

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

LONG SHORT TERM MEMORY BASED DETECTION OF WEB

BASED SQL INJECTION ATTACKS

BY

MWARUWA CHAKA MWARUWA

P52/6208/2017

SUPERVISED BY

DR. EVANS MIRITI

AUGUST 2019

This project report is submitted in partial fulfillment of the requirements for the degree of Master of

Science in Computational Intelligence, University of Nairobi.

i

Declaration

This project, as presented in this report, is my original work and has not been presented for

award in any other university.

Name: Mwaruwa Chaka Mwaruwa Reg No: P52/6208/2017

Signature: Date: ________________

This project has been submitted with my approval as the University supervisor.

Name: Dr. Evans Miriti

Signature: _______________________ Date: ________________

ii

Abstract

The internet has experienced considerable growth in the past decade due to increased ease of

access and growth of mobile technologies. The internet is increasingly being used for important

transactions such as financial transactions. With this growth, security has become a major

concern as sophisticated attacks continue to be observed on various systems. Injection attacks

are one of these attacks, and it’s prevalence has remained high in the past few years, having

been at the top of the OWASP top ten list in 2013, 2015 and 2017. Existing signature based

intrusion detection systems use known attack signatures, hence it’s difficult for them to keep

up with the ever changing attack landscape. Existing work using neural networks focuses on

one kind of injection attacks, hence leaving out vulnerability to the other kinds of injection

attacks.

This study presents a machine learning based approach to detect injection attacks. We develop

a method of collecting a diverse dataset of injection attacks, by using sqlmap and a custom

python script to send requests to a vulnerable application. We then develop and train a neural

network model using long short term memory (LSTM) networks that detects injection attacks.

We then test the model to determine its performance so as to evaluate its ability to detect these

attacks.

The model shows a good detection performance, reaching an accuracy of 95.4%. The model is

superior to other similar works due to its ability to detect the eight different kinds of sql

injection attacks, compared to similar works that are not as diverse.

We found that LSTM recurrent neural networks are a sufficient tool for the detection of

injection attacks due to their ability to correctly classify the attacks from genuine requests. We

further keep a log of all detections from the model, which can be used to retrain it hence learn

from new attacks, making it a better solution for the ever changing attack landscape compared

to the existing signature based methods.

iii

Dedication

I dedicate this work to my parents and siblings for always believing in me. Your motivation

keeps me going.

iv

Acknowledgement

I express my utmost gratitude to Allah (S.W.T) for the health, the blessings and enabling me

do this study.

My sincere gratitude goes to my supervisor, Dr. Evans Miriti for all the help, suggestions and

encouragement during this study. I am deeply indebted.

 To my mother Ms. Chizi Mangale and my father, Mr. Chaka Dete, for all the encouragement,

support and prayers that has brought me here.

To all my family, friends and colleagues, I thank you for all the support you accorded me during

the time of this study.

v

Table of Contents

Declaration ... i

Abstract ... ii

Dedication... iii

Acknowledgement .. iv

List of Figures ... vii

List of Tables .. viii

List of Abbreviations ... ix

Chapter 1: Introduction...1

1.1 Background ..1

1.2 Problem statement ..3

1.3 Objectives ...3

1.4 Justification ..4

Chapter 2: Literature Review..5

2.1 Introduction ..5

2.2 Injection attacks ...5

2.2.1 SQL Injection ..6

2.3 Prevention and detection of injection attacks ..8

2.3.1 Static analysis and secure coding practices...8

2.3.2 Signature based injection detection ..9

2.3.3 Machine Learning Based Injection Detection ...9

2.4 Long Short Term Memory Networks .. 14

2.5 Gaps in Literature ... 16

2.6 Proposed Solution .. 17

Chapter 3: Methodology .. 18

3.1 Introduction .. 18

3.3 Data Collection ... 18

3.4 Data Cleaning and Feature extraction... 19

3.5 Training and experimentation ... 20

vi

3.5.1 Data preparation .. 20

3.5.2 Model Development .. 21

3.5.3 Running the experiment ... 21

3.6 Testing and validation .. 22

3.6.1 Confusion matrix ... 22

3.6.2 Receiver Operating Characteristic Analysis ... 24

3.6.3 Cross Validation .. 25

Chapter 4: Results and Discussion .. 26

4.1 Introduction .. 26

4.2 Data Collection .. 26

4.3 Model Evaluation Results ... 27

4.3.1 Confusion Matrix... 27

4.3.2 Receiver Operating characteristics ... 29

4.3.3 Cross Validation .. 30

4.3.4 Comparison of the detection accuracy of various injection types 31

4.4 Discussion .. 32

4.4.1 Benchmarking with similar studies .. 32

Chapter 5: Conclusion ... 34

5.1 Achievements ... 34

5.2 Contributions.. 34

5.3 Challenges .. 35

5.4 Recommendations and future work... 35

References .. 36

Appendices ... 39

Appendix 1: Training code ... 39

Appendix 2: Detection Middleware Code ... 42

vii

List of Figures

Figure 1: Prevalence of the types of Injection Attacks (IBM, 2017) ..6

Figure 2: The structure of an LSTM cell when unfolded in the time domain (Olah, 2015) 15

Figure 3: Web request middleware during detection ... 17

Figure 4: Sample ROC chart .. 24

Figure 5: Distribution of the different attack types in the dataset .. 27

Figure 6: ROC chart comparing the various models ... 30

viii

List of Tables

Table 1: Confusion matrix .. 22

Table 2: Sample requests in the dataset .. 26

Table 3: Performance of the models with varied parameters ... 28

Table 4: Cross validation results... 31

Table 5: Comparison of the detection accuracy of different injection attack types 31

Table 6: Comparison with similar studies by features ... 33

Table 7: Comparison of accuracy for tautology attack detection ... 33

ix

List of Abbreviations

AUC – Area Under Receiver Operator Characteristics Curve

DVWA – Damn Vulnerable Web Application

FPR – False Positive Rate

HTTP – Hypertext Transfer Protocol

LSTM – Long Short Term Memory

OS – Operating System

OWASP – Open Web Application Security Project

RNN – Recurrent Neural Networks

ROC – Receiver Operator Characteristics

SQL – Structured Query Language

SVM – Support Vector Machine

TPR – True Positive Rate

1

Chapter 1: Introduction

1.1 Background

The internet has experienced considerable growth in the last decade. This has been largely

driven by the increased ease of access and growth of mobile technologies. The internet today

represents a popular medium for communication and even transactions. According to Arbor

Networks, web traffic accounts for over 50% of this internet traffic, showing that the internet

is mostly used to access web applications (Anstee, 2017).

Security remains a key challenge for various organizations on the internet. It is reported that t

47% of all attacks detected are SQL injections, followed by local file inclusion at 38% and

cross site scripting (XSS) at 9% (Akamai, 2017). Insecure software has presented a serious

risk to various critical infrastructure, including financial, defense and healthcare. Software is

becoming increasingly complex and connected, hence securing it is becoming increasingly

difficult. The pace of software development has become rapid, bringing a need to quickly

discover and resolve any security issues accurately and quickly. The software developers

developing most software today are not as experienced as the developers of software

infrastructure such as databases, hence may not have deep understanding of the security

vulnerabilities that their software expose. This results to poorly developed code full of security

vulnerabilities being deployed and exposed to the entire internet (Valeur, Mutz and Vigna,

2005).

Injection attacks represent a significant risk to web applications. They are ranked at the top of

Owasp top ten list, which ranks common vulnerabilities by prevalence. Injection attacks refer

to when untrusted data containing rogue SQL queries, OS or LDAP commands are passed to a

computer system. This untrusted data may result unprecedented consequences when run

leading to data loss or leakage. OWASP is a community organization that enables organizations

to build trustworthy applications by increasing security awareness (Owasp, 2017).

Secure coding practices have been proposed as a way of preventing these and other attacks. To

protect applications against SQL injection attacks, software developers are advised to use

parameterized queries. These are queries where the parameters are included in a query, then

the arguments to replace these parameters are given during execution. For command injection

attacks, developers are advised to always escape shell command arguments, so as to avoid

2

injection of arbitrary commands. These methods work, however, inexperienced programmers

may not always know the right approaches hence introducing vulnerabilities by using the

vulnerable coding practices. This brings about the need for methods that are able to protect

such vulnerable applications (Howard and Leblanc, 2003).

Static scanning tools are used to identify vulnerabilities in source code by identifying whenever

insecure coding practices are used. Dynamic scanning tools attempt to identify vulnerabilities

when code is executed. Static and dynamic application scanning tools can be used to identify

vulnerabilities in applications, hence aiding developers to patch their applications against

injection attacks. However, the accuracy of these tools is not yet good enough, hence may not

be able to detect all vulnerabilities in the applications. Commercial tools have been developed

with better accuracy than their open source counterparts, but are expensive and out of reach for

most developers working on small projects (Shin, Williams and Xie, 2014).

