
i

UNIVERSITY OF NAIROBI

SCHOOL OF ENGINEERING

WAVELET BASED DENOISING METHODS

FOR MAGNETIC RESONANCE IMAGES

KAGOIYA KENNETH GICHOHI

REG NO F56/ 8645/ 2005

A Research Thesis Submitted in Partial Fulfillment of the

Requirements for the award of Degree of Master of Science in

Electrical and Electronic Engineering of University of Nairobi.

JULY 2019

ii

DECLARATION

I declare that this thesis is my own original work except where explicitly stated otherwise in

the text, and that this work has not been submitted for the award of any degree or

professional qualification in any other institution.

Signature …………………...………….. Date ……………..………….

KENNETH KAGOIYA

CERTIFICATION

I certify that this thesis is work was carried out under my supervision and this thesis has been

submitted for examination with my approval as the University supervisor.

Signature …………………...………….. Date ……………..………….

PROF. ELIJAH MWANGI

iii

DEDICATION

This work is dedicated to my parents Peris and Dickson Kagoiya.

iv

ACKNOWLEDGEMENT

A lot of thanks go to my project supervisor Prof Elijah Mwangi who led me during my

research on the thesis. His ideas, advice and guidance have helped me a lot.

I would also like to thank Prof Ouma for his encouragement and support. I would also like to

thank all lecturing staff of Electrical and Information Engineering department who took time

to teach me as a lone student during my course work.

I would also like to thank the Technical University of Mombasa for the financial support and

study leave while doing my coursework and project work at KTH (Royal Institution of

Technology). In addition I would like to thank Mr Victor Kyalo and Prof Bjorn Pehrson for

supporting my application and admission to the senior Masters Communication Design

Project at KTH(Stockholm, Sweeden)

v

ABSTRACT

Magnetic resonance medical imaging is one of the diagnostic methods used today in

cardiograph, mammography and brain tumor analysis as well as many other applications.

They are acquired using gradient coil when magnetic moments in body tissues resonate with

a very high magnetic field of the Magnetic Resonance Imaging (MRI) scanner. To obtain the

image, the raw data acquired is inverse Fourier transformed which results in a complex

image which has Rician distributed noise. Most conventional noise removal methods are not

suited for MRI denoising since they do not take in consideration the Rician nature of this

noise .Various wavelet based methods that have modeled Rician noise have been developed

but with short comings .The objective of this research is to develop an efficient and effective

solution for denoising a Magnetic Resonance Image. A detailed analysis of MRI formation is

presented and then a mathematical model is formulated for an image that is corrupted by

Rician noise. Using statistical data of the images, a number of wavelet based filter algorithms

have been developed to denoise the images. The bilateral filter in its adaptive form is used to

enhance image features and edges to minimize smoothing effects of noise filtering process.

Other processes include signal and noise estimation using various methods including Chi

square unbiased risk estimator (CURE), Poisson unbiased Risk Estimator with Linear

Estimation of Thresholds (PURE-LET),Steinbeck unbiased Risk Estimator with Linear

Estimation of Thresholds (SURE-LET), Linear Minimum Mean square error (LMMSE) and

also parameter estimation for various filters used as building blocks in different combination

filters. The experimental investigation involves structural MRI, functional MRI and

Diffusion weighted MRI images of brain, torso, cranium, hip and knee as test images. Four

combinational denoising methods have been developed, these are the wavelet based Haar

denoising method using non-local means filter and bilateral enhancement, A wavelet based MRI

denoising method using LMMSE estimation and bilateral filter enhancement. Others are a total

variational wavelet based structural MRI denoising with bilateral feature enhancement and a Haar

wavelet magnetic resonance image denoising with optimized chi-square Rician estimation and

bilateral filter enhancement. MATLAB simulation platform has been used in testing their

effectiveness against Rician noise. Results obtained show that most of the new methods perform

better than the stand alone filters and wavelet thresholding in all forms. This is for both subjective

comparison and using various objective measures of quality such as the Peak Signal to noise Ratio

(PSNR) and Structural Similarlity Index Measure (SSIM). For example in Table 5.1 and Table 5.2

where SNR is very high, MSE relatively low, UQI almost 1, SSIM 0.984 and EPI 0.89 which

is an improvement from 0.70 of the noisy image. It also shows that edge preservation is very

sensitive even for low noise.

vi

ACRONYMS AND ABBREVIATIONS

4 PDE Fourth order Partial Differential Equation

ADF Anisotropic Diffusion Filter

BF Bilateral Filter

BOLD Blood Oxygenation Level Dependent

CALIPIRINHA Controlled Aliasing in Parallel Imaging Results in Higher

 Acceleration

CNR Contrast to Noise Ratio

CT Computed Tomography

CURE Chi square unbiased Risk estimator

DFT Discrete Fourier Transform

DT-MRI Diffusion Tensor MRI

DWT Discrete Wavelet Transform

EPI Echo planar imaging

FID Free induction decay

FMRI Functional Magnetic Resonance Imaging

FT Fourier Transform

HHH High High High

HHL High High Low

HLH High Low High

HLL High Low Low

LHH Low High High

LHL Low High Low

LLH Low Low High

LLL Low Low Low

LMMSE Linear Minimum Mean Square Error

LMSE Laplacian Mean Square Error

MAP Maximum A-Posterior

MD Maximum Difference

MO Magnetization at Equilibrium

MRBF Multi Resolution Bilateral Filter

vii

MRI Magnetic Resonance Imaging

MSE Mean Square Error

MT Trasverse Magnetization

MX Vertical Magnetization

MY Horizontal Magnetization

NCCS Non Centric Chi-Square

NLM Non-local Means

PDF Probability Density Function

PET Positron Emission Tomography

PSNR Peak Signal to Noise Ratio

PURE Poisson Unbiased Risk Estimator

RMSE Root Mean Square Error Sense

SENSE Sensitivity encoding method

SM Similarity Measure for NLM

SNR Signal to Noise Ratio

SPACE RIP Sensitivity Profiles From an Array of Coils for Encoding and

 Reconstruction in Parallel.

SPECT Single Positron Emission Computed Tomography

SURE Steinbeck unbiased Risk Estimator

T1 Longitudinal relaxation time

T2 Exponential decay time constant

T2
inh Inhomogeinity sensitive time constant

T2
* Total time constant

TE Echo time

TV Total Variation

US Ultra Sound

WT Wavelet Transform

viii

TABLE OF CONTENTS

DECLARATION... ii

DEDICATION.. iii

ACKNOWLEDGEMENT ... iv

ABSTRACT ... v

ACRONYMS AND ABBREVIATIONS .. vi

LIST OF FIGURES ... xiii

LIST OF TABLES .. xv

CHAPTER ONE: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Acquisition and Nature of MRI .. 2

1.3 Problem Statement .. 3

1.4 Objectives ... 3

1.5 Scope of Work .. 4

1.6 Organization of Thesis .. 4

1.7 Note on Publication... 4

CHAPTER TWO: LITERATURE REVIEW .. 5

2.1 Merits of Wavelet Transforms .. 5

2.2 The Discrete Wavelet Transform .. 5

2.3 Wavelet Transforms in Two Dimensions ... 6

2.4 Related Works ... 6

2.5 Knowledge Gaps ... 10

CHAPTER THREE: MAGNETIC RESONANCE IMAGE THEORY 11

3.0 Introduction ... 11

3.1 Nuclear Magnetic Resonance ... 11

3.1.1 Nuclei Behaviour ... 11

3.1.2 Energy Levels .. 12

3.1.3 Excitation ... 13

ix

3.1.4 Net Magnetization .. 14

3.1.5 Longitudinal Relaxation (T1) ... 14

3.1.6 Oscillation .. 15

3.1.7 Frame of Reference .. 15

3.1.8 T2Relaxation .. 16

3.1.9 Excitation by a Radio-Frequency Pulse ... 16

3.1.10 RF-pulse ... 16

3.2 Nuclear Magnetic Resonance Signal .. 18

3.2.1 Free Induction Decay ... 18

3.2.2 Quadrature Reception of NMR signal ... 19

3.2.3 Spin Echo Process .. 19

3.3 Magnetic Resonance Imaging Processes .. 21

3.3.1 Gradient Magnetic Fields ... 22

3.3.2 Characterizing the Magnetic Vector .. 22

3.3.3 Slice Selection .. 23

3.3.4 Fourier Imaging ... 24

3.3.5 Frequency Encoding .. 24

3.3.6 Phase Encoding .. 24

3.3.7 Spin Echo Imaging Sequence .. 25

3.3.8 Alternative Imaging Sequences ... 28

3.3.9 Signal Representation .. 28

3.3.10 Field of View ... 31

3.3.11 Image Contrast settings .. 31

3.3.12 Coil Array .. 32

3.4 Aliasing ... 32

3.4.1 Parallel MRI and Aliasing ... 34

3.4.2 Reconstruction ... 34

3.4.3 Estimation .. 35

3.4.4 Coil Sensitivities .. 35

3.5 Sensitivity Encoding Method .. 39

3.5.1 Cartesian SENSE ... 40

x

3.6 SPACE RIP ... 42

3.7 Partially Parallel Imaging with Localized Sensitivities .. 43

3.8 Parallel Magnetic Resonance Imaging with Adaptive Radius in k-space 43

3.9 Pre-Enhancement .. 43

3.9.1 Handling Motion Artifacts ... 43

3.9.2 CAIPIRINHA .. 44

3.10 Diffusion Magnetic Resonance Imaging .. 44

3.10.1 The Einstein Approach .. 44

3.10.2 Diffusion Tensor Imaging .. 46

CHAPTER FOUR: IMAGE DENOISING APPROACHES .. 50

4.1 Wiener Filter ... 50

4.1.1 Other Linear Filters .. 51

4.1.2 Non-linear Filters ... 51

4.1.3 Bilateral Filter .. 51

4.1.4 Patch based Approaches .. 52

4.1.5 Variational Approaches ... 53

4.1.6 Total Variation Minimization .. 53

4.2 Transform Domain Approaches .. 55

4.3 Wavelet-Domain Filtering .. 57

4.3.1 The Discrete Wavelet Transform ... 57

4.3.2 Wavelet-Domain Filtering ... 60

4.3.3 Wavelet based Wiener Filter .. 62

4.4 Image Signal and Noise Modelling and Estimation ... 66

4.4.1 Rician LMMSE Estimator ... 66

4.4.1.1 Conventional Approach ... 67

4.4.1.2 Maximum Likelihood Estimator .. 67

4.4.1.3 Expectation-maximization (E M) Method ... 67

4.4.1.4 The Analytical Exact Solution ... 68

4.4.1.5 LMMSE Estimator for Rician Model .. 68

xi

4.5 A CURE: Chi-Square Unbiased Risk Estimation ... 69

4.5.1 Cure-optimized denoising via Unnormalised HAAR Wavelet Transform 71

4.5.2 Magnitude Image ... 72

CHAPTER FIVE: MATERIALS, METHODS AND EXPERIMENTAL RESULTS ... 74

5.1 Combination Denoising Schemes ... 74

5.2 Parameter Selection for the Bilateral Filter .. 74

5.3 Parameter Selection for the non-local means Filter .. 75

5.4 Parameter Selection in CURE and CURELET ... 76

5.5 Conventional Measures of Quality ... 78

5.6 Experimental Procedure .. 79

5.7 Method I: A hybrid and adaptive MRI denoising method involving a bilateral filter

enhancement and Non-local Means wavelet based method ... 79

5.8 Proposed Approach for method I .. 79

5.9 Measures of Quality .. 81

5.9.1 Signal to Noise Ratio ... 81

5.9.2 Mean Square Error ... 81

5.9.3 Correlation Coefficient .. 81

5.9.4 Edge Preservation Index .. 81

5.9.5 Universal Quality Index ... 81

5.9.6 The Structural Similarity Index Measure (SSIM) .. 82

5.10 Experimental Results .. 82

5.10.1 Effect of Noise Addition .. 82

5.10.2 Denoising using Wavelet Thresholding, Median, Bilateral and Non-local

methods ... 84

5.10.3 Denoising using the Proposed Method .. 84

5.10.4 Residue noise ... 87

5.11 Result analysis and discussion .. 87

5.12 Method II: Wavelet Hybrid MRI Denoising Scheme using Chi Square unbiased Risk

Estimate with Bilateral Filter Preprocessing and Enhancement 88

5.12.1 Proposed Approach ... 88

xii

5.12.2 Result Analysis and Discussion .. 94

5.13 Method III: An LMMSE diffusion weighted MRI Image Denoising Wavelet based

Algorithm with bilateral feature Enhancement .. 94

5.13.1 Proposed Method .. 94

5.13.2 Selection of Parameters in LMMSE ... 94

5.13.3 Denoising Algorithm .. 97

5.14 Method IV: A Total Variational Wavelet based Structural MRI Denoising Method

with Bilateral Feature Enhancement ... 100

5.14.1 Selection of Parameters in Variation Denoising .. 102

5.14.2 Experimental Results .. 106

5.14.3Result Analysis and Discussion .. 107

CHAPTER SIX: CONCLUSION AND RECOMMENDATION FOR FURTHER

WORK ... 108

6.1 Conclusion .. 108

6.2 Recommendations ... 108

REFERENCES .. 110

APPENDICES ... 117

Appendix 1: Measures of quality .. 117

Appendix 2: Stand Alone Filters ... 123

Appendix 3: Chi Square Combination .. 155

Appendix 4: Combination Non-Local Means Filter .. 166

Appendix 5: LMMSE Combination .. 190

Appendix 6: Total Variational Combination ... 204

xiii

LIST OF FIGURES

Figure 3.1: Non Aligned Spins ... 12

Figure 3.2: Aligned Spins ... 13

Figure 3.3(a) Rotating Frame of Reference (b) Static Frame of Reference 15

Figure 3.4: Effect of the RF pulse ... 17

Figure 3.5: Free Induction Decay ... 18

Figure 3.6: Receiver Coil and Signal .. 19

Figure 3.7: Spin Echo Sequence ... 20

Figure 3.8: Spin echo Magnetic Vector .. 21

Figure 3.9: Slice Selection .. 23

Figure 3.10: Timing Diagram of Spin Echo Sequence ... 25

Figure 3.11: Spin Echo Signal Dephasing and Rephrasing .. 26

Figure 3.12: MRI Signal Formation.. 27

Figure 3.13: SMASH Estimation and Reconstruction .. 36

Figure 3.14: Motion Correction on MRI... 49

Figure 4.1: HAAR Wavelet Transform .. 71

Figure 5.1: A Flowchart of the Proposed Method .. 80

Figure 5.2: Noise-free MRI images (a) Torso1, (b) Torso2, (c) Hip 83

Figure 5.3: Noisy images of Torsol1 at given noise levels ... 83

Figure 5.4: Denoised Images of Torso1using other Methods ... 84

Figure 5.5: Denoised Images of Torsol1 using Combinational Non Local Algorithm 86

Figure 5.6: Residual Noise .. 87

Figure 5.7: Algorithm for Chi-square Method .. 90

Figure 5.8: Relatively clean MRI Images ... 91

Figure 5.9: Noisy Images of Torso2 at Various Levels .. 91

Figure 5.10: Residual Noise .. 91

Figure 5.11: Denoised images of Torsol2 using Combinational Chi-square algorithm 92

Figure 5.12: Denoised images of Torsol2 using other METHODS.. 92

Figure 5.13: Algorithm for LMMSE method ... 96

Figure 5.14: Relatively clean Hip MRI image .. 97

xiv

Figure 5.15: Noisy Hip Images at various levels .. 97

Figure 5.16: Residual noise for Hip .. 98

Figure 5.17: Denoised Hip images using combinational LMMSE algorithm 98

Figure 5.18: Denoised Hip images using other methods .. 99

Figure 5.19: Algorithm for the Proposed method (Total variational combination method) . 101

Figure 5.20: Relatively clean MRI image(cranium) ... 102

Figure 5.21: Noisy Cranium Images at various levels .. 102

Figure 5.22: Residual noise for Cranium image ... 105

Figure 5.23: Denoised Cranium images new algorithm(Combinational total variational) ... 105

Figure 5.24: Denoised Cranium images using other methods .. 105

file:///C:/Users/Eunice/Documents/WAVELET%20BASED%20DENOISING%20METHODS%20FOR%20MAGNETIC%20RESONANCE%20IMAGES%20%20august%2024%20totype%20set%202018.docx%23_Toc522891475

xv

LIST OF TABLES

Table 5.1: Quality Measures at 2% noise for combinational Non local means algorithm 85

Table 5.2: Quality Measures at 5% noise for combinational Non local means algorithm 85

Table 5.3: Quality Measures at 10% noise for combinational Non local algorithm............... 86

Table 5.4: Quality Measures at 20% noise for combinational Non local algorithm............... 86

Table 5.5: Quality Measures at 2% for combinational Chi-square algorithm 92

Table 5.6: Quality Measures at 5% for combinational Chi-square algorithm 93

Table 5.7: Quality Measures at 10% noise for combinational Chi-square algorithm 93

Table 5.8: Quality Measures at 20% noise for combinational Chi-square algorithm 93

Table 5.9: Quality Measures at 2% noise for combinational LMMSE algorithm 99

Table 5.10: Quality Measures at 5% noise for combinational LMMSE algorithm 99

Table 5.11: Quality Measures at 10% noise for combinational LMMSE algorithm 99

Table 5.12: Quality Measures at 20% noise for combinational LMMSE algorithm 100

Table 5.13: Quality Measures at 2% noise for combinational total variational algorithm ... 106

Table 5.14: Quality Measures at 5% noise for combinational total variational algorithm ... 106

Table 5.15: Quality Measures at 10% noise for combinational total variational algorithm . 107

Table 5.16: Quality Measures at 20% noise for combinational total variational algorithm . 107

1

CHAPTER ONE

INTRODUCTION

1.1 Background

Medical imaging as a diagnosis method in soft tissue monitoring like foetus in ultrasound,

cardiology using Magnetic Resonance Imaging, Computed Tomography and also vascular

imaging has made tremendous advancement in the last two decades. Many imaging

algorithms have been developed and implemented in medical imaging by various

manufacturers however these may not be versatile for different types of images and adaptive

to various categories of noise thus making medical equipment expensive especially for

developing countries.

Magnetic resonance imaging is a medical imaging method of choice due to the fact that it

does not use radiations that have the possibility of affecting the patient such as X-rays.MRI

image are also superior in terms of visual quality in comparisson to other like ultra sound.

MRI based methods have been advanced and together with structural images can also be used

for functional images.

The methods of acquisition of MRI use a specific combination of physical and chemical

properties of hydrogen protons of water in different body tissues whose behaviour can give

functional, diffusion or structural information of a living tissue. The MRI technology has

undergone notable improvements in aspects such as speed of acquisition, spatial resolution,

signal strength and overall cost. However, there exist challenges in acquired signal in terms

of signal to noise ratio and other aspects of quality. Therefore denoising methods to enhance

usefulness and performance are required, these when well implemented will improve

extraction of organ boundaries and shape, physiological parameter estimation including

contrast and tissue perfusion and also pixel based tissue classification.

In order to solve the denoising problem, a set of new adaptive wavelet based medical image

denoising methods have been proposed. The emphasis has been MRI in which case noise

models have been formulated and using image statistics to estimate parameters and optimize

expectations ,denoising algorithms have been developed and their performance tested.

2

1.2 Acquisition and Nature of MRI

The patient is made to slide through a magnetised chamber. The electromagnetic field lines

cut through his body and in return the body tissues create their field. The strength and origin

of the signal induced in the coil of the MRI instrument is used to represent the structure and

composition of the body tissues. A large permanent magnet produces an magnetic field of

upto 6 Tesla.This aligns the nuclear spins present in the body tissue.To transfer a group of

spins from alower to a higher energy state electromagnetic energy need lto be supplied at

resonance frequency.by transmitting an RF signal at the resonance frequencyenergy is added

to the system and when sufficient the magnetic vector is flipped from longitudinal to

transverse planewhich in tern generates an electrical signal that contains information from

which the image can be generated.

Magnetic resource images are acquired in the Fourier domain and they are referred to as k-

space data. Spatial domain representation of the data is produced by applying Inverse Fast

Fourier Transform (IFFT) to the k-space data which results in complex image with real and

imaginary parts, this also introduces phase error. There is noise that arises due to random

fluctuation in the signal acquisition coil, electronic circuits and Brownian motion in patient

which also has a real and imaginary part each independent being Gaussian distributed[1] [2].

In [1][3] noise in magnetic resonance magnitude images is shown to obey a Rician

distribution. Rician noise is signal-dependent and therefore extracting signal from noise is

not an easy task. Rician noise removal is difficult where signal-to-noise ratio (SNR) is not

high. Its presence results in random fluctuations and a signal-dependent offset to the data

.This reduces image contrast. In magnetic resonance imaging (MRI), there is a relationship

between the noise level, image resolution and time required to pick the signal. This therefore

results in a SNR threshold. The SNR in many clinical applications of MRI is quite high. Two

types of averaging takes place in MRI data acquisition. The discrete nature of the data

acquisition process causes spatial volume averaging. In some applications it is common to

acquire several measurements at the same location and average them to reduce noise [1].

Rician distribution has the form:

 (1.1) () 0
2

exp
2

22

202

















 +−








= x

mxmx
I

x
xf



3

 Where (1.2)

 ;0x

is Bessel’s function of the first kind

 and (1.3)

 is the standard deviation mi and mq are the mean values of two independent Gaussian

components.

1.3 Problem Statement

The primary task is to develop a set of algorithms that will be able to acquire, decompose,

and determine local statistics and correlation characteristics which will be used together with

enhanced processing in multi-resolution wavelets coefficients filtering for optimal noise

removal of various MRI images. Effective denoising of a real magnetic resonance image is

still an issue and the research study has developed adaptive and combination filters which

take into account Rician distribution nature of MRI images. This will improve on the

performance of existing filters without introducing artifacts and intensity bias.

1.4 Objectives

The main objective is to develop a low cost and effective solution for restoration of degraded

magnetic resonance medical images

The thesis work also had the following specific objectives:

i. Investigation into various wavelet based image restoration algorithms and identify

those which with modification can be used for Magnetic Resonance images at specific

levels of noise.

ii. Develop noise filtering models and algorithms for MRI denoising

iii. Identify and specify the parameters or steps that require enhancement for improved

performance.

iv. Application and performance evaluation of the algorithms developed using structural

images.

() 
−

=






dteyI tycos

0
2

1

222

qi mmm +=

4

1.5 Scope of Work

The goal is to show that adaptive algorithms achieve acceptable performance in medical MRI

image denoising. The objective of the various subroutines is to develop computationally fast,

spatially adaptive, wavelet based methods for efficient reduction of Rician noise from the

medical images. Special emphasis has been given to application of Haar wavelet in noise

suppression of Rician noise in Magnetic Resonance Images (MRI).This is in combination

with other Rician noise adapted signal and noise estimation and filtering mechanisms taking

into consideration the type of MRI image. For structural MRI bilateral filter enhancement has

been used before the wavelet thresholding. For DW-MRI used in neuroimaging an LMMSE

estimator is used this is because DW-MRI results in diffusion direction dependent image

intensities.

1.6 Organization of Thesis

The rest of the thesis is organized as follows. In chapter two, a literature review of previous

work in MRI denoising is carried out. In chapter three detailed description of MRI theory,

signal generation and various acquisition methods is given. In chapter four a survey of

denosing methods and their merits of MRI are discussed. It also includes mathematical

methods of modelling presence of Rician noise in MRI signals.

In chapter five combination wavelet based MRI denoising methods are developed. Also

discussed are measures of quality appropriate for MRI denoising effectiveness assessment.

