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Abstract

This thesis is the key to good understanding of differential geometry with

para- Kenmotsu and Lorentzian Para- Sasakian structure and it is orga-

nized as follows. In chapter one, the preliminaries and definitions are intro-

duced,where, Manifolds, differentiable structures, Riemannian Manifolds and

Ricci flows are defined. In chapter two the relevant literature is reviewed and

Propositions and theorems proved in area are included. In chapter three,

Ricci solitons on para- Kenmotsu Manifolds satisfying (ξ, .)s.W8 = 0 and

(ξ, .)W8
.S = 0 are discussed and we have proved that the Para- Kenmotsu

manifolds satisfying (ξ, .)W8
.S = 0. are quasi- Einstein Manifolds and those

satisfying (ξ, .)S.W8 = 0, are Einstein Manifolds.Also it has been proved

that the para- Kenmotsu manifolds with cyclic Ricci tensor and η− Ricci

soliton structure are quasi-Einstein manifolds . In chapter four, Ricci soli-

tons on Lorentzian Para- Sasakian manifolds satisfying (ξ, .)s.W8 = 0 and

(ξ, .)W8
.S = 0 are treated and it has been proved that Lorentzian Para-

Sasakian manifolds satisfying (ξ, .)s.W8 = 0 and having η− Ricci soliton

structure are quasi-Einstein manifolds and those satisfying (ξ, .)W8
.S = 0 are

Einstein manifolds. In chapter five, we discuss Ricci solitons on Lorentzian

Para- Sasakian manifolds satisfying (ξ, .)s.W2 = 0 and (ξ, .)W2
.S = 0 and it

was found that, Lorentzian Para- Sasakian manifolds satisfying (ξ, .)s.W2 = 0

and having η− Ricci soliton structure are Einstein or quasi-Einstein mani-

folds according to the value of µ and λ. In Chapter six, results are discussed

and the connection between Ricci solitons and Einstein metrics on Para-

Kenmotsu and Lorentzian Para Sasakian Manifolds has been established.
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Chapter 1

Introduction

In this chapter, theory that is necessary through our research is introduced.

As smoothness is the foundation of this research, we will start by reminding

the basic theory starting by differentiability on Rn.

1.1 Preliminaries and definitions

A topological space is said to be Hausdorff if for each pair of its distinct points,

there exist neighborhoods with empty intersection. A locally Euclidean space

is a topological space, such that each point has a neighborhood homeomor-

phic to an open subset of the Euclidean space. A manifold of dimension n is

defined as a Hausdorff, locally Euclidean space of dimension n. A topological

manifold is said to be differentiable (or smooth), if differentiable structure is

defined on it. The manifolds are classified on the basis of their structures.

Given a curve γ, on smooth manifold, its tangent vector(or simply a vector)

is defined as the derivative of a differentiable function f , in direction of γ

at origin. A vector field on smooth manifold M is an assignment of tangent

vector at each point of M . A geodesic is a curve, such that its vector field is

parallel along the given curve. The Riemannian metric is a positive definite

bilinear, which is symmetrical by nature. The Riemannian metric tensor is
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useful in definition of metric properties, on differentiable manifolds, such as

angles between vectors, curvature tensor, Riemannian curvature tensor , Ricci

tensor and geodesics. A manifold M is said to be Riemannian manifold if a

Riemannian metric tensor is defined on its tangent vector space. A pseudo-

Riemannian manifold is a pair (M, g), where M is a smooth manifold and g

is a metric tensor that is not positive- definite. A real manifold is differential

manifold whose tangent vector space is real vector space. By introducing

the complex structures in the manifolds, we obtain complex manifolds. Due

to different structures we can introduce various manifolds. Manifolds are

classified as even or odd dimensional according to the dimensions of their

respective tangent vector spaces. An odd dimensional manifold is said to

be Sasakian if the Sasakian structure is defined on it. An odd dimensional

manifold is said to be para- Sasakian if para- Sasakian structure is given on

it. A Lorentzian para Sasakian manifold is an almost - contact structure is

given. If vector space and its dual have the same geodesics (are in geodesics

correspondence ), then the expression of Weyl curvature tensor is obtained.

new curvature tensors have been defined by Pokhariyal and Mishra [1970] and

Pokhariyal [1982a] on basis of Weyl curvature tensor having different com-

bination of vector field associated to Ricci tensor and metric tensor. Ricci

flows are partial differential equations whose variable is a metric tensor of a

Riemannian manifold. Einstein manifolds are fixed points of Ricci flows and

Ricci solitons are their generalized fixed points. Ricci solitons areAlso used

in quasi-Einstein manifold. Ricci solitons On antisymmetric and semisym-

metric para- Kenmonsu with respect to W8 and on semisymmetric and anti

symmetric Lorentzian para-Sasakian with respect to W2 and W8 have been

2



studied.

1.2 Euclidean space

The Euclidean space Rn, is a model of all manifolds, as every manifold looks,

locally as Rn. That is why the notion of smooth functions on Rn, is intro-

duced.The euclidean space Rn is the set of n−tuples (x1, · · · , xn), where xi

are real numbers. An element of Rn is called point of Rn.In particular R,

R2 and R3 are respectively, called the line, the plane and space.The Rn is a

vector space with operations:X + Y = (x1 + Y 1, · · · , xn + yn) ∀X, Y ∈ Rn

aX = (ax1, · · · , axn) ∀a ∈ R.
(1.2.1)

That is why, the elements of Rn are also, called vectors in Rn.

Definition 1.2.1. Let k be a positive integer and U an open subset of Rn.

A real valued function f : U → R is said to be Ck at a point p ∈ U , if its

partial derivatives
∂jf

∂xi1 · · · ∂xij
,

of all orders j ≤ k exist and are continuous. A vector valued function F :

U ⊂ Rn → Rm, such that F (p) = (F 1, · · · , Fm) is said to be Ck if all its

components F 1, · · · , Fm are Ck. A C∞ function is called smooth.

3



1.3 Tangent vector in Rn

The aim of this section is description of tangent vectors in Rn that will later

be important to manifolds. In order to differentiate vectors from point, a

vector will be presented as a column vector,

V =


v1

v2

...

vn

 . (1.3.1)

Definition 1.3.1. the tangent space Tp(Rn) is the vector space of all column

vectors emanating from p.

The line through a point P =
(
p1 · · · pn

)
with direction V =


v1

...

vn

 in Rn

is given by the parameterization equation:

l(t) =
(
p1 + tv1, · · · , pn + tvn

)
. (1.3.2)

If F is a smooth function in an open subset of Rn containing P , its directional

derivative at P in the direction V is given by,

DVF = lim
t→0

F (l(t))− F (P )

t
=
df

dt

∣∣∣∣
t=0

. (1.3.3)
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Using the chain rule in(1.3.3), we get,

DVF =
n∑
i=1

dli(0)

dt

∂F

∂xi
(P ) =

n∑
i=1

vi
∂F

∂xi
(P ). (1.3.4)

That is,

DV =
n∑
i=1

vi
∂

∂xi

∣∣∣∣
P

. (1.3.5)

The association of the directional derivative DV to the tangent vector V al-

lows us to characterize tangent vectors as certain operators on differentiable

functions as their definition on manifolds. In this work the equivalence rela-

tions play important role as the spaces under study are considered to agree

on some open subsets. In the following equivalence relation is introduced

together with germ of functions, as example.

Definition 1.3.2. A relation on a set S is a subset R of its Cartesian product

S × S, such that, given x, y ∈ S we write x ∼ y if (x, y) ∈ R. The relation

R is said to be equivalence relation if the following properties are satisfied

∀x, y, z ∈ S :

• reflexivity: x ∼ x,

• symmetry: x ∼ y ⇒ y ∼ x,

• transitivity: x ∼ y and y ∼ z ⇒ x ∼ z.

The function with the same values on some neighborhood of P have the same

directional derivative. That is why an equivalence relation is introduced on

the smooth functions defined in some neighborhood of P .

5



Definition 1.3.3. Consider the set of all pairs (f, U), where U is an open

subset of Rn containing P and f : U → R is a smooth function, then (f, U)

and (g, V ) are said to be equivalent if there is a neighborhood W ⊂ U ∩ V

such that f = g on W .The equivalence class of (f, U) is called germ of f at

P .

The set of all germs of smooth functions on Rn at P is denoted C∞P (Rn). Let

us now introduce the notion of algebra and one of linear transformations.

Definition 1.3.4. An algebra over a field K is a vector space A over K with

a multiplication map:µ : A × A → A, denoted by µ(a, b) = ab, such that

∀a, b, c ∈ A and r ∈ K, the following properties are satisfied.

• associativity:(ab)c = a(bc),

• distributivity: (a+ b)c = ac+ bc,

• homogeneity: r(ab) = (ra)b = a(rb).

Definition 1.3.5. A map L : V → W between two vector spaces over a field

K is said to be linear if ∀r ∈ K and ∀u, v ∈ V , the following properties are

satisfied:

• L(u+ v) = L(u) + L(v),

• L(rv) = rL(v).

We are now in position of introducing the notion of derivation at a point

P. For each tangent vector v at a point P of Rn, the direction derivative

at P gives a map of real vector spaces Dv : C∞p (R)n → R. The Dv is lin-

ear and satisfies the Leibniz rule as the partial derivatives ∂
∂xi

∣∣∣∣
P

have these

6



properties.Any linear map D : C∞p (R)n → R, satisfying Leibniz rule is called

derivation at P on C∞P (Rn). The set of all derivations at P is denoted by

DP (Rn) and it is a vector space over R. We now, know that directional deriva-

tives are all P− point derivatives. Thus, there is a map φ : TP (Rn)→ DP (Rn)

defined as,

φ : v → Dv =
n∑
i=1

vi
∂

∂xi

∣∣∣∣
P

.

