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Abstract

In this project, we compute the period π(λ ) =
∮

γλ
ωλ of the Landau-Ginzburg [LG] model

(Eλ ,ωλ ,γλ ) consisting of one parameter family of nonsingular cubics Eλ , algebraic n−forms

ωλ on Eλ and cycles γλ ∈ Hn(Eλ ,Z). This is a mirror symmetry toy model extension in

[CG19] for computing mirror pairs of elliptic curves Eλ .
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1 Introduction

1.1 Why Elliptic Curves?

The Integrals of the form

∫ polynomial√
cubic with three distinct roots

dx

began to show up in many di�erent applications (like the true description of a pendulum’s
path, or a 3− dimensional random walk). Because one of these integrals arose from the
ellipse arclength problem, they were dubbed the name elliptic integrals. And of course,
these denominators motivated people to study the underlying algebraic curve in

y =
√

cubic with three distinct roots.

Namely, if we square both sides, and we get elliptic curves.

1.2 Outline of the thesis

The outline of the thesis is as follows:

Chapter 2:
We use this chapter to introduce a complex projective space which is the space we shall
work on in this thesis. We shall also define a non singular cubic curve and wrap the
chapter by studying at intersection multiplicity and Bezout theorem.
Chapter 3:
Here, we introduce Riemann surfaces and specifically show the construction of a torus
as a Riemann surface. We also discuss non singular cubic curves and more specifically
the group law on cubic curves and then show the correspondence between non singular
cubic curves and the torus.
Chapter 4:
In this chapter, we shall demonstrate how understanding the geometry of cubic curves
can be useful in solving elliptic integrals of the first kind. In particular we discuss the
addition law on cubics. Finally, we reach the depth of discussion here by presenting a
solution to the picard - Fuchs equation.
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2 Preliminaries

This chapter is intended to provide a basic background to the content of this project as
well as serve to fix notations. Throughout, we work over the field C of complex numbers.
The content follows [Kir92] , [Mir95],[ST92] and [Rei13].

2.1 General Background

Elliptic integrals arise naturally in computation of arc lengths of ellipses. In this project
we re-interpret them as functions on complex projective curves.

2.2 The Complex projective space

De�nition 2.2.1. Consider the vector space W over �eld C, then the collection of all sub-

spaces of W of one dimension is called complex projective space over W denoted by P(W ). If

W =Ck+1
write CPk := P(Ck+1) or simply by Pk

. We call P1
the complex projective line or

the Riemann sphere and P2
the complex projective plane.

Choose the coordinates y ∈ Pk then y 6= 0 and y = (y0, . . . ,yk) ∈ Ck+1 as it represents
a line through the origin. Moreover, for any nonzero α , (y0, . . . ,yk) and (αy0, . . . ,αyk)

represents the same line in Ck+1. Observe that this implies (y0, . . . ,yk) = (αy0, . . . ,αyk)

are the same points in Pk.

De�nition 2.2.2. (y0, . . . ,yk) are called the homogenous coordinates of y and we write

y = [y0, . . . ,yk]

Thus

Pn :=
{

[y0, . . . ,yk]

∣∣∣∣ (y0, . . . ,yk) ∈ Ck+1 \{0}
}/

∼ .

where [x0, . . . ,xk]∼ [y0, . . . ,yk] only when for some α ∈C\{0}we have xs =αys for every
s = 0,1, . . .k.

Define a surjection π : Ck+1 \{0} → Pk by π(y0, . . . ,yk) = [y0, . . . ,yk] and induce a quo-
tient topology on Pk from topology on Ck+1 \{0} hence making Pk a topological space.
Namely, U ⊂ Pk is open exactly when π−1(U)⊂ Ck+1 \{0} is open.
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Proposition 2.2.3. The complex projective space Pk
of dimension k is compact.

Proof. Let S2k+1 =
{
(x0, . . . ,xk) ∈ Ck+1 : ∑

n
i=0 |xi|2 = 1

}
.

Then S2k+1
is a 2k+ 1−dimensional sphere. In particular, S2k+1 ⊂ Ck+1

is both closed

and bounded thus compact. The map π : S2k+1→ Pk
given by π : Ck+1 \{0}→ Pk

is con-

tinuous, and so its image is compact. Since S2k+1
is compact, its image must be compact.

Now, if [y0, . . . ,yk] ∈ Pk
then

α = |y0|2 + . . .+ |yk|2 > 0.

So

[y0, . . . ,yk] = [α−
1
2 y0, . . . ,α

− 1
2 yk].

But

|α− 1
2 y0|2 + . . .+ |α− 1

2 yk|2 = 1.

So

[y0, . . . ,yk] ∈ π(S2k+1).

Thus π : S2k+1→ Pk
is onto.

Proposition 2.2.4. The k− dimensional space Pk
is Hausdor�.

Proof. Our argument is as follows: if l and m are unique points of Pk
, then there are l

and m disjoint open neighborhoods.

Let L0 be an open set of Pk
then ψ : Lo→ Ck

is a homeomorphism.

Assume that l and m are inside L0 thus M, N are neighborhoods of ψ0(l), ψ0(m) respec-

tively such that M∩N = ∅ and ψ
−1
0 (M), ψ

−1
0 (N) such that ψ

−1
0 (M)∩ψ

−1
0 (N) = ∅ are

neighborhoods of l and m in Pk
respectively.

Speci�cally this is true for l = [1,0, . . . ,0], m = [1,1, . . . ,1]. Generally there are points

l0, . . . , lk of Pk
with l0 = l and no k+ 1 of the k+ 2 points l0, . . . , lk and m is inside a hy-

perplane. Moreover g : Pk→ Pk
is a transformation taking l to [1, . . . ,0], m to [1,1, . . . ,1].

Hence [1, . . . ,0] and [1,1, . . . ,1] have neighborhoods ψ
−1
0 (M) and ψ

−1
0 (N) in Pk

such that

ψ
−1
0 (M)∩ψ

−1
0 (N) =∅.

With g both continuous and bijection then g−1(ψ−1
0 (M)), g−1(ψ−1

0 (N)) are neighbor-

hoods of l, m respectively in Pk.
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2.3 Irreducibility and Singularity of algebraic curves in P2

De�nition 2.3.1. Let l(m,n) ∈ C[A2] be a degree d inhomogeneous polynomial. A a�ne
algebraic curve D in C2

is the zero set of l

D := {(m,n) ∈ C2 : l(m,n) = 0}= V(l)⊂ C2.

De�nition 2.3.2. Let L(m,n,r) = l̃ ∈ C[A3] be a degree d homogeneous polynomial. A

projective algebraic curve D in P2
is the zero set of L

D̃ := {[m,n,r] ∈ P2 : L([m,n,r]) = 0}= V(l̃)⊂ P2.

We then say a�ine algebraic curve D in C2 has been compactified into a projective
algebraic curve D̃ in P2.

We can always look at a�ine pieces D̃i = D̃∩Ui of D̃⊂ P2 by dehomogenizing L at xi = 1.
The Zariski topology on P2 can then be used to say all about D̃.

Theorem 2.3.3 (Hilberts Nullstellensatz, NSS). Take k =C or any algebraically closed �eld

and P,Q ∈ C[Ak] homogeneous polynomials, not necessarily of the same degree. Then

D := V(P) = V(Q) =: D′ ⊂ Pk

precisely when P|Qm
and Q|Pn

for some m,n > 0. So in Pk, algebraic curves D = D′ exactly
when their de�ning polynomials have equal factors which are also irreducible, but maybe

multiplicities not the same.

