Infrared prediction model for estimation of wood 

density, carbon and nitrogen concentrations across species in western Kenya landscapes.

Specific objectives are:

1. To develop a protocol for core sampling and infrared prediction of wood density 

and carbon concentration.

2. To develop a model for predicting wood density, carbon and nitrogen 

concentration for selected tree species in Western Kenya landscapes.

3. To establish the difference and/or similarities of MIR and NIR regions of spectra
•v

in the prediction of wood density, carbon and nitrogen concentrations across 

species.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Carbon sequestration in tropical forests

Tropical forests are considered as global source of biological diversity, carbon dioxide 

sink as well as source of livelihood, food and economic security for millions of people 

(Dewar, 1990). Clearance of tropical forests has resulted in increased amounts of carbon 

dioxide accumulation in the atmosphere, consequently leading to the interference with 

the role played by forests as carbon pools in the global carbon cycle (Dewar, 1990).

Carbon dioxide is usually taken up by forest ecosystems and stored as carbon in biomass 

(trunks, branches, foliage, and roots) and soils (Quanzhi et al., 2009); these contribute to 

the reduction of greenhouse gas effect and stabilized climatic system (Quanzhi et al., 

2009). FAO (1999) estimated 13 million hectares of tropical forest loss each year to 

deforestation, emitting between 5.6 and 8.6 Giga tonnes of carbon dioxide (Houghton et 

al., 1995).

Forests and forest soils may store as much as 2000 billion tonnes (Bt) of carbon (C), or
-N,

1500 Bt of carbon for soils alone (Gribbin, 1990). However, less attention has been laid 

to the carbon stored in various tropical agroforestry landscapes. Thompson and 

Matthews (1989) studied the amounts of carbon stored in different timber tree species by 

comparing carbon storage with tree different end uses, within the context of the United 

Kingdom. The model Matthews (1989) developed combined tree production curve with
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estimates from the retention curves for carbon after felling. This kind of study however, 

was destructive resulting in deforestation. The development of less destructive method to 

estimate carbon content in timber is important for biodiversity preservation and may 

mitigate global climate change by reducing the release of carbon stored in trees and soils 

(Gribbin, 1990).

2.2 Climate change: the role of carbon and nitrogen

The global nitrogen (N) cycle is more severely altered by human activity than the global 

carbon (C) cycle, and reactive N dynamics affect all aspects of climate change 

considerations, including mitigation, adaptation, and impacts (Suddick et al., 2012). 

Magnani et al. (2007) found that carbon (C) sequestration of temperate and boreal forests 

is clearly driven by nitrogen (N) deposition.

Nitrogen saturation implies a change in nitrogen cycling pattern from a closed internal 

cycle to an open cycle where excess nitrogen is leached and/or emitted from the forest 

ecosystem (Magnani et al., 2007). The pattern of forest ecosystem and nitrogen circle 

can vary enormously depending on vegetation and previous activities at the site (Norby 

et al., 2010). Carbon allocation in tree species is dependent on species composition and 

ecosystem age structure; the temperature changes and disturbances like forest fire affect 

the net carbon exchange (Juday et al., 2010).

Tropical forest fire has been a challenge in carbon estimation in forests by affecting the 

carbon cycle in the following ways: It releases carbon to the atmosphere, converts 

relatively decomposable plant material into stable charcoal, re-initiates succession and
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changes the ratio of forest-stand age classes and age distribution, alters the thermal and 

moisture regime of the mineral soil and remaining organic matter which strongly affects 

rates of decomposition and increases the availability of soil nutrients through conversion 

of plant biomass in to ash each at different timescales (Juday et a l, 2010).

2.3 Agricultural landscape mosaics: the case of western Kenya

In 2009, Carbon Benefits Project (CBP) - an initiative of United Nations Environment 

Programme (UNEP), the World Agroforestry Centre, along with a range of other key 

partners funded by the Global Environment Facility (GEF)-was launched to assess levels 

of carbon stored in trees via sustainable and climate-friendly land management. In this 

regard, Yala basin a catchments in and around Lake Victoria region was chosen as a test

bed for calculating how much carbon can be stored in trees when the land is managed in 

a sustainable and climate-friendly ways (UNEP, 2009).

This initiative is key to unlock the multi-billion dollar carbon market for millions of 

farmers, foresters and conservationists across developing world. The Yala basin, 

previously identified by the Western Kenyan Integrated Management Project (WKIEMP) 

covers an area of 3,351 km2 (Boye et a l, 2008) consisting of three Blocks: Middle Yala,
“V,

Upper Yala and Lower Yala with elevation ranges between 1200 and 1450 m.The three 

Block have vairied land use patterns as shown in Table 1 with the majority (75%) of the 

farmers practicing agroforestry.

Lower Yala block is located in Kisumu and Siaya counties and characterized by low to 

medium gradient hills, shallow depressions and small permanent streams (Boye et al,
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2008); the area is largely agricultural with some rangeland and thickets, few remnant 

forests are also present in Tiriki east area of the block.

Middle Yala block is located in Vihiga and Kakamega counties with Kaimosi forest 

found in this area. It is characterized by numerous small streams and wetlands of about 

22% with elevation ranging from 1430 to 1720 m, common soil types are clay (46%) and 

silty clay soils (32%) (Boye et al., 2008).

Upper Yala block is in Uasin Gishu county and generally characterized by level terrain at 

a relatively higher altitude between 2100 m to 2400 m above sea level (a.s.l). In general 

there are few trees in these landscapes.

Table 1: Primary land use among the three blocks of Yala.

Land use Lower Yala Middle Yala Upper Yala

Food / beverage 43% 69% 48%
Forage 55% 28% 56%
Timber / fuel wood 12% 19% 8%
Other 4% 8% 3%
Source: Boye et al., (2008).

2.4 Wood chemistry

Wood is a porous material, consisting of a matrix of fibre walls and air spaces (voids
“V,

within fibre walls); with fibre walls (solid-wood substance) considered to be constant for 

all wood species (Jozsa and Middleton, 1994). In relation, wood density provides a 

simple measure of the total amount of solid-wood substance in a piece of wood. For this 

reason, wood density provides an excellent means of predicting end-use characteristics of
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wood such as strength, stiffness, hardness, heating value, machinability, pulp yield and

paper making quality (Jozsa and Middleton, 1994).

Wood has two major chemical components: lignin (18-35%) and carbohydrate (65- 

75%) (Pettersen, 1984). There are other minor amounts of extraneous materials which 

occur in the form of organic extractives and inorganic minerals (ash) at a composition of 

about 4-10% (Pettersen, 1984). Table 2 shows elemental composition of wood according 

to Pettersen ( 1984).

Table 2: Average elemental composition of wood.

Elements Share, % of dry matter weight
Carbon 45-50%
Hydrogen 6.0-6.5%
Oxygen 38-42%
Nitrogen 0.1-0.5%
Sulphur Max 0.05
Source: Pettersen (1984).

The carbohydrate and lignin are the building blocks of a tree's cellular structure 

(Pettersen, 1984). Carbohydrate portion of wood comprises cellulose and the 

hemicelluloses, and these are primarily the composition of cell walls. The cell walls are 

held together by lignin giving the tree wood strength and rigidity.

2.4.1 Lignin

Lignin is a phenolic substance consisting of an irregular array of variously bonded 

hydroxy- and methoxy-substituted phenylpropane units responsible for the strength and 

rigidity of wood and binds together cellulose fibers (Pettersen, 1984). The precursor

10



molecules of lignin biosynthesis are hydroxy-cinnamylalcohols (monolignols) 

(Christophe and Gregoire, 2001): p-coumaryl alcohol, coniferyl alcohol, and sinapyl 

alcohol (Figure 1).

These alcohols are linked in lignin by carbon-oxygen and carbon-carbon bonds. 

However, the major difference among the precursor molecules of lignin biosynthesis is 

their degree of methoxylation (Christophe and Gregoire, 2001).

p-eoumarvl alcohol Conifarvl alcohol Sinapyl alcohol

Figure 1: Precursors of lignin biosynthesis.

Lignin embeds the polysaccharide matrix giving rigidity and cohesiveness to the wood 

tissue (Christophe and Gregoire, 2001). Lignin being more hydrophilic provides 

hydrophilic surface needed for the transport of water, the lignin content and monomeric 

composition vary widely among different taxa, individuals, tissues, cell types, and cell 

wall layers (Christophe and Gregoire, 2001).

2.4.2 Carbohydrates

The carbohydrate portions of wood comprise cellulose and hemicelluloses. Between 40% 

and 50% of the dry wood weight consists of cellulose (Christophe and Gregoire, 2001)
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and 25% to 35% hemicelluloses (Pettersen, 1984). The fundamental structural units are 

the microfibrils (MFs), which result through strong inter and intra molecular hydrogen 

bonds.

2.4.3 Cellulose

The microfibrils which are water-insoluble cellulose are associated with mixtures of 

soluble noncellulosic polysaccharides, the hemicelluloses. Cellulose occurs as 

heteropolymer such as glucomannan, galactoglucomannan, arabinogalactan, and 

glucuronoxylan, or as a homopolymer like galactan, arabinan, and 1,3-glucan 

(Christophe and Gregoire, 2001). Glucan polymer consists of linear chains of 1,4-bonded 

anhydroglucose units.

The number of sugar units in one molecular chain is referred to as the degree of 

polymerization (DP). Cellulose is insoluble in most solvents including strong alkali and 

becomes difficult to isolate from wood in pure form because of it’s intimately association 

with the lignin and hemicelluloses (Pettersen, 1984). Cellulose consists of 6-carbon sugar 

units, glucose, while hemicellulose contains a mixture of 5 and 6-carbon sugars.

2.4.4 Hemicelluloses

Unlike cellulose, hemicelluloses are soluble in alkali and easily hydrolyzed by acids 

(Pettersen, 1984). They are synthesized in wood almost entirely from glucose, mannose, 

galactose, xylose, arabinose, 4-0- methyl-glucuronic acid, and galacturonic acid residues 

(Pettersen, 1984). Hemicelluloses are of much lower molecular weight than cellulose and
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are present in abnormally large amounts when the plant is under stress; for example, 

compressed wood has higher lignin content (Pettersen, 1984). In hemicelluloses the C-6 

sugars are the glucoses, galactoses and mannoses that make up galactoglucomannansin 

hardwoods. Xyloses and arabinose constitute the C-5 sugars in hemicelluloses.

2.4.5 Extraneous components

Extraneous components are extractives and ash in wood mostly soluble in neutral 

solvents (Pettersen, 1984). Extractives are a variety of organic compounds including fats, 

waxes, alkaloids, proteins, simple and complex phenolics, simple sugars, pectins, 

mucilages, gums, resins, terpenes, starches, glycosides, saponins, and essential oils 

(Pettersen, 1984); while ash is the inorganic residue remaining after ignition at high 

temperature (Pettersen, 1984). The extraneous components do not contribute to the cell 

wall structure and consist of 4 -  10% of the dry weight of normal wood in temperate 

climates and as much as 20% of the dry weight of tropical species (Pettersen, 1984).

2.5 Infrared spectral region

Infrared Reflectance (IR) deals with the electromagnetic spectrum ranging from 700 to
*N,

106 nanometres (10 to 14300 c m 1) as shown in table 3. The atoms in a chemical bond in
»**'

this region continuously vibrate at discrete energy levels with respect to each other 

(Banwell, 1972).

IR works on the principle that when the target material is illuminated with Infrared light, 

IR energy is absorbed by functional groups made up of atoms and molecule; the
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absorbed energy causes bending, stretching, and twisting of bonds which leads to the 

characteristic absorbance and reflectance patterns (Chalmers and Griffiths, 2002; Ichami, 

2005).

The IR portion of the electromagnetic radiation (Table 3) is sub-divided into near 

infrared (NIR) 12500-4000 cm'1, Mid Infrared (MIR) 4000-400 cm'1 and Far infrared 

400 cm 1 (Osborne et a i, 1993). The NIR region (12500-4000 c m 1) spectral features 

arise from combinations and overtones of the fundamental vibrations associated with C- 

H, O-H, and N-H bonds (Small, 2006) and is further divided into three sub-regions 

(combination, first overtone, and short wavelength) on the basis of spectral 

characteristics associated with each (Small, 2006).

Table 3: A summary of the Infrared region of the electromagnetic spectrum.

