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Abstract

Health stakeholders usually need complete, accurate and reliable estimates of various
health outcomes to make decisions on improving health care delivery. Missing observa-
tions especially in clinical routine data is one of major setbacks in evaluating public health
problems e�ciently. One of the tools used to measure clinical quality is the Paediatric
Admission Quality of Care (PAQC) score. We seek to identify factors that in�uence clinical
quality in this study after dealing with missing values.The main objective of this study is
to identify key determinants of Pediatric Admission Quality of Care (PAQC) score using
Random Forests.

Data on a total of 2027 children between 2 and 59 months who were admitted in selected
county hospitals in Kenya was used. The data contained clinical data from admission to
treatment. Random forests missForest package was used to impute missing data. Cumula-
tive logit mixed models were �t with PAQC score as an outcome and age, sex, comorbidity,
weight, clinician sex and cadre, hospital workload, malaria prevalence, intervention arm
and time of admission as predictors to determine the signi�cant determinants of clinical
quality. The models were nested within both hospital and clinician levels. Both Random
forests and conditional random forests were used to determine variable importance.

The cumulative logit mixed model nested within both clinician and hospital level was
selected based on AIC. Weight of the child, clinician sex, cadre and the time of admis-
sion were signi�cant determinants of PAQC score based on the P values at 0.05 level of
signi�cance. A unit increase in weight increases the probability of a higher PAQC score
by 0.06, while being attended by a medical o�cer relative to a clinical o�cer increases
the probability by 0.27. The time of admission increases the probability by 0.11. On the
other hand, PAQC scores would be lower if the clinician was male. The probability of a
reduced PAQC score if a clinician is male is 0.49. Month, weight, intervention arm and
hospital workload were the most important variables in predicting the quality of care while
age and the number of comorbidities were the least important using Random forests models.

Based on the cumulative logit mixed models, the study concludes that hospital level, weight
of the child, clinician sex, cadre and the time of admission are key determinants of PAQC
score. On the other hand, age and the number of comorbidities for a given patient may not
strongly in�uence the quality of care provided based on the random forests models. The
mechanisms around these associations however need to be studied extensively. Pneumonia
management strategies could incorporate these �ndings to improve quality of healthcare
delivery and hence reduce burden of the disease.
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1 Introduction

1.1 Introduction

This chapter presents the following: Background on use of random survival forests in
imputing missing observations, the importance of Pediatric Admission �ality of Care
Score (PAQC) in measuring quality of health care delivery, statement of the problem,
objectives and justification for the study.

1.2 Background

Health stakeholders usually need complete, accurate and reliable estimates of various
health outcomes to make decisions on improving health care delivery(Kaplan & Frosch,
2005). Missing observations especially in clinical routine data is one of major set - backs
in evaluating public health problems e�iciently. Being an important aspect for any re-
search to consider, researchers have come up with various methods to handle missing
data(De Silva, Moreno-Betancur, De Livera, Lee, & Simpson, 2017; Powney, Williamson,
Kirkham, & Kolamunnage-Dona, 2014; Sullivan, White, Salter, Ryan, & Lee, 2018; Y. Zhang
et al., 2017) based on the nature of missing observations(Boyko, 2013; Nakagawa & Freckle-
ton, 2008). Unfortunately, there has been no consensus on the best technique to handling
missing data(Cheema, 2014).
A recent systematic review (Li et al., 2014) on best standards in handling missing data
especially in Patient Centered Outcomes research dealt more on best practices in esti-
mation of missing data. The study involved 1790 guidance documents that had formal
recommendations regarding missing data. The study concluded that researchers need
to adopt extremely thorough and careful methods in estimation of missing data through
techniques that promote good science. Researchers need to prioritize use of existing
guidelines on handling missing data in order to provide useful research conclusions.
Understanding good practices and creating standards for the prevention and handling of
missing data can help to improve the translation of the research into complete, accurate,
and reliable evidence for health care decision-making.
Missing data present various problems. First, the absence of data reduces statistical power,
which refers to the probability that the test will reject the null hypothesis when it is false.
Second, the lost data can cause bias in the estimation of parameters. Third, it can reduce
the representativeness of the samples. Fourth, it may complicate the analysis of the study.
Each of these distortions may threaten the validity of the trials and can lead to invalid
conclusions(Kang, 2013).
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1.2.1 PAQC score

Health systems usually seek to ensure quality of healthcare at all levels is up to set
standards of practice. This calls for an evaluation on delivery of healthcare in various
health facilities. One of the tools used for this exercise is the Paediatric Admission �ality
of Care (PAQC) score(Opondo, Allen, Todd, & English, 2016). This evaluation tool measures
compliance to guidelines on patient admissions, assessment, diagnosis and treatment
for various illnesses. It measures full compliance for the various set out to – do lists for
each illness in the three domains of the score; Assessment, diagnosis and treatment. This
score would thus indicate whether healthcare delivery is up to standards or needs urgent
interventions to reduce morbidity and mortality that may occur due to inappropriate
healthcare at any point on the three domains.
This score is obtained through a systematic process where data is obtained from various
health facilities from health records. The set guidelines are used as the gold standards
to see whether clinicians complied with them. A score is then obtained based on the
adherence to the set standards of practice. Most data from hospital records is sparse.
Entries are missing due to ignorance or lack of knowledge of the guidelines. This would
thus be an hindrance to an accurate and generalizable score. Researchers therefore need
to find ways of imputing the missing data accurately. Due to the hierarchical nature of
this data, this study seeks to use a machine learning technique to impute the missing
values in a pediatric routine data while taking into account clustering due to the various
levels the data was obtained.

