

TRANSMISSION AND SPREAD OF DISEASES AND INSECT PESTS

Dr. Dord Kildlorprises Management Institute
Dept. of Plant Science and Crop Protection

Outline

- Definitions
- Methods of transmission/spread of diseases
- Methods of spread of insect pests

SEMIS UON

Seed Enterprises Management Institute
University of Nairobi

Definitions

- Transmission: ability to pick up a pathogen from one plant and pass it on to another plant. Insects /nematodes have that ability to obtain, carry and deliver a pathogen which without the presence of insects would not have been able to move
- Spread: movement from an infected/ infested plant /area to a non infected plant or area
- Prevention: keep from becoming a problemment Institute
- Suppression: reduce its increase and effect on the host plant
- Eradication: use methods and destroy pests

Introduction

- Most crops are subject to damage by pests and diseases
- All parts are affected and the genetic potential is interfered with
- All plant parts are damaged : seeds, roots, stems, leaves and fruits

University of Nairobi

 When plants are affected there is reduced plant vigour and in some cases plant death and crop loss occurs

Introduction

- Plants cannot move from one place to another except by being swayed by wind side to side
- Diseases and pests affecting plants must therefore be brought in to infect or infest (primary inoculation)
- Diseases and pests must have a way of moving from plant to plant within the field (secondary infection)
- There are different modes of movement of these pests and diseases

Modes for movement of pests and diseases

- Wind (weed seeds, fungi, insects)
- Seed (weed seeds, fungi, bacteria, viruses, nematodes)
- Infected soils: with fungi, bacteria, nematodes or larval or pupae stages of an insects

Seed Enterprises Management Institute

- Rain splash /hailstorms (bacteria, fungi, nematodes)
- Infected irrigation water (fungi, bacteria, nematodes)

Modes for movement of pests and diseases

- Farm implements (soil, plant parts, left over seeds)
- Movement of vegetative plant parts
- Animals (birds, mammals (hair/fur), rodents)
 Seed Enterprises Management Institute
- Man (trade, movement of seed, insects on farm working cloths, weed seeds attaching on cloth, shoes /boots from one field to another

Dispersal

- Dispersal of pathogen, pollen, and seed
 - Pathogen: effective dispersal depends on traits of spores (size, moisture, UV susceptibility) and threshold number needed for infection
 - Longer movement sometimes through stepping stones
 - Usually infection shows patterns of aggregation (clustering). It is an easy way to show infectious disease

Determinants of spread

- Amount of inoculum or abundance of organisms(insects, PPNs, spores,)
- Location of inoculum
- Susceptibility of the host
- Favorable environmental conditions (temperatures (18-30°C), RH% (50-95%), wind direction and speed, soil moisture, host stage (susceptible) and plenty of food resource

Disease triangle

Pathogen

Does it need a wound to infect a host?

Can it survive in the environment without a host? soil, water

on alternate host

How does it move around?

Sairborne/waterpornees Management Institute animal vectors iversity of Nairobi humans

Virulence + reproductive potential=transmission

Host

Must be physically present with pathogen

Must be physically compatible with pathogen

Must provide window of opportunity for infection

complex=several genes

Environment

Climatic changes

Climate patterns match pathogen biology (high RH, rainfall when needed, temperature range for growth: thermophilic vs. psychrophilic organisms, Max-min temperatures) Management Institute

Host phenology: synchrony between pathogen and host

Examples of diseases transmitted

Bacterial wilt

- seed borne (survives for many years), survives on plant debris and susceptible weeds
- Spread by surface irrigation, hailstorms, can infect host through wounds, through movement of infested soils

Common blight of beans

 Seed borne, spread via natural openings and wounds, wind driven rain, hailstorms, insects and farm implements

University of Nairobi

Halo blight

 Seed borne, spread by splattering rain water, hailstorms, wind blown rain

Examples of diseases spread through various ways

- Fungi (Alternaria leaf spot):
 - Spores disseminated by wind, rain, insects, and fungus is also found in seed
- Fungi (Fusarium root rot):
 - Spread by drainage water or irrigation water, movement of infected soil, man, farm implements, soil in touch with seed
- White mould Enterprises Management Institute
 - Spread by sclerotia on seed, air borne ascospores,
- Fungi (Rhizoctonia):
 - Soil borne fungus spread by soil movement from one place to another (shoes, potting soils)

Examples of diseases spread through various modes

RKNs

through infested soils

Common mosaic

• In weed hosts where inoculum is picked by insects (aphids) or mechanically spread by plants rubbing against one another or against weed hosts, through infected seed, can be spread in pollen

Golden mosaic of beans University of Nairobi

 Not seed transmitted, but is mechanically transmitted, and by whitefly vectors

Plant pathogen spread by vectors

- This involves an interaction of
 - Plant (susceptible host)
 - Pathogen (inoculum –spores) ,
 - insect vector,
 - Environment (weather, cultural practices in the lield, farming operations, nt Institute agroecosytem) ersity of Nairobi

(Remember disease triangle)

Contributing factors to the spread of diseases

Environmental changes (Narok vs Naivasha MLND expts)

- Microbial adaptation
- Human populations and behaviour

UON

- Technology and economic development
 University of Nairobi
- International travel and commerce

Categories of insect vectored pathogens

- Pathogen spread
 - Primary vs Secondary

- Vector residency
 - Transient vs residential

Seed Enterprises Management Institute

- Vector dispersal Miversity of Nairobi
 - Trivial vs migration

Examples of insect vectors that spread disease

Seed Enterprises Management Institute
University of Nairobi

True bug, leaf hopper, plant hopper

Aphids, mealy bug, psyllid, whiteflies,

Insects pests of different orders

Fruit fly (R. pomonella)

thrips

Cabbage fly- maggot

leafminer

Leaf beetles

Bark beetles

Insects pests of different orders

Plum beetle

Bee Apis mellifera

Ants

Plant Virus Infection and Vector Behavior

Types of interactions

- Circulative (2 forms)
 - Systemic :movement within body
 - Propagative :Replication within body transovariol
- Non circulative (stylet borne)
 - No replication particles attached to mouth parts during feeding and pathogen released during feeding through saliva

Types of pathogen transmission

Non persistent (Stylet borne)

Persistent (circulative, propagative and transovariol)

Semi persistent IIS UOIV

Seed Enterprises Management Institute University of Nairobi

Non persistent vs persistent

Non persistent

- Acquisition time short (seconds)
- Inoculation time –short
- Latent period –zero
- Retention time minutes to hours

Persistent

- Acquisition time minutes Seed Enterprises Management Institute
- Inoculation time –minutes
- Latent period one or more days
- Retention time through moult or for life
- Vector specificity high

Categories of vectors

- Transient vectors
 - Do not colonize host
 - Non persistent spread of diseases
 - Not usually important for persistent disease spread

Resident vectors

- Colonize crop
- Important for all types of disease spread
- Most important for persistent transmission of diseases

To determine transient populations: use traps such as sticky traps, water pans, pheromone traps, etc

Vector dispersal

- Trivial flights
 - Random movement among selected hosts
 - Important for secondary spread
 - Important for non persistent spread of disease

Insect migration

- Long distant obligatory flights
- Important for all transmissions Seed Enterprises Management Institute
- Primary spread acquired from outside source and brought in to the field e.g through seed or immigrating insects such as thrips
- Secondary spread infections within the field

SThank you! Questions

Seed Enterprises Management Institute
University of Nairobi