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ABSTRACT 

Southern Africa and Eswatini in particular rely heavily on rainfall for agricultural production 

which supports socio-economic activities. Thus, skilful and timely rainfall predictions are very 

imperative, since it is only the prediction information that can be used to trigger actions that lead 

to reduction of climate related hazards. The predictive potential of rainfall in southern Africa and 

more especially in Eswatini using dominant ocean and atmosphere indicators was established 

while seeking to investigate the potential for predicting rainfall in Eswatini with increased time 

leads. The study was motivated by the significant role of rainfall variability in influencing social 

and economic activities in the sub-region and the need to avail skilful climate forecasts in 

advance of the target season.  

Rainfall data from stations in Eswatini and gridded rainfall data from the Global Precipitation 

and Climatology Centre were used in the analysis, together with global wind, mean sea level 

pressure and sea surface temperature data sets drawn from the NCEP/NCAR reanalysis. The 

study used principal component analysis (PCA) or empirical orthogonal functions (EOFs) as the 

main analysis method while principal component regression was used for developing statistical 

rainfall prediction models. The ENSO phenomenon was found to cause the second greatest 

variability in the global SSTs after the general warming of the global oceans which had the 

largest variance. 

A notable outcome from the study is that circulation at upper levels of the atmosphere have an 

important contribution to the predictability of rainfall in Eswatini. Using the station rainfall data, 

models for predicting December-January-February (DJF) rainfall anomalies were developed and 

a lead time of 3 months using June-July-August (JJA) predictors was found to be viable with 

good and useful results. 
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CHAPTER ONE 

1.0 INTRODUCTION 

 

The southern Africa region is characterized by varied topography associated with a variety of 

climate patterns. Agriculture in this region, which supports social and economic development, is 

significantly reliant on seasonal rainfall. Generally, over seventy-five percent (75 %) of the 

annual rainfall is received during the austral summer period (October to March), a season when 

most of the growing spell takes place. Variations in the amount of rainfall received especially 

during the agricultural growing season may have serious implications to the economies of this 

region which comprises largely of developing countries. A majority of the population lives in 

rural areas and relies heavily on rainfall-fed subsistence farming. The rainfall in the region is 

greatly uneven in space and time. Moreover, the rainfall pattern is associated with floods as well 

as droughts that have augmented frequencies (Mwafulirwa and Jury, 2002). For example, 

according to a report by Eswatini Economic Policy Analysis and Research Centre, the recent El 

Niño influenced drought of 2015/16 cost the economy of Eswatini, the country formerly called 

Swaziland E3.843 billion (about $289.6 million). 

Apart from the unpleasant effects of rainfall variation to agriculture, seasonal rainfall anomalies 

also impact negatively on numerous social and economic activities that include nature 

conservation, power production, transportation, tourism, forestry and many others. Hence, timely 

and reliable seasonal rainfall forecasts would significantly contribute to effective scheduling, 

management and administration of all social and economic activities in the region which depend 

on rainfall. Several studies on rainfall variability have been conducted for the southern Africa 

region with the aim of improving seasonal rainfall forecasts (Jury, 1996; Nakamura, 2011; 

Fauchereau et al., 2003; Todd et al., 2011). 

 Even though dynamical climate prediction models have been developed in an attempt to 

improve forecasting, empirical statistical prediction models remain valuable, sometimes 

performing better than dynamical models in operational prediction (Landman et al., 2009), 

especially in seasonal rainfall prediction where longer lead times are desired and where small 

spatial scales are considered (Shongwe et al, 2006). In this study statistical models were 

developed with the aim of assessing their predictive potential with increased time leads. This is 
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imperative for timely planning and resource mobilisation especially for disaster management 

agencies. 

1.1 Statement of the problem 

 

Seasonal rainfall forecasts in the region are currently produced (by the Southern African 

Regional Outlook Forum-SARCOF) around September thus providing limited time for the 

forecast information to be directly usable in taking decisions which may lead to reducing climate 

related impacts. This study hence aimed to assess the predictability of rainfall over the area of 

study, while aiming to improve the lead time for seasonal rainfall prediction. Long lead forecasts 

are desirable in enhancing mitigation measures especially against extreme climate events, like 

the recent extreme 2015 drought in the region. The economy and livelihood of Eswatini and 

southern Africa as a whole depend largely on rain-fed agriculture hence a good understanding of 

the rainfall variability cannot be over emphasized. 

1.2 Objective of the study 

 

This section presents the main objective and specific objectives of the study. 

1.2.1 Main objective 

 

The main objective was to assess the predictability potential of seasonal rainfall over southern 

Africa and Eswatini in particular using the dominant ocean and atmosphere patterns which are 

the major drivers of year to year rainfall variability over the southern Africa region.  

1.2.2 Specific objectives 

 

The study was based on the following specific objectives: 

(a) To determine the major space and time modes of the potential predictors influencing 

rainfall variability. 

(b)  Identification of the nature of atmospheric circulation modes and sea surface temperature 

associated with various rainfall anomaly patterns in southern Africa and Eswatini in 

particular. 

(c) To develop regression models for prediction of seasonal rainfall using the modes 

obtained in (b). 
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1.3 Justification of the study 

 

The study is motivated by the important role of seasonal rainfall variability in influencing social 

and economic activities in the region. In particular, climate extremes like flooding and drought 

have significant impacts on the livelihood activities and economies of southern Africa. In 

Eswatini, failure of seasonal rainfall and droughts cause huge socio-economic problems like 

failure of maize crop which is the stable food crop, water shortages for domestic and hydropower 

generation among other adverse impacts. When rainfall is surplus, the opposite types of impacts 

maybe realised. The region is dominated by developing countries with limited resources for 

preparing and responding to natural disasters in form of floods and water shortages induced by 

droughts. Hence, skilful and timely rainfall predictions are very important, in that it is only the 

prediction information that can be used to trigger early actions that lead to reduction of the 

climate related hazards. The study investigated the potential for predicting rainfall in the region 

with increased time leads and possibly enhances early warning capacity for the region and 

Eswatini in particular. This will go a long way in the disaster risk reduction strategies and 

effective management of water resources among others. 

1.4 Area of study 

 

This section introduces the area where the study was conducted. Figure 1 shows southern Africa 

(left) and a detailed map of Eswatini (right) highlighting the physical features. Southern Africa 

as considered in the study lies between 16
o
S to 38

o
S and 12

o
E to 38

o
E, however, the focus was 

on Eswatini which had stations rainfall records. 
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Figure 1: The map of southern Africa and Eswatini (formerly Swaziland) as defined in the study. 

Sources:http://asiapacific.anu.edu.au/mapsonline/base-maps/southern-africa and 

https://www.worldatlas.com/webimage/countrys/africa/lgcolor/szcolor.htm (right panel). 

 

1.4.1 Climate of southern Africa  

 

Southern Africa’s climate is arid to tropical. The arid and semi-arid regions are most affected by 

droughts, while intense rainfall after drought episodes has the potential to result in devastating 

flooding. Southern Africa is affected by some dominant wind systems like the southeasterly wind 

system and the inter-tropical convergence zone. The south easterlies bring moisture from the 

Indian Ocean resulting in rainfall especially along the eastern highlands, while the inter-tropical 

convergence zone has a contribution to both the dry and wet seasons experienced by the tropical 

regions. Apart from seasonal variation, the region’s rainfall fluctuation is also known to be 

influenced by ENSO (Nicholson and Kim, 1997).  