Region Characteristic
Transition

Wavelength range 
(nm)

Wave number 
range (cm 1)

Near-Infrared (NIR) Overtones 700-2500 12500-4000

Middle-Infrared
combination
Fundamental 2500-5x104 4000-400

(MIR)
Far-Infrared

Vibrations
Rotations 5x104-106 400-10

Source: Banwell (1972).

Typical principal characteristics of spectral bands found in the NIR region; first-overtone
■n.

O-H stretch vibration near 6930 cm 1 and an O-H combination band near 5190 cnr'also 

visible near 4000 cm 1 is the tail of the large O-H stretching fundamental vibration near 

3400 cm 1 (Small, 2006), the transition type for all radiation types are shown in table 4.

After irradiating the compound of interest, bonds of the molecule absorb the radiation 

resulting in a transition between two vibrational energy levels (vl and v2). This
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absorption occurs when the radiation energy equals the vibration energy. Not all 

vibrations are Infrared active; only those that exhibits a change in dipole moment are 

Infrared active (Banwell, 1972).

Table 4: The electromagnetic radiation characteristics.

Radiation
Type

Radiation Source Type of Transitions

Gamma rays Gamma emitting 
radionuclides

Change in internal energy state of nuclei

X-rays Synchrotron radiation Inner electron
Ultraviolet Deuterium lamp Outer electron. Electronic transitions,
Visible Tungsten lamp Vibrational fine structure
Near-Infrared Tungsten, dye laser Outer electron molecular vibrations. 

Vibrational transitions, rotational fine 
structure

Infrared Nerst glower, Globar, 
Xe, Ar, Discharge lamp

Outer electron, molecular vibrations. 
Vibrational transitions, rotational fine 
structure

Microwaves Thermal Molecular rotations, electron spin flips*, 
Rotational transitions

Radio waves Oscillating conducting 
electrons

Nuclear spin flips*

Key: *Energy levels split by a magnetic field. IR region is of interest for this study.

At room temperature nearly all molecules exist in the vibrational ground state according 

to the Maxwell-Boltzmann law. Therefore, the three most important transitions in 

Infrared Spectroscopy are: v = 0 —> v = 1 (Av = 1), v = 0—► v = 2 (Av = 2), and v = 0 —» 

v = 3 (Av = 3). The first transition is called the fundamental absorption, the second and 

third are called first and second overtone respectively (Banwell, 1972; Swierenga, 2000). 

The vibration of molecules can be described using the harmonic oscillator model, by 

which the energy of different and equally spaced levels can be calculated from Equations



Evib=(v+~)2 2U Eql

Where v  is the vibrational quantum number, h the Planck constant, k the force constant 

and p the reduced mass of the bonding atoms, only those transitions between consecutive 

energy levels (Av ± 1) that cause a change in dipole moment are possible,

Where u is the fundamental vibrational frequency of the bond that yields an absorption 

band in the middle IR region (Blanco and Villarroya, 2002), the harmonic oscillator 

model cannot explain the behaviour of actual molecules, as it does not take account of 

coulombic repulsion between atoms or dissociation of bonds (Blanco and Villarroya, 

2002). As a result, the behaviour of molecules more closely resembles the model of a 

harmonic oscillator, the anharmonicity can result in transitions between vibrational 

energy states where Av ± 2, Av ± 3 ...these kind of transitions between non-continuous 

vibrational states yield absorption bands known as overtones (Blanco and Villarroya, 

2002).

Spectra are characterized quantitatively by observing positive and negative peaks, which 

occur at specific wavelengths and quantified statistically to determine constituents of

target materials such as soil and plant (Viscarra et al., 2006).

Shepherd and Walsh (2007) suggests that Infrared (IR) Spectroscopy can play a pivotal 

role in making the surveillance framework operational, by providing a rapid, low cost 

and highly reproducible diagnostic screening tool and noted the already usage of IR

Eq2
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Spectroscopy in the design of soil surveillance systems, hence proposed the same for 

plants.

IR has a short coming in that a single atomic entity with no chemical bonds makes it 

difficult to make spectral measurements; also if compounds of interest are present at very 

low concentrations they may have small influence on the spectral signature (Ichami, 

2005).

On the other hand, the advantages of IR spectrometers for spectral signatures collection 

override this disadvantage and include: (1) spectrometers for collection of spectral 

signatures are standard thus there is minimal variation between spectral measurements of 

same analyte taken from different laboratories; (2) the technique is rapid, low cost (No 

chemical required), straightforward and accurate (Reeves et a l, 1994; Shepherd and 

Walsh, 2002; Viscarra et a l, 2006; Ichami, 2005); (3) large numbers of samples can be 

analyzed in a short period of time (Janik et a l, 1998; Ichami, 2005); (4) samples in any 

state (solution, paste, powder and fibers) can be analyzed; (5) the method is 

environmental friendly since no chemical disposal complications; (6) spectral results 

have a higher degree of reproducibility compares with results obtained from 

conventional laboratory methods (Shepherd and Walsh, 2007).

-V
2.6 Multivariate calibration

v '

The American Society for Testing and Materials (ASTM, 1998) defines multivariate 

calibration in Spectroscopy as “a process for creating a model that relates sample 

properties to the intensities or absorbance’s at more than one wavelength or frequency of 

a set of known reference samples,” the practice has also been made available for
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multivariate calibration in near Infrared (NIR) and mid Infrared (MIR) Spectroscopy 

(Swierenga, 2000).

The digitalization of the NIR and MIR spectra at different wavelengths results in many 

and highly correlated variables (Small, 2006), but generally there is no well-defined 

physical law (model) available to predict the product properties from the corresponding 

spectrum (Swierenga, 2000). To extract chemical and physical information from such 

spectra, statistical modelling techniques or multivariate calibration models, such as 

Multiple Linear Regression (MLR), Partial Least Squares (PLS) and Principal 

Component Regression (PCR) are often used (Swierenga, 2000; Small, 2006).

2.6.1 Partial Least Square (PLS)

Partial Least Squares (PLS) predicts a set of dependent variables from a (very) large set 

of independent variables (Swierenga, 2000) by relating and extracting useful information 

from spectroscopic data to quantitative information of the measured samples. To obtain a 

PLS calibration model, various samples covering the future sampling space are measured 

along with the quantitative parameter(s) of the corresponding samples (Small, 2006).

These quantitative parameters are laboratory determined or calculated then a calibration 

model is developed ta  make predictions of the quantitative parameters when only the 

spectrum of a particular sample is measured (Small, 2006).

2.6.2 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a mathematical procedure for resolving sets of 

data into orthogonal components whose linear combinations approximate the original
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data to any desired degree of accuracy (Cozzolino et al.,2009). PCA procedure 

transforms a set of correlated variables into a smaller number of uncorrelated variables 

called principal components (or latent variables), orthogonal to each other (So et al., 

2004; Acuna, 2006). However, components are chosen to explain X (explanatory 

variables) rather than Y (response variables), and so, nothing guarantees that the 

principal components, which “explain” X, are relevant for Y (Abdi, 2003; Acuna, 2006).

2.7 The IR Model

2.7.1 Model development

The American Society for Testing and Materials (ASTM, 1998) describes standard steps 

for constructing, implementing, and maintaining a multivariate calibration model; these 

includes: 1) selecting calibration samples: 2) measuring properties and spectra of 

calibration samples: 3) calculating a calibration model: 4) validating the model: 5) 

applying the model for the analysis of unknowns: 6) monitoring the calibration model: 

and 7) updating the calibration model.

Although the process looks straight forward, this is not always the case as many 

sequential steps are usually involved in the building a calibration model, the steps 

include; rejection of outliers (both from the spectral and samples outliers) and spectral 

pre-processing.

The spectral pre-processing is usually necessary since: (1) some spectral regions may 

show a large variation not due to the parameter of interest (spectral region of interferent 

or spectral effect introduced by replacement of spectrophotometer or parts) (Swierenga,
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2000): (2) spectral noise: (3) there may be wavelengths containing absorbance’s that are 

not linearly related to the parameter of interest (Swierenga, 2000): (4) there may be 

wavelengths containing absorbance’s that are not directly related to the parameter of 

interest but have an indirect correlation (apparent causalities) (Swierenga, 2000).

2.7.2 Model validation

The quality of the models in the calibration and prediction sets in IR- can be assessed 

using different criteria; the most common criteria are coefficient of determination (R2), 

standard error of prediction (SEP) or cross validation (SECV), number of latent variables 

(LV) and ratio performance deviation (RPD), root mean square error of prediction 

(RMSEP) and the Bias.

The R2 value is a measure of the variation of the response variable (wood density, carbon 

and nitrogen) explained by the regression model, while the SEC is a measure of the 

prediction error expressed in the units of the original measurement or SECV measures 

the efficiency of the calibration model in predicting the property of interest in a set of 

unknown samples differing from the samples that form the calibration set (Schimleck et 

al., 2001). These parameters are given by;

Eq3
TSS

Eq4



SECY = Eq5( b - y j
N p - l

Bias =
v  . - i  .................................................................................

Equations (3-6) are from Schimleck et al. (2001).

Where SSR is the sum square of regression, TSS is the total sum of squares, y\ are the 

predicted values, y, measured reference values and Np the number of samples to be 

tested.

2.8 Spectral pre-processing

Spectral pre-processing is applied to extract the descriptive information from the spectral 

data and to remove the non-descriptive information, examples are baseline drifts (linear 

or polynomial) and wavelength shifts, multiplicative signals and noise (Defo et al., 2007; 

Swierenga, 2000).

The spectra pre-processing helps in the development of more simple and robust models, 

pre-treatment techniques used for spectra includes; normalization, derivatives (usually 

first or second), the multiplicative scatter correction (MSC), the standard normal variate 

(SNV), de-trending or a combination of all (Defo et al., 2007). Table 5 outlines the effect 

of each pre-processing techniques, the techniques have proven to reduce the influence of 

effects such as baseline drifts (first and second derivative), multiplicative and additive 

effects caused by different particle sizes (multiplicative signal correction; MSC), non
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relevant information (wavelength selection), wavelength shifts and slope variation in a 

spectrum (standard normal variate transformation; SNV) (Swierenga, 2000).

Every data pre-processing technique has its own specific properties and should, 

therefore, be used to remove the spectral effect for which it has been designed for. An 

example is a first derivative which is not capable to correct for wavenumber shifts 

(Swierenga, 2000).

Table 5: Spectral data pre-processing techniques.

Pre-processing technique______________
Mean Centering 
Normalization
Standard normal variate (SNV)transform

Multiplicative signal correction(MSC)

First derivative 
second derivative 
Variable selection
Savitzky Golay smoothing in combination 
with derivatives 
Variance scaling

Auto scaling
Logarithmic transformation 
Finite impulse response(FIR)

Kubelka-Munck transformation 
Fourier transform (FT)
Wavelet transform (WT)
Shift correction

»**'
Principal component analysis
(PCA)_______________________________
Source: Swierenga (2000).

Spectral effect________________________
Reduction of model complexity 
Removal of multiplicative effects 
Removal of additive and multiplicative 
spectral effects
Correction of additive and multiplicative
spectral effects
Removal of additive baseline
Correction of sloped baseline
Removal of unimportant variables
Noise reduction, additive and sloped
baseline correction
Equal contribution of all variables to 
model
Mean centering and variance scaling 
Normalization of variable distribution 
Correction of local additive and local 
multiplicative spectral effects 
Linearization of spectral variables 
Noise reduction and variable reduction 
Noise reduction and variable reduction 
Correction of wavelength shifts in spectral 
data
Variable reduction, removal of noise, and 
visualization of data
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2.9 NIR and Multivariate analysis on wood

Quantitative analysis in IR Spectroscopy is based on multi-component form of the Beer- 

Lambert law, NIR Spectroscopy on wood involves measuring the reflectance of IR 

radiation between 12000 to 4000 cm 1 (Osborne et al., 1993) and employing statistical 

methods such as principal components regression (PCR) or partial least squares 

regression (PLS) to find a few linear combinations of the original X-variables and to use 

only these components in regression equations (Small, 2006).

Principal components are created in a way that the first PC accounts for the maximum 

variation in the original data, the second PC accounts for as much of the remaining 

variance as possible, and so on. Only the most relevant part of the X-variation is used for 

regression as explained by highest percentages explained by the PCs (Naes et al., 2002; 

Small, 2006).