1.2.2 Common methods used in handling missing data

Most researchers use two common techniques in handling missing observations. These are
removing observations(Langkamp, Lehman, & Lemeshow, 2010) where there are missing
values in any variable in order to fit statistical models and imputation methods(Bertsimas,
Pawlowski, & Zhuo, 2017; Bertsimas, Orfanoudaki, & Pawlowski, 2018). Although these
methods are widely used, there are various shortcomings. For instance removing observa-
tions has been associated with producing biased parameters and estimates. In some cases
the researcher may opt to delete the entire variable with missing values. This should only
be done where data is missing for more than 60 observations but only if that variable is
insignificant. To deal with some of these disadvantages associated with dropping obser-
vations and variables, imputation methods have been recommended. These include use
of mean, median and mode, linear regression and multiple imputation. Although use of
measures of tendency is fast, mean imputation for instance has been linked to reduced
variance in the dataset. While linear regression(Beyad & Maeder, 2013; Karama, Farouk,
& Atiya, 2018) has proved theoretically to provide good estimates of missing values, it
relies on the assumption that the variables used in the regression equation are linearly
related which may not hold in most cases. Moreover the replaced values are as a result of
prediction by other variables hence they tend to fit ‘too well’. This deflates the standard
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error and thus biased estimates.
Multiple imputation(Royston, 2004) has however been a breakthrough in the field of miss-
ing data in the recent past. It’s use of the Markov Chain Monte Carlo (MCMC) simulation
and pooling of analysis results has been shown to improve e�iciency an accuracy(Lin, 2010).
It has been shown to provide unbiased estimates which are more valid than other ad hoc
methods in estimation of missing values. It’s easy to use due to the availability of various
algorithms already developed in various standard statistical so�wares and it preserves
the sample size through use of all the available data. Moreover the results are readily
interpreted and preserves the statistical power(McCleary, 2002). However, this method is
limited to analytical models without interactions and where the proportion of missing data
is not too large(Jakobsen, Gluud, We�erslev, & Winkel, 2017). These shortcomings could
be largely checked through use of machine learning techniques developed recently. These
include the use of K Nearest Neighbours(García-Laencina, Sancho-Gómez, Figueiras-Vidal,
& Verleysen, 2009), XGBoost(Chen & Guestrin, 2016) and Random Forests(Shah, Bartle�,
Carpenter, Nicholas, & Hemingway, 2014; Stekhoven & Bühlmann, 2011) algorithms.

1.2.3 Machine Learning Techniques in handling missing data

Random Forests algorithm

Also known as random decision forests, Random Forests is a non – parametric super-
vised learning ensemble method used for classification and regression(Breiman, 2001). It
implements these tasks through building predictive models through multiple learning
algorithms. To obtain the best possible result, RF constructs a whole forest of random
unassociated decision trees to a�ain at the best possible solution.
This method uses Breiman’s algorithm in handling missing data. It has since developed
into various di�erent algorithms for imputing missing observations. They are an im-
provement to Breiman’s earlier algorithm, the randomForest package (RColorBrewer &
Liaw, 2018) that is provided in R. Advancements from this algorithm include the ‘on –
the – fly – imputation’ method(Tang, 2017) in the randomSurvivalForest R-package. This
approach imputes data by concurrently growing a survival tree. A generalization of the
above two algorithms is the randomForest SRC package which includes classification and
regression(Tang, 2017). The latest RF algorithm for handling missing data is the missForest
package(Stekhoven, 2011) which imputes missing data using a prediction framework. It
involves regressing each predictor against all the other predictors and the missing values
for the response variable are predicted using the fi�ed forest(Stekhoven, 2015).
Recent studies have sought to compare performance among the di�erent RF algorithms.
A study for instance showed that in situations where correlation is high, missForest al-
gorithm performed best(Tang, 2017). However in big data se�ings, where computational
speed is a major factor to consider, mForest is the most e�icient. According to the study,
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mForest achieved upto a 10 – fold reduction in computed time relative to missForest.
Studies have also been comparison of RF with other machine leraning methods, for
instance(Waljee et al., 2013), and another study that looked at performance of a compina-
tion of RF and other methods. In this study, imputed estimates had reduced bias when
using RF and MICE (multivariate imputation using chaned equation) together, where
performance was assessed using computation speed and imputation accuracy(Shah et al.,
2014).

K Nearest Neighbors (KNN)

This is another non – parametric supervised learning algorithm for classification and
regression. KNN assumes that identical things occur in close proximity and chooses k
neighbors to each data point using the Euclidian distance(C. Zhang, Kai, Feng, & Yang,
2013).To obtain the appropriate k, the algorithm is run several times for di�erent values of
k. The value of k that reduces the number of errors and maintains accuracy in prediction
of the method given new data is chosen.
To impute missing values, k neighbors are selected based on a distance metric, commonly
the Euclidian distance, from the missing value. The mean of the selected k nearest
neighbors thus becomes the imputed estimate for the missing value. The distance metric
is determined by the type of data. For continuous observations; Euclidean, Manha�an
and Cosine distance metrics are commonly used. On the other hand, Hamming distance
is used for categorical observations.
The KNN algorithm is simple to understand and easy in implementation. It’s non –
parametric nature also allows it to work very well in di�erent se�ings. However, this
algorithm becomes slow and hence time – consuming especially with big data because of
searching identical instances throughout the entire data. Moreover, it’s accuracy can be
reduced adversely due to the small di�erence between the nearest and farthest neighbor.

XGBoost

XGBoost is a scalable supervised learning library for tree boosting. It implements machine
learning algorithms through the gradient boosting framework(Chen & Guestrin, 2016). It’s
scalability has made it one of the most sought machine learning system. One of it’s notable
feature is that it can run more faster than other machine learning methods and scales to
billions of examples(Nielsen, 2016). Furthermore, it hosts a novel tree learning algorithm
for handling sparse data. To handle missing values, XGBoost contains an algorithm
that learns the best direction to impute a missing observation or measurement(Chen &
Guestrin, 2016).
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1.2.4 Choice of Random Forests for this study

Random Forests algorithm is among the machine learning techniques which have been
proven to impute missing values accurately. Compared to other methods like k Nearest
Neighbours and XGBoost, it has been shown to perform be�er(Waljee et al., 2013). RF
is more a�ractive due to the fact that it hosts properties for handling missing value for
mixed data, and adapts easily to interactions and non – linear se�ings.
Due to its wide use in most research projects, di�erent algorithms have been developing
from the original package by Breiman(Tang, 2017). Studies have also saught to evaluate
the performance of the various algorithms using large diverse types of data. This has
added more knowledge on the best Random Forests algorithm to apply for di�erent
se�ings with accuracy and e�iciency. This method would thus inform the best approach
to use to impute missing values when there is clustering. Random forests can also be used
in predictive modelling with multiple responses(Cutler, Cutler, & Stevens, 2012).

