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SUMMARY OF CONTENTS

Regression analysis and the analysis of variance are
some of the most widely used statistical methods in biomerics.
In this project, we use regression analysis to study the
relationship between modulus of rapture of timber with
density taking into account of site effects. This shall be
done for two species of wood, namely the pine and cypress.
The analysis of variance is used to study the variation of
strength of these two species of wood with site.

Chapter I section 1.1, gives a general introduction on'
forest management. Section 1.2 gives previous studies done
on forest management and techniques used. The statement and
significance of the problem are contained in sections 1.3
and 1.4 respectively. We make use of sample regression
methods because population parameters are not known. These
techniques are under chapter II. Section 2.1 introduces
the general linear regression, while section 2.2 describes
the linear regression model and some of the major applicable
results. In chapter III the Analysis of Variance is reviewed
and the major results to be applied displayed.

Chapter IV gives the methodology on the applications
of the above techniques to the data of the strength of the
two species of wood, the Pine and Cypress grown in various
districts in Kenya. Indicator variables to define the
district levels are tabulated in tables 2 and 3 for the
two species respectively. Results on the application of
the two statistical techiniques are tabulated in tables
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4, 5, 6, 8, 9, 10, 12 and 13.

Finally Chapter V deals with the discussion and

concluding remarks based on the results in chapter IV.

In brief we discuss how the findings can be beneficial

in efficient utilization of timber from the two species

and in forest management in general. We also give

recommendations for future studies in the area.



v j i j

AC KN ow LEDGEMr:NTS

I wish to express my gratitude and appreciation to
Dr. J.W. Odhiambo for his guidance and support during the
course of this study and for all his advice during the
preparation of this dissertation.

I would also like to acknowledge the Kenya Forest
Research Institute through Mr. B. Chikamai, for providing
me with data and other requirements for the study.

I convey my gratitude to the University of Nairobi
and DAAD - the German Academic Exchange Service, for
providing me with financial support for my postgraduate
study at the Faculty of Science, University of Nairobi.

Finally I am very grateful to my parents Getrude
and Mwaghania Mwambi and other members of our family for
their wonderful show of love and understanding especially
during the periods of study.



CHAPTER 1
INTRODUCTION

1.1 General Introduction on Forest Manngcmcnt
A forest Manager dealing with a renewable forest

resource is usually concerned with the optimal harvesting
strategy, when trees are classified by age structuye or
size structure. This would avoid unplanned depletion of
the resource. Unfortunately data to carry out such a study
is not available from the forest inventory of Kenya.

On the otherhand a forest utilization officer is
interested in knowing characteristics of wood such as the
modulus of rapture, modulus of elastic~ty, stress at limit
of propotionality and many more. These properties of
mature wood could help such an officer to calculate design
stresses in order to set quality standards of the material
concerned.

In this project we shall deal with two types of soft-
woods grown in Kenyan forests for commercial use, these
being the pine and cypress species. It is from these two
species that some of the timber used in construction work
is obtained. Each of these two species is grown in a given
number of districts. The main property of interest under
study for these two types of wood is their strengths. In
particular the modulus of rapture which contributes greatly
on deciding the strength of wood shall be studied. In the
past a sample of size ni was collected from district
i i = 1,2, ... v wh ere v is the number of
districts, then conclusions about design stresses m2ne from
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a pooled down sample. Modulus of rapture is the maximum
load the experimental material can be able to support before
it fails or breaks. Knowledge of material strength is a
fundamental necessity in all structural designs. In Kenya
strength values of the locally available wood are not
reliably known.

Variation of strength of wood with site is one aspect
which has not been given attention in the past. In this
project we shall develop a one way analysis of variance
model to study this. We shall take the various sites
(districts) as the treatments. A general linear regression
model of modulus of rapture on density shall be developed
taking into account of site. This shall necessitate the
use of indicator variables. The study shall be based on
data obtained from the FOREST PRODUCTS RESEARCH PROGRAMME
under KENYA FOREST RESEARCH INSTITUTE.
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1.2 LITERATURE ~EVIEW

Forest management is an area in forestry where alot
has been done. Scientists have done studies on both manage-
ment methods and properties of timber itself.

Biolley (1920, 1954) deals with a method of management
of renewable resources which is called the check method.
His system of management aims at producing as much timber
as possible, consistent with the constraints of quality
and conservation.

Selection forests as an example of renewable resource
was first conceived by Gurnaud in the nineteenth century.

Colette (1934, 1960) considered methods of selection
working and the exploitation of the stand was based on the
results of periodic enumerations where records by species
and circumference classes is a pre-requisite. Colette uses
this information to calculate approximate probabilities of
transition from one circumference class to the class above
and figures used to calculate the exploitation. The stem-
number curve forms a graphical check on the stand. The
curve is compared with a theoretical smooth curve in which
the number of trees in each successive class is represented
by a decreasing geometric progression. Successive terms
in this progression are related by the coefficient of
"diminuation"

Another notable contributions towards the problem of
forest management have been made by Usher. For example,
Usher (1966) describes a method of calculating the
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coefficient of diminuation. Taking into account that a
manager of a selection forest knows the individual recruit-
ment probabilities in each class to classes above, a
theoretical structure can be determined which can be deter-
mined for any set of management objectives. The structure
according to Usher is unique and it optimizes the yield
from the resource over a long period of time. With the
recruitment data available Usher came up with a matrix M
that links the number in various size groups at time t
to that at time t+l, and the relation is

Mn = n-t -t+l
From this a stable structure can be predicted. This struc-
ture is associated witb a dorminant latent root of the
matrix, which is greater than unity. Associated with this
latent r~ot is a latent vector such that all its elements
can be chosen positive. However the model did not tell
whether the solution is unique or not.
In another paper Usher (1969) developes a model for the
management of renewable resouce. The mathematical develop-
ment in this paper shows that there is only one solution
of the model that is biologically meaningful. The solu-
tion is associated with the only latent root of matrix M
which is greater than unity. This latent root has a latent
vector such that all its components can be chosen as
positive. He tested the data for a Scots pine forest.

Patterson (1971), in his study of the Kenyan wood,
found that Kenya's timber strength may strongly be



- 5 -

related to
(a) density and to some species to
(b) moisture content and age.
He found that heavy timber are strong and light ones are
weak. If S is to represent strength and W weight
then

S = f (W)

which is an increasing function of W. This is because
heavy timber contain more wood substance per unit volume,
than light ones. He conducted an experiment on 46 species
grown in Kenya and fitted graphs of strength versus weight.
He pointed out that there was considerable variations about
the mean curves he obtained when a species was considered
on its own. Patterson found out that species like pencil
cedar and Australian mountain Ash (Eucalyptus regnaus)
are strong for their weight and others like Muirungi
(casearia) and Muchichia (Premna) are weak for their
weight. The variations are due to the anatomy of the
timber. Moisture content causes variation only when it is
below saturation point that is below 27%. When trees are
still growing then age affects strength but after 25 years
of age it is not very significant.

Burges (1962) suggested that the load-deflection
relationship derived from certain tests on timber may be
interpreted as a skewed normal integal

dx
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He investigaged methods of fitting such a curve to experi-
mental results and the effect of strain-rate was examined,
by using data by Brokaw and Foster (1945). The approach
is indicative of the physical representation of the
mechanism of strain and failure, unlike the purely heuristic
linear approach. A brief indication is given of arguments
justifying the phenomenological study of apparently non-
stochasti~ responses in stochastic terms.

Brister (1962), carried out an experiment on Kenyan
pine timber where five thirty-year old trees were selected
for test. Results showed that density and strength incr-
eases moving outward from the pith. Strength tests show a
stronger correlation with distance from the pith than age.
This paper shows that strength increases with density.

Sunley (1956) carried a research on modules of
rapture for the sitka spruce species obtained from various
sources. He established the fact that modulus of rapture
is described as the normal curve for a given population
of a given species of trees. This idea supports the
current work where it is assumed that modulus of rapture
y is given by

y = ~+d+e ~ N(~+d,02)
E(e) = 0 and E(e2) = 02•

Where d is the effect of the district from which Y
is observed.
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1.3 STATEMENT ,OF THE PROBLEM
If we let Yij to denote the jth observation

(modulus of rapture) from district Di ( i=1,2, .... v )
j = 1, 2, ..... , ni· Then the problem is divided into two
parts.

First using this information it is proposed to carry
out a one way analysis of variance to see if there is a
marked variation of modulus of rapture with site. From
this we shall be able to say something about the variation
of strength of wood in Kenya with site.