Models are first calibrated using samples with known/measured parameters. Once the 

calibration models have been developed, prediction of these parameters is possible with 

new samples using only the NIR spectra and the calibration models. Successes have been 

shown in predicting wood density of softwoods. Hoffmeyer and Pedersen (1995) 

produced a density prediction model with a coefficient of determination of prediction R2 

greater than 0.90 while working with Norway spruce (Picea abies)\ on the same species,
s*'

Thygesen (1994) used shavings to estimate the basic wood density.

Air-dry density of Pinus taeda was used by Schimleck et al., (2003) to develop 

calibration equations using NIR spectra. A good prediction equation between NIR 

spectra and density of European larch wood (Larix decidua) was developed by Gindl et
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al. (2001). Many studies applying NIR Spectroscopy to estimate wood properties have 

generally been based on solid wood samples of single species such as Picea abies 

(Thygesen, 1994; Hoffmeyer and Pedersen, 1995), Eucalyptus delegatensis (Schimleck 

et a l, 2001), Pinus radiata (Schimleck et al., 2001) and Eucalyptus globulus (Schimleck 

et al., 1999; Schimleck and French, 2001).

Recently Schimleck et al. (2001) developed a calibration for diverse range of species 

demonstrating wide densities and found out that some species, such as Chlorophora 

excelsa and Daniellia ogea, did not fit the calibration as well as the other species and this 

was attributed to the high extractives contents of these samples.

2.10 Application of multivariate analysis on MIR spectra

MIR seems to be valuable in following the molecular conformational changes, since the 

band shape reflects the degree of order in the system; it is easy to interpret the spectra 

and has been preferred to characterise the composition of agricultural products (Shepherd 

and Walsh, 2007).

The combination of MIR and multivariate data analysis techniques such as principal 

component (PCA) or discriminant analysis opens the possibility to unravel and interpret 

the spectral properties of the sample and allow qualitative analysis of the samples, such 

as discrimination or classification (Cozzolino et al., 2009). This enhances the ability to 

build a characteristic spectrum that represents the finger print of the sample.
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The ability of the MIR model to discriminate or identify wood core samples is based on 

the vibrational responses of chemical bonds to the electromagnetic radiation of MIR 

region (Cozzolino et al., 2009). Therefore, it follows that the higher the variability 

between sample-types in those chemical entities corresponding to MIR regions of the 

spectrum, the better the accuracy of the model. The holistic compositional characteristic 

of the wood matrix provides the required information. However, the application of MIR 

in wood analysis is not fully exploited.

2.11 Methods of estimating wood density

Wood density is an important variable needed to obtain accurate estimates of biomass, 

carbon flux and greenhouse-gas emissions from land-use change (Nogueira, 2008). It is 

defined as the mass of oven-dry wood per unit of volume of green wood and expressed 

in grams per cubic centimetre or kilograms per cubic meter.

Wood density has a correlation with a number of plant functional traits and acts as an 

important indicator of the mechanical properties of woods (Chave et al., 2009; Nock et 

al., 2009). The density varies within the plant, during the plant life, and between and 

within individuals of the same species, among and within individual trees of a given
•V

provenance (Zobel and Van Buijtenen, 1989). The branches and the outer part of the 

trunk tend to have a lighter wood than the pith (Chave et al., 2009). With each tree 

having its own characteristic wood density (O’Sullivan, 1976), the variation among 

different species is expected due to differences in anatomical structures.
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Other factors that influences the variation of wood density includes: heritability whose 

expression is site specific as well as population specific, density being a highly heritable 

characteristic (Cown et al., 1992). Because of anisotropic effect of wood’s strength, it 

has different properties in longitudinal and tangential directions due to its cellular 

structure and physical organisation of the cellulose chain within the cell walls (Treacy et 

al., 2000).

Linear relationship exists between strength and specific gravity (Treacy et al, 2000). 

Wood moisture content among others affects wood density, thus it is usually expressed 

in one of the following ways: green (with the same moisture content as in the living tree), 

oven-dry (after heating in an oven at 105 C until constant mass is achieved), or air-dry (at 

equilibrium with ambient conditions or other specified conditions) (Williamson and 

Wiemann (2010). Thus density values for a given sample may vary depending on how it 

was analysed (Desch and Dinwoodie, 1996). Wood density is considered to be one of the 

most important wood properties which impacts on the freight costs, chipping properties, 

and pulp yield per unit mass of wood and paper quality (Schimleck et a l, 1999; Pliura et 

al., 2007; WU Shi-jun et al., 2010).

Measuring wood density from live trees can be expensive and time consuming, Several 

methods exist on wood density determination but quite a number are influenced by the 

method used in extracting samples from the trunk and how the volume of the sample is 

determined (Francis, 1994).

Indirect methods including penetrometer and SilviScan which uses a combination of X- 

ray densitometry, X-ray diffractometry and image analysis have been used (Shimleck,
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2005). Extracting samples for wood density, carbon and nitrogen determination comes 

with challenges; the increment borer which has wide application in samples collection 

from living trees has a drawback of being expensive and borers with smaller diameters 

compresses the samples. Francis (1994) introduced a non-destructive method using a 

carpenters auger involving coring of tree trunk to collect cores at tree breast height and 

then safely estimate whole-tree density. However, to date the potential of this method is 

not exploited.

2.12 Predicting tree carbon and nitrogen

Determination of the role forests play in mitigating atmospheric carbon dioxide content 

globally is an important aspect; it is essential to have accurate inventory data of carbon 

content in forest organic matter (Lamlom and Savidge, 2003). The basic starting point is 

the tree wood; it represents the dominant pool of carbon. Carbon occurs in innumerable 

forms within forest ecosystems (Lamlom and Savidge, 2003).

Future policies for carbon sequestration in agriculture, forestry and landscape monitoring 

would require the measurement of carbon across species over time and at different 

geographical locations in order to determine whether, and if so, how much, carbon is 

being sequestered or lost from landscapes. Recent emphasis has been placed upon the 

ability to more accurately and precisely measure the carbon that is stored and sequestered 

in forests (Brown, 2002).

Near-Infrared reflectance Spectroscopy has become dominant method for analysis of 

agricultural products where large numbers of samples are used. In addition the technique
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has been applied previously in soil carbon analysis (Madari et a l, 2005; Shepherd and 

Walsh, 2007). The limitation of Near-Infrared Spectroscopy is that it measures only 

organic carbon and is also known to be prone to biases (Madari et a l, 2005): Other 

standard methods for carbon analysis are: (1) the combustion or chromate oxidation 

(Madari et a l, 2005). (2) loss-on-ignition which is relatively cheap and rapid but suffers 

from accuracy problems, because mineral fractions can also be decomposed by heating 

(Madari et a l, 2005).

Both these methods require more than one determination in order to acquire information 

on both organic carbon and inorganic carbon (carbonates) and are not capable of 

determining other forms of carbon, such as soluble carbon, lignified carbon, charcoal and 

black carbon (Madari et a l, 2005). On the other hand, NIR requires only the 

development of calibrations then from a single spectrum all these parameters can be 

analysed.

Among other factors, two correlating variation in wood carbon content have been 

identified by Lamlom and Savidge (2003). First, the lignin content, species with high 

lignin content tend to display high carbon content. The second factor is the volatile 

carbon fraction in wood; this may contribute substantially to variation in total wood 

carbon content.

Thomas and Malczewskia (2007) reported data on the mass density and carbon content 

of tree organs, and in particular stem wood, are essential for accurate assessments of 

forest carbon sequestration. Dominant carbon pool within forest ecosystems is 

represented by wood (Lamlom and Savidge, 2003).
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With few research data sets available on carbon content in woods, a default concentration

of 50% (w/w) has been assumed and widely adopted, however, the value varies over a 

range of 47-59% depending on the species and soil type (Lamlom and Savidge, 2003). 

This could be due to uniqueness of wood chemistry as well as anatomy. Several studies 

have documented the potential of MIR to successfully predict carbon and nitrogen and 

other constituents of soils and different kinds of organic matter (Chang and Laird, 2002; 

Ludwig et al., 2002; McCarty et al., 2002; Michel et al., 2006; Rossel et al., 2006; 

Shepherd and Walsh,2007).

Although MIR is not as well established as NIR for the predictions, it may be more 

useful since intense fundamental vibration dominate the mid-IR region (Ludwig et al, 

2008). The MIR region is considered energetic enough to excite molecular vibrations to 

higher energy levels (Chalmers and Griffiths, 2002); the high selectivity of the MIR 

method makes the estimation of an analyte in a complex matrix possible. Interacting 

vibrations in these region gives rise to unique fingerprints for each compound (Banwell, 

1972).

2.13 NIR and mineral content of plants

NIR can accurately estimate the content of several organic components in plants, crude 

protein, neutral detergent fibre, acid detergent fibre, cellulose, as well as other related 

parameters (Petisco et al., 2005). There has been a controversy on the use of IR 

technique to determine the mineral content of plants; since most elements would not be 

expected to produce absorption in this region, except for rare earth elements such as 

holmium and didymium (Petisco et al., 2005). Givens and Deaville (1999) reported the
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usage of NIR in the determination of the concentration of certain cations owing to their 

association with organic or hydrated inorganic molecules.

Calibration model was also developed by Batten and Blakeney (1992) to estimate N, S, 

P, K and Mg contents in dry ground rice shoot samples by examining the influence of 

inter-correlations between constituents on the true ability of NIR to determine mineral 

nutrients (Petisco et a i, 2005).
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Study Site

The study was conducted in Yala basin which had three blocks: Middle Yala, Lower 

Yala and Upper Yala (Figure 2). The study sites were previously identified by the 

Western Kenya Integrated Ecosystem Management Project (WKIEMP) and covers Siaya 

district in Nyanza and Western province (Boye et a l, 2008).

The three blocks measured approximately 100 km2 and were characterized by low crop 

productivity together with land degradation. The annual rainfall ranges from 1200 mm to 

1800 mm in western and between 800 to 1900 mm in Siaya; annual mean temperature is 

28°C.
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3.2 Sample collection

Coring through the bark to the start of the heartwood (as noted by a colour change) was 

done at constant height of 1.3 m above the ground, diameter at the breast height (DBH) 

(Figure 3), 10 cm above DBH (Rl) and 10 cm below DBH (R2) the first chips produced 

in coring the preparatory hole was discarded. This cored hole through the bark was 

brushed out and its depth measured with a ruler. This became the starting depth of the 

sample; three cores were taken per tree trunk; root and branch cores were also taken in 

addition.

Short cylindrical cores, approximately 30-100 mm long (depending on tree diameter) 

from the periphery into the inner portion of the trunk were obtained using a 2.5-mm-wide 

carpenters auger bit, upon withdrawal of the auger, chips remaining in the hole were 

collected using a flattened stick or thin spatula and added to the sample collection plastic 

bag.

Figure 3: Tree core sampling using carpenter’s auger.
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Tree cores were selected to include a broad range of species from middle Yala, lower 

Yala and upper Yala, although, the number was limited. Selection was random 

representing full range of diameters classes of the present trees on farm.

3.2.1 Samples preparation

Fresh weight of each core sample was taken in the field and then placed in a zip lock bag 

for transportation to the laboratory where they were dried at 105°C in oven until no 

further weight loss. Weights were taken after oven drying and recorded. Cores were 

ground and sieved using a sieve size of 0.5 mm into a fine powder and placed in zip lock 

bags.

3.3 Wood density calculations-coring method

Cored volume (v) was determined by assuming the core is cylindrical and hence using

Eq7

Where, d is the bit diameter (2.5 cm) and h, is the core depth in cm.
•v

• 3 « * •Relative wood density (w^) or specific gravity in g cm" was then calculated as the ratio 

of wood dry mass (dm) to core volume (v).

w.
v

Eq8
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Where, dm is wood dry mass (gms) and v is core volume.

3.4 Carbon and nitrogen analysis

2 mg of fine ground samples were placed in tin capsule (Analytical Technologies Inc., 

Valencia, CA, USA) then analyzed for carbon and nitrogen using a CN analyzer 

Thermo-Quest Flash EA1112 according to manufacturer’s protocol.

3.5 NIR Spectroscopy measurements

A 5 g portion of fine ground cored sample was put in clean labelled glass vial then mixed 

for homogeneity. Two scans for near Infrared were generated then averaged. Cored 

samples were scanned through the bottom of the glass vial placed on an integrating 

sphere window.