1.3 Statement of the Problem

Data analysis phase of any clinical research is one of major determinants for the accuracy
and reliability of any study. Failure to take into account or improper methods for replacing
missing values has been shown to a�ect estimation of the study parameters.
Random forests have proven to be fast and more e�icient approach to handling missing
values while still maintaining a high level of accuracy. The flexibility of random forests in
providing various algorithms to deal with missing data in di�erent data se�ings present
an opportunity to explore more on best way to handle missing data especially when the
data is clustered. This study seeks to impute missing data for data of hierarchical nature.
The main aim of this project is to identify key determinants of clinical quality through the
process part of the health care delivery. The Paediatric �ality of Care score was used as
the measure of clinical quality. We would use routine clinical data from a clustered ran-
domized trial involving 12 Kenyan county – level hospitals between March and November
2016, which aimed at investigating the e�ect of enhanced audit and feedback (AF) on
adoption of pneumonia guidelines by the World Health Organization (WHO).
Since the PAQC score was developed recently, there hasn’t been a study to identify the
key features influencing the di�erent levels of the score. The results of this study will thus
provide useful information that will provide insights to the di�erent levels of clinical care
to both health care practitioners and government agencies involved in providing policies
for pneumonias management.
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1.4 Objectives

1.4.1 Main Objective

Estimate missing values in pediatric routine data and identify key determinants of Pediatric
Admission �ality of Care score using Random Forests.

1.4.2 Specific Objectives

i. Use random forests to impute missing values in routine pediatric data

ii. Identify the key determinants of PAQC score as a multiple outcome using RF

iii. �antify variable importance of predictors of PAQC score using RF

1.5 Sampling Design

1.5.1 Location of study

The study was conducted at both the University of Nairobi and Kenya Medical Research
Institute (KEMRI)-Wellcome Trust Research Programme in Nairobi County, Kenya.

1.5.2 Data source

This study was conducted through a retrospective cross – sectional study design, where
data is collected from hospital records. It is based on data from a cluster randomized trial
which was conducted in 12 Kenyan hospitals to evaluate the e�ect of enhancing audit
and feedback on childhood pneumonia management(Ayieko et al., 2019). The data was
obtained through a formal request to the KEMRI – Wellcome Trust Research Programme
through the relevant data commi�ee.

1.5.3 Sampling technique used

The hospitals were the basic unit of randomization. The researchers selected the 12 hospi-
tals based on the following inclusion criteria. The hospital had to be public, government-
owned and had at least 1000 admissions of children each year. They were also supposed to
be located in either a low or high malaria transmission se�ing based on the main malaria
ecological zones in Kenya. This process was done through consultation with the ministry
of health.
A case whose data was obtained had to meet the following criteria. A child was supposed
to be aged between 2 and 59 months. If a child had a history of pneumonia clinical
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Assessment of Signs
Primary signs Secondary signs

Cough or
di�cult breathing

Central cyanosis or (in)ability to drink/breastfeed or AVPU or grunting or acidotic
breathing if very severe, or central cyanosis and (in)ability to drink/breastfeed or AVPU,
and grunting and acidotic breathing if severe, or
central cyanosis and (in)ability to drink/breastfeed or AVPU, and grunting
and acidotic breathing and respiratory rate if non-severe.

Table 1. Assessment of pneumonia signs

Diagnosis and Classi�cation

Present Absent

• Pneumonia

A child was expected to be classi�ed has having pneumonia if at least 2

signs were present (either primary or secondary)

• Severe Pneumonia

A child was expected to be diagnosed with severe pneumonia if the 2 primary

signs and at least 5 secondary signs were present.

·

No classi�cation

Table 2. Diagnosis and Classification of pneumonia

diagnosis whether signs or symptoms were present or not were also included. Children
with a cough exceeding more than two weeks were not selected for the study. If a case
had other co – morbities; Meningitis, HIV, severe malnutrition, severe malaria, surgical
conditions and sepsis was also excluded. Information on the intervention process and
outcomes can be found in the documented clinical trial publication(Ayieko et al., 2019).

Checklist of guidelines used for management of Pneumonia

Assessment
At the assessment phase, children who are admi�ed were expected to be assessed for 2
primary and 7 secondary signs. These are showed in

Diagnosis and classification
The diagnosis and classification of pneumonia patients criteria is presented in 2. Treat-
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ment
A child who is between 2 and 59 months diagnosed with pneumonia was expected to
receive Amoxicillin of between 32 – 48 mg/kg with a frequency of 2 times a day for the
specified duration.

1.5.4 Sample size and power calculation

In total, data for 2,127 children between the age brackets of 2 to 59 months was obtained
for this study.

1.5.5 Variables of Interest

Response variable
For the modelling of multilevel data, the outcome variable will be the PAQC score from all
the domains as a sum of the scores at the various points of measurements in each domain.

Domains of PAQC Score
The domains of the PAQC score are presented in 3.

Predictor variables
The covariates are presented in 4.

1.6 Justification for the study

Childhood pneumonia is a leading cause of mortality for under – fives in developing
countries. Of all the under – fives deaths that occur in the world, a fi�h of them are
caused by pneumonia(WHO, Fact Sheet: Pneumonia. 2016). It is estimated at 1.9 million
each year. In Kenya, pneumonia is the second major cause of under - five deaths accounting
for 16 of deaths in those under the age of five (Black et al., 2010). In Kenya, for children
under the age of five, pneumonia is diagnosed through the Integrated Management of
Childhood Illness (IMCI) criteria in public health facilities(Gera, Shah, Garner, Richardson,
& Sachdev, 2016).
Despite stringent measures to curb pneumonia, there are still quality of health care gaps
in the diagnosis, assessment and treatment of this leading cause of mortality in children.
This is as a result of di�erences in healthcare se�ings or lack of knowledge about the
set standard guidelines in managing pneumonia. This has resulted to a slow reduction
in deaths for under-fives due to the disease. A Paediatric Admission �ality of Care
score was recently developed to assess compliance to the set guidelines in management
of pneumonia. This score identified possible gaps that could be filled and thus improve
quality of health care.
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No. Domain Sub - domain Binary Classi�cation

1 Assessment Primary signs
1 – The two symptoms were assessed
0 – At least one or both of the symptoms
were not assessed

2 Assessment Secondary signs
1 – All 7 symptoms were assessed
0 – At least one of the symptoms
was not assessed

3 Assessment Both primary and secondary signs
1 – All 9 symptoms were assessed
0 – At least one of the 9 is not documented

4 Diagnosis Diagnosis
1 – Right diagnosis & classi�cation of
pneumonia
0 – Otherwise

5 Treatment Treatment

1 – Those diagnosed with pneumonia got
Amoxi
0 – Those diagnosed with pneumonia
did not get Amoxil