In the following the notion of vector field is introduced on Rn and it will be

useful by its generalization on manifolds.

Definition 1.3.6. A vector field on an open subset U of Rn is a function

X : U ∩ Rn → TP (R)n. That is , a map that assigns a tangent to each point

of U .

Since TPRn has ∂
∂xi

∣∣∣∣
P

as basis, the vector XP is a linear combination

n∑
i=1

ai(P )
∂

∂xi

∣∣∣∣
P

, P ∈ U, ai(P ) ∈ R.

A vector field X
∑n

i=1 a
i ∂
∂xi , where ai are functions on U . A vector field is

said to smooth on U if the coefficients functions are all smooth on U. The

vector field X on an open subset U of Rn can be defined as a derivation as

follows. From a smooth function f , we define a new function Xf on U given

by:(Xf)(P ) = XPf∀P ∈ U. Using the fact that

X =
n∑
i=1

ai
∂

∂xi
,

7



we get

(Xf)(P ) =
n∑
i=1

ai(P )
∂f

∂xi
(P ).

1.4 Manifolds and Differentiable structures

1.4.1 Manifolds

In this section, basic definitions and properties of differentiable manifolds

and differentiable functions are introduced. Both topological manifolds and

differentiable structures are discussed.

Definition 1.4.1. Let M be topological space. A covering of M is a col-

lection of open subsets of M whose union is M . A covering (Uα)α ∈ A is

called locally finite if each point of M has neighbourhood which intersects only

finitely many of the sets Uα.

Definition 1.4.2. A topological space M is Hausdorff if for any p1, p2 ∈ M

with p1 6= p2 there exist open sets U1 containing p1 and U2containing p2 such

that U1 ∩ U2 = ∅.

Definition 1.4.3. A Hausdorff space is said to be paracompact if ∀(Uα)α∈A,

covering of M , ∃ a locally finite covering (Vβ)β∈B, which is refinement of

(Uα)α ∈ A.

Definition 1.4.4. A topological space M is said to be n− manifold if:

• ∀p ∈M there is an open neighbourhood U of p and a function ϕ : U →

Rn, that, is a homeomorphism onto an open subset of Rn,

• M is Hausdorff,
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• M is paracompact.

Here U is called a coordinate neighbourhood and ϕ is said to be a coordinate

map. The function f i = xi ◦ ϕ, where xi denotes the ith canonical coordinate

on Rn are called the coordinate functions and the pair (U,ϕ) is called a local

chart.

1.5 Differentiable structures

Definition 1.5.1. A function f : U → Rn,where U is an open subset of Rn,

is called smooth or C∞ if all its partial derivatives exist and are continuous

on U.

Definition 1.5.2. A smooth atlas A on n− manifold M is a collection of

coordinate charts (Uα, ϕα)α∈A such that the following holds:

• ∪α∈AUα = M,

• ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ Rn exist and are smooth, ∀α, β ∈ A.

Definition 1.5.3. A smooth atlas F is said to be differential structure if it

is maximal, that is, if (U,ϕ) is coordinate chart such that ϕ◦ϕ−1
α and ϕα◦ϕ

−1

are smooth on ϕα(U ∩ Uα) and ϕ(U ∩ Uα), respectively, then (U,ϕ) ∈ F.

Definition 1.5.4. A differentiable manifold of class C∞ with dimension n

is a pair (M,F) consisting of a topological manifold of dimension n, M and

a smooth differentiable structure on M .

9



1.6 Computations on manifolds.

In the following section some techniques of computations on manifolds are

given. Both algebraic and analysis methods are included.

1.6.1 Tangent Vectors and vector fields.

Let p be a point of differentiable manifold M , a tangent vector to M at p is

a function V : C∞(M)→ R such that:

• V (f + g) = V (f) + V (g) : Linearity property,

• V (fg) = V (f)g(p) + f(p)V (g) ∀f, g ∈ C∞(M) : Leibniz property.

The set of all tangent vectors to M at p forms an n−dimensional vector

space denoted by Tp. The tangent vector notion is related to velocity vector

of a curve γ : (−ε, ε) → M as follows. If γ(0) = p, then we associate to

the velocity vector of γ at p the tangent vector X ∈ Tp, such that X(f) =
d

dt
f(γ(t))t=0. In this work we will denote the set of all tangent vectors on M

by TM . That is, TM = ∪p∈MTpM. Here TM is called tangent bundle. Note

that the tangent bundle is a differentiable manifold of dimension 2n, where

n is dimension of M .

Definition 1.6.1. A vector field X on M is a map which assigns to each

point p of M a tangent vector V (p).

The set of all vector fields on M forms a vector field denoted byX(M). The

dual of tangent vector space on M at p is called cotangent space and is

denoted T ∗p .

10



1.7 Tensors and differential forms

Let us consider the tangent vector space on M at p, TpM , a k− tensor is areal

multi linear function defined on TpM ×TpM ×· · ·×TpM of k copies of TpM .

The set of all k− tensors is a vector space denoted by T k(T ∗pM). If we consider

the k− tensors on TpM , we obtain the space T k(TpM), and these tensors are

called contravariant tensors, while T k(TpM) are covariant tensors. The mixed

tensors (k,m) on TpM are multilinear functions k copies of TpM and m copies

of T ∗pM . The space of all (k,m) is denoted by T (k,m)(TpM
∗, TpM).

Definition 1.7.1. A (k,m)−tensor field is a map that assigns a tensor T ∈

T (k,m)(TpM
∗, TpM).

Definition 1.7.2. Given a k−tensor T and an m−tensor S, their tensor

product is defined as (k +m)−tensor T ⊗ S given by

T ⊗ S(V1, . . . , Vk, Vk + 1, . . . , Vk+m) = T (V1, . . . , Vk)S(Vk+1, . . . , Vk+m).

(1.7.1)

Definition 1.7.3. A symmetric tensor T , with respect to i and j is a tensor

such that

T (V1, · · · , Vi, · · · , Vj, · · · , Vk) = T (V1, · · · , Vj, · · · , Vi, · · · , Vk). (1.7.2)

Definition 1.7.4. A alternating tensor T , with respect to i and j is a tensor

such that

T (V1, · · · , Vi, · · · , Vj, · · · , Vk) = −T (V1, · · · , Vj, · · · , Vi, · · · , Vk). (1.7.3)
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The space of alternating k− tensors is a subspace of T (T ∗pM) denoted by∧k(T ∗pM). Considering Sk,the group of all possible permutations of {1, . . . , k},an

alternating tensor is defined from a k−tensor T ∈ Tk(V ∗), as follows: if

σ ∈ Sk, we get σ(V1, . . . , Vk) = (Vσ(1), . . . , Vσ(k)). From T , a new alternating

k−tensor, denoted by Alt(T ) is defined by

Alt(T ) =
1

k!

∑
σ∈Sk

(sgnσ)(T ◦ σ),

where sgnσ is +1 if σ even permutation and −1, when σ is odd permutation.

We are now in position of defining the wedge product between alternating

tensors as follows.

Definition 1.7.5. If T ∈
∧k(V ∗) and S ∈

∧m(V ∗), then T ∧ S is a k + m

alternating tensor and is given by

T ∧ S =
(k +m)!

k!m!
Alt(T ⊗ S).

Definition 1.7.6. Let M be C∞ manifold. A form of degree k or k−form

on M is a field of alternating k−tensor defined on M . That is, a map ω :

M →
∧k(T ∗pM) such that ∀p ∈M we have ω(p) = ωp ∈

∧k(T ∗pM).

1.8 Differentiable maps on manifolds

Let M and N be differentiable manifolds of dimensions m and n, respectively.

A map φ : M → N is said to be smooth if ∀(U,ϕ) on M and (V, ψ) on N ,

ψ ◦ ϕ−1 is smooth. Further φ : M → N is diffeomorphism if:

• φ is bijective,
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• its inverse exists and is also smooth.

Definition 1.8.1. Let C∞(M) be the algebra of differentiable functions on

M . The differential map atp of φ : M → N is the map φ∗p : M → Tφ(p)N ,

(φ∗pV )(f) = V (f ◦ φ) ∀f ∈ C∞(M).

Definition 1.8.2. Let φ : M → N be smooth map . A point p ∈ M is said

to be a critical point of φ if φ∗ : TpM → Tφ(p)N is not surjective. A point

q ∈ N is said to be critical value of φ if φ−1(q) contains a critical point of φ.

Definition 1.8.3. Let φ : M → N be smooth map,then:

• φ is an immersion if φ∗ is one- to- one ∀p ∈M,

• the pair (M,φ) is submanifold of N if φ is injective and immersion.

• M is said to be submanifold of N if it is subset of N and the inclusion

map map of M in N is injective,

• φ is embedding it is one-to- one,immersion and homeomorphism into,

• φ is submersion if φ∗ is surjective ∀p ∈M.

1.9 One-Parameter Groups of Transformations and Flows

Definition 1.9.1. Let M be a smooth manifold. A one-parameter group of

transformations, on M is a differentiable map ϕ : R×M →M , such that

• ϕ(0, x) = x,

• ϕ(s, ϕ(t, x)) = ϕ(s+ t, x).
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Putting ϕ(t, x) = ϕt(x), then, we get ∀t ∈ R, a new differentiable map ϕt :

M → M . From the above definition, we have, ϕt+s = ϕt ◦ ϕs and ϕ0 is

identity map of M . That is, each map ϕt has an inverse ,ϕ−t, which is also

differentiable.