Spectral data was collected in reflectance mode using a high intensity contact probe 

attached to Fourier Transform Infrared Multi-purpose Analyzer (FTIR MPA) (Figure 4) 

between 350 to 2500 nm (12000-4000 cm-1). FTIR was found in ICRAF spectral 

laboratory in Nairobi. For each spectrum, 30 scans were collected by the spectrometer 

and averaged to product a single spectrum.
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(Source: ICRAF-NAIROBI Spectral Laboratory) 
Figure 4: Bruker Transform Infrared multi-purpose Analyzer

3.6 MIR-Spectroscopy measurements

Another set of fine ground samples (approximately one gram) were loaded into 96 well 

aluminium micro titre plates (Figure 5) with an empty cell used as background reference. 

The plant samples were then analyzed in the Mid-Infrared (4000 -  600 cm '1) diffuse 

reflectance region using a Bruker High-Throughput-Screening (HTS-XT) accessory 

attached to a Bruker Tensor 27 FT-IR spectrometer.

Figure 5: Aluminium micro plate used to scan cored samples.
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3.7 Pre-processing of spectra

IR spectra of wood samples are generally influenced by the physical properties of the 

samples (Defo et al„ 2007). To minimize these contributions that incorporate irrelevant 

information into spectra, first derivative spectral pre-treatment method was used.

3.8 Infrared Calibration

3.8.1 Calibration samples selection from IR spectra

The selection of representative calibration samples IR analysis were selected based on 

recorded NIR and MIR spectral diversity using the Kennard-Stone algorithm and 

calculated principal component scores. Kennard-Stone algorithm procedure consists of 

selecting as the next sample (candidate object) the one that is most distant from those 

already selected objects (calibration objects). The distance is usually the Euclidean 

distance although it is possible, and probably better, to use the Mahalanobis distance.

From the spectra of all 404 core samples, the approach involved selection of calibrations 

sets based on variety of sample set designs; these include: (1) Calibrations based on all 

samples with no independent validation/test set. (2) Calibrations based on a 50/50 split of 

samples. (3) Calibrations usings 10%, 20%, 30%, 40%, 60%, 70%, 80%, 90% in 

calibration set in which every remaining sample was used as the validation set 

respectively. (4) Using only E. camaldulensis as calibration set given that it was most 

abundant in the blocks. Calibrations were then developed using each spectral range of 

NIR and mid-IR.
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3.8.2 IR prediction model

The construction of the prediction model followed the following key processes: 1) 

Scanning and recording IR spectra of samples. 2) Choosing the calibration samples using 

PCA analysis of spectra. 3) Determining the target parameter on selected samples by 

using the reference method. 4) Subjecting spectra to appropriate pre-treatments. 5) 

Predict the know samples constituents with the developed model. 6) Validating the 

model and predicting unknown samples as illustrated in summary model diagram in 

Figure 6.

Component sample spectra

Figure 6: Summary model in the calibration model-construction.
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3.9 Data analysis

3.9.1 Field data

Exploratory data analysis was done using GenStat statistical software (Payne et al, 

2009) and XLSTAT version 2008.6 to understand the interactions between densities with 

tree parts and species Tukey's test was carried out on mean separation for the different 

tree parts. Pearson correlation coefficient was used estimate strength and direction of association 

between wood density and carbon.

3.9.2 Multivariate analysis

Calibration development was done using PLS regression statistical analysis using R 

software version 2.12.1 (R Development Core Team, 2008) available from www.r- 

project.org. Validation of the calibration model was carried out using “leave-one-out” 

cross-validation technique.

The Predicted Residual Error Sum of Squares (PRESS) was computed from the error in 

prediction from the standards by cross-validation and plotted as a function of the number 

of factors employed in 'the calibration; Spectral information was within the range of 

8000-4000 cm '1 for NIR and 600-4000 cm'1 (-18,000-2500 nm) for MIR. The spectra 

were merged into a single data matrix (X-matrix) while wood density, carbon and 

nitrogen data were combined into a response matrix (Y-matrix).
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3.9.3 Partial Least Square (PLS) analysis

The data set was divided into calibration sets for developing discriminant models and 

prediction sets for evaluating the classification performance of the computed models. 

Multivariate analysis of the spectroscopic data was made through the use of the R 

statistical software.

PLS regression was used to develop the calibrations with a cross validation method, 

factors that produced the highest coefficient of determination (R2) in the prediction set 

was used, very high coefficient of determination in a model can result to over fitting with 

a high number of latent variables resulting to poor performance of prediction when the 

model is used with the prediction set. Thus the quality of the models in the calibration 

and prediction sets was measured with R2 and error evaluation done using root mean 

square error of prediction (RMSEP) (Martens and Naes, 1991; Acuna, 2006). The 

RMSEP shows how far typical points are above or below the regression line.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Wood cores

A total of twenty different species found on-farm were selected. Middle Yala had the 

highest number of species both indigenous and exotic while in Upper Yala no indigenous 

tree was found (Table 6).

Table 6: Total Species collected from Yala Basin.

Site Indigenous species Exotic species

Middle Yala Bridelia micrantha 
Croton macrostachyus 
Harungana madagascalensis 
Markhamia lutea 
Prunus africana 
Syzygium cordatum 
Trilepisium madagascariensis

Cuppresus lusitanica 
Eucalyptus camaldulensis 
Eucalyptus grandis 
Eucalyptus saligna 
Mangifera indica 
Persia americana 
Syzygium cuminii

Upper Yala No Indigenous species Acacia mearnsii 
Cupressus lusitanica * 
Eucalyptus grandis* 
Grevillea robusta 
Jacaranda mimosifolia

Lower Yala Combretum molle 
Ficus- spp 
Markhamia lutea* 
Spathodea campanulata

Grevillea robusta* 
Mangifera indica* 
Syzygium cuminii*

Key*=Repeated species in other sites
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4.1.1 Lower Yala

Lower Yala had 4 indigenous and 3 exotic species as shown in table 7 from which 69 

cores were taken at different tree positions, this included DBH, R1 and R2, Branches and 

Roots. The frequency of each tree part sampled varied are shown (Figure 7,Figure 8 and 

Figure 9). Mangifera indica had the highest number of cores since it was the most 

common in the area (46.38%) followed by Markhamia lutea at 20.29% and Spathodea 

campanulata at 4.35%.

Table 7: Total number of individual species collected from Lower Yala.

Species Number of cores Number of individual species
Combretum molle 5 1
Ficus spp 5 1
Grevillea robusta 5 1
Mangifera indica 32 6
Markhamia lutea 14 5
Spathodea
campanulata 3 1
Syzygium cuminii 5 1

Branch core Root core Trunk R1 Trunk R2 Trunk at DBH

Tree parts

Figure 7: Frequency of tree parts cored in Lower Yala.



Among the most sampled tree parts across the species in this region, branch cores had 

the highest frequency of 15 equivalents to 21.74% followed by Trunk R1 and Trunk at 

DBH both having 14 (20.29%). Root core and trunk replicate (R2) were both at 18.84%.
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4.1.2 Middle Yala

A total of 252 cores from 14 different species found in this area were collected (Table 8). 

Eucalyptus camaldulensis had the highest number of cores representing its abundance in 

the area with 119 cores recorded representing 47.22% of entire samples collected. This 

was followed by another Eucalyptus species, Eucalyptus grandis at 11.51%, with Croton 

macrostachyus at 1.19% being least sampled.

Table 8: Total number of individual Species collected from Middle Yala.

Species Number of cores Number of individual species
Bridelia micrantha 7 2
Croton macrostachyus 3 2
Cupressus lusitanica 15 4
Eucalyptus grandis 29 7
Eucalyptus camaldulensis 119 28
Eucalyptus saligna 6 6
Harungana madagascariensis 5 1
Mangifera indica 5 1
Markhamia lutea 16 4
Persea americana 7 2
Prunus africana 20 16
Syzygium cordatum 10 2
Syzygium cuminii 5 1
Trilepisium madagascariensis 5 1

The distribution frequency on tree parts sampled (Figure 8) was high for Trunk at DBH 

(74%) while branch core was at 35%.
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Figure 8: Frequency of tree parts cored in Middle Yala.

4.1.3 Upper Yala

Acacia mearnsii had the highest number of cores and most common species in the area 

with 36 cores representing 43.37% of the total 83 cores from this block. Grevillea 

robusta at 27.71% and Cupressus lusitanica at 3.61% (Table 9). The frequency 

distribution of tree part cores across this block is shown in Figure 9.

Table 9: Total number of individual cores collected from Upper Yala.

Species Number of cores Number of species
Acacia mearnsii 36 7
Cupressus lusitanica 3 1
Eucalyptus grandis 10 3
Grevillea robusta 23 4
Jacaranda mimosifolia 11 2

The distribution frequency of Trunk at DBH, Trunk R1, Trunk R2 and branch cores were 

equal (18%), while Root core had the lowest frequency 11%.



20

ou

c<u3cr

15

10 Li l l i
Branch core Root core Trunk R1 Trunk R2 Trunk at DBH

Tree parts

Figure 9: Frequency of cores from Upper Yala.

4.2 Wood densities

Density by species based on tree parts (Trunk, Roots and Branches) cored was explored 

using box plots (Figure 10, Figure 11 and Figure 12). Box plots are useful when 

comparing two or more sets of sample data by giving a picture of the symmetry of a 

dataset, and shows outliers very clearly. From the box plots, outliers were removed 

before averaging cores from different tree parts in order to get whole tree density by 

species.
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Figure 10: Box plot of wood density by species based on trunk cores.
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Figure 11: Box plot of wood density by species based on branch cores.
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4.3 Whole tree density

Before averaging the densities, means of tree parts were separated using Tukey's mean 

separation (Table 10) using GenStat Statistical software (12th edition); The means were 

not significantly different at p=0.05. Whole tree densities of species from the three 

blocks calculated from carpenter’s auger method are summarized in table 11.

Table 10: Tukey's mean separation of tree parts

Tree part Mean
Root core V .' r 0.4877
Trunk R2 0.5295
Trunk at DBH 0.5359
Trunk R1 0.5430
Branch core 0.5445
Note: Means are not significantly different at p=0.05
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Table 11: Whole tree densities of species from the Yala Basin

Species TS Tc Mean Min Max Variance S.d
(gem'3) (gem'3) (gem'3)

Acacia mearnsii 7 31 0.66 0.47 0.81 0.01 0.08
Bridelia micrantha 2 7 0.38 0.22 0.55 0.02 0.13
Combretum molle 1 5 0.66 0.58 0.70 0.00 0.05
Croton macrostachyus 2 3 0.44 0.38 0.56 0.01 0.11
Cupressus lusitanica 5 18 0.48 0.36 0.66 0.01 0.09
Eucalyptus camaldulensis 28 108 0.51 0.30 0.79 0.01 0.11
Eucalyptus grandis 10 37 0.47 0.22 0.75 0.01 0.12
Eucalyptus saligna 2 5 0.34 0.17 0.45 0.01 0.11
Ficus spp 2 5 0.44 0.28 0.53 0.01 0.10
Grevillea robusta 19 27 0.62 0.52 0.72 0.00 0.05
Harungana 2 4 0.47 0.45 0.49 0.00 0.02
madagascariensis 
Jacaranda mimosifolia 6 10 0.47 0.35 0.63 0.01 0.09
Mangifera indica 24 35 0.57 0.40 0.71 0.01 0.08
Markhamia lutea 13 29 0.41 0.20 0.69 0.02 0.13
Persea americana 3 5 0.44 0.42 0.48 0.00 0.02
Prunus africana 14 16 0.74 0.67 0.79 0.00 0.04
Spathodea campanulata 1 3 0.43 0.28 0.52 0.02 0.13
Syzygium cordatum 7 10 0.76 0.68 0.79 0.00 0.04
Syzygium cuminii 6 10 0.56 0.40 0.77 0.02 0.13
Trilepisium
madagascariensis

3 5 0.52 0.45 0.68 0.01 0.09

Key: SD= standard deviation, TC= number of cores from each species, TS= Total
number of species

A total of 373 cores from three blocks were used for wood density estimation after 

removing all the outliers; out of 404 core samples 31 outliers were removed from which 

root cores contained the. highest number of outliers followed by branch core, indicating a 

possibility of a problem with branch and root coring during samples collection. Trunk 

had the least number of outliers.

