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A B S T R A C T

Background: To determine if variations exist in the KSHV host receptor EPHA2′s coding region that affect KSHV
infectivity and/or KS prevalence among South African HIV-infected patients.
Methods: A retrospective candidate gene association study was performed on 150 patients which were randomly
selected from a total of 756 HIV-infected patients and grouped according to their KS status and KSHV ser-
odiagnosis; namely group 1: KS+/KSHV+; group 2: KS−/KSHV+; group 3: KS−/KSHV−. Peripheral blood DNA
was used to extract DNA and PCR amplify and sequence the entire EPHA2 coding region, which was compared to
the NCBI reference through multiple alignment.
Results: 100% (95% CI 92.9–100%) of the KS positive patients, and 31.6% (95% CI 28.3–35.1%) of the KS
negative patients were found to be KSHV seropositive. Aggregate variation across the entire EPHA2 coding
region identified an association with KS (OR=6.6 (95% CI 2.8, 15.9), p=2.2× 10−5). This was primarily
driven by variation in the functionally important protein tyrosine kinase domain (Pkinase-Tyr; OR=4.9 (95%
CI 1.9, 12.4), p= 0.001) and the sterile-α-motif (SAM; OR=13.8 (95% CI 1.7, 111.6), p= 0.014). Mutation
analysis revealed two novel, non-synonymous heterozygous variants (c.2254 T > C: OR undefined, adj.
p= 0.02; and c.2990 G > T: OR undefined, adj. p= 0.04) in Pkinase-Tyr and SAM, respectively, to be statis-
tically associated with KS; and a novel heterozygous transition (c.2727C > T: OR=6.4 (95% CI 1.4, 28.4), adj.
p= 0.03) in Pkinase-Tyr to be statistically associated with KSHV.
Conclusions: Variations in the KSHV entry receptor gene EPHA2 affected susceptibility to KSHV infection and KS
development in a South African HIV-infected patient cohort.

1. Introduction

Kaposi's sarcoma (KS1) is an Acquired Immunodeficiency Syndrome

(AIDS)-defining disease, the prevalence of which has massively esca-
lated since the advent of the Human Immunodeficiency Virus (HIV)
epidemic. Currently, KS is the most common AIDS-related malignancy
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worldwide and of particular significance in sub-Saharan Africa where
KS is one of the most common human malignancies with an estimated
37,214 new cases in 2012 [1–4]. The etiological agent of KS is the
oncogenic Kaposi's sarcoma-associated Herpes Virus (KSHV) (also
named human herpesvirus-8 (HHV8)), which is mainly transmitted via
saliva [5]. KSHV seroprevalence is particularly high in Southern Africa
with some studies indicating> 50% [3,6–8]. Although KSHV is ne-
cessary for KS development, it is not sufficient for oncogenesis. Pre-
cipitating factors, such as HIV-related immune suppression (i.e. low
CD4 count), promote the oncogenic transformation of spindle cells
which is driven by the expression of viral oncoproteins encoded by
KSHV following infection of endothelial cells [9]. Beside the enormous
impact of HIV infection, several other risk factors have been proposed
to play a role in the progression to KS in KSHV-infected individuals,
such as environmental influences (alumino-silicate rich volcanic soils),
parasites, diet, herbs, and drugs (antimalarials) [10,11]. However, none
of these risk factors have been proven to date to directly influence KS
progression. While HIV co-infection remains the most important trigger
of KS development, and although both KSHV and HIV prevalence is
exceptionally high in sub-Saharan Africa, not all co-infected patients
develop KS, pointing to a potential underlying genetic predisposition
[3,6,12–16].

While genetic association studies so far have focused on immune-
modulatory genes [17–21], the Eph Receptor A2 protein (EPHA2) tyr-
osine kinase receptor is a promising candidate for investigation of
KSHV-induced KS as it potentially acts on two levels, namely suscept-
ibility to KSHV infection, and susceptibility to KS development.