Rainfall in the region generally occurs in the austral summer months (October to March) except 

for the coastal south and southwest South Africa where most of the rainfall is received during 

austral winter (Reason, 2017). 

 

 

 

http://asiapacific.anu.edu.au/mapsonline/base-maps/southern-africa
https://www.worldatlas.com/webimage/countrys/africa/lgcolor/szcolor.htm
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1.4.2 Geography and climate of Eswatini 

 

The Kingdom of Eswatini (formerly Swaziland) is a landlocked country found in southeastern 

Africa. It shares borders with Mozambique on the east and South Africa on the north, west and 

south. The total area covered by the country is approximately 17 360 km
2
. The country is mainly 

hilly and mountainous on the west and east. There are some moderately sloping areas in the 

Lowveld. The country has four agro-ecological zones namely; the Highveld, Middleveld, 

Lowveld and Lubombo Plateau. These zones are based on geology, soils, vegetation, rainfall 

amount received and elevation.  

Rains occur mainly in summer and the climate is humid subtropical. The climate varies mainly 

due to altitude with more rainfall occurring on the western side where the altitude is higher. The 

summer season spans from around October to March with about 75% of the precipitation falling 

during this period. The rainfall amounts received by each of the ecological zones are shown in 

table 1 (FAO, 2005). 

Table 1: Ecological zones in Eswatini with annual rainfall ranges received by each zone. 

Ecological Zone Rainfall (mm) 

Highveld 700-1550 

Middleveld 550-850 

Lowveld 400-850 

Lubombo Plateau 550-850 

 

Source: FAO, 2005 

Essentially from table 1, in terms of rainfall, the ecological zones can be reduced to 3 since the 

Middleveld and the Lubombo Plateau receive similar amounts.  
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1.4.2.1 Climatology of Eswatini  

 

The annual cycle of rainfall in Eswatini (example of Mbabane station rainfall) is shown in figure 

3. As shown, figure 3 captures well the unimodal rainfall characteristic with a peak in January 

for Eswatini. All other stations in the country possess a rainfall pattern similar to that of 

Mbabane shown in figure 3. 

 

Figure 2: The monthly mean rainfall of Eswatini; an example of Mbabane station rainfall. 

 

 

 

 

 

 

 

 

0 

50 

100 

150 

200 

250 

300 

JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN 

R
a
in

fa
ll

 a
v
er

a
g
e 

(m
m

) 

Month  



7 
 

CHAPTER TWO 

2.0 LITERATURE REVIEW 

 

One of the most challenging issues in dynamical climate models is to forecast precipitation. This 

is due to the fact that apart from it being influenced by large-scale dynamics of the atmosphere, it 

is also influenced by weather systems operating at small-scale and by a number of atmospheric 

variables and local topography (Gitau et al., 2014). However, significant progress has been made 

in forecasting precipitation (especially rainfall) at seasonal time scales in many parts of the world 

(e.g. Nicholson, 2014; Barnston and Korecha, 2007; Hasternrath et al., 1995 and Maldonado et 

al. among others). Many studies have linked the predictive potential of rainfall over southern 

Africa to its association with sea surface temperatures (SSTs) and ENSO. These include Kenyon 

and Hegerl (2010), Tyson et al. (2002), Mason and Graham (1999) and Sharon (1987) among 

others.  

Nicholson and Kim (1997) confirmed the correlation between southern African rainfall and 

ENSO. On recalibrating General Circulation Model (GCM) forecasts over southern Africa, 

Landman and Goddard (2002) found that the 850 mb geopotential height has the greatest 

predictive strength over the region. While investigating the regional circulation features 

influencing southern African rainfall during the positive phase of ENSO (El Niño), Blamey et al. 

2018, found two low level circulation features and a mid-level circulation feature that play 

imperative roles in controlling the rainfall through either their intensification or weakening. They 

discovered that a strong El Niño is associated with a weak Angola low and a weak Mascarene 

High in the south Indian Ocean which results in less moisture being advected into the 

subcontinent hence less rainfall. On the other hand, they found that during the same period the 

mid-level Botswana high is intensified leading to suppressed rainfall conditions. Using 

Generalized Linear models, a study by Ambrosino et al. (2011) found that major factors 

influencing rainfall in southern Africa include relative humidity and ENSO. Jury (1996), found 

significant correlation between southern African rainfall and SSTs located in central equatorial 

Indian Ocean. Positive SST anomalies in the neighbouring South Atlantic were found to increase 

summer rainfall in some parts of southern Africa (Barnston et al., 1996).  
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Moreover, some researchers have made attempts to investigate seasonal rainfall predictive 

potential over different parts of southern African region. Using an atmospheric general 

circulation model to conduct an ensemble of experiments, warming SSTs over the south western 

Indian Ocean were found to be linked with enhanced rainfall over central and large parts of 

eastern South Africa (Mulenga and Reason, 1999). On applying model output statistics to a 

general circulation model (GCM), Landman el at. (2005), found positive prediction skill for the 

seasons DJF and MAM (March-April-May) when predicting extreme rainfall over southern 

Africa.  

Furthermore, some researchers have attempted to explore the potential for long lead forecasts for 

different areas within southern Africa. For example, Jury and Makarau (1997) investigated the 

predictability of summer rainfall in Zimbabwe and found viable summer rainfall forecasts with a 

lead time of one season. Also, only particular places in southern Africa were assessed to have 

usable skill (>0.3) during the January-February-March (JFM) summer period with 1 to 4 months 

lead forecasts (Barnston et al., 1996).  

Most studies based on developing statistical models for predicting rainfall over southern Africa 

have only used sea surface characteristics and the current study considered atmospheric 

variables. Moreover, studies similar to the current one have not been conducted in Eswatini 

before hence the study focused on Eswatini’s rainfall. 

2.1 Major influencers of rainfall variability in southern Africa 

2.1.1 Tropical Temperate Troughs (TTTs)  

 

These result from the interaction between tropical and extra-tropical systems that produces cloud 

bands with a northwest-southeast orientation over southern Africa. TTTs are regarded as the 

main rain-producing systems at synoptic scale over southern Africa (Cook et al., 2004; James et 

al., 2018). TTTs also contribute to the observed contrasting rainfall conditions over southern 

Africa and equatorial East Africa during ENSO events whereby the former becomes 

anomalously dry while the latter becomes anomalously wet (Nicholson and Kim, 1997). While 

studying the contribution of TTTs to variability in rainfall over southern Africa, Hart et al. 

(2013) found that on average TTTs contribute around 30-60% with a well observed spatial 

variability. However, during La Niña occurrences a substantial number of cloud bands form 
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while fewer develop during occurrences of ENSO (Hart et al., 2018). The TTTs tend to migrate 

from west to east into the Mozambique Channel from southern Africa (Crétat et al., 2012; Ratna 

et al. 2013). 