3
The densities were in the range of 0.34-0.75 gem" with an average mean value of 0.55 

gem . Eucalyptus saligna was found with the lowest density value of 0.34 gem while
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Syzygium cordatum had the highest density value of 0.75 gem'3. Within the same genus 

of Eucalyptus, density values ranged from 0.51-0.34 gem' with Eucalyptus 

camaldulensis having the highest density value followed by Eucalyptus grandis at 0.47 g 

cm'3.

A study by Rueda and Williamson, (1992) showed that pioneer trees grow quickly at 

first, producing low-density wood, and later add structural support by adding a shell of 

harder wood. The controlling factor for adding the harder wood is the age of the tree, 

rather than the diameter (De Castro et al., 1993).

4.4 Interactions between densities with species and tree parts

The Interactions between densities with species and tree parts showed significant effect 

with F<0.001 for species as shown in table 12. However, there was no significance 

difference in density between tree parts and species.

Table 12: Interactions between densities with tree species and tree parts.

Change DF SS MS Fpr
+ Species 20 3.308752 0.165438 <0.001
+ Tree parts 7 0.112910 0.016130 0.128
+ Species. Tree parts 69 0.504632 0.007314 0.934
Residual 276 2.735716 0.009912
Total -312 6.662010 0.017909
Key: ms= means standard error, ss=sum of squares, DF= degrees of freedom

4.5 Calculated and reported densities

The reference Global Wood Density database (GWD), which has wood densities for 

8412 species from around the world (Flores and Coomes, 2010), and the African wood
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density database (Carsan et al., 2012) provided data for comparison with the calculated 

density values using different methods. Wood densities of similar species reported from 

tropical Africa encountered in these databases were averaged, but since these densities 

are reported in units of mass of wood at 12% moisture content per unit of volume at 12% 

moisture content, a correction to equivalent oven dry densities was done using a 

calibration equation developed by Reyes et al. (1992) by multiplying reported values by 

0.88. The databases provided an opportunity for comparison between the calculated 

density values and the reported densities (Table 13).
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Table 13: Calculated densities and reported densities.

Species C.d
Reported densities (gem'3) by regions
T. Africa Asti S-E Asia China SA India

Acacia mearnsii 0.66 - 0.66 - - - -
Bridelia micrantha 0.38 0.44-0.58 0.50 - -
Combretum molle 0.66 0.79 - - - - -
Croton macrostachyus 0.44 0.45-0.52 - - - - -
Cupressus lusitanica 0.48 0.39 - - - - -
Eucalyptus camaldulensis 0.51 - 0.48-0.97 - 0.59 - -
Eucalyptus grandis 0.47 - 0.63-0.66 - - - -
Eucalyptus saligna 0.34 - 0.68-0.86 - - - -
Ficus spp 0.44 - - - - -
Grevillea robusta 0.62 0.51-0.516 - 0.5 - 0.64
Harungana madagascariensis 0.47 0.47 - 0.47 - - -
Jacaranda mimosifolia - - - - -

0.47
Mangifera indica 0.57 0.54 - 0.52 - - 0.68
Markhamia lutea 0.41 0.47 - - -
Persea americana 0.44 0.52 - - - 0.6
Prunus africana 0.74 0.77 - - - - -
Spathodea campanulata 0.43 - - - - - -
Syzygium cordatum 0.76 0.62 - - - - -
Syzygium cuminii 0.56 - - - 0.63 0.76
Trilepisium madagascariensis 0.52 0.50 - - - - -
Key: Cd= calculated density, T. Africa=Tropical Africa, Asti = Australia, SA=South America,-no reported value
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From these two databases not all species were reported and the density of Ficus spp was 

not reported in the global data base; however most of the values reported were within the 

range of those calculated using the carpenter’s auger method.

4.6 Carbon and nitrogen analyses

Total carbon and nitrogen concentrations determined using thermal oxidation are 

summarized in tables 14 and 15. Measured carbon and nitrogen values in percentage 

were converted to contents (gem3) by dividing by 100 then multiplying by the 

corresponding species density.
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Table 14: Measured carbon (%) and Carbon contents (gem 3).

Species TS Nc Mean Min Max Variance S.d C(gcm'J)
Acacia mearnsii 27 24 48.08 47.36 48.61 0.14 0.37 0.32

Bridelia micrantha 3 7 45.02 43.95 45.99 0.40 0.63 0.17
Combretum molle 3 5 46.80 45.49 48.05 0.86 0.93 0.31
Croton macrostachyus 1 3 44.13 43.95 44.44 0.07 0.27 0.20
Cupressus lusitanica , 9 15 47.21 46.19 48.67 0.44 0.67 0.23
Eucalyptus camaldulensis 63 116 46.50 44.61 48.54 0.74 0.86 0.24
Eucalyptus grandis 10 37 48.37 46.90 50.31 0.64 0.80 0.23
Eucalyptus saligna 6 6 47.97 45.13 49.41 2.72 1.65 0.17
Ficus spp 1 5 47.80 46.92 48.51 0.33 0.57 0.21
Grevillea robusta 5 22 49.17 47.31 50.68 0.78 0.88 0.30
Harungana madagascariensis 1 5 48.51 47.53 49.27 0.46 0.68 0.23
Jacaranda mimosifolia 2 11 48.60 46.04 50.02 1.61 1.27 0.23
Mangifera indica 7 36 47.19 45.60 48.60 0.45 0.67 0.27
Markhamia lutea 9 30 48.77 47.11 50.72 0.78 0.88 0.20
Persea americana 2 6 47.52 46.88 48.03 0.18 0.43 0.21
Prunus africana 16 20 47.93 46.50 49.14 0.50 0.71 0.35
Spathodea campanulata 1 3 47.43 46.25 48.46 1.24 1.11 0.20
Syzygium cordatum 2 9 48.23 47.31 49.08 0.35 0.59 0.37
Syzygium cuminii 2 10 48.56 45.61 51.26 2.06 1.43 0.27
Trilepisium madagascariensis 1 5 47.41 46.64 47.84 0.25 0.50 0.25

-- -̂--------------Key: SD= standard deviation, Nc=number of cores from each species, TS= Total number of trees, C=carbon content in gem 3.
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Table 15: Measured Nitrogen (%) and Nitrogen contents (gem" ).
■5

Species TS Nc Mean Min Max Variance S.d. N(gcm‘J)

Acacia mearnsii 27 35 0.27 0.14 0.38 0.0049 0.07 0.0018
Bridelia micrantha 3 7 0.23 0.21 0.25 0.0001 0.01 0.0009
Combretum molle 3 3 0.29 0.28 0.31 0.0004 0.02 0.0019
Croton macrostachyus 1 3 0.27 0.26 0.28 0.0001 0.01 0.0012
Cupressus lusitanica 9 18 0.22 0.13 0.28 0.0016 0.04 0.0011

Eucalyptus camaldulensis 63 118 0.22 0.11 0.34 0.0016 0.04 0.0011

Eucalyptus grandis 19 31 0.20 0.11 0.42 0.0036 0.06 0.0009
Eucalyptus saligna 2 6 0.21 0.18 0.26 0.0009 0.03 0.0007
Ficus spp 2 5 0.30 0.29 0.31 0.0001 0.01 0.0013
Grevillea robusta 19 28 0.23 0.09 0.35 0.0025 0.05 0.0014
Harungana madagascariensis 2 5 0.25 0.23 0.28 0.0004 0.02 0.0012
Jacaranda mimosifolia 6 11 0.30 0.25 0.36 0.0009 0.03 0.0014
Mangifera indica 24 37 0.24 0.11 0.37 0.0016 0.04 0.0014
Markhamia lutea 13 28 0.34 0.24 0.43 0.0016 0.04 0.0014
Persea americana 3 7 0.25 0.21 0.31 0.0016 0.04 0.0011

Prunus africana 16 20 0.21 0.14 0.29 0.0009 0.03 0.0016
Spathodea campanulata 1 3 0.24 0.23 0.26 0.0004 0.02 0.0010
Syzygium cordatum 7 10 0.28 0.24 0.31 0.0004 0.02 0.0021
Syzygium cuminii 6 9 0.24 0.16 0.36 0.0036 0.06 0.0014
Trilepisium madagascariensis 3 5 0.29 0.21 0.32 0.0025 0.05 0.0015
Key: SD= standard deviation, Nc=-number of cores from each species, TS-= Total number of trees, N=Nitrogen content in gem"’
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Species mean carbon values ranged from 44 to 49% and 0.17 to 0.36 g cm 1 for carbon 

content. The carbon and nitrogen values were in agreement with previously reported 

range, species variation in total C was statistically significant (P<0.001), with values 

ranging from 44.13% in Croton macrostachyus to 49.17% in Grevillea robusta (Table 

14).

Carbon variation and measurement error was relatively low, with an average standard 

deviation of 0.79%. All the twenty species examined had an average percentage C of 

47.56%, significantly lower than 50% default carbon value. Thus, this variation with thee 

often assumed default value of 50% C in wood could lead to an over estimation of tree C 

stocks but still provides a rough estimate of carbon biomass.

Most species deviated from this estimate by between 1-4% using 50% as reference value. 

Croton macrostachyus an indigenous species in the area showed high deviation of 4%. 

However, similar deviations of 2-3% among conifers were reported by Thomas and 

Malczewski (2007). For conifers, 2-3% deviation resulted in 4-6% bias in carbon stock 

assessments (Thomas and Malczewsk,i 2007).

The reported deviation of 1-4% in this study could result in about 2-8% bias in carbon 

stock assessments in tropical agricultural landscape. A 1% difference in carbon content 

conceivably could have a significant impact on wood and pulp industries in relation to 

allocation of carbon credits within the context of Kyoto Protocol (Lamlom and Savidge, 

2003).

The total nitrogen concentration among different species ranged from 0.34% in 

Markhamia lutea to 0.2% in Eucalyptus grandis. Elemental nitrogen in plants has been
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reported by Pettersen (1984) to be in the range of 0.1-0.5%. The twenty species had a 

mean value of 0.25% and range of 0.17 to 0.36 gem '3 for nitrogen content.

4.7 Correlation between wood density, carbon and nitrogen contents

Wood density values were positively correlated with carbon content (r = 0.995) and 

nitrogen content (r = 0.849), these were supported by Pearson correlation matrix (Table 

16 and Figure 13).

Table 16: Pearson correlation between density, carbon and nitrogen.

Variables ------------------------ 3----Density(gcm’ ) Carbon(gcm 3)

Carbon (gem' ) 0.995

Nitrogen(gcm 3) 0.849 0.844

Key: Values in bold are significantly different with a significance level alpha p < 0.05.

In general, there was a very strong positive correlation between wood density, carbon 

and nitrogen, all at p<0.0001. These correlations are important in carbon pool assessment 

and are in agreement with Dietz (2007) that a better understanding of wood density 

values can reduce the error of carbon pool estimation.

The higher the density values the higher the C and N contents (Figures 13 and 14). 

Hacke et al. (2001) showed that wood density correlates positively with carbon and
■V

concluded that high wood density is advantageous for survival in dry climates and may 

aid in the transport of liquids in dry conditions. However, this may suggest the 

adaptation of these species to the Yala basin given that wood tends to be chemically as 

well as anatomically unique for individual species. Therefore, it would be reasonable to
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expect that each species would have characteristic carbon content (Lamlom and Savidge, 

2003).

Figure 14: Correlation between nitrogen with carbon for 20 species.

Positive relationship among species on nitrogen and carbon contents exists as shown in 

Figure 14. Although the lignin to nitrogen ratio is known to change during 

decomposition, this study did not calculate the ratio of carbon to nitrogen which has an 

inverse correlation to lignin concentration; so the higher the ratio of carbon to nitrogen 

the lower the lignin concentration (Melillo et al., 1982).

57



4.8 Species variation with wood density, carbon and nitrogen

High wood density is a characteristic of slowly growing species, found in dry soils or in 

nutrient-poor soils (Preston et a i, 2006; Muller-Landau, 2004) than similar shrub-like 

growth (Preston et al., 2006). Syzygium cordatum and Prunus africana had highest 

densities (Note: Size of points indicates increasing densities.

Figure 15). S. cordatum is described in ICRAF database as one of southern Africa's 

fastest growing trees (up to lm/year) while Prunus africana is described as a slow 

growing species.