EPHA2 has recently been identified as a host receptor utilised by
KSHV for entry into and trafficking within endothelial cells [22,23].
Additionally, EPHA2 has been implicated in oncogenesis: EPHA2 is
upregulated on the mRNA and protein level in a wide variety of cancer
cell lines and tissues, and EPHA2 signalling has been implicated in cell
transformation, tumour maintenance and progression, angiogenesis and
metastasis [22,24–28]. Although vital in the uptake mechanism of
KSHV and significantly involved in oncogenesis, little is known about
the pathological consequences of sequence variants in the EPHA2 gene
on KSHV infection and/or KS development. To date, polymorphisms
within EPHA2 have only been identified in association with cataract
pathogenesis [29–34]. Therefore, this study aimed to investigate po-
tential sequence variants in the protein coding region of the EPHA2
gene in South African HIV-infected patients. We hypothesised that if
such variants exist and translate into amino acid changes, particularly
in known functional domains, they may predispose affected individuals
to KSHV infection and/or KS oncogenesis. Here we report that ag-
gregate variation (having ≥1 rare variant with Minor Allele Frequency
(MAF)<5%) from the reference sequence (NM_004431) across the
entire EPHA2 coding region, particularly driven by variation within the
functionally important and conserved protein tyrosine kinase (Pkinase-
Tyr) and sterile-α-motif (SAM) domains, is associated with suscept-
ibility to KS. Moreover, we found that three novel, non-synonymous
variants in the Pkinase-Tyr and SAM domains are associated with KSHV
infection (c.2727C > T) or KS development (c.2254 T > C and
c.2990 G > T).

2. Materials and methods

2.1. Study participants

This case-control study included the following three groups of par-
ticipants (n=50 per group) that were randomly sampled from a larger
study of 756 participants based on KS diagnosis and KSHV serology
status: group 1: KS+/KSHV+; group 2: KS−/KSHV+; group 3: KS−/
KSHV−. Total sample size was determined based on a priori sample size
calculation as a function of the desired power (= 0.8), α error prob-
ability (= 0.05), estimated MAF (=0.271, based on the genotypic
frequency of a previously reported EPHA2 SNP (rs66786160, [30]) in

the 1000 Genomes African population), and estimated odds ratio as a
proxy for effect size (=2, based on ORs reported in previous KS and
KSHV genetic association studies [17–21]) for Fisher’s exact tests
[17–21,30]. As this was an exploratory study of a candidate gene, we
did not take correction for multiple testing into account at this stage but
did apply this correction post hoc and reported p values as both un-
adjusted and adjusted. Both male and female HIV-infected patients
from any Sub-Saharan African population group residing in the Western
Cape, South Africa, who were over 18 years old, were enrolled in this
study. Patients with KS were recruited from the Radiation Oncology
Unit at Groote Schuur Hospital, where they were receiving treatment
for KS. Patients without a clinical diagnosis of KS were recruited from
the Infectious Diseases Unit at Groote Schuur Hospital and from
Khayelitsha Hospital in the Western Cape, South Africa. All patients had
a thorough clinical examination by experienced clinicians to document
the occurrence of typical KS cutaneous lesions, mucosal lesions and
lymphoedema. When indicated, skin biopsy and chest X-ray supported
the diagnosis of KS. Demographic information including sex, age and
population group was recorded in addition to clinical information from
patient records including HIV status, latest CD4 count and ART treat-
ment status.

2.2. Ethics statement

This study was conducted according to the Declaration of Helsinki,
with the informed consent of each participant; all protocols were ap-
proved by the Human Research Ethics Committee, Health Sciences
Faculty, University of Cape Town (Approval HERC/REF: 136/2013,
057/2013 and 729/2014).

