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Abstract

Objective

Prompt identification of newly HIV-infected persons, particularly those who are most at risk of

extended high viremia (EHV), allows important clinical and transmission prevention benefits.

We sought to determine whether EHV could be predicted during early HIV infection (EHI) from

clinical, demographic, and laboratory indicators in a large HIV-1 incidence study in Africa.

Design

Adults acquiring HIV-1 infection were enrolled in an EHI study assessing acute retroviral

syndrome (ARS) symptoms and viral dynamics.

Methods

Estimated date of infection (EDI) was based on a positive plasma viral load or p24 antigen

test prior to seroconversion, or the mid-point between negative and positive serological

tests. EHV was defined as mean untreated viral load�5 log10 copies/ml 130–330 days

post-EDI. We used logistic regression to develop risk score algorithms for predicting EHV

based on sex, age, number of ARS symptoms, and CD4 and viral load at diagnosis.

Results

Models based on the full set of five predictors had excellent performance both in the full pop-

ulation (c-statistic = 0.80) and when confined to persons with each of three HIV-1 subtypes
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(c-statistic = 0.80–0.83 within subtypes A, C, and D). Reduced models containing only 2–4

predictors performed similarly. In a risk score algorithm based on the final full-population

model, predictor scores were one for male sex and enrollment CD4<350 cells/mm3, and two

for having enrollment viral load >4.9 log10 copies/ml. With a risk score cut-point of two, this

algorithm was 85% sensitive (95% CI: 76%-91%) and 61% specific (55%-68%) in predicting

EHV.

Conclusions

Simple risk score algorithms can reliably identify persons with EHI in sub-Saharan Africa

who are likely to sustain high viral loads if treatment is delayed. These algorithms may be

useful for prioritizing intensified efforts around care linkage and retention, treatment initia-

tion, adherence support, and partner services to optimize clinical and prevention outcomes.

Introduction

Antiretroviral therapy (ART) initiated early in HIV-1 infection preserves immune function

[1], reduces adverse clinical outcomes [2–4], and prevents transmission [4]. Recognizing these

benefits, HIV treatment guidelines recommend ART initiation at diagnosis, regardless of CD4

count [5,6]. However, as of July 2017, only 60% of low- and middle-income countries had

adopted the “Treat All” policy, and only 9% had implemented this approach in a majority of

treatment sites [7]. These lags in guideline implementation—combined with suboptimal care

linkage among those who are ART-eligible at diagnosis [8, 9] and poor care retention both

before [10] and after [11] ART initiation—result in substantial losses of both clinical and trans-

mission prevention benefits.

Delayed ART initiation and poor retention are particularly detrimental among persons

who sustain high viral loads in the absence of treatment, as they are at especially high risk of

onward transmission [12] and disease progression [13,14]. If persons likely to sustain high

viremia could be identified at HIV diagnosis, then intensified efforts to support care linkage,

ART initiation, partner services, care retention, and ART adherence specifically among these

persons could optimize clinical and transmission prevention benefits. We therefore sought

to develop risk score algorithms for identifying newly HIV-infected cases likely to have

extended high viremia (EHV)–that is, likely to sustain viral loads�5 log10 more than three

months after HIV-1 acquisition—based on demographic, clinical, and laboratory indicators in

a large cohort of HIV-1 seroconverters in Africa.

Methods

Study design, setting, population, and procedures

As described previously [15], adults at risk of HIV-1 infection in eastern and southern Africa

were enrolled into a multi-center cohort study across nine research centers in Kenya (Nairobi,

Kilifi), Uganda (Entebbe, Masaka), Rwanda (Kigali), Zambia (Lusaka, Copperbelt), and South

Africa (Rustenburg, Cape Town). Study volunteers were tested for HIV-1 monthly or quarterly

(depending on site), including p24 antigen testing to detect infection before seroconversion.

Blood collected at antibody-negative visits was saved to enable retrospective HIV RNA testing

for acute HIV infection if a subsequent sample was found antibody-positive. Volunteers with

incident HIV-1 infection detected between March 2005 and December 2011 were invited to
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enroll in an early HIV infection (EHI) study. The study was approved by the Kenya Medical

Research Institute Ethics and Review Board, the Kenyatta National Hospital Ethical Review

Committee of the University of Nairobi, the University of Cape Town Health Science Research

and Ethics Committee, the Rwanda National Ethics Committee, the Uganda Virus Research

Institute Science and Ethics Committee, the Uganda National Council of Science and Technol-

ogy, the University of Zambia Research Ethics Committee, the Emory University Institutional

Review Board, and the Bio-Medical Research Ethics Committee at the University of KwaZulu

Natal. All volunteers provided written informed consent.