Growing the same species in different geographical locations can result in readily 

detectable differences in wood properties. Some softwood species showed higher carbon 

content; which was attributed to the fact that softwoods have approximately 10% more 

lignin than hardwoods (Lamlom and Savidge, 2003).
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Figure 15: Species-specific density values with (a) carbon (b) nitrogen

The kind of positive relationship (R2=0.99) between wood density and carbon content

(Note: Size of points indicates increasing densities.

Figure 15) are practically useful for C stock estimation since determination of carbon is 

relatively difficult and expensive (Elias and Potvin, 2003).



Wood density has been proposed as a good proxy to C estimation in tropical trees. 

Findings by Elias and Potvin, (2003) showed strong relationships between C and wood 

density (R2 = 0.86). Similar relationship was reported by Thomas, (1996) and Muller- 

Landau, (2004) in diverse forest ecosystems. Theoretically slow-growing species often 

contain high C compounds (e.g., lignins, polyphenolic compounds), whereas fast

growing species contain low C compounds (e.g., alkaloids, phenolic glycosides, 

cyanogenic glycosides).

Schlesinger (1991) reported that C content of biomass is almost always found to be 

between 45% and 50% (by oven-dry mass) and thus, the carbon content of vegetation 

may be estimated by simply taking a fraction of the biomass by:

C = 0 .4 7 5 x 5 ..................................................................................................................Eq 10

Where, C is carbon content by mass, and B is oven-dry biomass.

4.9 Indigenous and exotic trees carbon storage

Relationship among the twenty tree species collected from Yala basin was explored by 

cluster analysis based on Euclidean distance under taken using an un-weighted pair 

group method with arithmetic averaging. The species were divided into indigenous and 

exotic (Table 18), proximity matrix showed four major clusters (Figure 16); the 

clustering was based on species carbon and their distances shown in Table 18.
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Figure 16: Dendogram based on Euclidean distance for 20 tree species.

The cluster numbers in the dendogram corresponds to species as given in the key of table 

18 and their corresponding types. However, the cluster distances are given in Table 17.

Table 17: Distances between four clusters among 20 species from Yala basin.

Cl(Indigenous) C2 (Indigenous) C3 (Exotic)
Cl (Indigenous)
C2 (Indigenous) 3.210
C3 (Exotic) 1.040 2.170
C4 (Exotic) 0.940 4.150 1.980

The mean carbon values for indigenous cluster 1 and 2 were 48.23% and 45.02% 

respectively. While the exotic clusters 3 and 4 had carbon values of 49.17% and 47.19% 

respectively.
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Table 18: Classification of species types and corresponding cluster number.

Cluster Species Key Type of species
1 A ca c ia  m earn sii 1 Exotic

E u ca lyp tu s g ra n d is 7 Exotic
E u ca lyp tu s sa lig n a 8 Exotic
F icu s sp p 9 Indigenous
H aru n gan a  m a d a g a sca rien sis 11 Indigenous
J a ca ra n d a  m im osifo lia 12 Exotic
M arkh am ia  lu tea 14 Indigenous
Prunus a frican a 16 Indigenous
S yzyg iu m  corda tu m 18 Indigenous
S yzyg iu m  cum inii 19 Exotic

2 B rid e lia  m icran th a 2 Indigenous
C ro ton  m acro sta ch yu s 4 Indigenous

3 C om bretu m  m olle 3 Exotic
C u p ressu s lu sitan ica 5 Exotic
E u ca lyp tu s ca m a ld u len sis 6 Exotic
M an gifera  indica 13 Exotic
P erse a  am erica n a 15 Exotic
S p a th o d ea  cam pan u la ta 17 Indigenous
T rilep isiu m  m a d a g a sca rien sis 20 Indigenous

4 G rev ille a  robu sta 10 Exotic
Key: Numbers match the corresponding species name in Figure 16

The results in Figure 16 showed no clear pattern among the indigenous and exotic 

species in terms of their carbon distribution, this could be due to the fact that trees have 

different characteristics in terms of metabolism and growth resulting in various C- 

containing compounds (Kozlowski, 1992), the variations in C are influenced by site 

conditions, tree age and management practice (Elias and Potvin, 2003).

Cluster 2 had only indigenous species while cluster 4 had only exotic, the number of G. 

rob u sta  sampled was one, thus complicating explanation for cluster 4. A minimum of 

five trees are recommended by Williamson and Wiemann (2010) while sampling tree 

species, this indicates that the number of trees required in a given ecosystem depends on 

the variability within the species.
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4.10 Spectral measurements

4.10.1 Spectral signatures

Cored samples exhibited distinct spectral signatures for both the NIR and MIR spectral 

regions, differences between the bands of individuals wood samples in the NIR and MIR 

spectral regions are difficult to distinguish, showing only as broad humps as shown in 

Figures 17 and 20. These are spectral signatures from the three blocks (Middle Yala, 

Lower Yala and Upper Yala). Near Infrared spectral acquisition in the range of 4,000 cm 

1 to 8,000 cm'1 (Figure 17) and 600 cm '1 to 4,000 cm '(Figure 18) for Mid-Infrared 

regions.

Figure 17: Spectral signatures for Near Infrared spectra region.

Major absorption bands for core samples were found in the wavelength region at 6940- 

6900, 5700-5630 and 5650-5600, 4850-4780, 4400-4380 and 4220-4180 cm '1 in the NIR
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spectral region. Bonds with more s character absorb at high frequency, Sp1 (C-H) just 

below 3000 cm '1 to the right, SP2 (C-H) just above 3000 cm '1 to the left and SP (C-H) at 

3300 cm 1. O-H stretch of carboxylic acid (COOH) absorbs broadly due to strong 

hydrogen bonding at 2500cm'1. Also notable peak around 5650-5600 cm '1 could be as a 

possible result of -CH3 stretch in first harmonic region and various functional groups 

present in different tree species of wood samples, specific absorption bands are as shown 

in table 19.

Table 19: Specific absorption bands in near Infrared spectra of wood cores.

Wavenumber (cm 1) Chemical
Group

Characteristic
vibration

Spectral region

12000-9000 Noisy region 3rd harmonic
9350-9220 -CH andC-C Stretch Combination
8850-8770 Aromatic 2nd harmonic

8700-8580;8840-8370 and 
8400-8330

-CH3 Stretch 2nd harmonic

7170-7020 -OH Bend 1st harmonic
7090-7040 and 6940-6900 -CH and CH Stretch and bend Combination
5950-5920 Aromatic Inharmonic
5850-5870;5700-5630 and 
5650-5600

-CH3 Stretch 1st harmonic

4850-4780 -OH Stretch and bend Combination
4400-4380 CH- Stretch and bend Combination
4220-4180 -OH Stretch 2nd harmonic
Source: Banwell (1983)

In the spectral signatures in MIR region (Figure 18), dominant absorption features were 

observed in the following region: 3400, 1750-1600, 2970, 2250, 2220, 1750-1600 and 

1200-1000 cm '1 suggesting the following functional groups; -NH2, -CH3, -C=N, -C=C, 

>C=Q and from 1200-1000 cm'1; -C-C-, -C-N and -C-0-.
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Figure 18: Full range spectral signatures for mid-infrared spectra region.

The distinct fingerprint region of Mid-Infrared from 1200-600 cm '1 is hard to resolve but 

is useful since different species have different compounds with distinct fingerprint 

signatures. Table 20 has characteristic stretching frequencies for some of molecular 

groups around MIR region. The finger print region shows both the skeletal vibrations- 

involving all atoms and the characteristic group vibrations which only involves small

portion of the molecule, with the remainder being more or less stationary. Skeletal
■*>

frequencies are in the range of 1400-700 cm '1 and arise from linear or branched chain 

structures (Banwell, 1983). The high peak around 1350 cm 1 is due to C-H and O-H 

bending vibrations (Banwell, 1983).
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Table 20: Characteristic stretching frequencies in MIR region

Group Appox.freq
(cm'1)

Type of 
vibration

Group Appox.freq
(cm 1)

Type of 
vibration

-OH 3600 bending in- 
plane

>C=C< 1650 scissoring, or 
bending in
plane

-n h 2 3400 >C=N- 1600
=CH 3300 Deformation 

and stretching
> c= o  „ 1750-1600

0
3060

C O  
C-N< ' 
C-O- .

1200-1000
twisting, or 
bending out- 
of-plane

=c h 2 3030 >C=S 1100
-c h 3 2970,2870 Asymmetrical

stretching
>C-F 1050

-c h 2- 2850 symmetrical
stretching

C-Cl 725 Rocking, or 
bending in
plane

-SH 2580 stretching C-Br 650 scissoring, or 
bending-C=N 2250 C-I 550

-C=C 2220 1350-1150
cm-1

Source: 3anwell (1983)

4.10.2 Spectral pre-processing

First derivatives spectral pre-treatment technique (Figure 19 andFigure 20) gave the data 

for chemometric modelling by subtracting each variable (point) in a sample from its 

immediate neighbouring variable (point) thus, removing the same signal between the two 

variables leaving only the part of the signal which is different.

The spectral range extending from 9,000 to 12,500 cm 1 in NIR had high noise level 

corresponding to the third harmonic region. It was excluded for calibration since it is 

characterized by low absorption and has poor information quality (Hein et al., 2009).
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Figure 19: Reduced raw and first derivative of NIR spectra.

Hein et al., (2009) reported the application of spectral filter, exclusion of outliers and 

selection of variables wavelengths as a way of improving statistics associated with 

models. Similarly Jones et al., (2006) also reported improvement while studying basic 

density of 120 samples of Pinus taeda. These findings demonstrated that application of 

spectral data pre-treatment of the first derivative reduced the standard error of prediction 

(SEP) but increased ratio performance deviation (RPD).
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Figure 20: Raw and first derivative of Mid-Infrared spectra.

4.10.3 Selected samples

The selected representative samples (Figure 21) were based on recorded NIR and MIR 

spectral diversity using the Kennard-Stone algorithm and calculated from principal 

component scores (PCs). The PCs approximates the original data to desired degree of

accuracy (Cozzolino el al., 2009), transforming a set of correlated variables into a
** '

smaller number of uncorrelated variables called latent variables. Other different 

calibration sets followed the same principle. The pictorial representation (Figure 21) 

helps to visualise whether the selected samples are really representative.
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Figure 21: Selection based on 10% with red indicating selected samples

4.11 PLS Calibration

4.11.1 Developing a calibrations using all samples set

In this approach all the samples are used as the calibration set, expecting best calibration 

thus, giving the best indication of the potential of mid-IR or NIR as useful tool for
■v

determining physical and chemical composition (Bellon-Maurel and McBratney, 2011).
w'

The calibration performance was low (Table 21, Figures 22 and 23) with low R2 values 

both for MIR and NIR, making it virtually impossible for the calibration to determine 

accurately the composition of new samples from their spectra alone.
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Figure 22: NIR PLS Calibration models for density and carbon
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Figure 23: MIR PLS Calibration models for density and carbon
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The data presented in table 21 show that the Nir-IR calibrations in terms of R for WD 

was fairer at (R2=0.55), while the rest were poor with R <0.50. Mid-IR calibrations were 

not good either with nitrogen (R2=0.51) and the other properties having R2<0.50. With 

only a few exceptions, calibrations based on Nir-IR spectra were better (larger R2 and 

smaller RMSECV) than their MIR counterparts even after removing wavelengths 

associated with CO2 region.

Table 21: Statistical summary of cross-validated calibration results using all samples as 
the calibration set

IR range n Property PCs R2 Bias RMSECV
NIR 373 WD 12 0.55 -0.03 0.17

375 C 12 0.51 -3.48 12.59
389 N 9 0.48 -0.04 0.09
381 Cg 6 0.49 0.02 0.11
380 Ng 9 0.38 -6E-05 6E-04

MIR 373 WD 6 0.42 -0.03 0.18
375 C 8 0.49 -3.37 12.92
389 N 9 0.51 -0.04 0.09
381 Cg 6 0.43 0.02 0.11
380 Ng 9 0.42 -4E-05 6E-04

Key: WD = wood density (gem'3), C =carbon (%), N = Nitrogen, Cg =carbon (gem'3), 
n=total number of samples after removal of outliers

The calculated principle components (PCs) were affected by various wave-lengths 

attributable to various chemical structures and compounds (Chodak et al., 2007); PCs 

reduced the data points describing the manipulated NIR /MIR spectra.

For wood density prediction using MIR spectra (90% Calibset), PCI was dominated by 

absorption at 1890 and 700 cm '1, which may be attributed to COOH groups (Figure 24). 

