

Seed Drying Principles, Moisture Management

Ayub N. Gitau – PhD, Reg. Eng.

Seed Enterprises Vanagement Institute

University of Nairobi

Department of Environmental and Biosystems Engineering

University of Nairobi – Kenya 3/7/2019

Components of a seed processing plant

- Reception
- Seed laboratory
- Pre-drying
- Storage and Drying
- Processing
- Second Packaging nterprises Management Institute
- Warehousing University of Nairobi

Definitions:

- Drying: Removal of moisture to moisture content in equilibrium with normal atmospheric air or to such moisture content that decrease in quality from moulds, enzymes action or insect will be negligible. Normally to 12 to 14% m.c. for most materials/products
- Dehydration: Removal of moisture to a very low moisture content, nearly bone-dry condition (all moisture removed)
- Equilibrium Moisture Content (EMC): Moisture content of the material after it has been exposed to a particular environment for an infinitely long period of time or the m.c. that exist when the material is at vapour pressure equilibrium with its surrounding. EMC depends on; humidity, temperature, species, variety, maturity of grains etc.

Merits of seed drying

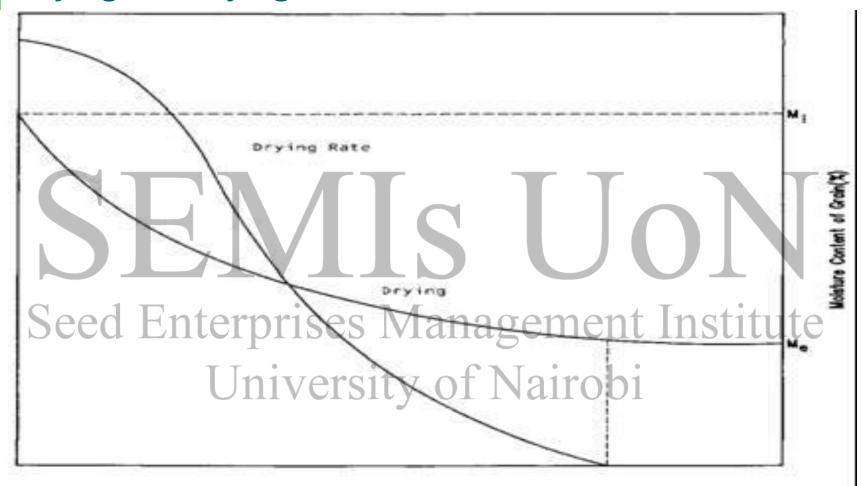
- Early harvest (at high m.c.) minimizes field damage and shatter losses and facilitates tillage operations for products.
- Long storage period is possible without product deterioration
- Viability of seeds is maintained over long periods
- Products with greater economic value are produced
- Waste products can be converted to useful products
- Production operations are facilitated for products.

University of Nairobi

Part I DRYING MECHANISMS

Knowledge of the effect of grain moisture content, other grain properties (surface shape factors, kernel size, grain depth, quality, nature of contamination), the temperature, humidity and flow rate of the air upon fully exposed kernels is essential to an understanding of how drying would proceed within a bed.

- Air Properties:
- Sensical properties (mcrbb) es Management Institute
- LHV
- Drying time University of Nairobi
- Drying efficiency


DRYING MECHANISMS

- In the process of drying heat is necessary to evaporate moisture from the grain and a flow of air is needed to carry away the evaporated moisture.
- There are two basic mechanisms involved in the drying process; the migration of moisture from the interior of an individual grain to the surface, and the evaporation of moisture from the surface to the surrounding air.
- The rate of drying is determined by the moisture content and the temperature of the grain and the temperature, the (relative) humidity and the velocity of the air in contact with the grain.