Penetration testing refers to a method of trying out real attacks on a computer system in order

to identify potential security vulnerabilities. This method is usually used to test web

applications and identify vulnerabilities in the web applications, the potential risks when those

vulnerabilities are exploited. The challenge with doing penetration tests on web applications is

that some tests are destructive, hence if successful they could take down a web application.

This requires that a dedicated test instance of the web application is set up. The tests are also

complicated and may be out of reach for most inexperienced developers (Deuble, 2012).

Intrusion detection systems (IDS) are usually configured with signatures that represent existing

vectors. This approach has been challenged by the large number of vulnerabilities discovered

daily and vulnerabilities introduced by applications developed in house, making it difficult to

keep the signatures updated. Developing the signatures itself is a challenge, since it requires

significant security expertise (Kruegel and Vigna, 2010). Anomaly detection systems with the

ability to learn have been proposed to improve on the shortcomings of signature based IDS.

Various classification methods have been proposed using neural networks and support vector

machines. The existing methods rely on analyzing the analysis of SQL statements to identify

the anomalous ones.

3

1.2 Problem statement

Injection attacks have become more prevalent in the past few years, retaining the top position

in the Owasp top ten list for both 2013 (Owasp, 2013) and 2017 (Owasp, 2017). According to

IBM X-Force analysis of managed security services (MSS), injection attacks are the most

common attacks against organizational networks. In fact, between January 2016 and June 2017,

injection attacks accounted for 47% of all reported attacks (IBM, 2017). In Q3 2017, Akamai

observe SQL injections to be the most prevalent attack vector, composing 47% of the attacks

detected by their systems (Akamai, 2017).

To mitigate against these and other attacks, signature based intrusion detection systems (IDS)

are usually configured with the known attacks. Unfortunately, it is difficult to keep up against

the changing attack landscape due to the number of vulnerabilities discovered daily and

vulnerabilities introduced by internally developed software. Systems equipped with anomaly

detection can supplement existing IDS tools by providing the ability to learn new attacks

(Kruegel and Vigna, 2010).

Recurrent neural networks have been proposed for anomaly detection of SQL Injection attacks

(Valeur, Mutz and Vigna, 2005). However, a key limitation with existing research is that they

are trained with only one kind of SQL injection (tautology based), hence they are untested with

other kinds injection attacks.

1.3 Objectives

The general objective is to develop a neural network model that can detect web-based injection

attacks using long short term memory recurrent neural networks (LSTM).

The specific objectives are:

I. To develop a method of recording and labelling request samples for analysis and

detection of malicious input requests

II. To train an LSTM model capable of detecting SQL injection attacks in web requests

III. To test different LSTM network model parameters and determine the parameters that

result in the best model performance

IV. To test and validate the model’s ability to detect malicious requests

4

1.4 Justification

The growth of web traffic and increased threats on web applications has necessitated the

development of security systems that are able to adapt to the changing attack vectors. Injection

attacks have become even more popular, with the Owasp top ten report ranking them as the

most popular attack (Owasp, 2017).

This project will provide additional security for web applications, enabling developers and

businesses have stronger mitigation against these kinds of attacks. This project can also be used

to complement existing security measures, therefore improving the security of web applications

against these kinds of attacks.

This research will be helpful for developers of security software by providing them with a

method they can implement in their systems to mitigate the risk of injection attacks. This will

make their software more effective while guaranteeing stronger security for their clients.

With improved security, the growth of the World Wide Web and its use for sensitive

transactions such as financial transactions will be sustained. Improved user confidence can also

be achieved if businesses can assure users that they have deployed adequate security measures

in their applications.

5

Chapter 2: Literature Review

2.1 Introduction

This chapter surveys the nature and different types of injection attacks and the popularity of

each subset of these attacks. It then studies the various methods of detecting injection attacks,

their strengths and drawbacks, then narrows down to machine-learning based methods of

detecting injection attacks and proposes a solution to detecting injection attacks.

2.2 Injection attacks

Injection attacks refer to when untrusted data containing rogue SQL queries, OS or LDAP

commands are passed to a computer system. This untrusted data may result unprecedented

consequences when run leading to data loss or leakage (Owasp, 2017).

There are several kinds of injection attacks, the most common ones being SQL injection and

OS command injection. About 83% of the reported injection attacks are OS command and SQL

injection attacks. The figure below shows the prevalence of the different kinds of injection

attacks as analyzed by IBM in 2007.

Operating system command injection involves an attacker injecting existing operating system

commands into the application functions. This could allow an attacker to escalate privileges or

run arbitrary commands with diverse consequences.

This attack vector is also common, and can cause adverse effects when successfully executed

on a system. This attack vector is mostly used to escalate privileges and gain access to other

parts of a system that would otherwise not be accessible to the attacker.

6

Figure 1: Prevalence of the types of Injection Attacks (IBM, 2017)

2.2.1 SQL Injection

This is when an attacker passes SQL commands that could modify application behavior and

run arbitrary SQL queries on its database. These queries could expose confidential data, add or

modify data without following proper authorization.

As a result of the popularity and level of risk of SQL injection attacks, a lot of research has

been done and as result comprehensive formal definitions of the various types of SQL injection

attacks are available. These works also prescribe tools to detect and prevent these attacks (Ray

and Ligatti, 2014). However, these tools and methods require a skilled developer to employ,

and may not be useful to secure applications that are already developed with these

vulnerabilities.

There are seven popular types of SQL injections. These give an overview of the common tricks

attackers use to modify queries to result into undesired results.

I. Tautologies

These are where the attacker attempts to bypass authentication or application controls by using

an ‘or’ in the injected query to introduce a tautology. These usually introduce an ‘or’ condition

that evaluates to true (Sheykhkanloo, 2015).

7

II. Illegal or logically incorrect queries

These are where the attacker tries to identify vulnerable parameters to extract data from the

database by providing incorrect queries. These mostly result into errors that can reveal

important details about the backend database or data in the database (Sheykhkanloo, 2015).

III. Piggy backed queries

This is where the attacker aims extract or modify data or execute arbitrary commands on the

backend by executing multiple statements where only one statement would usually allowed.

This is usually done by embedding a query inside another query and even commenting out a

part of the intended query. The signature of such an attack is the presence of the delimiter “;”

in the query (Sheykhkanloo, 2015).

IV. Union query

This is an attack where attackers bypass authentication, application controls or extract data

from a backend database by combining two or more queries using a “union select” statement

(Sheykhkanloo, 2015).

V. Stored procedures

These are attacks that attackers attempt to run stored procedures on a given database in order

to result into unintended consequences like privilege escalation (Sheykhkanloo, 2015).

VI. Inference attacks

This is an attacks where attackers test for the possible vulnerabilities of a database when even

where no data is returned to a user. An example of such an attack would be one used to test

whether the current user a system user (Sheykhkanloo, 2015).

VII. Alternate encoding

Alternate encoding attacks are where an injected command is obscured by using encoding

methods. The commonly used encodings is hexadecimal. These can be used to bypass

validation, and can obscure other kinds of attacks (Sheykhkanloo, 2015).

8

2.3 Prevention and detection of injection attacks

To protect applications from SQL injection attacks, different methods have been prescribed to

either detect the attacks as they happen, or prevent them from happening. Static analysis and

secure coding practices have been used to prevent applications from being vulnerable from

injection attacks, while signature based and machine learning based methods are used to detect

injection attacks in applications.

2.3.1 Static analysis and secure coding practices

Injection attacks usually arise from unchecked user input which causes undesired consequences

by running unintended commands on a server or a database. Consequently, one way of

protecting a server or a database is by using secure coding practices which sanitize user input

before it is merged with a command or an SQL statement to ensure the intended command or

query is run, and not one modified by an attacker. Static analysis and secure coding practices

represents methods to preven:t injection attacks, though does not include detection of the

attacks.

Static analysis refers to techniques where code is automatically reviewed by a program to

identify sections of the code with potential vulnerabilities, for example where user input is

merged into an SQL query without first properly sanitizing it, or where old vulnerable libraries

are used instead of their newer versions that have these vulnerabilities patched. Static analysis

helps enforce secure coding practices, by identifying the sections in code that developers may

have used insecure practices. This combined with effective manual code reviews can be used

to eliminate most insecure code practices and help fortify web applications against injection

attacks among other attack vectors (Livshits and Lam, 2005).

Novice programmers may not know of these secure coding practices, hence leaving

applications developed by these inexperienced programmers vulnerable. Many of the static

analysis tools out there are commercial applications that are expensive to obtain. This bars most

of the programmers working in a non-institutional setting from obtaining access to these tools,

hence leaving them to develop applications without this crucial step that could bring assurance

to the quality of the application (Livshits and Lam, 2005).