Results obtained when the denoising methods are applied to magnetic resonance images with

varying degree of noise are tabulated and discussed.

The conclusions of the investigations made in this thesis and recommendation for further

work are given in chapter six.

1.7 Note on Publication

The research work in this thesis has also resulted in one paper entitled “A hybrid and

adaptive Non-local means Wavelet based MRI Denoising Method with Bilateral Filter

Enhancement”. Which has been published in the International Journal of Computer

Applications, Vol 166 no 10, 0975-8887 May 2017.

5

CHAPTER TWO

LITERATURE REVIEW

2.1 Merits of Wavelet Transforms

Although the Fourier Transform has been the main method for image processing, the

Discrete Wavelet Transform has been noted to possess superior qualities in image

compressing, encoding and enhancement. These properties can be exploited in the processing

of medical images such as different types of MRI.

One of the challenges in MRI is the suppression of Rician noise that is acquired during the

image formation process. In this chapter, a review of the theoretical aspects of the Discrete

Wavelet Transform and its application in noise suppression is provided. A presentation of

various methods that have been previously suggested or developed are also given.

2.2 The Discrete Wavelet Transform

The wavelet function results in an ordered pattern of coefficients. If the function at hand is a

sequence, the result is called the discrete wavelet transform (DWT) of f (x,y). The DWT

transform pair is:

)()(
1

),(,0 xxf
M

kjW
x

kjo=  (2.1)

)()(
1

),(,0 xxf
M

kjW
x

kj= 

(2.2)

For andjj o

)(),(
1

)()(
1

)(,,00 xkjW
M

xkjW
M

xf kj

jj

kj

k o

  


=

+= (2.3)

 Where, f(x), kjkjo andx ,,)( (x) are functions of the discrete variable x = 0, 1, 2 …, M.

These wavelets coefficient functions represent variations of intensity of images along various

directions:
H denotes levels variations along columns,

V denotes levels along rows and

D denotes levels along diagonals.

6

2.3 Wavelet Transforms in Two Dimensions

Two dimensional transforms may be obtained in a similar manner. In which a scaling

function,),(yx , and the three categories of two-dimensional wavelet functions,

),(),,(),,(yxandyxyx DVH  are used. These are depicted as follows:

)()(),(yxyx  = (2.4)

And “directionally sensitive” wavelets functions:

 () =yxH , () ()yx  (2.5)

)()(),(yxyxV  = (2.6)

)()(),(yxyxD  = (2.7)

The approximation and wavelet coefficients are given by:

() ()),),(
1

,, ,,

1

0

1

0

0 yxyxf
MN

nmjw nmjo

M

x

N

y

 
−

=

−

=

= (2.8)

() () DVHiyxyxf
MN

nmjw nmj
i

M

x

N

y

i ,,),),(
1

,, ,,

1

0

1

0

== 
−

=

−

=

 (2.9)

The inverse wavelet transform in two dimensions is therefore:

() ()),),,(
1

, ,,0 yxnmjW
MN

yxf nmjo

m n

=

 + ()),),,(
1

,,

,, 0

yxnmjW
MN

i

nmj

DVHi jj

i

m n

 
=



=

 (2.10)

2.4 Related Works

The noise in MRI is found to be Rician distributed, however many of the traditional

approaches to filters such as mean, median, Wiener do not take into consideration the Rician

nature of MRI noise. Although several methods have been suggested in the removal of

Rician noise, it still remains a formidable task due to the signal dependency nature especially

at low SNR where it reduces image contrast and causes random fluctuation in intensity.

7

In [1] noise present in MRI was modeled as Rician distributed and also wavelet based filter

algorithms for both magnitude and square image signals by application of multi-resolution

techniques were developed. A method of removing the bias in the image was also developed.

This resulted in improved image denoising and lead to increased interest in both Rician noise

models and multi-resolution thresholding.

An application of phase error correction method in MRI denoising has been reported in [2] in

which the phase corrected noise has been assumed to have the same distribution as original

noise and the real component of the image consists of both signal and noise and imaginary

component consisting of just noise. So, discarding the imaginary part and using Gaussian

filter would give satisfactory results however there are practical difficulties in estimating this

noise due to complexities in evaluation of some of the expressions involved.

Other methods that have used the Rician distribution include [3] in which a linear minimum

error estimates using a Rician noise model are developed for the denoising of diffusion

weighted images. A recursive LMMSE filter was also developed for 3D images.

 In [4] an adaptive multi-resolutions, non-local means filter is developed for 3D MRI images.

This involves adaptive wavelet coefficient mixing. The method was shown to effectively

remove noise from a degraded image while preserving details of the image.

In [5] a denoising method based on a combination of the total variation minimization and

wavelet is developed which involves solution of time evolution partial differential equation

by time marching the image using gradient flow resulting in most noise being removed.

In [6] [7] [8] thresholding is used together with bilateral filter, in [6] a multi-resolution

bilateral filter together with wavelet transform is presented. Analysis based on residual noise

and also using a generic static image model showed improved performance in comparison to

stand alone filters such as Wiener, anisotropic, non-local means, total variation, bilateral and

wavelet thresholding.

8

 In [9] an analysis of wavelet denoising for MRI brain imaging is done and two MRI filters

are discussed. Two filters were developed for MRI denoising, one for noise suppression for

magnitude MRI and an additional one on blood oxygen level (BOLD) MRI. The results

showed relatively clean image in terms of visual inspection.

In [10] [11] [12] Non-local means filters (NLM) are used. The Non-Local Means filters

estimate a pixel in a denoised image as weighted combination of image pixels. The main

measure of performance is the similarity measure. In [10] a set of new similarity measure for

NLM filtering are described in which statistics of MRI noise are used in image denoising and

bias removal.

In [13] a new scheme that applies a series of filters, Kernel and Sobel each used to modifying

the noise free image estimate and the final output converging to a stable estimate. A method

that uses 2D spatial wavelet filtering enhanced with 1D temporal Karhunen-Loeve Transform

(KLT) is developed in which KLT is used to produce a series of Eigen images in this

approach the signal information can be obtained with Eigen images and a 2D spatial wavelet

filter is applied to each of the individual Eigen images. The denoised Eigen images are

transformed back into the image space [14].

In [15] multi-component non-local means filters were developed in which the filtering

process was enhanced by using additional information provided by MRI of different types

and different acquisition times. In NLM the similarity of pixels is more robust to the noise

level since region comparison is used in addition to optimization and principal component

analysis (PCS). The method has good results but it is limited to applications in MRI where

many images are acquired.

Common objective measures of quality include MSE and SNR. The MSE however is a poor

visual quality measure, due to its non-adaptability to local signal specificities (intensity and

correlation).New measures of quality have been developed one main one is SSIM described

in [12] which combines luminance similarity, contrast similarity and structural similarity and

is suited for MRI analysis. It has been shown that the image with the lowest MSE is usually

the one with the highest SSIM [12]. Other objective quality assessment methods include

9

method noise which is the effectiveness of a denoising algorithm. This is determined by

analyzing the noise expectation of the method and contrast to noise ratio which shows the

strength of a feature of interest in relation to its environment, which may be viewed as the

effective spatial resolution.

In [16] an expression for the mean-squared error of a chi-square random variable is

developed. The main consideration being the process of reducing noise of image data, as

independent non central chi-square random variables on two degrees of freedom. Two

categories of linearly parameterized estimators which are optimized using the risk estimate

were developed. One in the general context of un-decimated filter bank transforms, and

another in the specific case of the un-normalized Haar wavelet transform. The methods were

shown to have performed better than stand alone thresholding and Wiener filters.

In [17] a method to minimize a data-adaptive estimate of the mean-squared error (MSE)

between the enhanced and the noise-free data which is obtained from “Stein’s Unbiased Risk

Estimate” (SURE) is developed. The SURE method is taken further and proposal for a fast

and efficient multidimensional image denoising made, this is termed the SURE-LET

approach. SURE allows the quantitative analysis and the denoising quality and low

computational complexity are achieved. Various thresholding functions were applied to input

data. Also signal dependent use of the Poisson statistics lead to “Poisson’s unbiased risk

estimate” (PURE) with more adaptive transform-domain thresholding rules. Application of

PURE-LET framework to the Haar wavelet transform was demonstrated.

In [18] Wells used various methods to denoise MRI and remove intensity inhomogeneity

effects and went on to show that denoising improved structural MRI to enable detection of

Alzheimer disease. He used standard quantification model of a range of signal to noise ratio

to investigate the bias of a celebral blood flow. Another method set mirrors in the in-vivo

protocol and used simulated images of a rat brain which were denoised using independent

component analysis.

In [19] Sebastián used image denoising method to reduce errors in APLF (Arterial Spin

Labelling Perfusion) and Arterial Transit time and improve the precision of CBF (Cerebral

Blood Flow) measurements and precision of transit time maps. He developed a method of

10

correction of the IIH artifacts by eliminating the IIH field and removing the estimates.

There were two methods including parametric estimation and non-parametric using Baysian

image filtering and fuzzy clustering.

In [20] a method to denoise multiple-coil acquired MR images was proposed. It took into

account both the non-centric chi-square distribution and the spatially varying nature of the

noise. Experimental results on both simulated and real data sets demonstrated that the

effectiveness of denoising was improved by a combination algorithm.

Advanced non-local means methods were developed in [21][22]. In [21] a proposal was

made to improve on timing of the non-local maximum likelihood methods (NLM) and its

variants, because though effective in denoising, implementation of the algorithms in real time

is a challenge. The main focus was on the parallelization and acceleration of one

computationally intensive section of the algorithm so as to demonstrate the execution time

improvement through the application of parallel processing concepts on a GPU.

Experimental results showed possibility of practical implementation of parallelization.

2.5 Knowledge Gaps

In most of the methods developed in previous works, some noise models were not robust.

Therefore an investigation into ways of overcoming unfavourable characteristic of weights

used in MRI denoising is required. The effectiveness of denoising on real MRI images is still

an issue for methods that appear satisfactory with simulated images. Another challenge is the

removal of intensity bias without lowering Signal to Noise ratio especially for square images.

Research in this thesis is therefore an effort to improve the overall effectiveness and

robustness of MRI denoising by combining multi-resolution wavelet methods with Bilateral

filters, Total Variation and Non-Local Means filters. Other adaptive estimation of image and

noise and enhancing techniques have also been explored as means to improve the main

denoising process. More suitable effectiveness measures have also been adopted for different

aspects of denoised image quality.

11

CHAPTER THREE

MAGNETIC RESONANCE IMAGE THEORY

3.0 Introduction

The MRI technology has its foundations on the presence of magnetic forces on the atom. The

scientific theory and its development is described in this chapter. The basic principles of

nuclear magnetic resonance (NMR) spin properties and the way to use them for NMR signal

acquisition are discussed. The technique used to acquire images using NMR signal is also

described. This chapter also contains details about the imaging sequences and techniques

used to accelerate the acquisition process.

3.1 Nuclear Magnetic Resonance

Magnetic resonance uses the fact that if any element with nuclear spin is placed in a magnetic

field, it acquires energy from an incident photon at a specific frequency. The excited

elements return back to the energy equilibrium after some time and release the absorbed

energy as photons. The emitted electromagnetic signal provides information about physical

and chemical properties of the excited elements [25, 26].

Magnetic resonance can be also used to generate a signal from hydrogen atoms which are the

main constituent of a human body. Therefore, it is possible to make images of human tissue

that represent the spatial arrangement of the hydrogen atoms. In this case, the radio-

frequency (RF) excitation pulse is not selective. The coils in the instrumentation system also

acquire an e.m.f from all other hydrogen atoms. Therefore, all hydrogen atoms in the

examined tissue are excited at the same instant and the integral of the signal over the whole

volume is measured. The important step from NMR to MRI is to add spatial encoding of the

signal. In MRI, it is possible to obtain 2D and 3D images of the tissue.

3.1.1. Nuclei Behaviour

All particles in an atomic nucleus have a spin which is the presence of angular momentum in

each individual particle. Spins can be positive or negative and therefore spins of opposite

signs cancel out. Only nuclei with an unpaired protons or neutrons contribute to NMR. Such

nuclei behave like small magnetic dipoles with a random orientation as shown in Figure 3.1.

12

The arrows represent spin orientation. The result is that the magnetization of a high number

of nuclei cancels out on the average and the net magnetization is zero.

 Figure 3.1: Non Aligned Spins

In MRI the primary focus is on the hydrogen atoms. Human tissues are known to mainly

consist of water and fat that are primarily hydrogen compounds. It has been estimated that in

the human body 63% of atoms are hydrogen [25].It is for this reason that the presentation in

this thesis is based on hydrogen nuclei 1H.

3.1.2 Energy Levels

The nuclei behaviour is explored using quantum mechanics principles. When particles are

placed in a magnetic field B0 (oriented in the z-direction) their spin orientation will tend to

align with this magnetic field. Some spins will align parallel and others anti-parallel with

respect B0. The anti-parallel orientation has more energy than parallel orientation. The energy

∆E between the states is:

JB
h

E .
2

0



= (3.1)

where γ is a gyro magnetic ratio depending on properties of the atom (for hydrogen 1H have

 2/ =42.58 MHz/T), h = 6.6 x10-34 J is Planks’ constant , 0B is intensity of the external

magnetic field and J current density). When an external magnetic field is applied the spins

are aligned as shown in Figure 3.2.

13

 Figure 3.2: Aligned Spins

The energy difference results in the number of protons in the parallel (n+) and in the anti-

parallel (n-) state to differ. The difference in the concentration is approximately 6 protons per

million at ambient room temperature. The ratio is given by the Boltzmann distribution law.

TkE be

n

n /−
=

+

−
 (3.2)

Where kb = 1.38 x 10-23 J/K [25].

3.1.3Excitation

Photon energy absorption takes the spins to a higher energy position. The energy E of the

photon is a function of its frequency f as E = hf. The photon energy must completely match

the energy difference  hence only a photon with the exact frequency (Larmor frequency

or resonance frequency) causes the transition of a spin to the higher energy state. The

resonance frequency fo of a spin is proportional to the external magnetic field B0 and it is

derived from its energy (3.1) [25]. It is therefore expressed as:

 0
2

Bfo



= (3.3)

14

The resonance frequency of 1H atoms in 1.5T magnetic fields typical for MRI is

approximately 63 MHz and increases with the strength of magnetic field. Today for 6T MRI

equipment, the resonance has increased to 200MHz.

3.1.4 Net Magnetization

The concept of an energy packet is used in determining the strength of magnetization. The

net magnetization vector M0 that describes the total equilibrium state magnetization of a spin

packet is defined as a sum of magnetizations of all spins as follows:

()
kT

NBh
nn

h
M

s

2

0

22

0
164 






−−+= (3.4)

Where Ns is the number of spins in the packet [22]. The vector M0 is aligned with the

orientation of the main magnetic field B0, as shown in figure 3.2. From equations (3.1), (3.2)

and (3.4) the magnitude of the vector M0 can be increased by lowering the temperature

(which may not be very versatile because the patient can only be comfortable in certain range

of temperature) or by increasing the intensity of the main magnetic field 0B [23].

The system is not always in the equilibrium state, in which case the net magnetization is

composed of the longitudinal component Mz which is aligned with the orientation of B0, and

the transversal part MT that refers to the magnetization in the plane perpendicular to the

longitudinal direction.

3.1.5 Longitudinal Relaxation (T1)

To transfer a group of spins from the lower to the higher energy state electromagnetic energy

needs to be supplied at resonance frequency so that the longitudinal part of the net

magnetization Mz is lower than it was in the equilibrium state Mz< 0M .The system will fall

back to the stable state with a time constant T1. This effect is called the T1 relaxation; it

describes the decay of the Mz magnetization due to the interaction with any surrounding

tissue. The longitudinal component gets back to the equilibrium in exponential fashion with a

time constant T1 that is of the order of 100 to 1000 ms and is specific for every tissue

[23][24]. The z component Mz(t) of the magnetization vector M0 at time t from the excitation

moment is:

15

()()ITt

zzZ eMMMtM
/

0 1(0)()0()(
−

−−+=

= ()()ITt

zz eMMM
/

0 1(0)
−

−−− (3.5)

where 0M is the intensity value of stable state and T1 is the relaxation time [25].

3.1.6 Oscillation

The proton magnetic moments are not aligned with the external magnetic field B exactly but

at a certain angle. So a torque orthogonal to the magnetic field B and the proton magnetic

moment is exerted. This causes an oscillating motion of the proton magnetic moments, and

subsequently of the magnetization M, around the z-axis at frequency f which is equal to the

Larmor frequency (3.3).

3.1.7 Frame of Reference

Taking M deflected from the z-axis by exciting the magnetization vector M0 into

consideration. For B0 oriented along the z-axis, the vector M oscillates around the z-axis at fo

as shown in figure 3.3(a).

Figure 3.3(a) Rotating Frame of Reference (b) Static Frame of Reference [25]

S

16

Let [x’, y’, z] be a new rotating coordinate system termed the frame of reference. It rotates

with fo around the z-axis. In the rotating frame, the oscillating vector M seems to the static.

3.1.8 T2Relaxation

The transverse component of M describes the magnetization in the transverse plane

'' yxT MyMxM += (3.6)

Where x and y are unit vectors in respective directions. The transverse magnetization

decays because there is phase difference introduced in oscillating nuclei by spin-spin and

molecular interactions. The transverse magnetization decay is hence described by:

() =tMT
1/

)0(
Tt

T eM
−

− (3.7)

A typical T2 relaxation time is between 40 and 100 ms and it is always shorter than the T1

time.

The second factor influencing the T2 decay is the inhomogeneity caused by the susceptibility

variations for the tissue. These inhomogeneities cause spins to oscillate at different

frequencies. The time constant of the decay of the transversal magnetization caused by the

inhomogeneity is called inhT2 .The total decay time constant *

2T is 1/ inhTTT 22

*

2 /1/1 += and it is

often more than two times the pure T2 decay [25].

3.1.9 Excitation by a Radio-Frequency Pulse

By transmitting an RF pulse at the resonance frequency energy is added to the system. When

the energy is sufficient the magnetization vector 0M is flipped from the longitudinal

orientation to the transverse plane (xy-plane). The frequency of the magnetization vector in

this plane is equal to the oscillating electromagnetic field it generates.

3.1.10 RF-pulse

The RF signal is used to shift 0M from the equilibrium state in the longitudinal direction to

the transverse xy-plane. This is done by creating a magnetic field B1 rotating in the z-axis.

This is equivalent to a field in the x’-direction that seems stationery. However, M will start

oscillating around the x-axis at a frequency fi because of the presence of the magnetic field

B1. This is shown in Figure 3.4.

17

Figure 3.4 Effect of the RF pulse [25]

Source: J. Petr “Parallel Magnetic Resonance Imaging Reconstruction”

The rotating magnetic field with the intensity 1B is turned on for time t90
o whose value is

given by:

1
90 24

1
0

Bf
t

i 


== (3.8)

This is called a 90° pulse. Smaller flip angles less than 90°, as well as a 180° flip angles are

used for more advanced imaging sequences and are generated in the same way as the 900

pulse by using a longer or stronger pulse. For a typical magnetic field B1, of order of  T, the

time is of the order of milliseconds. Alignment of spins with the magnetic field B1can be

neglected because the field is turned on only for a short time and 10 BB  .

The magnetic field B1 which rotates along the z-axis at the resonance frequency 0f is created

by a linearly polarized field with the frequency 0f . The linearly polarized field can be

broken down in two fields rotating against each other with frequencies 0f . One of the

circularly polarized fields will appear stationary producing the desired field B1. The other

field will be rotating in the opposite direction with the frequency 02 f and will have a

negligible effect on the spins as it is far from the resonance frequency.

18

3.2 Nuclear Magnetic Resonance Signal

This section describes how an MRI signal is generated from NMR principles and also how

the spin echo process is carried out. The description includes the spin echo process and how

the gradient fields make the generated electromagnetic field position dependent which

ensures that pixel intensity is properly matched to the respective tissue position.

3.2.1 Free Induction Decay

After the injection of a 90° pulse, the marginalization component M starts oscillating in the

transversal xy-plane creating an electromagnetic field as shown in figure 3.5 a,b.

Considering repetitive excitation by a 90° pulse with an interval TR between the excitations,

the value of the Mz component is affected by the length of the TR interval because of the T1

relaxation effect in the previous excitation. For a time TR the magnetization vector M does

not achieve equilibrium, thus, the NMR signal is weaker and also dependent on the T1 time of

the imaged tissue. The transverse magnetization on the application of the 90° pulse can be

described as

 () QMT 0 1/ Tt
e
−

− (3.9)

where Q is the number of protons in the imaged volume.

Figure 3.5: Free Induction Decay

(a)
(b)

19

After the 90° pulse, the oscillating motion of M generates a current in a receiver coil as

depicted in Figure 3.6. The measured signal is referred to as free induction decay (FID). The

FID signal is an exponential *

2T as shown in Figure 3.5(b).

 Figure 3.6: Receiver Coil and Signal

3.2.2 Quadrature Reception of NMR signal

The quadrature reception of the NMR signal enables separation of the 'xM and 'yM

components from the acquired signal s(t) in the static frame. A product of the received signal

with the sinusoidal wave gives 'xM the part of the magnetization. The’ part is obtained as a

product with a sinusoidal wave shifted in phase by 90° relatively to the first one. The two

components are low-pass filtered and the detected signal TM is then treated as a complex

number with 'xM as the real part and 'yM as the imaginary part.

'' yxT jMmM += (3.10)

3.2.3 Spin Echo Process

 A sequence begins with a 90o pulse that flips the magnetization vector to the transverse

plane. At time TE/2 a 180o refocusing pulse is applied. The signal is measured at the echo

time TE. The excitation is repeated after the repetition time ‘PR > TE. Small inhomogeneities

of the core field cause the oscillation frequency of the spins to vary locally, therefore, the

spins begin to diphase. To compensate for this negative effect a 180o refocusing pulse is

applied after time TE/2. The 180o pulse causes the dephasing spin vectors to flip in the

20

transverse plane, effectively changing the sign of the phase lag for each pixel. The oscillation

of the spins continues in the same direction and the spins begin to rephase. After TE, the spins

are in phase again emitting the maximal signal. This signal is hence referred to as the echo

top as shown in figure 3.7and figure 3.8.

Spin echo compensates for the inhT2 effect caused by the inhomogeneities in the main

magnetic field, thus, at the echo time the signal decay is affected only by the pure T2 making

the magnitude of the signal higher. After the echo top, the transverse magnetization relaxes

with the *

2T time constant.

(a)

 (b)

Figure 3.7: Spin Echo Sequence

21

 Figure 3.8: Spin echo Magnetic Vector [25]

Source: J. Petr “Parallel Magnetic Resonance Imaging Reconstruction”

The advantage of this mechanism is that it makes the spin-echo sequence less susceptible to

inhomogeneities and, thus, improves the quality of the retrieved signal. Even a medical

image with small inhomogeneities is then suitable for imaging with the spin-echo sequence.

Magnets have been manufactured in the recent years to be much more homogeneous which

makes it possible to use advanced imaging sequences with the emphasis on the speed of the

acquisition without having to compensate for tissue inhomogeneities.

3.3 Magnetic Resonance Imaging Processes

The techniques that result in MR images involve spatial encoding of the NMR signal. These

techniques and associated process are described. These include:

22

3.3.1 Gradient Magnetic Fields

Gradient magnetic fields G are oriented along the z-axis in the direction of the core field.

Intensity of the gradient fields increase linearly along various axes. The total intensity of the

field in the z-direction is given by

zyx zGyGxGzyxBzyxGzyxBzyxB +++=+=),,(),,(),,(),,(00 (3.11)

where Gx, Gy and Gz are the gradient strengths.