Each one- parameter group of transformations ϕ on M defines a family of

curves on M , called the group orbits. The map ϕx : R → M defined as

ϕx(t) = ϕ(t, x) is a differentiable curve in M ∀x ∈ M . Since ϕx(0) = x, the

tangent vector to the curve ,ϕx at t = 0 is an element of TxM . The vector

field, such that Xx = (ϕ)
′

x is called infinitesimal generator of ϕ. Let X be

a vector field on M and I be an open subset of R. A curve γ : I → M is

siad to be integral curve of X if γ
′
(t) = Xγ(t),∀t ∈ I. In some cases ϕ is not

defined for R. However if ∀x ∈ M , there exists a neighbourhood U of x and

ε > 0, such that ϕ is defined on U × (−ε, ε) and is differentiable, the map ϕ

is called a flow or a local one group of transformations.
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1.10 Lie bracket, lie derivative and affine Connection

In this section, lie bracket, lie derivative and affine connection are defined.

Definition 1.10.1. Let M be a smooth manifold. A lie bracket is map[ ]
: X(M)× X(M)→ X(M) such that

[
X Y

]
= XY − Y X

∀X, Y ∈ X(M).

Definition 1.10.2. Let X be infinitesimal generator of ϕ, ϕx be the integral

curve of X starting at x and f a differentiable function, then

lim
t→0

(
ϕ∗tf − f

t
)(x) = lim

t→0

f(ϕx(t))− f(ϕx(0))

t
= (Xf)(x),

is called lie derivative of f with respect to X and it is denoted LXf .

Let X, Y ∈ X(M), then the lie derivative of Y with respect to X is equal to

the lie bracket of X and Y .

Definition 1.10.3. Let M be a C∞ manifold. An affine connection on M

is a bilinear map,∇ : X(M)× X(M)→ X(M) such that:

• ∇fXY = f∇xY,

• ∇X(fY ) = XfY + f∇XY,

∀X, Y ∈ X(M) and ∀f ∈ C∞(M),

∇XY stands for ∇(X, Y ) and it is also called covariant derivative of Y with

respect to X.
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1.11 Riemannian manifold

Definition 1.11.1. A Riemannian metric is a symmetric and positive de-

fined 2- tensor field g ∈ T2(M) . That is,g(X, Y ) = g(Y,X)

g(X,X) > 0 if X 6= 0 ∀X, Y ∈ X(M).
(1.11.1)

Definition 1.11.2. A pseudo-Riemannian metric is a (0, 2) tensor such that

: g(X, Y ) = g(Y,X),

g(X, Y ) = 0⇐⇒ X = 0 ∀X, Y ∈ X(M).
(1.11.2)

Definition 1.11.3. A manifold in which a Riemannian metric is defined is

called Riemannian manifold and one with pseudo-Riemannian metric is called

pseudo-Riemannian manifold. All the manifolds in this research are pseudo-

Riemannian manifolds. Given a metric on Riemannian manifold M, we can

define smooth function given by g(X, Y )p ∀X, y ∈ X(M).

Definition 1.11.4. Given a metric g on C∞ manifold M, a connection ∇,

on M is said to be compatible with the metric if:

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇X)Z, ∀X, Y, Z ∈ X(M).

This connection is known as the Levi- Civita connection. With the help of

this connection, the curvature is defined as:

R(X, Y ) = ∇[X,Y ] +∇Y∇X −∇X∇Y , and the torsion defined as

T (X, Y ) = ∇X − ∇y − [X, Y ]. These tensors help to measure the com-

mutativity and the flatness of a given manifold respectively. By allowing the
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curvature tensor to act on the third vector field Z, we obtain a new curvature

tensor given by

R(X, Y )Z = ∇[x,y]Z +∇Y∇XZ −∇X∇YZ, (1.11.3)

which is known as Riemannian curvature tensor. In terms of local coordinates

it is given by :

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
=
∑

Rl
kij

∂

∂xl
. (1.11.4)

The second covariant derivative is defined as:

∇2
X,YZ = ∇X(∇YZ)−∇∇XYZ. (1.11.5)

Using (1.11.3) in (1.11.5), we get

∇2
Y,XZ −∇2

X,YZ = R(X, Y )Z. (1.11.6)

An other important notion of curvature is Ricci curvature tensor. Before

introducing it, let us recall that the trace of linear transformation of Euclidean

vector space of finite dimensional is given by:

tr(f) =
n∑
i=1

g(f(ei), ei), (1.11.7)

where (e1, · · · , en) is the orthonormal basis of this euclidean vector space.

Definition 1.11.5. Let (M, g) be a Riemannian manifold. The Ricci curva-
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ture tensor of M is a (0, 2) tensor defined as:

S(X, Y ) =
n∑
i=1

g(R(X, ei)Y, ei) =
n∑
i=1

R(X, ei, Y, ei), (1.11.8)

where (e1, · · · , en) is any orthonormal basis of TPM.

Definition 1.11.6. The scalar curvature tensor S is the trace of Ricci cur-

vature tensor. That is,

S =
∑
i6=J

R(ei, ej, ei, ej). (1.11.9)

Definition 1.11.7. On the Riemannian manifold (M, g), the Ricci operator

is defined by the following equation.

g(QX, Y ) = S(X, Y ). (1.11.10)

The Riemannian curvature tensor has served as important tool in the Rieman-

nian geometry study. The Weyl projective curvature tensor W , the conformal

curvature tensor V , the concircular curvature tensor C and the coharmonic

curvature tensor L are introduced from Riemannian curvature tensor and

Ricci curvature tensor as follows.

Definition 1.11.8. the Weyl curvature tensor is defined by

W (X, Y )Z = R(X, Y )Z +
1

n− 1
[S(X, Y )Z − S(Y, Z)X]. (1.11.11)
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Definition 1.11.9. The conformal curvature tensor is defined as,

V (X, Y )Z = {R(X, Y )Z − 1

n− 2
S(Y, Z)X − S(X,Z)Y − g(X,Z)QY + g(Y, Z)QX

+
S

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ]}.

(1.11.12)

Definition 1.11.10. The concircular curvature tensor is defined by

C(X, Y )Z = R(X, Y )Z − S

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ] (1.11.13)

Definition 1.11.11. The conharmonic curvature tensor is defined by

L(X, Y )Z = R(X, Y )Z− 1

n− 2
[S(Y, Z)X−S(X,Z)Y+g(X,Z)QY+g(Y, Z)QX].

(1.11.14)

W2 curvature tensor and W8 curvature tensor that are used in this research

have been introduced from projective Weyl tensor by Pokhariyal and Mishra,

and are defined as follows.

Definition 1.11.12. W2 curvature is defined by Pokhariyal and Mishra [1970]

W2(X, Y )Z = R(X, Y )Z +
1

n− 1
[g(X,Z)QY − g(Y, Z)QX]. (1.11.15)

Definition 1.11.13. W8 curvature tensor is defined by Pokhariyal [1982a]

W8(X, Y )Z = R(X, Y )Z +
1

n− 1
[S(X, Y )Z − S(Y, Z)X]. (1.11.16)

19



The notion of antisymmetric and that of semi-symmetric Riemannnian

manifolds with respect to a tensor T are important to our research, and they

are defined in the following.

Definition 1.11.14. The fact that a Riemaian manifold (M, g) is said to

be antisymmetric with respect to a tensor T is denoted by (ξ, .)T .S = 0 and

defined by relation:

S(T (ξ,X)Y, Z) + S(Y, T (ξ,X)Z) = 0. (1.11.17)

Definition 1.11.15. The fact that a Riemannian manifold (M, g) is semisym-

metric with respect to a tensor T is denoted as (ξ, .)S.T = 0 and given by the

relation:

S(X,T (Y, Z)V )ξ − S(ξ, T (Y, Z)V )X+

S(X, Y )T (ξ, Z)V − S(ξ, Y )T (X,Z)V

+S(X,Z)T (Y, ξ)V − S(ξ, Z)T (Y,X)V

+S(X, V )T (Y, Z)ξ − S(ξ, V )T (Y, Z)X = 0,

∀X, Y, Z, V ∈ X(M).

(1.11.18)

1.12 complex Manifolds and Almost complex structure

1.12.1 Complex structure

In the following section Complex manifolds are introduced, as all the mani-

folds under our study are particular cases of complex manifolds. Also Almost

complex structure are introduced in order to explain how algebraic computa-

tions are extended to complex manifolds. Noting that the complex manifolds
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connect several mathematics areas and that their theory is almost analogous

to one of differentiable manifolds, accept that all the functions considered

here, have to be holomorphic instead of being smooth. We start by defin-

ing holomorphic functions. In order to make notations as comprehensible as

possible, let us start by the function of one variable. Let Ω an open subset

of complex numbers C, and f be a complex valued function on Ω, such that

f(x, y) = u(x, y)+iv(x, y), where u(x, y) and v(x, y) are real-valued functions

from an open subset of R2.Let us consider a complex number z = x+ iy and

its conjugate z = x − iy. Considering z and z as mapping defined on R2 to

R2, we get,

dz = dx+ idy (1.12.1)

and

dz = dx− idy, (1.12.2)

combining (1.12.1) and (1.12.2), we get:

dx =
1

2
(dz + dz) (1.12.3)

and

dy =
1

2i
(dz − dz). (1.12.4)

Now considering f : Ω ⊂ R2 −→ R2, we get:

df =
∂u

∂x
dx+ i

∂v

∂x
dx+

∂u

∂x
dy + i

∂v

∂y
dy. (1.12.5)
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Introducing (1.12.2) and (1.12.3), in (1.12.4), we get

df =
1

2
(
∂u

∂x
+ i

∂v

∂x
)(dz + dz) +

1

2i
(
∂u

∂y
+ i

∂v

∂y
)(dz − dz). (1.12.6)

Rearranging terms in (1.12.6), we get:

df =
1

2
(
∂u

∂x
+ i

∂v

∂x
+

1

i

∂u

∂y
+
∂v

∂y
)dz +

1

2
(
∂u

∂x
+ i

∂v

∂x
− 1

i

∂u

∂y
− ∂v

∂y
)dz. (1.12.7)

That is,

df =
1

2
(
∂

∂x
(u+iv)+

1

i

∂

∂y
(u+iv))dz+

1

2
(
∂

∂x
(u+iv)−1

i

∂

∂y
(u+iv))dz. (1.12.8)

Finally, using the fact that f(x, y) = u+ iv, we get:

df =
1

2
(
∂f

∂x
+

1

i

∂f

∂y
)dz +

1

2
(
∂f

∂x
− 1

i

∂f

∂y
)dz. (1.12.9)

Putting
1

2
(
∂f

∂x
+

1

i

∂f

∂y
) =

∂

∂z
,

and
1

2
(
∂f

∂x
− 1

i

∂f

∂y
) =

∂f

∂z
,

we get

df =
∂f

∂z
dz +

∂f

∂z
dz.