9

Static analysis is limited to merely identifying potentially unvalidated and non-sanitized input,

however do not go into the detail of checking the correctness and completeness of the validation

measures, hence there is a risk of leaving improperly sanitized input that may still be vulnerable

to attacks (Bandhakavi et al., 2007).

2.3.2 Signature based injection detection

Signature based methods match requests to known attack patterns or signatures in order to

detect known attacks. This is the method of detection that is most popular with web application

firewalls and intrusion detection systems available today. These devices inspect web traffic

and attempt to match attack signatures in the web traffic (Maor and Shulman, 2005).

Snort and Suricata are open source softwares that use this method to detect injection and other

attacks. Snort uses rules that contain the signature and define what happens when that signature

matches a given web request. Alnabulsi, Islam and Mamun propose five Snort rules that detect

SQL injection attacks. The five rules achieve better precision and recall measures than existing

studies done for the same at the time (Alnabulsi, Islam and Mamun, 2014). Signature based

injection detection systems have shown a weakness that they are easy to evade, and rules are

usually written for simple SQL injection methods such as tautology based SQL injection. Maor

and Shulman have in their paper discussed several methods that can be used to trick signature

based injection detection, and effectively run SQL injection on servers protected by these

methods (Maor and Shulman, 2005).

Signature based methods require that rules or signatures are written for each known attack

vector, hence suffer the weakness of being vulnerable from unknown attacks. Given the pace

at which new attacks are discovered, signature based methods can easily be circumvented by

using new attack methods that signatures may not already be written for (Kruegel and Vigna,

2010).

2.3.3 Machine Learning Based Injection Detection

Machine learning methods have been implemented using various algorithms for the detection

of SQL injection attacks. The two common machine learning methods used to detect injection

attacks are natural language processing methods and anomaly detection methods.

10

I. Natural Language Processing Methods

This includes methods that use language technology to detect SQL injection attacks. A method

of using a graph of tokens and support vector machines (SVM) to detect SQL injection attacks

has been proposed. In this approach, SQL injection is detected by modelling SQL queries as a

graph of nodes then using the centrality measure of the nodes to train a support vector machine

(SVM). The approach consists of four main steps, converting an SQL query into a sequence of

tokens while preserving its structural composition, generating a graph of tokens as nodes,

training an SVM and finally using the SVM to detect malicious queries. This method is tested

with five applications gives results of over 99% for both accuracy and precision (Kar, Panigrahi

and Sundararajan, 2016).

Parse tree validation has also been suggested for the detection of SQL injection attacks. A parse

tree is a method of representing a statement to show the grammatical structure of that statement

in its language. This technique compares two parse trees to determine if their structure is the

same. When the original and the injected query are compared and difference in the structure is

noted then we can conclude that an injection has been detected (Buehrer, Weide and Sivilotti,

2006). The drawback of this approach is that parse trees of each SQL query run in a system

will need to be recorded so that they can be compared with the parse tree of an incoming query

to determine whether they are alike or not. This reduces the practicality of this method

especially in complex systems that run many different queries.

II. Anomaly Detection Methods

These methods model injection attacks as an anomaly detection problem, where normal SQL

queries is classified differently from the injected queries.

Anomaly detection is the identification of instances that stand out to be dissimilar from the rest

in a dataset. Anomalies can represent errors or indicate a new underlying process (Chalapathy,

Menon and Chawla, 2018). This area has recently been the subject of many studies due to its

applicability in engineering areas such as sensor failure, network monitoring, cyber security

and surveillance (Ergen, Mirza and Kozat, 2017). Anomaly detection is an example of a one-

class classification problem, where given data points originated from a single class but

contaminated with outliers, you find the class boundary to separate the outliers from the class

members (Pauwels and Ambekar, 2013).

11

Support Vector Machines (SVM)

One-Class Support Vector Machine (OC-SVM) is a popular supervised approach to detecting

anomalies. This works by constructing a smooth boundary around the majority of the

probability mass of data (Rawat and Shrivastav, 2012). Rawat and Shrivastav propose a method

of using SVM to classify SQL statements into either the original query or the suspicious query.

The original query is the intended query with the right parameters added into it. The suspicious

query is one sent by an attacker to produce undesired results. The model achieves a detection

time of 15ms and an accuracy of 94.67%. These are good results, however, the limitation of

their study is that they experiment with only tautology based SQL injections, hence the model

may not be very accurate with other types of SQL injection. This can be improved by having

other kinds of SQL injection in the training and testing dataset, to ensure the model is balanced

among the known kinds of SQL injection (Rawat and Shrivastav, 2012).

An adaptive method of detecting malicious queries in web attacks has been proposed by Zhang

and Dong. The study uses an SVM hybrid to classify query strings as malicious or not. The

study has the advantage of being adaptive, that is unknown queries are logged and then later

labelled and used to train and improve the SVM model. This strategy ensures that the model is

always updated with new attack vectors and can potentially result into better performance when

deployed in real life scenarios (Dong and Zhang, 2017).

The accuracy of SVM is greatly impacted with choosing the correct kernel function. The

correct kernel function will greatly impact the ability of the model to classify the input data.

Also choosing the appropriate hyperparameters that will allow for sufficient generalization

performance is usually a big challenge for SVM models. Support vector machines, like all other

non-parametric algorithms suffer from the lack of transparency in results, since the output

cannot be presented as a simple parametric function (Auria and Moro, 1998).

Hidden Markov Method (HMM)

Hidden Markov Model (HHM) is a powerful method for modelling statistical sequences. The

system being modeled is assumed to be a Markov process with unobserved (hidden) states

generating an observable state sequence (Kar et al., 2016).

12

The approach consists of normalizing a query into a sequence of tokens, then using this as the

observation state sequence for input into two sets of HMM ensembles. The HMMs in each

ensemble are then trained with both safe and unsafe queries, and each of their output combined

to give the overall output (Kar et al., 2016).

This method achieves an accuracy of 99.57% (Kar et al., 2016). The major drawbacks of this

models are that they are expensive in terms of compute time, which could limit their large scale

use. The implemented model adds a detection time for each query, hence for a page with 10

queries this could lead to an overhead of 100ms which is detectable to the user (Kar et al.,

2016) On a large scale system, this would be expensive to implement and could lead to

significant delays.

The study (Kar et al., 2016) implements an application that would be used in the database

firewall layer (between the application and the database). The major drawbacks of this

approach is that the database firewall will likely have to process a lot of queries that are not

affected by user input, hence cannot be injected. This further leads to high overhead and latency

in processing queries.

Recurrent Neural Networks

Neural networks have been applied in many classification problems. Neural networks have the

advantage of superior performance over complex, highly dimensional data sets as compared to

support vector machines (Chalapathy, Menon and Chawla, 2018).

Kruegel & Vigna propose a system based on anomaly detection of Web based attacks. Their

approach focuses on analyzing HTTP requests, specifically the GET requests that use

parameters to pass values to server side programs. Their anomaly detection process analyses a

number of different models to identify anomalous requests associated with a certain program.

They test for the effects of using attribute length, attribute character distribution, structural

inference, token finder, attribute presence or absence and attribute order to the detection of

anomalous requests. A different learning method is used for these attributes and their results

compared at the end. The length, character distribution and structural inference models are seen

as very effective in detecting anomalous requests (Kruegel and Vigna, 2010). A similar

approach is also proposed for SQL Injection attacks by Valeur, Mutz and Vigna. Their

approach relies on using multiple models to characterize normal SQL behavior. The model is

13

able to detect SQL injection attacks with high accuracy and low performance overhead (Valeur,

Mutz and Vigna, 2005). These approaches can be improved by doing a combined analysis of

web requests and SQL queries. This approach further reduces the false positive rate by adding

more features used for the anomaly detection (Kruegel and Vigna, 2010).

Recurrent neural networks are able to learn from both current and previous inputs, which can

potentially improve predictions that depend on previous dependencies. This is very useful for

problems that can be modelled in time series, such that a current event is dependent on a

previous event and a trend can be observed over a time period (Bontemps et al., 2017).

An alternative method of using recurrent neural networks (RNN) to the detect SQL Injection

attacks has been proposed. In this approach, the problem of detecting anomalous queries if

transformed into a time series prediction problem. The queries are divided into tokens, which

are sent into the detection system to predict the next token using the previously seen tokens. In

learning, the RNN is trained by back-propagation through time (BPPT) algorithm (Skaruz and

Seredynski, 2007).

Long short term memory networks are an improvement of vanilla recurrent neural networks

that were built to solve the issues of exploding and vanishing gradients, enabling these

networks to be able to learn complex long term dependencies over longer times. This enables

them to better relate current events to previous events, increasing performance prediction for

such problems (Bontemps et al., 2017).

LSTM recurrent neural networks have been widely proposed for Anomaly Detection. Non-

collective approaches usually view an anomaly as a single point. In these approaches, the

detection models cannot use information from previous points in time to evaluate the current.