The gradient fields make the total magnetic field intensity position dependent. Hence the

resonance frequency is also space dependent

),,(
2

),,(zyxBzyxf



= (3.12)

The gradient fields have intensity usually several  T which are alternately switched on and

off to encode the location of the NMR signal.

3.3.2 Characterizing the Magnetic Vector

The relationship between the magnetization vector M in time and the magnetic field strength

is represented by the Bloch equation.

)(BM
t

M
=




 (3.13)

where B is the total field which constitutes B0 the core field, B1 the excitation pulse and the

gradient fields G. The total field B = B0 + B1 + G. When M is in the rotating frame, the

oscillation is not visible.

The T1 relaxation, affects the longitudinal component of the magnetization as follows:

() ()

1

0(

T

MtM

t

tM zz
−

=



 (3.14)

23

The T1 relaxation affects the transversal part of the magnetization as follows:

() ()

1T

tM

t

tM TT =



 (3.15)

where M0 is the magnetization in the stable state and MT is the transversal magnetization as

defined in (3.6). The M in the reference frame including the effect of T1 and T2 relaxation, the

excitation pulse B1and the gradient fields G is given in equation 3.16 [25].

















+
































−−−

−

−−

=




1

'

'

1''1

'2

'12

/

0

0

/

/1

/1

TMM

M

M

TBB

BTGr

BGrT

t

M

oz

y

x

xy

x

y







 (3.16)

Where r is the location of the measured pixel [25].

3.3.3 Slice Selection

In MRI one slice of the imaged tissue is excited at a particular instance. This is done by

imposing a gradient G to ensure the resonance frequency becomes linearly dependent on the

spatial position.

ztGBtzf z).(
2

),(0 +=



 (3.17)

An RF-pulse with a narrow bandwidth thus excites only a thin slice of the imaged object as

shown in Figure 3.9. Typical slice thickness is 5 millimeters [25].

 (a) Slices (b) RF-pulse (c) Conditioned RF pulse

 Figure 3.9: Slice Selection [25]

Source: J. Petr “Parallel Magnetic Resonance Imaging Reconstruction”

24

The Spectrum of an ideal RF-pulse is a box function. Such pulse excites a slice with ideal

sharp borders. However, a box function in Fourier domain corresponds to the sinc function

with infinite duration in the time domain. In practice, an approximate RF-pulse with finite

duration is used with typical duration shorter than 5ms [25]. This does not significantly

degrade the Fourier profile of the slice.

3.3.4 Fourier Imaging

Fourier imaging was introduced in 1975 by Richard Ernst [27] and it is used for MR imaging

even today. Fourier imaging of MRI is achieved through a process that involves a number of

image processing steps. These steps include frequency encoding and phase encoding among

others.

3.3.5 Frequency Encoding

The location along the x-axis is encoded by use of the frequency of the spins. It is therefore

called frequency encoding. The x-direction is referred to as a read-out direction because the g

gradient is switched on at the start the signal read-out. It is applied during the acquisition of

the signal hence the oscillating frequency becomes dependent on x and is given by:

() () xGxBxf








22
0 += (3.18)

The frequency encoded signal excluding the relaxation phenomena is given by:

 dxdyeyxdxdyeyxts iyGxxt

sliceslice

fxti),(),()(2  

 =−
 (3.19)

Where),(yx is magnetic field density.

The received signal contains components with different amplitudes. The amplitudes

represent the magnetization level of the tissue. The desired components of the signal are

generated by Fourier transformation of the receive signal.

3.3.6 Phase Encoding

The spatial location along the y-axis is phase-encoded. This is done by imposing a gradient

field nGy, is for a short time Ty prior to the readout, n increases with each acquisition. The

oscillation frequency altered for tan instant when the gradient is switched on and the spins

25

oscillate at various other frequencies. Their phase is changed depending on the y position by

introducing a phase shift ynGy. The signal after the phase encoding is the signal has the form:

dxdyeyxTns
slice

yTjynG

y
yy


−

),(),( (3.20)

Many phase-encoding steps with different gradient intensity nGy have to be performed in

order to get the desired image resolution.

3.3.7 Spin Echo Imaging Sequence

The sequence using spatial signal encoding by application of appropriate gradient fields is as

illustrated in figure 3.10.

Figure 3.10: Timing Diagram of Spin Echo Sequence

Source: J. Petr “Parallel Magnetic Resonance Imaging Reconstruction”

The spin echo imaging may be described using the timing diagram in Figure3.10.At time

t=0, the 90° pulse is used to rotate the magnetization vector M to the transversal plane. The

slice selection gradient G comes on during the excitation in order to excite only a thin slice of

the imaged object. The slice selection gradient G imposed on the z-axis causes the spins with

different position on z-axis to oscillate with different frequencies. After the gradient is

switched off, the spins with different z-coordinates are not in phase. The dephasing is

compensated for by a reverse gradient (called refocusing gradient) with the total energy equal

26

to the half of the energy of the slice selection gradient G which is sufficient because the spins

are flipped to the transverse plane after the 90° pulse and, therefore, only the second part of

the slice selection gradient causes dephasing. As a result, the slice selection gradient applied

during the 90° pulse does not dephases the spins and resulting in the following expression.

0)(
02/

0

=
−

dttG

tTE

z (3.21)

where time constant to is the duration of the slice-selection pulse.

After the 90° impulse, the signal is phase-encoded in the y-direction. The 180° impulse is

emitted at time TE/2 after the 90° impulse so as to reach the echo top at time TE. The process

is shown in figure 3.11.

Figure 3.11: Spin Echo Signal Dephasing and Rephrasing [25]

Source: J. Petr “Parallel Magnetic Resonance Imaging Reconstruction”

27

The 180° pulse flips the magnetization vector midway of gradient G and, therefore,

dephasing in the first half and rephasing in the second half of the second slice-selection

gradient zeros out. On the average it can be expressed as:

0)(

02/

=
−

dttG

TE

tTE

z (3.22)

To minimize the dephasing effect of read-out gradient Gx, a gradient with the same intensity

as half of the read-out gradient is turned before the 180° pulse so that evaluation becomes:

 dttGdttG

TE

x

TE

TE

x)()(

2/

02/

 =

 0)(
0

= dttG

TE

x (3.23)

This ensures that the spins are in phase with respect to the frequency encoding gradient at the

echo time.

Figure 3.12: MRI Signal Formation

Dephasing resulting from the nGy gradient is intentional. The nGy gradient is switched on for

time T and the integer i is changed for each excitation in order to get various phase-steps.

28

The signal is acquired during a time period Tacq centered on the echo time TE to ensure the

maximum magnitude of the signal. The frequency-encoding gradient that modifies the

oscillating frequency according to the location on the x-axis is turned on during the whole

acquisition process.

3.3.8 Alternative Imaging Sequences

Spin-echo has been used to illustrate imaging sequence. There are several alternative

techniques such as the gradient echo and the echo planar imaging (EPI) [25].

The gradient-echo method is related to the spin-echo method; however, it lacks the 180°

refocusing pulse. The method is thus more sensitive to in homogeneities in the main

magnetic field. Shorter echo times than in spin-echo are necessary to avoid deterioration of

the signal. Gradient-echo lifts the limitation to work with 90° excitation pulses only. Smaller

values of flip angle are used to reach faster imaging times.

The spin-echo and gradient-echo acquisition times are long because it is required that the

system return to equilibrium between the subsequent phase-encoding steps. More echoes

during a single excitation are introduced and by effectively controlling the gradients the

whole image can be acquired during a single excitation. EPI is one of such single-shot

imaging sequences. EPI acquisition times are many times faster than for spin-echo (on the

order of 100 ms). But there is a disadvantage in EPI due to high susceptibility to main

magnetic field inhomogeneities and resulting image distortion.

3.3.9 Signal Representation

The magnetization MT is complex dependent on Mx’ and My’ expressed as MT = Mx’ + jMy’.

The complex signal s(t) is acquired using quadrature detection, the signal is obtained by

integrating the Bloch equation as follows:

 (3.24)

Allowing M(x, y) be the magnetization immediately after energizing the system. The output

signal s(t) is given by the integral of the magnetization of that slice [25]. The signal s(t)

neglecting the relaxation phenomenon is.

()


=

−
−

t

Tt
rdttGjyr

T eMts 0

2/
')'(

0)(

29

 (3.25)

giving

 (3.26)

where ')'(),(0 dttGyrfrt t= is the spin phase. For simplicity, it can be assumed that the RF-

signals are as impulses thus, they have no effect on the phase. The phase at time ta=t- TE (ta

is relative time after the echo time) is,

 ()  
+

+=

TE taTE

TE

a dttrGdttrGrt
0

')'(')'(,  (3.27)

  
++

−−−=

2

0

2/

0

2

0

')'(')'(')'(

TE

x

TE TE

yz dttGxdttGyndttGz  (3.28)

  
+

−++

taTE

TE

TE

TE

TE

TE

xz dttGrdttGxdttGz ')'(')'(')'(
2/ 2/

 (3.29)

The first three terms describing the gradients have negative sign. This is because of the 1800

flip that reverse the phase  of oscillation. The equation (3.18) can be simplified according to

the properties of the spin-echo sequence. Using equations (3.13, 3.14, 3.15) the phase  (ta,r)

at time ta then is:

()  
+

+=

2/

0

0 ')'(')'(,

TE taTE

TE

dttGrdttGyynrt  (3.30)

The signal is measured during the time period Tacq around the echo top (i.e., the interval

Tacq/2<ta<Tacq/2). In this time span, the slice-selection Gz and phase-encoding Gy gradients are

off. Only the frequency encoding gradient G is active. The phase (ta, r) is therefore

()  
+

+−=

2/

0

')'(')'(,

TE taTE

TE

ya dttGrdttGynrt  (3.31)

=
yx

dttGfjry
dydxeyxmts

t

,

')'(. 0),()(

=
yx

rtj dydxeyxmts
,

),(),()(

30

  
+

+−=

2/

0

')'(')'(

TE taTE

TE

xy dttGxdttGyn  (3.32)

Assuming rectangular gradient pulses, gives:

 () axxyyna TGTGyrt  +−=, (3.33)

where Ty is the duration of gradient. From (3.17), the measured signal is

 (3.34)

Where ky = -ynGyTy

 kx = yGxta

The values of ky and kx are functions of the time ta and of the number of phase-encoding steps

n. The signal s(ta,n) is represented as a function S(kx, ky). The domain of s is the kxky,-plane.

The magnetization m(x, y) can be obtained from the measured values S(kx, ky),(k-space

domain) by performing an inverse Fourier transformation.

 (3.35)

In practice, to obtain k-space values of s(kx, ky) it involves sampling the signal s(kx, ky) . The

discrete time-domain image S is generated as a discrete inverse Fourier transform.

 (3.36)

where X is the number of the sampling steps (Tacq = tsX).


+

−=
yx

ykxkj

a dydxeyxmnts jx

,

)(
),(),(


+

=
kykx

yx

ykxkj

yx dkdkekksyxm jx

,

)(
),(

2

1
),(



() 
−= −=

+
=

2/

2

2/

2

)(
,

1
),(

x

x
kx

y

y
ky

ykxkj

yx
yxekks

XY
yxs

31

3.3.10 Field of View

This refers to the part of the tissue that is focused. The factors that determine FOV are the

strengths of the magnetic gradients, their durations and the acquisition time Tacq.

Values of the real object m(x, y) are represented in a harmonic basis with wavelength

xk/2 = . The unit step sxx tyGk = determines the wavelength and the magnitude of the

field-of-view (FOV)

sxx

x
tGk

FOV


 22
=


= (3.37)

yyy

y
tGk

FOV


 22
=


= (3.38)

It is important to set the FOV to cover the whole imaged object. The encoding function is

periodic and, thus components of the imaged tissue outside of the FOV are misinterpreted by

aliasing as being inside the FOV. This effect is called the fold-over artifact [25, 28].

3.3.11 Image Contrast settings

MRI is a very versatile technique allowing displaying various features of the imaged tissue

and tailored to a specific aims of the examination such as emphasize contrast agents, tumor

and brain structures. There are imaging sequences that allow the acquisition of images with

different properties contributing to the contrast, in the acquired image when the effect of

relaxation is not taken into account and the retrieved signal is proportional to the

magnetization in each pixel i.e., to the proton density.

The proton density is not the only tissue property that can be displayed. Tissues differ also in

T1 and T2 times. By varying the sequence parameters, the echo time TE and the repetition

time TR, it is possible to emphasize various properties of the imaged tissue.

The main contrast settings include [25]:

(i) Proton density; The RF signal is measured at time TE after switch on. The magnitude

of the signal is proportional to e-TE/T2 because of T2relaxation. For echo time TE <<

T2, the exponential term e-TE/T2 is nearly unity for all tissues, thus, the T2 differences

32

between tissues is not visible in the image. This affects the magnitude of the

transverse magnetization MT. By setting TE <<T2 and T1<< TR the relaxation

phenomenon does not affect the signal intensity and the output image displays only

the proton density of the tissue.

(ii) T1 weighting; if the recursion time TR is short compared to T1 then the M

magnetization does not get back to the equilibrium state and the signal. Assuming a

series of 90° pulses, the intensity of the magnetization shortly after the excitation is

()1/
1

TTR

T eMoM
−

−= (3.39)

By setting TR << T1 the magnitude of the signal is dependent on the T1 time and the

image becomes T1 weighted.

(iii) T2 weighting; the variance in T2 among tissues is emphasized by setting TE> T2. The

factor e-TE/T2 and subsequently also the measured signal becomes dependent on the T2

time and the images become T2 weighted.

The effects of the T1 and T2 weighting can be combined to produce images that are

both T1 and T2weighted.

3.3.12 Coil Array

For basic MRI, a receiver coil with a homogeneous sensitivity is used and is referred to as a

body coil. For parallel MRI a number of receiver coils with varying sensitivities are used

[31]. This avails more information on the location of the signal. For a multiple receiver, the

coils are in parallel and hence, the acquisition duration is as that of a single coil. The image Si

from a particular array is given by.

Si(x, y) = S(x,y) Ci (x,y) (3.40)

where Ci(x, y) is coil sensitivity and S(x, y) is the resulting image retrieved by the

homogeneous-sensitivity coil,

3.4 Aliasing

For parallel MRI which is an efficient and robust method of acquisition, the distance between

the lines I encoding depends on a factor M, therefore reducing the steps Y while maintaining

gradient intensity. This reduces the FOV and so causes aliasing. The consequences of

skipping a line in the phase-encoding direction is that high frequency features are lost.

33

 The k-space image sA retrieved with an acceleration factor M is identical to the complete k-

space image except that only every m-th phase encoding line is retrieved. The A in SA is an

image acquired by the accelerated acquisition and so contains aliasing. FOV is reduced only

in the phase-encoding direction. Thus, inverse Fourier transformation is performed in

advance to simplify the analysis. The aliased image SA retrieved with an acceleration factor

M is an inverse Fourier transform in the j-direction [32].

 ()  ),(, 1

y

A

Y

A kxsDTFyxS −= (3.41)

=
yjk

y

MY

MMk

y

y

ekxs
Y

M
),(

....2,,0


−

=

 (3.42)

Every M-th line is taken into account. The image S is transformed back to the image-domain

by.

 () 
−

=

−

=

=
MY

y

yjkyjk
MY

MMky

A yy eyxse
Y

M
yxS

...0'

'

..2,,0

)',(, (3.43)

''

...2,,0...0'

)',(
yjkyjk

MY

MMk

MY

y

yy

y

eeyxS
Y

M −
−

=

−

=

= (3.44)

''

1/

...2.1,0...0'

)',(
yjkyjk

MY

k

MY

y

yy

y

eeyxS
Y

M −
−

=

−

=

= (3.45)

The functions
yjk ye and

'yjk ye
−

 are orthogonal and the summed over ky for M = 1 produces

zero for all 'yy  . For M>1 the exponential functions are summed to a sum of M Kronecker

delta functions in an aliasing equation as in equation 3.46.

)',(),(
mod,'(

1

...0

1

0'

yxSyxS
M

Y
m

M

Y
yy

M

m

Y

u

A

+

−

=

−

=

=  (3.46)

 =
)mod,(

1

...0 M

Y
m

M

Y
yx

M

m

S
+

−

=

 (3.47)

Each value in the aliased image SA is a superposition of M values from the complete image.

34

3.4.1 Parallel MRI and Aliasing

Parallel MRI uses multiple receiver coils each having different spatial sensitivity to speed up

the acquisition process. The factor determining the MRI acquisition duration is the number of

steps. This is because each step is applied in a single excitation whose duration is determined

by the recurrence time TR.

In parallel MRI, the acquisition time is decreased M-times by reducing the encoding steps M-

times. Since the total k-space coverage is constant, this causes aliasing. The decrease of the

data amount per coil is compensated by multiple coils with different spatial sensitivities. This

provides more information on the spatial position of the signal. The objective of parallel MRI

is to obtain an unaliased image from many aliased images using the sensitivity information of

the used coils.

The process has two consecutive steps. First, the reconstruction transformation is estimated

using sensitivity information extracted from unaliased images. In the second step the known

reconstruction transformation is applied to the input images.

3.4.2 Reconstruction

A series of L aliased images A

lS with given acceleration factor M are retrieved by the coil

array as the input for the reconstruction step. The images A

lS (l = I…., L) are modified by the

sensitivity function of the array coils and they also contain aliasing.

 ())mod,()mod,(,
1

0 m

x
m

m

x
yxCt

m

x
m

m

x
yxSyxS

M

N

A

l +++=
−

=

 (3.48)

where S stands for an ideal image acquired by a homogeneous sensitivity coil. The input

images A

lS are used to obtain a un-aliased image Ŝ using the reconstruction transformation

R.

 ()),(ˆ),(yxSyxSR A

l = (3.49)

The design task is to determine optimum reconstruction operator R [34].

35

3.4.3 Estimation

A set of L unaliased array-coil images St and an unaliased ideal image S are acquired in the

estimation step. The ideal image S is acquired using a body-coil that has an approximately

homogeneous sensitivity. It may also be approximated using the unaliased images St. The

reference images St, and S are used in the encoding process (3.27). These images are used to

set parameter in the method and hence determine the reconstruction transformation R.

The unaliased images do not have the same characteristics as the input images with aliasing.

However, it is assumed that the values of the sensitivities Ct does not change between the

estimation and the reconstruction step. Another solution is by simultaneously acquiring low

resolution unaliased images used for the estimation and high-resolution aliased images used

for the reconstruction.

The main task of parallel imaging is to ensure the acquisition process in fast, but it has higher

computation cost than the Fourier transformation used in normal imaging. A parallel based

algorithm, therefore, should be designed with the reconstruction speed taken into

consideration. The speed is necessary especially in the case when teleimaging and on-line

interaction with the acquisition process are carried out.

3.4.4 Coil Sensitivities

When multiple receiver coils with spatially varying sensitivities are used the map is obtained

as a ratio.

),(/),(),(ˆ yxSyxSyxC ll = (3.51)

Where),(yxS l array is the coil image and),(yxS is an image with homogeneous coil

sensitivity.

The image with homogeneous sensitivities is obtained by use of sum of squares methods

because in summing up of individual images pixel by pixel phase cancellation artifacts may

be introduced [25, 30, 31, 32].This is shown in equation 3.52.


=

=
L

l

SoS yxSyxS
1

2

1),(),((3.52)

36

(i) SMASH

This is Simultaneous Acquisition of Spatial Harmonics the most common parallel MRI

method, in which the missing lines are generated directly into the k-space by a combination

of the neighbouring lines. This method uses a weighted composition of the array-coil images

to generate the harmonic modulation produced by phase encoding gradients. Figure 3.13

explain the process graphically.

),(),(),(
1

0 yxColwyxC t

L

l

comp 
=

= (3.53)

Figure 3.13: SMASH Estimation and Reconstruction

Then the harmonic spatial modulation on the top of the composite profile is produced by

using the weights),(mlw therefore:


=


=

L

l

t

kjmycompcomp yxCmlweyxCyxC y

1

00),(),(),(),((3.54)

Where yk is the size of step in the k-space.

All k-space lines in the composite image are reconstructed from the under-sampled coil

images using the estimated weights.

37

 







=− 

=

L

l

yxtyyx

comp kkSmlwkmkkS
1

),(),((3.55)

This is shown to be true as follows

yjkxjk

x y l

t

L

l

yxt eyxSyxCmlwkkSmlw ,,

11

),(),)),(),(),(−−

==

 =

() yjkxjkkjmy

x y

comp yxy eyxSeC
−−

= ,0

 () ykmkjxjk

x y

comp yyxeyxSC
)(

0 ,
−−−

=

 () ykmkjxjk

x y

comp yyxeyxC
)(

0 ,
−−−

=

 ()yyx

comp kmkkS −= , (3.56)

When compensated

),(

),(
),(ˆ

yxC

yxS
yxS

comp

comp

= (3.57)

with

),(),(
1

0 yxCyxC l

L

l

comp 
=

= a sum of the coil sensitivities

 Or),(0 yxC comp
=1 for homogeneous case

And then using the equation (3.55)

),()0,(),(
1

0 yxClwyxC l

L

l

comp 
=

= (3.58)

38

(ii) Auto Calibration

There is need for an auto-calibration method in SMASH to avoid errors associated with the

need for precise estimates of sensitivity maps. Raw images are used for calibration instead of

coil sensitivities. In this case:

),(),()0,(),(),(
1

0 yxSyxClwyxSyxC l

L

l

comp 
=

=

and

),()0,(),(
1

0 yxSlwyxS l

L

l

comp 
=

= (3.59)

Auto calibration lines ()yyx

AC

l kmkkS −0, are acquired for single coordinates and are linearly

combined with the weights w(l,0) to form composite images described by:

),(),(),(00

yyx

comp
L

l

yyx

AC

l kmkkSkmkkSmlw −=− (3.60)

And the composite image used to find weights as follows:

),(),(),(00

yyx

comp
L

l

yxl kmkkSkkSmlw −= (3.61)

The weights w in (3.61) are estimated for a set of k-space lines B

),(),(),(;1...1
1

yyx

comp

yx

L

i

ly kmkkSkksmlwBkMm −=−= 
=

 (3.62)

And the estimated values for each parameterw(l,m,ky)

(iii) GRAPPA

This is Generalized Auto-calibration Partially Parallel Acquisitions. This method uses the

following equation to generate the missing k-space lies of the jth coil as follows:

 () ()yyl

L

L Bb

yyj kbMkxsmlbjwkmkxs −=− 
= =

,,,,),(
1

 (3.63)

39

Images used in GRAPPA to allow both estimation and reconstructions when they are of

variable density without need for additional scan. . The value of the weights),,,(mlbjw is

found by solving the following equation.

),(),,,(),(
1

yyt

L

l Bb

yy

AC

j kbMkxsmlbjwkmkxS −=− 
= 

 (3.64)

(iv) Temporal GRAPPA

Another MRI reconstruction method that does not need variable density scan and used in

dynamic imaging is Temporal GRAPPA which has an effect of lowering the acquisition time.

In the k-t GRAPPA the auto-calibration is in the centre of k-space lines for the reconstruction

and is described by

 +−=−  
= 

)(),,,(()(
1

yy

t

tb

L

l Bb

yy

t

j kbMksmlbjwkmkS

))(),,(
,

yy

v

l

v

mAtmtv

kmksmljw −
−+−=

 (3.65)

3.5 Sensitivity encoding method

Sense works in the image domain and uses a matrix E to describe the generation of the k-

space values),(yxl kks including the coil sensitivity modulation and aliasing.