2.3. Serology testing

KSHV serostatus was determined by ELISAs coated with re-
combinant ORF73 and K8.1 antigens using plasma isolated from patient
blood samples. According to previously determined assay specifica-
tions, the cut off OD value for the K8.1 ELISA was calculated as ″mean
of negative controls +0.95″, while the cut off OD value for the ORF73
ELISA was calculated as ″mean of negative controls + 0.35″ [35]. As a
proportion of discordant results were expected because seroconversion
to different KSHV antigens is documented to vary amongst individuals
[36], participants were considered KSHV seropositive if antibodies to
either antigen were detected, as this analytical strategy yields 100%
sensitivity and 95.8% specificity [35].

2.4. Mutation analysis

EPHA2 is encoded by a 31,773 base pair gene located on chromo-
some 1p36 (NCBI Accession number NG_021396) consisting of 17
exons, interspersed with large intronic regions, making up a number of
conserved domains [37]. Gene-specific primers used for PCR were de-
signed in order to flank the exons of the coding region of EPHA2, based
on previous studies [29,33]. Genomic DNA extracted from patient
blood samples (50 ng per 25 μl reaction) was amplified (35 cycles) in a
GeneAmp® 2700 thermal cycler (Applied Biosystems) using the EPHA2
gene-specific primers (0.2 μM) and FastStart Taq DNA polymerase
(Roche, 1U). PCR amplicons were visualised on 1% agarose gels to
exclude non-specific PCR products, before purification and dideoxy
sequencing in both directions with the gene-specific primers used for
PCR (Stellenbosch Central Analytical Facility, South Africa). Compu-
tational processing of the sequence data was performed on the Uni-
versity of Cape Town Information and Communication Technology
Services High Performing Computing Cluster using bioinformatics
programmes encompassed in the European Molecular Biology Open
Software Suite (EMBOSS) [38], followed by utilizing ClustalW2 mul-
tiple alignment (EMBL) [39] to compare the sequences to the EPHA2
reference sequence (NM_004431.3). DNA sequence variants that were
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predicted to be non-synonymous through in silico translation were
further assessed for predicted functional consequences using the Poly-
Phen-2 prediction tool [40].

2.5. Statistical analysis

Statistical testing of demographic data included Fisher’s exact tests
for categorical variables: sex, population group and ART status; and
two-way ANOVA for continuous variables: age and CD4 count using
GraphPad Prism Version 5.00. Confidence intervals for proportion data
were calculated using the Wilson method. Statistical analysis for asso-
ciation of variants with KSHV seroconversion and KS prevalence was
restricted to variants with MAF > 3%, due to the statistical power our
sample size allowed. MAFs were calculated within the test groups of
participants based on 150 participants for the analysis of KSHV sus-
ceptibility (100 KSHV+ patients of group 1 and 2 versus 50 KSHV−

patients of group 3) and 100 participants for the analysis of KS pre-
valence (50 KS+ (KSHV+) patients of group 1 versus 50 KS− (KSHV+)
patients of group 2). Single Nucleotide Variants (SNVs) in Linkage
Disequilibrium (LD) (R2> 0.6) were removed prior to statistical ana-
lyses. The R2 valued of 0.6 was chosen as the cutoff to remove SNVs in
LD as this was considered conservative enough to keep alleles that have
some independence and stringent enough to remove those whose effects
would be linked, as in previous studies [41]. Fisher’s exact tests were
used to assess the associations between SNVs and case-control status, as
previously described [42]. The Bonferroni method was used for post-
hoc adjustment of p-values to correct for multiple testing and re-
presented as “adjusted P values,” with p values< 0.05 considered
statistically significant.