PC2 was affected mainly by absorption between 3,500 and 2,500 cm 1 (attributable to 

CH3 groups) and PC3 by absorption at 3,670, 3,300, and 2,350 nm (attribued to CH2 and 

CH3 groups).
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Figure 24: Plot of factor loading values for the PCs for MIR spectra

From the means of these three methods (Table 22), predicted mean wood density values 

from NIR and MIR was 0.527 gem'3 and 0.528 gem 3 while the calculated density was 

0.59 gem'3. Mean carbon predicted was 47.58% (NIR), 47.59% (MIR) and laboratory 

measured mean carbon value was 47.61%. Mean IR predicted nitrogen was 0.24% (NIR) 

and 0.24% for MIR, while laboratory determined value was 0.28%. Predicted Carbon 

(gem'3) from NIR and MIR spectra had the same mean values of 0.28 gem'3, but low 

mean laboratory values of 0.24 gem'3. Mean nitrogen in (gem'3) was the same for both 

the IR and laboratory measured values (0.0014 gem' ). The standard deviation of these 

properties were small given that the predictions were from different ranges of 

wavelengths (NIR and MIR) compared to the values obtained by laboratory 

measurement.
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Table 22: Chemical and physical properties of wood cores determined using the three 
different methods.

Method Property Unit Mean Median Min Max Std.dev
NIR Density gem'3 0.53 0.50 0.25 0.95 0.11

Carbon % 47.58 47.46 44.14 51.45 0.98
Carbong gem 3 0.28 0.26 0.14 0.56 0.06
Nitrogen % 0.24 0.23 0.18 0.47 0.04
Nitrogen g gem-3 0.0014 0.0013 0.0007 0.0034 0.0004

MIR Density gem"3 0.53 0.52 0.32 0.86 0.11
Carbon % 47.59 47.44 45.56 51.24 1.01
Carbong gem'3 0.28 0.27 0.15 0.45 0.06
Nitrogen % 0.24 0.23 0.18 0.38 0.04
Nitrogeng gem"3 0.0014 0.0013 0.0005 0.0038 0.0004

MD Density gem'3 0.59 0.58 0.20 0.95 0.16
Carbon % 47.61 47.60 39.62 52.14 1.52
Carbong gem"3 0.24 0.23 0.02 0.49 0.06
Nitrogen % 0.28 0.28 0.09 0.48 0.08
Nitrogeng gem"3 0.0014 0.0014 0.0001 0.0036 0.0005

Key: CD = Calculated density, MD =Measured density

Subjecting the mean values to Pearson correlation, all properties of the variables had 

positive correlation coefficients with P values greater than 0.050, implying that there was 

no significant relationship between the means.

4.11.2 Prediction of species properties from whole samples model

The output in Figure 25 shows the results of a fitted linear model describing the 

relationship between IR (MIR/NIR) predicted values against calculated/laboratory
v '

measured values of 20 species using mean values from whole samples prediction model.
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Figure 25: A model between IR predicted and measured values (all samples)

These linear models shows that when the values averaged to the species level the 

prediction is much better than the individual core models, an indication that large within 

species variations exist that cannot be predicted using IR. But in general all other 

properties were well predicted using NIR with both models showing statistically
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significant relationship. The nitrogen content both calculated (gem'3) and measured (%) 

had good correlation with NIR predicted values with R2 of 0.83. While MIR gave R2 of 

0.62 and 0.80 respectively. For NIR, carbon both calculated (gem-3) and measured (%) 

gave R2 value of 0.66 and 0.82 respectively, and 0.57 and 0.72 respectively for MIR. In 

NIR the predicted values gave a correlation coefficient greater than 0.080, indicating 

strong relationship.

4.11.3 Calibration and validation using 50/50 split

Table 23 lists performance details of the analysis of PLS models for wood properties. For 

carbon, the calibration model performed better than the initial model developed using the 

entire samples, with the R2 value improving from 0.51 to 0.75 for calibration, and 0.31 

for validation in NIR region (Figure 27).

The R-Square validation set explains 30.68% of the variability in predicted values, while 

the correlation coefficient equals 0.55, indicating a moderately strong relationship 

between the variables. While for MIR R2 value improved from 0.45 to 0.53 for 

calibration, and 0.40 for validation (Figure 26). The validation model explains 40.43% of 

the variability in predicted set.

The correlation coefficient equals 0.64 indicates a moderately strong relationship 

between the variables, other properties were poorer with R2<50 in calibration sets. For 

density, nitrogen model had similar performance, while the SECV showed a small 

increase in the 50/50 model.
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Figure 27: NIR PLS models for carbon (A) Calibration and (B) validation.
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Table 23: Cross-validated calibration and Independent validation results for NIR and 
MIR region of spectra based on 50/50 split.

Calibration Validation
IR n Prop R2 RM PCs n Prop R2 Bias RMSEP
range erty SECV erty
NIR 187 WD 0.24 0.21 2 186 WD 0.19 -0.03 0.18

186 C 0.75 0.02 12 187 C 0.31 -3.07 12.71
195 N 0.07 0.22 2 194 N 9E-06 -0.04 0.08
191 Cg 0.33 0.23 3 190 Cg 0.18 0.01 0.10
190 Ng 0.11 0.33 2 190 Ng 0.05 0.000 0.001

MIR 187 WD 0.39 0.19 3 186 WD 0.31 -0.04 0.19
186 C 0.53 0.02 7 187 C 0.40 -3.50 12.95
195 N 0.32 0.2 3 194 N 0.03 -0.04 0.08
191 Cg 0.39 0.23 3 190 Cg 0.01 0.01 0.11
190 Ng 0.31 0.3 3 190 Ng 0.28 0.000 0.001

Key: WD = wood density (gem'3), C =carbon (%), N = Nitrogen, Cg =carbon (gem'3), 
n=total number of samples

4. 11.4 Prediction of species properties using 50/50 split model

Statistical summary of predictions developed using 50/50 split is shown in table 24; the 

mean values were regressed against measured values (Figure 28). At 95.0% confidence 

level, the predictions developed using MIR was generally better than NIR; density 

R2=0.51(MIR) and R2=0.46 (NIR), carbon (%) R2=0.60 (MIR) and R2=0.48 (NIR), 

nitrogen (%) R2=0.66 (MIR) and R2=0.02 (NIR), carbon (gem'3) and nitrogen (gem'3) 

R2<0.50 for both MIR and NIR.
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Figure 28: A 50/50 split model between IR predicted and measured values.
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Table 24: Summary statistics of predicted values using 50/50 split mode

Property Mean Min Max S.D C.V(% )
Density (gem'-5) 0.52 0.34 0.76 0.12 0.23
MIR Predicted 0.55 0.44 0.69 0.08 0.15
NIR Predicted 0.53 0.45 0.65 0.05 0.10
Carbon (%) 47.56 44.13 49.17 1.24 0.03
MIR Predicted 47.80 45.74 49.58 0.93 0.02
NIR Predicted 47.02 44.71 49.26 1.17 0.02
Nitrogen (%) 0.25 0.20 0.34 0.04 0.15
MIR Predicted 0.26 0.22 0.31 0.03 0.10
NIR Predicted 0.25 0.23 0.27 0.01 0.05
Carbon (gem'3) 0.26 0.17 0.38 0.06 0.23
MIR Predicted 0.29 0.23 0.37 0.05 0.16
NIR Predicted 0.28 0.22 0.34 0.04 0.14
Nitrogen (gcm'J) 0.001 0.001 0.002 0.000 0.27
MIR Predicted 0.002 0.001 0.002 0.000 0.20
NIR Predicted 0.001 0.001 0.002 0.000 0.11
Key: Min=Minimum, Max=maximum, S.D=Standard deviation, C.V=Coefficient of 
variation

The properties of the variables had positive correlation coefficients with P > 0.05, except 

in the density estimation where P < 0.05.

4.11.5 Varying percentages of Calibration set

Table 25 and 27 shows results for calibration sets of 10%, 20%, 30%, 50%, 60%, 70%, 

80% and 90% for the properties in both NIR and MIR region. While tables 26 and 28 

shows the independent validations sets. Coefficient of determination (R ), bias and root 

mean square error of prediction (RMSEP) shows the predictive performance for cross- 

validated calibrations results and independent validations.
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Table 25: NIR Cross-validated calibration results.

Calib
set

Property R" PCs RM
SECV

Calib
set

Property ~R2 PCs RM
SECV

Calib
set

Property R2 PCs RM
SECV

10% WD 0.27 1 0.19 40% WD 0.24 2 0.21 70% WD 0.33 4 0.2
10% C 0.42 2 0.02 40% C 0.75 12 0.02 70% C 0.76 15 0.01
10% N 0.35 2 0.19 40% N 0.13 2 0.21 70% N 0.03 1 0.22
10% Cg 0.13 h 0.19 40% Cg 0.21 2 0.24 70% Cg 0.48 10 0.2
10% Ng 0.03 1 0.3 40% Ng 0.03 1 0.33 70% Ng 0.39 10 0.28
20% WD 0.5 3 0.17 50% WD 0.24 2 0.21 80% WD 0.52 12 0.17
20% C 0.53 2 0.02 50% C 0.75 12 0.02 80% C 0.37 4 0.02
20% N 0.45 3 0.18 50% N 0.07 2 0.22 80% N 0.31 7 0.21
20% Cg 0.36 3 0.2 50% Cg 0.33 3 0.23 80% Cg 0.5 11 0.2
20% Ng 0.02 1 0.31 50% Ng 0.11 2 0.33 80% Ng 0.42 10 0.32
30% WD 0.33 3 0.17 60% WD 0.53 11 0.16 90% WD 0.53 12 0.19
30% C 0.64 6 0.01 60% C 0.76 14 0.02 90% C 0.5 11 0.02
30% N 0.04 1 0.22 60% N 0.03 1 0.22 90% N 0.5 11 0.19
30% Cg 0.32 3 0.19 60% Cg 0.27 2 0.25 90% Cg 0.49 11 0.21
30% Ng 0.03 1 0.32 60% Ng 0.09 2 0.35 90% Ng 0.42 12 0.31

Key: WD = wood density (gem"*), C =carbon (%), N = Nitrogen, Cg =carbon (gem 1), Ng = Nitrogen (gem ')
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Table 26: NIR Independent validation results.

Calib
set

Prope
rty

R2 Bias RM
SEP

Calib
set

Prop
erty

R2 Bias RM
SEP

Calib
set

Prope
rty

R2 Bias RM
SEP

10% WD 0.46 -0.02 0.18 40% WD 0.43 -0.02 0.18 70% WD 0.30 -0.07 0.18
10% C 0.48 -3.47 12.63 40% C 0.30 -2.94 12.71 70% C 0.10 -4.29 12.47
10% N 0.01 -0.04 0.09 40% N 0.00 -0.03 0.08 70% N 0.01 -0.07 0.08
10% Cg 2E-05 o .o l 0.11 40% Cg 0.03 0.02 0.10 70% Cg 0.10 0.01 0.10
10% Ng 0.36 -6E-05 6E-04 40% Ng 0.10 -0.02 0.18 70% Ng 0.001 0.000 0.001
20% WD 0.48 -0.04 0.18 50% WD 0.19 -0.03 0.18 80% WD 0.14 -0.09 0.20
20% C 0.34 -3.32 12.58 50% C 0.31 -3.07 12.71 80% C 4E-05 -4.29 12.34
20% N 0.001 -0.05 0.09 50% N 9E-06 -0.04 0.08 80% N 0.01 -0.07 0.08
20% Cg 0.01 0.03 0.10 50% Cg 0.18 0.01 0.10 80% Cg 0.22 0.01 0.11
20% Ng 0.34 -8E-05 0.001 50% Ng 0.05 0.000 0.001 80% Ng 0.00 0.000 0.001
30% WD 0.36 -0.04 0.18 60% WD 0.18 -0.05 0.19 90% WD 0.014 -0.08 0.19
30% C 0.31 -2.89 12.74 60% C 0.23 -3.61 12.59 90% C 0.10 -3.67 12.47
30% N 0.00 -0.05 0.09 60% N 0.00 -0.05 0.08 90% N 0.01 -0.07 0.08
30% Cg 0.004 0.03 0.10 60% Cg 0.20 0.00 0.10 90% Cg 0.01 0.04 0.10
30% Ng 0.34 0.000 0.001 60% Ng IE-05 0.000 0.001 90% Ng 0.01 0.000 0.001
Key: WD = wood density (gem 1), C =carbon (%), N = Nitrogen, Cg =carbon (gem"1), Ng = Nitrogen (gem 1)
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Table 27: MIR Cross-validated calibration results.