2.1.2 Tropical Cyclones 

 

While studying the contribution of tropical cyclones (TCs) to annual rainfall in southern Africa’s 

eastern interior (Limpopo basin), Malherbe et al. (2012), found a less than ten percent 

contribution, however, about fifty percent of devastating rainfall occurring over the north-eastern 

part of South Africa is caused by them. Using TC climatology data for the South-West Indian 

Ocean (SWIO) basin, Mavume et al. (2009) found that out of 64 cyclones making landfall 48 of 

them affected Madagascar while 16 made landfall over Mozambique. This makes tropical 

cyclones to be the most devastating natural hazard to the people and economy of Madagascar 

(Nash et al., 2015). Ash and Matys (2012), while investigating the trajectories of TCs in the 

SWIO discovered that both the subtropical Indian Ocean dipole (SIOD) and ENSO have a 

significant influence on the paths taken by the TCs. Island countries in SWIO and mainly those 

in southern Africa’s eastern interior are repeatedly affected by cyclones forming in the basin 

(Malherbe et al., 2012) while about 50% of TCs that formed in the Mozambique channel 

between 1948 and 2010 made landfall (Matyas, 2015). 

2.1.3 Sea Surface Temperatures (SST) 

 

Apart from well established teleconnections between SSTs in the Pacific Ocean and rainfall 

variability in southern Africa, some studies have found links between southern African rainfall 

and neighbouring Atlantic and Indian Oceans. For example, Williams et al. (2008), found that 

warming SSTs over southwestern Africa and cooling SSTs over the central part of south Atlantic 

lead to increased extremes in rainfall and daily rainfall over southern Africa. Reason and 

Mulenga (1999) found that when the SSTs located over south-west Indian Ocean are warmer, 

South Africa experiences wetter conditions on the eastern and central parts while colder SSTs are 

accompanied by opposite effects. 
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2.1.4 Inter-tropical Convergence Zone (ITCZ) 

 

The Inter-tropical Convergence Zone (ITCZ) is a low pressure region encircling around the earth 

near the equator where north easterly and south easterly winds converge. It is characterised by a 

series of thunderstorms. Rainfall in southern Africa around January and February is associated 

with the ITCZ (Todd et al., 2004). The inter-tropical convergence zone’s association with wet 

summers in southeastern Africa is such that it (ITCZ) shifts to south and strengthens while 

during dry summers it shifts to the north and weakens (Cook et al., 2004). The ITCZ reaches its 

southern most position around central Mozambique late in the austral summer (Reason, 2017).  

2.1.5 Madden-Julian Oscillation (MJO) 

 

The MJO comprises of a west-east propagation of convective clusters on a large scale from the 

Indian Ocean to western Pacific Ocean around the equator. Over the tropical atmosphere MJO is 

known to be the major mode influencing variability (Pohl et al., 2007). However, the influence 

of MJO over southern Africa is spatially heterogeneous with sharp periodicities in the 30-60 days 

range in only tropical regions (Pohl et al., 2007). 

2.1.6 El Niño Southern Oscillation (ENSO) 

 

Under normal conditions the tropical Pacific Ocean easterly trade winds blow persistently, from 

the eastern Pacific where a region of high pressure exists to a region around Indonesia dominated 

by lower surface pressure. As the winds blow westward they drag surface water to the western 

Pacific where it piles up as warm water. However, every 2 to 7 years a breakdown of the surface 

pressure occurs whereby surface pressure decreases over eastern Pacific and increases over 

western Pacific. This pressure change causes the trades to weaken and during strong pressure 

reversal events, westerly winds replace the easterlies leading to warm water piling up on the 

eastern Pacific.  

As the warming process nears an end the atmospheric pressure on the western Pacific starts to 

fall and begins to rise over the eastern Pacific. This pattern of alternating surface air pressure 

decrease and increase over the two ends of the Pacific basin is referred to as Southern Oscillation 

(SO). Since the reversals in surface air pressure and warming of the ocean occur nearly at the 

same time, the phenomenon has been termed El Niño-Southern Oscillation (ENSO). ENSO has 
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been shown to influence precipitation around the globe and especially over the tropical areas. For 

example, Nicholson and Kim (1997) found that ENSO causes variability in rainfall over a large 

proportion of the African continent. Ropelewski and Halpert (1987) found ENSO influences 

rainfall in several regions including North America, Australia, South America, Africa, Indian 

subcontinent and Central America. In southern Africa ENSO is known to play a dominant role in 

modulating variations in rainfall (Camberlin et al., 2001). 

2.1.7 Subtropical anticyclones 

 

These are high pressure regions forming around the 30 degrees latitudes north and south of the 

equator as a result of the Hadley circulation. Two of the most influential subtropical anticyclones 

over southern Africa are the south Atlantic (St Helena) and south Indian (Mascarene) 

anticyclones in the southern hemisphere. The south Atlantic and south Indian Ocean anticyclones 

are stronger during the winter season in the southern hemisphere especially over the oceans 

basins (Lee et al., 2013). During strong El Niño events the South Indian Ocean anticyclone may 

be weakened as in the intense El Niño of 2015/2016 leading to less moisture advection into 

southern Africa hence resulting into reduced rainfall (Blamey et al., 2018). On the other hand 

typically, during strong El Niño the south Atlantic High tends to be intense and shifts eastward, 

hindering the development of a strong Angola low thus reducing the amount of moisture 

transported into southern Africa (Colberg and Reason, 2004). In austral winter, as the subtropical 

anticyclones migrate northward they bring substantial rainfall to the southwest while a large part 

of the subcontinent remains relatively under subsidence (Reason, 2017). 
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2.2 Conceptual framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Conceptual framework.  
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CHAPTER THREE 

3.0 DATA AND METHODOLOGY 

 

In this chapter the data and major methods of analysis used are discussed. The data included 

station rainfall and gridded rainfall from Global Precipitation Climatology Centre (GPCC), 

global Sea Surface Temperatures (SSTs), Mean Sea Level Pressure (MSLP) and reanalysis 

winds (at 1000, 850,700 and 200 mb level) from National Centers for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. These levels 

adequately represent the lower, middle and upper levels of the atmosphere. The methods 

employed on the other hand consisted of Pearson Correlation, Standardized Anomaly Indices, 

Linear regression used in the sense of Empirical Orthogonal Functions (EOFs) as spatial modes 

and Principal Components, which were used as the rainfall predictors. The SST, MSLP and 

zonal wind (U) data were averaged as 3 month seasons.  

3.1 Data used in the study 

3.1.1 Rainfall data 

 

Monthly rainfall data from the stations in the area of study was utilized. The analysis base period 

from 1969 to 2018 was used. Since most of the time rainfall stations do not uniformly represent 

the area of interest, gridded monthly rainfall from GPCC data set was also used in the study. This 

data set spans from 1961 to 2013 on a 2.5
o
×2.5

o
 global grid. This data set cautiously combines 

data from satellites, sounding and rainfall stations observations to produce a more complete 

rainfall analysis over the oceans and adds the most desired spatial detail to analyses of rainfall 

over land masses. GPCC data sets are sufficiently discussed by Becker et al. (2013) and 

Schneider et al., 2017 among others. The GPCC data set has been successfully used for example 

by Rubel and Kottek (2010), in developing world climate shifts projected up to 2100 based on 

the climate classification by Köppen-Geiger. 

The stations used in the study covered Eswatini and had varying data record lengths and are 

shown in table 2. Figure 4 shows the distribution of the rainfall stations within the country. There 

were twelve (12) available stations and three (3) of them had more than ten percent (10%) 

missing data hence, could not be used for further analysis. The correlation method was used to 

fill any data gaps among the remaining nine stations. 
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Table 2: Rainfall stations used in the study 

Station 

No. 