The second part of the problem is to fit a linear
regression model with the response variable being the
modulus of rapture (MaR) while the explanatory variable
is the density. We shall make use of indicator (dummy)

•variables to take care of the site levels, which are
qualitative variables. For a given district the model
is of the form

Y(MOR) = So + S: X + e
1

but with the inclusion of indicator variables it becomes
a multiple regression model

Y = X S + e

The total number of observations is

N
v
L: ni

1=1
The results shall help to tell whether the reJationship
is appropriate or not. If not then we shall suggest
reasons for that.
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1.4 SIGNIFICANCE OF THE STUDY

The analysis of variance results shall help to tell
whether in future design stresses for constructional pur-
poses should be done district by district or not. This
will help in the efficient utilization of the material.
The Kenya Bureau of Standards may use the results in setting
standards of the Kenyan timber.

From the regression model we shall be able to decide
whether much of the variability in the modulus of rapture
is explained by density or not. This is by making use of
the sample coefficient of determination, r2

If not much variability is explained then we shall propose
that other independent variables be included in the model
in a future study. Then a better predictive regression
model can be developed. The study is important in the
sense that it can serve as a.starting point for future
studies. The results of the study shall indicate whether
a better method of collecting the data should be adopted
or not.

Finally the work of the study may prove valuable in
that, it will provide reading and reference material for

research scientist both in Physical and Biological Sciences
and Social Sciences. Biostatiscians may find the work
Yery useful in their research activities.
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CHAPTER II
REGRESSION ANALYSIS

2.1 INTRODUCTION
Regression analysis is a statistical method which deals

with the study of the relationship between measurable
variables. In regression analysis we usually deal with two
types of variables namely the response variabl~) also called
the dependent variable(s); and the explanatory variables
also known as independent variables.

Let Y denote the response variable and let
xl' x2' ..... , xp denote the explanatory variables. Then

a usual assumption in regression analysis is that obser-
vations on response variables are subject to error but
observations on the explanatory variables are made without
error. Assuming a functional relationship between the
response variable Y and the explanatory variables

xl' x2' ..... , xp'
We can write

Y = f(xl, x2' ..... , xp) (2.1)
where f is some function. This is called the regression
function of Y on xl' x2' .... , xp' If f is a linear
function then we say the regression is linear. If f is a
non-linear function then the regression is non linear.

One of the main reasons for fitting regression models
to observed data ~s to describe the relationship between the
response and explanatory variables and to predict the values
of the response variable. Regression analysis has been
applied in varied fields. These include social and economic
sciences, physical and biological sciences, technological
applications and many others.
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z . z THE LINLAR J<.EGRESSIOI'\ MODEL

Suppose we have a population of individuals each of
which has p+l characteristics, say

Y, xl' .... , X
P

For example with human beings we might have height (Y),
weight (xl) and girth (xZ). The whole p09ulation may be

thought of as forming a cluster in a p+l dimensional
space Frequently we are interested in questions
of the type (i) how much of the variation in Y can be

attributed to the variation ln xl' xz' .... , X
P

OR (ii) what can we say about Y for an individual
given that it has specified values for

xl' xz' ..... , X .
P

Looked at in this way we consider what function of
Xl' xz' .... , xp should be used to predict Y and

what the error of such prediction will be. We shall
confine ourselves to linear functions of the form

+ S XP P (z. Z)

This is called a linear predictor for the characteristic
Y. Polynomial predictors are included as a special case
since we could have Xz equals Zxl and so on.

The constants Sl' (32 ' ••••• , Sp
regression coefficients. In particular

are called
S. (j=I,2, •... ,p)

J
is the coefficient of partial regression of Y on X ..

J
It measures the rate of change of Y w.r.t. " when,r, j

the other variables are fixed.
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It is reasonable to define the best predictor of Y
from Xl' xz' , xp as that linear function

for which the average value of

[Y - 2
f (x ,x ,...... x )11 2 p}J (2.3)

is minimum. This is the predictor which will result in
minimum mean square error of prediction. It is called
the least squares predictor.

To obtain the values of So, 131, , Sp
we have to minimize

(2.4)

Setting the derivative of Q w.r.t eo- equal to zero
and writing E(xi) = ~i and E(Y) = ~y we have

~y-S6-S1~1-S2~2-·············· -Sp~p = 0
that is

130 = uy - 13iu1 - 132 ~ 2"· . . . . . . . .. - 13P ~ P

if we substitute this value of So into Q we obtain

E [(Y-"yl - Sl(xl-"ll - 8z(xZ-"Zl- .... _Sp(Xp_"pl]Z (2.5)

Differentiating equation (2.5) w.r.t. Sl,B2" •••• ,Sp
and equating each derivative to zero we obtain P equations.
These are

/
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2 132°J2+ 1301°ly = BIOl+ +............. p P

°2y = 131°12+132°2 + + I3p02p...........

+ 13° 2!J P

(2.6)

where'
0.ly = E [(Xi-~i) (Y-~y)]

E [(Xi-~i) (Xj -~j)]

i = 1,2, ....'JP

i + j= 1,2, .....r P

and 2"v . = var (Y)

To obtain the values of the regression coefficients 131,132,....., I3p
We solve the system of linear equations (2.6) simultaneously.
For known values of 0· . ' s,1J 0. 'sly and o~, S

1
these are

the population regression coefficients.

Multiple Correlation:
Suppose that Y, Xl' ..... , X are jointly normally.' p

distributed then the conditional mean of Y given Xl' ,

x. will be a linear function of the formp
=

which can be written as
= ~y+ I3l(xl-~l) + .

+13 (x -~ ) (2.7)P P P

Then a measure of the linear relationship between Y
and Xl' x2' ,xp is given by the multiple correlation
coefficient. This can be calculated as the ordinary correlation
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between
E(Y/x ,.... x ) and Y. Let·

1 'p
a aly •••.•• ayy py
aly all ......alp [:yy Q~2]

2:== = 2:22-y2

0py alp .......app

where aly all °12 alp

~y2 = a?y 2:22 012 022 a2p

apy opp

Then it is easily shown that

a-y2 , (2.8)
R

2
y.123 ..... p =

and
Var(Y/Xl, = 2ayy (1 - R y. 123 ...p) (2.9).......... ,

The quantity a yy (1 R
2

)v- 12 p is called the
residual variance of Y when the effects of xl' x2' •••• ,

xp are eliminated.

It is easily seen that the residual variance will
be zero if and only if

R2 12 .: 1y. •••••• P

This means that the linear relationship between and
Xl' ..... , xp will be perfect if

2
l)r.12.... p = 1
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If 2 12 ..... p 0 then there is linear relationshipRy. :::: no
between y and xl' ... . . , X . Thus R2 12 ...... p canp y .

be used as a measure of the degree of the linear relation-
ship between y and Y1, Xz, ......., xp'

SAMPLE LINEAR REGRESSION:-
In a practical situation we do not deal with the whole

population but instead a sample is collected and the
corresponding response and explanatory variables determined
for each sample point. Suppose n(>p) observations are
available, and let denote the ith observation on the
response variable and x· .1J denote the ith level of the

jth explanatory variable Xj. Assuming that the observed
responses are subject to experimental errors
and the explanotory variables have fixed levels, we can
write the linear model as

y. ::::
1

+ (3 x· + e.p rp 1

:::: (i::::l,2,... , n ) (2.10)

We assume E(~) ::::0 and Var (t) ::::a21 where E; IS

shown below;-
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In matrix notation we may write

Yl 1 xII xlZ • • ~ . . xlp 60 e
1

YZ 1 xZl xzz • . . . . xZp 61 eZ
= +

1 XnZ • • • • xnp

or in an obvious compact notation

1. = X .§.. + ~

where
y is nxl, X is n x (p+1) ,

(Z.l1)

6 is (p+l ) x l and

L is nxl..;...

To obtain the sample estimate of the regression
vector ~,we use the least squares method. That is
we obtain 6 which minimizes

S (B) = ~'e = (Y-XB)'(Y-X6)
- - - -- - ~

y'y ~'X'~ - r'X~ + ~'X'XK
, " "Y Y Z6 X 1 + K X XK

Differentiating See,) w.r.t B and equating to zero
we obtain p+l normal equations given by

, ,
X X P = X v

which gives the least squares estimate of 6 as-
~ = (X'X)-l X'r (Z.lZ)

,
provided that(X X) is non singular.
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Note that B is unbiased estimator of L

since
= E [(X'X)-lx'.Y ]

= E ((X'X)-l X' ( X~ + f)]
= E [(X'X)-l X X i + (X'X)-J X'1J
= (3 .....(2.13)

and E (~ ) = o.
Also Cov (~ )

-

The matrix C = (X'X)-l
= Var [(X'x)-lx'r] = (X'X)-la2

is sometimes called the unsealed
covariance matrix. When (X'X)-l does not exist then we

(2.14)

, ,
use the g- inverse of X X, normally denoted by (X X)*

Then a least squares estimator of B is

~* =
, ,

(X X) * X y (2.15)

This estimator is not unique because a g inverse of a
matrix is not unique.