()),(),(,
,

, yxEyxSkks
yx

yx

kk

klkyxl = (3.66)

And the image is reconstructed using a matrix F, the reconstructed image given as

() () ()yxl

kkl

kkl kksyxFyxS
yz

yx
,,,ˆ

,,

,,= (3.67)

While F is

 () 111 −−− = HH EEEF (3.68)

40

3.5.1 Cartesian SENSE

In matrix form the Cartesian coordinates S are given by:























−+

+

=

























)/)1(),(

.

.

)/,(

),(

),(

.

.

),(

),(

2

1

MYMyxS

MYyxS

yxS

C

yxS

yxS

yxS

A

L

A

A

 (3.69)

Where coil sensitivity matrix C is given by:



















−+

−+

−+

MYMyxCyxC

MYMyxCyxC

MYMyxCyxC

LL /)1(),()...,(

.

/)1(),()...,(

/)1(),()...,(

22

11

 (3.70)

It is required that C is not singular in any x or y and the reconstruction becomes:

()),(),(111 yxCCCyxC HH −−−

+ += (3.71)

HC is the Hermitian transpose of matrix C .

The final image is computed from the input aliased images using the following process.

()

()

()























=























−+

+

+

yxS

yxS

yxS

yxC

MYIMyxS

MYyxS

yxS

A

l

A

A

l

,

.

.

,

,

),(

/)(),(ˆ

.

.

)/,(ˆ

),(

2

 (3.72)

41

Regularization

Tikhonov regularization and minimization is used to get the unbiased image

 0minargˆ SSSCSS A

Ls −+−=  (3.73)

where λ is the regularization parameter, ║║ is the L2 norm and S0 is the expected solution

A different regularization approach is introduced by Kellman in [35]. The solution to the

SENSE equation (3.66) is modified by adding a regularization term to the equation (3.71)

()),(),(111 yxCCCAyxC HH −−− +=+ (3.74)

A is a gain matrix and Λ is a conditioning matrix. The matrix A is computed to make the

diagonal elements of C+(x,y)equal to 1. The values in the matrix Λ regularize the process by

controlling the trade-in between SNR and the artifact minimization in the reconstructed

image. The non diagonal elements of C+(x,y)specify the artifacts suppression. The matrix

C+(x,y)becomes identity for Λ and equal zero hence the artifacts are fully suppressed at the

cost of relatively high noise in the image. The values in Λ are optimized to meet the desired

artifact suppression level in the reconstructed image. By changing some values in Λ the

reconstruction SNR may be improved while retaining the artifact suppression at an

acceptable level [25].

Iterative solution

When the noise correlation matrix is taken to be diagonal using equations 3.63

and 3.65 gives l

H

ll

H

l SESEE =ˆ (3.75)

where the vector Sl is defined as s[l,kx,ky].

For a given vector z matrix multiplication Ez is

() () () ()yxzyxCeE l

yx

ykxkj

kykxlz
yx ,,

,
,, 

+
=


 (3.76)

42

Re-writing as an inverse discrete Fourier transformation gives

() () () '')','(,,
,'',

)''(

,,
dydxyyxxyxzyxCeE l

yxyx

ykxkj

kykxlz
yx −−= 

+




(3.77)

=),()','(),(),(

',',

1

yx

yx

l

yx

kkyyxxyxzyxCFT 







−−−  (3.78)

There is also the iterative SENSE, where k-space is allowed to be sampled using arbitrary

sampling. Therefore, an additional transformation is required to transform the data to a

regular Cartesian grid prior to the discrete Fourier transformation.

3.6 SPACE RIP

Sensitivity Profiles from an Array of Coils for Encoding and Reconstruction in Parallel,

generates the un-aliased image directly from the acquired k-space values, which may be

represented as an inverse Fourier transform.

() yjl

y

ly
yeyxCyxSkxs

−
−=)(),(,1 (3.79)

In matrix form it is possible to express the encoding process for all the coils and all phase-

encoding coordinates in both image domain and k-space.

()

()
()

()






































=

































−−

−−

−−

−−

),(

)1,(

),(...)1,(

.

),(...)1,(

),(...)1,(

...

),(...)1,(

,

.

.

,

,

,

1

11

22

11

11

1

1

2

1

1

1

YxS

xs

eYxCexC

eYxCexC

eYxCexC

eYxCexC

C

kxS

kxS

kxS

kxS

Yjk

L

jk

L

Yjkjk

yjkjk

yjkjk

N

y

y

N

y

y

kN
y

kN
y

y
N
y

kN
y

kN
y

yy

k

k









 (3.80)

43

Ryx k+ 22

3.7 Partially parallel imaging With Localized Sensitivities

Partially parallel imaging With Localized Sensitivities (PILS) is a simple and fast

reconstruction method that utilizes the high spatial localization of sensitivity in smaller coils.

Such coils acquire images with a limited field of view according to coil sensitivity.

3.8 Parallel Magnetic Resonance Imaging with Adaptive Radius in k-space

Parallel Magnetic Resonance Imaging with Adaptive Radius in k-space (PARS) does not

work independently on the x coordinate like SMASH or GRAPPA; it uses neighbourhoods of

each pixel to contribute to its reconstruction. Each un-acquired pixel in the k-space is

reconstructed using pixels that have the Euclidean distance from lower than kR

() ()yyxx

yx

L

t

yxlyx kksllwkks −−= 
 −

,',',
1

1 (3.81)

With w being the weighting coefficients and the sum is over all yx  , which gives the

relationship

It was shown in [25] that weights for which a perfect reconstruction can be obtained and

given by:

() ()yxCelwyxC l

ypi

yx

L

l

yxl
yx ,',',, ')(

1'

1



 −

 = (3.82)

3.9 Pre-Enhancement

There are very many applications of the various Parallel MRI methods in pre-enhancing the

image before final interpretation to solve specific issues.

3.9.1 Handling Motion Artifacts

Motion artifacts mainly result from patient movement during acquisition. In [25] a method is

described which involved taking fully sampled k-space images with motion artifacts and

dividing the k-space to several sets each containing a distinct subset of the acquired k-spaces.

In each set the missing lines are generated from the rest using SENSE. Images reconstructed

are the same except for errors. The k-space lines that differ from the others are discarded and

replaced by those reconstructed from neighbours using SMASH which is better localized in

the frequency domain. This method ensures motion artifacts are minimized in the final

image.

44

3.9.2 CAIPIRINHA

Controlled aliasing in Parallel Imaging Results in Higher Acceleration for multi-slice

imaging is used for speeding up multiple acquisitions using parallel MRI principles. Since

two or more slice are acquired together it is not easy to distinguish the pixel values from each

slice by means of a standard signal encoding. A solution is proposed in [36] where the phase

of each slice is modified by a value y .The acquired signal ()yS for two slices is then:

 () () yyyy kjkj

yyy

ky

yl

A

l eekCkskCksyS


+=


))()()((2

12

1

1

 () () () ()yyl yCySyCyS −−+= 1

22

1

1 (3.83)

Another method used to accelerate a dynamic MRI is UNFOLD (Un-aliased by Fourier-

Encoding the Overlaps using the Temporal dimension) which uses a single coil receiver. The

acquisition process time is speeded up by under-sampling the k-space which causes aliasing

which cannot be removed without prior knowledge. The temporal information is hence used

to minimize the aliasing and time dependent phase shift is generated. The constructed image

is therefore described by equation 3.84.

)(
1

0

),mod,(),,(tmfj
M

m

A et
M

Y
M

M

Y
yxStyxS +=

−

=

 (3.84)

3.10 Diffusion Magnetic Resonance Imaging

3.10.1 The Einstein Approach

Diffusion is a process in which molecules of a given substance try to distribute equally in a

fluid.

The rate at which the process takes place dependents on fluid characteristics and the

concentration of the molecules. The diffusion process is used in dynamic Magnetic resonance

Imaging to track body activities that involve movement of molecules in body fluids. These

processes include absorption of chemical medicines by body tissues, blood flow and many

others.

 To develop a mathematical model for one dimensional diffusion, the concentration is

denoted as C(x, t). The flux normal to the concentration gradient is denoted:

45

x

C
DF



−= (3.85)

where D is the diffusivity of the fluid. However the dynamic relationship has the form

2

2

x

C
D

t

C




=




 (3.86)

which is referred to as Flicks’ equation.

For n molecules located at x=0 and taking all other variables at their initial conditions to be 0

the diffusion process is described by:

 







−=

Dt

x

Dt

n
txC

4
exp

4
),(

2


 (3.87)

For isotropic diffusion in a homogeneous fluid in all directions, the generalization to three

dimensions is possible. The distribution is given by

()













 −
−=

Dt

rr

Dt
trrP

4
exp

)4(

1
),/(

2

0

230


 (3.88)

The distribution is found to be a vector with σ2 = 2Dt.The distance that the molecule will

travel can therefore be expressed as:

 () () ()20

2

0

2

0

2

0 zzyyxxrr −−+−=−

 = () () ()20

2

0

2

0 zzyyxx −+−+−

This is equal to the sum of the resulting variances in the three directions this is given as

 () DTrr zyx 62222

0 =++=−  (3.89)

The Gaussian covariance matrix and displacement distribution is found to be

















==

tDtDtD

tDtDtD

tDtDtD

Dt

zzyzxx

yzyysy

xzxyxx

222

222

222

2 (3.90)

46

For isotropic diffusion as derived as [20]:

DDDD ZZyyxx === 0=== yZxzxy DDD

3.10.2 Diffusion Tensor Imaging

Diffusion tensor MRI can be achieved by the addition of diffusion weighting gradients to

either side of refocusing pulse to the spin echo MRI method. One gradient will set the phase

of the spins which will be proportional to the gradient while other will introduce equal and

opposite rephasing for stationary spins. Turner [21] proposed that for a diffusion weighting

gradient of magnitude G, applied for a time t, the log-ratio between the signal A, after the full

echo time, te, and that produced by the initial 90o rf pulse can be described by:

effeff bDDGy
A

bA
In −=








−=









 222

0 3

)(
 (3.91)

Effective diffusivity, Deff is averaged over the diffusion time. In tissue that have an

anisotropic diffusion profile, Deff “constant” will also vary with the orientation of the

diffusion gradient. In this case, Eq. (3.91) generalises to:

eff

ijij

i i

effT DbRDRGy
A

bA
In −=








−=









 222

0 3

)(
 (3.92)

where R is a vector showing the direction of the gradient, and bij constitute a matrix, b,

which is analogous to the scalar weighting factor in Eq. (3.91). The elements bij encode

various interactions between diffusion and imaging gradients [20].The mean diffusivity

(MD) given by:

33

)(
)(321  ++

===
DTr

DMD (3.93)

Where 21, and 3 are diffusion coefficient in the x, y, z coordinates respectively.

D is used to describe the average diffusivity This quantity does not provide information on

isotropy of the tensor, since it uses only the mean of the Eigen values. There is, moreover, no

single obvious way to compute anisotropy. Three other measures used include fractional

anisotropy (FA), relative anisotropy (RA) and the volume ratio (VR), which are defined as

follows [20].

47

() () ()
2

3

2

2

2

1

2

3

2

2

2

1

2

3





++

−+−+−
=

DDD
FA (3.94)

() () ()
D

DDD
RA

2

3

2

2

2

1

3

1 −+−+−
=


 (3.95a)

3

321

D
VR


= (3.95b)

Where D is mean diffusivity

3.10.3 Motion Correction

Magnetic Resonance Imaging has motion artifacts introduced by patient motion during

imaging so overall resolution suffers significantly. It is therefore necessary to remove any

artifacts caused by motion error. Many methods of overcoming this limitation exist. A

common approach [21] involves removal of motion artifacts via use of convex projections.

Temporal redundancy available in time-resolved MRI is exploited to remove motion

artifacts. Phase filtering is combined with projections in Fourier-space and image space to

remove motion artifacts. These projections should protect the features from degradation.

Subtraction of remnant images from post-contrast images is then carried out to obtain an image. Patient

motion may lead to small intensity changes so the effect is not only the reduction of image

quality but can also obscure important temporal events like the arrival of contrast agent and the

temporal resolution of the image. This may lead to the loss of information even for slight patent

motion [18, 19].

POCS-based method iteratively applies successive constraints to the corrupted frame, making it more

similar to an artifact-free reference frame that is computed from other input frames. The constraints

applied consist of four projections, two depend on image space and two on Fourier space

(called k-space in MR). These projections are designed specifically to prevent obliteration of vascular

features, and to ensure stability and convergence of the POCS algorithm. The method improves visual

quality of the target image.

48

Procedure

The technique begins by identifying mask and arterial phase MRI. Motion-corrupted frames are

corrected using the POCS algorithm. The process repeats for each corrupted frame in the sequence. It

is assumed that an uncorrupted reference image is available from the reference set, the set of nref

frames preceding the corrupted frame by getting their median. The number of reference frames used

depends on the level of motion degrading the image. It involves two other steps.

K-space Box Constraint

Patient motion can cause points in k-space of the corrupted frame to differ from

corresponding points in the reference frame. The solution of these undesirable changes is

performed by the projection k-restrict, which distorted k-values to be within a small range of

the reference k-values. This results in a box constraint applied to k-space values, since it

defines a convex polyhedral referred to as spherical "box" around a reference point within

which any solution must reside.

Phase: Correction

The second projection, represented by the box, is a phase filter for correcting translational

motion artifacts. It is based on the fact that these artifacts vary linearly in k-space, whereas

the phase information due to contrast arrival and concentration change is fast-varying and

erratic.

Intensity inhomogeneity (IIH) correction

The visualized MRI signal results from the measurements of the tissue composition. MRI

images pixel levels are taken to be piecewise constant except for tissue boundaries and the

underlying noise which is additive. However various imaging conditions introduce an

additional multiplicative noise factor, referred to as the intensity inhomogeneity (IIH).

49

Figure 3.14: Motion Correction on MRI

The sources of IIH are generally divided in two groups [21]:

(i) Arising from properties of the MRI device such as static magnetic field inhomogeneity,

RF signal energy spatial distribution and others.

(ii) Arising from the characteristics of image including spatial variations of the permeability

and dielectric properties of the object.

The correction of the IIH degradation involves of estimating the IIH field and removing

(dividing or subtracting) this it from the given image. This correction is an essential step

before other image processing and segmentation. It improves the performance of such

algorithms.

For ideal conditions which include no partial volume effect, and no IIH, no variations due to

the imaging device the segmentation of MRI would be trivial once the signal intensity for

each kind of tissue is known. Where, these artifacts are present there is the need for adaptive

and robust segmentation algorithms. Some algorithms perform both the IIH field estimation

and the MRI segmentation into the tissue regions of interest.

There are two main categories of correction algorithms. These are parametric and non-

parametric ones. The first requires a model of the inhomogeneity field, so that estimated

values fit the model. The second algorithms perform estimation of the inhomogeneity field

value at every pixel location of the measured MRI. Two approaches have been developed in

[21].A parametric algorithm whose assumed model of the IIH field is linear combinations of

outer products of Legendre polynomials. Estimation is performed by error function gradient

descent for model parameters as well as the tissue class intensity means. Therefore this can

be an IIH correction and segmentation algorithm.

frame number

50

CHAPTER FOUR

IMAGE DENOISING APPROACHES

Filtering is one of the most explored methods used to reduce the noise level in an image. Its

efficiency is associated with the particular spectral energy distribution in an image. For most

images, the noise free spectrum is mainly found in low frequencies. It is often taken to decay

like









f

1
 where f is the oscillation frequency and  is the decay co-efficient close to 2 for

many images. For AWGN, the noise spectral density is constant. Therefore, low pass

filtering of image can improve the signal-to-noise ratio (SNR). However for MRI images

where the noise distribution is Rician distributed adaptation to this kind of distribution is

required [1]. In this chapter several denoising methods are presented.

4.1 Wiener Filter

This is one of the filters that has been successively used in image denoising. It is formulated

as follows:

 y=x+b (4.1)

Where both the noise free image x and the associated noise b are independent random

processes. The problem is to estimate x by x=w*y and to obtain the linear filter w that

minimizes the (MSE), i.e.

 wopt= argminwE{
2

* xyw − } (4.2)

Where E{-} is expectation whose solution is the Wiener filter. Its frequency response is

given by

 H () =
𝑠𝑥()

𝑠𝑥(𝜔)+𝑠𝑏()
 (4.3)

Where)(bs is the power spectral density of the noise free signal x and)(bs of the noise b.

51

It is optimum for a Gaussian stationary random signal only while MRI noise is not Gaussian.

Various methods to estimate the image signal and noise signal power spectral density have

been investigated. The most common approaches use some parameterized models. Wiener

filter is thus usually out performed by spatially adaptive and non-linear algorithms [17].

Wiener filter is obtained by the product of the centred noisy image signal by a given weight.

 () yy

y

yxx 



+−














−=

2

2

1ˆ (4.4)

Where
2 , 2

y and y denote noise variance, image variance and mean of the noisy data

respectively. This approach has been found to be versatile and can be extended to transform

domain such as the Wavelet transform.

4.1.1 Other Linear Filters

The moving average and Gaussian smoothing are other categories of filters that may be used

when noise and signal statistics are not available. However, their performance has limitation

of edge blurring and introduction of artifact features.

4.1.2 Non-linear Filters

 Another set of filters include the non-linear category such as the median filter. It is mainly

used in removing impulsive noise. Combination of morphological operators is another

method which has been used where AWGN, salt and pepper, speckle and Rician noises are

present [35].

4.1.3 Bilateral Filter

Bilateral filtering in its initial formulation was to use domain filtering and range filtering.

Domain filtering takes advantage of the similarity of spatially close pixels which are more

correlated to the centered pixel than more distant pixels. Therefore, a weighed averaging of

neighbouring pixels reduces the noise level. However, it does not perform well in the vicinity

of edges. Improved method that takes into consideration image discontinuities consists of

grouping similar pixels without regard to spatial locations. The filter computes a weighted

average of samples around a central pixel, where the weights are the products of the spatial

52

domain and the range domain weights. The three parameters that control the bilateral filter

are the neighbourhood size and parameters set the decay of the two weight factors

[35][36][37][38][39].

4.1.4 Patch based Approaches

This set of image denoising methods use the redundancy of the various structural features

present in natural images. It can particularly be efficient in boundaries where an edge can be

taken as a collection of similar binary patches. Of importance in application of this approach

is a method of measuring similarity between image patches.

At a given location n, the estimate nx̂ of the noisy pixel nnn bxy += , is computed as follows

kgknhn yknGyyH

c
x),(),(

1
=

 (4.5)

where =C
kgknh yknGyyH),(),(

yn is a set taken from a neighbourhood around the location n,k are the indices of any pixels in

the neighbourhood y(n) of the current pixel location n.

The function),(knh yyH is a measure of similarity patches ny and ky . It is formulated as:

()












 −
=

2

2

2
exp,

h

yy
YYHy

kn

knhk (4.6)

h is a thresholding parameter derived from noise standard deviation. A function),(knGg

generates weights based on distance to the current pixel location. When the patch is taken

as the pixel the overall function becomes a bilateral filter.

One of the major challenges in these patch based methods is to have minimum offset for

various dimensions of the patches. Hence the design of the two weighting functions Hh and

Hg, as well as the value of their respective smoothing parameters h and g need to be done

with certainty [21].

53

4.1.5 Variational Approaches

Anisotrophic Diffusion

The goal is to obtain successive version of an original image Io(x,y) at various resolutions.

This is done by convolving the noisy image with Gaussian Kernels of increasing variance. It

has been shown that this subset of filtered images is a solution of the diffusion equation. It is

formulated as [21]:

 ),,(),,(),,(tyxItyxcdivtyxI

t
=




. (4.7)

With the initial condition

T

yx
yxIyxI 
















==).,()0,,(0 is the special gradient operator.

When diffusion conductance c(x,y,t) is a constant C, linear diffusion results in homogenous

diffusivity. This solution leads to a Gaussian smoothing of the noisy image. In that case,

there is a difficulty in distinguishing the treatment of edges and flat regions of the image.

Perona and Malik [40] used an image dependent diffusivity c(x,y,t) =),,((tyxIh ). The

diffusion is dependent on image gradient at any given time t.

()

=














−=

2

1
2

0,
4

1max),,(
k n

n
kkn

s
aasw




 (4.8)

The effect is that the edges are clearer, with flat regions being smoothed. This method is a

non-linear anisotropic diffusion which is found to be superior to Gaussian smoothing. The

tricky aspect of the method is the choice of an appropriate diffusivity function. Various

analytical functions used have a conductance parameter. In addition to the category of

diffusivity functions and conductance, two other parameters need to be selected. They

include the diffusion speed and the number of iterations [21].

4.1.6 Total Variation Minimization

The total variation (TV) method was first proposed by Rudin, and others [21]. In this

approach, denoising is formulated as a constrained minimization problem. Letting ()yxl ,0 be

the noisy image which is described as:

54

),(),(),(0 yxByxIyxI += (4.9)

Where I(x,y) is the noise free image and B (x,y) is an additive noise independent from I (x,y),

such that   0=BE and   22 =BE

The clean image is the solution of

() dydxyxUu ,argmin 


 subject to
22

0

1
=−


IU (4.10)

where

dydxyxIYXuIU 2

0

2

0)),(),((


−=− (4.11)

With a multiplier , the solution for (4.10) takes the form of unconstrained cost functional

minimization given by:

() dydxyxIyxUdydxyxUUJ 2

0)),(),((
2

),(


−+=


 (4.12)

With appropriate value of y

J is obtained by use of the Euler- Lagrange equation of (4.12) as
















−−=

),(

),(
)),(),((0

yxU

yxU
yxIyxUJ  (4.13)

Where the minimization of the functional is then obtained by gradient descent

)),,(),((
),,(

),,(
),,(0 tyxUYXI

tyxU

tyxU
divtyxU

t
−+
















=




 (4.14)

Total variational therefore becomes the link between various PDE based approaches,

including the anisotropic diffusion, and the various forms of regularized cost functional,

Setting =0 in Equ. (4.14) gives a case where diffusivity c (x,y,t) =)),,((/1 tyxU [21].

55

4.2 Transform Domain Approaches

The transform domain approaches have been used singly or in combination for medical

image denoising. The development of powerful multi-resolution methods has then

contributed a lot to the preference of this denoising approach. Appropriate transform method

should have the following properties [21]:

(i) Invertibility: Any transform used in MRI denoising should have a perfect inverse

transform. This ensures that the resulting image has minimum distortions.

(ii) Linearity: The major task in MRI denoising is to be able to clearly identify and

distinguish components of a transform expression that contain noise and those that

mainly contain the image. Linearity ensures this and also enhances invertibility.

(iii) Computational efficiency: Denoising is usually one of the stages in image processing. It

is therefore desirable that denoising contributes minimal computational cost. This is

due to the fact that other processing stages such as segmentation have relative high

computational cost.

(iv) Decorrelation ability: Since the choice of transform domain denoising includes its

ability to remove inter pixel dependencies. For a given category of signals, point-wise

operations in an appropriate transform domain can be already very efficient such as the

Wiener filter for stationary processes. The decorrelation ability of the transform is also

necessary in Bayesian denoising. It is used to enable description of the prior on the

noise free data.

(v) Energy compaction: For efficiency and effectiveness it is required that transform

energy of the important images features is concentrated in a small number of

coefficients.

(vi) Shift Invariance: Various transform like DCT and wavelet have Artifacts when spatial

shift is used as a step either in transformation or processing of an image. For these and

any other transform to be used in MRI image denoising they need to be made shift

invariant.

56

The typical procedure for shift invariance may involve steps as follows:

Step (i) Shift the input image signal

Step (ii) Apply the DCT transform

Step (iii) Denoise the shifted transformed coefficients

Step (iv) Apply the inverse DCT transform

Step (v) Shift back the denoised output.