Calib
set

Property Rz PCs RM
SECV

Calib
set

Property R z PCs RM
SECV

Calib
set

Property Rz PCs RM
SECV

10% WD 0.50 2 0.14 40% WD 0.49 6 0.16 70% WD 0.5 8 0.16
10% C 0.76 5 0.01 40% C 0.62 7 0.02 70% C 0.57 8 0.02
10% N 0.65 4 0.15 40% N 0.35 3 0.2 70% N 0.36 5 0.19
10% Cg 0.41 2 0.15 40% Cg 0.42 7 0.19 70% Cg 0.47 8 0.2
10% Ng 0.40 2 / 0.26 40% Ng 0.26 3 0.29 70% Ng 0.44 8 0.26
20% WD 0.50 1 0.22 50% WD 0.39 3 0.19 80% WD 0.47 7 0.17
20% C 0.71 6 0.01 50% C 0.53 7 0.02 80% C 0.53 9 0.02
20% N 0.70. 5 0.13 50% N 0.32 3 0.2 80% N 0.4 7 0.2
20% Cg 0.39 3 0.19 50% Cg 0.39 3 0.23 80% Cg 0.47 6 0.21
20% Ng 0.14 1 0.22 50% Ng 0.31 3 0.3 80% Ng 0.48 10 0.29
30% WD 0.49 3 0.15 60% WD 0.41 2 0.2 90% WD 0.5 8 0.2
30% C 0.58 3 0.02 60% C 0.57 8 0.02 90% C 0.46 7 0.02
30% N 0.35 3 0.19 60% N 0.35 5 0.19 90% N 0.47 7 0.19
30% Cg 0.36 3 0.18 60% Cg 0.50 7 0.2 90% Cg 0.37 3 0.24
30% Ng 0.32 3 0.28 60% Ng 0.45 8 0.27 90% Ng 0.41 8 0.31
Key: WD = wood density (gem"'), C =carbon (%), N = Nitrogen, Cg =carbon (gcnT3), Ng = Nitrogen (gem 1)

83



Table 28: MIR Independent validation results.

Calib
set

Prop
erty

R2 Bias RM
SEP

Calib
set

Prop
erty

R" Bias RM
SEP

Calib
set

Prope
rty

R2 Bias RM
SEP

10% WD 0.47 -0.03 0.015 40% WD 0.39 -0.05 0.19 70% WD 0.33 -0.09 0.18
10% C 0.45 -3.37 12.99 40% C 0.41 -3.32 13.03 70% C 0.00 -4.42 12.70
10% N 4E-05 -0.05 0.09 40% N 0.02 -0.05 0.09 70% N 0.03 -0.08 0.08
10% Cg 0.001 0.02 0.11 40% Cg 0.00 0.01 0.11 70% Cg 0.1 0.02 0.11
10% Ng 0.33 0.000 0.001 40% Ng 0.28 0.000 0.001 70% Ng 0.15 0.000 0.001
20% WD 0.50 -0.05 0.18 50% WD 0.31 -0.04 0.19 80% WD 0.21 -0.12 0.19
20% C 0.38 , -3.29 12.80 50% C 0.40 -3.50 12.95 80% C 0.01 -4.47 12.88
20% N 0.006 -0.06 0.10 50% N 0.03 -0.04 0.08 80% N 0.10 -0.09 0.09
20% Cg 0.13 0.02 0.11 50% Cg 0.01 0.01 0.11 80% Cg 0.00 0.04 0.12
20% Ng 0.31 0.000 0.001 50% Ng 0.28 0.000 0.001 80% Ng 0.16 -0.12 0.19
30% WD 0.50 -0.05 0.18 60% WD 0.27 -0.08 0.20 90% WD 0.26 -0.07 0.18
30% C 0.42 -3.26 12.99 60% C 0.08 -4.07 12.68 90% C 0.00 -4.14 12.86
30% N 0.01 -0.33 0.09 60% N 0.00 -0.07 0.09 90% N 0.04 -0.08 0.09
30% Cg 0.004 0.02 0.11 60% Cg 0.03 0.01 0.11 90% Cg 0.02 0.04 0.12
30% Ng 0.31 0.000 0.001 60% Ng 0.17 0.000 0.001 90% Ng 0.05 -7E-05 7E-04

Key: WD = wood density (gcrrr1), C =carbon (%), N = Nitrogen, Cg =carbon (gcm ;<), Ng = Nitrogen (gcm‘J)
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Although the spectra has some information, prediction performance was insufficient to 

be above the recommended Infrared Spectroscopy to be a practical method for direct 

determination of wood density and carbon content across species when different 

percentages were used.

4.11.6 E u c a lyp tu s  c a m a ld u le n s is  as a calibration set (n=116)

The genus Eucalyptus has over 800 species; among which E. camaldulensis, E. saligna 

and E. grandis are some of the most important commercial timber species which are 

exotic and widely planted in Yala basin. E. camaldulensis had the highest number of 

cores recorded from the field data. This was done in answering the question whether a 

single tree species could be used to predict the properties of other nineteen different 

species.

For the carbon and wood density NIR model, the calibration model performed poorly as 

the model developed using the MIR, with the R2 value calibration of 0.54 and 0.56 for 

wood density and carbon respectively; while the other wood properties had R  <0.50 

(Table 29, Figure 30) with lowest root mean square error of validation reported for 

carbon (0.01). Calibration set for MIR shows slight improvement for carbon with 

R2=0.61 low standard error of prediction of 0.01 was found for MIR (Figure 29).
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Figure 29: MIR PLS models for carbon (A) Calibration and (B) validation.
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Figure 30: NIR PLS models for density (A) Calibration and (B) validation
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Table 29: Cross-validated calibration and Independent validation results for NIR and 

MIR region of spectra based on E. camaldulensis.

Calibration Validation
IR range Property R2 RMSECV PCs Property R2 Bias RMSEP
NIR WD 0.54 0.14 6 WD 0.29 -0.02 0.18

C 0.56 0.01 3 C 0.21 -4.05 12.48
N 0.03 0.19 1 N IE-04 -0.04 0.09
Cg 0.55 0.19 6 Cg 0.00 0.03 0.11
Ng 0.19 0.28 2 Ng 0.35 5E-05 6E-04

MIR WD 0.54 0.15 3 WD 0.48 -0.03 0.18
C 0.61 0.01 4 C 0.17 -3.93 12.80
N 0.2 0.18 3 N 4E-05 -0.04 0.09
Cg 0.57 0.18 3 Cg 0.002 0.04 0.11
Ng 0.37 0.25 3 Ng 0.38 3E-05 6E-04

Key: WD - wood density (gem 1), C =carbon (%), N = Nitrogen, Cg =carbon (gem'3), 
n=total number of samples

4.11.7 Prediction of mixed Species properties using E. ca m a ld u le n s is  model

Statistical summary of predictions developed using E. camaldulensis model is shown in 

table 29. The models were poor with R2<0.50 both for NIR and MIR, making it 

impossible to predict mixed species properties using cores from only one species (Figure 

31).
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Calculated density (g/cmA3)

•  MIR *  NIR

Carbon (g/cmA3)
•  M IR *  NIR

0.0005 0.0015 0.0025

Nitrogen (g/cmA3)
•  M IR *  NIR

Measured Carbon (% )
•  MIR X NIR

Measured Nitrogen (% )
♦  MIR *  NIR

K E Y
A=Density (g/cmA3) 
B=Carbon (%) 
C=Carbon (g/cmA3) 
D=Nitrogen (%) 
E=Nitrogen (g/cmA3)

Figure 31: A model (E. camaldulensis) of IR predictions and measured values.

Nonetheless, as a result of overlapping bands, interpretation of IR spectra directly cannot 

be useful; the reflectance spectroscopy is based on the use of calibrations, coupled with 

chemometrics techniques, which utilize absorbance at many wavelengths to predict 

particular properties of a sample, these chemical and mechanical properties are correlated 

with the spectra using projection to latent structures (PLS) models.
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Since the species exhibit extreme variation in wood chemistry, anatomy and physical 

properties the results in figure 31 supports the fact that E. camaldulensis species alone 

could not predict the properties of other species.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions

1. The protocol developed in this study using auger method when used correctly, 

appears to accurately measure wood density, carbon and nitrogen of tree species. 

The auger method is rapid and the field sample collection time is about 10 

minutes per sample and it is capable of extracting samples from hard hardwoods. 

Coupled with Infrared spectroscopy, the protocol is simple to use, faster, portable 

and easy to handle in the field hence it can be used to acquire wood density, 

carbon and nitrogen data for unknown species without cutting down the trees.

2. This study provides evidence that IR techniques coupled with multivariate 

statistical techniques can be used to predict both physical and chemical properties 

of wood and it may be possible to predict properties of unknown species. This is 

important for field measurements where there are diverse species; however, 

satisfactory results were for large data sets. The result from the study shows that 

even though the spectra have some information, prediction performance was 

insufficient even with different calibration and validation percentages.

3. In developing a predictive model for wood density, carbon and nitrogen 

concentration for selected tree species in Yala landscapes, a strong positive 

relationship (R2=0.99) between wood density and carbon content and also 

between wood density and nitrogen (R2=0.78) was observed. But there was no
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clear distinction observed between carbon content stored in indigenous versus 

exotic species. The generic 50% carbon was found to be higher compared to 

47.56% reported in this study. This difference of about 2% could result in bias in 

carbon stock estimation. Thomas and Malczewski (2007) reported a carbon 

difference of 2-3% among conifers from the generic value and noted a bias of 4 -  

6% in carbon stock assessments. Carbon content variation among species reflects 

differences in chemical make up’s and because wood density is easier and 

cheaper to measure than C concentration, developing calibrations with only one 

species was not possible.

4. While predicting physical and chemical properties of tree species using NIR/MIR 

spectral regions, NIR predictive model gave better predictions for all the 

properties (R2>0.80) except for wood density estimation where MIR performed 

better with R2=0.81. A prediction performance with R" values of 0.75 and above 

are considered good (Kelly et al., 2004) for heterogeneous material such as wood.

5. Finally, the study further demonstrated that Fourier transform Spectroscopy in the 

infrared domain continues to be an attractive technique in predicting physical and 

chemical characteristic of tree species due to its fast analysis time (seconds), 

moderate cost, shorter sample preparation time and reproducible results.
■v,

5.2 Recommendations

1. Applications of Fourier transform Infrared Spectroscopy is a robust approach to 

tree physical and chemical properties analysis.
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2. This research work was limited to few tree species suggesting further work on 

improving the prediction accuracy by increasing sample size and incorporating 

more diverse species to draw meaningful inferences about predicting properties.

3. The observed strong relationship between wood density and carbon-nitrogen 

content should be explored to develop a carbon-nitrogen database. The database 

will be useful for C stock estimation and supplement the existing wood density 

databases for species specific values in biomass estimation.

4. The estimation of carbon-nitrogen in trees gave an illustrative assessment of 

carbon-nitrogen storage within the habitats sampled. Other carbon pools are 

likely to follow a similar pattern with agricultural intensification.

5. Pre-processing transformations of spectral data constituted an important step in 

multivariate calibration and improved the accuracy of prediction models. 

However, other methods of spectral pre-processing techniques need to be tried 

when dealing with diverse set of tree species.
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APPENDICES

Appendix 1: NIR PLS Calibration models for nitrogen and Carbon (all samples set).

Appendix 2: NIR PLS Calibration models for nitrogen and Carbon and nitrogen (90% 

Calibration set).
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Appendix 3: Samples selection based on spectral diversity. Red dots indicates selected 

calibration samples set.

-4 0  -2 0  O 2 0  4 0  6 0
PC1 explains 29 .9 %

-4 0  -2 0  O 2 0  4 0
PC3 explains 1 1 . 4 %

Appendix 4: Plot of factor loading values for the PCs for carbon from MIR spectra.
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Appendix 5: Plot of factor loading values for the PCs for nitrogen from MIR spectra.

Appendix 6: Plot of factor loading values for the PCs for wood density from NIR 

spectra.

S

Appendix 7: Plot of factor loading values for the PCs for carbon from NIR spectra.
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