6 Treatment Dosage and Frequency

1 – Pneumonia patient received correct dosage
and in right frequency
0 – Patient did not get right
dosage and in right frequency

Table 3. Domains of PAQC Score
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No. Predictor Variable type Predictor classi�cation

1 Malaria prevalence Binary
0 – Low

1 – High

2 Hospital Workload Binary
0 – Low

1 – High

3 Intervention Binary
0 – Control arm

1 – Intervention arm

4 Child gender Binary
0 – Female

1 – Male

5 Age group Binary
0 – 2 to 11 months

1 – 12 to 59 months

6 Comobidity Categorical

0 – None

1 – One condition

2 – Two conditions

3 – Greater or equal to 3 conditions

7 Weight Continuous Weight of the child in kg

8 Clinician sex Binary
0 – Female

1 – Male

9 Clinician cadre Binary
1 – Clinical O�cer (CO)

2 – Medical O�cer (MO)

10 Month Continuous The time a child presented to the hospital
Table 4. Covariates
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Clinical routine data used to calculate this score was sparse. Most fields were missing
due to various reasons. The accuracy and validity of the score could be a�ected by the
significant number of missing values. To overcome this possible shortcoming, this study
sought to use random forests to estimate the missing values and in – turn calculate a new
PAQC score having handled the missing values.
The study will also identify the key determinants of the score. This would thus inform
health care providers on ways to improve delivery of health care services. It will also
add more knowledge on determining PAQC score by overcoming the major problem of
missing observations in hospital records. This would inform other researchers interested
in determining PAQC scores for other chronic diseases and hence improve health care.
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2 Literature Review

2.1 Introduction

This chapter outlines previous studies on PAQC score in measuring quality of health
care. It will also involve discussion on modelling data of hierarchical nature with multiple
outcomes. An in-depth explanation on nature and causes of missing data in clinical routine
data will also be discussed. Application of random forests in handling missing data and in
predictive modelling with multiple outcomes will also be discussed.

2.2 History of clinical quality

�ality of healthcare in clinical practice is an interaction between patients and the
clinicians and how inputs within the health system are transferred into health outcomes.
Clinical quality focuses mostly on the process of healthcare rather than inputs such as
drugs, facilities and equipment(Donabedian, 1988). Therefore, for an up – to standard
healthcare, it should be e�ective and evidence based(Baker, 2001). Although the availability
of inputs makes it easy to measure, they can’t be solely be used to determine whether
there is an improvement in health care provided(Peabody, Taguiwalo, Robalino, Frenk,
et al., 2006). Therefore, to evaluate clinical processes, the behavior of clinicians and
their associated measurements and assessments to patients provide critical information
in the development of tools and methods towards improving the patients’ health care
services. The healthcare delivery could thus be evaluated based on the current guidelines
to identify gaps and hence improve care. However, there are quite a number of challenges
in evaluating clinical quality. There is need for strong and credible evidence to provide
useful estimates of quality of care for policy purposes by healthcare providers and as a
standard to evaluate interventions(Boren & Balas, 1999).
For many developing countries, clinical quality guidelines either exist and are poorly
enforced or are unavailable in totality. Moreover, where the guidelines exist there are no
clear standards and cut – o�s for distinguishing high and low quality of care. This thus
calls for careful judgement through scientific research.

2.3 �ality of healthcare in management and control of childhood
pneumonia.

Globally, Pneumonia is the leading cause of deaths among under – fives. According to
WHO, 920136 children under the age of five years died from pneumonia in 2016(WHO,
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Fact Sheet: Pneumonia. 2016). More deaths were reported in Sub – Saharan Africa. To
reduce this prevalence, a be�er understanding of childhood pneumonia clinical practices
in assessment, diagnosis and treatment required to improve both outpatient and inpatient
pediatric care especially in se�ings with resources limitations.
Guidelines to improve general population health have in most cases focused on expanding
health care delivery through provision of quick and easily accessible services to the
population. However the quality of the health care has not been explored and taken
into account. Health care stakeholders have always assumed the expansion of health
care services implies natural improvement in quality of care(Ensor & Cooper, 2004). This
hypothesis is not correct. People have developed rational ways to seek healthcare services
based on the quality of services delivered previously. This is due to the common belief
that poor quality of health care is a hindrance to coverage of universal health which is
independent of access to healthcare services(Berendes, Heywood, Oliver, & Garner, 2011).
To improve the health care services strategies have been developed to ensure essential
inputs in-line with the developing modern healthcare landscape are in place and easily
accessible at all levels. These strategies are only tailored towards strengthening provision
of services in line with the standard guidelines(Heiby, 2014). The need to go a step further
to evaluate healthcare services using patient – centered models has however been explored
recently.
To advance pneumonia control and management in protection, prevention and treatment
of childhood pneumonia, a Global Action Plan for Pneumonia and Diarrhoea (GAPPD) has
been launched. It is an initiative by the WHO and UNICEF. This intervention outlined three
ways. Firstly, protection through exclusive breastfeeding and su�icient complimentary
feeding. Secondly, prevention by use of vaccinations, handwashing with soap, reducing
air pollution in the household and HIV prevention practices for HIV-infected and exposed
children. Thirdly, treatment through access to the recommended kind of care and drugs
through all levels of health care delivery given the diversity due to di�erences in resources
and severity.
These guidelines have been widely shared but most countries have not yet implemented
them. Kenya has however taken steps towards the implementation through the Integrated
Management of Childhood Illness (IMCI) criteria in public health facilities. There has
however been need to measure compliance to the guidelines. This is particularly important
due to the di�erences in health care se�ings and resources in healthcare delivery units.
There are also common challenges towards evaluating quality of healthcare. In most
developing countries for instance, medical records are not well maintained and in most
cases are sparse with missing information both at random and systematically. This
shortcomings may therefore not provide a reflection of the actual practice. In some
situations quality of health care can be evaluated through use of covert research where
under-cover patients are used to monitor quality of healthcare. This has however in the
past raised ethical concerns(Leonard & Masatu, 2010). In light of these challenges and
many more, researchers have sought to find ways on evaluating quality of healthcare.
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2.4 Pediatric admission quality of care (PAQC) score as a measure of
clinical quality