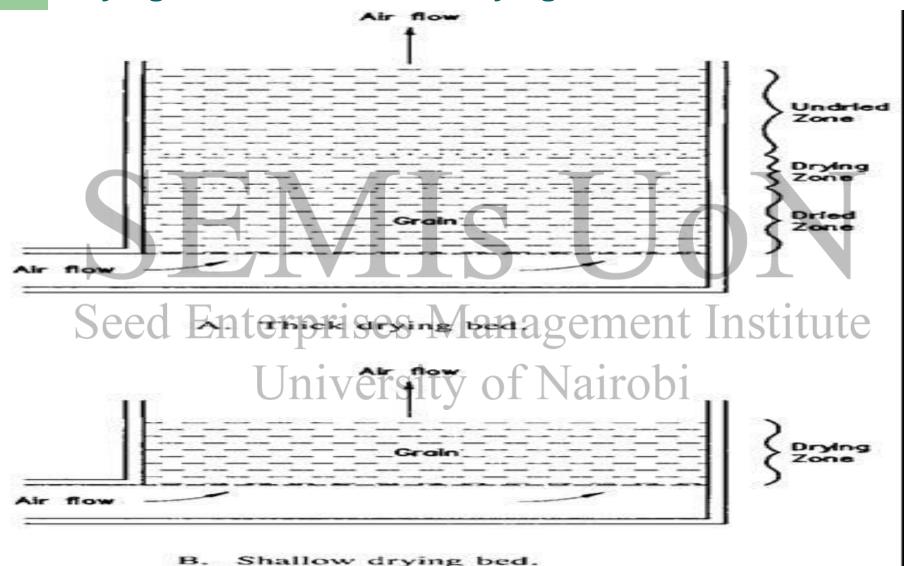
- The drying of grains in thin layers where each and every kernel is fully exposed to the drying air can be represented in the form:
- MR = f (T, h, t)

$$MR = \frac{MC - MC_e}{MC_o - MC_e}$$

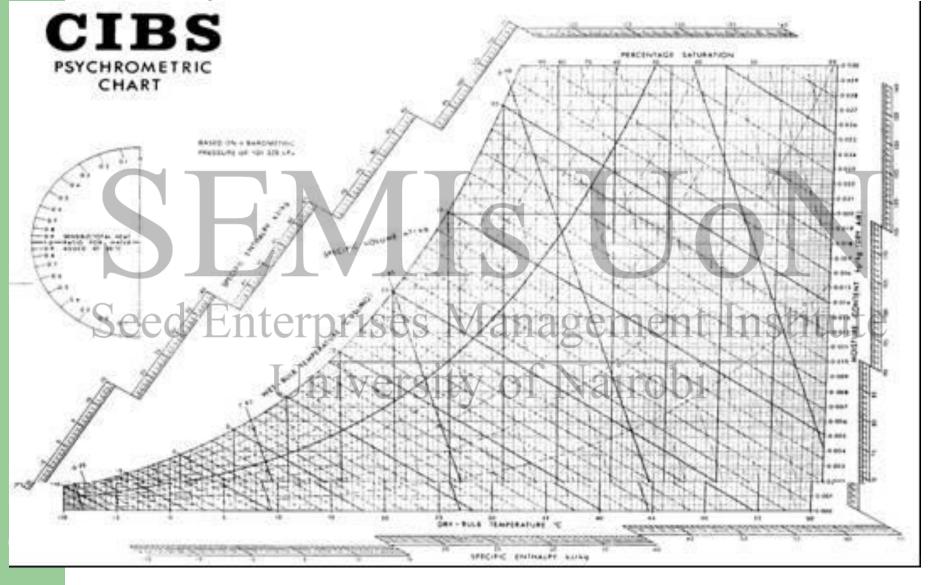
- Where:
- MR is the moisture ratio;
- MC is the moisture content of the grain at any level and at any time, % dry basis (%db);
- MCe is the equilibrium moisture content (%db);
- MCo is the initial moisture content of the wet grain (%db);
- T is the air temperature (°C);
- h is the air relative humidity; and
- t is the drying time.