Step (vi) Repeat steps 1 to 5 for a range of shifts and average the various

denoised outputs.

A few shifts are used in practice since a large number may be computational expensive.

These include overlapping blocks for block-transform (e.g. sliding window DCT). Where

wavelets transform is the choice as the case in this thesis, better shift invariance can be

obtained with:

Un-decimated wavelet transforms complex and dual-free wavelets and sharper band pass

filters. It has low computational cost in comparison with decimated wavelets.

In rotation invariance the edges and other features present in natural images take different

form in random orientations. Rotation invariance can ensure these edges and features will

remain constant. The issue with rotation invariance is that it is not easy to be used since it

would require interpolation of the input image sampling grid leading to artificial correlations

between neighbouring pixels. Interpolation is omitted when rotation is along concentric

rectangles.

When the wavelet transform is employed then rotation invariance introduces directional

sensitivity in horizontal and vertical axis. It is possible to have higher directional sensitivity

by use of steerable multiscale transforms. Directional wavelet transforms have been

designed, and there are a number of categories, one involves transforms without orientations,

such as isotropic wavelets. Other techniques that are used include data adaptive

transformations. The Karhunen- Loeve transform can be used to decorrelate the data has been

efficiently used for image denoising algorithms [21].

57

4.3 Wavelet-Domain Filtering

Wavelet-domain is desired because the orthogonal wavelet transform concentrates the signal

energy into a few of coefficients. Therefore, the wavelet transform of the noisy image

consists of few coefficients with high SNR and many coefficients with low SNR. On

removing the noisy coefficients, the image are obtained using the inverse wavelet transform

therefore achieves invertibility. Wavelet transform enables the denosing procedure to adapt

to the spatial variations in the signal frequency content hence avoids excessive smoothing. It

therefore performs better than the Fourier domain method. Other wavelet based image

processes such as noise removal, compression, and signal recovery can achieve optimal

performance characteristics and, moreover, do not introduce excessive artifacts in the

denoised image [1].

4.3.1 The Discrete Wavelet Transform

The 1D discrete wavelet transform (DWT) represents a real-valued continuous-time signal f

(t) in terms of shifts and dilations of a low pass scaling function  (t) and band pass wavelet

 (t). For refined choices of these functions, the shifts and dilations form an orthonormal

basis for L2 (IR) and the signal representation becomes [1]

() () () 
−=

−−−
+= −

−

J

j d

j
j

j

k

J

k

j

k

kdctf tKT

j 222 2

2
2

 (4.15)

with scaling coefficients

() () dttfc tJJ
J

k
−−−

= 22 2  (4.16)

and wavelet coefficients

() () dttfd tj
j

j

k
−−−

= 22 2  (4.17)

Another advantage of the wavelet is multiresolution: the first term in (4.15) is an

approximation to f (t) at resolution J, and the second term consists of refinements at finer

scales j < J. The wavelet basis functions are localized in both time and frequency; hence the

DWT is superior to many other transform for signals with spatial varying frequency content.

58

It is also possible to achieve rotational and shift variance as well as many other requirements

such as piecewise linearity and computational efficiency.

The scaling and wavelet coefficients may be computed using efficient recursion. Since

()   ()ntnht

n

−=   2
2

 (4.18)

()   ())2
2

mtngt

n

−=   (4.19)

with h and g being discrete-time low pass and highpass filters, respectively, the coefficients

are computed as follows:

  j

nk

n

j

k cnhc −

+ = 2

1 (4.20)

  j

nk

n

j

k cngd −

+ = 2

1 (4.21)

These computations can be formulated as discrete-time filter bank.

For a length 2M discrete-time signal s = [s[1], s[2],... , s[2M]]T, the recursion (4.20) (4.21)

beginning with c0
k = s[k] defines a discrete-time DWT of s5

. Iterating (4.20) (4.21) J times,

produces an J-scale DWT consisting of J sets of wavelet coefficients at scales j = 1,.., J, and

a single set of scaling coefficients at scale J. The maximum number of iterations is Jmax =

M., whose computational cost is linear in the number of signal samples processed. Another

reason that the wavelet is the transform of choice is that that the transforms of real world

images tend to be sparse, with a few large scaling and wavelet coefficients dominating the

decomposed representation, hence tend to compress the images. Wavelet coefficients of

polynomial signals are exactly zero so the transform exhibits compression properly due to the

“vanishing” moments of the wavelet functions, let j

k denote the underlying discrete-time

wavelet basis function at scale j and location k. Then:

  −==
m

j

k

n Nnmm 1......,,0,0 (4.22)

59

Wavelet functions are found to have N vanishing moments. The number of vanishing

moments of j

k determines the highest degree polynomial signal whose wavelet coefficients

are all zero. However, for higher N there are more polynomials which will have non-zero

wavelet coefficients. The noise present in an image tends to be evenly distributed over all

wavelet and scaling coefficient which are orthonormal so white noise is identically

distributed in each coefficient. A simple procedure of denoising an image is therefore

removing all the wavelet coefficients.

Real signal and images may be represented by a piecewise polynomial function. In this case

coefficients will be zero except those of the wavelets that have large values near the

breakpoints of the polynomial pieces. These non-zero wavelet coefficients are required when

inverting the multi resolution components back to a complete image so as to retain details

like edges. For effective noise removal in the wavelet-domain it is necessary to identify

which wavelet coefficients do not have significant signal energy and hence can be discarded

wavelet filters.

The two dimensional discrete wavelet transform and inverse transform are given in equations

(2.28 and 2.29). The discrete 2D wavelet functions 1,

0,

j

k and scaling functions lkj ,, have

several indices j corresponding to the scale, o corresponding to wavelet orientation

(horizontal, vertical, or diagonal), k, 1 corresponding to the position. A universal index I is

used together with spatial index.

   =
m

I msmc 1 (4.23)

Similarly the I-th wavelet coefficient is computed

   msmId
m

I =  (4.24)

It is normal to refer to the scaling and wavelet coefficients by vectors c and d, respectively.

60

4.3.2. Wavelet-Domain Filtering

The process involves computation of the 2D DWT of an image f(x,y). The goal is to obtain a

better estimate of noise-free signal wavelet coefficients by filtering d. Filtering of the

coefficient of a particular wavelet b1 to the signal reconstruction by weighting the

corresponding coefficient d1 by a number 10 1  is carried out. This is represented by:

11
1

dd 


= (4.25)

Setting 01 = totally ignores the contribution of the wavelet function
1 setting 11 =

leaves it in its original form. Selecting 10 1   reduces the contribution of the I-th wavelet

function. The objective is to eliminate those wavelet coefficients which contain more noise

than signal. After this the inverse DWT of the filtered wavelet coefficients d and the scaling

coefficients c, result in improved output image. The new image denoted s is a wavelet-

domain filtered form of x. The weights  1 = is the effective wavelet-domain filter.

The main task therefore in wavelet-based filtering is the design. Ideally the wavelet-based

filtering procedure can be adapted to the local SNR in each wavelet coefficient, as to be able

to remove wavelet coefficients with very low SNR. Assuming that the noisy wavelet

coefficient is an estimator of the value of the signal’s wavelet coefficient its mean that

 11 dE= .That is, 1 is the wavelet coefficient of the noise-free signal. The mean squared

error filter of each coefficient is:

2

1

2

1

2

1
1




+


=MSE

 (4.26)

Where 2

1 is the variance of the noisy coefficient d1. The best weight is given by minimizing

() 2

111 dE − with respect to 1 . This results into wavelet-domain analogue of the

Wiener filter [1]. However, this optimal filter weight is not practically possible as it requires

perfect knowledge of 2

11  and and therefore is not feasible in practice.

61

This may be approximated by:










 −
=

2

1

2

1

2

1
1

d

d 
 (4.27)

where 2

1d is the square value of the wavelet coefficient and 2

1 is the variance of the d1.

Again, assuming that)()(xxz j

jEI

j= is simply an estimate of the numerator in (4.26), and d

is an estimate of the denominator in (4.26). Therefore, (4.27) provides a reasonable

approximation to (4.26), and interpreted (4.26) as adaptive Wiener filter. A threshold action

on this expression ensures that α does not at any time have negative values. This is

automatically achieved when sum of squared errors is used.

The working of the filter (4.27) is to set small wavelet coefficients, with squared magnitude

less than the estimated variance, to zero and to leave larger coefficients unchanged. Other

operations including hard and soft-thresholds, can also be employed. But these are inferior to

the operation given by (4.27) in MRI and other imaging applications [1]. So this threshold is

normally used.

More noise removal is possible by weighting the estimated variance in (4.27). For example,










 −
=

2

1

2

1

2

1
1

d

Id 
 (4.28)

where I ≤ 1 is a user-defined parameter that adjusts the amount of noise reduction. Selecting

I≤ 1 effectively raises the threshold level of the nonlinearity. Universal threshold for

Gaussian noise removal that is greater than unity has also been used, although larger

threshold levels can result in greater noise reduction, but may also lead to over smoothing.

The choice of T=1 provides a conservative lower bound on the threshold level. In MRI

applications, T=2 provides very good results in terms of squared error and visual quality [1].

In [1] the Haar wavelet was shown to be better at preserving fine image details such as small

vascular structure compared to other wavelets. The Haar wavelet also has the most compact

spatial support of all wavelets. But wavelets with larger spatial support such as the

Daubechies-6 wavelet have better frequency localization and approximation properties.

62

Filtering with wavelets with large spatial support generally produces smooth images. But

they may also lead to excessive smoothing of fine details. The Haar wavelet is the best in

MRI applications since it exhibits both large number of vanishing moments and spatial

support.

Another aspect is the shift-variant nature of the wavelet-domain filter adapted for MRI. To

improve wavelet-domain filtering methods, shift- invariant (undecimated) DWT methods are

used. Shift-invariant wavelet transforms have been shown to provide better results in many

cases since they are less sensitive to misalignments between the edges in images and the

wavelet basis functions.

4.3.3 Wavelet based Wiener Filter

Wiener filter may be derived from the estimation given in equation (4.29)

],[*][][ˆ nynhnx = (4.29)

In this case, h[n] is obtained by minimizing the estimation error that defines the Wiener filter.

The frequency response of which is described in equation 4.3 as:

 ()
()

() ()




vx

x

PP

P
H

+
= (4.30)

where  xP and  vP represent the power spectral density of the clear and the noise,

respectively. The filtering effect is frequency selective so frequency bands where the signal

power is much stronger than that of the noise and are sustained and frequencies where noise

is abundant are attenuated.

In MRI application where noise has Rician distribution the filter designed is for denoising

individual pixels. When the signal varies from one pixel to another, it is desirable to denoise

each pixel by itself; hence the output still reflects this pixel to pixel variation. The SWT may

be applied to ensure a stable filter due to the redundancy that exists.

Methods for estimating signal and noise have been developed. One is in which the averaging

of measured data is carried out.

63

(i) Filter modelling

For a number of pixels consisting of N samples, as:

   ]1[,...0],...1[,...,1],...0[1100 −−− −− NxxNxNxx kkk
 (4.31)

The average is:


−

=

=
1

0

][
1

][
~ k

k

k nx
K

nX (4.32)

The result of SWT on an individual pixel k is:

   ]1[],...,0[,1],...,0[],...,1[,...,]0[],...,1[],...0[2211 −−−− −−−− NssNddNddNdd L

k

L

k

L

k

l

k

j

k

j

k

j

k

j

k
(4.33)

And on the average is:

   ]1[~],...,0[~,1
~

],...,0[
~

],...,1[
~

,...,]0[
~

],...,1[
~

],...0[
~ 2211 −−−− −−−− NssNddNddNdd L

k

L

k

L

k

l

k

j

k

j

k

j

k

j

k
 (4.34)

The Wiener field is the wavelet domain may be obtained from equation (4.30) and expressed

as transfer function:

),(),(

),(
),(

njPnjP

njp
njH

vx

x

+
= (4.35)

Where Px(j,n) is the true signal x in location n at resolution level j. Pv(j,n)takes the form:

()  ()
21

0

1
,),(

−

=

+
k

k

j

kvx nd
K

njPnjP (4.36)

With the approximation approaching equality as K tends to ∞. To get an estimate of the

numerator of Equation (4.35), it is noted that:

()),(
1

),(][
~ 2

njP
K

njPnd vx

j + (4.37)

This progression from (4.35) follows the results in (4.38). Combining Eqs. (4.36, 4.37) gives:

64

2
1

0

2][(
1

11
][

~
(

1
),(nd

KK
nd

K

K
njP

k

k

j

k

j

x 
−

=










−
−+

−
 (4.38)

By substituting Eqs (4.36) and (4.38) into Eq. (4.35), obtain




−

=

−

=










−
−+

−
=

1

0

2

2
1

0

2

])[(
1

][(
1

11
][

~
(

1
),(

K

K

j

k

k

k

j

k

j

nd
K

nd
KK

nd
K

K

njH (4.39)

The denoised wavelet coefficients are denoted:

   ]1[],...,0[,1ˆ],...,0[ˆ],...,1[ˆ,...,]0[ˆ],...,1[ˆ],...0[ˆ 2211 −−−− −−−− NssNddNddNdd L

k

L

k

L

k

l

k

j

k

j

k

j

k

j

k
(4.40)

Where),(][][ˆ njHndnd j

k

j

k = . This process is not smooth parts of an image pixel,

][],...,1[NsS L

k

L

k . The effect of this operation on the image data is to alter wavelet coefficients

according to the ratio noise to signal plus noise in the corresponding component.

(ii) Adaptive Multiresolution Non-local Means Filter

This filter may be formulated [4] as:

𝑢̌(𝑥𝑖) = ∑ 𝑤(𝑥𝑖 , 𝑥𝑗)𝑢(𝑥𝑗)𝑥𝑗𝜖𝑉𝑖
 (4.41)

Where 𝑢̌(𝑥𝑖) is restored intensity, the pixel or voxel intensity 𝑢(𝑥𝑗) and 𝑤(𝑥𝑖, 𝑥𝑗) is the

weight assigned to intensity values. The weights are a measure of similarity between patch Ni

and Nj: the weights are computed as follows:

𝑤(𝑥𝑖, 𝑥𝑗) =
1

𝑍𝑖
𝑒
−
||𝑢(𝑁𝑖)−𝑢(𝑁𝑗)||2

2

ℎ2 (4.42)

Where 𝑍𝑖 ensures ∑ 𝑤(𝑥𝑖 , 𝑥𝑗)𝑗 =1 and H is a smoothing factor. The Blockwise approach is

adapted to reduce computational time in 3D image volumes. The restored values for all

elements in a patch are given by:

𝑢̂(𝑁𝑖) = ∑ 𝑤(𝑥𝑖, 𝑥𝑗)𝑢(𝑁𝑗)𝑁𝑗𝜖𝑉𝑖
 (4.43)

65

The noise distribution in magnitude domain follows Rician distribution

𝑝(𝑚) =
𝑚

𝜎2
exp (−

𝑚2+𝐴2

2𝜎2
) 𝐼0 (

𝐴𝑚

𝜎2
) (4.44)

Where A is the amplitude without noise, m is magnitude value with noise, 𝐼0 is the modified

zero order Bessel function of the first kind, and 𝜎2is standard deviation of noise. The second

order moment is denoted as:

𝔼 (𝑚2) = 𝐴2+ 2𝜎2 (4.45)

A log-likelihood function of the form:

log 𝐿 = ∑ log (
mi

σ2
)𝑁

𝑖=1 − ∑
𝑚1
2+𝐴2

2𝜎2
𝑁
𝑖=1 + ∑ 𝑙𝑜𝑔𝐼0

𝑁
𝑖=1 (

𝐴𝑚𝑖

𝜎2
) (4.46)

is used to optimize the procedure with Maximum Likelihood Estimators(MLE) being:

)logarg(ˆ
max LAAMLE = (4.47)

Working with squared signal enables intensity bias removal by subtraction bias

𝐴̂𝐶𝐴 = √𝑚𝑎𝑥(𝔼(𝑚2)̂ − 2𝜎2, 0) (4.48)

Blockwise conventional approach method of optimization does not required much additional

computation time so it is chosen and is formulated as:

𝑢̂(𝑁𝑖) = √𝑚𝑎𝑥 ((∑ 𝑤(𝑥𝑖, 𝑥𝑗)𝑢(𝑁𝑗)2𝑁𝑗𝜖𝑉𝑖
) − 2𝜎2, 0) (4.49)

When multiresolution involving Discrete Wavelet Transforms is used with NLM filters the

filtering parameters for various resolutions applied result in different sets of filtering

parameters, Sub-band mixing of the denoised coefficients is therefore necessary for

appropriate recombination of various image components. Sub-band mixing can be hard or

soft.

The procedure for hard sub-band mixing can be written as:

𝑐̂𝑘 = 𝑐̂𝑘,𝑢

𝑑̂𝑘 = 𝑑̂𝑘,𝑢 for LLH, LHL and HLL

𝑑̂𝑘 = 𝑑̂𝑘,𝑜 for HHL, HLH, LHH and HHH (4.50)

Where 𝑐̂𝑘are scaling coefficients and𝑑̂𝑘wavelet coefficients

66

𝑻̂𝒃(𝝈) =
𝝈𝟐

𝝈̂𝑿
 with (4.51)

𝜎̂𝑋 = √𝑚𝑎𝑥(𝜎̂𝑏
2 − 𝜎2)

The resulting coefficients are:

𝑐̂𝑘 = 𝑐̂𝑘,𝑢

𝑑̂𝑘 = ∅(𝑑𝑘,𝑇̂𝑏(𝜎)) 𝑑̂𝑘,𝑢 + (1 − ∅(𝑑𝑘,𝑇̂𝑏(𝜎)))𝑑̂𝑘,𝑜 (4.52)

() ()))(ˆ(
1

1
)(ˆ,




bk Tdbk

e
Td

−−
+

= (4.53)

𝐼𝑛(𝑥𝑗) = √𝐼𝑟(𝑥𝑗)
2
+ 𝐼𝑖(𝑥𝑗)

2
 (4.54)

4.4 Image Signal and Noise Modelling and Estimation

4.4.1 Rician LMMSE Estimator

Noise in magnitude MRI image has Rician distribution so the PDF of the images is [3]

𝑝𝑀(𝑀𝑖𝑗\𝐴𝑖𝑗 , 𝜎𝑛) =
𝑀𝑖𝑗

𝜎𝑛
2 𝑒

𝑀𝑖𝑗
2 +𝐴𝑖𝑗

2

2𝜎𝑛
2
𝐼0 (

𝐴𝑖𝑗𝑀𝑖𝑗

𝜎𝑛
2) 𝑢(𝑀𝑖𝑗) (4.55)

For an image background where SNR is low the distribution is Rayleigh

𝑝𝑀(𝑀𝑖𝑗\𝜎𝑛) = 𝑝𝑀(𝑀𝑖𝑗\𝐴𝑖𝑗 = 0, 𝜎𝑛) =
𝑀𝑖𝑗

𝜎𝑛
2 𝑒

𝑀𝑖𝑗
2

2𝜎𝑛
2
 𝑢(𝑀𝑖𝑗) (4.56)

Noise estimation mainly uses background intensities. Hence estimators based on mean and

second order moments are:

𝜎𝑛2̂ =
1

2𝑛
∑ 𝑀𝑖

2𝑁
𝑖=1 , 𝜎𝑛̂ = √

2

𝜋

1

𝑛
∑ 𝑀𝑖
𝑁
𝑖=1 (4.57)

67

4.4.1.1Conventional Approach

The estimate is expressed in terms of noise standard deviation and second order moment in a

Rician distribution as:

𝐴̂𝑐 = √max(〈𝑀2〉 − 2𝜎𝑛2, 0) (4.58)

The sample estimator is defined

〈𝐼〉 =
1

|𝜂|
∑ 𝐼𝑝𝑝𝜖𝜂 (4.59)

With η a square neighbourhood.

4.4.1.2 Maximum Likelihood Estimator

The maximum likelihood function is used

𝐴𝑀𝐿 = 𝑎𝑟𝑔𝐴
𝑚𝑎𝑥(log 𝐿) (4.60)

with

log 𝐿 = ∑ 𝑙𝑜𝑔 (𝐼0 (
𝐴𝑀𝑖

𝜎𝑛
2))

𝑁
𝑖=1 −

𝑁𝐴2

2𝜎𝑛
2 − ∑

𝑀𝑖
2

2𝜎𝑛
2

𝑁
𝑖=1 (4.61)

Where N is the number of samples considered for the likelihood function.

4.4.1.3 Expectation-maximization (E M) Method

In this method noise variance and signal are estimated simultaneously by maximizing the log

likelihood expectation.

𝐴̂𝑘+1 =
1

𝑁
∑

𝐼1(
𝐴̂𝑘𝑀𝑖

𝜎̂𝑘
2)

𝐼0(
𝐴̂𝑘𝑀𝑖

𝜎̂𝑘
2)

𝑁
𝑖=1 𝑀𝑖 (4.62)

𝜎𝑘+1
2 = max [

1

2𝑁
∑ 𝑀𝑖

2 −
𝐴̂𝑘
2

2

𝑁
𝑖=1 , 0] (4.63)

The initial values are computed as:

𝐴̂0 = (2 (
1

𝑁
∑ 𝑀𝑖

2𝑁
𝑖=1)

2

−
1

𝑁
∑ 𝑀𝑖

4𝑁
𝑖=1)

1
4⁄

 (4.64)

68

𝜎̂0
2 =

1

2
(
1

𝑁
∑ 𝑀𝑖

2 − 𝐴̂0
𝑁
𝑖=1) (4.65)

4.4.1.4 The Analytical Exact Solution

Using Rician noise model and using sample mean M

Given the correlation factor as

𝜁(𝜃) = 2 + 𝜃2 −
𝜋

8
𝑒−

𝜃2

2 [(2 + 𝜃2)𝐼0 (
𝜃2

4
) + 𝜃2𝐼1 (

𝜃2

4
)]
2

 (4.66)

and the root θ of

𝑔〈𝜃〉 = √𝜁(𝜃) (1 +
〈𝑀〉2

〈𝑀〉2− 〈𝑀〉2
) − 2 − 𝜃 (4.67)

The signal estimate and the noise variance are given by:

𝜎2 =
〈𝑀〉2− 〈𝑀〉2

𝜁(𝜃0)
 𝑎𝑛𝑑 𝐴̂ = 𝜃0𝜎̂ (4.68)

4.4.1.5 LMMSE Estimator for Rician Model

The estimator for a parameter may be denoted as [3] the LMMSE Estimator for Rician

model

The estimator for a parameter may be denoted as:

𝜃 = 𝐸{𝜃} + 𝐶𝜃𝑥𝐶𝑥𝑥
−1(𝑥 − 𝐸{𝑥}) (4.69)

Where 𝐶𝜃𝑥 is the cross covariance vector and 𝐶𝑥𝑥 is the covariance matrix of the data

For the 2D Rician model and using local statistics.