Note that ∂f
∂z and ∂f

∂z are not ordinary partial differential equations, but in

computations they behave as partial derivatives. That is,their definition is in

accordance with the chain rule within the change of independent variables x
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and y to z and z. A function f ∈ C1(Ω) is holomorphic if ∂f
∂z = 0. That is:

∂f

∂x
=

1

i

∂f

∂y
, (1.12.10)

and from the fact that f = u+ iv, we get

∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
. (1.12.11)

That is: 
∂u
∂x = ∂v

∂y

∂v
∂x = −∂u

∂y ,
(1.12.12)

which are known as Cauchy- Riemannian conditions. In the following we

are going to extend the notion of holomorphic function to the function of

several complex variables. Let Cn be n− complex vector space, Z denote

(z1, · · · , Zn), where Zj = xj + iyj, j = 1, · · · , n and Ω be an open subset of

Cn. Assume that f(Z) is a complex- valued function which is continuously

differentiable as function of 2n variables x1, y1, · · · , xn, yn. Setting :

∂f

∂Zj
=

1

2
(
∂f

∂xj
+

1

i

∂f

∂yj
) (1.12.13)

and
∂f

∂Z̄j
=

1

2
(
∂f

∂xj
− 1

i

∂f

∂yj
). (1.12.14)

The definition of holomorphic function of several complex variables is given

as follows:

Definition 1.12.1. f(Z) is said to be holomorphic on Ω, if ∂f
∂Z̄j

= 0, j =

1, · · · , n.
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We are now in position of defining the complex manifold.

Definition 1.12.2. Let M be a 2n− real dimensional manifold. An holo-

morphic atlas for M is a collection of charts (Uα, ϕα)α ∈ A, where

ϕα : Uα → Vα ⊂ R2n ∼= Cn,

such that:

1. M = ∪αUα

2. ϕαβ = ϕα ◦ ϕ−1
β are holomorphic.

Definition 1.12.3. Two holomorphic atlases (Uα, ϕα) and (Ũα, ϕ̃α) are said

to be equivalent if ϕα ◦ ϕ̃−1
β is holomorphic ∀α, β.

Definition 1.12.4. A complex manifold M is a smooth manifold in which

the equivalence class of holomorphic atlases is defined.

1.12.2 Almost complex structure

Almost complex structure on real vector space

In the following the almost complex is introduced in order justify the com-

plexification of the vector spaces and vector bundles. On a real vector space

V , a complex structure is defined as follows:

Definition 1.12.5. An almost complex structure on V is a linear map J :

V → V , such that J2 = −I, where I is identity transformation of V . The

endomorphism J : R2 → R2 : (x1, y1, · · · , xn, yn) → (y1,−x1, · · · , yn,−xn) is

called the standard almost complex structure.
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The relation J2 = −I implies that its eigenvalues are ±i, so that for V as

real vector space, J has no eigenspace. By considering the complexification

VC = V⊗RC any linear transformation T : V → V can be extended to the

linear map T : VC → VC and J is extended to J : VC → VC and J , such that

J2 = −I. In this case J has two eigenspaces denoted as V 1,0 and V 0,1 with

eigenvalues i and −i,respectively.

Almost complex structure on vector bundles

In this section, the notion of almost complex manifold is extended to tangent

bundle TM on smooth manifold M . Here TCM is obtained by complexifying

fiber by fiber.

Definition 1.12.6. Let TM be a real vector bundle on a smooth manifold

M . An almost complex structure on TM is a morphism J : TM → TM ,

such that J2 = −I.

Given such bundle, we have a decomposition TCM = T 1,0M ⊕ T 0,1M , where

J

∣∣∣∣
T 1,0M

(TM) = iTM ,J

∣∣∣∣
T 0,1M

(TM) = −iTM and this decomposition exists

fiber by fiber.

Definition 1.12.7. Let M be a real smooth manifold. An almost complex

structure on M is defined on its vector bundle TM . Denoting the standard

almost complex structure on R2n by Jst and given a holomorphic ϕ : TU →

TU, we get a bundle mapJ : TU → TU given by J = Dϕ−1 ◦ Jst ◦Dϕ.

Definition 1.12.8. T 1,0M is the holomorphic tangent bundle of M and we

have the decomposition (T ∗M)C = (T ∗M)1,0 ⊕ (T ∗M)0,1. In terms of local

25



coordinates we say that xj + +iyj are called holomorphic coordinates and

J(
∂

∂xj
) =

∂

∂yj
, J(

∂

∂yj
) = − ∂

∂xj
. (1.12.15)

J(dxj) = −dyj, J(dyj) = dxj. (1.12.16)

1.12.3 Para- Kenmotsu Manifolds

Definition 1.12.9. An (2n + 1)− dimensional manifolds is almost para-

contact if

ϕξ = 0 (1.12.17)

η(ξ) = 1 (1.12.18)

ϕ2(X) = X − η(X)⊗ ξ (1.12.19)

g(ϕ., ϕ.) = −g + η ⊗ η, (1.12.20)

(M,ϕ, ξ, η, g) is called almost paracontact manifold, ϕ the structure endomor-

phism, ξ the characteristic vector field and η the Paracontact form. Examples

of almost paracontact metric structure are given in Ivanov et al. [2010]. From

the definition it follows that :

η(X) = g(X, ξ), (1.12.21)

and ξ is a unit vector field.

Definition 1.12.10. An almost paracontact metric structure (M,ϕ, ξ, η, g)

is said to be Para- Kenmotsu if the Levi- Civita connection ∇ of g satisfies
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the following equation :

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX∀X, Y ∈ X(M), (1.12.22)

where X(M) is the algebra of vector fields on M .

Ricci flows and Ricci solitons

Definition 1.12.11. Let (M, go) be a Riemannian manifold, then the Ricci

flow is evolution equation that evolves the metric tensor and it is defined as:
∂
∂tg(t) = −2S(g(t))

g(0) = g0,
(1.12.23)

where S(g(t)) is the Ricci curvature of the metric g(t). Recall that, the

flat metric has zero Ricci curvature and it does not evolve under Ricci flow.

Those Manifolds with vanishing Ricci curvature are considered as fixed points

of Ricci flow.The generalized fixed points of Ricci flows are manifolds which

change only by diffeomorphisms and rescaling under Ricci flow.

That is, there exist ϕt : Mn →Mn time dependent family of diffeomorphisms

such that ϕ0 = Id and a time depending scale factor σ(0) = 1, such that

g(t) = σ(t)ϕ∗tg(0). The generalized fixed points are also called Ricci solitons.
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Definition 1.12.12. A manifold is called quasi- Einstein if the Ricci cur-

vature tensor field S is linear combination of g and the tensor product of a

non- zero 1-form η satisfying η(x) = g(X, ξ), for ξ a unit vector field, and it

is Einstein if S is collinear with g.

1.12.4 Lorentzian Para-Sasakian Manifolds

If M is m- dimensional differentiable manifold, ϕ a (1, 1)−type tensor field,

η 1−form and g a Lorentzian metric on M , then

Definition 1.12.13. (ϕ, ξ, η, g) is said to be Lorentzian structure on M if:

ϕξ = 0, η(ϕ) = 0, (1.12.24)

η(ξ) = −1, ϕ2 = I + η ⊗ ξ, (1.12.25)

g(ϕ., ϕ.) = g + η ⊗ η, (1.12.26)

(∇Xϕ)Y = g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X ∀X, Y ∈ X(M), (1.12.27)

where X(M) is algebra of vector fields on M and ∇ is the Levi- Civita con-

nection associated to g. and η ⊗ η(X, Y ) stands for η(X)η(Y ).

1.13 Research problem and Objectives

1.13.1 Research problem

The curvature tensors W2 and W8 have been studied by various authors.

Thus for example, for Sasakian manifold W2 has been studied by Pokhariyal

[1982b]; while for a P- Sasakian manifold Matsumuto and Milrai [1986]

have studied W2 curvature tensor. Venkatesha et al. [2011], have studied
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Lorentzian para- Sasakian satisfying certain conditions on W2− curvature

tensor. Motivated by the all important role of W2 and W8− curvature tensors

in the study of certain differential geometric structures we have made detailed

study of these tensors on para -Kenmotsu and Lorentzian para- Sasakian

manifolds with Ricci solitons. This helped in classification of manifolds as

Einstein or quasi- Einstein which has been one of problems that interested

different differential geometers and physicists for several years.

1.13.2 Objectives

General objective

To study the relation between Ricci solitons, Einstein and quasi- Einstein

manifolds on Para- Kenmotsu and Lorentzian Para - Sasakian Manifolds with

particular structures.