Station Latitude  Longitude Period 

1 Mbabane -26.34 31.14 1961-2018 

2 Malkerns -26.55 31.16 1961-2018 

3 Matsapha -26.52 31.32 1968-2018 

4 Pigg's Peak -25.98 31.26 1961-2018 

5 Big Bend -26.86 31.93 1961-2018 

6 Nhlangano -26.09 31.19 1965-2018 

7 Mananga -26.00 31.76 1961-2018 

8 Khubuta -26.81 31.43 1961-2018 

9 Mpisi -26.38 31.53 1961-2018 

 

 

Figure 4: Distribution of the rainfall stations shown in table 2 used in Eswatini (formerly called 

Swaziland). 
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However, there are numerous challenges with records for rainfall. Often at times the data records 

suffer from gaps or missing data which require to be estimated. Primary errors in rainfall records 

include station rainfall time series heterogeneity, misprint errors and errors inherited during data 

transmission. The probable causes of heterogeneity in records for rainfall stations may be as a 

result of a change in station location as well as/or instrument change. Hence, it is imperative to 

do a quality control on the station records before any meaningful analyses can be conducted. 

Therefore, data quality control measures taken are discussed under the section of methodology. 

3.1.2 Re-analysis wind 

 

Wind data from a global data set was used in the study. This data set is from the National Centers 

for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis, and was downloaded from their website https://www.esrl.noaa.gov/psd/. The 

reanalyzed zonal winds used are for 1000, 850, 700 and 200 mb levels, spanning a period from 

1961 to 2018. Detailed description of the NCEP/NCAR reanalysis datasets is found in Kalnay et 

al. (1996). 

3.1.3 Global sea surface temperature 

 

The sea surface temperature (SST) is another data set that was used in the present study. This 

data set was obtained similarly, to wind data from the National Centers for Environmental 

Prediction/ National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and was 

downloaded from their website https://www.esrl.noaa.gov/psd/, spanning from 1961 to 2018. 

Detailed dataset description can be found in Kalnay et al. (1996). 

3.1.4 Global mean sea level pressure  

 

Global Mean Sea Level Pressure (MSLP) data set was also downloaded via the National Centers 

for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis, and was downloaded from their website https://www.esrl.noaa.gov/psd/. This dataset 

spans from 1961 to 2018. Detailed dataset description can also be found in Kalnay et al. (1996). 

 

 

https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
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3.2 Methodology 

 

Methods implemented in this study are discussed in this section. The methods encompass 

Pearson Correlation, Standardized Anomaly Indices, Principal Component Regression (PCR) 

Modelling. 

3.2.1 Data quality control and estimation of data 

 

Too often station records suffer from missing data. A number of data estimation methods have 

been implemented by diverse researchers. Some of these methods include arithmetic mean, 

isopleths, inverse distance-weighting, thiessen polygon, correlation and regression etc. For the 

current study the correlation method was used with a restriction of up to 10% of the total data for 

a given area to be estimated. Under this method a neighbouring station that is significantly 

correlated with the station (A) with missing records is first identified. This is achieved through 

correlating the station A with neighbouring stations. The correlation equation is given in 

equation 4. The station (B) with the greatest positive correlation coefficient and consistent 

records is then used to estimate the missing value (X) of station A through the following 

equation: 

                        
      

      
   ………………………………………………………………………… 1 

Where;  

XAi is missing record for station A for the i
th

 year 

XBi is rainfall record for station B with consistent records for the i
th

 year 

    is the long term average for station A based on available records 

    is the long term average for station B based on the period of available records in A. 

After filling in missing values to form a complete data set the next step was to test whether the 

data was consistent or not. The single mass curve was used for this purpose. The single mass 

curve method involves plotting accumulated parameters such as rainfall, against time. A straight 

line indicates consistent data while a change in slope lasting for more than five consecutive 

points indicates inconsistency of the data set. 
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3.2.2 Standardisation of data 

 

The region of southern Africa is characterised by varied topography which results in average 

rainfall amounts that differ significantly from one place to another. This implies that variations in 

means and standard deviations in space are great. This therefore warrants the use of standardised 

values. In essence, the standardisation of the data ensures that the influences of spread and 

location are removed. The standardised anomalies (z) are simply calculated by first subtracting 

the sample mean from each record value and then divide the result by the standard deviation of 

the sample. The standardised anomalies hence have a mean of 0 and standard deviation of 1. The 

equation for calculating the standardised anomalies is given by: 

                  
    

  
 

  

  
 ………………………………………………………………………2 

Where; 

z is the standardised anomaly 

   is the observed data 

    is the mean 

    is the anomaly and 

    is the standard deviation. 

3.2.3 Principal Component Analysis (PCA) 

 

Principal component analysis (PCA) is a statistical technique used to reduce a data set containing 

a large number of variables into one that contains a smaller number of variables, with the smaller 

number being the most important in the representation of the information which the variables 

contain. The smaller numbers of variables resulting from the PCA are linear combinations of 

variables in the original data set and are uncorrelated to each other. In addition to reducing large 

data sets, the PCA also finds patterns in the data and retains the maximum variability contained 

in the original data. A number of researchers have also used the PCA method to study intricate 

relationships among numerous variables (Ininda, 1994; Nyakwada, 2009). A good and easy to 
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understand mathematical description of PCA/ EOF (Empirical Orthogonal Function) analysis is 

given by Wilks (2006). The mathematical basis of the PCA is given in equation 3. 

 

                         
 
                           ……………………………………………. 3 

Where: 

   = standardised variable j. 

      = standardised multiregression coefficient of variable j on factor k (factor loading) 

   = hypothetical factor k (principal component) 

m = number of common factors 

n = number of variables 

There are advantages in using the EOF/PCA technique in redundancy, multi-collinearity and 

noise removal (Wilks, 2006) in a given large data set which include: 

 The ability to expose temporal as well as the spatial patterns which might be related to 

known physical processes involved in the generation of the data. 

 The capability to reduce the large amount of data by substituting the measured variables 

together with their inter-connected variables by smaller number of uncorrelated variables. 

Uncorrelated implies that each is orthogonal to the other. Since the PCs come from data, 

and often the data is observations, it implies different observations give different PCs, 

and hence the term empirical orthogonal functions (EOFs).  

 No obligation for the observation points to be equidistant from each other as compared to 

other orthogonal functions. 

 The orthogonality in time of the PCs. 
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The PCA can be done based on the correlation matrix or variance-covariance matrix. The PCA 

based on covariance matrix is more suitable for analysis whose main purpose is to isolate 

strongest variations in the data set. On the other hand if the variables are measured in different 

units the PCA based on correlation matrix is of preference (Wilks, 2006). In the present study the 

PCA used was based on the variance-covariance matrix. 

Due to the fact that PCA is used with the major purpose to obtain new variables that represent 

the greatest fraction of the variance in the original data, the redundancy of some variability in 

individual variables is not a surprise. Hence, it is crucial to select principal components which 

efficiently portray the greatest part of the variance of the original data as well as the fundamental 

physical processes. 

Methods for selecting significant components: 

(a) Kaiser criterion – according to this selection criterion all components with eigenvalues 

greater than one are retained (Kaiser, 1960). One shortfall of this criterion is that it can 

lead to over factoring. 

(b) Scree plot – for this method the component numbers are plotted against the eigenvalues. 

The cut-off is made just before the graph starts to level off. The disadvantage of this 

criterion is its subjectivity. 

(c) Proportionality of variance accounted for – for this criterion a percentage of variance in 

the data set is fixed as a criterion for retaining significant components (Wilks, 2006). 