𝐴𝑖𝑗2̂ = 𝐸{𝐴𝑖𝑗
2 } + 𝐶𝐴𝑖𝑗

2𝑀𝑖𝑗
2𝐶

𝑀𝑖𝑗
2𝑀𝑖𝑗

2
−1 (𝑀𝑖𝑗

2 − 𝐸{𝑀𝑖𝑗
2 }) (4.70)

For Rician noise distribution, the square LMMSE estimator for the 2D is therefore

𝐴𝑖𝑗2̂ = 𝐸{𝐴𝑖𝑗
2 }

𝐸{𝐴𝑖𝑗
4 }+2𝐸{𝐴𝑖𝑗

2 }𝜎𝑛
2−𝐸{𝐴𝑖𝑗

2 }𝐸{𝐴𝑖𝑗
2 }

𝐸{𝑀𝑖𝑗
4 }−𝐸{𝑀𝑖𝑗

2 }
2 𝑥 (𝑀𝑖𝑗

2 − 𝐸{𝑀𝑖𝑗
2 }) (4.71)

69

When the expectations are substituted with their sample estimators the estimators are

expressed as:

𝐴𝑖𝑗2̂ = 〈𝑀𝑖𝑗
2 〉 − 2𝜎𝑛

2 + 𝐾𝑖𝑗(𝑀𝑖𝑗
2 − 〈𝑀𝑖𝑗

2 〉) (4.72)

Where

𝐾𝑖𝑗 = 1 −
4𝜎𝑛

2(〈𝑀𝑖𝑗
2 〉−𝜎𝑛

2)

〈𝑀𝑖𝑗
4 〉−〈𝑀𝑖𝑗

2 〉2
 (4.73)

For a N dimensional volumes the expectation is given by:

𝐴𝑖𝑗𝑘
2̂ = 〈𝑀𝑖𝑗𝑘

2 〉 − 2𝜎𝑛
2 + 𝐾𝑖𝑗𝑘(𝑀𝑖𝑗𝑘

2 − 〈𝑀𝑖𝑗𝑘
2 〉) (4.74)

With

𝐾𝑖𝑗𝑘 = 1 −
4𝜎𝑛

2(〈𝑀𝑖𝑗𝑘
2 〉−𝜎𝑛

2)

〈𝑀𝑖𝑗𝑘
4 〉−〈𝑀𝑖𝑗𝑘

2 〉2
 (4.75)

And

〈𝐼𝑖,𝑗,𝑘〉 =
1

|𝜂𝑖,𝑗,𝑘|
∑ 𝐼𝑝

2
𝑝𝜖𝜂𝑖,𝑗,𝑘

− 〈𝐼𝑝〉
2 (4.76)

In the background where distribution is Rayleigh the noise is estimated as

𝜎𝑛̂ = √
2

𝜋
 𝑚𝑜𝑑𝑒{〈𝐼𝑖,𝑗,𝑘〉} (4.77)

If the background is not empty the local sample variance is computed as

𝜎𝑛2̂ = 𝑚𝑜𝑑𝑒{𝜎𝑖,𝑗,𝑘
2 } (4.78)

𝜎𝑖,𝑗,𝑘
2 =

1

|𝜂𝑖,𝑗,𝑘|−1
∑ 𝐼𝑝

2
𝑝𝜖𝜂𝑖,𝑗,𝑘

− 〈𝐼𝑝〉
2 (4.79)

4.5 A CURE: Chi-Square Unbiased Risk Estimation

For a vector of N samples drawn from non-concentric chi-square distribution with parameters

defined as centrality measure 𝑥𝑛 ≥ 0 and K>0 as the degrees of freedom [16] the vector Z

maybe denoted

Z~Χ2k(x) and ZєR+N

70

Statistical characterization of the observation model gives:

𝑝(𝑦|𝑥) = ∏ 𝑝(𝑦𝑛|𝑥𝑛
𝑁
𝑛=1) = ∏

1

2
𝑁
𝑛=1 𝑒−

𝑥𝑛+𝑦𝑛
2 (

𝑦𝑛

𝑥𝑛
)

𝐾−2

4
𝐼𝐾
2
−1(√𝑥𝑛𝑦𝑛)

 (4.80)

The characteristic function is given by:

𝑝̂(𝑤|𝑥) = ∏
𝑒𝑥𝑝(−

𝑗𝑤𝑛𝑥𝑛
1+2𝑗𝑤𝑛

)

(1+2𝑗𝑤𝑛)𝐾/2
𝑁
𝑛=1 (4.81)

𝐸{𝑦} = 𝑥 + 𝐾. 1,

And 𝐸{‖𝑦‖2} = ‖𝑥‖2 + 2(𝐾 + 2)1𝑇𝑥 + 𝑁𝐾(𝐾 + 2) (4.82)

The expectations are obtained from Taylor development of the characteristic functions and

hence:

𝐸{𝑀𝑆𝐸} = 𝐸 {
1

𝑁
‖𝑓(𝑦) − 𝑥‖2} =

1

𝑁
∑ (𝐸{𝑓𝑛(𝑦)

2}𝑁
𝑛=1 − 2𝐸{𝑥𝑛𝑓𝑛(𝑦)} + 𝑥𝑛

2) (4.83)

A method was developed in [16] to estimate the expectation without a know value of x. This

is achieved when f(n) of the estimator f(RN)is continuously differentiable.

𝜕𝑓(𝑦) = [
𝜕

𝜕𝑦𝑛
𝑓𝑛(𝑦)]

1≤𝑛≤𝑁
, 𝜕2𝑓(𝑦) = [

𝜕2

𝜕𝑦𝑛
2 𝑓𝑛(𝑦)]

1≤𝑛≤𝑁
 (4.84)

With this it was shown in [16] that:

𝐸{𝑥𝑇𝑓(𝑦)} = 𝐸{(𝑦 − 𝐾. 1)𝑇𝑓(𝑦)} − 4𝐸 {(𝑦 −
𝐾

2
. 1)

𝑇

𝜕𝑓(𝑦)} + 4𝐸{𝑦𝑇𝜕2𝑓(𝑦)} (4.85)

If Z~Χ2k(x) with f(z) satisfying regularity conditions then

𝑀𝑆𝐸 =
1

𝑁
(‖𝑓(𝑦) − (𝑦 − 𝐾. 1)‖2 − 4𝑇 (𝑦 −

𝐾

2
. 1)) +

8

𝑁
((𝑦 −

𝐾

2
. 1)

𝑇

𝜕𝑓(𝑦) − 𝑦𝑇𝜕2𝑓(𝑦))

 (4.86)

The MSE may be expressed as a sum of three terms

‖f(y) − x‖2 = ‖f(y)‖⏟
term 1

2
− 2xTf(y)⏟

term 2

+ ‖x‖⏟
term 3

2
 (4.87)

These can be replaced by statistical equivalents independent of x

‖𝑥‖2 = 𝐸{‖𝑦‖2} − 2(𝐾 + 2)1𝑇𝐸{𝑦} + 𝑁𝐾(𝐾 + 2) (4.88)

71

4.5.1Cure-optimized denoising via Unnormalised HAAR Wavelet Transform

The Cure optimized denoising with HAAR wavelet transform is described in figure 4.1.

Figure 4.1: HAAR Wavelet Transform

It is possible with the use of un-normalized form to have sub-band dependents on estimation

of MSE. The scaling and wavelet coefficients of the observed image can be given as:

𝑠𝑛
𝑗
= 𝑠2𝑛

𝑗−1
+ 𝑠2𝑛−1

𝑗−1
, 𝑤𝑛

𝑗
= 𝑠2𝑛

𝑗−1
− 𝑠2𝑛−1

𝑗−1
 (4.89)

And those of un-normalized Haar scaling and wavelet coefficients of the non-centrality

parameter as:

𝜍𝑛
𝑗
= 𝜍2𝑛

𝑗−1
+ 𝜍2𝑛−1

𝑗−1
, 𝑤𝑛

𝑗
= 𝜍2𝑛

𝑗−1
− 𝜍2𝑛−1

𝑗−1
 (4.90)

It was shown in[16] that:

𝐶𝑈𝑅𝐸𝑗 =
1

𝑁𝑗
(‖𝜃(𝑤, 𝑠) − 𝑤‖2 − 4𝑇 (𝑠 −

𝐾𝑗

2
. 1)) +

8

𝑁𝑗
((𝑠 −

𝐾𝑗

2
. 1)

𝑇

𝜕1𝜃(𝑤, 𝑠) +

𝑤𝑇𝜕2𝜃(𝑤, 𝑠)) −
8

𝑁𝑗
(𝑤𝑇(𝜕11

2 𝜃(𝑤, 𝑠) + 𝜕22
2 𝜃(𝑤, 𝑠)) + 2𝑠𝑇𝜕12

2 𝜃(𝑤, 𝑠))

 (4.91)

Is unbiased estimate of the risk for sub-band. The estimate therefore may be formulated as:

𝐸{‖𝜃(𝑤, 𝑠) − 𝜔‖2} = 𝐸{‖𝜃(𝑤, 𝑠)‖2} − 2𝐸{𝜔𝑇𝜃(𝑤, 𝑠)}⏟
(I)

+ ‖𝜔‖2⏟
(II)

 (4.92)

𝑤̂𝑗 1 − 𝑧−1

1 + 𝑧−1

↓

2

↓

2

𝜃𝑗(𝑤𝑗 , 𝑠𝑗) 𝑤𝑗

𝑠𝑗 Same scheme

applied recursively
𝜍̂𝑗

↑

2

↑

2

1 − 𝑧

2

1 + 𝑧

2

𝑠𝑗−1 𝜍̂
𝑗−1

72

The two expressions I and II are evaluated giving:

𝐸{𝜔𝑛𝜃𝑛(𝑤, 𝑠)}=
𝐸{𝑥2𝑛𝜃𝑛(𝑤, 𝑠)} − 𝐸{𝑥2𝑛−1𝜃𝑛(𝑤, 𝑠)}= 𝐸 {𝑤𝑛 (𝜃𝑛4(𝜕11

2 𝜃𝑛(𝑤, 𝑠) +

𝜕22
2 𝜃𝑛(𝑤, 𝑠) − 𝜕2𝜃𝑛(𝑤, 𝑠)))} (𝑤, 𝑠) + 4𝐸{(𝑠𝑛 − 𝐾)𝜕1𝜃𝑛(𝑤, 𝑠) − 2𝑠𝑛𝜕12

2 𝜃𝑛(𝑤, 𝑠)} (4.93)

and

𝜔𝑛
2 = 𝐸{𝑤𝑛𝑤𝑛}=𝐸{𝑤𝑛

2 − 4(𝑠𝑛 − 𝐾)} (4.94)

Adopt uniform soft thresholding as:

𝜃𝑛(𝑤, 𝑠; 𝑎) = 𝑠𝑖𝑔𝑛(𝑤𝑛)𝑚𝑎𝑥(|𝑤𝑛|) − 𝑎√𝑠𝑛, 0) (4.95)

With linear expansion of threshold which decrease the artifacts further the resulting

expression is:

𝜃𝑛(𝑤, 𝑠; 𝑎) = ∑ 𝑎𝑘𝑚𝑎𝑥 (1 − 𝜆𝑘
4𝛾𝑛(𝑠)

𝛾𝑛
2(𝑤)

, 0)2
𝑘=1 𝑤𝑛 +∑ 𝑎𝑘+2𝑚𝑎𝑥 (1 − 𝜆𝑘

4𝛾𝑛(𝑠)

𝛾𝑛
2(𝑝)

, 0)2
𝑘=1 𝑤𝑛 +

∑ 𝑎𝑘+4max (1 − 𝜆𝑘
4𝛾𝑛(𝑠)

𝛾𝑛
2(𝑤)

, 0)2
𝑘=1 𝑝𝑛 + ∑ 𝑎𝑘+6𝑚𝑎𝑥 (1 − 𝜆𝑘

4𝛾𝑛(𝑠)

𝛾𝑛
2(𝑝)

, 0) 𝑝𝑛
2
𝑘=1 (4.96)

The optimal parameters is the solution to the equation Ma=c where:

{

𝑐 =

[𝑤𝑇𝜃𝑘(𝑤, 𝑠) − 4 (𝑠 −
𝐾𝑗

2
. 1)

𝑇

𝜕1𝜃𝑘(𝑤, 𝑠) + 8𝑠
𝑇𝜕12

2 𝜃𝑘(𝑤, 𝑠) +

4𝑤𝑇(𝜕11
2 𝜃𝑘(𝑤, 𝑠) + 𝜕22

2 𝜃𝑘(𝑤, 𝑠) − 𝜕2𝜃𝑘(𝑤, 𝑠))] 1≤𝑘≤8

𝑀 = [𝜃𝑘(𝑤, 𝑠)
𝑇𝜃𝑙(𝑤, 𝑠)]1≤𝑘,𝑙≤8

 (4.97)

The bias is removed from the low pass sub-band at a given scale J:

4.5.2 Magnitude Image

In magnitude magnetic resonance imaging, the acquired image is a composition of the

magnitudes║mn ║of N complex measurements mn, where:

{
ℜ{𝑚𝑛} ~ 𝑁(ℜ{𝜇𝑛}, 𝜎

2),

ℑ{𝑚𝑛} ~ 𝒩(ℑ{𝜇𝑛}, 𝜎
2).
 (4.98)

The task is to estimate the original signal from the measurements. Two N dimensional

vectors are defined as:

{
𝑥 = [|𝜇𝑛|

2/𝜎2]1≤𝑛≤𝑁𝜖ℝ+
𝑁 ,

𝑦 = [|𝑚𝑛|
2/𝜎2]1≤𝑛≤𝑁𝜖ℝ+

𝑁 ,
 (4.99)

73

Denoising of the image is carried out as follows:

 Step I: Estimate the noise variance 𝜎2

Step II: Rescale the squared-magnitude MR image y ;

Step III: Use a CURE-optimized algorithm for an estimate

𝑥̂ = f (y) of x;

 Fix some λЄ[0; 1] and obtain the final estimate 𝜇̂of the MR

Image by using

𝜇̂ = 𝜎[𝜆√|𝑓𝑛(𝑦)| + (1 − 𝜆)√𝑚𝑎𝑥(𝑓𝑛(𝑦), 0)]1≤𝑛≤𝑁 (4.100)

A new measure of similarity may be defined as constant invariant PSNR(CIPSNR)

is given by:

() 2

2

10log

ˆ
10





−+



ba

N

 (4.101)

where

(𝑎∗, 𝑏∗) = 𝑎𝑟𝑔𝑎,𝑏
𝑚𝑖𝑛‖(𝑎𝜇 + 𝑏) − 𝜇‖2⟺

{

 𝑎∗ =

𝑁 𝜇𝑇 𝜇 − 1𝑇𝜇1𝑇𝜇̂

𝑁𝜇̂𝑇 𝜇̂ − (1𝑇 𝜇̂)2

𝑏∗ =
1𝑇𝜇 𝜇̂𝑇𝜇̂ − 𝜇𝑇𝜇̂ 1𝑇𝜇̂

𝑁𝜇̂𝑇𝜇̂ − (1𝑇𝜇̂)2

Stand alone filters and other processes used for combinational filter systems include the

bilateral filter, the non-local means filter, total variation filter,4th order filter, linear minimum

minimization square error, Chi-square unbiased risk estimator, Poisson unbiased risk

estimator and Steinbeck unbiased risk estimator wavelet transform based Wiener filter.

74

 CHAPTER FIVE

MATERIALS, METHODS AND EXPERIMENTAL RESULTS

5.1 Combination Denoising Schemes

Various methods have been developed and tested for denoising MRI medical images. These

include bilateral filtering, non-local means, phase error corrections and total variational

methods. With appropriate methods of signal and noise estimation and optimizing parameter

tuning each of these algorithms have improved their performance to near perfection. This is

so when the objective measures of performance take care of some predefined aspects such as

the SNR, contrast and the MSE. However, when more specific measures are developed to

take care of other characteristics that have become more relevant with advancement of

diagnostic methods, it becomes apparent that more innovative methods need to be developed.

In this research, the attention has been on the use of combinational filters and denoising

mechanisms where each stage or filter optimized a given characteristic without necessarily

introducing degradation on other parameters. It also enables finer tuning of parameters that

determine the effectiveness of image processing.

Four different combinational algorithms have been developed and each compared to the best

performing algorithms for stand alone or other reported combinational filters results. These

are the wavelet based Haar denoising method using non-local means filter and bilateral

enhancement, A wavelet based MRI denoising method using LMMSE estimation and

bilateral filter enhancement. Others are a total variational wavelet based structural MRI

denoising with bilateral feature enhancement and a Haar wavelet magnetic resonance image

denoising with optimized chi-square Rician estimation and bilateral filter enhancement.

5.2 Parameter Selection for the Bilateral Filter

The bilateral filter is used in all the combinational filters. The performance depends on how

well its parameters are tuned (optimized) to the noisy image characteristics as well as to the

statistical parameters.

 There are two parameters that determine the behaviour of this filter. These are the parameter

d that characterizes the spatial domain behaviour and r for the intensity domain

behaviour. The optimizations of these parameters as functions of noise are obtained

empirically.

75

Experiments involve adding the zero-mean Rician noise to MRI test images for different

values of d and
r . This is repeated for different noise variances and the mean square error

for each is then noted. On examining the variation of MSE with d and
r . It is found that

an optimal d is relatively insensitive to noise compared to
r [4].

It is also confirmed that d and n are linearly related. The least squares fits to nr  /

shows that d is between 3 and 5 [4].

5.3 Parameter Selection for the non-local means Filter

Similarity of pixels is done with more precision by using regional comparison instead of

pixel comparison. The pixels far away from the pixel to be are also given similar weight to

the neighbouring pixels [6].

For an image I the filtered intensity at a pixel p is computed as a weighted average in search

area.

()
pp

p

p INNWPNLM),())((


=


 (5.1)

Where

() 1.0  qpW


=

=
q

qp NNW


1),(

Ni is a window around pixel I with radius Rsin , where R is radius of search.

The similarity is denoted as:

W(Np, Nq) = 2/),(
)(

1
LNqNp

pZ

d− (5.2)

2/),()(LNqNppZ
qE

ds −=


 (5.3)

76

L is an exponential decay parameter that control parameter d which is a Gaussian weighted

squared Euclidian distance, given by:

−= sin))()((),(RNYNYNNd qpqp
 (5.4)

For p = q there could be overweighting

A computation to determine:

D(Np, Nq) the minimum distance of the other pixels is given by:

 pqNNdMinNNd qpqp ),,((),((5.5)

A way of pre-selection to reduce the computations and to enhance filtering results is

considering only similar pixels.

Select the pixels that do not have the same first local moment (mean value of a 3 x 3 image

patch) which should be less than nk i / no of significant pixels.

k is set to 3 for a single image corresponding to the third quartile of distribution

() ()  












−= −),1/,
1 *),(

)(

Cvnkif
N

NNW iiqipi

qpd

p

qp  (5.6)

with

()
0,1/

,

max),(
21* −










=


= i

C

i

i

qp

h
c

NNd

qpd (5.7)

5.4 Parameter selection in CURE and CURELET

The estimate has been shown to be equal to [16]:

CURE = () 







−−−−)1

2
4),(

1 2 kj
Swsw

Nj

T

77

+ 







+−),(),(,)1.

2

8
2 SWWSW

kj
s

Nj

TT 

()    ;;),(82),(,((
8 2

12

2

22

2

11 MSECUREswSswsww
nJ

TT  =++− at sub b and j (5.8)

Rician distributed noise is signal dependent therefore threshold is required.

‘Uniform’ soft threshold is adapted as:

𝜗𝑛(𝑤, 𝑠; 𝑎) = 𝑆𝑖𝑔𝑛 (𝑤𝑛)𝑚𝑎𝑥(𝑤𝑎𝑙 − 𝑎√𝑆𝑛, 0 (5.9)

a is selected to yield minimum cure. A continuously differentiable approximation of soft

thresholding is used. A linear estimation of threshold is expressed as follows:

()
()
()

()
() n

n

k

kn

n

n
k

k

kn w
pn

s
kaTw

w

s
aasw














−+










−= 

==

0,
4

1max20,
4

1max,,
2

2

1
2

2

1 









(5.10)

()
()
()

()
() n

n

nk

k

kn

n

n
k

k

kn p
p

s
ap

e

s
aasp 










−+










−= 

==

,
0'

4
1max0,

4
1max,,

2

2

1
2

2

1 






 (5.11)

The function z
kn

k

n ku
2)(

2

1
)(

−−

= 


 (5.12)

implements a Gaussian smoothing this local filtering takes care of similarities between

neighbourhood wavelet, scaling and parent coefficients.

The function therefore considers the inter as well as intra-scale dependencies that are presentt

in a Haar wavelet.

There are eight parameters optimized via least squares. Parameters λ = 1 and λ = a can be

fixed in advance without loss in denoising quality.

Considering that all wavelet coefficients in a sub-band are filtered, the approximation

becomes:

78

() ()swaasw k

k

kn ,,,
8

1

 
=

= (5.13)

The optimal set is therefore the solution of Ma = C

Where C =)),(),(1.
2

(4),(2

12 swASsw
kj

ssww K

T

k

T

k

T  +







−−

() 81))],(),(),(4 2

2

22

2

11 −++ kswswswkW k

t
 (5.14)

M=   81,),(),(
1

 kswsw T

K  (5.15)

The bias is removed from loss pass residual sub-band at scale J as 1.2ˆ KSG JJJ −=

5.5 Conventional Measures of Quality

These include Mean Square Error (MSE), Signal to Noise Ratio (SNR) which shows the

value of removing noise and Peak Signal to Noise Ratio (PSNR) used to measure the

difference of two images, are global measures of objectives function that will be used to test

the success and efficiency of the chosen approach.

()
() () 

2

1
210 ,ˆ,

,

1
log10 

=

−








=
N

n

yxfyxf
yxN

MSE (5.16)

()

() () 






















−

=





=

=

N

n

N

n

yxfyxfyx

yxfyx

SNR

1

2

1

2

10

,ˆ),(,

)],([,

log10 (5.17)

For an M ×N image where f (x,y) and 𝑓(x,y) are the original and restored image respectively

while;









=

RMSE
PSNR

n2
log2010 (5.18)

79

Where n is bits for each pixel in the input image and

() () 
MN

yx,fyx,f
=RMSE

 −
2

ˆ
 (5.19)

Where M and N are the dimensions the input image matrix

𝑓(𝑥, 𝑦) is the clean image and 𝑓(𝑥, 𝑦) is the resulting image.

Also subjective tests through visual inspection of the original image and the restored image

have been performed on the test images for comparative purposes.

5.6 Experimental Procedure

Algorithms have been developed to implement adaptive combination wavelet based filters.

Various MR images have been denoised using these algorithms and their output images

analyzed analytically and visually.

5.7 Method I: A hybrid and adaptive MRI denoising method involving a bilateral filter

enhancement and Non-local Means wavelet based method

A bilateral filter is used to diffuse image discontinuities with one image being denoised and

the other with all features preserved by edge enhancement. The bilateral filter uses two sets

of parameters for the two effects. Wavelet decomposition into various sub-bands at different

levels is applied to each of the two images. The Non-local means filtering is carried out at

various sub-bands with appropriate coefficients being computed from original and noisy

image statistics. Finally a bilateral filter is used for further enhancement. The input to the

filter is either magnitude or square noisy images obtained by adding Rician noise at different

levels to a relatively clean image. The parameters w, sd and sr of bilateral filters are varied

over a large number of values as there are no distinct rules that can guide the tuning of these

parameters.

5.8 Proposed Approach for method I

The algorithm for the proposed method is shown in Figure 5.1. The image is taken through

three different bilateral filters each with a different parameter and then through non-local

means filter before wavelength decomposition.