At the time of EHI cohort enrollment, volunteers identified�90 days after their estimated

date of infection (EDI) were asked whether they had experienced eleven symptoms of acute

retroviral syndrome (ARS) in the three months before HIV-1 detection: fever, headache, night

sweats, myalgia, fatigue, skin rash, oral ulcers, pharyngitis, lymphadenopathy, diarrhea, and

anorexia [16]. As described previously [17], blood was drawn at enrollment for pol gene viral

subtyping and CD4 and viral load quantification. The EDI was defined as 10 days before the

first positive viral load test if antibody and p24 tests were negative at the time of the detectable

viral load, 14 days before the first positive p24 test if no previous viral load or antibody tests

were positive, or the midpoint between the last negative and first positive HIV-antibody test in

the absence of any p24- or RNA-positive samples [17]. Following EHI study enrollment, viral

load and CD4 quantification was performed monthly in the first three months after the EDI,

quarterly until two years post-EDI, and semiannually thereafter.

Statistical analyses

EHI study participants were included in the current analysis if their enrollment visit was�90

days post-EDI, ARS symptoms were assessed at enrollment, and at least one viral load mea-

surement was available for EHV calculation. Similar to prior studies [18,19], we defined EHV

as a mean pre-ART viral load�5 log10 copies/ml during the period 130–330 days post-EDI.

Viral load measurements taken after ART initiation were censored. In descriptive analyses, we

examined the distributions (overall and by subtype) of key demographic and clinical variables,

including numbers of ARS symptoms and EHV prevalence.

We constructed logistic regression models with EHV as the outcome, first without and

then with stratification by HIV-1 subtype. The overall (subtype-nonspecific) analyses were

meant to represent model use in locations in which there is not a single predominant subtype,

whereas the subtype-specific analyses were intended for locations in which a particular subtype

is known to be most prevalent. Subtype-specific analyses were limited to subtypes A, C, and D

(excluding a small number of recombinants), the only subtypes for which we had sufficient

numbers of volunteers. Based on previous studies of viremia and/or clinical progression [20–

27], we included sex, age (�30 vs.<30), and a dichotomized measure of the number of ARS

symptoms (�2 vs. <2) as predictor variables in each full model. We also included enrollment

viral load (dichotomized at the median: >4.9 vs.�4.9 log10 copies/ml) and CD4 stratum

(< 350 vs.� 350 cells/mm3) as predictors. We conducted backward elimination with a stop-

ping rule of p = 0.2 for each model. To assess the performance of the full and final models, we

examined the c-statistic, representing the area under each model’s receiver operating charac-

teristic (ROC) curve. C-statistics of<0.69 were considered poor, 0.7–0.79 acceptable, 0.8–0.89

excellent, and�0.9 outstanding [28].

After constructing predictive models overall and by HIV-1 subtype, we sought to develop a

risk score algorithm for predicting EHV in each context. For each of the four final models

(one for the overall population and one for each of the three HIV-1 subtypes), we calculated a

predictor score for each explanatory variable by rounding its beta coefficient (i.e., natural log
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of the odds ratio) to the nearest integer. After calculating a risk score for each volunteer by

summing the applicable predictor scores from a given model, we calculated the sensitivity and

specificity of each possible risk score cut-point within each model. All analyses were conducted

with SAS 9.4 (SAS Institute, Cary, NC).

Results

Of 613 HIV-1 seroconverters enrolling in the EHI cohort, 422 (68.8%) enrolled and completed

information on ARS symptoms�90 days after their EDI (Fig 1). Of these, 388 (91.9%) had at

least one pre-ART viral load measurement (range = 1–5 measurements; mode = 2 measure-

ments) between 130 and 330 days post-EDI, and were thus eligible for analysis. Approximately

one-third (34.8%) of the eligible volunteers had HIV-1 subtype A, 43.8% subtype C, and 15.7%

subtype D, with the remaining 5.7% comprising other subtypes (Table 1). Across subtypes,

the median age among males and females was 30 and 28 years, respectively, and the majority