1.13.3 Specific objectives

These were to:

• study the existence of Ricci solitons on Para- Kenmotsu manifolds sat-

isfying some curvature tensor conditions,

• study the existence of Ricci solitons on Lorentzian Para- Sasakian man-

ifolds satisfying some curvature tensor conditions,

• Compare the results obtained in two different cases.

1.13.4 Significance of study

This study has been important endeavor in promoting research in differential

geometry and study of Ricci flows stability. This study has also been benefi-
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cial to the students and researchers in the domain of differential geometry. It

has provided important tools in understanding the structures of Ricci solitons

in contact geometry, especially their symmetries. Moreover, this study has

been helpful to the Geometers who are interested in manifolds with special

metrics especially Einstein and quasi- Einstein metrics on odd dimensional

manifolds. It hs also served as a future reference for researchers in the domain

of Riemannian Geometry especially those, involved in the study of Ricci flows

stability and their symmetries.

1.14 Summary

η- Ricci solitons are used to investigate the conditions of Ricci solitons exis-

tence on the manifolds under study as follows.

1.14.1 on Para- Kenmotsu Manifolds defined with W8− Curvature

tensor

In chapter three,computations of Ricci tensor, Riemannian and W8 curvature

tensor allow us to classify antisymmetric and semisymmetric Sasakian para-

Kenmotsu manifolds with respect to W8 by analyzing the Ricci solitons ex-

istence conditions on these spaces. Also the same computations give us the

possibility of classifying para- Kenmotsu manifolds with Ricci cyclic tensor.

1.14.2 on Lorentzian Para- Sasakian manifolds defined with W8−
Curvature tensor

The results of chapter four have been obtained by computing Ricci tensor,

Riemannian and W8 curvature tensor on semi symmetric Lorentzian Para-

Sasakian manifolds with respect to W8 and studying Ricci solitons existence
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conditions on these spaces.

1.14.3 on Lorentzian Para- Sasakian manifolds defined with

W2− Curvature tensor

After computations of Ricci tensor, Riemannian and W2 curvature tensor,

on antisymmetric Lorentzian para- Sasakian manifolds with respect to W2,

semi Symmetric Lorentzian para- Sasakian manifolds with respect to W2,

semisymmetric para- Sasakian manifolds with respect to W2 and studying the

conditions of Ricci solitons existence on them, we get the results of chapter

five.
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Chapter 2

Literature Review

2.1 Generalities

The Poincaré Conjecture has been one of the entente century problem which

have taken long time before being proved by Perelman. The solution of this

problem has been possible due to the method introduced by Hamilton [1982]

. From this time to now different authors have studied Ricci solitons on

various manifolds. Among them Chow [1991] , who considered Ricci flow on

the 2-sphere and showed that the Gaussian curvature of any metric on S2

becomes positive in finite time. Chow et al. [2007] used Maximum principle

to control various geometric quantities associated to the metric under Ricci

flow and Chandra et al. [2015] used Second order parallel tensors to find the

conditions of Ricci solitons on Lorentzian concircular structure n-manifolds

to be shrinking , steady and expending. It is noted that Ricci soliton are

the solutions of Ricci flows, which move only by one parameter group of

diffeomorphism and scaling, that is, a Ricci soliton (g, v, λ) on Riemannian

manifold (M, g) is generalization of Einstein metric such that

Lvg + 2S + 2λg = 0. (2.1.1)
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Where LV is the Lie derivative along the vector V on M , S is Ricci tensor,

λ is a scalar and g is Riemannian metric on M.

After Perelman [2003] , used Ricci flow and its surgery to prove the Poincaré

Conjecture, most mathematicians have been interested in the study of Ricci

solitons. Huisken [1985] , was the first to study the Ricci flows on a manifold

of dimensions greater than four basing his analysis on the decomposition of

the Riemann curvature tensor as follows.

Rijkl = Uijkl + Vijkl +Wijkl,

where Uijkl is curvature tensor associated with the scalar curvature, Vijkl is

curvature tensor associated with trace free curvature and Wijkl is Weyl ten-

sor. From this time more mathematicians have investigated the properties

of Ricci flows solutions especially the existence of Ricci solitons in some par-

ticular directions under certain conditions. Due to the results obtained by

Huisken and noting that Pokhariyal [1982a] has defined W8 curvature ten-

sor with help of Weyl’s projective tensor, we have classified Ricci solitons on

para-Kenmotsu manifolds satisfying some conditions with respect to W8 in

direction of characteristic vector. Blaga [2015], have studied η−Ricci solitons

on para -Kenmotsu geometry manifolds satisfying (ξ, ·)R · S = 0,(ξ, ·)S ·R =

0,(ξ, ·)W2
· S = 0 and (ξ, ·)S ·W2 = 0. Also Nagaraja and Venu [2016], ob-

tained some results on Rcci solitons satisfying (ξ, ·)H · S = 0,(ξ, ·)C̃ · S =

0,(ξ, ·)R · C̃ = 0, (ξ, ·)P · C̃ = 0 and Bagewadi et al. [2013] have considered

the cases of (ξ, ·)R · B = 0, (ξ, ·)B · S = 0, (ξ, ·)S · R = 0, (ξ, ·)R · P̄ = 0 and

(ξ, ·)P̄ · S = 0.
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2.2 On Para- Kenmotsu manifolds

In the present research Almost para contact manifolds are considered and

precisely η- Ricci soliton are studied on para- Kenmotsu manifold satisfying

(ξ, ·)W8
·S = 0 , (ξ, ·)S ·W8 = 0 and those with cyclic Ricci tensor. That why

we have to cite some of documents these inspire us in this research. Para-

Kenmotsu structure has been introduced We lyczko [2009] for 3- dimensional

normal almost paracontact metric structure. In the following we give the

fundamental properties of this structure , as they have been given by Blaga

[2015].

Proposition 2.2.1. On Para-Kenmotsu manifolds the followings hold:

∇ξX = X − η ⊗ ξ(x), (2.2.1)

η(∇Xξ) = 0, (2.2.2)

∇ξξ = 0, (2.2.3)

R(X, Y )ξ = −η(X)Y − η(y)X, (2.2.4)

R(X, Y )Z = −Xg(Y, Z) + Y g(X,Z), (2.2.5)

∇η = g − η ⊗ η, (2.2.6)

∇ξη = 0, (2.2.7)

Lξϕ = 0, (2.2.8)

Lξη = 0, (2.2.9)

Lξ(η ⊗ η) = 0, (2.2.10)
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Lξg = 2(g − η ⊗ η) (2.2.11)

∇Xξ = X − η(X)ξ, (2.2.12)

where R is Riemann curvature tensor field and ∇ is Levi- Civita connection

of g. Example of para- Kenmotsu structure can be found Blaga [2015]. If

(M,ϕ, ξ, η, g) is an almost paracontact metric manifold, (g, ξ, λ, µ) satisfying

Lξg + 2S + 3λg + 2µη ⊗ η = 0, (2.2.13)

where Lξ is the lie derivative along the characteristic vector field , S is the

Ricci curvature tensor of g, and λ and µ are constant, then (g, ξ, λ, µ) is

called η− Ricci soliton structure on M . Note that (2.2.13) become equation

of Ricci soliton for µ = 0 and it is called shrinking , steady or expending

according to λ is negative, zero or positive , respectively. In terms of Levi

Civita connection (2.2.13) becomes:

2S(X, Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− 2λg(X, Y )− 2µη(X)η(Y ). (2.2.14)

It has been showed that one of important geometrical object to the study of

Ricci Solitons is a symmetric tensor (0, 2), which is parallel with respect to

the Levi- Civita connection Blaga [2015] and some of geometric properties of

such tensor field are defined by Bejan and Crasmareanu [2010]. Considering

such symmetric (0, 2) tensor field α and from the Ricci identity

∇2α(X, Y ;Z, V )−∇2α(X, Y ;V, Z) = 0, (2.2.15)
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we get

α(R(X, Y )Z, V ) + α(Z,R(X, Y )V ) = 0,∀X, Y, Z, V ∈ X(M). (2.2.16)

Taking Z = V = ξ and using (2.2.4), we get

α(R(X, y)ξ, ξ) = 0,∀X, Y ∈ X(M).

Using (2.2.12) , (2.2.14) becomes

S(X, Y ) = −(λ+ 1)g(X, Y )− (µ− 1)η(X)η(Y ). (2.2.17)

The following theorem has been proved by Blaga [2015] .

Theorem 2.2.2. Let (M,ϕ, ξ, η, g) be a para-Kenmotsu manifold. assume

that the symmetric (0, 2)- tensor field β = Lξg + 2s+ 2µ⊗ η is parallel with

respect to the Levi- Civita connection associated to g. Then (g, ξ, µ) yields an

η− Ricci soliton.

From this theorem , for µ = 0, the following corollaries have been deduced.

Corollary 2.2.3. On para-Kenmotsu manifold (M,ϕ, ξ, η, g) with the prop-

erty that the symmetric (0, 2)- tensor field α = Lξg+2s is parallel with respect

to Levi-Civita connection associated to g the relation(2.2.13) , defines a Ricci

soliton on M. for λ = 2n and µ = 0

Corollary 2.2.4. For µ = 1 and λ = 2n− 1 , (M, g) is quasi- Einstein.