80

Figure 5.1: A Flowchart of the Proposed Method

Input Noise

Image

Bilateral filter

denoising

Non-local

means filter

Wavelet

Transform

Filter wavelet

coefficients

Subband Mixing

Inverse Wavelet Transform

Bilateral Filter

Output Denoised Image

Bilateral filter Bilateral filter

edge enhanced

Non-local

means filter

Filter wavelet

coefficients

Filter wavelet

coefficients

81

5.9 Measures of Quality

To assess the effectiveness of the denoising techniques various measures of quality are used

such as the MSE and PSNR. These are the first choice but they do not give sufficient

information about visual quality. To evaluate image visual quality, additional measures are

used. These measures are defined as follows:

5.9.1 Signal to Noise Ratio

This is a measure of signal purity defined as:

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
∑ 𝐼(𝑥𝑖)

2
𝑥𝑖 𝜖Ω

∑ (𝐼(𝑥𝑖)−𝐼(𝑥𝑖))
2

𝑥𝑖 𝜖Ω
) (5.20)

5.9.2 Mean Square Error

The MSE on gradient is given by

MSE =
1

|Ω|
∑ (∆𝐼(𝑥𝑖) − ∆ 𝐼 (𝑥𝑖))

2
𝑥𝑖 𝜖Ω

 (5.21)

 This metric is based on the “ground truth” image I and the denoised image𝐼.

5.9.3 Correlation Coefficient

Another useful measure used is the corrélation coefficient defined as follows:

𝐶𝑜𝐶 =
∑ (𝐼(𝑥𝑖)−𝐼)̅(𝐼(𝑥𝑖)−𝐼)̅𝑥𝑖𝜖Ω

√∑ (𝐼(𝑥𝑖)−𝐼)̅
2

𝑥𝑖𝜖Ω
∑ (𝐼(𝑥𝑖)−𝐼)̅

2
𝑥𝑖𝜖Ω

 (5.22)

5.9.4Edge Preservation Index

 This is a numerical measure of edge profile consistency which is formulated as follows:

𝐸𝑃𝐼 =
∑ (∇𝐼(𝑥𝑖)−∇𝐼̅̅ ̅)(∇𝐼(𝑥𝑖)−∇𝐼

̅̅ ̅)𝑥𝑖 𝜖Ω

√∑ (∇𝐼(𝑥𝑖)−∇𝐼)̅
2

𝑥𝑖 𝜖Ω
∑ (∇𝐼(𝑥𝑖)−∇𝐼)̅

2
𝑥𝑖 𝜖Ω

 (5.23)

5.9.5 Universal Quality Index

The Universal Quality Index (UQI), is defined as a product of three factors: loss of correlation,

luminance distortion, and contrast distortion as:

𝑈𝑄𝐼 =
𝜎𝐼𝐼̂
𝜎𝐼𝜎𝐼̂

.
2𝐼𝐼̅̅̂

(𝐼)̅2+(𝐼)̅
2 .

2𝜎𝐼𝜎𝐼̂

𝜎1
2+𝜎

1̂
2 (5.24)

82

5.9.6 The Structural Similarity Index Measure (SSIM)

This is a measure of closeness in structure of two images. It is defined as:

𝑆𝑆𝐼𝑀 =
(2𝐼𝐼̅̅̂+𝐶1)(2𝜎𝐼𝐼̂+𝐶2)

((𝐼)̅2+(𝐼̅̂)
2
+𝐶1)(𝜎𝐼

2+𝜎𝐼
2+𝐶2)

 (5.25)

where 𝐼 ̅ and 𝐼 ̅̂ are the means of the noise-free and the denoised image and C1,C2 are

correlations respectively.

These measures of quality require data on the noisy and noiseless image as well as images

gradient for computation of edge preservation index and mean square error on gradient.

Appropriate scaling is required so that truncation of high square values of intensity is

avoided.

5.10 Experimental Results

 The image data used in the experimental investigations have been sourced from three public

repositories namely; BrainWeb [47], Luisier [48] and Clunie [49]. These are the main

libraries for MRI data and have been used by many investigators due to their ease of

availability. These images were acquired using a Siemens Vision scanner echo-planar

imaging system with a 1.5T magnetic field. Other parameters of the scanner being field of

view (FOV) = 240mm x 240mm, relaxation time (TR) =2000ms, echo time (TE) = flip angle

(FA) = 900, for 256x256 image sizes. To compare the effectiveness of the adaptive

combination non-local means filter to the stand alone state of the art denoising methods,

Rician noise at various levels from 2% to 20% is added to noise free magnetic resonance

image. The range is chosen because acquired images noise would be in this range. The

images used include Torso1, Torso2 and Hip which are structural 2D images.

5.10.1 Effect of Noise Addition

The visual effect of noise addition was tested with three structural 2Dimensional MR images

taken from the torso and the hip. This image has been referred to as torso1, torso2 and hip.

These three images are displayed in Figure 5.2 priori to Rician noise addition. These images

have features that are very clear and the edges are also relatively distinct. They also have a

wide intensity range from completely dark to complete white that is in the pixel intensity

range (0 to 256) for an 8-bit system. They also exhibit high and low frequency regions. For

the purpose of algorithm testing, the images have been re-sized from various sizes to

256x256.

83

(a) (b) (c)

Figure 5.2: Noise-free MRI images (a) Torso1, (b) Torso2, (c) Hip

The effect of addition of Rician noise on the visual quality of the images is illustrated in Fig

5.3(a), (b), (c) and (d) in regard to the image torso1. The level of noise in the image was

varied from 2% to 5% to 10% up to 20%. It can be noted that for a low level of noise

degradation, the image edges are still very clear but contrast can been seen to have been

reduced slightly. This could affect the interpretation of small features in the image during

diagnosis; the same applies to 5% though the contrast is worse. At 10% it is difficult to

distinguish the boundary of some tissue and the random noise is clearly visible. At 20% only

the major features are recognizable with minute features buried in the random noise. Similar

observations were made with the torso 2 and hip images.

(a) 2% (b) 5%

(c)10% (d) 20 %

Figure5.3: Noisy images of Torsol1 at given noise levels

84

5.10.2 Denoising using Wavelet Thresholding, Median, Bilateral and Non-local methods

The results of employing the stand alone methods in noise suppression is illustrated in Figure

5.4.This is without taking advantage of the contribution of each filter in the combination.

Using the bilateral alone may lead to over smoothing hence obscuring fine details; using

wavelet thresholding on its own also leads to loss of fine details. Figure 5.4(a) shows extreme

whitening and darkening when thresholding is used. This is because below a given intensity

value all signal is assumed to be noise and truncated and the bias in the magnitude image

takes intensity values above a certain value to maximum. This upper threshold is the

difference between the maximum value and the bias. In Figure 5.4 (b) it can be observed that

the bilateral filter and median filter when used each on its own lead to smoothing of image

details. Figure 5.4 (c) shows that the non-local filter on its own gives a relatively better image

but the contrast and the boundaries clarity needs further improvement.

(a) Thresholding (b) Median

(c)Non-local means (d) Bilateral

Figure 5.4: Denoised Images of Torso1using other Methods

5.10.3 Denoising using the Proposed Method

The proposed method is shown in figure 5.1 where a bilateral filer is used to preserve edges

before the main method; Non-local means with soft wavelet thresholding is applied. Figure

5.5 shows the result of using the proposed algorithm. At 2% and 5% noise addition, the

recovery process is very efficient as can be noted from a visual inspection of the images. For

example, at 2% noise addition the recovered image is seen to be almost the same as the

noiseless image. The observations are also analyzed by employing the mathematical quality

85

measures described in section 3 and given in table 5.1, 5.2, 5.3 and 5.4. For example in Table

5.1 and Table 5.2 where SNR is very high, MSE relatively low, UQI almost 1, SSIM 0.984

and EPI 0.89 which is an improvement from 0.70 of the noisy image. It also shows that edge

preservation is very sensitive even for low noise. The use of bilateral filter in this

combination algorithm has been shown to be the main contributor for edge preservation.

The results obtained when the five measures of quality are used to assess the effectiveness of

image torso1 denoising using the proposed method for relatively low noise levels are shown

in Table 5.1 and Table 5.2

Table 5.1: Quality Measures at 2% noise for combinational Non local means algorithm

Noise Filter type PSNR (dB) RMSE UQI SSIM EPI

Noisy image 38.04 16.23 0.96 0.86 0.70

Median filter 41.23 13.55 0.97 0.89 0.75

Wiener filter 42.38 11.12 0.97 0.97 0.74

Bilateral filter 44.02 8.654 0.99 0.98 0.85

Thresholding 38.54 22.43 0.95 0.93 0.68

NLM filter 43.54 8.54 0.98 0.90 0.82

Combination filter 44.43 6.45 0.99 0.98 0.89

Table 5.2: Quality Measures at 5% noise for combinational Non local means algorithm

Noise Filter type PSNR (dB)

RMSE UQI SSIM EPI

Noisy image 35.02 23.53 0.95 0.84 0.62

Median filter 37.64 18.45 0.98 0.89 0.72

Wiener filter 38.56 12.34. 0.99 0.95 0.71

Bilateral filter 41.23 8.654 0.98 0.95 0.80

Thresholding 36.54 34.12 0.87 0.84 0.71

NLM filter 39.54 14.23 0.99 0.95 0.82

Combination filter 42.38 12.55 0.99 0.95 0.84

86

(a) 2% (b) 5%

(c) 10% (d) 20%

Figure 5.5: Denoised images of Torsol1 using combinational Non local algorithm

The quality measures have also been used to give an assessment of the simulation results for 10% and

20% noise levels.

Table 5.3: Quality Measures at 10% noise for combinational Non local algorithm

Noise Filter type PSNR (dB)

RMSE UQI SSIM EPI

Noisy image 29.5 35.45 0.80 0.74 0.48

Median filter 31.21 25.34 0.87 0.84 0.57

Wiener filter 33.25 19.95 0.97 0.87 0.51

Bilateral filter 34.53 16.78 0.98 0.89 0.60

Thresholding 28.51 45.67 0.95 0.84 0.52

NLM filter 36.45 17.76 0.98 0.89 0.68

Combination filter 37.12 15.23 0.99 0.89 0.69

Table 5.4: Quality Measures at 20% noise for combinational Non local algorithm

Noise Filter type PSNR (dB)

RMSE UQI SSIM EPI

Noisy image 23.45 46.72 0.85 0.65 0.34

Median filter 24.20 30.94 095 0.72 0.37

Wiener filter 26.24 25.43 0.96 0.73 0.44

Bilateral filter 27.54 22.69 0.96 0.80 0.41

Thresholding 23.21 57.31 0.95 0.73 0.38

NLM filter 26.78 23.47 0.96 0.88 0.45

Combination filter 28.69 19.23 0.97 0.88 0.47

87

Tables 5.1 to Tables 5.4 show that the adaptive non-local means filter outperform other

methods like Thresholding and Wiener filtering alone when used with multi-resolution

wavelet soft thresholding. The inclusion of bilateral filter contributes to overall effectiveness

not only on edge preservation but also on SSIM and MSE. In Table 5.4, where the added

noise is 20%, the quality measures show that the efficiency and effectiveness of all the

denoising methods is relatively low. It is therefore necessary that a relatively clear image is

reconstructed during the acquisition process.

5.10.4 Residue noise

 Figure 5.6 shows the noise image which is the difference between noiseless (reference)

image and noisy image. Result show that noise is signal dependent and even after denoising

the slight residual noise has a remote relationship to the image.

 (a) (b)

 Figure 5.6 Residual noise , (a) Before denoising (b) After denoising

5.11 Result analysis and discussion

The denoising results obtained for each of the tested images using the combinational adaptive

NLM filters and those of the standalone filters have been obtained by computer simulation

and given in figure 5.4 and figure 5.5 and in tables 5.1, 5.2, 5.3, and 5.4. From these figures,

it is clear that the proposed combinational algorithm results in a higher-contrast denoising

and better visual clarity as compared to the stand-alone methods. The proposed method also

suppresses image noise to a higher level that the other methods. The PSNR, RMSE, UQI,

SSIM and EPI quality measures have been used to provide a comparison of the noise

reduction levels by the stand alone filters and the proposed method. It has been shown that

using the proposed method there is some significant improvement over the other methods in

image quality while exhibiting higher effective resolution and contrast. The results obtained

88

in a high noise regime indicate poor recovery of the original image. This has been evidenced

by our simulations as given in fig 5.5 (c) and in tables 5.3 and 5.4 where at least 10% noise

addition was used. The solution lies in the improvement of the measurement and calibration

system of MRI equipment. This may be achieved by use of more gradients, use of parallel

acquisition methods, slice time correction and motion correction.

5.12 Method II: Wavelet Hybrid MRI Denoising Scheme using Chi Square unbiased

Risk Estimate with Bilateral Filter Preprocessing and Enhancement

5.12.1 Proposed Approach

A new combinational filter consisting of a bilateral filter and wavelet thresholding has been

developed. The filter algorithm is implemented in MATLAB and the performance of the

model is compared with median filter, Wiener filter, stand alone bilateral filter and wavelet

thresholding. In this method a chi-square unbiased risk estimation is applied to MRI using

square image. The Rician distribution of noise is used to model the image noise for purposes

of not only denoising but also bias removal. The bilateral filter utilizing both spatial and

amplitude distances is used to better preserve image structural and other details in a suitable

manner.

The algorithm is shown in the figure 5.7. The bilateral filter parameters are set before

wavelet transform process is applied. In one case they are set to enhance boundaries and the

other case for block discontinuity identification and correction and texture map

characterization. This involves filtering the input image with[-1,0,1] and [-1,0,]T which

detect both vertical and horizontal boundaries and any discontinuities. To elminate

blockiness the bilateral filter is applied to the entire block and diffuse the boundaries into the

block. One approach to this diffusion is to set the centre four pixels to zero except the four

corner pixels and large values of the discontiuinties are maintained and other values

interpolated lineary. Repeating this for all the blocks, block discontinuity map is Mb(x) is

obtained from which σr is obtained.

𝜎𝑟(𝑥) = max (𝜎𝑟,𝑚𝑖𝑛, 𝑘0𝑀𝑏(𝑥)) (5.26)

Where 𝑘0 is a scaling factor

89

The standard deviation of each block is computed and is used to state the texture and adjust

the 𝜎𝑑 value for preserving the texture information. This enables texture detection and edge

regions.To remove the edge regions the bilateral filter is applied with a large 𝜎𝑑. A 3x3

median filter may be used on 8x8 blocks and resulting image is interpolated and texture map

M(t) detected which is used to compute 𝜎𝑑 as follow:

)
)(1

,max()(2
min,

xMt

k
x dd

+
=  (5.27)

 The wavelet decomposition is carried out to level 4 for the Haar wavelet, which has been

found to be sufficient after 8 trials. Cure Unbiased Risk Estimation (CURE) is the main

pocess of obtaining the estimates of the wavelet coefficients which will lead to reconstitution

of a denoised image after a thresholding level is identified along one part and the edges

enhanced in the second path. Before sub-band mixing the bias is removed by subtracting the

last component of the noisy image for each pixel (intensiy level) using the scaling

coefficient. Sub-band mixing involves taking the filtered subbands and reconstring usin the

two dimensional wavelet trasform. After which the final stage of the bilateral filtering is used

in this case with optimal parametres for artifact removal, increased contrast and structural

details enhancement.

90

Figure 5.7: Algorithm for Chi-square method

Input Noise

Image

Bilateral filter

denoising

Wavelet

Transform

Wavelet

Transform

CURE

estimation

Subband Mixing

Inverse Wavelet Transform

Bilateral Filter

Output Denoised Image

Block

continuity
Texture map

Bilateral filter

CURE

estimation

Filter wavelet

coefficients

Filter wavelet

coefficients

91

The input to the filter is either a magnitude or a square noisy image obtained by adding

Rician noise at different levels to a relative clean image. Some of the images used are shown

in figure 5.8, 5.9 and figure 5.10.

 Torso 1 Torso 2 Hip

Figure 5.8: Relatively clean MRI images

 2% 5% 10% 20%

Figure5.9: Noisy Images of Torso2 at various levels

Figure 5.10: Residual noise

92

The resulting noise images using the new algorithm are shown in figure 5.11 and those from the state

of arts algorithms in figure 5.12.

 5% 10% 20%

Figure 5.11: Denoised images of Torsol2 using combinational Chi-square algorithm

 Wiener Thresholding Bilateral Nowak

Figure 5.12: Denoised images of Torsol2 using other methods

Results of Experiments

The detailed resulting image statistics are shown in table 5.5, 5.6, 5.7 and 5.8.

Table 5.5: Quality measures at 2% for combinational Chi-square algorithm

Noise Filter type SNR PSNR (dB) RMSE

Noisy image 24.56 35.02 23.53

Median filter 36.54 37.642 18.45

Wiener filter 27.92 38.56 12.34.

Bilateral filter 28 .67 41.23 8.654

Thresholding 34.21 36.54 34.12

Nowak filter 26.87 39.54 14.23

Combination filter 29.34 41.65 9.54

93

Table 5.6: Quality measures at 5% for combinational Chi-square algorithm

noise Filter type SNR PSNR(dB) RMSE

Noisy image 24.56 35.02 23.53

Median filter 36.54 37.642 18.45

Wiener filter 27.92 38.56 12.34.

Bilateral filter 28 .67 41.23 8.654

Thresholding 34.21 36.54 34.12

Nowak filter 26.87 39.54 14.23

Combination filter 29.34 41.65 9.54

Table 5.7: Quality measures at 10% noise for combinational Chi-square algorithm

Filter type SNR PSNR(dB) RMSE

Noisy image 21.45 29.5 35.45

Median filter 22.54 31.21 25.34

Wiener filter 24.28 33.25 19.95

Bilateral filter 25.69 34.53 16.78

Thresholding 20.32 28.51 45.67

Nowak filter 26.54 36.45 22.76

Combination filter 26.72 37.12 15.23

Table 5.8: Quality measures at 20% noise for combinational Chi-square algorithm

Filter type SNR PSNR(dB) RMSE

Noisy image 21.45 29.5 35.45

Median filter 22.54 31.21 25.34

Wiener filter 24.28 33.25 19.95

Bilateral filter 25.69 34.53 16.78

Thresholding 20.32 28.51 45.67

Nowak filter 26.54 36.45 22.76

Combination filter 26.72 37.12 15.23

94

5.12.2 Result Analysis and Discussion

From the analysis of the test results, the proposed method performs better in image denoising

than other methods both in terms of visual inspection and use of performance measures. Both

median and non-optimized thresholding performed poorly in comparison with other methods.

Wavelet based Wiener filter performed relatively better and there was marked improvement

when bilateral filter and Nowak filters are used. The combination algorithm developed in this

thesis outperforms all these filters. It is able to recover much more detail from the noisy

image. Analysis of MSE of the test result show that residual noise of the new filter is least at

15.23 compared to 19.95 for Wiener filter and 22.76 for Nowak filter when the initial noise

level was set at 20%.

5.13 Method III: An LMMSE diffusion weighted MRI Image Denoising Wavelet based

Algorithm with bilateral feature Enhancement

5.13.1 Proposed Method

In this method a linear minimum mean square error estimation of the original image is

realized by a random variable related to the observed image. This estimate is further

subjected to wavelet decomposition and thresholding in which case any signal bias is

removed and coefficients under a certain threshold are removed as they contain more noise

than signal components. A bilateral filter process is used to enhance the image edges so as to

preserve details and remove any artifacts. This method consists of a new combinational filter

consisting of bilateral filter and linear minimum mean square estimation. The algorithm for

this method is shown in figure 5.13.

5.13.2 Selection of Parameters in LMMSE

In LMMSE, a closed form value of the estimator ensures that the method is computationally

more efficient than the optimization solutions [3],

The estimator parameter is:

   )ˆ 1 XECCCE XXXOXr −+= − . (5.28)

95

Where

C0x is the cross covariance

Cxx is the covariance matrix

   ))(222212222̂

ijihIJIJIJIJIJij MEMMMCMCAAEA −+= − . (5.29)

Where ijM is the amplitude of the pixel (i,j) in a 2D MR image

 A2 the even order moments in a Rician distribution are non-complex polynomials and

therefore easier to determine. The covariance matrices are scalar values of the pixels.

In Rician distribution, the LMMSE estimator for 2D case is:

         
   224

222242
2̂ 2

ijIJ

IJIJnIJIJIJ
ij

MEME

xMEAEAEAEAE
A

−

−+
=

  ()ijij MEMx −2 (5.30)

The noise variance normally computed from the image data

Two possibilities based on local statistics are used [3]

In case of background, then




22 =n mode kjii ,,,2 (5.31)

If not local variance is used, which is given by:

=2

n mode kjii ,,,2 (5.32)

The size of neighbourhood is parameter that also needs selection which uses the mode of the

distribution hence its effects minimized typical value (5 x 5).

96

Figure 5.13: Algorithm for LMMSE Method

Input Noise

Image

Bilateral Filter

Wavelet

Transform

Wavelet

Transform

LMMSE to

preserve edges

LMMSE to

denoise image

Subband Mixing

Inverse Wavelet Transform

Bilateral Filter

Output Denoised Image

97

5.13.3 Denoising Algorithm

The input to the filter is either magnitude or square noisy images obtained by adding Rician

noise at different levels to a relatively clean image as shown in figure 5.14. Such an image is

shown in figure 5.15.

The LMMSE Estimator is with automatically estimated for size [5 5] neighbourhood both for

filtering and noise estimation and then manually setting the standard deviation of noise. As

the noise is dynamically estimated in each iteration, the filter should reach a steady state as

the estimated noise diminishes. Therefore for appropriate noise estimation, the filter stops

altering when the noise reduced to minimum possible.

To rate the denoising effectiveness of this method in comparison with others, the Structural

Similarity (SSIM) index and the Quality Index based on Local Variance (QILV) measures

are used and the mean square error is also determined. It is necessary that the measures are

only applied on the part of the body being examined. Figure 5.16 shows the residue noise

after denoising.

.

Figure 5.14: Relatively Clean Hip MRI Image

 2% 5% 10% 20%

Figure 5.15: Noisy Hip Images at Various Levels

98

Figure 5.16: Residual Noise for Hip

5.13.4 Experimental Results

The proposed method developed was used to denoise a Torso structural image with Rician

noise at levels 2%, 5%, 10% and 20%. The image was chosen because it exhibits many

characteristics of interest including high frequency features, various features with different

shapes and different edge gradients. The noisy images at these levels are shown in Figure

5.15

The denoising capabilities of the method are compared with Bilateral, Wiener, median

thresholding, and other state of the art methods at the same noise levels. The images obtained

are as shown; in figure 5.17 the denoised images of the combinational LMMSE filter at

various noise levels are given. In figure 5.18 the resulting denoised images using the state of

the art methods are shown.

2% 5% 10% 20%

Figure 5.17: Denoised Hip images using Combinational LMMSE Algorithm

99

 Wiener Thresholding Bilateral Nowak Median

Figure 5.18: Denoised Hip images using other methods

Detailed resulting image statistics are outlined in Tables 5.9, 5.10, 5.11 and 5.12.