PAQC score is a logical summative patient – level measure of quality of healthcare from
admission to treatment of a disease(Opondo et al., 2016). This tool measures compliance
by clinicians to the recommended clinical guidelines on the various stages of healthcare
delivery. According to the designers of this important tool in clinical quality, process
metrics are evaluated across three domains of healthcare delivery. These domains are
assessment, diagnosis and treatment stages for a health condition. Medical records are
usually mined for data on the clinician’s compliance to the checklist of guidelines on the
administration of healthcare services at each of these domains for a particular health
condition. This data can be obtained for all admissions for the particular ailment at all
health units and compiled.
At the assessment level, evaluation is done on whether clinicians assessed all symptoms
recommended in the clinical guidelines for diagnosis of a particular disease. Once the
data on assessment has been obtained, the next stage is to evaluate whether clinicians
recorded correct diagnosis for the symptoms identified at the assessment level. The last
domain focuses on if the patient received the correct treatment based on the diagnosis.
Recommended medicines, correct dosage and frequency of treatment prescription for the
correct diagnosis are evaluated at this stage. At each stage Boolean indicators are used to
show whether compliance to guidelines was followed or not. These indicators at each of
the domains are summed up to provide a cumulative score that is used as a process metric
of quality of healthcare. The higher the score the be�er the quality of care provided and
the lower the score the poorer the process of health care delivery.
Recently, a validation study was carried out on the e�ectiveness of this score. In this
study to evaluate the association of the PAQC score with mortality in Kenyan hospitals
found out that a unit increase in the PAQC score significantly reduced the odds of a
mortality case in a hospital, which is a pooled estimate across the 27 hospitals whose data
was obtained(Opondo, Allen, Todd, & English, 2018). The data was obtained for children
who were admi�ed for treatment of malaria, pneumonia, diarrhea, or dehydration. This
findings bring to light for the first time a tool that could be used across the whole spectrum
of health conditions using the WHO guidelines on the management of chronic diseases
to improve healthcare delivery and reduce major causes of mortality and morbidity. This
could inform policies to increase awareness on adherence to the guidelines which has been
shown to improve the score. This was evident in a study to determine how processes of
care improve for children hospitalized with diarrhoea(Akech et al., 2019). The study found
that participating in a clinical network by health stakeholders could improve sensitization
on use of the clinical guidelines in healthcare delivery and significantly increase the PAQC
score translating to be�er clinical quality.
Most medical records are usually sparse. This may a�ect significantly the cumulative
PAQC score. Methods to address the missing fields is therefore needed to ensure estimates
are more accurate. This study will use Random Forests algorithm to impute missing values
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in routine pediatric data and determine key determinants of the PAQC score with multiple
outcomes.

2.4.1 Statistical methods used in analysis of PAQC score

Having been developed recently, PAQC score hasn’t been researched on widely. However,
few studies have sought to find the association between PAQC score and outcome mea-
sures particularly mortality. One such study was used for validation of the tool. The main
aim of this study was to determine the association of adhering to guidelines making up
the PAQC score to mortality among under – fives who were admi�ed to 8 hospitals across
Kenya for acute illnesses (Opondo et al., 2018). Hierarchical logistic regression models
were used to assess the association of the score with mortality. Mortality was the outcome
variable. The models were adjusted for comorbidities, illness severity, age, gender, the
duration they were admi�ed in the hospital, trial arm and the survey number. The study
found that for hospitals where the guidelines were adhered to the risk of mortality among
the patients reduced as compared to where they were not followed. Another study that
explored the same objective was carried out a year later to determine the association
between the score among severe pneumonia children
(Opoka et al., 2019). This study involved a review of hospital records for over 1300 children.
Logistic regression models were fit to determine the association where mortality was
used as an outcome variable. The study found that inpatient deaths were significantly
reduced for children who were managed according to the guidelines. To determine how
the PAQC score fared overtime for di�erent se�ings or interventions, a study to study
the pa�ern of improvement in clinical quality for hospitals that participate in a clinical
network was carried out(Akech et al., 2019). In this study, the PAQC score was classified
into a binary variable where a score greater or equal to 5 was a “good score”. Mixed e�ects
fractional polynomial regression was fit to adjust for hospital level. The study found that
a�er joining a clinical network the scores increased gradually.
Clearly, there is study that has sought to find the key determinants of the score as most
of the studies investigated the association between the score and outcome measures
particularly mortality with the score as a predictor variable. This study presents for the
first time a model to determine the predictors of the score and determining the most im-
portant predictors that influence clinical quality in management of pneumonia especially
in children under the age of five years.

2.5 Analysis of hierarchical data for an ordered outcome

Most clinical research problems have shown to have patients or samples nested within
clusters such as clinicians and hospitals. To carry out statistical models to understand
various relationships and associations between features of interest, we need to adjust for
the e�ects of these clusters. There has been various methods in use. Linear fixed models
have been widely used for outcomes that are continuous.For instance, in a study in Uganda
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to identify quality ca�le breeds using yield as outcome variable, a linear mixed model
was fit with ca�le – associated characteristics were nested within herds group(Onyango,
2009). Multilevel exploratory data analysis using Random Forests have also been proposed
in the recent past. The first implementation of this technique was in the development
of the MLEDA package that used scores of a mathematics test for children as outcome
variable(Martin, von Oertzen, & Rimm-Kaufman, 2015). In this study, students were
nested within schools. Children – related characteristics were used as predictors. Random
intercept logit models have also been used for binary outcomes(Rodriguez & Goldman,
2001). Methods for multi-level analysis for ordered outcomes have been proposed in
the recent past. An earlier study to explore this technique involved 2408 children in 169
schools to determine proficiency in reading at the end of the first grade(O’Connell, 2010).
Proficiency in reading was used as an ordered outcome with 6 levels. Children were nested
within schools. The study used the hierarchical proportion odds model approach. Boys in
public schools and from low social economic status homes had greater probabilities of
being at or below a given proficiency level relative to their peers. A year later, another
study to explore when a linear mixed model would be ideal for ordinal outcomes used
simulated data with various levels and clusters(Bauer & Sterba, 2011). Five hundred
samples were used for this study. Penalized quasi-likelihood and maximum likelihood
using adaptive quadrature methods were used to evaluate the deviance of the estimates
from a cumulative logit model which is a standard model for ordinal outcomes. This study
found that when the marginal distribution of the category responses was almost normal
and the categories were seven, the linear model bias of the fixed e�ects is in the acceptable
levels. Subsequent studies that have explored use of ordinal outcome using cumulative –
logit mixed models include a study to determine the e�ect of bio – energy treatments on
breast cancer using mice (Schmidt, 2012) and another to determine student satisfaction
on courses taught at the university(Grilli & Rampichini, 2012).
Generally the standard methods for analyzing hierarchical data are the cumulative – logit
models and the hierarchical proportions odds methods. We will use the cumulative – logit
mixed models under the assumption of proportional odds and multilevel exploratory data
analysis using Random Forests to evaluate the objectives of the study.