In the following we shall study η-Ricci solitons whose curvature satisfies

(ξ, .)S.W8 = 0 and (ξ, .)W8
.S = 0 respectively, where the W8-curvature tensor
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has been introduced by Pokhariyal [1982a], and it is given by :

W8(X, Y )Z = R(X, Y )Z +
1

2n
(S(X, Y )Z − S(Y, Z)X), (2.2.18)

for a (2n + 1)− dimensional Para-Kenmotsu manifold. Using (1.12.26) and

(1.12.24), we get

g(ξ, ξ) = −1, (2.2.19)

η(X) = g(X, ξ) (2.2.20)

and

g(ϕX, Y ) = g(X,ϕY ) X, Y ∈ X(M). (2.2.21)

2.3 On Lorentzian Para- Sasakian manifolds

The Lorentzian Para- Sasakian manifolds have been one of our interested

field of our study and that is why their important properties, as they have

been proved by Blaga [2016], are here presented.

Proposition 2.3.1. On Lorentzian Para- Sasakian manifolds, the followings

hold:

∇Xξ = ϕX, (2.3.1)

η(∇Xξ) = 0, ∇ξξ = 0, (2.3.2)

R(X, Y )ξ = −η(X)Y + η(Y )X (2.3.3)

η(R(X, Y )Z) = η(X)g(Y, Z)− η(y)g(X,Z), η(R(X, Y )ξ) = 0 (2.3.4)

(∇Xη)Y = (∇Y η)X = g(ϕX, Y ), ∇ξη = 0, (2.3.5)
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Lξϕ = 0, Lξη = 0, Lξg = 2g(ϕ., .) (2.3.6)

where R is Riemannian curvature tensor field and ∇ is Levi- Civita connec-

tion associated to g.

From this proposition, we get that g(X,ϕY ) is symmetric,

(∇g(X,ϕ))(Y, Z) = η(Y )(X,Z) + η(Z)g(X, Y ) + 2η(X)η(Y )η(Z), (2.3.7)

and

g(ϕX,ϕ2Y ) = g(X,ϕY ). (2.3.8)

Let (M,ϕ, ξ, η, g) be a Lorentzian manifold. The data satisfying the equation

Lξg + 2s+ 2λg + 2µη ⊗ η (2.3.9)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci

tensor field of the metric g, and λ and µ are scalars is said to be η−Ricci

soliton on M . Writing Lξ in terms of the Levi- Civita connection (2.3.9)

becomes:

2S(X, Y ) = −g(∇Xξ, Y )−g(X,∇Y ξ)−2λg(X, Y )−µη(X)η(Y ) ∀X, Y ∈ X(M).

(2.3.10)

Using (2.3.1) in (2.3.9), we get

S(X, Y ) = −g(ϕX, Y )− λg(X, Y )− µη(X)η(Y ). (2.3.11)
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Matsumoto and Mihai [1988] proved that on Lorentzian para- Sasakian man-

ifold (M,ϕ, ξ, η, g) the Ricci tensor satisfies

S(X, ξ) = (dim(M)− 1))η(X) (2.3.12)

and

S(ϕX,ϕY ) = S(X, Y ) + (dim(M)− 1)η(X)η(Y ). (2.3.13)

Putting Y = ξ in (2.3.11), we get

µ− λ = 2n, (2.3.14)

for a (2n + 1)−dimensional Lorentzian Para- Sasakian manifold M . Blaga

[2016] studied the Lorentzian Para - Sasakian Manifolds having cyclic Ricci

tensor and those with cyclic η− recurrent Ricci tensor and proved that there is

no Ricci soliton with potential vector field ξ. In the same paper the author dis-

cussed the Lorentzian Para- Sasakian manifolds satisfying (ξ, .)R.S = 0,and

(ξ, .)S.R = 0 and proved that in such cases M is Einstein.
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Chapter 3

Ricci Solitons on Para- Kenmotsu Manifolds defined

with W8− Curvature tensor

This chapter contains the results obtained by analyzing antisymmetric and

semisymmetric Sasakian para-Kenmotsu manifolds with respect to W8 and

these with Ricci cyclic tensor.

3.1 Ricci solitons on para- Kenmotsu manifolds satisfying

(ξ, .)W8.S = 0.

The condition to be satisfied by S is:

S(W8(ξ,X)Y, Z) + S(Y,W8(ξ,X)Z) = 0,∀X, Y, Z ∈ X(M). (3.1.1)

Using (2.2.17) and (2.2.18) in (3.1.1), we get :

(µ−λ−2){(g(x, y)η(z)+g(X,Z)η(Y ))−2g(Y, Z)η(x)−2(µ−1)η(x)η(y)η(z)} = 0,∀X, Y, Z ∈ X(M).

(3.1.2)

Making Z = ξ we get

(µ− λ− 2)(g(X, Y )− η(X)η(Y )) = 0 (3.1.3)
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or

(µ− λ− 2)g(ϕX,ϕY ) = 0,∀X, Y ∈ X(M). (3.1.4)

But λ + µ = 2n, so µ − (2n − µ) − 2 = 0 , or 2µ = 2n + 2. Hence, we have

the following theorem.

Theorem 3.1.1. If (ϕ, ξ, η, g) is a para- Kenmotsu structure on the (2n+1)-

dimensional manifold M , (g, ξ, η, λ, µ) is an η-Ricci soliton on M satisfying

(ξ, .)W8
.S = 0, then µ = n+ 1 and λ = n− 1.

Proof. Using equations (2.2.1) to (2.2.11) and the fact that µ + λ = 2n, the

results in theorem are obtained by solving (3.1.4).

Corollary 3.1.2. ” If (ϕ, ξ, η, g) is a para- Kenmotsu structure on the (2n+

1)- dimensional manifold M , (g, ξ, η, λ, µ) is an η-Ricci soliton on M satis-

fying (ξ, .)W8
.S = 0, then M is quasi- Einstein.

Proof. As µ 6= 0 and by using definition (1.12.12), the Corollary is deduced

from the above theorem by using the expression 2.2.13.

Corollary 3.1.3. On a para-Kenmotsu manifold (M,ϕ, ξ, η, g)satisfying (ξ, .)W8
.S =

0, there is no Ricci solitons with potential vector field ξ.

Proof. The relation (2.2.13) is Ricci soliton if µ = 0 and λ 6= 0 but µ = 0

implies n = −1,that is, λ = −2 which is a contradiction as dimension of

manifold is always positive and µ+ λ = 2n.
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3.2 Ricci solitons on para-Kenmotsu manifolds

satisfying (ξ, .)S.W8 = 0.

The condition to be satisfied by S is :

S(X,W8(Y, Z)V )ξ − S(ξ,W8(Y, Z)V )X + S(X, Y )W8(ξ, Z)V

−S(ξ, Y )W8(X,Z)V + S(X,Z)W8(Y, ξ)V − S(ξ, Z)W8(Y,X)V

+S(X, V )W8(Y, Z)ξ − S(ξ, V )W8(Y, Z)X = 0 ∀X, Y, Z, V ∈ X(M).

(3.2.1)

Making inner product with ξ,the relation (3.2.1) becomes:

S(X,W8(Y, Z)V )− S(ξ,W8(Y, Z)V )η(X) + S(X, Y )η(W8(ξ, Z)V )

−S(ξ, Y )η(W8(X,Z)V ) + S(X,Z)η(W8(Y, ξ)V )− S(ξ, Z)η(W8(Y,X)V )

+s(X, V )η(W8(Y, Z)ξ)− S(ξ, v)η(W8(Y, Z)X) ∀ X, Y, Z, V ∈ X(M).

(3.2.2)

Expanding the terms of (3.2.2) and using(2.2.17) in(2.2.18) , we get :

(µ+ λ){ 1

2n
S(X, Y ) + η(X)η(Y ) + g(X, Y )− η(X)η(Y )} = 0. (3.2.3)

Hence,
1

2n
S(X, Y ) = −g(X, Y ) (3.2.4)

S(X, Y ) = −2ng(X, Y ). (3.2.5)

Thus , we have the following theorem

Theorem 3.2.1. If (ϕ, ξ, η, g) is a para- Kenmotsu structure on the (2n+1)-

42



dimensional manifold M , (g, ξ, η, λ, µ) is an η-Ricci soliton on M satisfying

(ξ, .)S.W8 = 0, then µ = 0 and λ = 2n or µ = 2n and λ = 2n .

Proof. Using equations(2.2.1) to (2.2.11) and from the fact that, λ+µ = 2n,

the results in above theorem are obtained from (3.2.3).

Corollary 3.2.2. If (ϕ, ξ, η, g) is a para- Kenmotsu structure on the (2n+1)-

dimensional manifold M , (g, ξ, η, λ, µ) is an η-Ricci soliton on M satisfying

(ξ, .)S.W8 = 0, then M is Einstein manifold.

Proof. From the above theorem, the Ricci tensor is collinear with metric.

Hence by definition (1.12.12) we deduce the corollary.

Corollary 3.2.3. On a para-Kenmotsu manifold (M,ϕ, ξ, η, g)satisfying (ξ, .)S.W8 =

0, there is no Ricci solitons with potential vector field ξ.

Proof. The relation (3.2.4) implies that Lξg = 0 and (2.1.1) becomes:

2S(X, Y ) + 2λg(X, Y ) = 0 ∀X, Y ∈ X(M) (3.2.6)

That is, Lξg = 0 and hence, g is invariant in direction ξ.
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3.3 Ricci solitons on para- Kenmotsu manifolds having cyclic Ricci

tensor.

A Riemannian manifold (M, g) is said to have a cyclic Ricci tensor if:

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0, (3.3.1)

where:

(∇XS)(Y, Z) = X(S(Y, Z))− S(∇XY, Z)− S(Y,∇XZ). (3.3.2)

Using (2.2.17), we get:

(∇XS)(Y, Z) = −(λ+ 1)[Xg(Y, Z)− g(∇xY, Z)

−g(Y,∇xZ)]− (µ− 1)[Xη(Y )η(Z)

−η(∇XY )η(Z)− η(Y )η(∇XZ)].