TIME O

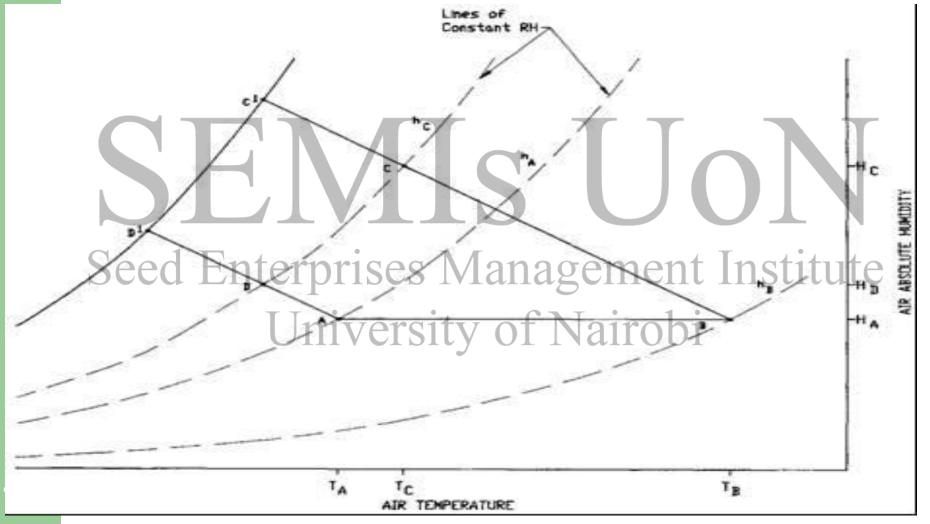
Mi = Initial Moisture content, and Me = Equilibrium Moisture content


Grain Equilibrium Moisture Contents

Grain	Relative Humidity (%) 30 40 50 60 70 80 90 100							
QI	Eq	uilibri	um Mo	oisture	Conte	nt (%w	b*) at :	25°C
Barley Shelled Maize	1				13.5 14.0 13.4			
Paddy Milled Rice	ı	10/3	r 41 45y	12.6	12.8	01514	18.1	23.6
Sorghum Wheat	8.6 8.6	9.8 9.7	11.0 10.9		13.8 13.6	15.8 15.7	18.8 19.7	21.9 25.6


Source: Brooker et al. (1974)

wet basis


Drying Zone in Fixed-bed Drying

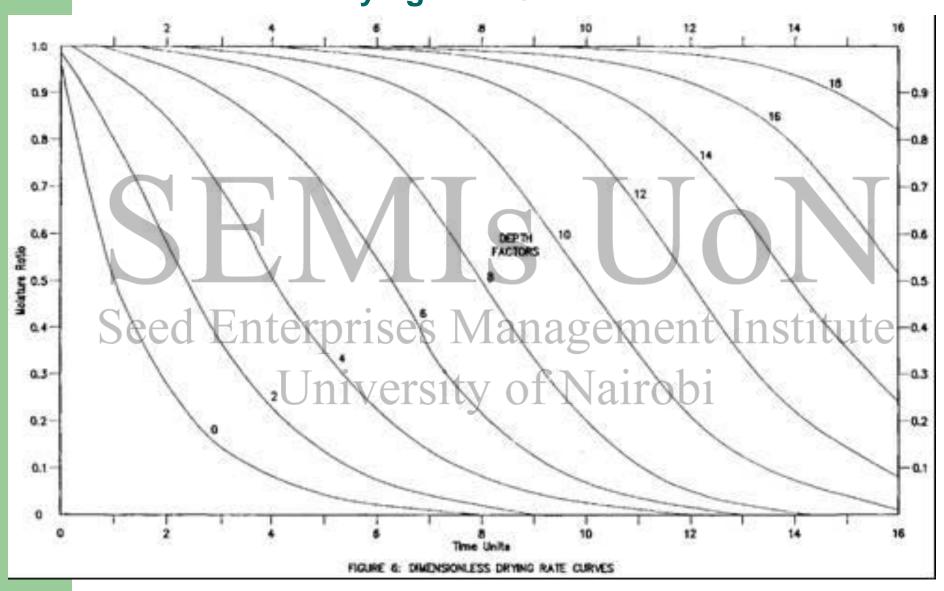
CIBS Psychrometric Chart

Representation of the Drying Process

$$MC_{db} = \frac{100MC_{wb}}{100 - MC_{wb}}$$
 (3)

Table 2. Conversion of Moisture Contents.