In order to determine whether less common variation was asso-
ciated with KSHV and KS status, particularly since using a rather small
patient cohort of n=150, we performed an aggregate analysis as in
previous studies [43,44] in which we considered whether each parti-
cipant carried≥1 or 0 EPHA2 SNVs with MAF < 5%. Aggregate scores
were determined for all SNVs across EPHA2 and for missense, synon-
ymous and untranslated region (UTR) variants. Additionally, aggregate
scores were determined by functional domain (Pkinase-Tyr, SAM, 5`-
UTR, 3`-UTR and fibronectin type 3 (Fn-3) domains). Associations be-
tween aggregate scores and case-control status were determined using
logistic regression.

3. Results

Clinical and demographic information concerning the above-
mentioned participant groups (total sample size n=150, with n=50
per group) is summarised in Table 1. All patients were HIV-infected as
determined serologically. Age did not differ significantly between the
three groups: median age was 36, 39 and 40 for groups 1, 2 and 3,
respectively. Although the final cohort of patients had a slight over-
representation of males (55.3%) compared to females (44.7%), the sex
ratio in the three groups was similar. Population group distribution was
heavily skewed towards black Africans (93.3%) and included only a
minority of mixed ancestry (5.3%) and Caucasian (1.3%) individuals
which was consistent across the three patient groups. Most recent CD4
counts were recorded at the time of patient recruitment. CD4 counts did
not statistically differ between patient groups, although they were
lowest in group 1 (KS+/KSHV+) and highest in group 3 patients (KS−/
KSHV−). All KS+ patients (group 1) received ART with an average time
of 298 ± 483 days before KS diagnosis, whereas a significantly smaller
number of KS− patients (groups 2 and 3) were on ART medication
(p < 0.0001) at the time of recruitment.

Since none of the demographic parameters presented in Table 1
significantly differed, the three patient groups were considered suitable
for further candidate gene association analysis. Fifty plasma samples
from patients with clinically diagnosed KS were assessed by K8.1 and
ORF73 ELISAs and all (95% CI 92.9–100%) were found to be KSHV

seropositive as expected (Table 2A), while 31.6% (95% CI 28.3–35.1%)
of the total patient cohort without KS (706 patients) were found to be
KSHV seropositive (Table 2B). KSHV status was tested only once per
patient with the timing relative to diagnosis of HIV infection being
highly variable.

Sequencing of the EPHA2 coding region of the randomly selected
final cohort of 150 patients (falling into the three categories based on
KS diagnosis and KSHV serology status as outlined above) resulted in a
total of 57 unique variants across the 3964 base pair EPHA2 coding
region, 22 of which were predicted to result in amino acid (AA)
changes. While the majority (35) of these variants are recorded in the
NCBI database of single nucleotide polymorphisms (dbSNP), 22 novel
variants were identified in our cohort. The total variation across the
coding region of EPHA2 is represented schematically in Fig. 1. Exons 3,
5, 11 and 17 contain the highest number of variants uniformly found
across all patients compared to the reference sequence. Taking the size
of each exon into account, exon 11 can be identified as harbouring the
highest average rate of variation per bp (0.0062 variants/bp), followed
by exons 17 (0.0033 variants/bp), 12 (0.0030 variants/bp) and 5
(0.0023 variants/bp). Moreover, KS+ patients (group 1) appeared to
have an increased number of variations in the Pkinase-Tyr domain
(exons 12–15) when compared to KS− patients (groups 2 and 3)
(Fig. 1).

Aggregate variation across EPHA2 was associated with increased
risk of KS. Specifically, 37 (74%) KS cases (group 1) had one or more
SNV versus only 15 (30%) of KS−/KSHV+ controls (group 2) (OR=6.6
(95% CI: 2.8, 15.9), p= 2.2×10-5, Supplementary Table S1). Missense
variants, rather than synonymous variants or variants in the UTR, ap-
peared to be the primary drivers of this association (OR=4.9 (95% CI:
2.0, 11.7), p= 0.0004). When aggregate variation was considered
within each of the functional domains of EPHA2, it was observed that
having one or more SNV in the Pkinase-Tyr domain or SAM domain was
associated with increased risk of KS (OR=4.9 (95% CI: 1.9, 12.4),
p= 0.001 and OR=13.8 (95% CI: 1.7, 111.6), p= 0.014, respec-
tively).