2.6 Cumulative logit models approach

One of the widely used method for analysis of data with an ordinal outcome is the
proportional odds cumulative logit model.This technique transforms ordinal levels into
binary at a given threshold that is based on cumulative probabilities.
Given Y = 1,2, ...,J are levels of an ordinal outcome with probabilities π1,π2, ...,π j, then
the cumulative probability for a level less or equal to j is given by

P(Y ≤ j) = π1,π2, ...,π j (1)
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Therefore,

log(
P(Y ≤ j
P(Y > j

) = log(
P(Y ≤ j

1−P(Y ≤ j
) = log(

π1 +π2 + ...+π j

π j+1 + ...+πJ
) (2)

is the cumulative logit.

This is an estimate of the likelihood of a response being in level j or below to a level higher
than j.
A sequence of these cumulative logits is given by;

L1 = log(
π1

π2 +π3 + ...+πr
)

L2 = log(
π1 +π2

π3 +π4 + ...+πr
)

...

Lr−1 = log(
π1 +π2 + ...+πr−1

π2 +π3, ...,πr
)

L j is the log - odds for a certain level being less or equal to level j

Adding covariates to the model we have;

L1 = α1 +β1X1 + ...+βpXp

L2 = α2 +β1X1 + ...+βpXp

...

Lr−1 = αr−1 +β1X1 + ...+βpXp

This is the proportional - odds cumulative logit model where;

α j is the log odds of being less or equal to level j

βk is the e�ect of variable Xk on the outcome
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For instance considerig only one covariate we have;

logit[(P(Y ≤ j)] = α j +βx (3)

The cumulative probabilities will therefore be given by P(Y ≤ j) = α j+βx
1+exp(α j+βx)

Since β is constant the odds - ratio is proportional to the di�erence between x1 and x2

where β is the constant of proportionality. Hence the name ’proportional odds model’.
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3 Methods

3.1 Introduction

This chapter outlines derivations and model specifications for the models fit. Imputation
of missing values and calculation of the PAQC score will also be discussed.

3.2 Derivations and model specification

This study will use four steps to evaluate the objectives of the study. These include
imputation of the missing values using RF, calculating the PAQC score a�er accounting
for missing values,cumulative - logit mixed models and multilevel exploratory data analysis
models using the overall PAQC score as an outcome and the other variables as predictors.

3.2.1 Imputing missing values using RF

The package missForest in R will be used to impute missing values in variables of interest.
All predictor variables will be passed onto the algorithm for imputation. This method is
best in situations with mixed type of data and it provides OOB imputation error estimate.

3.2.2 Calculation of PAQC score

The binary indicators for the specific points of measurement at each domain in table (3)
will be summed up to obtain an overall score for each observation. This will form the
PAQC score.

3.2.3 Cumulative - logit Mixed models

Model Speci�cation

logit(Yci j) = αc +Xi jβ +µ;c = 0,1, . . . ,c−1 (4)

where;

• Yci j - cumulative probability upto the c-th category for patient i in hospital/clinician j
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• αc - Cumulative intercept for a certain PAQC score level

• i - Patient ID

• j - clustering variable

• Xi j - Covariate vector with patient characteristics

• β - vector of fixed parameters

• µ j - random e�ect (unobserved factors)

Model Estimation

Let;

• Y j - Vector of n j ordinal responses of the jth cluster

• X j -Covariate matrix of cluster j with rows Xi j

• θ - (α ,β ,δµ ) be the vector of the model parameters where α
′
= α1,. . . ,c-1

The likelihood of Yj conditional on µ j is equal to the product of the conditional probabili-
ties of the responses.

L j(Yj|µ j;X j : α,β ) =
ni

∏
i=1

c

∏
c=1

(Yci j−Yc−1i j)
dci j (5)

Where; dci j is the indicator of (Yi j=yc) The likelihood of Yj is obtained by integrating out
the random e�ects µ j

L j(Y j|X j;θ) =
∫

µ j

L j(Yj|µ j;X j : α,β ) f (µ j : δµ j) (6)

Where; f (µ j;δmu j) is the density of µ j

µ j ∼ N(0,δµ)

Given independence across clusters, the log - likelihood for the j cluster is

logL =
j

∑
j=1

logL j(Yj|X j;θ) (7)
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3.2.4 Multi - Level Random Forests model

RF is a predictor consisting of a collection of randomized base regression trees.

Estimation of Intra – cluster correlations

PAQC score is assumed to be numeric in this analysis
The first step was to estimate Intra – cluster correlations to assess significance of the
clinician and hospital level variables.
This was executed by fi�ing random intercept models only, without predictors. One model
using clinician level as cluster and the other using hospital level. If the estimate of the
ICC is above 0.15, the clustering of the outcome variable in that cluster is significant and
hence needs to be accounted for in the multilevel modelling.
In cases where the ICC is small, this suggests that clustering may not strongly influence
the outcome and thus we may just fit the normal model without nesting the data into the
cluster variable.
RF Multilevel Exploratory Data Analysis (MLEDA) models

These models will be fit to determine most important variables in predicting the PAQC
score.
Determination as to which variables were most important in predicting PAQC
score.

Two RF models will fit, one is the normal RF model and the other the conditional ran-
dom forest model. The implementation the conditional random forest algorithm di�ers
from the normal RF model with respect to the base learners used and the aggregation
scheme applied. Particularly, the conditional random forest aggregation scheme works by
averaging observation weights extracted from each of the trees, this is contrary to the RF
scheme that averages predictions directly Hothorn et al Meinshausen (2006).
The third model is a linear mixed e�ects model adjusting for clustering at both the clinician
and hospital level.
Variable importance plots for the three models will be plo�ed to illustrate the relative
importance of each predictor in the three models.

Model speci�cation and estimation

rn(X ,θm,Dn),m≥ 1 (8)

Where θ1,θ2, . . . are i.i.d outputs of a randomized variable θ

These random trees are combined to form the aggregated regression estimate.

r̄n(X ,Dn) = Eθ [rn(X ,θ ,Dn)] (9)
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Eθ is the expectation wrt random parameters, conditionally on X and the data set Dn
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4 Data Analysis

4.1 Introduction

This chapter presents the descriptive statistics for the PAQC score on association with
predictors used in this study. The descriptive statistics will be presented as counts, percent-
ages, means and medians.Associations will be explored using box-plots. In this chapter,
results of multilevel mixed models and random forests models findings will be presented.
The various regression coe�icients and estimates will be interpreted based on 5 level of
significance.