Fig 1. Study flow chart. EDI = estimated date of infection; ARS = acute retroviral syndrome; EHV = extended high

viremia.

https://doi.org/10.1371/journal.pone.0192785.g001
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(72.9%) of volunteers belonged to serodiscordant couples. A lower proportion of those with

subtype A were female versus those with subtypes C and D, and although the age distribution

in females was similar across subtypes, male volunteers with subtype A were appreciably youn-

ger than those with subtype C (but not D). Due to differences in at-risk source populations

across research centers, serodiscordant couples were more prevalent among those with sub-

type C than with the other two subtypes, and men who have sex with men were more prevalent

among those with subtype A. Overall, the median time between EDI and enrollment was 45

days, median number of ARS symptoms was 2, and median enrollment viral load was 4.9 log10

copies/ml. Time since EDI and enrollment viral load were similar across subtypes, but subtype

A volunteers had a greater number of ARS symptoms than those with subtypes C and D (as

previously reported in [16]). The proportions with CD4>350 and CD4>500 (83.1% and

54.3% overall, respectively) were similar across subtypes.

The relationship between number of ARS symptoms and EHV prevalence varied across

subtypes (Fig 2). Subtype A volunteers exhibited a clear increase in EHV prevalence as the

number of ARS symptoms increased from 0–1 to 2–7 to�8. Subtype C and D volunteers also

experienced an increase in EHV prevalence as the number of ARS symptoms increased from

0–1 to 2–7, but subtype D estimates were imprecise. No subtype C or D volunteers with�8

ARS symptoms experienced EHV, but very few subtype C and D volunteers had this many

symptoms (N = 4 and N = 1, respectively).

Logistic regression models including sex, age, number of ARS symptoms, enrollment viral

load, and enrollment CD4 had excellent performance both in the full population (c-statis-

tic = 0.80) and when confined to persons with each of the three HIV-1 subtypes (c-statis-

tic = 0.83, 0.83, and 0.80 for subtypes A, C, and D, respectively). The final models obtained

through backward selection performed similarly (c-statistics of 0.79, 0.82, 0.83, and 0.80 in the

full, subtype A, subtype C, and subtype D populations, respectively). The final model for the

full population included sex, age at infection, enrollment viral load, and enrollment CD4;

the final model for subtype A infection included number of ARS symptoms, age at infection,

and enrollment viral load; the final model for subtype C infection included male sex, age at

Table 1. Characteristics at enrollment�.

Characteristic Overall (N = 388) Clade A (N = 135) Clade C (N = 170) Clade D (N = 61) Other�� (N = 22)

N (%) female† ‡ 152 (39.2) 38 (28.1) 78 (45.9) 29 (47.5) 7 (31.8)

Median (range) age, males† ¶ 30 (18–58) 28 (18–52) 33 (19–52) 30 (19–58) 30 (21–47)

Median (range) age, females 28 (16–53) 27 (19–53) 29 (16–45) 27 (17–46) 28 (18–42)

Number (%) in risk group: † ‡ ¶

Serodiscordant couples 283 (72.9) 71 (52.6) 151 (88.8) 45 (73.8) 16 (72.7)

Men reporting sex with men 68 (17.5) 48 (35.6) 8 (4.7) 6 (9.8) 6 (27.3)

Other / don’t know 37 (9.5) 16 (11.9) 11 (6.5) 10 (16.4) 0 (0.0)

Median (IQR) days since EDI 45 (25–56) 43 (22–56) 45 (26–56) 50 (34–56) 43 (18–59)

Median (range) number of ARS symptoms† ‡ 2 (0–10) 4 (0–10) 1 (0–10) 1 (0–8) 2 (0–8)

Median (range) log10 viral load 4.9 (1.4–7.3) 4.9 (2.3–7.3) 4.9 (1.7–6.5) 4.9 (1.4–6.7) 4.9 (1.4–6.8)

N (% of those with CD4 data) with CD4>350 291 (83.1) 99 (79.2) 123 (85.4) 50 (83.3) 19 (90.5)

N (% of those with CD4 data) with CD4>500 190 (54.3) 74 (59.2) 71 (49.3) 36 (60.0) 9 (42.9)

� all within 90 days of estimated infection acquisition date.