After removing SNVs based on LD and with MAF < 3% (Table 3), 8
individual variants were assessed statistically for association with KS
development by comparing occurrence in KS+/KSHV+ (group 1) pa-
tients versus KS−/KSHV+ (group 2) patients. The variant at mRNA
positions 2254 is predicted to result in a novel, non-conservative AA
change from Leucine to Proline at AA position 700 and is in LD with
another SNV at mRNA position 2257 predicted to result in an AA
substitution from Aspartate to Alanine at the next AA position, 701, in

Table 1
Clinical and demographic information of the three patient groups making up
the study cohort.

GROUP 1
KS+
KSHV+

GROUP 2
KS-
KSHV+

GROUP 3
KS-
KSHV-

Sample size 50 50 50
Age, median in years (IQR) 36 (31-42) 39 (31-46) 40 (30-47)
Sex, count (%)

Male
Female

29 (58)
21 (42)

26 (52)
24 (48)

28 (56)
22 (44)

Population group, number (%)
Black
Mixed ancestry
Caucasian

48 (96)
2 (10)
0 (0)

45 (90)
3 (6)
2 (4)

47 (94)
3 (6)
0 (0)

On ART at time of blood draw
Yes
No

50 (100)
0 (0)

34 (68)
16 (32)

35 (70)
15 (30)

Duration of ART at time of KS
diagnosis, mean in days (SD)

298 (483) n/a n/a

CD4 count, median in cells/μl
(IQR)

238 (122-
341)

245 (103-
470)

334 (166-
511)

N=150 participants. IQR, inter-quartile range; ART, antiretroviral therapy.
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the conserved Pkinase-Tyr domain. These heterozygous variants were
found to co-occur in 8 (16%) KS+ patients (group 1) (with an additional
group 1 patient showing only the variant at mRNA position 2257) and
not to occur at all (0%) in KS− patients in group 2 (OR undefined, adj.
p= 0.04, Table 3). Additionally, several other variants occurring in the
Pkinase-Tyr domain (spanning mRNA positions 1990–2766), were
found to be overrepresented in the KS+ (group 1) patients (Table 3).
Within the SAM domain, a heterozygous G > T variant at mRNA po-
sition 2990, predicted to result in a substitution of Asparagine for Ly-
sine at AA position 945, was found to be significantly more frequent
among KS+/KSHV+ (group 1) patients (18%) compared to KS−/
KSHV+ (group 2) patients (0%) (OR undefined, adj. p= 0.02, Table 3).
Both the variant at mRNA position 2254 and at position 2990 were
found to be ‘probably damaging’ when assessed for functional impact
using the PolyPhen-2 prediction tool.

Aggregate tests did not find statistically significant associations
between EPHA2 SNVs and KSHV status. However, there was a trend
indicating that having one or more missense SNV was associated with
increased risk of KSHV infection. Specifically, 40 (40%) KSHV cases had
one or more missense SNV compared to only 12 (24%) KSHV negative
controls (OR=2.1 (95% CI: 0.98, 4.5), p= 0.06, Supplementary Table
S2). To test individual variants for association with KSHV infection, we
compared the occurrence of 4 SNVs in KSHV+ groups to KSHV− pa-
tients which we identified after removing SNVs based on LD and with
MAF < 3% (Table 4). We discovered a novel heterozygous C > T
variant in the conserved Pkinase-Tyr domain at mRNA position 2727,
which was found to be statistically significant (OR=6.4 (95% CI: 1.4,
28.4), adj. p= 0.03), occurring in 21 (21%) KSHV+ patients (14 in
group 1, and 7 in group 2) and in only 2 (4%) KSHV− (group 3) patients
(Table 4). This variant is predicted to result in a non-conservative
substitution of a Cysteine for Arginine at AA position 858 which is
predicted to be “probably damaging” using the PolyPhen-2 prediction
tool. The SNV at mRNA position 2727 was also found to be over-
represented in KS+/KSHV+ patients (14 patients (28%) in group 1
compared to KS−/KSHV+ patients (7 patients (14%) in group 2) but
this was not statistically significant (Table 3). The presence of this
variant in KS−/KSHV+ (group 2) patients, while to a lesser extent than
in KS+/KSHV+ (group 1) patients, indicated that the occurrence of this
variant in KS+/KSHV+ (group 1) patients may be a consequence of
increased susceptibility to KSHV infection and thereby an indirect as-
sociation with KS development.