(3.3.3)

As ∇g = 0, (3.3.3) becomes:

(∇XS)(Y, Z) = −(µ− 1)[Xη(Y )η(Z)− η(∇XY )η(Z)

−η(Y )η(∇XZ)].
(3.3.4)
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Hence,

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = −(µ− 1)[Xη(Y )η(Z)

−η(∇XY )η(Z)− η(Y )η(∇XZ)

+Y η(X)η(Z)− η(∇YZ)η(X)− η(Z)η(∇YX)

+Zη(X)η(Y )− η(∇ZX)η(Y )− η(X)η(∇ZY )].

(3.3.5)

After computations, the condition (3.3.1) becomes:

−2(µ− 1)[((g(X, Y )− η(X)η(Y ))η(Z) + (g(X,Z)

−η(X)η(Z))η(Y ) + (g(Y, Z)− η(Y )η(Z))η(X)] = 0.
(3.3.6)

Putting Z = ξ, we get:

− 2(µ− 1)[g(X, Y )− η(X)η(Y )] = 0. (3.3.7)

Hence, µ = 1 and we state the following theorem.

Theorem 3.3.1. If (ϕ, ξ, η, g) is a para- Kenmotsu structure on (2n + 1)−

dimensional manifold M , and manifold (M, g) has Cyclic Ricci tensor, then

µ = 1 and λ = 2n− 1.

Proof. From equations(2.2.1) to (2.2.11) and knowing that from (3.3.7) we

have µ − 1 = 0,the results in the theorem are obtained from the fact that

µ+ λ = 2n.

Corollary 3.3.2. If (ϕ, ξ, η, g) is a para- Kenmotsu structure on (2n+ 1)−

dimensional manifold M , and manifold (M, g) has Cyclic Ricci tensor, then
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M is quasi- Einstein.

Proof. Using the same argument as in corollary (3.1.2), the result follows

from the above theorem.

Corollary 3.3.3. On a para-Kenmotsu manifold (M,ϕ, ξ, η, g) having Ricci

cyclic tensor , there is no Ricci solitons with potential vector field ξ.

Proof. The relation (2.2.13) is Ricci soliton if µ = 0 and λ 6= 0 but µ = 0

implies n = −1,that is, λ = −2 and this is a contradiction as dimension of

manifold is always positive and µ+ λ = 2n.
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Chapter 4

Ricci solitons on Lorentzian Para- Sasakian manifolds

defined with W8− Curvature tensor

In this chapter, antisymmetric and semisymmetric Lorentzian Para- Sasakian

manifolds with respect to W8 are discussed.

4.1 Ricci Solitons on Lorentzian Para- Sasakian Manifolds satis-

fying (ξ, .)W8
.S = 0

The condition to be satisfied by S is

S(W8(ξ,X)Y, Z) + S(Y,W8(ξ,X)Z) = 0 (4.1.1)

Using the above expression in (2.3.11), we get

S(W8(ξ,X)Y, Z) = −[g(ϕY, Z)η(X)− g(ϕX,Z)η(Y )]

−λ[
µ

2n
g(X, Y )η(Z)− g(X,Z)η(Y ) + g(Y, Z)η(X)

+
1

2n
g(ϕX, Y )η(Z) +

µ

2n
η(x)η(Y )η(Z)]

−µ[
−µ
2n

g(X, Y )η(Z)− 1

2n
g(ϕX, Y )η(z)− µ

2n
η(X)η(Y )η(Z)].

(4.1.2)
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and

S(Y,W8(ξ,X)Z) = −[g(ϕZ, Y )η(X)− g(ϕX, Y )η(Z)]

−λ[
µ

2n
g(X,Z)η(Y )− g(X, Y )η(Z) + g(Y, Z)η(X)

+
1

2n
g(ϕX,Z)η(Y ) +

µ

2n
η(X)η(Y )η(Z)]

−µ[
−µ
2n

g(X,Z)η(Y )− 1

2n
g(ϕX,Z)η(Y )− µ

2n
η(X)η(Y )η(Z)].

(4.1.3)

Putting Z = ξ, the condition (4.1.1) becomes :

g(ϕX, Y )[
λ

2n
− µ

2n
− 1] + [g(X, Y ) + η(X)η(Y )][

λµ

2n
− µ2

2n
− λ] = 0. (4.1.4)

Introducing (2.3.14) in (4.1.4), we get:

2g(ϕX, Y ) + (λ+ µ)g(ϕX,ϕY ) = 0. (4.1.5)

Putting Y = ϕY in (4.1.5), we get :

2g(ϕX,ϕY ) + (λ+ µ)g(ϕX, Y ) = 0. (4.1.6)

Adding (4.1.5) and (4.1.6), we get :

(2 + λ+ µ)(g(ϕX, Y ) + g(ϕX,ϕY )) = 0. (4.1.7)

That is,

2 + λ+ µ = 0 (4.1.8)

Thus, by (2.3.14), the following theorem is stated.
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Theorem 4.1.1. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)W8
.S = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then µ = n− 1 and λ = −n− 1.

Proof. Using properties defined by equations (2.3.1) to (2.3.14),the above

theorem is obtained from definition (5.1.8).

From (4.1.5) and (2.3.11), we get

S(X, Y ) = ng(X, Y )− nη(X)η(Y ) (4.1.9)

Thus, we have the following theorem.

Theorem 4.1.2. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)W8
.S = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then M is quasi-Einstein

Proof. Using properties defined by equations (2.3.6) to (2.3.14) and from

definition (1.12.12),the above theorem is obtained.

Corollary 4.1.3. On Lorentzian Para- Sasakian manifold (M,ϕ, ξ, η, g) sat-

isfying (ξ, .)W8
.S = 0, there is no Ricci soliton with potential vector ξ.

Proof. Since M is Quasi-Einstein , g is invariant in direction ξ.
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4.2 Ricci Solitons on Lorentzian Para-Sasakian Manifolds

satisfying (ξ, .)S.W8 = 0

The condition to be satisfied by S is:

S(X,W8(Y, Z)V )ξ − S(ξ,W8(Y, Z)V )X + S(X, Y )W8(ξ, Z)V

−S(ξ, Y )W8(X,Z)V + S(X,Z)W8(Y, Z)V − S(ξ, Z)W8(Y,X)V

+S(X, V )W8(Y, Z)ξ − S(ξ, V )W8(Y, Z)X = 0.

(4.2.1)

Taking inner product with ξ, the relation (4.2.1) becomes:

−S(X,W8(Y, Z)V )− S(ξ,W8(Y, Z)V )η(X)+

S(X, Y )η(W8(ξ, Z)V )− S(ξ, Y )η(W8(X,Z)V )

+S(X,Z)η(W8(Y, ξ)V )− S(ξ, Z)η(W8(Y,X)V )

+S(X, V )η(W8(Y, Z)V )− S(ξ, V )η(W8(Y, Z)X) = 0.

(4.2.2)

After using (2.3.11) in expanding the terms in (4.2.2) and putting V = Z = ξ

the condition to be satisfied by S becomes:

1

2n
g(ϕX, Y ) + (

λ

2n
+ 1)[g(X, Y ) + η(X)η(Y )] = 0, (4.2.3)

using (2.3.14)

g(ϕX, Y ) + µg(ϕX,ϕY ) = 0. (4.2.4)

Putting Y = ϕY , we get

g(ϕX,ϕY ) + µg(ϕX, Y ) = 0, (4.2.5)
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and adding (4.2.4) and (4.2.5), we get

(1 + µ)(g(ϕX, Y ) + g(ϕX,ϕY )) = 0. (4.2.6)

Thus, we get the following theorem.

Theorem 4.2.1. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)S.W8 = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then µ = −1 and λ = −(2n+ 1).

Proof. We have used properties defined by equations (2.3.1) to (2.3.14) to

obtain the results in above theorem through (4.2.6).

Using (4.2.4), we get:

g(ϕX, y) = −µ(g(X, Y )− η(X)η(Y )). (4.2.7)

Introducing (4.2.7) in (2.3.11), we get:

S(X, Y ) = −2ng(X, Y ). (4.2.8)

Hence,we state the following theorem.

Theorem 4.2.2. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)S.W8 = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then M is Einstein.

Proof. the results in above theorem are due to definition (1.12.12).

From this theorem we can deduce :
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Corollary 4.2.3. On Lorentzian Para- Sasakian manifold (M,ϕ, ξ, η, g) sat-

isfying (ξ, .)S.W8 = 0, there is no Ricci soliton with potential vector ξ.

Proof. According to the above theorem g is invariant in direction ξ, as M is

Einstein.
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Chapter 5

Ricci solitons on Lorentzian Para- Sasakian manifolds
defined with W2− Curvature tensor

This chapter discuss antisymmetric and semisymmetric Lorentzian Para-

Sasakian manifolds with respect to W2.

5.1 η−Ricci Solitons on Lorentzian Para- Sasakian Manifolds

satisfying (ξ, .)W2
.S = 0.

The condition to be satisfied by S is

S(W2(ξ,X)Y, Z) + S(Y,W2(ξ,X)Z) = 0. (5.1.1)

Using the above expression in (2.3.11), we get

S(W2(ξ,X)Y, Z) = η(Y ){g(ϕX,Z) + λg(X,Z)− µη(X)η(Z)

+
1

2n
[g(X,Z) + η(X)η(Z) + 2λg(ϕX,Z) + λ2g(X,Z) + 2λµη(X)η(Z)− µ2η(X)η(Z)]}.

(5.1.2)

That is,

S(W2(ξ,X)Y, Z) =
1

2n
[(λ+µ)g(ϕX,Z)η(Y )+(λµ+1)(g(X,Z)η(Y )+η(x)η(Y )η(Z))].