 

For the current study the climate Predictability Tool (CPT) was used for the purpose of retaining 

a few major components since the other methods retained a large number of components. The 

CPT is developed by the International Research Institute for Climate and Society and is tailored 

to produce seasonal climate forecasts using data sets like SST, global winds and dynamic model 

output among others. Cross-validated forecasts produced using the first principal component, are 

correlated to the rainfall anomalies and the correlation coefficient is used to calculate a goodness 

index. Next, the second principal component is added to make the cross-validated forecasts 

which are again correlated with the rainfall anomalies and a new goodness index is calculated. 

Subsequent principal components are added one at a time following the same procedure with the 

new goodness index produced at each stage compared to the previous one. The best goodness 
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index is retained under the optimum column together with the corresponding number of principal 

modes. 

3.2.4 Correlation analysis 

 

Correlation describes the linear relationship between a pair of variables. It is bounded by -1 and 

+1. A value of +1 indicates a perfect linear positive relationship while a value of -1 indicates a 

perfect linear negative relationship. Zero indicates no correlation at all. The formula for 

calculating the correlation coefficient is given by the equation: 

          
                

 

                   
 

 ………………………………………………………………… 4 

Where, 

n= total number of observations 

  = Mean for variable X 

  = Mean for variable Y 

   along with    are independent variables. 

Testing the significance of correlation 
 

The correlation coefficient was tested for significance using the student t-test with the degree of 

freedom n-2. The following equation for that purpose is given by; 

            
   

    
 ……………………………………………………….…………………... 5 

Where;  

t-is the value of the student-t-test 

 n- number of observations (data points) 

 r- correlation coefficient being tested.  
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Facts of the student-t test are found in many publications (like WMO, 1983). To draw 

conclusions about the significance of the correlation the null hypothesis (H0: r = 0) was formed 

which simply states that the sample correlation is not significantly different from zero. The 

alternate hypothesis (Ha: r ≠ 0) which means that the correlation coefficient is different from zero 

was also formulated. The p-value method was used to assess the significance of the correlation 

coefficient. The p-value based on a significance level (α = 0.05) was used to decide whether to 

reject the null hypothesis or fail to reject the null hypothesis. A p-value less than 0.05, leads to 

the decision that the correlation coefficient is significantly different from zero hence, statistically 

significant. A p-value greater than 0.05 means that the correlation coefficient is not significantly 

different from zero, thus the correlation is not statistically significant.   

3.2.5 Regression analysis 

 

Regression is used to find and fit a linear equation that relate variables and can be simple linear 

or multiple as described in the following sub-sections.  

3.2.5.1 Simple linear regression 

 

Simple linear regression is used for finding a straight line that best-fit through pairs of related 

variables. This line of best-fit is referred to as a regression line. It allows for computation of 

values for one variable from known values of another variable. Simple linear regression can only 

be used when one has two continuous variables – an independent variable and a dependent 

variable. The independent variable is called a predictor and the dependent variable is called a 

predictand. The equation for a simple linear regression is given by equation 6: 

                                 ……………………………………………………………………………..………………. 6 

Where; 

    is the dependent variable  

a is the regression constant,  

b is the slope of the equation and 

   is the independent variable. 
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3.2.5.2 Multiple linear regression 

 

Multiple linear regression (MLR) is used to determine a mathematical relationship between a 

predictand and more than one predictor. For a relationship between a dependent variable Y and 

some k independent variables (X1, X2,..., Xk), a multiple regression equation for the prediction of 

Y may be written as follows: 

                                        ……………………………………………………..… 7 

Where; 

    is the constant of regression 

   is the coefficient of regression and 

Xk is the principal component (predictor). 

Not all potential predictors, however, are required in the regression equation (model) as too 

many predictors can lead to model over-fitting. A statistical selection procedure is thus required 

to trim the number of predictors. The procedure for this purpose is stepwise regression. This 

procedure automatically decides which predictors are the best in order of their importance. There 

are two types of stepwise multiple regressions that can be used namely, forward selection and 

backward elimination. The forward selection technique was used in the study. This technique 

involves beginning without any variable in the model, then testing and adding any variable that 

improves the model the most based on a chosen model comparison criterion. Forward selection 

is continued provided no more predictors with p ≤ 0.05 could be included. Predictors that are 

significantly correlated (p ≤ 0.05) to any of the preceding chosen predictors are excluded from 

the model, to curtail multicollinearity. 

3.2.6 Validation of statistical models 

 

Long-lead forecasts have an inherent uncertainty thus; the forecasts are commonly represented 

probabilistically (Goddard et al., 2001). For the study the Relative Operating Characteristic 

scores (ROC) were used to assess the performance of the statistical models. The Relative 

Operating Characteristics have been used in a number of studies to verify probabilistic seasonal 

forecasts (e.g. Landman and Beraki, 2012; Hall et al., 2017; Phakula, 2016). ROC scores reveal 
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the forecast system’s ability to distinguish between individual categories and they provide the 

forecast skill for each individual category. ROC scores are sufficiently discussed in Mason and 

Graham (1999). However, the main concerns to the society are the extreme climate occurrence. 

It follows that only results for extreme categories (below-normal and above-normal) are reported 

in the study. ROC scores above 0.5 (50%) indicate a forecast system that is skilful. Less or no 

helpful information is implied by ROC scores equivalent to 0.5 while those less than 0.5 imply a 

negative skill of the forecast system.   

3.2.7 Wind Plots 

 

Plots for zonal mean wind circulation for the September-October-November (SON) season were 

plotted for each of the levels (1000, 850, 700 and 200 mb) using plotting tools available in the 

National Oceanic and Atmospheric Administration (NOAA) website. The plots covered the 

period used for analysis in the study. 
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSION 

 

Results and discussion of the results obtained from the study are presented in this chapter. 

4.1 Records estimation and data consistency test 

 

The test for data consistency presented in chapter three was used to check if the data (after filling 

missing records) were consistent throughout the period of analysis. Figure 5 shows the results of 

the single mass curve for the station of Mbabane. The trend line is straight indicating that the 

data records are consistent in time. Similar results were obtained for all the stations that were 

used in the analysis. 

 

Figure 5: Single mass curve for Mbabane. 

 

4.2  Major spatial and temporal modes of variability in the potential predictor variables  
 

This section introduces the major space and time modes representing variability in the potential 

predictor variables hence, influence rainfall in Eswatini. 
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4.2.1 Major modes of variability in SON averaged SSTs 

 

The first major spatial mode of variability in SSTs having an influence on DJF rainfall in 

Eswatini as shown in figure 6 (a), represents a general warming in the global tropical oceans. 

The second spatial mode as shown in part (b) of figure 6 shows strong positive loadings 

(associated with warming SSTs) over the eastern Pacific and strong negative loadings (associated 

with cooling) over the western Pacific Ocean. This clearly represents an ENSO pattern and to 

some extent a positive Indian Ocean dipole (IOD). This second spatial mode or ENSO pattern 

has also been reported by Chavez and Messie (2011) when studying global modes of sea surface 

temperature variability in relation to regional climate indices. Lastly, the third spatial mode as 

shown in figure 6 (c) represents, a concentration of positive loadings associated with warming in 

south Atlantic and north Indian oceans.  