Long short term memory networks (LSTMs) are have produced excellent performance in time

series problems due to their ability to relate current events with previous events (Bontemps et

al., 2017).

LSTM recurrent neural networks have shown good results in similar problems. Skaruz and

Seredynsky have used RNNs to detect anomalous SQL queries from normal queries by

encoding the SQL keywords in SQL statements and then modelling the queries as a time series

problem, where recurrent neural networks excel (Skaruz and Seredynski, 2007). The same

14

process can be useful with Command and SQL injection attacks, allowing us to take advantage

of the excellent performance of these networks and get superior predictions.

LSTM recurrent neural networks have been proposed for sequence aggregation rules in

network traffic. The study aims to detect various attacks by using sequence modelling and two

bi-directional LSTMs. The study achieves an area under the curve (AUC) of 0.71 for all the

attack types. The study demonstrates the strength of LSTM in anomaly detection problems,

having achieved this performance for a classification of over 10 different types of attacks

(Radford, Richardson and Davis, 2018). This work could be improved by focusing the model

on specific attacks, hence achieving even better results.

2.4 Long Short Term Memory Networks

Recurrent neural networks are an improvement to the traditional feed-forward neural networks

that have feedback loops within the nodes of its layers. This enables them to use current input

as well as their previous output when evaluating the current output. This enables the recurrent

neural networks to have short term memory, since it can use its previous output. As the weights

are updated in the neural network nodes, old outputs are increasingly have less impact on the

current input, hence recurrent neural networks can be said to have short term memory.

Since simple recurrent neural networks have short term memory, they are unable to relate long

terms dependencies, where the cause and effect relationships are separated by long time

differences. This makes them result into poor performance where long term dependencies are

required to make a correct prediction.

The continuous weight updates result into a common challenge with simple recurrent neural

networks, that of exploding and vanishing gradients. When the gradients are continuously

multiplied by a factor greater than 1, they tend to quickly explode due to the compounding

effect, and when this factor is less than 1 the gradients will vanish.

Long short term memory (LSTM) networks are a subset of recurrent neural networks that

present a solution to the problems of recurrent neural networks. The LSTM networks solve the

problems of exploding and vanishing gradients as well as that of long term dependencies by

introducing long term memory in the cells of the recurrent neural networks.

15

An LSTM cell is made up of three gates. These gates control the information flow in the cell.

These are the forget gate, the input gate and the output gate. The LSTM cell maintains a state

or memory that can be used when evaluating the output. This state is what gives the cell the

long term memory, enabling it to comprehend long term dependencies. The figure below shows

the LSTM cell structure.

Figure 2: The structure of an LSTM cell when unfolded in the time domain (Olah, 2015)

The top vertical line in the cell state, that can be denoted by Ct. The current input (Xt) goes into

the cell through the forget gate. The sigmoid in the forget gate determines whether to delete

information from the cell state. The sigmoid output is a number between 0 and 1, which

determines how much information is retained in the cell state.

The next layer (input gate layer) determines what new information will be stored in the cell

state. The sigmoid layer of the input gate determines which values will be updated, while the

tanh creates a vector of candidate values that will be updated. These are then combined at the

pointwise multiplication stage and added to the state by the pointwise addition stage.

The final decision is what to output, which is done by the output gate layer. The output will be

a filtered version of the cell state. The sigmoid determines what part of the cell state will be

pushed to the output. The tanh is used to limit the values fetched from the state to between -1

and 1. The output of the tanh is multiplied with the output of the sigmoid to give the output,

denoted by ht .Since these are cells of a recurrent neural network, the current output will be

used as input at the next time frame t+1, which is repeated until the network finishes evaluating

(Olah, 2015).

16

LSTM networks benefit from being able to evaluate long term dependencies, hence have shown

great potential in evaluating time series problems. This is because the cell state enables them

to relate cause and effects that may be separated by long sequences, which simple recurrent

neural networks are not able to evaluate (Hochreiter and Schmidhuber, 1997).

2.5 Gaps in Literature

There are diverse works done in SQL Injection detection using signature detection and machine

learning methods such as SVM, Hidden Markov model and recurrent neural networks,

including LSTM Networks. However, there are key improvements that can be done to these

studies to improve their performance and build a better detection model that can be used in

practical applications.

The models reviewed are usually skewed towards detection of tautology-based attacks, while

there are other equally popular SQL injection attack types. This is evident in the works of

Rawat and Shrivastav, who work on an SVM model for classifying SQL statements. These

works can be improved by using a more balanced dataset to train the model, hence ensuring

that the model works for all other SQL injection types (Rawat and Shrivastav, 2012).

The studies explored in this chapter focus on detecting SQL injection on the database firewall

layer. This approach faces several challenges including the firewall having to classify all SQL

queries, including the ones that do not include user data hence are not vulnerable to injection.

Web application firewalls are already popular, and a solution that can work on this layer would

be more practical for most web applications, in addition to being able to be trained to detect

injection attacks among other attacks. Radford, Richardson and Davis have worked with this

approach and they have been able to detect various kinds of attacks (Radford, Richardson and

Davis, 2018).

Adaptive learning techniques benefit from being able to learn from new attacks when they

occur. In adaptive techniques, the requests observed during detection stage are logged and later

used to further train the model, hence the model improves with time and is able to learn any

new attacks that may come (Dong and Zhang, 2017). This presents a good way to improve our

model, by having the model learn from the samples observed during detection.

17

Most studies explored have achieved good accuracy and precision, with values up to 99% seen

in the SVM model by Rawat and Shrivastav, even though the scope of detection is limited. The

challenge with these models would be to retain the accuracy but improve the scope to include

all kinds of injection attacks.

2.6 Proposed Solution

The proposed solution will consist of an SQL injection detection middleware that will protect

a target application. The middleware will be situated before the application and all requests

going to the application will first be passed through the injection detection middleware. The

middleware is capable of classifying injection attacks from safe requests, will allow safe

requests and block the unsafe request containing attacks.

Figure 3: Web request middleware during detection

The middleware will also push all the requests, together with the decision made on the requests

to a log file. This log file can then be analyzed to determine the model performance and then

to retrain the model to improve its performance.

18

Chapter 3: Methodology

3.1 Introduction

This section covers the step by step guide taken to execute the research. This includes the

collection of data, cleaning and feature extraction, train the model and testing and validation

of the model.

This study takes an experimental research design. Experimental research refers to a strategy

that investigates cause and effect relationships. It seeks to prove or disprove a causal link

between a factor and an observed outcome (Oates, 2006). The main objective of this research

is to build a neural network model using long short term memory (LSTM) recurrent neural

networks, and prove or disprove their ability to be used to detect injection attacks.

In the course of achieving this, we built a method of collecting request samples for our training

data then used various request sources to collect both normal and injected requests. We then

cleaned the data collected and extracted the features required to train our LSTM model. We

then used this data to train the model and ran experiments with various LSTM network

parameters and recorded the results to determine the best model performance. The results were

recorded and analyzed to determine whether the model was successfully able to detect injected

requests.

3.3 Data Collection

To train the model, we needed to collect typical normal and injected requests that a web

application can receive. This data was collected by logging requests going through a

middleware embedded in a web application. This was achieved by modifying the web

application to record all requests made to it to a log file, which was then used for further

processing.

For this research, we needed a collection of normal and injected requests. The injected requests

needed to have a mix of the various kinds of injection attacks so as to ensure the model is

trained to detect all kinds of injection.

19

To obtain this data, we used the following tools:

I. An SQL injection testing tool (Sqlmap) – This is a commonly used tool to test web

applications for injection attacks. It generates different kinds of attacks to test for

various vulnerabilities. All tests available on Sqlmap were run with the DVWA

application as the target. The procedure involved downloading and installing sqlmap,

then running the command “python sqlmap.py -u

http://dvwa.local/vulnerabilities/sqli?id=1”. This command

generates the attacks and sends them to the application. The sqlmap program replaces

the id parameter in the url with the attacks.

II. A python script that generates both safe and unsafe requests. This script was develop

to produce a mix of all the eight types of SQL injection mentioned in chapter two hence

would be useful to ensure the collected dataset is balanced. The script was run and its

output is requests that are sent into the target application.

For the target application, we adopted an instance of the damn vulnerable web application

(DVWA). DVWA is an application built in PHP that exposes multiple vulnerabilities. This

applications is aimed to provide an environment for testing of ethical hacking skills and also

provide a platform for software developers to learn how to secure their web applications. For

our case, we made modifications to the application to log the requests made to the application

together with label information on whether the request is an attack or is legitimate.

Collection of the requests was done by first running sqlmap on the application then running the

python script to send additional requests to the applications. A header was used to label the

requests from the script as secure or not secure, while all requests from sqlmap were labelled

as not secure.

3.4 Data Cleaning and Feature extraction

In this stage, we were interested in dimension reduction to find the set of minimal features that

best classifies the data (Staudemeyer and Omlin, 2014).