4. Discussion

Genetic variants in receptors for viral entry and/or oncogenesis
have been documented to have functional consequences for patho-
genicity. The genetic factors underlying susceptibility to KSHV infec-
tion and KS development are not fully understood. We therefore set out
to identify sequence variants in EPHA2, being both an entry receptor
for KSHV [22,23] as well as being upregulated in various tumours,
including KS [22,25–28], in South African HIV-infected patients, and to

determine the association of any identified EPHA2 variants with sus-
ceptibility to KSHV infection and/or KS development.

As AIDS-related KS is by far the most common form of the KSHV-
associated malignancies and particularly affects individuals in Sub-
Saharan Africa due to the HIV/AIDS epidemic [3], we restricted the
recruitment of patients to HIV-infected individuals from this geo-
graphical region, presenting at hospitals in the Western Cape province
of South Africa. In support with the reported disproportionately high
KSHV seroprevalence in sub-Saharan Africa (> 50%) compared to
world prevalence rates (< 10%), which has not significantly changed
since the onset of the HIV/AIDS epidemic [16], we determined a 31.6%
(95% CI 28.3–35.1%) KSHV seropositivity in our total KS− patient
cohort (Table 2), presenting the first assessment of KSHV ser-
oprevalence in the Western Cape Province of South Africa. This is in
agreement with earlier studies conducted in Soweto, Johannesburg and
Kwa-Zulu Natal, which have indicated that KSHV seroprevalence is
between 30–40% [3].

Despite the high HIV/KSHV seroprevalence in sub-Saharan Africa,
not all co-infected patients develop KS. To elucidate a potential un-
derlying genetic predisposition due to variants in the EPHA2 protein,
we performed aggregate variation across the entire EPHA2 coding re-
gion to assess a retrospective candidate gene association with KSHV
infectivity and/or KS prevalence. Since mother-to-child transmission
via saliva is thought to be the primary route of KSHV transmission [5],
the extent of later sexual transmission that could be confounding for
KSHV infection is thought to be minimal [45,46]. All patients recruited
to this study were adults between 19 and 72 years of age (Interquartile
Range: 31–47, see Table 1); therefore, it can be assumed that their
exposure to and infection with KSHV has been concluded at the time of
recruitment.

We identified missense variants and variants within the functionally
important Pkinase-Tyr and SAM domains, specifically 2254 T > C
(located in the Pkinase-Tyr domain) and 2990 G > T (located in the
SAM domain) which were associated with KS, Table 3. Each of these
variants was designated a ‘probably damaging’ annotation when as-
sessed for functional impact using the PolyPhen-2 prediction tool. In-
terestingly, additional individual Pkinase-Tyr domain variants spanning
exons 12–15 (particularly 2688 G > C (rs765280326), 2727 C > T,
2325 G > C (rs747058254) and 2047 T > C (rs34021505)), although
not significantly associated with KS, were found to be overrepresented
among KS patients (group 1), Table 3 and Fig. 1. We can speculate that,
although rare, their functional impact may be important, represented
by the significant association of aggregate Pkinase-Tyr variation with
KS. It is plausible that they may enhance EPHA2 Pkinase-Tyr signalling
which is essential for the function of the EPHA2 receptor and which has
been linked to a metastatic, aggressive phenotype in a number of can-
cers [24–27]. The variant 2990 G > T (located in the cytoplasmic SAM
protein interaction domain), found to be overrepresented among pa-
tients with KS (Table 3) may further contribute to oncogenesis by al-
tering the function of the SAM, a protein-protein interaction region
suggested to bind adaptor proteins thereby mediating the downstream

Table 2
ELISA results indicating KSHV serostatus for samples taken from patients with A. clinically diag-
nosed KS (50 patients) and B. without KS (706 patients).