Let us denote the residual sum of squares by SSE;
,

= e e- - =
A' A

( Y-X~) (Y-Xl~)

,= y y
It. , ,
B X Y (2.16)
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since the residual sum of squares has n- (p+l) degrees
of freedom, the residual mean sum of squares is given by

MSE = SSE
n- p-l (2.17)

NOW

Y = X ~

, X)-l= X eX X t.

= H Y
Where X(X

,
X) -] X

,H =

"Then e = y X S

Y H Y•..
= (I - H) Y

Clearly 1-H is both symmetric and idempotent, therefore

~'~ = y'(I-H)y (2.18)

Since
Var(y) = 021

2 I
[E (y)]E(SSE) = tr (I-H) 0 + [E (y)J (I-H)

2 , , , 1 I
= (n- p-l) 0 + S X (I-X (X X) - X) XS

= (n- p-l) 02 + 0

= (n- p-l) 02

Thus

E~ SSE .) =

\n-(p+l)
So an unbiased estimator of

2o

02 is given by
= SSE

n- (p+l )

(2.19)
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Sample Multiple Correlation:-
2We shall let ry.12 ....p denote the sample multiple

,
correlation between Y and x s.

S

s yy Sly .......... Spy
S s 11 sIply ..........

Let

• .
Spy sIp It • • • • • • •• • • spp

where
S n _ 2

= L (y.-y)yy i=l 1n

n
Sjy = ,f: (Yi-Y) (x .. -x.)1:1 1J J

n

n - 2s .. = i~l (x .. -x.)
J J 1J J

n

n
(x .. -x.) -S ..' = I.: (x .. , - x .: )

JJ i=l 1J J 1J J
n

Further let

•

~y2

fS 11

S 12

12 .s

S22 =

s 22 s 2p

S2p . • • . • • spp



- 19 -

Then taking S as the maximum likelihood estimator for
the population variance-covariance matrix L we have

2ry.12 p = S' S-l S ,
-y2 22 -y2

Syy
(2.20)

The quantity r2
y.12 .... p is called the coefficient of

determination and is used to measure the degree of the
linear relationship between Y and the xi's obtained from
the sample.

Testing for Regression

Under the assumption that the error vector ; is
normally distributed with mean vector 0 and variance 02I

that is ~ ~ N(Q, 02I) it follows -that the observations
y. are normally and independently distributed with mean

1
p

Bo + . Ll B.·x.. and variance 02. Since the least squares
J = J 1J

estimator B is a linear combination of the observations-
it follows that

B ~ N V~, (X' X)-l a2]

Now let us denote (XIX)-1 02 bv 02C.
(

(2.21)

We next consider the transformation a

A

(02c)-~ (§-E)

Then it follows that
ex ~ N LQ, I)
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and since
=

Then
Q

, 2! 2l2!~ (0 C)2 (0 C)- (0 C)2~=

=
,

a a

=
p+l

L a.2
1i=j

But each ai ~ N( 0, 1) which means that

That is
A I ;..

(~ - ~) ( X ' X) (~- ~) ~
02

2
X(p+l)Q

. 2. kassumIng 0 IS nown.
Now, we wish to test the hypothesis

H .o· ~ = 2 against Ha
under Ho the expression in (2.22) reduces to:

=

Now ElQo) = 0 when Ho is true and
> 0 when Ho is not true

Hence to test the above hypothesis for known02

we compute
=

from the sample data and reject Ho whenever
p =

(2.22)

(2.24)

(2.25)
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is small. Now from (2.18) we have that the sum of
squares due to error denoted by

SSE IS given by

SSE
,

= Y (I-H)y

where H
, l'

X (X X) - X

and
E(SSE) = (rr- p-1) 02

E (n~~) = 2
0

Now from the model y = X~ + e- we deduce thats

E (y) = X S since I 'V N. [Q.,~)
Then it follows that

Y 'V N (x B • 0
2 rJ

and
( t. - X S ) 'V N ( Q, 0

2 r)-

Now we shall consider the quadratic form

( y- X~U (I-H) (Y-X.BJ (2.26)

Then we see that
E {(y-xV' (I-H) (y-x.@J) = trace (I-H) 02

= (n-.n-l) 02

Therefore
IU=..X~.J (I -H) (x-Xli)

n-p-1

is an unbiased estimator of 2o (2.27)

But C y - X.§J (I -H) Cy- x.§J

= y'(T-H)Y-Y'(I-H)X~ -~'x'(I-H) Y + §.'X'(I-H)X~

=
,

Y (I-H) I
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bec8use the last three terms In the expansion above are

equal to zero.

Therefore the quadratic form in (2.26) gives the sum of

squares due to error, SSE' In other words

(2.28)
(n-p-l)

is an unbiased estimator for 2o .

Now

(i) H ' [X eX' X) -1 x'J' = X(X' X) -1 X'

meaning P js symmetric

(ii) H2 ( ) ( ) , 'X(X'X)-lX' X(X'X)-lx' = X(X xi' X

hence H is idempotent.

From these two properties of H it follows that I-II

is also symmetric and idempotent. Then from cochran's

theorem (1934) the quadratic form

( z - X§) (I-H) ( y - X§)

has the wishart distribution wi th a scale parameter

u 02 and n-p-l degrees of freedom denoted by:

2o , n-p-l) 2o
'2Y-- (n-p-l)

that is
, 2 1Y (I-H) y '\, o " X(n-p-l)

and so

where

SSE=rr:
2 0··

o IS known.

2'X. (n-p-l) (2.29)

From (2.22)

( ft. - 6J (XIX.) (B - .ft.) '\, -x.2(p+l)
02
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when 02 .IS known.
It then follows that

/\
(X' X)

.A
- J3..)F ll-~ 1i

2
o (p+L)

SSE
(n-p-l) 02

'V -x: (p+L)

(2.30)

has the Fishers F distribution with p+l degrees of freedom
in the numerator and n-p-l degrees of freedom in the
denominator.
That is F 'V F( p+l, n-p-l)

(2.30) reduces toThe expression

A(~- V , 1\(X X) (,s.,,-,§,) (2.31)F =

(ji+L) SSE
n-p-l

which is independent of the unknown 2o •

The random variable F can be used to test the hypotheses
= o against Ha

the expression in
f3 = 0

(2.31)Under Ho that is when .fi = 0

reducds to
Fo

= l' (x' X) 2. =

(p+l) SSE
n-p-l

1" 1\
~,'X) ~

(p+l) MSE
F (p+L, n-p-l)

In regression analysis the quantity
called the sum of squares due to regression denoted by
SSreg
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Therefore
SSreg
(p+l)T.1SE

'\, F(p+l, n-p-l) (2.32)

Now E(F IH ) = 0 and E CFo/Ha) > 0o 0

Hence to test the above hypothesis we compute
Fc SSreg

(p+l)MSE

from the sample data and reject Ho if the attained
significance level

P = p rob C F > Fc lib ) (2.33)
is small.

MARKING PREDICTIONS
Consider the linear model

Y = XS+£
Then a particular variable y is given by

y =

From the earlier assumptions on e it follows
E(y) = (2.34)

Let

Slxl * x * + *= So + + S2 + S xII 2 ...... p p
and

" It. A * '" * A
II = So + Slxl + S2x2 + ...... + (3 x *P P

where
,

x* = (1, xl * x *), ............... , p

= x*'S'

is a point In the space of explanatory variables.
We wish to obtain confidence bounds on ll.
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Now
E ( 'C') = E (~* , fJ = x * , B

var ( ~ )
if we let

= x*' var 2 I ••tx* = (J ~*(X'X)~*

v* = x*' (X'X)-l x*
Then

hvar(J-l) (J2 v~ (2.35)

Since
,..
B is normally distributed it follows that

J-l ~ N (~*'!, (J2v*)
and so

z = 1\J-l- P
/a2v*

N(O,l)

since
SSE
7

Then the random variable

'2"X-(n-p-l)

T =

where v* = x*' (X' X) -1 x*
-' has the student t distribution

with n-p-l degrees of freedom.
Therefore confidence bounds on J-l are given by the
probability statement

PC - t o < t < ta) = 1 - a
2 2

which implies
PC to. 1\ to. )- < u - ]..I <------

2 /MSEv* 2
1 - a

which gives
P C ~ - t c ~ R < u < ~ + to. ~ R ) 1 - a (2.36)

2 2
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Thus the (I-a) 100% confidence interval for
x* I! is

( x*'B - ta
I

x* B + t o ~ R )
I

(2.37)

Note that the standard error of the fitted y which is
"y is

1\s.e(y) ,.j -1
a ~ * I ( x' x) ~* (2.38)

Hence the model is useful for prediction only for
vectors x* near the centre of the region defined by the
initial set of explanatory points used to fit the linear
regression model ,

= X B +

As an example we shall consider the simple linear
model

y =
In this case

E(~) =
and

var(~)

a + Bx + e

E (~ + ~ X * ) = a + S X *

= + - 2 )(x*-x)
- 2I(x.-x)