Wet Basis %	Dry Basis %	TAT
10.0	11.0	
11.0	12.3	
12.0	13.6	
Caal Data	10 10 10 10 10 10 10 10 10 10 10 10 10 1	To atituate
13.05 eed Enter	rises Managei	nent Institute
14.0	16.3	
15.0	17-versity of Na	robi
16.0	19.0	
17.0	20.5	
18.0	21.9	
19.0	23.5	
20.0	25.0 3/7/2019	


Moisture Loss during Drying

Initial	Final Moisture Content %(wb)								
Moisture Content	19	18	17	16	15	14	13	12	11
%(wb)	Moisture Loss (kg/tonne)						_		
30	136	146	157	167	176	186	195	205	213
29	125	134	145	155	165	174	184	193	202
28	111	122	133	143	153	163	172	182	191
27	99	110	120	131	141	151	161	170	180
26	8,6	98	108	119	129	140_	149	159	169
Sead Enter	101748	C \$5	/ 96	12076	1118	128	11381	148	157
24	62	73	84	95	106	116	126	136	146
[23	49	61+	72	83	94	105	115	125	135
22	LLL 37C	149	y 60)	L 41	al 82)	U 9 3	103	114	124
21	25	37	48	60	71	81	92	102	112
20	12	24	36	48	59	70	80	91	101
19		12	24	36	47	58	69	80	90
18			12	24	35	47	57	68	79
 17				12	24	35	46	57	67
16					12	23	35	45	56
15	3	3/7/2019				12	23	34	45

Latent heat of Vaporization

Temperature	Latent Heat of Vaporization (kJ/kg)							
°C	Free Water	Moisture Content %(wb) — 14 16 18 20 22						
25	2,443	2,605	-2,518	2,483	2,464	2,453		
3 geed	2,431	2.593	2,506	2.471 P.611(61)	2,452	12,441		
35	2,419	2,580	2,493	2,458	2,440	2,429		
40	2,4071	12,5631	2,482	N2,447 b	12,428	2,417		
45	2,395	2,555	2,469	2,434	2,416	2,405		
50	2,383	2,542	2,456	2,422	2,404	2,393		
55	2,371	2,529	2,444	2,410	2,391	2,381		
60	2,359	2,5/1/201	2,432	2,398	2,379	2,369		

Dimensionless Drying Rate Curves

Drying Efficiency

- Sensible Heat Utilization Efficiency (SHUE) = (Heat utilized for moisture removal)/ (Total sensible heat in the drying air)
- Fuel efficiency = (Heat utilized for moisture removal)/ (Heat supplied from fuel)

Effect of Drying on Grain Quality

The drying operation must not be considered as merely the removal of moisture since there are many quality factors that can be adversely affected by incorrect selection of drying conditions and equipment.

The desirable properties of high-quality grains include:

- low and uniform moisture content;
- minimal proportion of broken and damaged grains; minimal proportion of broken and damaged grains;
- low susceptibility to subsequent breakage;
- nigh viability; Jniversity of Nairobi low mould counts; Jniversity of Nairobi
- high nutritive value;
- consumer acceptability of appearance and organoleptic properties.

Part II Seed Drying Methods and Equipment

Sun Drying

- The traditional practice of grain drying is to spread crop on the ground, thus exposing it to the effects of sun, wind and rain.
- The logic of this is inescapable; the sun supplies an appreciable and inexhaustible source of heat to evaporate moisture from the grain, and the velocity of the wind to remove the evaporated moisture is, in many locations, at least the equivalent of the airflow produced in a mechanical dryer
- Although not requiring labour or other inputs field drying may render the grain subject to insect infestation and mould growth, prevent the land being prepared for the next crop and is vulnerable to theft and damage from animals.