De�nition 2.3.4. An algebraic curve D̃ := {[m,n,r]∈P2 : L([m,n,r])= 0}⊂P2
is said to be

irreducible if L has factors which are not repeated. We then say, deg(D̃) = deg(L) = d and

write D̃d. By NSS, for irreducible algebraic curve we have V(L) = V(µαL) for α ∈ C\{0}
and µ ∈ {±1,±i} or units of k = k. Further, every algebraic curve can be decomposed into

�nitely many irreducible component, D̃ = E1 ∪ . . .∪Ek, where Ei = V(Li) are irreducible

algebraic curves and L = µα ∏
k
i=1 Lmi

i .

De�nition 2.3.5. Let D := {(m,n)∈C2 : l(m,n) = 0}⊂C2
an a�ne algebraic curve. Then

(r,s)∈C2
is said to be singular if r ∈ Sing(D) :=V

(
l, ∂ l

∂m ,
∂ l
∂n

)
.Whenever∅= Sing(D)⊂

C2
we say D is nonsingular a�ne curve.

For D̃ := {[m,n,r]∈CP2 : L([m,n,r]) = 0}⊂P2
projective algebraic curve. A point [t,v,w]∈

D̃ ∈ P2
is said to be singular if

t
∂L
∂m

([t,v,w])+ v
∂L
∂n

([t,v,w])+w
∂L
∂ r

([t,v,w]) = L([a,b,c]) = 0.

Whenever∅= Sing(D̃) :=V
(

m ∂L
∂m([m,n,r])+n∂L

∂n ([m,n,r])+ r ∂L
∂ r ([m,n,r])

)
⊂ P2

we say

D̃ is nonsingular projective curve.
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Lemma 2.3.6. A projective curve C = {[m,n,r] ∈ P2 : P(m,n,r) = 0} ⊂ P2
is compact and

Hausdor�.

Proof. To show the compactness of C is enough to show that C is a closed subset of P2
.

We employ the fact that P2
is compact and a closed subset of a compact space is compact.

Moreover a subset A of Pk
is closed only when π−1(A) ⊂ Ck+1 \ {0} is closed and π :

Ck+1 \{0}→ Pk
is given by

π(y0, . . . ,yk) = [y0, . . . ,yk].

Hence π−1(C) = {(m,n,r) ∈ C3 \ {0} : P(m,n,r) = 0} is closed by the argument that

polynomials are continuous. Hence C is compact.

Since Pk
is Hausdor� and C is a subset of Pk

we have that C is also Hausdor� by the fact

that any subset of a Hausdor� space is Hausdor�.

De�nition 2.3.7. Resultant Rl,s ∈ C is the determinant of an (l + s)× (l + s) matrix

obtained from the coe�cients of polynomials

l(x) =cmxm + . . .+ c1x+ c0

s(x) =dnxn + . . .+d1x+d0.

As follows




c0 c1 c2 . . . cm 0 0 0 . . . 0

0 c0 c1 c2 . . . cm 0 0 . . . 0

0 0 c0 c1 c2 . . . cm 0 . . . 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 . . . 0 c0 c1 c2 . . . cm

d0 d1 d2 . . . dn 0 0 0 . . . 0

0 b0 d1 d2 . . . dn 0 0 . . . 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 . . . 0 d0 d1 d2 . . . dn




.

And

Rl,s = α
n
β

m
∏

(1,1)≤(i, j)≤(m,n)
(µi−α j)≡ 0

precisely when

l(x) = α(x−α) . . .(x−αm)

s(x) = β (x−µ1) . . .(x−µn)
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have at least one common factor. You can also factorise resultant by factoring one of the

polynomials as Rp,qr = Rp,q×Rp,r which is useful in computing intersection multiplicities

of curves.

Remark 2.3.8. For homogeneous L,S ∈C[A3] we can �nd resultant RL,S(y,z) ∈C[A2] with

respect to x by treating both of them as L,S ∈ C[y,z][x]. Here deg
(
ai(y,z)

)
= m− i and

deg
(
b j(y,z)

)
= n− j.

2.4 Intersection Multiplicity and Bëzouts Theorem

De�nition 2.4.1. Let M :=V(P),N :=V(Q)⊂ P2
be two projective algebraic curves with-

out a common component and [t,v,w] = l ∈M∩N a nonsingular point. Then intersection
multiplicity Il=[t,v,w](M,N) = s of the two curves at l is the number of times they meet at

[t,v,w] = l and (calculated by brute force) sde�ned as the highest s for which

(cy−bz)s|RP,Q(y,z).

Or using 6,7 and 8 from Proposition below.

Proposition 2.4.2. Let M :=V(P),N :=V(Q)⊂CP2
and l1, l2 ⊂CP2

distinct lines, then

1. Il(M,N) = Il(N,M).

2. Il(M,N) = ∞ if M and N have a common component.

3. Il(M,N) = 0 if l /∈M∩N.

4. Il(l1, l2) = 1 if l1∩ l2 = {l}.

5. Il(M,TlM)> 1 if l ∈ Sing(M) where

TlM :=
{
[x,y,z] ∈M : (x− t)

∂P
∂x

(t,v,w)+(y−v)
∂P
∂y

(t,v,w)+(z−w)
∂P
∂ z

(t,v,w) = 0
}

is the tangent space to M at l = [t,v,w].

6. Il((x−α)k,M) = k× Il(x−α,M) for m≥ 1.

7. Il(M,N) = ∑
n
i=1 Il(M,Ni) where Ni := V(Qi) are the irreducible components of N.

8. Let E := V(PR+Q)⊂ P2
for some R ∈ C[A3], then Il(M,N) = Il(M,E).

De�nition 2.4.3. Let Md := V(K)⊂ CP2
be a nonsingular projective algebraic curve. The

Hessian is de�ned as

Hl(x,y,z) = det




Krr Prs Krt

Kst Kss Kst

Ktr Kts Ktt


 ,
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where Kr =
∂K
∂ r , Krs =

∂ 2K
∂ r∂ s ,etc.Also using Euler’s relation

rKr + sKs + tKt = dK

and simple row and column operations on HK(r,s, t), we have that

tHK(r,s, t) = (d−1)det




Krr Krs Kr

Krs Kss Ks

Ktr Kts Kt




and further that,

t2HK(r,s, t) = (d−1)2 det




Krr Krs Kr

Ksr Kss Ks

Kr Ks
d

d−1K


 .

De�nition 2.4.4. A nonsingular point l ∈ Md := V(P) ⊂ CP2
on a projective algebraic

curve is called an inflection point or a shorthand flex if Il(M,TlM) ≥ 3. A nonsingular

point l = [t,v,w] is a �ex precise when HP(t,v,w) = 0.

Theorem 2.4.5 (Bëzout Theorem, Weak form). Let Mm := V(T ),Nn := V(U) ⊂ P2
be

algebraic curves(projective) of degrees m,n respectively and without common factors. Then

]M∩N ≤ mn.
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T1

T2

T3

T4

T1 +T2 +T3 +T4

T1

T2

T3

2T1 +T2 +T3

T U

2T +2U

T

U

3T +U

T

4T
Figure 1. Five possible ways of intersection of two conics.

Proof. Proceed by contradiction. Idea: We pick mn+ 1 points T1, . . . ,Tmn+1 ∈ Mm ∩Nn

and proceed to show that if polynomials(homogeneous ) T (x,y,z), U(x,y,z) of degree m,n
respectively de�ning two curves respectively have equal factor then Mm and Nn have a

common component.

Choose u ∈ CP2 \Mm ∪Nn ∪1≤i< j≤mn+1 li j where li j is the line joining ti and t j for all

i, j. Apply projective transformation so that u = [1,0,0], hence ti = [ai,bi,ci] are such

that bi and ci are NOT both zeros by choice of u. We then have that t([1,0,0]) 6= 0 and

U([1,0,0]) 6= 0. In particular, am(y,z) 6= 0 and bn(y,z) 6= 0.