1

and so
A t(n-2)t = u - ~ '\,

- L(x*-x)
I(Xi-X)2

where
,,2 n

(y. - ~ 'S'xi)2a = .1:11= 1

n-2
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Hence
n

.L
l1= (Y. -

1

~
a -

It. 2
ex.)
. 1

2X (n - 2)

Therefore confidence bounds on ~ are obtained from
P( < t < ta ) = i -«

I

i. e. p( -t7 1\ tz)< u - ~ I-a<
1\ j - 2a l+(x*-x)

- 2
n L(xi-X)

which

P~ -

gives
t" ~j,! +

2 n

- 2(x*-x)
" - 2I.(x.-x)

1

< ,. A - 2)~ <~ + t~ a ! + (x*-x)
2 n L(X.-X)Z =

1

I-a

Thus the (I-a) 100% confidence interval for ~ a + I3x* is

~

,.. " * -)2a+8x*- tn a 1 + (x -x ,- n - 2
2 L(X.-X)

1

- 2 )(x*-x)
- 2L(xi-x)2

The standard error of the estimated y which is A
Y is

A j\s.e(y) = a
- 2(x*-x)

- 2L(X -x)

at any pont x, where r-:
y

A ,..
a + eX the behaviour of

As.e (y) as x deviates from the centre point is illustrated
in the graph sketched in figure 1.
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Figure 1.

We observe that the simple linear model is useful for
prediction only near the centre of the x- values that are

-near x.

Prediction Intervals

Let Yk denote the predicted value of y at the point

=
C I, . (k)

xl ' Ck)x2 ' ..... , Ck) ,
xp )

that is is a future observation given by
S +s xCk)+S x(k)+ •••..••. +Spxp(k)+ E;ko I I 2 2 (2.39)=

for k > n
Then IS estimated by

= B +~ x (k) +
o I I

+"S x (k ) = x' h-k~P P
We wish to determine the probability bounds on Yk.

It.
Yk - YkNow consider

Then
(2.40)
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and since is based on observations excluding Yk'

the two are idependent;
therefore

2 ./".
- a + var (~k..§.)

2 2 -1= a + a x' (X 'X) x-k -k

Hence
(2.41)

This means that
z =

'V N(O, 1) (2.42)

but we also know that
(n-p-l) MSE

2a

2
'V "X. (n-p-l)

t = A
Yk - Yk 'V

/MSE(l+:X;'(X'Xfl x)
-k -l(

t(n-p-l)

or
t At

= Yk - Yk 'V t(n-p-l) (2.43),.J -J
a l+~k(X'X) ~k

since
,,2

= MSEa

and so
P( ltl < t~J = I-a

2
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which implies th~t

p (
< t o )"2

I-a.

~j 1+ x ' (X •X) - Ix-k -k

that is
p (1 -ta

k "2
1\
0-

-1l+x'(X'X) x-k -k
< v <

'k
/\ Aj -1 Jyk+tao- l+x'(X'x) x2 -k -k

= I-a

Thus the (I-a) 100% prediction interval for Yk is

(~k' i-ta ~fl+~' (X'X)-l~ , x'B+ta ~/l+X' (X'X)-lx )
\" L k k k- '2 -k -k

The standard error of the predicted y which is
A -1= 0- 1 + ~k(X'X) ~k

is

Hence as in the case of estimating the mean response the
model is useful for predicting only for vectors x near-k
the centre of the region jointly defined by the original

levels of the regressors;
i=1,2, .... n

INDICATOR VARIABLES
We consider the case of simple linear regression where

N observations can be formed into v groups with the vth
,

group having nv observations. The most general model
consists of v separate equations, such as

y = v=1,2, )v (2.45)

", :: .-....; ... . ~ 0.,- •
'~":.'"
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It is often of interest to compare the general model to a
more restrictive one. Indicator variables are helpful in
this regard. To fit the reduced model, define v-I
indicator variablesDl, D2, •••••••••• , Dv_l

corrsponding to v groups and fit

y + (2.46)

each D·1 i=1,2, ,v-l can only take value
o or 1. In particular they all take value 0 if an
observation is from group 1, if Dl takes value 1 a~d the
rest zero then that observation is from group 2. In
general if Di-l takes value 1 and the rest zero then
that observation is from group i. Then by the use of the
F- test we can make conclusions on whether or not

and hence determine if it is needless to fit the reduced
model or if the reduced model is valid. It is proposed
to use this idea on the forest data with the groups being
the districts.
From model given by (2.46) we note that
E(y)x, the data is from group i) = S +S,x+S.D. 1o __ 1 1- (2.47)
so that when D. 11-

1 ., meaning the data point is from

group 1 we get the fitted simple model for group i as
Ay.

1
= (

A" ,..S +S.) + SIXo 1
(2.48a)

i=2,3, .... , v

and that for group
AYi

1 is
= (2.48b)

\
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CHAPTER III
ANALYSIS OF VARIANCE

3.1 Introduction

The analysis of variance is perhaps the most widely

used computational procedure in biometrics and analysis of

quantitative inheritance. The procedure has widely different

functions. The most important of these functions include

the fo11owing:-

(1) The study of the variance in a population, by decom-

posing the total variation into distinct components such as

as the division of variance into genotypic and environmental

components. In this respect the analysis of variance is

essentially a procedure for estimating statistical parameters.

(ii) Testing hypothesis or constructing tests of signi-

ficance for any of the populations mentioned above.

(iii) Testing the statistical significance of formulae

which give the dependence of one variate on other variates

e.g. in regression analysis.

3.2 PARTITION OF VARIANCE
If an observation Y is determined additive1y by

two effects G and E such that

Y = G + E (3.1)

it is preferable for a statistician to redefine the

equation as

Y = II + G + E (3.2)
where II is a constant while G and E are now redefined

.as deviati0ns which sum to zero over the whole population

of G and E. consider a one-way fixed effects model
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Y ij = u + t· + e· . i=1,2, ..... V
1 1J

j=1,2, ..... n· (3.3)1
and v

.r n
1

· = n1=1

where Y is the J'th response on the i-th treatmentij
t. is the effect due to treatment i.
1

e .. is the experimental error associated with the1J
ij-th response.

We shall assume
e 1J and y ..1J (3.4)

where a is the error variance, assumed to be unknown.
Then to test the significance of the treatment effects
tl, t2, ,tv· we test the null hypothesis

Ho: tl= t2 = tv (3.5)

against the alternative hypothesis
t. I t. , for some 1 and j
1 J

This is an analysis of va ri anc e problem and is tested by
partitioning the total variation into two compontents,
namely variation due to treatment effects and variation
due to error.
Let

y ..
v n.

= 1 Z; Z;1 y ..
n i=j j=l 1J

be the mean response on the i-th treatement. Then by the
use of least squares method with the condition

v
Z; t. = 0 (3.6)

i=l 1

we get the estimates of u and t. as1



- 34 -

l"-
II y ..

1'. = y. - Y1 1.

and
1\~ .. = y - y

1J ij i.
substituting these estimates in (3.3) we get

(y.. - y ) = (y. - y ) + (y.. - y. )
1J . • 1.. . 1J 1.

squaring and summing both sides in (3.7)
v n . 2 v n· 2 v
E El (y .. -y .. ) = E E

1 (y.-y ) + E
i=l j=l 1J .i= I j=l 1-.. i=l

(3.7)

we get
n·
E1

j=l
2

(y .. -y. )
1J 1.

=
v
E

i=l
n.lY. _y )2
1 1. • •

v n·
+ E E1

i=l j=1
(y .. _y. )2

1J 1.

Thus the total sum of squares
v n· _ )21

SSr = E E (y: . -y ..
i=l j=l 1J

has been partitioned into two components

v
= E

i=l
(- - ) 2TI.1 y. -y ..1.

called the treatment sum of squares and
v ni _ 2
E E (X· -J.: )i=l j=l 1J 1.

=

called the error sum of squares. For computational
purposes we shall use the

v n·
1

SST = E Ei=l j=1

formulae,
2 G 2y ..
1J n

= E T~
i=l 1

n·
1

n
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and

SSr: SST - SSt
n1where T. == ·[1 y ..1 J == 1J i==1,2, ....... , v
v n·

G == . r: 1 [1 y ..1= j==l 1J

The Null distribution of SSt

Here we wish to find the distribution of

SS-t =
v

( _ _ ) 2z n, y.-yi==l 1 1. ..

under the null hypothesis given by equation (3.5).