Crib Dryers

- The maize crib in its many forms acts as both a dryer and a storage structure.
- The rate and uniformity of drying are controlled by the relative humidity of the air and the ease with which air can pass through the bed of cobs.
- The degree of movement of air through the loaded crib is largely attributable to the width of the crib

Seed Enterprises Management Institute University of Nairobi

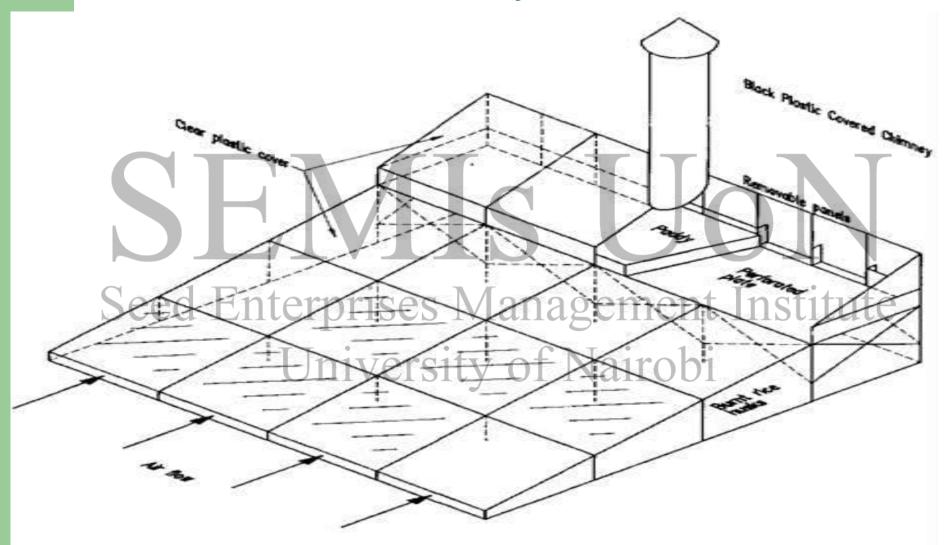
Solar Dryers

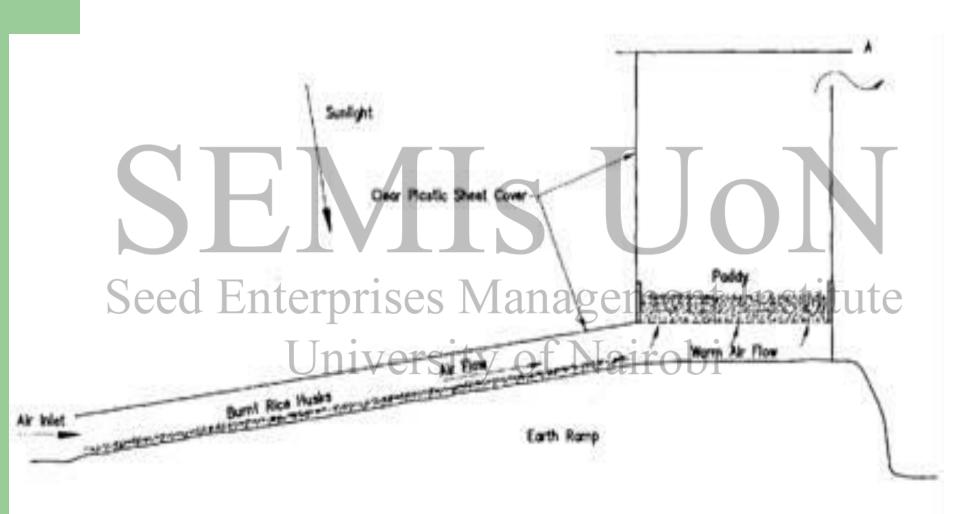
- **Natural Convection dryers**
- **Forced Convection Dryers**