On the other hand, the first major temporal mode of variability in figure 6 (a) right panel, shows 

a positive trend. This means there is a general upward trend in the warming of the global oceans 

associated with the first spatial mode of variability. The second principal mode in the right panel 

of figure 6 (b) shows some of the strong ENSO (El Niño) episodes that occurred in the years 

1982, 1998 and 2016. El Niños are usually associated with droughts in southern Africa and 

Eswatini in particular. The third principal mode, shown on the right panel of figure 6 (c) shows a 

decrease in its amplitudes between positive phase and negative phase over the years. This mode 

explains 5% of the variability in SSTs over the global oceans. The first and second major SST 

modes explain respectively, 26% and 17% of the variability in the sea surface temperatures. 
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                                 (a) 

                                             

                                 (b)        

            

                                 (c) 

Figure 6: First 3 spatial modes of variability in SST together with their corresponding principal 

components; (a) first mode, (b) second mode and (c) third mode. 
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4.2.2 Major modes of variability in SON averaged MSLP 

 

Figures 7 (a) to (c), show the major modes of variability in Mean Sea Level Pressure (MSLP). 

The first major spatial mode of variability in figure 7 (a) shows strong positive loadings over the 

tropical Indian, Atlantic Oceans and land areas between 45 °N/S of the equator while over the 

Pacific Ocean it is dominated by negative loadings. Its corresponding temporal mode on the right 

panel reveals two major negative peaks in 1970 and 2010 while in between these years it has 

been dominated by positive peaks. The second major spatial mode of variability (shown in figure 

7 (b)) in MSLP is dominated by weaker (as compared to the first mode) positive loadings over 

the areas between 45 °N and 45 °S of the equator. Its corresponding principal component reveals 

a sharp upward trend before 1980 and a gentle downward trend thereafter. The third major 

spatial mode in figure 7 (c), shows negative loadings over the Atlantic Ocean, Africa north of the 

equator, North and South America. Positive loadings are concentrated over the western Pacific 

and over Australia. The corresponding third major temporal mode shows an increasing trend 

with one large positive peak in 1997. 

      

Figure 7 a: First spatial mode of variability in MSLP during SON together with its corresponding 

principal component.       
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Figure 7 b: Second spatial mode of variability in MSLP during SON together with its 

corresponding principal component. 

      

Figure 7 c: Third spatial mode of variability in MSLP during SON together with its 

corresponding principal component.             

              

4.2.3 Major modes of variability in SON averaged zonal wind at 1000 mb level 

 

The major modes of variability in zonal wind at the 1000 mb level are shown in figure 8 (a) to 

(e). The first spatial mode in figure 8 (a) shows strong positive loadings mainly over the Pacific 

Ocean. The tropical Indian Ocean is dominated by negative loadings. The corresponding first 

principal component reveals a downward trend. The second major spatial mode in figure 8 (b) 

shows a concentration of positive loadings over the equatorial Pacific Ocean, equatorial Atlantic 

and Indian Ocean below the equator. Negative loadings can be seen more clearly over Australia. 

The corresponding second principal component shows that the second spatial mode has a 

positive trend over the years. 
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In the third major spatial mode displayed in figure 8 (c) the Atlantic Ocean is dominated by 

negative loadings. Over the Indian Ocean positive loadings can be seen along and over the 

equator while below the equator negative loadings dominate that region. In the Pacific Ocean 

positive loadings concentrate below the equator next to the South American continent while part 

of the Ocean over New Zealand negative loadings dominate. The corresponding principal 

component shows that the third spatial loading was in negative phase before 1975 and changing 

phases thereafter. This principal component displays on average an upward trend. The fourth 

major spatial component as displayed in figure 8 (d) shows positive loadings over much of the 

Indian Ocean, negative loadings over a large part of the Atlantic Ocean and negative loadings 

along the equatorial Pacific Ocean. According to the corresponding fourth principal component 

the fourth spatial mode had very strong positive phases in the years 1968, 1976 and 2016 while 

strong negative phases occurred in 1972 and 1985. Figure 8 (e) displays the fifth major spatial 

mode which shows positive loadings dominating along the 45 °S latitude. The corresponding 

fifth principal component has a positive trend.    

       

Figure 8 a: First spatial mode of variability in zonal wind in the 1000 mb pressure level during 

SON together with its corresponding principal component. 
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Figure 8 b: Second spatial mode of variability in zonal wind in the 1000 mb pressure level during 

SON together with its corresponding principal component. 

 

       

Figure 8 c: Third spatial mode of variability in zonal wind in the 1000 mb pressure level during 

SON together with its corresponding principal component. 

    

Figure 8 d: Fourth spatial mode of variability in zonal wind in the 1000 mb pressure level during 

SON together with its corresponding principal component. 

     

Figure 8 e: Fifth spatial mode of variability in zonal wind in the 1000 mb pressure level during 

SON together with its corresponding principal component. 
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4.2.4 Major modes of variability in SON averaged zonal wind at 850 mb level 

 

The SON averaged major modes of variability in zonal wind at the 850 mb pressure level are 

shown in figures 9 (a) to (c). The first major spatial mode displayed in figure 9 (a) shows 

negative loadings along equatorial Indian Ocean and Atlantic Ocean. The positive spatial 

loadings are concentrated over the Pacific Ocean. The corresponding principal component has a 

negative trend. Figure 9 (b) shows the second major spatial mode which has strong positive 

loadings along the equatorial Atlantic and Pacific Oceans while the equatorial Indian Ocean is 

dominated by strong negative loadings. The corresponding second principal component shows a 

strong positive trend of the second major spatial mode meaning that this spatial mode is turning 

more into its positive phase. The third major spatial mode of variability is displayed in figure 9 

(c) and it reveals positive loadings over much of the Atlantic Ocean and Indian Ocean below the 

equator. The Pacific Ocean is dominated by negative loadings over the eastern part of the basin. 

The corresponding third principal component shows a negative trend and the highest positive 

phase of the spatial mode which occurred in 1968. 

        

Figure 9 a: First spatial mode of variability in zonal wind in the 850 mb pressure level during 

SON together with its corresponding principal component. 
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Figure 9 b: The second spatial mode of variability in zonal wind in the 850 mb pressure level 

during SON together with the corresponding principal component. 

   

Figure 9 c: The third spatial mode of variability in zonal wind in the 850 mb pressure level 

during SON together with the corresponding principal component.  

 

4.2.5 Major modes of variability in SON averaged zonal wind at 700 mb level 

 

Figures 10 (a) to (e) display the SON averaged major modes of variability in zonal wind at 700 

mb pressure level. The first major spatial mode as shown in figure 10 (a) is similar in structure to 

the first major mode for zonal wind at 850 mb shown in figure 9 (a). Likewise the second major 

mode shown is figure 10 (b) is similar in spatial and temporal structure to the second major mode 

for zonal wind at 850 mb shown in figure 9 (b). The third major spatial mode (as shown in figure 

10 (c)) displays weak but positive loadings along the equatorial oceans. Stronger positive 

loadings are observed over the northern part of Australia while the southern part of Australia into 

the Indian Ocean shows negative loadings. The corresponding third principal component shows a 

positive linear trend. 
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Figure 10 (d) shows the fourth major spatial mode which is almost similar to the previous third 

spatial mode. The corresponding fourth principal component has a positive linear trend. The fifth 

spatial mode as shown in figure 10 (e) reveals stronger positive loadings over southern and 

central Africa. Negative loadings can be seen over eastern equatorial Pacific Ocean and along the 

45 °S latitude. The corresponding fifth principal component shows a generally decreasing linear 

trend. 