From the model

Y·· == )J+t.+e ..1J 1 1J

and
y .. 2

'\., N( )J+ti, 0 ), i == 1,2 , •.•.• _.v1J

J = 1,2 , ...... n ., 1

Now
n·

y. == 1 [1 y ..1. j ==1 1Jn·1
This implies that

y. '\., N( )J+t . 02 ) i==1,2, • •••••• ~V1 '1. n·1
i f we 1e t )J. == )J+ t . t h en we h avet hat

1 1'

y. '\.,N ( )J1.'
1.

i=1,2, ,v (3.9)
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Since one of the assumptions in the model is that the
v subpopulations are independent it follows that

y I.' y 2 .' , yv,

distributed as
are independently

i=I,2, v

and since

Y I L: y.- i=l 1.v
it follows that under H

0

v )2 2
L: n . ( y. -y '\, x.. (v-l)

• 1 1 . ..,:;,
2

0

OR
v - _ )2 2 2
L: ni( Yi.-Y .. '\, o X. (v.-l) (3.10)

i=l

The distribution of SSe

SSe
v n . 2

= ·L:I .L:11 (y .. --y. )1= J= IJ 1.
Again if we let ~i ~+ti then

Yij -v N( ~i, 0
2) i=I,2, )v

j=I,2, ........ , n .. 1

For a given 1 we have that
n·

" 1
~. I L: y ..1 j=l IJn.1

-y.
1.

and since Yij , j=I,2, ,ni IS a random sample

of size n·1 it follows that
Var (y. )

1.
= 2o

n·
1

. I '
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but we also know that
ni _ 2

jh (Yij-Yi.)
no-l
1

is an unbiased estimator of 2o

Therefore
no
L1

j=l

2
(y 0 0 -Yo )

1J 1-
2o

(3.11)

And by the 8dditive property of ch-square variables which
can be stated as

2 k'\, x: ( ah Ka)

it follows that

"Li=l
tl;
L

j=l
- 2 2(y 0 0 -y 0) '\, '"'1- (n-v)

1J 1-

02

OR

SSe
2 2

'\, 0 'X. (n-v) (3.12)

Since =

we conclude that

Therefore when H is true then the statistico

F = SSt/v-l
SS /n-ve

(3.13)

has the Fishers distribution with degrees of freedom v-I
and n-v in the numerator and in the denominator respectively.

The co~putation needed for the above analysis can
arranged in an Analysis-of variance table as follows;-
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TABLE 1: ANOVA TABLE SHOWING THE ENTRIES IN EACH
COLUMN AND THE COMPONENTS OF TOTAL VARIANCE

SOURCE OF DEGREES SUM OF MEAN SUM THE F STATIST]
VARIATION OF SQUARES (SS) OF SQUARES (F)

FREEOON(D.F) (MSS)
v 2

SOURCE OF v-I .I n.ey· - y ) S\=MSt MSt1=1 1 l.

v-I MSe= SSt
v n.

WITHIN TREA1MENTS n-l 1 - SS =MSI I (y..-y. )
i=l j=l 1J l. e e

n-v
= SSe

v n· 21 -Total n-l I I (y..-y )
i=l j=1 1J ..

To test the hypothesis Ho given in (3.5), the procedure
is to compute the sample value of F which we call Fc and
reject Ho whenever

P = Prob ( F>Fc/Ho) is small (3.14)

Paired Comparisons

More often it is of interest to know whether a given
pair of treatments have same effects on the observation or
not. That is we wish to test the hypothesis.

Ho t· - tk = O.1
against (3.15)

H t. - tk = 0 itk=1,2, ... ,va 1
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Now we know that the estimates of t.
1

and Clrc

given by
'to
1

= y , - y1.

and
.A
t k = y

Therefore
= y.

1. (3.16)

is the estimate of ti - tk from the samples

Now
Var( - ) 2 2y. - Yk. a + a

1.
n· nk1

= a2( 1 + 1 )--n· nk1

and under Ho

E ( y. - Yk) = °
1.

(3.17)

Therefore
z = tv N(O,l) (3.18)

When H is true and 2a is known. However in most
practical problems 02 is not known. In this case we replace

2o In (3.18) by its unbiased estimator, the pooled sample
error variance, which is the mean sum of squares due to error
denoted by MSe

to obtain

t = y. - Yk.
tv ten-v)

1.

IMSe(~ + 1 )-n· nk1

(3.19)
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Therefo~to test the hypothesis given by (3.15) we compute
the value of the statistic t from the sample. We shall
call this value tc' that lS we shall compute

= y.r , - Yk. (3.20)

and reject H whenevero

> ta
"2 (3.2la)

In the case of

the quantity

taj2Mse
"2" --

n

(3.2lb)

is called the least significance difference ( Lsd).
However the rejection criterion can be made more flexible
by computing the quantity

P = pr ( ten-v) <

then reject Ho whenever P is small. P is called
the attained significance level or the P- value.
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CHAPTER IV
APPLICATION TO FOREST DATA

4.1 INTRODUCTION
In this chanter we will apply the statistical methods

described in chapters two and three. As earlier on stated,
we have two species of trees which are grown for commercial
use. These are the Pine and Cypress. The data for the
Pine specie was obtained from nine districts which we
represent by D. (i=1,2, 9). These are Nakuru,

1

Kiambu, Nyeri, Kericho, Baringo, Meru, Laikipia, Nyandarua
and Murang'a respectively.

The Cypress data was obtained from eleven districts
again denoted by D. (i=1,2, ,11).

1
These are Nakuru,

Kiambu, Nyeri, Kericho, Baringo, Elgeyo, Uasin Gishu, Meru,
l.aikipia, Nyandarua and Muranga respectively. For each of
the species, a number of logs n. was obtained from

1

district Di. These samples were then transported to
Karura forest laboratory for testing.

4.2 BRIEF DESCRIPTION ON THE EXPERIMENTAL PROCEDURE

For each of the n.
1

logs from district D.
1

a

maximum of two pieces of size 20 mm by 20 mm by 300 mm
were obtained, to give two specimens, one and two. Each
specimen is supported on a span of 280 mm and the force
applied at mid-span using loading heads. A deflectometer,
located on the neutral axis of the specimen, js used to
record ~he central deflection of the specimen relative to
a span of 280 mm.
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The diagram below exn1ains the above.
J. LoAt>

Diagram 1:

'1+0 .." •••

. 1

From the experiment the following quantities were
determined:-

b width of specimen
d = depth of specimen
L loading span and span of deflectometer
pI load at limit of proportionality
P = maximum load
/'!. deflection at limit of proportionality

From the above quantities the following measures of
strength for each specimen were computed:-
Ci) Stress at limit of proportiona1i ty = 3P I L/Zbd Z

Cii) Hodu1us of rapture = 3PL/ZbdZ

Ciii) Modulus of elasticity = PIL3/411bd3

In this project the property of wood that is gOIng to
be studied is Modulus of rapture in Cii) above. This
was measured in Mega-pascals. Another quantity of interest
which was also determined for each specimen is the density
for green timber, called the basic density in grams/cm3.
The density was computed from the formu1ae:-
Basic density (green timber) W 100

bdL (lOO+M)
where

W = mass of specimen
M = moisture content of specimen.
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We shall let y ..
1J

denote the j-th modulus of rapture
value from distict 1 j=I,2, ni and i=1,2, v.

In otherwords y ..
1J is the ij-th observation. v shall

be nine or eleven depending on whether we are considering
the Pine or the Cypress species.

4.3 RLGRESSIO~ ANALYSIS RESULTS

The dependent or response variable is Modulus of
rapture and the independent variable is the Basic density.
We will fit a linear models of the form.

y = (4.1)

where
v = 1,2, .... ,9 in the case of Pine species
v = 1,2, .... ,11 in the case of Cypress species

Instead of fitting the linear models separately we
make use of indicator variables, and fit a model of the
form

y =

••• (4.2)

The variables x ,
3

........ , x are the indicator
v

variables, take values 0 or 1. In particular they all
take the value zero if the data point y .. is from district

1J

1. The full set of indicator variables is shown velow.
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TABLE 2: INDICATOR (Dl)M\1)') VARIABLES FOR THE PINE SPECIES. A

GIVEN ROW SHOWS THE VALUES OF THE INDICATOR VARIABLES
WI-1ENAN OBSERVATION IS FRG1 THE DISTRICT AT THE END

OF THE ROW.