The data collected contained the following attributes, whose relation to the injection attacks

was not known:

20

I. The request method

II. The request headers

III. The target URL of the request

IV. The input data

V. The source IP address

VI. The source user agent

Furthermore, the data contained a complicated structure that could be reduced to make it easy

to train the model with the dataset. We then singled out the important information from the

dataset, which was the ‘secure’ header to serve as the label, and the input data, which is the

text used to train the model.

The dataset was reduced to the two parameters, the content and the label, which was then saved

to a csv file that would be used to train the model.

3.5 Training and experimentation

3.5.1 Data preparation

The cleaned data obtained after feature extraction was then used for training the model. This

being a classification problem on supervised model, the logs were labelled that indicate

whether their content was secure or not. A ‘secure’ header was added to each line of the CSV

file, and was labelled with 1 for secure content, and 0 for content that was not secure.

The dataset was then divided into the two samples. We used the first 90% of the requests were

used as the training sample and the last 10% was the test sample.

To train a neural network using text training data, the data was transformed into a numerical

form which is fit for training in a neural network. In this case, the text was converted into a

sequence of numbers. This was achieved by writing each unique word in the training sample

into a dictionary, then using the indices of the words in the dictionary as their numeric

equivalent. This produced a sequence of numbers used to train the model.

21

3.5.2 Model Development

The model was developed using TensorFlow’s implementation of LSTM. TensorFlow

provides an implementation of most machine learning algorithms that developers can use to

implement their models.

Models in TensorFlow are usually implemented in layers containing various components. Our

model consists of the following components:

I. Embedding layer for text processing and shaping into the input shape required by

the LSTM

II. LSTM layer, containing the neural network

III. Dense layer for output shaping

IV. Activation and dropout layers that convert the continuous output into binary output

that is expected of our binary classifier

The model was trained using the training data prepared as per the section above, and then

evaluated using the test data samples we had set aside.

3.5.3 Running the experiment

We trained the model using various LSTM model parameters so as to determine the best

parameters we can achieve with the model. Training was done using the training sample of the

dataset, then the test sample was used to test the model by doing detections and comparing

with the labels. The performance of the model was then recorded for comparison across

different parameters. The parameters that were tested are:

I. Set up training with random hyper-parameters

II. Vary the parameters comparing performance

III. Perform k-fold cross validation and measure final model performance

The first element of this experiment was to train the model using assigned parameters, then

measure the performance of this model. The LSTM model was set up and trained using the

dataset, now divided into 90% training instances and 10% testing instances.

To determine the best model parameters, we varied the parameters while comparing the

performance of the models with the different parameters. For each parameter, a confusion

matrix was built and receiver operator characteristics chart was made. These were then

22

compared for the selection of the best model. The following variations of the parameters were

considered:

I. Varying the LSTM blocks between 4, 16, 64 and 128 blocks

II. Using 1, 2 and 3 hidden layers

The two parameters were varied and the results of the confusion matrix and the receiver

operator characteristics (ROC) chart recorded. The best model performance was then picked

using the area under the ROC charts and the performance parameters from the confusion

matrix.

The next step was to perform cross-validation, so as to determine the model performance using

k-fold cross validation. This was done by dividing the data into 10 equally sized (or nearly

equal) datasets, then using each of these sets as the validation set and the rest of the dataset as

training dataset. The performance of the model was then taken as an average of the performance

parameters from the confusion matrix.

3.6 Testing and validation

At this stage, we tested the model to determine its performance. The trained model was given

real data to classify and the results then saved for analysis. The performance parameters we

looked to collect in this experiment were:

I. Confusion matrix

II. Receiver operator characteristics

III. Cross validation

3.6.1 Confusion matrix

In classification problems, the performance of a model can be obtained from a confusion

matrix. The table below shows the confusion matrix that was used in this research.

Table 1: Confusion matrix

 Predicted
Secure Not Secure

Secure True positive (TP) False Negative (FN)

Not Secure False Positive (FP) True Negative (TN)

23

From the confusion matrix, the following performance measures can be obtained:

I. Accuracy

II. Recall (Sensitivity or True positive rate)

III. Precision (Positive predictive value)

IV. Specificity (True negative rate)

V. False positive rate

From the confusion matrix, the accuracy of the model can be calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

The accuracy is also referred to as the calculation rate, and is a measure of how the different

instances are classified correctly (Staudemeyer, 2015).

Recall, also referred to as sensitivity or true positive rate refers to the portion of positive

instances correctly classified as positive. It is calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision refers to the probability that an instance is classified correctly. The precision score is

calculated as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

The specificity or true negative rate refers to the portion of negative instances that are correctly

predicted as negative. It is calculated as:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

The False Positive Rate (FPR) is an important metric for this model that determines the quality

of the classification. This is because the false positives represent legitimate users that are

flagged as making malicious requests. For high throughput applications, this could mean a lot

of legitimate users not having access to the system. The False Positive Rate (FPR) can be

calculated as below.

24

𝐹𝑃𝑅 =	
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

It is desirable that the False Positive Rate remains as low as possible, to minimize the number

of mis-classified legitimate requests.

3.6.2 Receiver Operating Characteristic Analysis

The receiver operating characteristic (ROC) analysis evaluates the performance of an algorithm

over a range of possible operating scenarios. The ROC graph will be a plot of the true positive

rate (TPR) (y-axis) against the false positive rate (FPR) (x-axis) at various classification

thresholds. To compute points in the ROC curve, the model will be evaluated at different

threshold values and the TPR vs FPR plotted.

Figure 4: Sample ROC chart

The two-dimensional area under the curve provides an aggregate measure of performance

across all thresholds. It is a threshold invariant measure, since it ranks the quality of the models

prediction regardless of the classification threshold chosen (Staudemeyer, 2015).

25

3.6.3 Cross Validation

Cross validation is a method of evaluating machine learning models by dividing data into two

parts, one to train and the other to test the model. In typical cross-validation, the test and

training instances cross-over such that each instance will be used as test or training in

subsequent rounds.

In k-fold cross validation, the data is divided into k equal or nearly equal segments or folds.

For each of the k folds, one of the fold is used as the validation (test) set while the rest of the

k-1 sets are then used as the training or learning set. The performance of the model is then

taken as an aggregate of the performance over the k fold. Different aggregation measures such

as average can be used for this (Payam, Lei and Huan, 2008).

In this study, we performed a tenfold cross validation. This was done by dividing the dataset

into ten nearly equal parts, with the samples that go into each fold randomly selected from the

dataset. Each of the folds was then designated as a test sample and the remaining dataset used

to train the model. This was repeated for all folds, and the final performance calculated as the

mean performance of each of the ten folds.

26

Chapter 4: Results and Discussion

4.1 Introduction

The main goal of this research is to collect data and train an LSTM model that is able to classify

requests containing injection attacks. In chapter 3, we collected the training and test data,

improved the data and used it to train the model. We then evaluated the model, noting the key

performance characteristics of the model and also determined the best network parameters for

the highest performance of the model.

This chapter outlines the results from conducting the experiment as described in chapter 3. It

then goes ahead to discuss these results, what they mean and comparison to similar studies

done.

4.2 Data Collection

The data for this study was generated as described in the methodology section. Using the two

methods 11,093 requests were collected, 42% of which were generated from sqlmap while the

rest came from the custom python script. In this dataset, 41% were labelled as secure and 59%

were labelled as not secure.

Below is a sample of 10 requests in the dataset.

Table 2: Sample requests in the dataset

Content Source Label

-1221")) OR ELT(9911=1136,1136) AND (("YbYz"="YbYz sqlmap not secure

1]-(SELECT 0 WHERE 1518=1518 AND 4093=3287)|[1 sqlmap not secure

1'||(SELECT RQUC WHERE 8367=8367 AND
1975=1975)||'

sqlmap not secure

1))) AND 3144=(SELECT (CASE WHEN (3144=3144)
THEN 3144 ELSE (SELECT 5593 UNION SELECT 2035)
END))-- rtUY

sqlmap not secure

'; sp_execwebtask() -- script not secure

Suzanne Torres'; drop table Steven Ramos; -- script not secure

Marks'; insert into Jenkins set Clark = (354)200-
0039x6685 where Gonzalez = 978-0-435-11180-9; --

sqlmap not secure

economic script secure

program script secure

'; exec(Michelle Russell) -- script not secure

27

This dataset was distributed among the injection types as follows:

Figure 5: Distribution of the different attack types in the dataset

4.3 Model Evaluation Results

The model was built, then the parameters varied over the following possible values:

I. Varying the LSTM blocks between 4, 16, 64 and 128 blocks

II. Using 1, 2 and 3 hidden layers

The results for each of these was recorded in a confusion matrix and the receiver operator

characteristics (ROC) chart. The best model from the confusion matrices and the ROC chart

was then selected and k-fold cross validation was done to determine the final model

performance.