�� Includes 1 subtype B infection, 2 subtype G, 17 recombinant, and 2 with missing subtype.
† Subtype A vs subtype C comparison statistically significant at α = 0.05.
‡ Subtype A vs subtype D comparison statistically significant at α = 0.05.
¶ Subtype C vs subtype D comparison statistically significant at α = 0.05.

https://doi.org/10.1371/journal.pone.0192785.t001
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infection, enrollment viral load, and enrollment CD4; and the final model for subtype D

included age at infection and enrollment viral load.

Using the beta coefficients from the final model applied in the full population, we developed

a risk score algorithm in which male sex and enrollment CD4 <350 cells/mm3 were each

assigned one point, and enrollment log10 viral load >4.9 log10 copies/ml was assigned two

points (Table 2). Based on the beta coefficients in the model developed specifically for subtype

A infection, we assigned one point to number of ARS symptoms�2 and to age�30, and three

points to enrollment viral load>4.9 log10 copies/ml. Point values for the subtype C algorithm

were one point for male sex and age�30, two points for enrollment viral load >4.9 log10 cop-

ies/ml, and two points for enrollment CD4<350 cells/mm3. In the algorithm for subtype D,

both enrollment viral load >4.9 log10 copies/ml and age <30 at infection carried two points on

the basis of their beta coefficients.

Fig 2. Extended high viremia prevalence by subtype and number of ARS symptoms. The points represent EHV

prevalence for a given range of the number of symptoms; the brackets represent the 95% confidence intervals. The

numerator and denominator for each proportion are shown in parentheses above each estimate.

https://doi.org/10.1371/journal.pone.0192785.g002

Table 2. Model coefficients and corresponding predictor scores by HIV-1 subtype.

Model predictors: All Subtype A Subtype C Subtype D

β points β points β points β points

�2 ARS symptoms - - - - 1.01 1 - - - - - - - -

Male sex 0.64 1 - - - - 1.38 1 - - - -

Age� 30 at EDI 0.44 0 0.63 1 0.83 1 -1.67 -2�

Enrollment viral load > 4.9 log10 copies/ml 2.09 2 2.77 3 1.79 2 2.18 2

Enrollment CD4 < 350 0.60 1 - - - - 2.00 2 - - - -

- - Predictor not included in final model because p�0.2

� To confine predictor scores to positive values in the subtype D model, we converted the point value of -2 for age� 30 to a value of +2 for age < 30.

https://doi.org/10.1371/journal.pone.0192785.t002
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The overall and subtype-specific algorithms performed well (Fig 3). For example, with a

cut-point of two in the full-population model, the sensitivity was 85% (95% CI: 76%-91%)–

that is, the algorithm would correctly identify 85% of persons who would subsequently experi-

ence EHV. The corresponding specificity was 61% (55%-68%)–that is, 61% of those who did

not ultimately experience EHV had scores <2. In other words, the algorithm would correctly

rule out 61% of persons who would not experience EHV. In the subtype A model, a cut-point

of three had a sensitivity of 91% (82%-100%) and a specificity of 63% (53%-73%); in the sub-

type C model, a cut-point of two had a sensitivity of 93% (80%-98%) and a specificity of 44%

(33%-54%); and in the subtype D model, a cut-point of two had a sensitivity of 100% and a

specificity of 33% (19%-47%).

Discussion

Rapid identification and treatment of newly HIV-infected persons can have important clinical

and public health benefits, but many persons with EHI are likely to have CD4 counts above

current ART initiation thresholds in many sub-Saharan African countries [6,7], and subopti-

mal linkage and retention are prevalent even among treatment-eligible persons [8–11]. The

detrimental effects of delaying treatment are particularly great among newly infected persons

who sustain high viral loads, allowing unmitigated transmission for months or years before

Fig 3. Sensitivity and specificity of risk score models developed in the full and subtype-specific populations. The horizontal axes display all possible

risk score cut-points that could be chosen for clinical implementation of a given algorithm. In clinical implementation, all persons with risk scores at or

above a chosen cut-point would be identified as likely to subsequently have extended high viremia. Circles represent the proportion of all EHV cases

with scores at or above a given risk score cut-point (i.e., sensitivity). Diamonds represent the proportion of all those who did not have EHV with scores

below a given risk score cut-point (i.e., specificity).

https://doi.org/10.1371/journal.pone.0192785.g003
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treatment begins. To determine whether limited resources for linkage, retention, treatment,

and partner services could be efficiently targeted toward EHI cases with the highest potential

for onward transmission and clinical progression, we sought to develop predictive models

and risk score algorithms for EHV based on previously identified correlates of sustained high

viremia.