X2 x3 x4 Xs x6 x7 Xs x9 DISTRICT

0 0 0 0 0 0 0 0 NAKURU (1)

1 0 0 0 0 0 0 0 KIAMBU (2)
0 1 0 0 0 0 0 0 mERI (3)

0 0 1 0 0 0 0 0 KERICHO (4)

0 0 0 1 0 0 0 0 BARINGO (s)
0 0 0 0 1 0 0 0 MERU (6)

0 0 0 0 ·0 1 0 0 lAIKIPIA (7)

0 0 0 0 0 0 1 0 NYANDARUA (s)
0 0 0 0 0 0 0 1 MURANG'A (9)

TABLE 3: INDICATOR (Dill~) VARIABLES FOR THE CYPRESS SPECIES

x2 x3 x4 Xs x6 x7 Xs x9 x10 xn DISTRICT

0 0 0 0 0 0 0 0 0 0 NAKURU (1)
i

1 0 0 0 0 0 0 0 0 0 KIAl\ffiU (2)

0 1 0 0 0 0 0 0 0 0 mER I (3)
0 0 1 0 0 0 0 0 0 0 KERICHO (4)

0 0 0 1 0 0 0 0 0 0 BARINGO (s)
0 0 0 0 1 0 0 0 0 0 ELEGEYO (6)

0 0 0 0 0 1 0 0 0 0 U.GISHU (7)

0 0 0 0 0 0 1 0 0 0 MERU (s)
0 0 0 0 0 0 0 1 0 0 LAIKIPIA (9)

0 0 0 0 0 0 0 0 1 0 NYANDARUA (10)

0 0 0 0 0 0 0 0 0 1 MURANG'A (11)

iI
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The variable was introduced to cater for the

two specimens from a given log.

That is

o if the observation is specimen 1

= • (4.3)

if the observatio~ is specimen 2

•The model given by (4.1) becomes a multiple linear

regression models after the introduction of the indicator

variables shown above

From the solution given in equation (2.12) of chapter 2

that is

We get the models for each species as below;

REGRESSION ANALYSIS FOR THE PINE SPECIES

We shall let MOR denote the Modulus of Rapture

For this species the indicator variables are x2' ..... , x9

and x10 to serve the purpose given by (4.3) above.

The fitted linear regression model of MOR on density

was found to be

MOR 37.0675 + 9.3770 DENSITY - 3.1824x2 + 3.7590x3

+2.9981x4 - 5.0891x5 - 5.5916x6 - 11.4224x7

-5.4467x8 + 8.2375x9 - 0.62151x10· (4.4)
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To get the simple linear regression model for
district i, say i=7 all we need to do is to set all
the except ( . -7 3J - ,-, , . . . . .. 9). That is

the linear regression model for Laikipia district is
MOR = (37.0675 - 11.4224) + 9.3670 DENSITY - 0.62151xlO

= 25.6451 + 9.3670 DENSITY - 0.62151x10 (4.5)

The same can be done for other districts.

TABLE 4: ANALYSIS OF VARIANCE TABLE SHOWING THE
PARTITION OF THE TOTAL SUM OF SQUARES INTO
REGRESSION AND RESIDUAL SUM OF SQUARES

SOURCE VARIATION D.F SUB OF SQUARES MEAN
SQUARE

F

REGRESSION 10 7734.8533 773.4853 5.1846
RESIDUAL 190 28345.7824 149.1883
TOTAL

Coefficient of determination r2
y.12 ..... p 0.21438 (4.6)

which implies 2ry.12 p 0.46301

standard error which is given by

s . e. 1149.1883 12.21427. (4.7)
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COMMENTS: -

Since PC FClO,190»3.l37) = 0.001,

It follows that

P( F(10,190»5.l846)<0.001, (4.8)

hence we reject the hypothesis that

o

at level of significance 0.001.
From the coefficients of the sample linear regression model

we find that Murang'a, Nyeri, Kericho and Nakuru produce

timber of higher strength for the Pine species than the

others.

REGRESSION ANALYSIS RESULTS FOR THE CYPRESS SPECIES

For this species we had x2' x3' .... , xII to represent

the indicator (Dummy) variables to take care of the district

levels as explained in table 3 of this chapter. It was

found that the difference between the two specimens for a

particular log was not significant hence the model does not

have an extra indicator variable

There were 572 observations in all, that were used

to fit the sample linear regression model. The calculated

model for this species is given by:-

MOR = 34.7294 + 14.5099 DENSITY - 1.66l4x2 + 1.7l86x3

+ 5.93l9x4 + 3.378lx5 + 5.6254x6 + 4.5034x7

- 2.4627x8 + 8.8309x9 + 4.5593xlO - 3.76l9x11 (4.9
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To obtain the linear regression model for district

1, say i=3 we set all the X'I
J S

o

except ( j=2,3, ....... , 11)

That is the linear regression model for NYERI district

is given by:-

MOR = 34.7294 + 14.5099 DENSITY + 1.7186

= 36.4480 + 14.5099 DENSITY (4.10)

TABLE 5: The table gives the analysis of variance results

for this regression model. Beneath, we give the'

coefficient of determination together with the

standard error.

SOURCE OF
VARIATION

D.F SUM OF SQUARES
(SS)

MEAN
SQUARE (MSS)

F

REGRESSION 11 1,0107.2865 918.8442

78.0136

11. 7780

RESIDUAL 560 43687.6181

TOTAL

Coefficient of determination 2
ry.12 .....p = 0.18789

Standard error = 8.83253

COMMENTS:

Since Prob (:(11,500) > 2.9061)

It follows

= 0.001 ,

Prob ~(11,560) > 11.7780) < 0.001, (4.11)
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hence we reject the hypothesis that

at significance level 0.001.
From the coefficients of the sample linear regression model
for the Cypress species, we may say that Laikipia, Elgeyo,
Kericho, Uasin Gishu, Nyandarua, Nyeri, Baringo and Nakuru
districts produce timber of quite a high strength. While
Murang'a, Kiambu and Meru districts are not doing well as
far as the strength of the product is concerned.

4.4. ANALYSIS OF VARIANCE

In this section we wish to study the variation of
Modulus of Rapture with location (District). We need to
tell whether or not location affects the modulus of Rapute
and hence the strength of timber. We shall adopt the model

y .. = u + d + L
1J 1 1J

i=1,2, ·.... , 9 for the Pine species
i=1,2, ·.... , 11 for the Cy})ress species
j=1,2, ·.... , n·1

Here l.l = location parameter common to all observations
d. = effect peculiar to ith district
1

~ ..= normally distributed random variable with
1J

mean zero and variance 0
2

We shall need the following quantities in order to set the
ANOVA table appropriately:-

(i) G = and n
v

= L TI.
i=l 1
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(ii) For each district D.
1

we computed the following

T.
1

= total for district D.
1

v . = T. In. ;
1. 1 1

sample mean for district D
i

ni 2
L Y = Sum of squares for district D.j=l ij 1

i=1,2, ...... , 9 or 11
Then after this the following were computed as required;
The total sum of squares

TSS L Li=l j=1

TSS given by
2Yij -

Sum of squares due to site (treatments) given by

=.L T~I1=1 1 ni
2

G
N

Then from the two sum of squares above the within sum
of squares or error sum of squares was obtained by
subtraction, that is

ESS = TSS - SSt

The following are the results for the Pine species.
TABLE 6: ANOVA table for the Pine species. It gives the components

of the total sum of squares and finally the F-statistic
is obtained

SOURCE SUM OF SQUARES DEGREES OF FREED(].1MEAN SQUARE
TREATMENTS 3890.085 8 486.2606
(SITE)

WITHIN DISTRICTS 14224.095 92 154.6007
(ERROR)

TOTAL 18114.180 100



- 51 -

From the table, the calculated F(8,92) IS given
by:-

= 486.2606 = 3. '451
154.6097

Then using the Fishers tables with 8 and 92 degrees of

freedom in the numerator and demoninatoT respectively

we get

Prob ( F(8,92) > 2.9929) = 0.005

which imolies

P = Prob ( F(8,92) > 3.1451) < 0.005 (4.12)

Hence we reject the hypothesis

Ho: =dl=d2·· = d9
at significance level 0.005. Meaning that the effect due

to districts on Modulus of rapture is different for at least

two districts or d.=d.
1 J for i = j .

Next we carry out a paired comparison test for the Pine

species.