4.3.1 Confusion Matrix

The table below shows the performance of the various models as obtained from the confusion

matrices of each of them.

28

Table 3: Performance of the models with varied parameters

Description TP TN FP FN Accuracy Recall Precision TNR FPR AUC

1 hidden layer, 4

blocks
459 595 55 1 0.950 0.998 0.893 0.915 0.085 0.977

2 hidden layers, 4

blocks
460 589 61 0 0.945 1.000 0.883 0.906 0.094 0.939

3 hidden layers, 4

blocks
460 589 61 0 0.945 1.000 0.883 0.906 0.094 0.966

1 hidden layer, 16

blocks
457 595 55 3 0.948 0.993 0.893 0.915 0.085 0.956

2 hidden layers, 16

blocks
460 589 61 0 0.945 1.000 0.883 0.906 0.094 0.955

3 hidden layers, 16

blocks
454 595 55 6 0.945 0.987 0.892 0.915 0.085 0.976

1 hidden layer, 64

blocks
459 595 55 1 0.950 0.998 0.893 0.915 0.085 0.976

2 hidden layers, 64

blocks
460 589 61 0 0.945 1.000 0.883 0.906 0.094 0.941

3 hidden layers, 64

blocks
456 595 55 4 0.947 0.991 0.892 0.915 0.085 0.976

1 hidden layer, 128

blocks
0 650 0 460 0.586 0 0 1.000 0 0.327

2 hidden layers, 128

blocks
459 595 55 1 0.950 0.998 0.893 0.915 0.085 0.975

3 hidden layers, 128

blocks
460 589 61 0 0.945 1.000 0.883 0.906 0.094 0.953

Three model setups achieved the best performance, with equal measures across all of the 5

parameters. These are the ones highlighted in green in the table above, being the models with

1 hidden layer 4 blocks, 1 hidden layer 64 blocks and 2 hidden layers 64 blocks.

We note that the performance difference between the different model parameters is not very

large, hence all the different variations of the model are able to sufficiently classify secure

requests from non-secure requests. The exception to this is the model with 1 hidden layer and

128 blocks, which posted the poorest performance compared to the rest. The simpler models

29

are marginally better, pointing to the fact that the more complex ones are prone to over fitting

hence increasing the number of errors.

These results show that simple LSTM networks are able to better classify the requests,

compared to more complex ones. The simple networks are already offering good performance,

hence as they get more complex the classification becomes less efficient due to the many

weights a complex neural network needs to evaluate to make a decision. Furthermore, a simple

model is more desirable compared to a complex one since a simpler model requires less

compute resources than a more complex one. This makes the simpler model more suitable for

large scale use.

We also observe that the model attains good recall values for all model parameters, with the

selected models achieving a recall of 0.988. This is a result of the high number of true positives

and low prevalence of false negatives, also supported with the low false positive rate. The high

recall shows that 98.8% of the positive (labelled as secure) samples are detected correctly,

hence giving a high relevance to the results.

4.3.2 Receiver Operating characteristics

The receiver operator characteristics (ROC) for each of the models were then plotted, and the

area under the curve (AUC) used to compare the models. The best model was then selected as

the one with the highest area. The figure below shows the ROC chart for the models:

30

Figure 6: ROC chart comparing the various models

The best performance was obtained from the model with 4 blocks and 1 hidden layer which

achieved an area under the curve of 0.977. Since this is among the best models selected from

the confusion matrix performance comparison in 4.5.1 above, it was selected as the best

performing model parameters. It is also the simplest model, hence it would require less

compute resources to train and evaluate.

4.3.3 Cross Validation

The model selected from 4.5.1 and 4.5.2 above was then used for k-fold cross-validation to

determine its performance. We divided the dataset into 10 folds then used each of them as a

test set while using the rest of the training set. The results of each of the folds was then tabulated

and the average taken as the final model performance.

31

Table 4: Cross validation results

Description TP TN FP FN Accuracy Recall Precision TNR FPR AUC

Fold 1 462 597 50 1 0.954 0.998 0.902 0.923 0.077 0.986

Fold 2 437 608 65 0 0.941 1.000 0.871 0.903 0.097 0.980

Fold 3 441 617 50 2 0.953 0.995 0.898 0.925 0.075 0.986

Fold 4 438 618 53 0 0.952 1.000 0.892 0.921 0.079 0.985

Fold 5 443 617 49 0 0.956 1.000 0.900 0.926 0.074 0.985

Fold 6 435 630 44 0 0.960 1.000 0.908 0.935 0.065 0.988

Fold 7 469 583 57 0 0.949 1.000 0.892 0.911 0.089 0.981

Fold 8 462 600 46 1 0.958 0.998 0.909 0.929 0.071 0.985

Fold 9 458 613 38 0 0.966 1.000 0.923 0.942 0.058 0.988

Fold 10 444 612 52 1 0.952 0.998 0.895 0.922 0.078 0.985

Average 0.954 0.999 0.899 0.924 0.076 0.985

The model performance from this method is found to be an accuracy of 95.4%, recall of 99.9%,

precision of 89.9%, true negative rate of 92.4% and true positive rate of 98.5%.

4.3.4 Comparison of the detection accuracy of various injection types

The table below shows a comparison of the accuracy in detection of the different kinds of

injection attacks

Table 5: Comparison of the detection accuracy of different injection attack types

Type Accuracy

Tautology based 0.999

Illegal or logically incorrect 0.953

Piggy backed queries 0.972

Union queries 0.999

Stored procedures 0.999

Inference attacks 0.958

Alternate encoding 0.683

The model is seen to produce good accuracy with most injection types. There’s however

reduced accuracy for the alternate encoding types due to the difficulty differentiating this from

other genuine inputs. This is a result of the nature of encoded strings, which look like a

32

combination of random strings. This makes it difficult for the model to differentiate these from

random strings that can also be secure,

4.4 Discussion

The LSTM model was successfully built and it was able to classify requests as either injected

or safe. Variation of the model parameters only resulted into small changes in the performance

parameters, with an exception of one model whose performance reduced to an accuracy of

58.6%.

Over the 10-fold cross validation, the model consistently achieved an accuracy of over 94.1%

showing the model was able to learn from any of the instances of the data, and the results were

not as a result of features in any specific training or validation instances. The injection detection

classifier reached an accuracy of 95.4%, recall of 99.99% and precision of 89.9%. The true

negative rate or specificity was found to be 92.4%. This means the model classified 92.4% of

the attacks correctly. The true positive rate was found to be 98.5%. The average area under the

receiver operator characteristics (ROC) plot for the 10 folds was found to be 0.985. The area

under the curve (AUC) determines how much a classifier is able to distinguish between classes.

An AUC of 0.985 is therefore satisfactory and shows the model has a high ability to distinguish

between the two classes of safe and unsafe requests.

Comparing the performance for the various injection types, it is seen that an accuracy of over

90% is obtained for all injection types with an exception of alternate encoding attacks where

the accuracy is reduced. This is due to the nature of the attack strings of this type where they

are seen as random strings, hence differentiating the pattern from other random strings that are

not attacks is difficult.

4.4.1 Benchmarking with similar studies

The performance of the LSTM based injection attack classifier was benchmarked against

similar techniques that have been used to detect injection attacks. The classifiers were

benchmarked on the basis of the SQL injection types they are able to detect. Below is a table

comparing the different studies and the various kinds of injection attacks they are able to

detect?

33

Table 6: Comparison with similar studies by features

Tool Reference Taut.

Logically

Incorrect Union

Piggy

backed

Stored

procedure Inference

Alt.

Encoding

This study Yes Yes Yes Yes Yes Yes Yes

SQLiGoT

(Kar, Panigrahi

and

Sundararajan,

2016) Partial Yes Yes Yes Yes Yes Yes

SVM

(Rawat and

Shrivastav,

2012) Yes No No No No No No

Legend: Taut -Tautologies, Alt- Alternate

The SQLiGoT model has a weakness of being able to only partially detect tautology based

injection attacks. This is a serious weakness since tautology based attacks are one of the

common injection types experienced. This study not has this ability, but also has good

performance over these attack types.

In terms of accuracy, the other comparable tools are only able to detect tautology based attacks,

hence it would not be a fair comparison to compare the studies based on accuracy only.

However, comparing the accuracy for tautology based attacks, our model still achieves better

performance compared to the other two models.

Table 7: Comparison of accuracy for tautology attack detection

Description Study Technique Accuracy (For

Tautologies Only)

This study - LSTM 99.9%

SQLiGoT (Kar, Panigrahi and Sundararajan,

2016)

Graph of tokens and SVM 99.63%

SVM (Rawat and Shrivastav, 2012) SVM 96.47%

From this comparison, we find that our tool has a more comprehensive ability to detect all

kinds of injections. Other tools do not have the ability to detect all the other kinds of attacks.