Now, x−ai|T ([x,bi,ci])×U([x,bi,ci]) for all ti ∈Cm∩Dn. Hence from de�nition of resul-

tant, we have that RT,U(bi,ci) = 0 which implies that ciy−biz|RT,U(y,z). Finally, since bi

and ci are not both zeros and t ′is distinct,

(
ciy−biz,c jy−b jz

)
= 1 for all i, j. Therefore,

mn+1

∏
i=1

(
ciy−biz

)∣∣RT,U(y,z).

But degRT,U(y,z) = mn and that of the left hand side is mn+1 showing that RT,U(y,z)≡ 0
showing that T (x,y,z) and U(x,y,z) have a common factor U(x,y,z) hence a common

component E := V (U). And because the hypothesis doesn’t want this, it must be that

]Mm∩Nn ≤ mn.
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Theorem 2.4.6 (Bëzout Theorem, Strong form). Let Mm,Nn ⊂ P2
be degree m and n pro-

jective algebraic curves respectively and with no common component. Then

∑
p∈M∩N

Ip(M,N) = mn.

Proof. From weak form of Bëzout Theorem, we have that ]Mm∩Nn = {p1, . . . , pk} is such

that k ≤ mn and that

(
ciy− biz,c jy− b jz

)
= 1 since q = [1,0,0], pi = [ai,bi,ci] and p j =

[a j,b j,c j] are NOT collinear. We then have, from the de�nition of intersection multiplicity

Ipi(Mm,Nn) and the fact that p′is are distinct, that

RP,Q(y,z) = α

k

∏
i=1

(
ciy−biz

)Ipi(Mm,Nn)

for 0 6= α ∈ C. Now equating degree on both sides we have that

k

∑
i=1

Ipi(Mm,Dn) = mn.

Example 2.4.7. Find the intersections of the following pairs of curves in P2
:

x(y2− xz)2− y5 = 0

y4 + y3z− x2z2 = 0

Solution:

Case1 : y = 1, then,(x : 1 : z)

Case2 : y = 0, then,(x : 0 : z)

Then we get {
x(1− xz)2−1 = 0

1+ z− x2z2 = 0

Equivalently the system gives,

x3z2−2x2z+ x−1 =0 (1)

−x2z2 + z+1 =0 (2)



10

We choose to see (1) and (2) as polynomials in C[x][z]
∣∣∣∣∣∣∣∣∣∣∣

x3 −2x2 x−1 0

0 x3 −2x2 x−1

−x2 1 1 0

0 −x2 1 1

∣∣∣∣∣∣∣∣∣∣∣

= x3

∣∣∣∣∣∣∣∣

x3 −2x2 x−1

1 1 0

−x2 1 1

∣∣∣∣∣∣∣∣
− x2

∣∣∣∣∣∣∣∣

−2x2 x−1 0

x3 −2x2 x−1

−x2 1 1

∣∣∣∣∣∣∣∣
.

=x3(x3 + x−1+ x2(x−1)+2x2)− x2(x4− x2(x−1)2 +2x2(x−1)− x3(x−1))

=x2
[
(x4 + x2− x+ x3(x−1)+2x3−4x4 + x2(x−1)2−2x2(x−1)+ x3(x−1)

]

=x2(x4 + x2− x+ x4x3 +2x3−4x4 + x4−2x3 + x2−2x3 + x2−2x3 +2x2 + x4− x3)

=x2
[
−4x3 +4x2− x

]

=− x3(4x2−4x+1) =−x3(2x−1)2.

The roots of the resultant are:

x = 0, x =
1
2

For x = 0, this is the point (0 : 1 : z)
and for x = 1

2 , this is the point (
1
2 : 1 : z)

Case 2: If y = 0, the system becomes,

{
x3z2 = 0

−x2z2 = 0

Either x = 0 or z = 0
(0 : 0 : z) (x : 0 : 0)

(0 : 0 : 1) (1 : 0 : 0)

But (0 : 1 : z) is not "there” since x(y2− xz)2− y5 = 0 becomes −1 = 0

(1
2 : 1 : z) ∈C1∩C2. Now solving for z2−4z−4 = 0 we have z1,2 = 2±2

√
2

The points in P2
are (1

2 : 1 : 2+2
√

2) and (1
2 : 1 : 2−

√
2).
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3 Riemann surfaces

De�nition 3.0.1. A 1−dimensional complex manifold S (i.e locallyR2
) equipped with com-

plex atlas of charts A = {(ϕi,Ui,Vi) | i ∈ I,ϕi : Ui→ Vi ⊂ C homeomorphism }. The pair
(S,A ) is called a Riemann surface if

(i). S = ∪i∈IUi.

(ii). The transition function ϕ j ◦φ
−1
i : ϕi(Ui∩U j)→ ϕ j(Ui∩U j) is biholomorphic for every

i, j ∈ I.

We call A a complex structure on S.

Example 3.0.2. Let S = P1
. By taking the charts

U0 ={[1,y] : y ∈ C},V0 = C,ϕ0 : [1,y] 7→ y

U1 ={[x,1] : x ∈ C},V1 = C,ϕ1 : [x,1] 7→ x.

De�ne the transition functions, ϕ1 ◦ϕ
−1
0 : C \ {0} → C \ {0} by z 7→ 1

z . Then ϕ1 ◦ϕ
−1
0 is

biholomorphic. The Riemann surface P1
is also called Riemann sphere.

Figure 2. Riemann Sphere

Proposition 3.0.3. A nonsingular curve D in CP2
is a Riemann surface complete with

holomorphic atlas.

From the classification theorem, for every integer g ≥ 0 there exists exactly one Riem-
mann surface. We usually draw spheres with g−handles to represent such surfaces. And
that the Euler characteristic of C is given by χ(C) = 2−2g.
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g = 0 g = 1 g = 2

. . .

. . .

. . .

g >> 0

Figure 3. Cartoons representing smooth connected compact Riemann surfaces.

De�nition 3.0.4. Let C = (S,A ) be a Riemann surface. A holomorphic function f :
C→C is a function for which every chart (ϕi,Ui,Vi) ∈A , f ◦ϕ

−1
i : Vi→C is holomorphic

( i. e has a Taylor Series at every point in its domain). Further, we say f is meromorphic
function if there is a �nite set of points Σ = {pi, . . . , pn} ⊂ C for which f : C \Σ→ C is

holomorphic such that

lim
x→pi
| f (x)|= ∞

for every pi ∈ Σ.

De�nition 3.0.5. A covering is a map π : Cd1 →Cd2 between Riemann Surfaces. A point

p ∈ Cd1 is a rami�cation point of π if there is a neighbourhood Cd1 ⊃ Vp 3 p such that

π|Vp is injective. A point q ∈Cd2 for which π−1(x) contains a rami�cation point is called a

branch point. We say π is unrami�ed if it has no branch points.

Theorem 3.0.6 (The degree-genus Formula). Let Ck := V(P) ⊂ CP2
be a nonsingular

degree k algebraic curve. Then the genus g := g(Ck) of Ck viewed as Riemann surface is

given by

g =
1
2
(k−1)(k−2) =

(
k−1

2

)
.

Proof. For k = 1, every point of C1 is a �ex and C1 ∼=CP1
with g = 0. For k≥ 2, we have

that Ck has ≤ 3k(k−2) �exes.By transformation, τ(Ck) = Ck, so that [1,0,0] /∈ Ck∪TlCk

where l = [a,b,c] ∈ Ck and

TlCk :=
{
[x,y,z] ∈C : xPx(a,b,c)+ yPy(a,b,c)+ zPz(a,b,c) = 0

}
.