A patient was classified as KSHV+ if the OD values for K8.1 and ORF73 fell above the cut off for
either ELISA assay (indicated by cells with shaded background). KSHV seroprevalence was 100%
(95% CI 92.9–100%) in A. and 31.6% (95% CI 28.3–35.1%) in B.
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signalling events triggered by EPHA2 activation [47,48].
Also located in the Pkinase-Tyr domain, the variant at mRNA po-

sition 2727, a C > T encoding an Arginine to Cysteine mutation, was
identified as being associated with increased susceptibility to KSHV
infection (Table 4), occurring predominately in KSHV+ patients (group
1 and 2) compared to KSHV− (group 3) patients. It can be speculated
that this variant may not only enhance susceptibility to KSHV infection
but also subsequently contribute to enhanced KS development
(Table 3). Due to its cytoplasmic location in the Pkinase-Tyr domain it

is unlikely that this variant enhances KSHV binding, it may rather en-
hance downstream EPHA2 signalling that is essential to internalisation
of bound KSHV. Interestingly, no significant sequence variation be-
tween the analysed patient groups was found in EPHA2′s ligand binding
domain, supporting the hypothesis of the importance of the Pkinase-Tyr
domain for KSHV-driven KS development.

A number of variants previously reported on the dbSNP were
identified in this study (35 out of the total 57), with a further 22 novel
variants identified in our South African cohort. Large genotyping stu-
dies, such as the 1000 Genomes project and ExAc, have contributed the
majority of the genetic variations stored in the dbSNP [49,50]. While
these studies include African populations from Nigeria, Kenya, Gambia
and Sierra Leone and people with African ancestry residing in America
and the Caribbean, Southern African populations are not well re-
presented [49]. It is thought that Southern African populations speci-
fically have exceptionally high levels of genetic diversity due partly to
the selective pressure of long term exposure to infectious diseases and
due to the lack of founder effects present in populations that have
migrated [51,52]. Therefore, it is expected that we would see variants
in our South African population that have not yet been recorded in the
dbSNP.

However, there were several limitations to this study. The overall
number of recruited patients was rather small, restricting the power of
the analysis to only be able to detect associations of SNVs with
MAF > 3% with KS development and/or KSHV infection. Selection
biases may have overestimated the association of EPHA2 variants as
only HIV positive patients presenting at clinics were recruited. With the
purpose to describe a single variable distribution in our (small) patient
cohort as a first step to elucidate a pattern of association between
EPHA2 variants and KS and/or KSHV prevalence, we performed a
univariate analysis which was not adjusted to other risk factors of KSHV
infection and/or KS development. This study therefore lays the basis for
further investigation into the impact and functional relevance of EPHA2
variants on KSHV infection and subsequent KS development. While the
herein reported association of EPHA2 variants with KSHV infection and
KS development requires validation, this may have clinical implications
in terms of identifying KSHV infected patients who are susceptible to KS
development and highlighting EPHA2 as a potential therapeutic target.

5. Conclusion

This study for the first time describes the identification of sequence
variants in EPHA2 in a South African HIV-infected patient cohort in
relation to KSHV infection and KS development. Some variants, parti-
cularly affecting the Pkinase-Tyr and SAM domains, were predicted to
potentially cause substantial alterations to the expression and/or
function of EPHA2.
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