PAIRED COMPARISONS FOR THE PINE SPECIES

Below we arrange the sample means from each district

which Pine is grown in descending order of magnitude. This

will facilitate the computations for the calculated t

statistics.
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TABLE 7: MEANS ARRANGED IN DESCENDING ORDER OF MAGNITUDE

SAMPLE MEAN SAMPLE NO DISTRICT

yl. 47.8956 nl 18 NAKURU

Y3. = 46.7098 n3 = 13 NYERI

Y9. = 46.0466 n9 = 6 MURANG'A

Y4. = 40.4684 n4 6 KERICHO

Y5. = 38.3521 n5 = 8 BARINGO

Y8. = 37.9624 n8 6 NYANDARUA

Y6. = 35.3212 n6 = 7 MERU

Y2. = 34.8838 n2 = 30 KIAMBU

Y7. = 28.1457 n7 = 7 LAIKIPIA

To test the hypothesis numbered (3.15) in Chapter
III we compute the sample t statistic given by

t c

MSe(L + 1 )
n·1

and reject H when the value
P = Prob ( ten-v) > tc or ten-v) < - tc/Ho)

is small.
This value is cilled the attained significance level.
Below we give the table of results.
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TABLE 8: SHOWS PAIRS OF DISTRICTS WITH THE
CORRESPONDING CALCULATED STUDENT t STATISTIC
AND THE ATTAINED SIGNIFICANCE LEVELS

DISTRICT PAIRS CALCULATED STUDENT P= P (t(92) > te or
t = te t(92) < -tel

NAKURU - NYERI 0.2560 O.70 < P < 0.80
NAKURU - MURANG'A 0.3154 0.60 < P < 0.70
NAKURU - KERICHO 1.2671 0.20 < P < 0.30
NAKURU - BARINGO 1.8063 0.05 < P < 0.10
NAKURU - NYANDARUA 1.6946 0.05 < P < 0.10
NAKURU - MERU 2.2703 0.02 < P < 0.05
NAKURU - KIAMBU 3.5099 P < 0.001
NAKURU - LAIKIPIA 3.5658 P < 0.001

NYERI - MURANG'A 0.1081 0.90 < P < 0.95
NYERI - KERICHO 1.0858 0.20 < P < 0.30
NYERI - BARINGO 1.3771 0.10 < P < 0.20
NYERI - NYANDARUA 1.4254 0.10 < P < 0.20
NYERI - MERU 1.9537 0.05 < P < 0.10
NYERI - KIAMBU 2.8643 0.002 < P < 0.01
NYERI - LAIKIPIA 3.1846 0.001 < P < 0.002

MURANG'A - KERICHO 0.777P 0.40 < P < 0.50
MURANG'A - BARINGO 1.1458 0.20 < P < 0.30
MURANG'A - NYANDARUA 1.1261 0.20 < P < 0.30
MURANG'A - MERU 1.5504 0.10 < P < 0.20
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DISTRICT PAIRS CALCULATED STUDENT
t = t e

P= P [t(92) > te OT

t(92) < -tel

MURANG'A - KIAMBU
MURANG'A - LAIKIPIA

KERICHO - BARINGO
KERICHO - NYANDARUA
KERICHO - MERU
KERICHO - KIAMBU
KERICHO - LAIKIPIA

BARINGO - NYANDARUA
BARINGO - MERU
BARINGO - KIAMBU
BARINGO - LAIKIPIA

NYANDARUA - MERU
NYANDARUA - KIAMBU
NYANDARUA - LAIKIPIA

MERU - KIAMBU
MERU - LAIKIPIA

KIAMBU - LAIKIPIA

2.0074

2.5876

0.3151

0.3491

0.7441
1.0043

1.7813

0.0580

0.4709

0.7010
1.5657

0.3818

0.5536
1.4191

0.0838
1.0796

2.29110

0.40 < P < 0.05

0.01 < P < 0.02

0.70 < P< 0.80

0.70 < P < 0.80

0.40 < P < 0.50

0.30 < P < 0.40

0.05 < P < 0.10

0.97 < P < 0.98

0.60 < P < 0.70

0.40 < P < 0.50

0.10 < P < 0.20

0.60 < P < 0.70

0.50 < P < 0.70

0.10 < P < 0.20

0.90 < P < 0.95

0.20 < P < 0.30

0.10 < P < 0.20
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As earlier stated we reject the hypothesis
H d. - dk = 0

0 1

against
H d. - dk t 0

0 1

whenever the p-value in column III of table 8 is small.
Taking P<O.lO to be small, we conclude that the mean
strengths of timber from the district pairs listed in table
9 below differ significantly.

TABLE 9: PAIRS OF DISTRICTS WHICH SHOW A SIGNIFICANT
DIFFERENCE IN MEAN STRENGTH FOR THE PINE SPECIES

DISTRICT PAIRS P- VALUE
NAKURU BARINGO 0.05 < P < 0.10

NAKURU NYANDARUA 0.05 < P < 0.10

NAKURU MERU 0.02 < P < 0.05

NAKURU KIAMBU P < 0.001

NAKURU LAIKIPIA P < 0.001

NYERI MERU 0.05 < P < 0.10

NYERI KIAMBU 0.02 < P < 0.01

NYERI ~ LAIKIPIA 0.001 < P < 0.002

MURANG'A KIAMBU 0.02 < P < 0.05

MURANG' A LAIKIPIA 0.01 < P < 0.02

KERICH LAIKIPIA 0.05 < P < 0.1
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ANALYSIS OF VARIANCE RESULTS FOR THE CYPRESS SPECIES

In this case there were eleven districts and from
computation similar to those with the PINE species lead
to the following ANOVA table.

Table 10: ANOVA table for the Cypress snecies.. It
shows the components of the total sum of
squares and finally the F-statistics is obtained.

SOURCE OF SUM OF SQUARES DEGRESS OF MEAN SQUARE
VARIATION (SS) FREEDOM (MSS)
TREATMENTS 4242.2314 10 424.2231

(SITE)

WIT IN SITES 23573.6230 281 83.8914
(ERROR)

TOTAL 27815.854 291 F(lO,28l)

From the table the calculated F(10,28l) statistic
IS given by:-

F 424.2231c
83.8919

5.0568

Since Prob ( F(10,250) > 3.0893) = 0.001
It follows that

P = Prob ( F(10,28l) > 5.0568) < 0.001 (4.13)
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The meaning of the statement in (4.13) is that the
hypothesis,

is rejected, at level of significance of 0.001. This
implies that the quantity under study namely the Modulus of
Rapture, a measure of the strength of wood, is different
jar at least two districts that is

di 4 dk for i~k =1,2, , 11

The next step is to carry out pairwise comprisons to discover
which pair of districts bring about this difference.

PAIRED COMPARISONS FOR THE CYPRESS SPECIES

Below we arrange the sample means from the districts
which CYPRESS is grown in descending order of magnitude.
This will facilitate the computations for the calculated
student t statistics.

TABLE 11: MEANS ARRANGED IN DESCENDING ORDER OF MAGNITUDE

SAMPLE MEAN SAMPLE NO DISTRICT

Y9. 48.6767 n9 15 LAIKIPIA
- 47.3294 25 ELGEYOY6. = n6
- 46.6421 35 KERICHOY4. = n4
- 45.8388 25 UASIN GICHUY7. = n7 =
- 44.5428 16 NYANDARUAYlO. = nlO=
- 43.2006 34 NYERIY3. = n3
- 42.2048 30 BARINGOY5. = n5 =

- 41. 3058 39 NAKURUY1. = nl
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TABLE 11: CONTINUED:

SAMPLE MEAN SAMPLE NO DISTRICT

- 38.0558 15 MURANG'AY II. = nIl
- 37.8601 38 KIAMBUY2. = n2 =

- 35.5560 20 MERUY8. = n8 =
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TABLE 12: SHOWS DISTRICT PAIRS WITH THE CORRESPONDING
CALCULATED STUDENT t STATISTIC AND THE ATTAINED
SIGNIFICANCE LEV~LS, FOR THE CYPRESS SPECIES.

DISTRICT PAIRS CALCULATED STUDENT P= prob(t(281) >

t = t or t(281) < -tc

LAIKIPIA - ELGEYO 0.4503 0.65 < P < 0.66
LAIKIPIA - KERICHO 0.7198 0.47 < P < 0.48
LAIKIPIA - U.GISHU 0.9487 0.34 < P < 0.35
LAIKIPIA - NYANDARUA 1.2558 0.21 < P < 0.22
LAIKIPIA - NYERI 1.9288 0.05 < P < 0.06
LAIKIPIA - BARINGO 2.2345 0.02 < < 0.03
LAIKIPIA - NAKURU 2.6488 P < 0.01
LAIKIPIA - MURANG'A 3.1757 P < 0.01
LAIKIPIA - KIAHBU 3.8728 P < 0.01
LAIKIPIA - MERU 4.1940 P < 0.01

ELGEYO - KERICHO 0.2866 0.77 < P < 0.78
ELGEYO - U.GISHU 0.5754 0.56 < P < 0.57
ELGEYO - NYANDARUA 0.9503 0.34 < P < 0.35
ELGEYO - NYERI 1.7110 0.08 < P < 0.09
ELGEYO - BARINGO 2.0661 0.03 < P < 0.04
ELGEYO - NAKURU 2.5668 0.01 < P < 0.02
ELGEYO - MURANG'A 3.1001 P < 0.01
ELGEYO - KIAMBU 4.0147 P < 0.01
ELGEYO - MERU 4.2847 P < 0.01
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TABLE 12: CONTINUED
DISTRICT PAIRS CALCULATED STUDENT P= Prob (t (281) >

t = tc or t(281) < -1

KERICHO - U.GISHU 0.3349 0.73 < P < O.74
KERICHO - NYANDARUA 0.7595 0.44 < P < 0.45
KERICHO - NYERI 1.5604 0.11 < P <. 0.12
KERICHO - BARINGO 1.9471 0.05 < P < 0.06
KERICHO - NAKURU 2.5022 0.01 < P < 0.02
KERICHO - MURANG'A 3.0377 P < 0.01
KERICHO - KIAMBU 4.0926 P < 0.01
KERICHO - MERU 4.3180 P < 0.01