Now, de�ne a map π : Ck → CP1; π([x,y,z]) = [y,z], which is meromorphic as in proof

of proposition above. Also, l = [t,v,w] is a rami�cation point precisely when TlCk passes

through [1,0,0] or precisely when lx(a,b,c) = 0 and subsequently Il(Ck,TlCk) = 2 and

so it is not a �ex. Let Dk−1 := V(Px), then Ck ∩Dk−1 is the set of rami�cation points.

TlDk−1 =
{
[x,y,z] ∈ Dk−1 : xlxx(a,b,c) + ylxy(a,b,c) + zlxz(a,b,c) = 0 : lxx(a,b,c) 6= 0

}

does not pass through [1,0,0] and so TlCk 6= TlDD−1, hence Il(Ck,Dk−1) = 1. Now by

strong form of Bëzout Theorem, we have

∑
l∈Ck∩Dk−1

Il(Ck,Dk−1) = ∑
l∈Ck∩Dk−1

1 = k(k−1).
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Hence the set of rami�cation points Ck∩Dk−1 = {l1, . . . , lk(k−1)} and corresponding branch

points qi = π(li) ∈ CP1.

We can �ne tune π so that pi are distinct and ]π−1([b,c]) =

{
k−1 if [b,c] = qi, some i

k if [b,c] 6= qi, for all i

Choosing a triangulation of CP1
with k(k−1) ≥ 2( for k ≥ 2) V vertices E edges and F

faces. We then have that

χ(CP1) = k(k−1)−E +F = 2. (3)

With ]π−1(qi) = k− 1 and for q 6= qi, ]π
−1(q) = k, this triangulation on CP1

lifts to a

triangulation on Ck with vertices Ṽ = (k− 1)k(k− 1), edges Ẽ = kE and faces F̃ = kF.
We then have from 3 that

χ(Ck) = χ(Ck) =Ṽ − Ẽ + F̃

=(k−1)k(k−1)− kE + kF

=k
[
k(k−1)−E +F

]
− (k(k−1)

=2k− k(k−1)

=2−2
(1

2
(k−1)(k−2)

)

=2−2g(Ck).

Hence g(Ck) =
1
2(k−1)(k−2).

Corollary 3.0.7. There is no nonsingular projective algebraic curve in CP2
of genus g =

2,4,5,7,8,9,11, etc. So most Riemann surfaces whose cartoons are drawn above are NOT

isomorphic to a nonsingular curve Cm ⊂ CP2
for any m. However, they can be embedded in

some CPN
for some large N but with self intersections.

3.1 The Weirstrass ℘-function

Let ω1,ω2 ∈C∗ which are linearly independent over R. We denote by Λ the la�ice gen-
erated by ω1, ω2 and defined by

Λ := ω1Z+ω2Z=
{

nω1 +mω2 | n,m ∈ Z
}
∼= Z×Z= Z2.
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C

C

ω1
ω2

Figure 4. Translations of the La�tice Λ by nonzero z ∈ C

Proposition 3.1.1. ℘(z) is a meromorphic function given by

℘(z) = 1
z2 ∑

ω∈Λ−{0}

( 1
(z−ω)2 − 1

ω2

)
, with the derivative

℘
′(z) = ∑

ω∈Λ

−2
1

(z−ω)3 .

Lemma 3.1.2. There is some δ > 0 such that | xω1 + yω2 |≥ δ
√

x2 + y2 ∀x,y ∈ R

Proof. Let f : [0,2π]→ R de�ned by f (θ) = | cos(θ)ω1 + sin(θ)ω2 |
be a continuous function. Now [0,2π] is compact hence f is bounded and attains its

bounds.

Also f (θ) > 0 for all θ ∈ [0,2π] from the fact that ω1 and ω2 are linearly independent

over R. Therefore there is some δ > 0 such that f (θ) > δ for all θ ∈ [0,2π]. It follows

that

| xω1 + yω2 |≥ δ

√
x2 + y2 ∀x,y ∈ R×R.

De�nition 3.1.3. The function℘(z) is known as the Weierstrass℘− function associated to

Λ.

Lemma 3.1.4. −℘(z) =℘(z) =℘(z+ζ ) for all z ∈ C and ζ ∈ Λ.

Proof. We �rst note, for ζ ∈ Λ then ℘′(z+ζ ) =−2 ∑
ω∈Λ

(z+ζ −ω)−3
since the tail end

of this series converges absolutely and also since ω−ζ runs over Λ as ω runs over Λ, we

rearrange the series and substitute ω for ω−ζ to obtain℘′(z+ζ ) =℘′(z) for every z∈C
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⇒℘(z+ζ ) =℘(z)+c(ζ ), c(ζ ) depends on ζ and not on z. Substituting z =−1
2ζ we get

c(ζ ) =℘(1
2ζ )−℘(−1

2ζ ). Now we have that

℘(−z) =
1
z2 + ∑

ω∈Λ−0

(
1

(z+ω)2 −
1

ω2

)

replacing ω by −ω we get ℘(−z) =℘(z) ∀z ∈ C In particular

c(ζ ) =℘(
1
2

ζ )−℘(−1
2

ζ ) = 0.

Hence, ℘(z+ζ ) =℘(ζ ).

De�nition 3.1.5. The function g onC with g(z+ζ ) = g(z)∀z∈C,∀ζ ∈Λ, or equivalently

g(z+ω1) = g(z) = g(z+ω2)∀z∈C, are referred to as doubly periodic lattice Λ (with periods

ω1 and ω2).Hence Weirstrass℘− function on C is doubly periodic meromorphic function.

Lemma 3.1.6. A doubly periodic holomorphic function f on C is constant.

Theorem 3.1.7. Any bounded function(holomorphic) on C is constant.

Lemma 3.1.8. ℘′(z)2 = 4℘(z)3 + k2℘(z)+ k3 where

k2 = k2(Λ) = 60 ∑
ω∈Λ−{0}

1
ω4 ,

k3 = k3(Λ) = 140 ∑
ω∈Λ−{0}

1
ω6 .

Proposition 3.1.9. The weirstrass℘− function is surjective.

De�nition 3.1.10. Let CΛ ⊂ P2
be the curve given by

QΛ(m,n,r) = n2r−4m3−k2mr2−k3r3
where k2 = k2(Λ) and k3 = k3(Λ) as in lemma 3.1.8

Lemma 3.1.11. The curve CΛ is non singular.

Proof. Let α =℘(1
2ρ1), β =℘(1

2ρ2), γ =℘

(
1
2(ρ1 +ρ2)

)
.

To show that CΛ is nonsingular it is enough to show that α,β ,γ are distinct complex

numbers and that

QΛ(m,n,r) = n2r−4(m−αr)(m−β r)(m− γr). The fact that α,β ,γ are distinct follows

from prop 3.1.9. Since℘is an even doubly periodic function its derivative is an odd doubly

periodic function with the same periods ρ1 and ρ2. Thus

℘
′(

1
2

ρ1) =℘
′(

1
2

ρ1−ρ1) =℘
′(−1

2
ρ1) =−℘

′(
1
2

ρ1).
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and so ℘′(1
2ρ1) = 0. By lemma 3.1.8 we have 4α3 +g2α +g3 =℘′(1

2ρ1)
2 = 0 and so α,

and similarly β and γ, are the roots of the polynomial 4α3−g2α−g3. Thus

QΛ(m,n,r) = n2r−4(m−αr)(m−β r)(m− γr)

with α,β ,γ distinct, and hence the curve CΛ de�ned by QΛ(m,n,r) is non singular.

Remark 3.1.12. If we regard the lattice Λ as an additive subgroup of C then we can con-

struct the group(quotient). C/Λ = {Λ+a : a ∈ C}
This quotient group is furnished with the quotient topology which is inherited from the stan-

dard topology on C as follows.