Mechanical Dryers

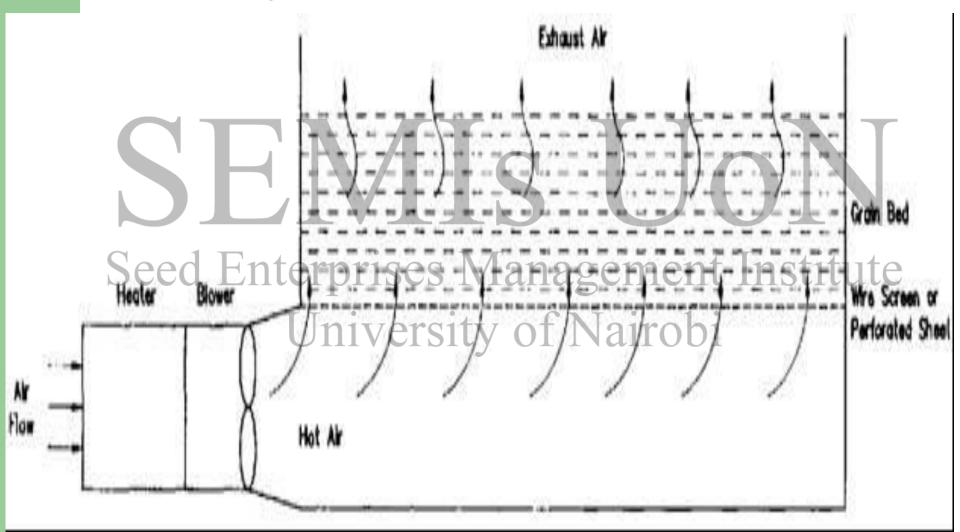
- **Flat Bed dryers**
- Re-circulating Dryers rises Management Institute
- Continuous Flow Dryers (Cross-Flow, Counter flow and Concurrent-Flow)