      

Figure 10 a: The first spatial mode of variability in zonal wind in the 700 mb pressure level 

during SON together with the corresponding principal component. 

      

Figure 10 b: The second spatial mode of variability in zonal wind in the 700 mb pressure level 

during SON together with the corresponding principal component. 
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Figure 10 c: The third spatial mode of variability in zonal wind in the 700 mb pressure level 

during SON together with the corresponding principal component.                                                                                              

 

    

Figure 10 d: The fourth spatial mode of variability in zonal wind in the 700 mb pressure level 

during SON together with the corresponding principal component. 

     

Figure 10 e: The fifth spatial mode of variability in zonal wind in the 700 mb pressure level 

during SON together with the corresponding principal component. 
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4.2.6 Major modes of variability in SON averaged zonal wind at 200 mb level 

 

Figure 11 displays the major mode of variability in zonal wind (averaged over September-

November) at the 200 mb pressure level. It can be noticed that over most of tropical Indian 

Ocean and equatorial Atlantic, the loadings are negative while the equatorial Pacific Ocean 

possesses strong positive loadings. This is similar to mode 1 loading in the 850 mb level, but 

larger in spatial extent. The corresponding principal component shows no trend. 

     

Figure 11: The first spatial mode of variability in zonal wind in the 200 mb pressure level during 

SON together with the corresponding principal component.  
 

4.3 Wind circulation  

 

The circulations of winds during SON season at the different levels were plotted. These are given 

in figures 12 (a) to (d). In the 1000 mb level westerly winds blow from the south Atlantic into the 

southern parts of South Africa. On the eastern side in places like Eswatini and Mozambique 

easterly winds bring in moisture from the southwest Indian Ocean. In the 850 mb level easterly 

winds can be seen blowing into a large part of southern Africa, north of South Africa from the 

Indian Ocean. In the 700 mb level (figure 12 (c)) westerly winds dominate from about 20 °S 

latitude towards the southern coastal areas of the sub-region. The southern Africa region is 

generally dominated by westerly winds in the 200 mb level and seen in figure 12 (d). 
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Figure 12 a: Climatological mean wind circulation during SON for 1000 mb pressure level. 

 

 

Figure 12 b: Climatological mean wind circulation during SON for 850 mb pressure level. 
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Figure 12 c: Climatological mean wind circulation during SON for 700 mb pressure level. 

 

 

Figure 12 d: Climatological mean wind circulation during SON for 200 mb pressure level. 
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4.4 Predictability of DJF rainfall 

 

Skill maps for correlations between observed rainfall anomalies and cross-validated predictions 

for southern Africa rainfall based on GPCC rainfall data set are shown in figure 13. A large part 

of southern Africa’s rainfall as revealed in figure 13 shows positive correlations to SON 

averaged sea surface temperatures. One easy to identify area of negative correlations is 

southwestern tip of South Africa, a region that receives most of its rainfall during the austral 

winter months. Eswatini which was used as a focus of the study is dominated by positive 

correlations, which exceed 0.6 as evident in Figure 13. For predictive purposes it is important 

that the correlations be positive and significant and this will be further assessed in the coming 

sections. 

4.4.1 Correlation between December to February (DJF) GPCC rainfall and 

September to November (SON) averaged SSTs 

 

    

Figure 13: Correlation between cross-validated predictions using SON SSTs and GPCC        

rainfall. 

 



39 
 

4.4.2 Development of model to predict DJF rainfall using SON predictors 

 

The first few principal components of each of the six variables as shown in table 3 were later 

used to develop multiple linear regression models for predicting rainfall anomalies during the 

DJF season. As displayed in table 3, the number of principal components retained for each 

ranged between 1 and 5. It can be observed that the first few MSLP and SST modes account for 

larger variance as compared to the first few wind modes. This can be attributed to the slow 

evolving state of the SSTs whereas the winds are more variable over time. 

Table 3: Optimum number of modes retained for each SON predictor variable with variance 

explained. 

   

Predictor 

(SON) 

Optimum 

Number of 

modes 

Mode variance Total 

variance 
1 2 3 4 5 

SST 3 25.6 17.3 5.0   47.9 

MSLP 3 23.2 9.5 8.4   41.1 

U1000 5 10.9 9.1 6.6 5.4 4.8 37.0 

U850 3 12.5 10.0 6.8   29.3 

U700 5 13.0 9.0 6.8 5.8 5.2 39.8 

U200 1 20.4     20.4 

 

 

4.4.3 Correlations between cross-validated predictions and rainfall anomalies 

 

The cross-validated predictions for each SON predictor variable were correlated with DJF station 

rainfall anomalies and table 4 shows the results. From the correlation results in table 4, figures in 

red represent significant correlations at 0.05 significance level and three stations have significant 

positive correlation with each of the six variables used in the study. These stations are namely 

Mbabane, Malkerns and Matsapha. However, a usable skill is taken to be 0.3 or greater so as to 

account for at least 10% predictability. SSTs and Zonal wind (U200) at 200 mb had the largest 
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number of significant correlations with the stations’ rainfall used. Zonal wind at 1000 mb 

pressure level had the least number of significant correlations with Eswatini’s rainfall. MSLP at 

0.457 correlation with rainfall in Matsapha had the greatest significant correlation coefficient.    

Table 4: Correlation between each station’s rainfall and the six predictors.                          

Station SSTV4 U1000 U850 U700 U200 MSLP 

Mbabane 0.398 0.377 0.450 0.402 0.451 0.388 

PiggsPeak -0.018 0.194 0.062 0.242 0.053 -0.159 

Malkerns 0.329 0.273 0.331 0.310 0.375 0.285 

Mananga 0.275 -0.096 0.107 0.055 0.233 0.079 

BigBend 0.372 0.142 0.287 0.194 0.343 0.137 

Mpisi 0.156 0.084 0.090 0.091 0.186 0.254 

Khubutha 0.030 0.177 0.210 0.244 0.157 -0.056 

Matsapha 0.252 0.427 0.274 0.409 0.395 0.457 

Nhlangano 0.225 0.222 0.200 0.212 0.264 0.070 

 

4.4.4 Models constructed using SON predictors. 

 

After correlating the rainfall to the six predictor variables, multiple linear regression equations 

for predicting DJF seasonal rainfall anomalies were developed for each of the three agro-

ecological zones representative stations. The major principal components found in table 3 were 

used as the predictor variables. The forward selection technique was used to select candidate 

predictors for use in the final equations that were constructed. For the stations of Mbabane and 

Matsapha the predictability of rainfall is based on MSLP and zonal winds at 1000 and 200 mb 

pressure levels. In Big Bend, on the other hand most of the predictability came from SSTs. 

The predicted DJF rainfall anomalies plotted against observed rainfall anomalies graphs for 

Mbabane, Matsapha and Big Bend are shown in figures 14 (a), (b) and (c) respectively.  
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Figure 14 a: Predicted DJF rainfall anomalies versus observed rainfall anomalies for Mbabane. 

 

 

 

Figure 14 b: Predicted DJF rainfall anomalies total versus observed rainfall anomalies for 

Matsapha. 
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Figure 14 c: Predicted DJF rainfall total anomalies versus observed rainfall anomalies for Big 

Bend. 
 