Let π : C→C/Λ be the surjective map de�ned by π(a) = Λ+a. Then a subsetU of C/Λ is

open in the quotient topology on C/Λ only when its inverse image π−1(U) is open in C.

C/Λ is compact. Topologically C/Λ is a torus. This is due to the fact that we can identify

C/Λ topologically with the parallelogram P by gluing its two pairs of opposite sides together.

Glued one pair of the sides together gives a cylinder and glueing the ends of the cylinder

together gives a torus. Here we shall refer C/Λ as a complex torus.

v

U

T2

∼= U

ϕ−→
π←−

V

Figure 5. Torus as a Riemann Surface.

Now, define a function
Φ : C/Λ→CΛ

by

Φ(z+Λ) =




[℘(z) :℘′(z) : 1] if z ∈ C\Λ

[0 : 1 : 0] if z ∈ Λ.

where
℘(z) =

1
z2 + ∑

06=ω∈Λ

( 1
(z−ω)2 +

1
ω2

)

is the Weierstrass ℘− function. It is uniformly convergent on any compact subset U
of C/Λ to a holomorphic function. ℘ has a double pole at ω ∈ Λ. So the Weierstrass
℘− function ℘ : C→ Ct{∞} = CP1 is meromorphic with ℘(ω) = ∞, ω ∈ Λ and is
translation invariant for all z ∈ C and ω ∈ Λ i.e ℘(z) =℘(z+ω). This periodicity of ℘
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helps us conclude that it has no poles at ω ∈ Λ so that in fact, it has no poles at all.
Now, by Maximum Principle Theorem of complex analysis (i.e. holomorphic functions on
a Riemann surface without poles is a constant ), it is easy to check that the Weierstrass
℘− function satisfies the ODE

(
℘
′(z)
)2

= 4℘(z)3− k2℘(z)− k3 (4)

for all z ∈C where k2,k3 ∈C with ℘′(z) the ordinary first derivative of ℘with respect to
z. Finally, if Φ(u+Λ) = [m : n : r] then from equation 4 i.e

(
℘′(z)

)2
= 4℘(z)3−k2℘(z)−k3

we have Φ
(
C/Λ

)
is a cubic Q([m : n : r]) = n2r− 4m3 + k2mr2 + k3r3 = 0 which can be

re-wri�en as

Φ
(
C/Λ

)
= V(Q) : with Q : n2r = 4m3− k2mr2− k3r3. (5)

The right hand side of Q has distinct root since the cubic who curve we started with was
nonsingular and so can be wri�en as a product of 3 distinct factors. Hence equation 4
and 5 have the same normal form. So that non-singular cubics like y2z = x(x− z)(x+ z)
above are equivalent to a torus with a unique pair (k2,k3) ∈ C2.

3.2 The group law on a cubic curve

Take two points K and L on a non singular cubic curve D defined on a complex projective
plane P2 and draw the line KL. This line intersects the cubic curve on a third point M. We
take another point on D say O . Then from M we draw a line through O to intersect D on
N. In the same fashion we can extend to special cases: If K = L, we construct tangent to
the curve at the point K = L; If the x coordinate of K,L are the same , then the equation
of line KL is x = c, we take M = ∞. Hence we define an addition ⊕ on points of D∪{∞}
by taking

K⊕L⊕M = O

whenever M is the point associated to K,L.

Theorem 3.2.1. The points of a non singular curve D of degree 3 de�ned over a �eld R =C
forms a commutative group under the operation ⊕. The identity is given by O = ∞ and the

inverse of K ∈ D is −K.

Before we show that k+ l is a commutative group law on the points of D, with identity
O = ∞ and the inverse of k given by −k,we need the following technical lemma.

Lemma 3.2.2. Let P1, · · · ,P8 be such that none of the 4 points lie on a line and none of the 7
points lie on a conic. Then there exists a unique point P9 which is a 9th point of intersection

of any two cubics passing through P1, · · · ,P8.
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O

l

k

n

m

Figure 6. The construction of the group law

Proof of theorem 3.2.1. We need to show that associativity holds for the group law of

cubic curves.

O
s

t

r

r+ s

−(r+ s)

−((r+ s)+ t) =−
(
r+(s+ t)

)
s+ t

−(s+ t)

D

L1
L2

L3

M1
M2

M3

Figure 7. Associativity of the group Law on Cubic Curve
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Consider the points r,s, t which are arbitrary points of D. Let L1 be the line in P2
which

meets D in the points r+s,−(r+s) counted with multiplicity. Similarly let L2,L3,M1,M2

and M3 be the lines in P2
which meet D in the points O,r+ s,−(r+ s) ;

t,r+ s,−((r+ s)+ t) ; s, t,−(s+ t) ; O,s+ t,−(s+ t) and r,s+ t,
−
(
r+(s+ t)

)
respectively.

Let E = L1∪M2∪L3 (Blue lines) and F = M1∪L2∪M3 (Black lines) be the reducible cubic

curves. From �g 7 above we can see that E meets D in the points

O,r,s, t,r+ s,s+ t,−(r+ s),−(s+ t),−((r+ s)+ t)
whereas F meets D meets in the points O,r,s, t,r+ s,s+ t,−(r+ s),−(s+ t),
−
(
r+(s+ t)

)
.

Remark 3.2.3. 1. Always take O = [0,1,0] unless stated otherwise.

2. For a point k = (m,n,r), if we take the line through k and k0 = (0,1,0) then the other

meeting point is (m,−n,r) which is the point −r. Hence the inverse of a point, say r ,

under the group law is its re�ection in the x−axis.

3. For the elliptic curve n2r = m3+Amr2+Br3
with the point O and the points (m,n,r) we

have; let m = (m3,n3,r3) as de�ned in 7. Then r+s = (m3,−n3,r3), which is m re�ected

on the x−axis.

From the fact that every non singular cubic curve CΛ is isomorphic to a torus C/Λ, un-
der this isomorphism, the group operation ⊕ corresponds to the obvious abelian group
operation on the set of points of C/Λ, coming from the addition of complex numbers.

3.3 Holomorphic di�erentials on Riemann surfaces

We recall that for the la�ice Λ in C we have associated a nonsingular cubic curve DΛ in
P2 defined by

y2z = 4x3−g2xz2−g3z3.

Our main work here is to see if given the curve CΛ whether we can recover the la�ice Λ.

To achieve this we need the concept of the integral of a holomorphic di�erential along a
piecewise smooth path in a Riemann surface.

De�nition 3.3.1. Let K be a Riemann surface. A piecewise smooth path in K is a continuous

map β from a closed interval [p,q] in R to K such that if ψ : M→ N is a holomorphic chart

on an open subset M of K and [r,s] ⊆ β−1(M) then ψ ◦ γ : [r,s]→ N is a piecewise-smooth

path in the open subset N of C.

Remark 3.3.2. For a compact Riemann surface K(e.g non-singular projective curves) the

meromorphic functions on K are of much interest than holomorphic functions f : K→C due

to the fact holomorphic function on a compact Riemann surface is a constant but there are

lots of meromorphic functions f : K→ P1
e.g the Weirstrass p− function on a complex torus.
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De�nition 3.3.3. Let K be a Riemann surface and g,h ∈ K meromorphic functions. Then

gdh is called ameromorphic di�erential onK. If g̃, h̃∈K are somemeromorphic functions

then we have that gdh = g̃dh̃⇔ for every holomorphic chart ψ : M→ N on M ⊆ K, open

we have that

(g◦ψ
−1)(h◦ψ

−1)′ = (g̃◦ψ
−1)(h̃◦ψ

−1)′.