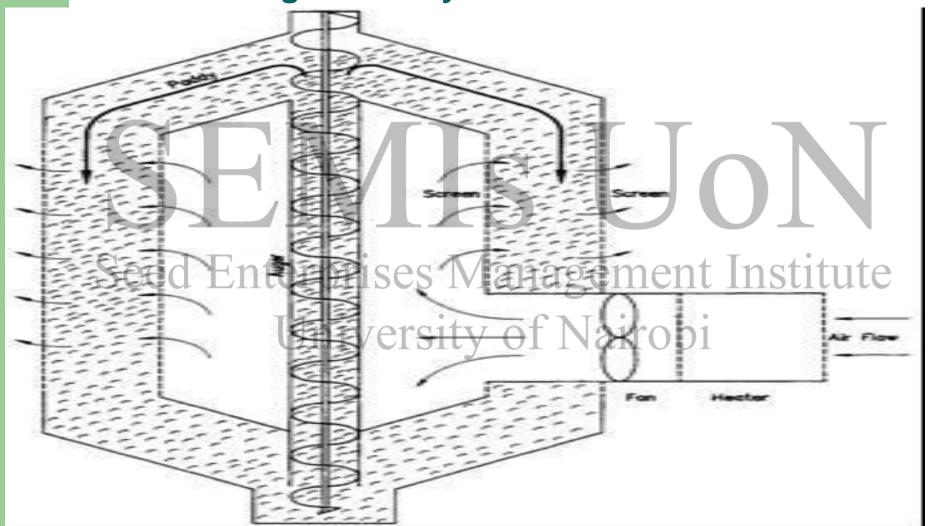
Drying Process and Equipment

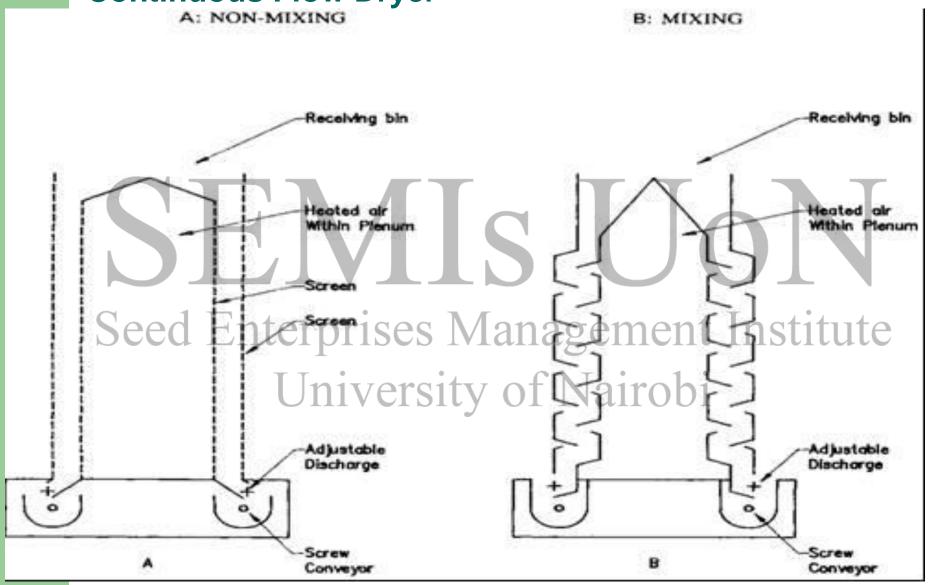

Drying Process and Equipment Cont.

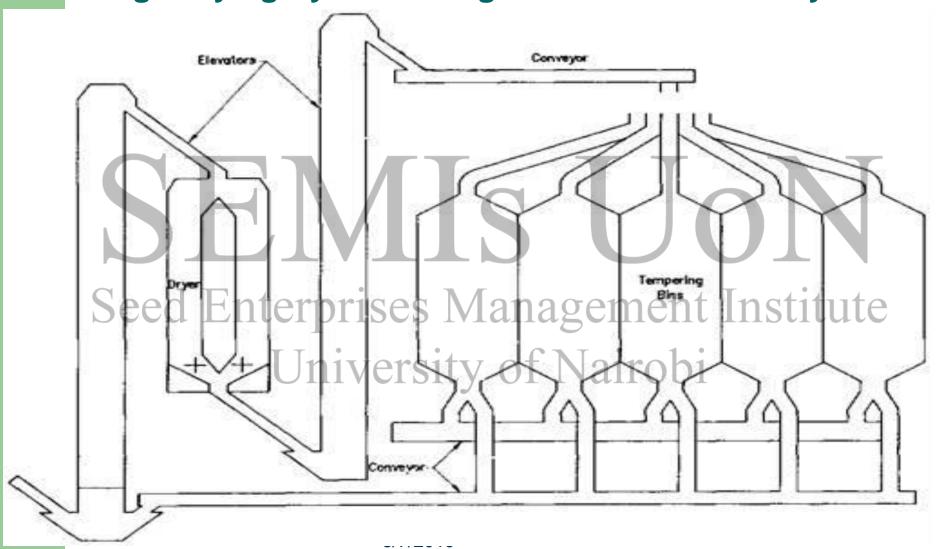


23


Natural Convection Solar dryer


Small Scale Solar Dryer


Flat Bed Dryer


Re-circulating Batch Dryer

Continuous Flow Dryer

Large Drying System using Continuous Flow Dryer

Drying of Seed Grain

- If grain is destined for use as seed then it must be dried in a manner that preserves the viability of the seed. Seed embryos are killed by temperatures greater than 40-42°C and therefore low temperature drying regimes must be used.
- It is essential that batches of grain of different varieties are not mixed in any way and therefore the dryers and associated equipment used must be designed for easy cleaning.
- In this respect simple flat-bed dryers are more suitable than continuous-flow dryers.
- Cross-mixing between batches of different varieties can be avoided by drying in sacks in a flat-bed dryer although care must be taken in packing the loaded sacks in the dryer to ensure reasonably even distribution of airflow.

Seed Entervour Attention and Institute

Seed Enter Attentionent Institute
University of Nairobi