Validation of (SON) models 

 

Table 5 shows ROC scores as obtained from the multiple linear regressions. The ROC scores are 

significant at 0.05 level of significance. Models for Mbabane and Matsapha distinguish better the 

above-normal category than the below-normal category while for Big Bend the converse is true. 

The ROC scores for all the rainfall categories were above 0.5 which shows that the models are 

skilful as they have the ability to differentiate between the extreme categories (below-normal and 

above-normal). 

Table 5: ROC scores of the representative stations for models developed using SON predictors. 

Station ROC (below-normal) ROC (above-normal) 

Mbabane 0.695 0.772 

Matsapha 0.715 0.784 

Big Bend 0.715 0.654 
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4.5 Assessment of the potential for long-lead forecasts 

 

The averaged predictor values for the period of June-July-August (JJA) were found to have a 

potential to predict the DJF seasonal rainfall total anomalies, giving a forecast lead time of 3 

months. The optimum number of modes for JJA predictors and corresponding variances are 

shown in table 6. Similarly, to the SON predictors the optimum number of modes is identified by 

producing cross-validated predictions for each of the series in the Y data file, and correlating 

these with the observed values. Most of the major spatial and temporal modes of variability in 

the predictor variables averaged over the JJA season were found to be similar to those obtained 

for the SON season. However, the third major mode of SSTs (for JJA) showed a reverse 

structure to that of the SON season. Similarly, the first major modes of variability in zonal winds 

(at 1000 mb, 850, 700, and 200 pressure levels) are a reverse to the corresponding ones obtained 

for SON season. 

4.5.1 Development of model to predict DJF rainfall using JJA predictors 

 

Similarly, to the development of multiple linear regression equations using SON predictors, the 

first few principal components of the six predictor variables in table 6 were later used to develop 

multiple linear regression models for predicting rainfall anomalies during the DJF season. The 

SST modes retained a larger total variance as before mostly due to the low-frequency evolution 

of sea surface temperatures. As shown in table 6, only one major mode was retained for Mean 

Sea Level Pressure. Zonal wind at 850 mb and at 700 mb levels both had almost similar total 

variances from the 3 modes retained for each of them. 
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Table 6: Optimum number of modes retained for each JJA predictor variable together with 

variance explained. 

 

Predictor 

(JJA) 

Optimum 

Number of 

modes 

Mode variance Total 

variance 
1 2 3 4 5 

SST 5 26.0 13.4 5.7 5.4 4.2 54.7 

MSLP 1 21.4     21.4 

U1000 5 10.5 8.6 6.5 5.1 4.9 35.6 

U850 3 12.1 9.4 6.6   28.1 

U700 3 12.9 9.6 5.9   28.4 

U200 4 17.3 8.7 6.8 6.4  39.2 

 

4.5.2 Models constructed using JJA predictors. 

 

The major modes of variability for each of the JJA predictors as given in table 6 were used to 

construct regression models to predict DJF rainfall anomalies giving a lead time of 3 months. 

The forward selection multiple regression approach was used for this purpose.  

The predicted anomalies plotted against observed rainfall anomalies for each of the 

representative stations are shown in figures 15 (a) to (c), albeit with decrease in skill as 

compared to models developed using SON predictors. 



45 
 

 

Figure 15 a: Predicted anomalies against observed rainfall anomalies for Mbabane. 

 

 

Figure 15 b: Predicted anomalies against observed rainfall anomalies for Matsapha. 
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Figure 15 c: Predicted anomalies against observed rainfall anomalies for Big Bend. 

 

Verification of JJA models 

 

After the models were constructed, once again verification was performed using the relative 

operating characteristic (ROC) scores. The summary of the scores is given in table 7. Once again 

the ROC scores are above 0.5 meaning that the models are skilful and can be used for 

forecasting. The ROC scores are significant at the 0.05 level of significance. The highest ROC 

scores are obtained for the above-normal category implying that the models segregate the above-

normal category much better than the other. 

Table 7: ROC scores of the representative stations for models developed using JJA predictors. 

Station ROC (below-normal) ROC (above-normal) 

Mbabane 0.658 0.720 

Matsapha 0.628 0.736 

Big Bend 0.704 0.759 
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CHAPTER FIVE 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter outlines conclusions and recommendations drawn from the study. 

5.1 Conclusions 

 

In the study, the predictive potential of seasonal rainfall (DJF season) using dominant ocean and 

atmospheric patterns was investigated over southern Africa with focus on Eswatini. Major 

patterns of ocean variability influencing rainfall included ENSO and positive IOD as revealed by 

principal component 2 in the SST modes of spatial variability. At most five major spatial modes 

with corresponding time modes of variability in each of the six variables utilised, were 

determined to influence rainfall over Eswatini. From the climatological mean circulation during 

SON, winds can be seen blowing westerly from South Atlantic and easterly from Indian Ocean at 

the lower tropospheric levels (1000 mb and 850 mb). However, the easterly flow appears to be 

stronger in the 850 mb level suggesting that the bulk of the moisture comes from the Indian 

Ocean. The higher levels 700 mb and 200 mb are dominated by westerly flow over a greater part 

of the study area. Most of the predictability in two of the stations used was dominated by MSLP 

and zonal winds which shows the importance of wind circulation. Hence, a notable outcome is 

that circulation at upper levels of the atmosphere have an important contribution to the 

predictability of rainfall in Eswatini. 

 Using SON predictors it was established that DJF rainfall is predictable with usable skill. Three 

of the stations namely Mbabane, Malkerns and Matsapha showed significant positive correlation 

with each of the six predictor variables. Predictive models were however developed for the three 

representative stations Mbabane, Matsapha and Big Bend, taken from agro-ecological zones 

shown in table 1. The predictive models developed over Eswatini were evaluated whether they 

are skilful or not using ROC scores. ROC scores above 0.5 were found, confirming that the 

models are skilful. This means that the models can be used to give a forecast since they 

effectively distinguish between the extreme rainfall categories which are of greatest concern to 

human livelihood and economy.  
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After establishing the predictability potential, an investigation was conducted to assess the 

possibility of long-lead forecasts. JJA predictors gave the longest forecast lead time of 3 months 

albeit with reduced but still usable skill. The models can therefore be used to give guidance on 

what is most likely to happen in the DJF season three months ahead of time. This is important for 

planning purposes and resource mobilisation especially for disaster management agencies. The 

formulated models also revealed the importance of atmospheric circulation which directly brings 

in the mechanism of moisture source and distribution over southern Africa region. The DJF 

season was chosen because of its importance to agricultural activities, especially as it is around 

that time when the widely grown maize crop in the region starts tasseling and also because this is 

the peak of the rainfall season hence, important for water resources. 

5.2 Recommendations 

 

Using Eswatini’s rainfall stations the study revealed that seasonal rainfall forecasts can be made 

up to 3 months prior to the DJF season in the country. Hence, disaster management agencies can 

make use of the information in planning and preparing for any potential climate related disaster 

like drought or flooding. Farmers can also use the information to make important decisions on 

their farming practices concerning anticipated unpleasant climate conditions. Water resources 

managers can use forecasts information to plan ahead of time and implement water conservation 

practices depending on the forecasted conditions. 

The study only focused on a period around the peak of the seasonal rainfall hence future research 

should consider the start of the season as it determines the time of planting and possibly sub-

seasons for example the peak month of the season. Efforts should also be made to consider other 

potential predictor variables like geopotential heights and relative humidity among others. The 

predictors can also be from global dynamical models, and this will be done in the future 

extension of this study. 
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