4.2 Data cleaning procedures

The raw data obtained from the KEMRI - Wellcome Trust Research programme was im-
ported into R. Variables that were in string format were transformed into factor format.
These variables are; Hospital ID, Malaria prevalence, Hospital workload, Intervention arm,
Child sex, Age group, Comobidity, Amoxl frequency, Clinician Sex, Cadre, Correct dose
and Correct treatment.
A new variable named comobidities was created based on the other ailments recorded by
clinicians at the time a child presented to the hospital. This variable had categories for
whether a child had one, two, three or more than 3 comorbidities.Variales that were used
to create other variables were removed from the dataset. These included variables used to
define the primary, secondary, diagnosis and treatment scores.
Once the variables of interest were identified, missing values for each covariate were visu-
alized and a test to determine the nature of missingness evaluated. Below is a visualization
of the missing values.

From the missing values pa�erns in the figure 1, missing values on clinician sex and cadre
were high and were associated. The values were thus not missing at random. The same
trend is observed for Amoxl frequency and dosage. The Amoxl frequency and weight of
the child also seem correlated. Child sex and age did not have any significant association
with any other variable. Data on these two would thus have occurred at random.
There was a significant trend on missing values in recording Amoxl dose by hospital ID as
shown in the figure 2. H9 and H10 had significantly higher missing values in this variable.
Data was imputed using the random forests missForest package in R. The out of bag
error (00B) showed precision and accuracy in the imputation. The Normalised root mean
squared error (NRMSE) for continuous variables was 0.00008 while the proportion of false
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Figure 1. Missing values pa�ern
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Figure 2. Missing values by hospital

classifications for categorical variables (PFC) was 0.09. This shows accuracy in imputation.

4.3 Descriptive data analysis

Descriptive statistics for each covariate and domains is presented in table 5.
PAQC Score by various a�ributes

From the boxplots in the figure 3, hospital is an important factor in predicting quality of
healthcare using the PAQC score. H1 and H11 had the highest median score of 5, while
H12, H2, H4, H6, H7 and H9 had the least median score of 3.
From figure 4, hospitals with high hospital workload had a significantly higher scores as
compared to those with low workloads.

4.4 Random e�ects model analysis

Proportion of PAQC Scores
The proportion of PAQC scores is presented in table 6.

Random E�ects models

Table 7 shows the first random intercept models without covariates to assess whether
clustering is significant at either hospital or clinician level. Two models are fit, one with
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Name of variable
Frequencies and descriptive

statistics (N = 2127)

n %

Child sex: Male 1174 55.2

Clinician sex: Male 1290 60.7

Malaria prevalence :Low 1576 74.1

Hospital workload: High 1067 50.2

Intervention arm: Intervention 953 44.8

Age group : 12 – 59 months 1224 57.6

Comobidity

0 995 46.8

1 633 29.8

2 381 17.9

>=3 118 5.6

Cadre : Medical O�cers 1335 62.8

PAQC Sub - domains

Primary score 2111 99.3

Secondary score 1183 55.6

Assessment score 1173 55.2

Diagnosis score 1473 69.2

Correct treatment score 1036 48.7

Both correct dosage & frequency 1093 51.4

Numeric Variables

Mean Median Range IQR

Weight 9.2 8.9 (3 – 24) (6.8 – 11)

PAQC Score 3.8 4 (0 – 6) (3 – 5)
Table 5. Covariates
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Figure 3. Hospital vs PAQC score

Level 0 1 2 3 4 5 6 Totals

Frequency 2 164 303 431 472 412 343 2127

Percentage 0.09 7.71 14.25 20.26 22.19 19.37 16.13 100
Table 6. Proportion of PAQC scores

Random e�ects: Hospital Level

Groups Name Variance Standard Deviation

Hospital

Level (Intercept)
0.491 0.7007

Number of hospitals: 12

Random e�ects: Clinician Level

Groups Name Variance Standard Deviation

Clinician Level (Intercept) 1.444 1.202

Number of clinicians: 378
Table 7. Random E�ects model results
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Figure 4. Hospital workload vs PAQC score
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Fit No.par AIC logLik LR.stat df Pr(>Chisq)

Null Model 6 7462.9 -3725.5

Random E�ects Model

(Hospital Level)
7 7154.8 -3570.4 310.14 1 <2.2e-16

Random E�ects Model

(Clinician Level)
7 6988.3 -3487.2 476.6 1 <2.2e-16

Table 8. Likelihood Ratio Test

hospital level and another with clinician level as random factors.
At hospital level, a cluster variance of 0.491 (with a standard deviation of 0.7007) is obtained.
At clinician level, a cluster variance of 1.444 (with a standard deviation of 1.202) is obtained.
Clearly there is more variation at clinician level relative to the hospital level on the PAQC
score. The study goes on to assess whether the variance is statistically significant.

The table 8 shows the results of the LRT to assess whether the cluster variances are
statistically significant, the two models were compared with the model without random
e�ects, the null model.
The LRT statistics for hospital and clinician levels are 310.14 and 476.6 respectively. Each
with 1 degrees of freedom associated with p-values less than 0.05 (2.2e-16). The null hy-
pothesis of no significant clustering is rejected. There is therefore evidence of unobserved
heterogeneity at hospital and at clinician level. These random factors therefore need to be
accounted for in the model to be fit.

4.5 Cumulative Link Mixed Models Results

The table 9 presents the results of the cumulative logit mixed models.