De�nition 3.3.4. Let
{

ψσ Mσ → Nσ : σ ∈ A
}
be a holomorphic atlas on Riemann surface

K. A meromorphic di�erential η on K is given by a collection

{
ησ : Nσ → P1 : σ ∈ A

}

of meromorphic functions on the open subsets Nσ of C such that σ ,β ∈ A and m ∈Mσ ∩Mβ

then

ησ

(
ψσ (m)

)
= ηβ

(
ψβ (m)

)(
ψβ ◦ψ

−1
σ

)′(
ψσ (m)

)
.

Given two meromorphic functions g and h on K we are able to define a meromorphic
di�erential gdh on K in this sense by gdh = η where

ησ = (g◦ψ
−1
σ )(h◦ψ

−1
σ )′.

De�nition 3.3.5. Themeromorphic di�erential has a pole at n inK if the function(meromorphic)

(g◦ψ−1
σ )(h◦ψ−1

σ )′ has a pole at ψ(n) where ψ : M→ N is a holomorphic chart on an open

neighbourhood M of n in K. gdh is called a holomorphic di�erential if it has no poles.

De�nition 3.3.6. If gdh is a holomorphic di�erential on K then the integral of gdh along a

piecewise-smooth path ξ : [p,q]→ K is

∫

ξ

gdh =
∫ q

p
(g◦ξ )(t)(h◦ξ )′(t)dt.

Remark 3.3.7. If ψ : [r,s]→ [p,q] is a piecewise-smooth map between the intervals [r,s] and
[p,q] then η ◦ψ : [r,s]→ K is a piecewise-smooth path in K and on substituting t = ψ(k)
we de�ne ∫

ξ

gdh =
∫ s

r
g◦ξ ◦ψ(k)(g◦ξ )′(ψ(k))ψ ′(k)dk =

∫

ξ◦ψ
gdh

Example 3.3.8. (1) If K = C then

∫

σ

gdh =
∫

σ

g(z)h′(z)dz

is the integral of g(z)h′(z) along σ in the usual sense of complex analysis.

(2) If g : S→ C is a complex valued holomorphic mapping on any Riemann surface K then

∫

σ

dg = g(σ(b))−g(σ(a)).
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De�nition 3.3.9. If ψ : K→ R is a holomorphic mapping between Riemann surfaces K and

R and if gdh is a holomorphic di�erential on R then we de�ne a holomorphic di�erential

ψ∗(gdh) on K by

ψ
∗(gdh) = (g◦ψ)d(h◦ψ).

Then if σ : [p,q]→ K is a piecewise-smooth path in K we have

∫

σ

ψ
∗(gdh) =

∫ q

p
g◦ψ ◦σ(t)(h◦ψ ◦σ)′(t)dt =

∫

ψ◦σ
gdh.

Given la�ice Λ in C we defined a biholomorphism

u : C/Λ→ DΛ

where DΛ ⊂ P2 is non singular cubic curve given by y2z = x(x− z)(x+ z).

There is a meromorphic di�erential on DΛ given inhomogenous coordinates [x,y,1] by
y−1dx. Let

η = u∗(y−1dx).

Then η is a meromorphic di�erential on C/Λ. Moreover if π : C→ C/Λ is defined as

π(z) = Λ+ z

then

π
∗
η =π

∗u∗(y−1dx)

=(u◦π)∗(y−1dx)

=(p′)−1dp

=(p′)−1p′dz

=dz.

Proposition 3.3.10. Λ =
{∫

σ
η : σ is a closed piecewise-smooth path in C/Λ

}

Since u : C/Λ→ DΛ is a bijection with a holomorphic inverse and η = u∗(y−1dx)

Corollary 3.3.11. Λ =
{∫

σ
y−1dx : σ is a closed piecewise-smooth path in DΛ

}

This means that we can recover the la�ice Λ from the curve DΛ in P2.

Also the function u−1 : DΛ→ C/Λ in terms of integrals of the di�erential y−1dx on CΛ.
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Proposition 3.3.12. The inverse of the holomorphic bijection

u : C/Λ→ DΛ

is given by

u−1(p) = Λ+
∫ p

[0,1,0]
y−1dx

where the integral is over any piecewise-smooth path γ in CΛ from [0,1,0] to p.

Remark 3.3.13. If γ1 and γ2 are both piecewise-smooth paths in CΛ from [0,1,0] to p then∫
γ1

y−1dx−∫
γ

y−1dx is the integral of y−1dx along a closed piecewise-smooth path inCΛ and

hence belongs to Λ.

3.4 Abel’s theorem

Let Λ = ω1Z+ω2Z. Then the biholomorphic bijection u : C/Λ→ DΛ is a group isomor-
phism with respect to the group structure(with p0=[0,1,0]) on DΛ and the quotient group
structure on C/Λ.

Remark 3.4.1. Abel’s theorem provides an alternative means of proof of the existence of an

additive group structure on curve C with required properties on cubic curves of the form CΛ.

Every non singular projective cubic curve in P2
is equivalent under a projective transforma-

tion to one of the form DΛ for some lattice Λ on C.

Recall that a line in P2
meets a non singular projective curve D in P2

either in:

1. 3 distinct points l,m,n each with multiplicity 1.

2. 2 distinct points; l of multiplicity 1 and m of multiplicity 2.

3. 1 point l with multiplicity 3.

The group structure on DΛ is such that if l,m,n are unique points on DLambda then l+m+

n = 0 only when l,m,n are all on a line in P2
, l+ l+m = 0 if and only if the tangent on DΛ

at l passes through m and l + l + l = 0 only when l is a point of in�ection on DΛ.

In particular, the points of in�ection on DΛ are the points of order 1 or 3.
Under group isomorphism these correspond to the points of order 1 or 3 in D/Λ. There are 9
precisely such points in D/Λ.

Theorem 3.4.2. (Abel’s theorem for tori) If r,s, t ∈ C then r+ s+ t ∈ Λ only when there is

a line L⊂ P2
whose intersection with DΛ has the points u(Λ+ r),u(Λ+ s) and u(Λ+ t).
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Equivalently if l,m,n ∈CΛ then

Λ+
∫ l

[0,1,0]
y−1dx+

∫ m

[0,1,0]
y−1dx+

∫ n

[0,1,0]
y−1dx = Λ+0

only when l,m,n are the meeting points of DΛ with a line in P2
.

Remark 3.4.3. Abel’s theorem can be interpreted as an addition formula modulo Λ for

elliptic integrals of the form ∫ p

[0,1,0]
y−1dx

on CΛ.

3.5 The Riemann-Roch theorem

The Riemann Roch theorem relates dimensions of vector spaces of meromorphic func-
tions with prescribed poles and zeros on a non singular projective curve C in P2. Conse-
quence of the Riemann Roch theorem include, a proof of the law of associativity for the
additive group structure on a non-singular cubic, a proof that every meromorphic func-
tion on a non singular projective curve is rational and the important fact that the genus
g of a curve C can be described using the zeroes and poles of any non-zero meromorphic
di�erential on C from 2g−2.

De�nition 3.5.1. A divisor D on a non- singular projective curve C is a formal sum D =

∑p∈C np.p such that np ∈ Z for every p ∈C and np = 0 for all but �nitely many p ∈C.

The degree of D is then deg(D) = ∑p∈C np.

Remark 3.5.2. The set of all divisors on C is an abelian group, denoted Div(C) and the

degree de�nes homomorphism from Div(C) to Z.

If np ≥ 0∀p ∈C we write D≥ 0 and say that D is e�ective or positive.

Principal divisor is a divisor which is the divisor of some meromorphic function.

Two divisors D and D′ are said to be linearly equivalent i.e D ∼ D′, if D−D′ is a principal

divisor.

The divisor of a meromorphic di�erential is called a canonical divisor and is often written

as κ .