This combined with the decent accuracy, precision and recall obtained makes this tool better

for detecting injection attacks.

34

Chapter 5: Conclusion

This chapter gives a brief conclusion to the study by outlining the achievements of this study,

the contributions of this research, the challenges faced, recommendations and further work that

can be done to build on this study.

5.1 Achievements

The main objective of this study was to develop a neural network model using LSTM to detect

injection attacks in web requests. To achieve this, a method of collecting web requests for

analysis was developed by modifying the damn vulnerable web application (DVWA) to log all

requests received. The first objective of developing a method to collect web requests for

analysis was thus achieved, and the requests were collected by sending requests from sqlmap

and a custom python script to the DVWA installation. The LSTM network was then trained

using Tensorflow and the data that had already been collected. At this stage, the second

objective of training the neural network model was achieved. Different LSTM network

parameters were tested in order to determine which one resulted into the best detection

performance, and the best performing parameters were picked, hence achieving the third

objective. Finally, the model’s ability to detect injection attacks was tested by using a confusion

matrix and cross validation. The model was found to have an accuracy of 95.4%. We can

therefore conclude that the trained model was able to detect injection attacks with a satisfying

performance, and thus all objectives were met.

The ability of an intrusion detection system to learn from new attacks is important in securing

systems due to the changing nature of the attack landscape. The proposed system addresses

this by continuously logging requests observed and their corresponding output. This can be

used to further fine tune the model to achieve even better performance.

5.2 Contributions

This study contributes into the knowledge of how LSTM recurrent neural networks can be

trained to detect injection attacks. It provides an improvement to the existing methods of

detecting these attacks by giving a more comprehensive and accurate method that can

adequately detect the various injection types. The knowledge provided in this study can be

improved on and used for detection of injection attacks in real web applications, hence

contributing to the safety of the internet in general.

35

The study also includes software that can be used to filter out attacks using any deep learning

model implemented in Tensorflow. This software will be useful to researchers looking to test

their models on a live environment, since they do not have to rebuild their own, instead they

can focus on making their models better and reuse our program while testing.

5.3 Challenges

The major challenge faced when doing this study was the lack of a standard dataset that could

be used in this study. Standard datasets are usually useful in machine learning problems since

they are usually well vetted by experts to ensure that they are representative of occurrences in

the real world. With standard datasets, it’s also easy to benchmark a model’s performance with

other approaches since the data used is the same, and performance differences can only be

attributed to the model itself, and not the training or test data used.

The absence of key performance parameters in most of the published similar works made it

hard to compare the performance of this model with those developed in the other works, since

these works did not include the performance of their models. This reduced the number of works

that this study could be compared with. More comparisons would result into better

benchmarking of this study to similar works.

5.4 Recommendations and future work

In this study, we collected data using two tools in order to obtain sufficient training data. Future

studies can look into the development of standard datasets for injection attacks and other

popular web attacks such as cross site scripting (XSS). This would be helpful to researchers in

this area as they would be able to effectively compare the performance of different approaches

while eliminating errors due to biases in the training data.

In future, studies can be done using other deep learning approaches in order to benchmark their

performance with this study. These can also be tested in large scale deployments in order to

determine their performance when used for heavy traffic web applications. Such tests will be

useful in bringing these solutions closer to wide spread use in intrusion detection.

Studies can also be done on other attack types such as cross site scripting (XSS) to determine

if LSTM networks are a suitable method to detect them. This will be useful in evaluating

whether LSTMs can be used to build an all-round intrusion detection system.

36

References

1) Akamai (2017) ‘State of The Internet/Security - Q3 2017 Report’. Available at:

http://www.dimtec.com/descargas/q3-2017-SOTI/security-report.pdf.

2) Alnabulsi, H., Islam, R. and Mamun, Q. (2014) ‘Detecting SQL Injection Attacks Using

SNORT IDS’, (November). doi: 10.1109/APWCCSE.2014.7053873.

3) Anstee, D. (2017) Trends in Internet Traffic Patterns.

4) Auria, L. and Moro, R. A. (1998) ‘Support Vector Machines (SVM) as a Technique for

Solvency Analysis’, The American journal of physiology, 275(3 Pt 1), pp. E432–E439.

5) Bandhakavi, S. et al. (2007) ‘CANDID: Preventing Sql Injection Attacks Using Dynamic

Candidate Evaluations’, Proceedings of the 14th ACM Conference on Computer and

Communications Security, pp. 12–24. doi: 10.1145/1315245.1315249.

6) Bontemps, L. et al. (2017) ‘Collective Anomaly Detection based on Long Short Term

Memory Recurrent Neural Network’, Agence nationale pour l’amélioration des conditions

de travail. doi: 10.1007/978-3-319-48057-2_9.

7) Buehrer, G. T., Weide, B. W. and Sivilotti, P. A. G. (2006) ‘Using parse tree validation to

prevent SQL injection attacks’, (January 2005), p. 106. doi: 10.1145/1108473.1108496.

8) Chalapathy, R., Menon, A. K. and Chawla, S. (2018) ‘Anomaly Detection using One-Class

Neural Networks’, (August), pp. 19–23. Available at: http://arxiv.org/abs/1802.06360.

9) Deuble, A. (2012) ‘Detecting and Preventing Web Application Attacks with Security

Onion’.

10) Dong, Y. and Zhang, Y. (2017) ‘Adaptively Detecting Malicious Queries in Web Attacks’.

doi: 10.1007/s11432-017-9288-4.

11) Ergen, T., Mirza, A. H. and Kozat, S. S. (2017) ‘Unsupervised and Semi-supervised

Anomaly Detection with LSTM Neural Networks’, pp. 1–12. Available at:

http://arxiv.org/abs/1710.09207.

12) Hochreiter, S. and Schmidhuber, J. (1997) ‘Long Short Term Memory’, 9(8), pp. 1–32. doi:

10.1162/neco.1997.9.8.1735.

13) Howard, M. and Leblanc, D. (2003) Writing Secure Code - Practical Strategies and

Techniques for Secure Application Coding in a Networked World.

14) IBM (2017) What you need to know about injection attacks.

15) Kar, D. et al. (2016) ‘Detection of SQL injection attacks using hidden markov model’,

Proceedings of 2nd IEEE International Conference on Engineering and Technology,

ICETECH 2016, (March 2016), pp. 1–6. doi: 10.1109/ICETECH.2016.7569180.

37

16) Kar, D., Panigrahi, S. and Sundararajan, S. (2016) ‘SQLiGoT: Detecting SQL injection

attacks using graph of tokens and SVM’, Computers and Security, 60(April 2016), pp. 206–

225. doi: 10.1016/j.cose.2016.04.005.

17) Kruegel, C. and Vigna, G. (2010) ‘Anomaly Detection of Web-Based Attacks’,

Masterarbeit, (November).

18) Livshits, V. B. and Lam, M. S. (2005) ‘Finding Security Vulnerabilities in Java

Applications with Static Analysis’, USENIX Security ’05 (USENIX Security Symposium),

p. 18. doi: 10.1.1.132.3096.

19) Maor, O. and Shulman, A. (2005) ‘SQL Injection Signatures Evasion’, White Paper of

Imperva Inc., (April). Available at: https://www.imperva.com/docs/IMPERVA_HII_SQL-

Injection-Signatures-Evasion.pdf.

20) Oates, B. J. (2006) Researching Information Systems and Computing. Sage Publications

Ltd.

21) Olah, C. (2015) Understanding LSTM Networks. Available at:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

22) Owasp (2013) OWASP Top 10

23) - 2013, The Open Web Application Security Project. Available at:

http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf.

24) Owasp (2017) OWASP Top 10 -2017. Available at:

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf.

25) Pauwels, E. J. and Ambekar, O. (2013) ‘One Class Classification for Anomaly Detection:

Support Vector Data Description Revisited’, 7987(August 2011). doi: 10.1007/978-3-642-

39736-3.

26) Payam, R., Lei, T. and Huan, L. (2008) ‘Cross-Validation’. Available at:

http://leitang.net/papers/ency-cross-validation.pdf.

27) Radford, B. J., Richardson, B. D. and Davis, S. E. (2018) ‘Sequence Aggregation Rules for

Anomaly Detection in Computer Network Traffic’. doi: arXiv:1805.03735v1.

28) Rawat, R. and Shrivastav, K. S. (2012) ‘SQL injection attack Detection using SVM’,

International Journal of Computer Applications, 42(13), pp. 1–4. doi: 10.5120/5749-7043.

29) Ray, D. and Ligatti, J. (2014) ‘Defining Injection Attacks’, (1), pp. 425–441. doi:

10.1007/978-3-319-13257-0_26.

30) Sheykhkanloo, N. M. (2015) ‘A Pattern Recognition Neural Network Model for Detection

and Classification of SQL Injection Attacks’, International Journal of Computer and

Information Engineering, 9(6), pp. 1380–1390. doi: 10.4018/IJCWT.2017040102.