U. GISHU - NYANDARUA 0.4420 0.65 < P < 0.67
U. GISHU - NYERI 1.0933 0.26 < P < 0.27
U. GISHU - BARlNGO 1.4670 0.14 < P < 0.15
U. GlSHU - NAKURU 1.9317 0.05 < P < 0.06

,U. GISHU - MURANG'A 2.6018 P < 0.01
U. GISHU - KlAMBU 3.3827 P <. 0.01
U. GlSHU - MERU 3.7422 P < 0.01

NYANDARUA - NYERl 0.4834 0.62 < P < 0.63
NYANDARUA - BARlNGO 0.8246 0.40 < P < 0.41
NYANDARUA - NAKURU 1.1904 0.23 < P < 0.24
NYANDARUA - MURANG'A 1.9706 0.04 < P < 0.05
NYANDARUA - KlAMBU 2.4482 0.01 < P < 0.02
NYANDARUA - MERU 2.9253 P < 0.01
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TABLE 12: CONTINUED
DISTRICT PAIRS CALCULATED STUDENT P= Prob (t (281)

t = t or t(281) <c

NYERI - BARINGO 0.4340 0.66 < P < O.E

NYERI - NAKURU 0.8817 0.37 < P < 0.3
NYERI - MURANG'A 1.8122 0.06 < P < 0.0
NYERI - KIAMBU 2.4700 0.01 < P < 0.0
NYERI - MERU 2.9618 P < 0.0

BARINGO - NAKURU 0.4042
1.4325

0.68 < P < 0;6~
BARINGO - MURANG'A 0.66 < P < 0.6/
BARINGO - KIAMBU 1.9422

2.5146
0.05 < P < 0.06

BARINGO - MERU 0.01 < P < 0.02

NAKURU - MURANG'A 1. 1679 0.24 < P < 0.25
NAKURU - KIAMBU 1.6504 0.09 < P < 0.10
NAKURU - MERU 2.2825 0.02 < P < 0.03
MURANG'A - KIAMBU 0.0701 0.94 < P < 0.43
MURANG' A - MERU 0.7990 0.36 < P < 0.37
KIAMBU - MERU 0.9106 0.36 < P < 0.37

Note:
To compute the probabilities in the last column the student

t with 281 degrees of freedom was approximated to a standard
normal distribution.

We recall that the hypothesis we want to test is
d.
1

= o
against
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that is to test whether the mean strength .of timber for
the Cypress species due to districts Di and Dk is the same

or not. We reject the hypothesis Ho when the attained

significance level is small. If we regard P < 0.10
as smalll, we obtain the list in table 13 below for which
the mean strength of wood differ significantly.

TABLE 13: PAIRS OF DISTRICTS WHICH SHOW A SIGNIFICANT
DIFFERENCE IN MEAN STRENGTH FOR THE CYPRESS
SPECIES

DISTRICT PAIRS P - VALUE

LAIKIPIA NYERI 0.05 < P < 0.06
LAIKIPIA BARINGO 0.02 < P < 0.03
LAIKIPIA NAKURU P < 0.01
LAIKIPIA MURANG'A P < 0.01
LAIKIPIA KIAMBU P < 0.01
LAIKIPIA MERU P "f- 0.01
ELGEYO NYERI 0.08 < P < 0.09
ELGEYO BARINGO 0.03 < P < 0.04
ELGEYO NAKURU 0.01 < P < 0.02
ELGEYO MURANG' A P < 0.01
ELGEYO KIAMBU P < 0.01
ELGEYO MERU P < 0.01
KERICHO NAKURU 0.0·1 < P < 0.02
KERICHO MURANG' A P < 0.01
KERICHO KIAMBU P < 0.01
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TABLE 13 CONTINUED
DISTRICT PAIRS P - VALUE

U. GISHU MURANG'A P < 0.01
U. GISHU KIAMBU P < 0.01
U. GISHU MERU P < 0.01
NYANDARUA MURANG' A 0.04 < P < 0.05
NYANDARUA KIAMBU 0.01 < P < 0.02
NYANDARUA MERU P < 0.01
NYERI MURANG' A 0.06 < P < 0.07
NYERI KIAMBU 0.01 < P < 0.02
NYERI MERU P < 0.01
BARINGO KIAMBU 0.05 < P < 0.06
BARINGO HERU 0.01 < P < 0.02
NAKURU KIAMBU 0.09 < P < 0.10
NAKURU MERU 0.02 < P < 0.03
U. GISHU NAKURU 0.05 < P < 0.06
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CHAPTER 5
DISCUSSION AND CONCLUDING REMARKS

5.1 REGRESSION

For both wood species, the Pine and the CynrEss we

rejected the hypothesis

B = B =1 2 B = 0v

where v is 10 and 11 for the Pine and Cypress species

respectively. Given that in both the regression models most

independent variables were indicator variables to take care

of site levels, we conclude here that there is high depen-

dence of strength of timber with site apart from density of

the material

The small values of the sample coefficients of deter-

minations imply that little variability of the Modulus of

rapture is explained by the main independent variable the

density.

This was 21.43% for the case of the Pine species and only

18.8% for the case of the Cypress Species.

A course for these low values could be due to errors made

in the determination of the measurable variables, the

response variable which was the modulus of rapture and the

explanatory variable which was the basic density. This is

so, becuase the other independent variables were qualitative,

the site levels, in this case the districts.

The model can be improved in a future study by including

more explanatory variables.

Now, looking at the regression models closely we find very
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useful information. We can easily rank the Districts
according to quality (strength) of timber. From the
regression models we can retrieve the simple linear regre-
ssion models for each district. The simple linear regression
models have same gradi~nt (slope~but different intercepts.
Let us consider the pine species case; whose calculated
multiple regression model is given by equation (4.4). In
this model, the indicator variables all take the value zero
when the data point is from Nakuru district, hence the simple
linear model for the District. Taking Nakuru district
as the reference point we find that Murang'a~ Ny~ri, Kericho
produce timber of a higher strength than Kiambu, Baringo, Meru,
Laikipia and Nyandarua districts.

Similarly with the case of Cypress we get the simple
linear model for Nakuru when we put all the indicator variables
to take value zero in the model given by (4.9). Hence taking
Nakuru district as the reference point we find that Laikipia,
Elgeyo, Kericho, Uasin Gishu, Nyandarua, Nyeri, Baringo and
Nakuru districts produce Cypress wood of quite a higher
strength than Murang'a, Kiambu and Meru districts.

The findings here are important to a forest manager
because if the interest is the strength of wood then emphasis
can be put in the Districts which show a tendency of producing
timber of higher quality (strength). The manager can even
decide to substitute a species of lower quality with one of
higher quality for a given District. For a particular species,
the manager can decide to follow a sequence of harvesting
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to avoid depletion of that species. Since if several
districts produce timber of higher quality for a given species
then harvesting can be planned in such a way that more
harvesting is done for those districts which have a bigger
number than those with a lower number.

5.2 ANALYSIS OF VARIANCE:

From the analysis of variance model

Yij = ~ + d. + e. i=l, 2 , .... .. . . .. V
1 Ij

j=l, 2 , .. . . . .. . .. n .
1

we rejected the hypotheses
H dl = d2 = = dg0

for the Pine species, and
H dl = d2 = = dll0

for the Cypress species, where the d'l are the effects of
1 s

districts D., i=l, 2, ..... v = 9 or lIon Modulus of
1

Rapture.
The conclusion here is that the mean strengths of wood for
a given species are not the same for at least a pair of
Districts~ This was verified by the paired comparison. The
recommendation therefore is that in future constructional
standards for these species of woo~ should be calculated
per population in this case the districts, as opposed to the

past where the districts were taken as one population. This
may mean that even the prices of wood from district D. may

1

not be the same as that of district D ..
1
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The results of the paired comparison can further
help in management because if wood from disrict D.

1
and

that of district Dk show same effects on the strength of
wood, then if wood of a given strength is required and is
not available' in District D. then it can be obtained from

1

district Dk.

The study in this project shall go a long way towards
helping the Kenya Bureau of Standards in setting standards
of the Kenyan wood. This is because in the past standards
were based on a pooled sample from the various districts,
but from the findings it appears that there is need to
treat the districts individually.
On improving the carrying out of the study it is recommended
that in future in case of similar study an equal number of
observations per district be obtained since the analysis of
variance carried out here was aimed at comparing means of
v populations, where v is the number of districts. This
will make the computations for paired comparison easier by
making use of the least significance difference which is
common for all pairs.

It is believed that the study has answered some of
the questions intended to be answered as per the aim of
study.
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