(5.1.3)
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and

S(Y,W2(ξ,X)Z) =
1

2n
[(λ+ µ)g(ϕX, Y )η(Z)

+(λµ+ 1)(g(X, Y )η(Z) + η(X)η(Y )η(Z))].
(5.1.4)

Putting Z = ξ, the condition (5.1.1) becomes :

(λ+ µ)g(ϕX, Y ) + (λµ+ 1)g(ϕX,ϕY ) = 0. (5.1.5)

Putting Y = ϕY in (5.1.5), we get :

(λ+ µ)g(ϕX,ϕY ) + (λµ+ 1)g(ϕX, Y ) = 0. (5.1.6)

Adding (5.1.5) and (5.1.6), we get :

(µ+ λ+ λµ+ 1)(g(ϕX,ϕY ) + g(ϕX, Y ) = 0. (5.1.7)

That is,

(λ+ 1)(µ+ 1) = 0. (5.1.8)

Thus , the following theorem is stated.

Theorem 5.1.1. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)W2
.S = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then µ = −1 and λ = −2n − 1 or λ = −1 and

µ = 2n− 1.

Proof. The results in the theorem are obtained by solving (5.1.8) and using

properties defined by equations (2.3.1) to (2.3.14).
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For µ = −1 we get from 5.1.5 that

(λµ+ 1)g(ϕX, Y ) = g(ϕX,ϕY ), (5.1.9)

and using 5.1.5 in 2.3.11, we get

S(X, Y ) = −2ng(X,X). (5.1.10)

Thus, we have the following theorem.

Theorem 5.1.2. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)W2
.S = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then for µ = −1, M is Einstein.

Proof. Using definition (1.12.12) of Einstein and quasi- Einstein and the

above results (5.1.10) we prove the theorem.

For λ = −1 we get from 5.1.5 that

g(ϕX, Y ) = g(ϕX,ϕY ) (5.1.11)

and from 5.1.5 and 2.3.11, we get

S(X, Y ) = −2nη(X)η(Y ) (5.1.12)

Thus, we have the following theorem.

Theorem 5.1.3. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)W2
.S = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then for λ = −1 M is Einstein.
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Proof. Using the definition(1.12.12) of Einstein and quasi- Einstein and the

above results (5.2.9) we prove the theorem.

The following corollary is deduced from the above two theorems.

Corollary 5.1.4. On Lorentzian Para- Sasakian manifold (M,ϕ, ξ, η, g) sat-

isfying (ξ, .)W2
.S = 0, there is no Ricci soliton with potential vector ξ.

5.2 η−Ricci Solitons on Lorentzian Para-Sasakian Manifolds sat-

isfying (ξ, .)S.W2 = 0.

The condition to be satisfied by S is:

S(X,W2(Y, Z)V )ξ − S(ξ,W2(Y, Z)V )X

+S(X, Y )W2(ξ, Z)V − S(ξ, Y )W2(X,Z)V

+S(X,Z)W2(Y, Z)V − S(ξ, Z)W2(Y,X)V

+S(X, V )W2(Y, Z)ξ − S(ξ, V )W2(Y, Z)X = 0.

(5.2.1)

Taking inner product with ξ the relation (5.2.1) becomes:

−S(X,W2(Y, Z)V )− S(ξ,W2(Y, Z)V )η(X)+

S(X, Y )η(W2(ξ, Z)V )− S(ξ, Y )η(W2(X,Z)V )

+S(X,Z)η(W2(Y, ξ)V )− S(ξ, Z)η(W2(Y,X)V )

+S(X, V )η(W2(Y, Z)V )− S(ξ, V )η(W2(Y, Z)X) = 0.

(5.2.2)

After using (2.3.11) and expanding the terms in (5.2.2) and putting V = Z =

ξ the condition to be satisfied by S becomes:

(λ+ µ)g(ϕX, Y ) + (λµ+ 1) = 0. (5.2.3)
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Putting Y = ϕY , we get

(λ+ µ)g(ϕX,ϕY ) + (λµ+ 1)g(ϕX, Y ) = 0. (5.2.4)

After adding (5.2.3) and (5.2.4), we get

(λ+ λµ+ µ+ 1)[g(ϕX,ϕY ) + g(ϕX, Y )] = 0. (5.2.5)

Thus, the following theorem is stated.

Theorem 5.2.1. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)S.W2 = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then µ = −1 and λ = −2n − 1 or λ = −1 and

µ = 2n− 1.

Proof. The results in above theorem are due to properties given by equations

(2.3.1) to (2.3.14) by solving (5.2.5).

For µ = −1 we get from 5.2.3 that

(λµ+ 1)g(ϕX, Y ) = g(ϕX,ϕY ), (5.2.6)

and using 5.2.3 in 2.3.11, we get

S(X, Y ) = −2ng(X,X). (5.2.7)

Thus, we have the following theorem.
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Theorem 5.2.2. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)S.W2 = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then for µ = −1 M is Einstein.

Proof. The theorem is obtained by using properties in equations (2.3.1) to

(2.3.14) and solving (5.2.6).

For λ = −1 we get from 5.2.3 that

g(ϕX, Y ) = g(ϕX,ϕY ), (5.2.8)

and from 5.2.3 and 2.3.11, we get

S(X, Y ) = −2nη(X)η(Y ). (5.2.9)

Thus, we have the following theorem.

Theorem 5.2.3. If (ϕ, ξ, η, g) is a Lorentzian para- Sasakian structure on

the (2n + 1)−dimensional manifold M satisfying (ξ, .)S.W2 = 0 , (g, ξ, λ, µ)

is η−Ricci soliton on M , then for λ = −1 M is Quasi- Einstein.

Proof. the results in theorem are obtained using properties given by equations

(2.3.1) to (2.3.14) and solving (5.2.9).

From the above two theorems the following corollary is deduced.

Corollary 5.2.4. On Lorentzian Para- Sasakian manifold (M,ϕ, ξ, η, g) sat-

isfying (ξ, .)S.W8 = 0, there is no Ricci soliton with potential vector ξ.
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Chapter 6

Results discussion and recommendations

6.1 Results discussion

Several mathematicians have investigated the properties of Ricci flows so-

lutions especially the existence of Ricci solitons in some particular direc-

tions under certain conditions. Thus, for example, Blaga [2015], have studied

η−Ricci solitons on para -Kenmotsu geometry manifolds satisfying (ξ, ·)R·S =

0,(ξ, ·)S · R = 0,(ξ, ·)W2
· S = 0 and (ξ, ·)S · W2 = 0. Also Nagaraja and

Venu [2016], obtained some results on Rcci solitons satisfying (ξ, ·)H · S =

0,(ξ, ·)C̃ · S = 0,(ξ, ·)R · C̃ = 0, (ξ, ·)P · C̃ = 0 and Bagewadi et al. [2013]have

considered the cases of (ξ, ·)R·B = 0, (ξ, ·)B·S = 0, (ξ, ·)S ·R = 0, (ξ, ·)R·P̄ = 0

and (ξ, ·)P̄ ·S = 0. Comparing our results to the previous results in the same

field, we can conclude that our objectives has been reached as in chapter

three we proved that the Para- Kenmotsu manifolds satisfying (ξ, .)W8
.S = 0.

are quasi- Einstein Manifolds and those satisfying (ξ, .)S.W8 = 0, are Einstein

Manifolds.

At the end of this chapter,we proved that the para- Kenmotsu manifolds with

cyclic Ricci tensor and η− Ricci soliton structure are quasi-Einstein mani-

folds .

Also in chapter four it has been proved that Lorentzian Para- Sasakian mani-
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folds satisfying (ξ, .)s.W8 = 0 and having η− Ricci soliton structureLξg+2s+

2λg+2µη⊗η are quasi-Einstein manifolds and those satisfying (ξ, .)W8
.S = 0

are Einstein manifolds while the results in chapter five show that Lorentzian

Para- Sasakian manifolds satisfying (ξ, .)s.W2 = 0 and having η− Ricci soli-

ton structure are Einstein or quasi-Einstein manifolds according to the value

µ and λ.

The same results have been established on Manifolds satisfying (ξ, .)W2
.S = 0.

Briefly this research has established the existence of strong relation between

Ricci solitons and quasi-Einstein metrics on Lorentzian para- Sasakian and

para- Kenmotsu manifolds and classification of these manifolds with the prop-

erties under our study, has been established.

6.2 Recommendations

The field of Ricci solitons and Ricci flows is among richest field of research

interest. It is still open domain of research for multiple discipline, including

Geometry, Calculus, algebra among others.

We recommend the consideration of the connection between Ricci solitons

and Einstein metrics on Spaces of any dimensions and any structure, for fu-

ture coming research.

The main problem when those Ricci solitons are taken as solutions of

Ricci flows is the study of their stability.

That is why it is recommended for future research, to investigate different

cases by starting on some of them with high degree of symmetry, in future

researches.
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The properties of complex Riemannian foliations on complex Kähler Ricci

solitons of some special type of symmetries is up to now one of open problem

in Applied mathematics field.

That is why, future research can be conducted in the investigation of Ricci

flows stability. Also deep geometric analysis are particular techniques to

study flows such as Ricci flow especially the dynamical stability of Kahller

Ricci flow at its critical point. Locally Riemannian symmetric spaces are

our hope to develop an explicit theory for foliations and submanifold giving

a generalization a classical study of surface in <3 to a large class of funda-

mental manifolds by using the strong control over the Riemannian curvature

tensor. Another problem here to study is the case of Riemannian foliations

of symmetric spaces and spaces with positive sectional curvature.
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