The full predictive model containing number of ARS symptoms, male sex, age at infection,

and enrollment CD4 and viral load had excellent performance in the overall and subtype-spe-

cific populations. This strong predictive ability was largely maintained in each of the more par-

simonious, reduced models, suggesting that simple models with only 2–4 predictors could

reliably identify candidates for intensified efforts around ART initiation, counseling, and mon-

itoring in many sub-Saharan African settings.

Possible approaches for identifying potential EHI cases for algorithm application will vary

across settings according to laboratory capabilities. Newly HIV-positive persons with recent

HIV-negative test results (i.e., in the prior 3–6 months) should be considered as probable

EHI cases, as should those with discordant rapid antibody tests in dual-test settings [29,30].

Though less commonly available, fourth-generation antibody/antigen tests or HIV RNA test-

ing of antibody-negative persons offer more direct identification of EHI cases for EHV algo-

rithm application.

The risk score algorithms that we developed both in the overall and subtype-specific popu-

lations performed well, suggesting that these algorithms could be useful in many sub-Saharan

African diagnosis settings. In real-world implementation, clinical staff would complete a brief

checklist of algorithm predictors for suspected or confirmed EHI cases and then sum predictor

scores to calculate a patient’s risk score. For example, consider a forty-year-old male who tests

HIV-antibody-positive after testing negative two months earlier in a setting where subtype A

predominates. If this probable EHI case has four ARS symptoms and log10 viral load> 4.9

copies/ml, then he would have a risk score of five (sum of predictor scores = 1 for age + 1 for

number of symptoms + 3 for viral load). Patients with a risk score above a chosen cut-point

would then be selected for intensified efforts around care engagement, treatment initiation,

and/or partner services.

Strengths of our study include the collection of relevant data under a standardized protocol

and questionnaire at nine different sites across sub-Saharan Africa, as well as the relatively

large population of newly HIV-infected persons arising from the multi-site design. We note,

however, that the small numbers of volunteers within each subtype limited our ability to

include a large number of predictors (e.g., each specific ARS symptom) in subtype-specific

models. It is possible that subtype-specific algorithms based on particular symptoms or other

variables would be more predictive. We also note that the timing of ARS assessment and viral

load measurements within the course of HIV infection could differ in the real world, as detec-

tion of incident HIV occurred through regular testing in our population but may be more

symptom-driven outside of the research context. It is difficult to predict the effect of such tim-

ing differences on symptom recall or viral load values, but any such effects could affect algo-

rithm performance.

To our knowledge, only one other risk score algorithm relating ARS symptoms to longer-

term viral load endpoints has been published [31]. That algorithm, which relied on expert

opinion to select predictors and assign points (i.e., without a predictive model), included

severe neurological symptoms (3 points), inpatient treatment (3 points), age�50 years (1

point), reported or documented fever (1 point), elevated liver enzymes (1 point), and throm-

bocytopenia (1 point). In applying the algorithm to persons infected predominantly with HIV-

1 subtype B in Switzerland, higher risk scores were found to be associated with a higher set-

point viral load after 90 days of untreated infection, but algorithm performance in terms of

Predicting extended high HIV-1 viremia in sub-Saharan Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0192785 April 3, 2018 8 / 11

https://doi.org/10.1371/journal.pone.0192785


sensitivity, specificity, and c-statistic was not reported in the original study [31] or in a recent

validation study in a US population [32]. Although the general purpose of the Swiss algorithm

is similar to ours, the risk scores and results are not directly comparable, due to differences in

the specific predictors included, participants’ HIV-1 subtype profiles, and study settings. In

particular, the US and European contexts to which the previous algorithm is most likely to be

generalizable is not subject to the same resource constraints as the settings in which our algo-

rithm is intended to guide resource allocation.

Overall, our findings suggest that algorithms based on age, sex, CD4, viral load, and num-

bers of ARS symptoms could be useful in identifying newly HIV-infected persons in whom

intensified efforts around ART initiation, retention, and/or partner services should be consid-

ered. By guiding efficient intervention targeting in resource-limited settings, such algorithms

could enable important clinical and transmission prevention benefits from the earliest possible

point in infection.
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