4.5.1 Discussion of the results

Model Nested within Hospital

Weight of the child, clinician sex, cadre and the time of admission were significant key
determinants of PAQC score based on the P-values at 0.05 level of significance.
The probability of having a higher PAQC score is higher as the weight of the child increases
if the child was a�ended to by a medical o�icer rather than a clinical o�icer and as the
months increase. Specifically, the probability of increasing the PAQC score by one level as
weight increases is 6%, while being a�ended by a medical o�icer relative to a clinical o�icer
increases the probability by 19% and as the time of admission increase the probability
increases by 12%.
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Nested within
Hospital

Nested within
Clinician

Nested within both
Hospital and Clinician

Feature Estimate
Std.
Error

Pr(>|z|) Estimate
Std.
Error

Pr(>|z|) Estimate
Std.
Error

Pr(>|z|)

Age group:
12 – 59 months

-0.10 0.10 0.34 -0.10 0.11 0.37 -0.09 0.11 0.37

Child sex:
Male

-0.04 0.08 0.62 -0.01 0.08 0.92 -0.02 0.08 0.80

Commodities:
0 0.14 0.17 0.43 0.06 0.19 0.74 0.10 0.19 0.60
1 0.07 0.18 0.68 0.03 0.19 0.88 0.06 0.19 0.76
2 0.10 0.18 0.57 0.00 0.20 0.98 0.03 0.20 0.87
Child weight 0.06 0.02 0.00 0.06 0.02 0.00 0.06 0.02 0.00
Clinician sex:
Male

-0.47 0.09 0.00 -0.53 0.16 0.00 -0.49 0.15 0.00

Cadre:
Medical O�cer

0.19 0.09 0.03 0.33 0.15 0.02 0.28 0.14 0.05

Hospital
Workload:
Low

-0.52 0.38 0.18 -0.38 0.17 0.03 -0.45 0.41 0.26

Malaria
Prevalence:
Low

0.06 0.36 0.88 -0.17 0.18 0.33 -0.07 0.39 0.85

Intervention
Arm

-0.54 0.36 0.13 -0.59 0.17 0.00 -0.59 0.39 0.12

Time of
admission

0.12 0.02 0.00 0.11 0.03 0.00 0.11 0.03 0.00

Table 9. Cumulative logit mixed models results
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On the other hand, PAQC scores would be lower if the clinician was male. For a male
clinician, the probability of reduced PAQC score by one level is 47% relative to a female
clinician.
Model Nested within Clinician

Weight of the child, clinician sex, cadre, hospital workload, intervention arm and the time
of admission were significant key determinants of PAQC score based on the P-values at
0.05 level of significance. It’s evident hospital workload and intervention arm factors come
into play as compared to the model nested within hospital level.
Weight of the child increases the probability of a higher PAQC score level by 6%, being a
medical o�icer increases this probability by 33% relative to a clinical o�icer and as time of
admission increases this probability increases by 11%.
The probability that the score decreases by one level on the other hand is 53% if the
clinician is male relative to a female counterpart, 38% if the hospital workload is lower
than 1000, and 59% if the hospital received an intervention relative to the control group of
hospitals.
Model nested within both hospital and clinician level

Typical to the model nested within the hospital level, weight of the child, clinician sex,
cadre and the time of dmission were significant determinants of PAQC score based on the
P-values at 0.05 level of significance.
The probability the PAQC score increases by one level as weight increases is 6%, while
being a�ended by a medical o�icer relative to a clinical o�icer increases the probability
by 27% and as the time of admisssion increase the probability increases by 11%.
On the other hand, PAQC scores would be lower if the clinician was male. For a male clini-
cian, the probability of reduced PAQC score by one level is 49% relative to a female clinician.

4.6 Random Forests Models Results

4.6.1 Estimation of Intra – cluster correlations

The intra - cluster correlations are presented in table 10. The amount of variance in PAQC
scores associated with hospital level and clinician level is 0.34 and 0.73 respectively.
This implies that just under 34% and 73% of the variation in PAQC scores is associated with
the hospital a child was admi�ed and the clinician that a�ended to the child respectively.
In other words, a third of the variability in PAQC scores across children admi�ed is
associated with the hospital a�ended while close to three – quarters of the variability in
the score is associated with the clinician that a�ended the child. The presence of such a
large ICC suggests that clustering is important at both clinician and hospital level, and
that multilevel appropriate methods for fi�ing recursive partitioning models should be
strongly considered. Therefore as we move forward, we have to adjust for clinician and
hospital level.
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Random e�ects:

Groups Name Variance Std.Dev.

Hospital (Intercept) 0.3427 0.5854

Clinician (Intercept) 0.7339 0.8567

Number of observations: 2127,

Groups: Hospital Levels, 12

Clinicians, 378
Table 10. Random intercept models

4.6.2 RF Multilevel Exploratory Data Analysis (MLEDA) models results

The figure 5 shows the variable importance for RF models based on a continuous outcome.
We fit a RF MLEDA model using PAQC score as outcome and the other variables as
predictors. The proportion of variance in PAQC score explained by the RF model based on
the cross – validation sample is 0.236.
In other words, a model was fit to a training set of patients made up of randomly selected
50% of the total sample, and then the model was applied to the other 50%, who made up
the cross-validation sample. For this second sample, the RF model accounted for 23.6% of
the variance in PAQC scores.
Month and weight were the most important variables in predicting the quality of care
while age and the number of comorbidities were the least important.
The figure 6 shows the variable importance for RF models based on an ordinal outcome.
Weight, clinician and month were the most important variables in predicting the quality
of care while the intervention arm and malaria prevalence were the least important.
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Figure 5. RF using PAQC score as a numeric outcome

Figure 6. RF using PAQC score as an ordinal outcome
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5 Conclusion

5.1 Summary

Although based on the AIC, the model nested within hospital and at clinician level provides
more information, the other two models bring out a few insights worth noting.
Child weight is a significant determinant of PAQC score across all the models with same
e�ect size of 0.06.
The model nested within the hospital level provides the same significant determinants of
PAQC score as the model nested within both hospital and clinician level. The direction of
the e�ect sizes is same and the magnitude of the estimates are not very di�erent.
The model nested within clinician level is however di�erent with additional factors influ-
encing the score. These are the hospital workload and intervention arm. These are possibly
clinician-level specific covariates and they could have a direct e�ect on the clinicians.
Both have a negative e�ect on the PAQC score. This can also be confirmed by the higher
cluster variance in the random e�ects model at clinician level relative to hospital level.
Since the model nested within both hospital level and clinician level provides more infor-
mation based on the AIC. The study concludes that the weight of the child, clinician sex,
clinician cadre and time of admission are key determinants of PAQC score.
The standard cumulative logit model with no clustering was not interpreted however we
note that the results are similar in terms of the direction of e�ect to the PAQC score as
the model nested within the clinician level.
Based on the RF models; age, the number of comorbidities and malaria prevalence for a
given patient may not strongly influence the quality of care provided.

5.2 Future Research

A method or algorithm to analyze multi - level data for an ordinal outcome using random
forests could be explored.
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