If η is another meromorphic di�erential on C which is not identically zero then there is

function(meromorphic) g on C such that η = gλ , and hence

(η) = (g)+(λ )∼ (λ )
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Thus any two canonical divisors are linearly independent.

Proposition 3.5.3. A principal divisor on C has degree zero, i.e a function(meromorphic)

on C which is not identically zero has equal number of zeroes and poles, counted with mul-

tiplicities.

Corollary 3.5.4. Two divisors(linearly equivalent) onC have equal degree. In short, canon-

ical divisors on C all have equal degree.

Proposition 3.5.5. If κ is a canonical divisor on C then

degκ = 2g−2.

De�nition 3.5.6. Let D = ∑p∈C np.p be a divisor onC; then L(D) is the set of all meromor-

phic functions on C satisfying

( f )+D≥ 0

together with the zero function.

We define
l(D) = dimL(D)

Corollary 3.5.7. If degD < 0 then l(D) = 0

Lemma 3.5.8. If D∼ D′ then l(D) = l(D′)

Theorem 3.5.9. (Riemann-Roch) If D is any divisor on a non singular projective curveC of

genus g in P2
and κ is a canonical divisor on C, then

l(D)− l(κ−D) = deg(D)+1−g

Corollary 3.5.10. The genus of a non singular projective curveC in P2
equals the dimension

l(κ).
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4 Elliptic integrals and cubic curves.

4.1 Addition law for Integrals.

In this section we shall demonstrate how understanding the geometry of cubic curves
can help in solving the integral in 6 below.

∫ dx√
x3− x

. (6)

We start by recalling the la�ice

Λ := Z+ωZ=
{

n+mω | n,m ∈ Z
}
∼= Z×Z= Z2 ⊂ C, imω > 0.

The integral 6 above is an integral on a cubic curve. Since non singular cubic curves are
isomorphic to a 2-torus C/Λ we shall do some integration on the 2-torus.

The di�erential dz on C turns out to be the di�erential on C/Λ. Now, C/Λ is a quotient
group from the fact that C is a group and Λ is a subgroup. Thus the extra group structure
on C/Λ will give us the addition law.

By translating the di�erential dz on the torus we find that it is an invariant di�erential.
i.e If we have a change of variables by using c ∈ C or C/Λ to translate dz, then we have
that

y = z+ c,

⇒ dy = dz.

Hence dz is invariant .

Now suppose that we want to integrate dz along some path γ on the 2-torus which goes
form a to b, i.e

∫
γ

dz. Shi�ing the curve γ with some constant c we get a new curve γ +c.
i.e
∫

γ+c dz

Again by a simple change of variables we observe that

∫

γ+c
dz =

∫

γ

dz (7)
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4.2 Addition law

Now, using the results in 7;

∫ r

0
dz+

∫ s

0
dz =

∫ r

0
dz+

∫ r+s

r
dz =

∫ r+s

0
dz. (8)

Since for integral on a manifold you state the path of integration, changing the path leads
to a di�erent answer. So the integrals on 8 are defined only upto some λ ∈ Λ

It is now evident that for the addition law to work, the group structure on the 2-torus and
an invariant di�erential are needed.Since the non singular cubic curves and the 2-torus
are isomorphic then cubic curves also have these two properties.

Theorem 4.2.1. Let l(m,n,r) ∈ C[m,n,r] be given by l(m,n,r) = n2r−m3−αmr2−β r3

de�ne a cubic curve(non singular) D i.e D = {[m,n,r] : l(m,n,r) = 0} ⊂ P2,α,β ∈C. Then
D has:

1. an abelian group structure, say ⊕ and zero at ∞.

2. invariant di�erential. i.e

dm
n

=
dm√

m3 +αm+β
.

Now we have the addition law which we can summarise it as : Let (m1,n1)(m2,n2) be
points on the curve D then;

∫ (m1,n1)

∞

dm
n

+
∫ (m2,n2)

∞

dm
n

=
∫ (m1,n1)⊕(m2,n2)

∞

dm
n
.

4.3 The operator D = λ
d

dλ
and the group of cubic integrals

For all k,n ∈ N, α ∈ C we have that

1. Dλ n = nλ n.

2. Dkλ n = nkλ n.

3. (D+α)λ n = (n+α)λ n.

4. (D+α)kλ n = (n+α)kλ n.
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De�nition 4.3.1. Let f ,g : X → Y be continuous functions between topological spaces and

I = [0,1]⊂R the unit interval. We say X is homotopic to Y if there exists a family (ht(x) :=
H(x, t)| t ∈ I) of continuous functions from X to Y indexed by I where H : X× I→Y , called
the homotopy of f to g and denoted f ∼ g, is de�ned for all x ∈ X by

H(x, t) =

{
h0(x) = f (x) if t = 0

h1(x) = g(x) if t = 1.

Proposition 4.3.2. Homotopy is an equivalence relation.

De�nition 4.3.3. Let X be a topological spaces and I = [0,1]⊂R the unit interval. A loops

based at λ0 ∈ X is a collection of continuous functions L0 =
{

f : I→ X : f (0) = f (1) = λ0
}

which starts and ends at λ0. The Fundamental group of loops on X based at λ0, denoted

as π1(X ,λ0) is given by

π1(X ,λ0) =
(
L0/h,∗ : [ f ]∗ [g] = [ f ∗g], [ f ]−1 =

[
f−1])

where

( f ∗g)(t) =

{
f (2t) if 0≤ t ≤ 1

2

f (2t−1) if
1
2 ≤ t ≤ 1

, f−1(t) = f (1− t)

and h is the homotopy relation on L0.

Now, we can have another alternative view of Picard-Fuchs equation Π(λ ) using repre-
sentation theoretic tools on the fundamental group π1(P1 \ {0,1,∞},λ0) of loops based
at λ0 ∈ X = P1 \{0,1,∞} and which avoids (circles) 0,1 and ∞ on the Riemann sphere.

Let γ1,γ2 ∈ L0 be loops based at λ0 and circling 0 and ∞ respectively, thenγ1∗γ2 is the loop
circling 1 with ‘‘twice the speed” and goes behind the Riemann sphere by first following
γ1 followed by γ2. We then have that

π1(P1 \{0,1,∞},λ0) = Zγ1 ∗Zγ2.

Lemma 4.3.4. Let G be the group associated to cubic integrals. We have that

G' π1(P1 \{0,1,∞},λ0) = Zγ1 ∗Zγ2.

Now consider the degree 2 representation ρ : G→ Gl(2,C) and two elements of G

[γ1] = 2
∫ 1

0

dx
y

=
∫

γ1

dx
y
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and

[γ2] = 2
∫

λ

1

dx
y

=
∫

γ2

dx
y
.

Also If ρ([γ1]) = T0,ρ([γ2]) = T∞,ρ([γ1 ∗ γ2]) = T1 ∈ GL(2,C) when λ loops around 0,∞

and 1 respectively; we can completely understand ρ.We have that T0 :


[γ2]

[γ1]


 7→


1.[γ2]+2.[γ1]

0.[γ2]+1.[γ1]




hence T0 =


1 2

0 1


 . Similarly T∞ =


1 0

2 1


 so that, as free generators,

〈T0,T1〉=Γ(2)=






a b

c d


 ∈ Sl(2,Z)

∣∣b,c≡ 0 mod 2



⊂ Sl(2,Z) ρ←− π1(P1\{0,1,∞},λ0)=Zγ0 ∗Zγ∞

where ρ :


γ0

γ∞


 7→


T0

T∞


 . It worth noting that under the Möbius action on the upper

half plane

C⊃H := {z : Imz > 0}x Γ(2) defined by


a b

c d


 7→ az+b

cz+d
,

we have that
H/Γ(2) = P1 \{0,1,∞}.