38

31) Shin, Y., Williams, L. and Xie, T. (2014) ‘SQLUnitGen : SQL Injection Testing Using

Static and Dynamic Analysis’, (December), pp. 0–1.

32) Skaruz, J. and Seredynski, F. (2007) ‘Recurrent neural networks towards detection of SQL

attacks’, Proceedings - 21st International Parallel and Distributed Processing Symposium,

IPDPS 2007; Abstracts and CD-ROM, (April 2007). doi: 10.1109/IPDPS.2007.370428.

33) Staudemeyer, R. C. (2015) ‘Applying long short-term memory recurrent neural networks

to intrusion detection’, South African Computer Journal, 56(1), pp. 136–154. doi:

10.18489/sacj.v56i1.248.

34) Staudemeyer, R. C. and Omlin, C. W. (2014) ‘Extracting salient features for network

intrusion detection using machine learning methods’, South African Computer Journal,

52(June), pp. 0–15. doi: 10.18489/sacj.v52i0.200.

35) Valeur, F., Mutz, D. and Vigna, G. (2005) ‘A learning-based approach to the detection of

sql attacks’, Intrusion and Malware Detection and Vulnerability Assessment, pp. 123–140.

doi: 10.1007/b137798.

39

Appendices

Appendix 1: Training code

from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import roc_curve, confusion_matrix, auc,
accuracy_score
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.callbacks import EarlyStopping
from sklearn.utils import shuffle
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

class Trainer:

 max_words = 1000
 max_len = 150
 tokenizer = None
 X_train = None
 X_test = None
 Y_train = None
 Y_test = None

 def __init__(self, data):
 self.prepare_dataset(shuffle(data))

 def prepare_dataset(self, data):
 labels = list(data['Secure'])
 input_param = list(data['Content'])

 X = input_param
 Y = labels
 le = LabelEncoder()
 Y = le.fit_transform(Y)
 Y = Y.reshape(-1, 1)

 self.X_train, self.X_test, self.Y_train, self.Y_test =
train_test_split(X, Y, test_size=0.1)

 tok = Tokenizer(num_words=self.max_words)
 tok.fit_on_texts(self.X_train)

 self.tokenizer = tok

 def set_train_test(self, X_train, X_test, Y_train, Y_test):
 self.X_train = X_train
 self.X_test = X_test
 self.Y_test = Y_test
 self.Y_train = Y_train

 def run_training(self, no_blocks=None, hidden_layers=None):
 model = self.model(no_blocks, hidden_layers)

40

 if no_blocks is None:
 model.summary()

 model.compile(loss='binary_crossentropy', optimizer=RMSprop(),
metrics=['accuracy'])

 model.fit(self.tokenize(self.X_train), self.Y_train,
batch_size=128, epochs=10, verbose=1,
 validation_split=0.1,
callbacks=[EarlyStopping(monitor='val_loss', min_delta=0.0001)])

 model.save('trained.h5')

 return model

 def train(self, no_blocks=None, hidden_layers=None):
 model = self.run_training(no_blocks, hidden_layers)
 if no_blocks is None:
 no_blocks = 64

 if hidden_layers is None:
 hidden_layers = 1

 desc = '{} blocks {} layers'.format(no_blocks, hidden_layers)

 self.results(model, desc)

 def train_multiple(self, blocks, hidden_layers):
 for block in blocks:
 for hidden_layer in hidden_layers:
 self.train(block, hidden_layer)

 def model(self, lstm_blocks=None, hidden_layers=None):
 if lstm_blocks is None:
 lstm_blocks = 64

 if hidden_layers is None:
 hidden_layers = 1

 print("Creating model with {} hidden layers, {} LSTM blocks
".format(hidden_layers, lstm_blocks))

 inputs = Input(name='inputs', shape=[self.max_len])
 layer = Embedding(self.max_words, 50,
input_length=self.max_len)(inputs)

 for i in range(0,hidden_layers - 1):
 layer = LSTM(lstm_blocks, return_sequences=True)(layer)

 layer = LSTM(lstm_blocks)(layer)
 layer = Dense(256, name='FC1')(layer)
 layer = Activation('sigmoid')(layer)
 layer = Dropout(0.5)(layer)
 layer = Dense(1, name='out_layer')(layer)
 layer = Activation('sigmoid')(layer)

 return Model(inputs=inputs, outputs=layer)

 def results(self, model, desc):
 prediction = self.predict(model, self.X_test)

 results = list(map(lambda i: round(i), prediction))

41

 ravelled = confusion_matrix(self.Y_test, results).ravel()

 # print("**** ravelled: "+ str(ravelled))
 tn = float(ravelled[0])
 fp = float(ravelled[1])
 fn = float(ravelled[2])
 tp = float(ravelled[3])

print('===\n'
 'Confusion matrix \n'
 'TP: {} TN: {} FP: {} FN: {}'.format(int(tp), int(tn),
int(fp), int(fn)))

 accuracy = (tp + tn) / (tp + tn + fp + fn)
 recall = 0 if tp == 0 else tp / (tp + fn)
 precision =0 if tp == 0 else tp / (tp + fp)
 tnr = 0 if tn == 0 else tn / (tn + fp)
 fpr = 0 if fp == 0 else fp / (tn + fp)
 fpr_keras, tpr_keras, thresholds_keras = roc_curve(self.Y_test,
prediction.ravel())
 auc_keras = auc(fpr_keras, tpr_keras)

print('===\n'
 'Test results \n'
 'Accuracy: {:0.3f} \n'
 'Recall: {:0.3f} \n'
 'Precision: {:0.3f} \n'
 'TNR: {:0.3f} \n'
 'FPR: {:0.3f} \n'
 'AUC: {:0.3f}'
 .format(accuracy, recall, precision, tnr, fpr, auc_keras))

 plt.figure(1)
 plt.plot([0, 1], [0, 1], 'k--')
 plt.plot(fpr_keras, tpr_keras, label=desc + ' (area =
{:.3f})'.format(auc_keras))
 # plt.plot(fpr_rf, tpr_rf, label='RF (area =
{:.3f})'.format(auc_rf))
 plt.xlabel('False positive rate')
 plt.ylabel('True positive rate')
 plt.title('ROC curve')
 plt.legend(loc='best')
 plt.savefig('roc.png')

 def accuracy(self, model, desc):
 prediction = self.predict(model, self.X_test)

 results = list(map(lambda i: round(i), prediction))

 accuracy = accuracy_score(self.Y_test, results)

 print("Model {} Accuracy {}".format(desc, accuracy))

 def predict(self, model, texts):
 sequences = self.tokenize(texts)
 sequences_matrix = sequence.pad_sequences(sequences,
maxlen=self.max_len)

 return model.predict(sequences_matrix)

 def tokenize(self, texts):

42

 sequences = self.tokenizer.texts_to_sequences(texts)

 return sequence.pad_sequences(sequences, maxlen=self.max_len)

Appendix 2: Detection Middleware Code

from flask import Flask, Response, Request, request
from requests import get, post
from keras.models import load_model
from model.Trainer import Trainer
import pandas

app = Flask('__main__')
SITE_NAME = 'http://dvwa.local'
DETECTION = True

TRAINER = Trainer(pandas.read_csv('dataset.csv'))
MODEL = load_model('saved_model.h5')
TRAINER.predict(MODEL, 'test')

@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def proxy(path):
 queries = str(request.query_string).split('&')

 if predict(queries) is False and DETECTION is True:
 resp = Response("Attack detected!! \n Input:
"+str(request.query_string))
 return resp

 got = get(gen_url(path))
 headers = got.headers
 resp = Response(got.content)
 resp.headers['Content-type'] = headers['Content-type']
 return resp

@app.route('/', defaults={'path': ''}, methods=['POST'])
@app.route('/<path:path>', methods=['POST'])
def post_proxy(path):
 data = request.data
 posted = post(gen_url(path), data)

 resp = Response(posted.content)
 resp.headers['Content-type'] = posted.headers['Content-type']

 return resp

def gen_url(path):
 return SITE_NAME + '/'+path+'?'+request.query_string

def log(text, verdict):
 df = pandas.DataFrame({"Content" : [text], "Secure": [verdict],
"Source" : "Prototype"})

 with open('detections.csv', 'a') as f:
 df.to_csv(f, header=False)

43

def predict(queries):
 for query in queries:
 text = query.split('=')

 if len(text) < 2:
 continue

 text = text[1]

 if text == '':
 continue

 res = TRAINER.predict(MODEL, [text])

 truthy = bool(round(res[0]))

 print('Input: {} Detection: {}'.format(text, 'Attack' if truthy is
False else 'Safe'))

 log(text, truthy)

 return truthy

 return True

app.run(host='0.0.0.0', port=8090)