4.4 Solving Picard - Fuchs equation

The elements [γ1] and [γ2] above are called periods of

Eλ = V
(
y2 = x(x−1)(x−λ )

)
⊂ CP2

and depends on λ . We then recognise that the Picard-Fuchs equation 13 can be wri�en
as

Π(λ ) = [γ1]+ [γ2] = 2
∫

λ

0

dx
y
. (9)

Hence, [γi] satisfies the Picard-Fuchs equation Π(λ ), finding them explicitly is tanta-
mount to having solved the equation. The above fact 9 reveals that using residue theorem
and integrating over the path γ as λ → 0, equation 6 becomes

∫

γ

dx
x(x−1)1/2 = Res0

[
1

x(x−1)1/2 = 2πi(−i)
]
= 2π.

This explains why the power series of Π(λ ) in in theorem 4.4.1 has a factor 1
2π
.



29

It is worth noting at this pointy that

∂

∂λ

[√
x(x−1)(x−λ )

]
=

1
2

√
x(x−1)(x−λ )

(x−λ )

and
∂ 2

∂λ 2

[√
x(x−1)(x−λ )

]
=

3
4

√
x(x−1)(x−λ )

(x−λ )2 (10)

so that some linear combination of [γi],
d[γi]
dλ

and d2[γi]
dλ 2 must be zero [0]; this hints at a

posible direction in solving our equation Π(λ ).

Back to our big question; to solve 16 ,therefore, we reformulate it as follows: with λ = λ0

fixed as before and ω = dx
y = dx√

x(x−1)(x−λ )
, we notice that by di�erentiating the RHS of

10 [ignore the factor 3/4] with respect to x, we get

d
dx

[√
x(x−1)(x−λ )

(x−λ )2

]
=−1

2
ω− (4λ −2)

∂ω

∂λ
−2λ (λ −1)

∂ 2ω

∂λ 2 .

Now with the path γ as above [as λ → 0] we have that

∫

γ

d

√
x(x−1)(x−λ )

(x−λ )2 =
∫

γ

[
−1

2
ω− (4λ −2)

∂ω

∂λ
−2λ (λ −1)

∂ 2ω

∂λ 2

]
dx.

Which reduces to

λ (λ −1)
d2[γi]

dλ 2 +(2λ −1)
d[γi]

dλ
+

1
4
[γi] = 0.

Our desirable Picard-Fuchs equation in [γ] = [γi] is therefore given by

d2[γ]

dλ 2 +
(2λ −1)
λ (λ −1)

d[γ]
dλ

+
1

4λ (λ −1)
[γ] = 0 (11)

which we can solve by quite elementary methods. Notice that the equation 11 is second-
order of the form

d2[γ]

dλ 2 +
P(λ )

λ

d[γ]
dλ

+
Q(λ )

λ 2 [γ]

for functions

P =
2λ −1
λ −1

and Q =
λ

4(λ −1)
.

Since both P and Q are holomorphic at λ = 0, it would mean that 11 has a regular
singular point at λ = 0. We then compute the indicial equation

r(r−1)+ rP(0)+Q(0) = r2;
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which has a zero of multiplicity 2 at r = 0. This would mean [check general theory of
indicial equations] that the 2−dimensional solution space is generated by

[γ1](λ ) and [γ2](λ ) = [γ1](λ ). log(λ )+φ(λ )

where φ is some holomorphic function and [γ1] is holomorphic at λ = 0. It is worth noting
that [γ2] is multi-valued due to the logarithmic term.

Theorem 4.4.1.
Π(λ ) =

∮ dx√
x(x−1)(x−λ )

(12)

satis�es an algebraic ordinary di�erential equation on P1 \{0,1,∞}.

The idea here is to compute Π(λ ) as a power series in λ , then we extract the di�erential
equation 11 from the power series.

By simple calculation we see that

Π(λ ) :=
∫ dx√

x(x−1)(x−λ )
=

1
2π

1
i

∫ 1
x
(1− x)−

1
2 (1− λ

x
)−

1
2 dx

Moreover, we have that ∀k ≥ 0 and ∀m≥ 0

Π(λ ) =
1

2πi

∫ 1
x ∑

k≥0


 −

1
2

k


xk× ∑

m≥0


 −

1
2

m



(

λ

x

)m

dx

=
1

2πi

∮
x−1

∑
k≥0


 −

1
2

k


xk× ∑

m≥0


 −

1
2

m


x−m

λ
mdx

=
1

2πi ∑
n≥0


 ∑

k−m=n


 −

1
2

k




 −

1
2

m


λ

m



∮

γ

xn−1dx

=
1

2πi ∑
n≥0


∑

n≤k


 −

1
2

k




 −1

2

k−n


λ

k−n



∫

|z|≤1
f (z)dz

=
1

��2πi ∑
n≥0


∑

n≤k


 −

1
2

k




 −1

2

k−n




λ

n×��2πi

below
= ∑

n≥0


 −

1
2

n




2

λ
n

This is "the" solution to the Picard-Fuchs equation which stays bounded near the singular
point λ = 0. It is not an suprise us that the coe�icients in this power series are rational,
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we shall soon see in the next section that they indeed are!

We now use the properties of the operator D = λ
d

dλ
to show that the Picard Fuch’s equa-

tion
Π(λ ) = ∑

n≥0
anλ

n

is as given above and it satisfies the ODE

[
D2−λ

(
D+

1
2

)2
]

Π(λ ) = 0. (13)

Indeed, with D2Π(λ ) = ∑n≥0 anD2λ n, we get

D2
Π(λ ) = ∑

n≥0
n2anλ

n (14)

which becomes to
(D+1)2

Π(λ ) = ∑
n≥0

(n+1)2an+1λ
n

by making a single step rightshi� in 14. Further

λ

(
D+

1
2

)2

Π(λ ) = ∑
n≥0

(
n+

1
2

)2

anλ
n.

So that

∑
n≥0

[(
n+

1
2

)2

an− (n+1)2an+1

]
λ

n = 0. (15)

a0 = 1 and

an+1 =

[
n+ 1

2
n+1

]2

an =⇒ an =


 −

1
2

n




2

.

Alternatively, the coe�icient an can be obtained from Chu-Vandermonde Identity on
the sum of products of binomial coe�icients

∑
k

(
r
k

)(
s

n− k

)
=

(
r+ s

n

)
.

It is then easy to show equality of the coe�icients so that Π(λ ) satisfies the di�erential
equation 13 . From 13, since Π(λ ) 6= 0, it remains to fix λ0 ∈ P1 \{0,1,∞} then find the
solution ϕ(λ ) of the new boundary value Picard-Fuch’s ODE

D2−λ

(
D+

1
2

)2

= 0, subject to ϕ(λ0) = A,
dϕ

dλ
(λ0) = B ∈ C. (16)
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Theorem 4.4.2.

Π(λ ) = [γ1](λ ) = ∑
n≥0


 −

1
2

n




2

λ
n =

{
∑n≥0

(3n)!
33n(n!)3 λ 3n

if λ 6= 0

1 if λ = 0.
.

Proof. The holomorphic solution can be found as a power series

[γ1](λ ) = ∑
n≥0

anλ
n

from which we have that

d[γ]
dλ

(λ ) = ∑
n≥0

(n+1)an+1λ
n

d2[γ]

dλ 2 (λ ) = ∑
n≥0

(n+2)(n+1)an+2λ
n

giving a recursive relation (n+ 2)(n+ 1)an = (n+ 3)2an+3 with a0 = 1 on coe�cients.

From this, we solve for

an =


 −

1
2

n




2

=
(3n)!

33n(n!)3

so that

Π(λ ) = [γ1](λ ) =

{
∑n≥0

(3n)!
33n(n!)3 λ 3n

if λ 6= 0

1 if λ = 0.
.
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