Table 5.9: Quality Measures at 2% noise for combinational LMMSE algorithm

NoiseFilter type RMSE QILM SSIM

Noisy image 16.23 0.96 0.86

Median filter 13.55 0.97 0.89

Wiener filter 11.12 0.97 0.97

Bilateral filter 8.654 0.99 0.98

Thresholding 22.43 0.95 0.93

Nowak filter 8.54 0.98 0.90

Combination filter 7.25 0.98 0.96

Table 5.10: Quality Measures at 5% noise for combinational LMMSE algorithm

NoiseFilter type RMSE QILM SSIM

Noisy image 23.53 0.95 0.84

Median filter 18.45 0.98 0.89

Wiener filter 12.34. 0.99 0.95

Bilateral filter 8.654 0.98 0.95

Thresholding 34.12 0.87 0.84

Nowak filter 14.23 0.99 0.95

Combination filter 13.56 0.99 0.95

Table 5.11: Quality measures at 10% noise for combinational LMMSE algorithm

Filter type RMSE QILM SSIM

Noisy image 35.45 0.80 0.74

Median filter 25.34 0.87 0.84

Wiener filter 19.95 0.97 0.87

Bilateral filter 16.78 0.98 0.89

Thresholding 45.67 0.95 0.84

Nowak filter 17.76 0.98 0.89

Combination filter 16.43 0.99 0.89

100

Table 5.12: Quality measures at 20% noise for combinational LMMSE algorithm

Filter type RMSE QILM SSIM

Noisy image 46.72 0.85 0.65

Median filter 30.94 095 0.72

Wiener filter 25.43 0.96 0.73

Bilateral filter 22.69 0.96 0.80

Thresholding 57.31 0.95 0.73

Nowak filter 23.47 0.96 0.88

Combination filter 20.73 0.97 0.88

Result Analysis and discussion

Various measures of image quality used including RMSE, SSIM and QILM reveal better

results in terms of effectiveness of denoising procedures. In LMMSE design it is taken that

only one measurement realization of each pixel is available. So this component of the overall

denoising procedure may require adjustments for multiple acquisitions. For diffusion

weighted images a combinational filter with LMMSE is preferred to other combinational

filters as the LMMSE estimators result in very effective denoising of such images.

5.14 Method IV: A Total Variational Wavelet based Structural MRI Denoising Method

with Bilateral Feature Enhancement

In this method, a total variational minimization based analysis is used in which the objective

is to minimize intensity and phase difference between pixels in the noisy image and the

original image. This has the effect of denoising the image while preserving, and enhancing

the image features. An automatic stopping criterion for the wavelet TV minimization

methods is applied to the wavelet bases. The flowchart of the denoising algorithm is shown

in Figure 5.19. In this method, the unique component is the total variational approximation

procedure which involves tuning various parameters to optimum values depending on the

noisy image characteristics and values of statistical quantities. The process of selecting the

parameters is described in the following section.

A ground truth image of the cranium as shown in figure 5.20 is used to generate the noisy

input images to the algorithm by adding various levels of Rician noise. These are shown in

figure 5.21.

101

Figure 5.19: Algorithm for the Proposed method (Total variational combination

method)

Input Noise

Image

Bilateral Filter

Wavelet

Transform

Wavelet

Transform

Variational

with parameters

preserve edges

Variational

with parameters

to remove noise

Subband Mixing

Inverse Wavelet Transform

Bilateral Filter

Output Denoised Image

102

Figure 5.20: Relatively clean MRI image(cranium)

2% 5% 10% 20%

Figure 5.21: Noisy Cranium Images at various levels

5.14.1 Selection of Parameters in Variation Denoising

For total variation with wavelet  j is the basis for F=L2 () the wavelet coefficients are

chosen and enhanced to achieve desired denoising. For MRI application an automatic

stopping criterion is needed together with multiscale fitting parameters which guide

minimum number of interactions required to achieve acceptable denoising.

Let ()xxz j

Ij

j


=)((5.33)

103

And denote

()xxu j

Ij

j 


=),((5.34)

Total variation function

() ()2
2

2/1,)(jj

Ij

j

R

x dxxuuF  −+= 


 (5.35)

Where 0),,(= jxuu 

),(xux in practice may be replaced by EuEu xx +=
2

 with 0 <E<<1

E is introduced to prevent denominator vanishing in numerical implementations

To denoise F(u) the image need to be minimized

Take U* = u (x,  *) so that

)(min)(* uFUF = (5.36)

In TV all j are set to a single parameter .

To obtain minimum value

For u = u (x, )

()
()

()jjjj

R x

dxx
u

xuuF





−+




=  .

2

 (5.37)

= ()jjjj

xR

x dx
u

xu
 −++












 .

2

 (5.38)

104

Euler –Lagrange equation for the model is

() 0.
2

=−++











 jjjj

xR

x dx
u

xu
 (5.39)

At this point a time parameter is introduced and using gradient flow

Set ()tt j ()(== to solve the time evolution equation.

()
jjjj

xR

x

j
dxx

u

xu

t





−−+












= )(.

2

 (5.40)

jjb =)0(

The minimized fuction is therefore the steady state of this equation.

The coefficient () Ijxu j ;0),( will show how dirty the image is. In a completely clean

image these coefficient will tend to be close to 0, but will be more in a noisy image.

Let () ()


=
Ij

j t
jp

t 
1

 be used to measure the noise in the image at time t

In a relative stopping criteria when)0(/)(utu is the threshold b. value of which ranges from

(0.05 to 0.1) when noise has been reduced by 90%

b may be 0.03 for very noisy images

Threshold 


=
Ij

j

oI
P 

2
 (5.41)

does not affect the automatic stopping criterion.

105

 Figure 5.22: Residual noise for Cranium image

 2% 5% 10% 20%

Figure 5.23: Denoised Cranium images new algorithm(Combinational total variational)

 Wiener Thresholding Bilateral Nowak Median Pizzurica

Figure 5.24: Denoised Cranium images using other methods

106

5.14.2 Experimental Results

The method developed was used to denoise a cranium structural image with Rician noise at

levels 2%, 5%, 10% and 20%. The image was chosen because it exhibits many

characteristics of interest including high frequency content, various features with different

shapes and different edge gradients. The noisy images at these levels are shown in Figure

5.21.

The denoising capabilities of the method are compared with the state of the art methods at the

same noise levels. In figure 5.23 the denoised images of the combinational total variational

filter at various noise levels are given. In figure 5.24 the resulting denoised images using the

state of the art methods are shown.

Detailed statistics of the resulting images obtained using various method are given based on

relevant measures of quality in tables 5.13, 5.14,5.15 and 5.16.

Table 5.13: Quality measures at 2% noise for combinational total variational algorithm

noise Filter type SNR (dB) PSNR (dB) MSE

Noisy image 24.56 35.02 23.53

Median filter 36.54 37.64 18.45

Wiener filter 27.92 38.56 12.34.

Bilateral filter 28 .67 41.23 8.654

Thresholding 34.21 36.54 34.12

Nowak filter 26.87 39.54 14.23

Combination filter 38.25 37.82 10.24

Table 5.14:Quality measures at 5% noise for combinational total variational algorithm

noise Filter type SNR (dB) PSNR (dB) MSE

Noisy image 24.56 35.02 23.53

Median filter 36.54 37.64 18.45

Wiener filter 27.92 38.56 12.34.

Bilateral filter 28 .67 41.23 8.654

Thresholding 34.21 36.54 34.12

Nowak filter 26.87 39.54 14.23

Combination filter 38.12 38.66 11.28

107

Table 5.15: Quality measures at 10% noise for combinational total variational

algorithm

Filter type SNR (dB) PSNR (dB) RMSE

Noisy image 21.45 29.5 35.45

Median filter 22.54 31.21 25.34

Wiener filter 24.28 33.25 19.95

Bilateral filter 25.69 34.53 16.78

Thresholding 20.32 28.51 45.67

Nowak filter 26.54 36.45 22.76

Combination filter 26.86 36.48 14.64

Table 5.16: Quality measures at 20% noise for combinational total variational

algorithm

Filter type SNR (dB) PSNR (dB) RMSE

Noisy image 21.45 29.5 35.45

Median filter 22.54 31.21 25.34

Wiener filter 24.28 33.25 19.95

Bilateral filter 25.69 34.53 16.78

Thresholding 20.32 28.51 45.67

Nowak filter 26.54 36.45 22.76

Combination filter 28.02 35.86 14.28

5.14.3 Result Analysis and Discussion

Measures of performance including PSNR, RMSE, and also visual inspection show that there

is significant improvement that is obtained using stand alone methods such as Gaussian

smoothing, wiener filter, NLM filter, bilateral filter and wavelet thresholding. For example,

the combination of filter improves the PSNR from 29.5 to 35.86 dB.

When the four combination methods are compared for noise levels of five percent and ten

percent it is found that the LMMSE is the best performance followed by combinational non-

local means filter then y total variational denoising and then and least performing is the non-

centric chi-square filter.

108

CHAPTER SIX

CONCLUSION AND RECOMMENDATION FOR FURTHER WORK

6.1 Conclusion

The MRI is one of the most effective medical imaging technologies. It produces an image

that has relatively high resolution and does not have any harmful radiations to the human

being during image acquisition. The Rician distributed noise present in the acquired image

however should be minimized for image analysis, segmentation and other forms of

processing to extract information on the condition and functioning of body tissues.

This thesis has developed four wavelet based MRI denoising methods with bilateral filter

enhancement. In all the four cases multi-resolution thresholding and appropriate sub-band

combination have been used. The thesis has further developed the concept of combinational

image filters where each component is critical in a given aspect of image denoising including

preserving fine features, enhancing boundaries, reducing artifacts, deblurring among others.

The filters used for each component include non-local means filter, LMMSE filter, total

variational filter, Nowak square image filter, Wiener, fourth order and bilateral filter.

These combination filters in general and specific(as explained in chapter 5 for each) have

been shown to increase the effectiveness and efficiency of image denoising in terms of

various measures of quality and visual inspection when compared to the stand alone filters.

6.2 Recommendations

There are many possibilities of extending the work in this thesis. They can categorized as

follows

One approach is to subject other categories of MRI images to the filters. Closely related to

this is to apply the combination filters on colour medical images and the investigation

performance.

Other combination filters can be developed and more advanced signal and noise estimation

methods using approaches based on linear estimation of thresholds for appropriate statistical

distributions of the noise to be removed can be proposed.

109

Another is to concentrate on the MATLAB and ‘C’ language routines realized and

developing application packages where the main task would be to create an application

taking into consideration all the requirements of user friendly medical software.

The instrumentation system for MRI acquisition and initial processing can be assessed and

new methods of improving the acquired image proposed in terms of resolution, noise

freeness and clarity.

Use of Karhunen Louve Transform in combination with the methods used in this thesis

including LMMSE, Total Variational and Chi-square estimation for functional MRI images.

The Anisotropic diffusion method may also be used in place of total variation for functional

MRI image denoising.

110

REFERENCES

1. R. Nowak, “Wavelet-based Rician noise removal for Magnetic Resonance Imaging,”

IEEE Transactions on Image Processing, vol. 8, No. 10, pp. 1408–1419, October 1999.

2. T. Dylan “MRI denoising via phase error estimation”, medical imaging journal proc on

image processing SPIE Vol.5, No. 747, 2005.

3. S. R. Fernandez, M. Niethammer, M. Kabicki, M. E. Shenton, C. F. Weston,

“Restoration of DWI data using a Rician LMMSE Estimator”, IEEE Transactions on

medical imaging, Vol. 27,No. 10,pp. c1-c4, October 2008.

4. J. V. Manj´om, P. Coupé, L. Marti-bonmati, M. Robles, and D. L. Collins, “Adaptive

non-local means denoising of MR images with spatially varying noise levels,” Journal

of Magnetic Resonance Imaging, Vol. 31, pp.192–203, 2010.

5. M. Lysaker, A. Lundervold, and X. C. Tai, “Noise removal using fourth-order partial

differential equation with applications to medical magnetic resonance images in space

and time,” IEEE Transactions on Image Processing, vol. 12, No. 12, pp. 1579–1590,

December 2003.

6. Z. A. Mustafa, Y M. Kadah, “Multiresolution Bilateral Filter for MR Image Denoising

,” Biomedical Engineering Department, Cairo University, Egypt. Pp.176-179 IEEE

2011.

7. R. Sudipta “A new hybrid image denoising method”, International Journal of

Information Technology and Knowledge Management July-December 2010, Vol. 2,pp.

491-497.

8. V Loganayaagi, “An improved Denoising Algorithm Using Wavelet Transform for

Magnetic Resonance Images”, International journal of Communications and

Engineering Vol. 07, No 7, March2012.

9. A. Pizurica, A. M. Wink, E. Vansteenkiste, W. Philips, and J. B. T. M. Roerdink, “A

review of wavelet denoising in MRI and ultrasound brain imaging,” Current Medical

Imaging Reviews, Vol. 2, No. 2, pp. 247–260, May 2006.

10. S. Dolui, A. Kuurstra, C. Iv´an, S. Patarroyo and V. Oleg, Michailovich “A New

Similarity Measure for Non-Local Means Filtering of MRI Images,” Elsevier Journal of

111

Visual communications and image representation. Vol. 24, No. 7, pp. 1040-1054,

October 28 2011.

11. T. Tasdizen “Principal Neighbourhood Dictionaries for Non-local Means Image

Denoising,” IEEE Transactions on Image Processing, Vol. 18, No. 12, pp. 2649-2660,

January 2009.

12. P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, “An optimized

blockwise nonlocal means denoising filter for 3-D magnetic resonance images,” IEEE

Transactions on Medical Imaging, Vol. 27, No. 4, pp. 425–441, March 2008.

13. C. Lakshmi Devasena “Noise Removal in Magnetic Resonance Images using Hybrid

KSL Filtering Technique,” International Journal of Computer Applications (0975 –

8887) Vol. 27, No.8, August 2011.

14. Palaniappan “Denoising of dynamic magnetic resonance images by combined

application of wavelet filtering and Karhunen-Loeve Transform (KLT)”, Journal of

Cardiovascular Magnetic resonance, 2012 14(sup1) W71.

15. Jose V. Manjon “Multi-component MR image denoising”, International Journal of

Biomedical imaging volume 2009, article ID756897.

16. F. Luisier, T. Bhi, P. J. Wolfe. “A Cure for Noisy Magnetic Resonance Images: Chi-

square Unbiased Risk Estimation”, IEEE transactons on image processing, Vol. 21, No.

8, pp. 3454-3466, 2012.

17. F. Luisier “The SURE-LET Approach to Image Denoising” Doctoral thesis January

2010 Ecole Polytechnique Fédérale de Lausanne, Switzerland.

18. J. A.Wells “Arterial Spin Labelling Magnetic Resonance Imaging of the Brain:

Techniques and Development” Ph.D Thesis University College London, United

Kingdom.

19. M. T. G. Sebastián, Doctoral Thesis “Contributions to Brain MRI Processing and

Analysis” September 2009. The University of the Basque Country Donostia - San

Sebastian, Spain.

112

20. J. D. Clayden, Doctoral Thesis “Comparative Analysis of Connection and

Disconnection in the Human Brain Using Diffusion MRI: New Methods and

Applications” 2008 University of Edinburgh, UK.

21. A. Raj “Improvements in magnetic resonance imaging using information redundancy”

Doctoral thesis May 2005 Cornell University, New York, USA .

22. J.Rajan, J. Veraart, J. Audekerke, M. Verhoye, J. Sijbers, Nonlocal maximum

likelihood estimation method for denoising multiple-coil magnetic resonance images.

Magnetic Resonance Imaging, Vol. 30, pp. 1512-1518, 2012.

23. J. Rajan, A. Dekker, J. Sijbers.A new non-local maximum likelihood estimation method

for Rician noise reduction in magnetic resonance images using the Kolmogorov-

Smirnov test. A journal of Signal Process. Vol. 103, pp.16–23. 2014.

24. A., Tristán-Vega, V. García-Pérez, S. Aja-Fernández. “Efficient and robust nonlocal

means denoising of MR data based on salient features matching”. Computer Method

Programmes in Biomedicine, Vol. 105, pp.131–144. 2012.

25. J. Petr “Parallel Magnetic Resonance Imaging Reconstruction”, Doctoral

Thesis’petrj5@cmp.felk.cvut.cz,ctu–cmp–2007–09 Czech Technical university, Prague,

Czechoslovakia. May 2007.

26. F. Bloch, W. W. Hanson, and M. E. Packard. Nuclear induction. Physical review,

69(2):127, 1946.

27. A. Kumar, D. Welti, and R. R. Ernst. “NMR Fourier zeugmatography”. Journal of

MagneticResonance, Vol. 18, pp.69–83, 1975.

28. P. C. Lauterbur. “Image formation by induced local interactions: Examples employing

nuclear magnetic resonance”. Nature (London), Vol. 242, pp.190–191, 1973.

29. M. T. Vlaardingerbroek and J. A. Boer. Magnetic Resonance Imaging: Theory and

Practice. Springer-Verlag, 1996.

30. D. Kwiat and S. Einav. A decoupled coil detector array for fast image acquisition in

magnetic resonance imaging. Medical Physics, Vol. 18, pp. 251–6, 1991.

31. P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O.M.Mueller. The NMR

phased array. Magnetic Resonance in Medicine, Vol. 16, pp.192–225, 1990.

113

32. D. K. Sodickson and C. A. McKenzie. A generalized approach to parallel magnetic

resonance imaging. Medical Physics, Vol. 28, No. 8, pp. 1629–1643, August 2001.

33. P. Kellman and E. R. McVeigh. SENSE coefficient calculation using adaptive

regularization. In Proceedings of ISMRM Workshop on Minimum MR Data

Acquisition Methods, Marco Island, Florida, USA, October 2001. ISMRM.

34. F. A. Breuer, M. Blaimer, R.M. Heidemann, M. F. Mueller, M. A. Griswold, and P. M.

Jakob. Controlled aliasing in parallel imaging results in higher acceleration

(CAIPIRINHA) for multi-slice imaging. Magnetic Resonance in Medicine, Vol. 53,

No.3, pp.684–691,March 2005

35. Harold Phelippeau. Shot Noise Adaptive Bilateral Filter. IEEE Signal Processing, ICSP

2008, 9th International Conference, Beijing, China, pp. 864 – 867,2008

36. M. Zhang and B. K. Gunturk, ”Multiresolution Bilateral Filtering for Image Denoising”,

IEEE Trans Image Process, Vol. 17,pp. 2324–2333,2008.

37. Z.Liao, S. Hu,Z. Yu,D. Sun. Medical Image Blind Denoising Using Context Bilateral

Filter. International Conference of Medical Image Analysis and Clinical Application, ,

Guangzhou, China, pp.12-17,June 2010.

38. C.Tomasi, R. Manduchi. Bilateral Filtering for Gray and Color images. Proceedings of

IEEE international Conference on Computer Vision, Mumbai, India, 1998, pp. 839-846.

39. M.I Elad. On the Origin of the Bilateral Filter and Ways to Improve It. IEEE transaction

on image processing, 2002, Vol. 11, No. pp.1141-1151.

40. P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic

Diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,

no. 7, pp. 629–639, July 1990.

41. L. Zhang, J. Chen, Y. Zhu, J. Luo. Comparisons of Several New Denoising Methods

for Medical Images. IEEE, “Proceeding on Medical Imaging”2009, pp.1-4.

42. S.K. Mohideen, S. A. Perumal, M.M. Sathik. Image De-noising using Discrete Wavelet

transform. IJCSNS International Journal of Computer Science and Network Security,

(IJCSNS). 2008, Vol. 8, No.1, pp.213-216.

114

43. B. Zhang. Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal.

IEEE transaction on image processing, Annual symposium of the Pattern Recognition

Association of South Africa. November 2003, Vol. 17, No. 5, pp. 664-678.

44. J.J. Francis, G. de Jager. “The Bilateral Median Filter” IEEE Transactions on Image

Processing, 2008, pp. 421–432.

45. P. Adtormann, B. Gossens, W. Phillips “Removal of Correlated Rician Noise in

Magnetic Resonance Imaging”, 16th European Signal processing Conference

(EUSIPCO 2008), Lausanne, Switzerland, August 2008, pp.25- 29.

46. A.K. Jain “Fundamentals of digital image processing”, Prentice Hall Engle Wood

Cliffs, New Jersey USA 1989).

47. www.brainweb.bic.min.mcgill.ca/brainweb, June 15 2014.

48. http://bigwww.epfl.ch/luisier/MRIdenoising.TestImages.zip, June 15 2014.

49. www/Mc Cluinie.com, June 15 2014.

50. Y.Q. Zhang, Y. Ding,J.Y. Liu, Z.M. Guo.” Guided image filtering using signal

subspace projection”. IET Image Proc.2013, Vol. 7, pp.270–279.

51. Y.Q. Zhang, J.Y. Liu, M.D. Li, Z.M. Guo,.Joint image denoising using adaptive

principal component analysis and self-similarity. Information Science journal.2014.

Vol. 259, pp.128–141.

52. J. Salmon, R. Willett, E. Arias-Castro, 2012. A two-stage denoising filter: the

preprocessed Yaroslavsky filter. Statistical Signal Processing Workshop (SSP),

Michigan U.S.A, August 2012 IEEE, pp. 464–467.

53. S. Pyatykh, J. Hesser, L. Zheng. Image noise level estimation by principal component

analysis, IEEE Transactions on image Processing. 2013, Vol. 22, pp.687–699.

54. J.V. Manjón, P. Coupé, L. Concha, A. Buades, D.L. Collins, M. Robles, Diffusion

weighted image denoising using overcomplete local PCA. PLoS ONE.

2013;8:e730211518.

55. J.V. Manjón, P. Coupé, A. Buades, D.L. Collins, M. Robles, New methods for MRI

denoising based on sparseness and self-similarity. Medical Image Annual Journal.2012,

Vol. 16, pp. 8–27.

http://www.brainweb.bic.min.mcgill.ca/brainweb
http://bigwww.epfl.ch/luisier/MRIdenoising.TestImages.zip

115

56. M. Maggioni, A. Foi. Nonlocal transform-domain denoising of volumetric data with

groupwise adaptive variance estimation. In: Proc. SPIE Electronic Imaging (EI),

January 2012, San Francisco, California, USA.

57. M. Maggioni, V. Katkovnik, K. Egiazarian, A. Foi.A nonlocal transform-domain filter

for volumetric data denoising and reconstruction. IEEE Trans. Image Process.2013,

Vol. 22, pp.119–133.

58. D.W. Kim, C. Kim, D.H. Kim, D.H. Lim, Rician nonlocal means denoising for MR

images using nonparametric principal component analysis. EURASIP J. Image Video

Process.2011;2011:15.

59. S. Fan Lam, D. Babacan, J.P. Haldar, M.W. Weiner, N. Schuff, Denoising diffusion-

weighted magnitude MR images using rank and edge constraints. Magnetic Resonance

Medical Journal, 2013, Vol. 69, pp.1–13.

60. J. Mohan, V. Krishnaveni, Y.Guo.A survey on the magnetic resonance image denoising

methods. Biomedical. Signal Process and Control Journal. 2014, Vol. 9, pp.56–69.

61. J. Salmon, R.Willett, E. Arias-Castro. A two-stage denoising filter: the preprocessed

Yaroslavsky filter. Statistical Signal Processing Workshop (SSP), 2012 IEEE, pp. 464–

467, Ann Arbor, Michigan USA, August 2012

62. A. Tristán-Vega, V. García-Pérez, S. Aja-Fernández.Efficient and robust nonlocal

means denoising of MR data based on salient features matching. Computer Methods

Program in Biomedicine. Bio.2012, Vol. No.105, pp.131–144.

63. A. Pizuria,A, Philips, W. Lemahieu and M. Acheroy “ A versatile wavelet domain noise

filtration technique for medical imaging” ,IEEE Trans Med Imaging 2003, Vol. 22, No.

3, pp 232-331.

64. Hossein “Wavelet Domain medical image denoising using Bivariate Laplacian mixture

model”, IEEE Transactions on Biomedical Engineering vol 56 No 12 December 2009

65. A.Webb. Introduction to Biomedical Imaging. John Wiley & Sons Inc, January 2003.

66. C. R. Smith and R. C. Lange. Understanding magnetic resonance imaging. CRC Press

LCC, 1998.

116

67. J. P. Hornak. The basics of MRI, http://www.cis.rit.edu/htbooks/mri. 1996-2004 June

15 2014

68. J. Mohan, V. Krishnaveni, Y. Guo. A survey on the magnetic resonance image

denoising methods, Biomedical Signal Processing and Control.2012. Vol. 8, No. 6. 56-

69.

69. J. Mohan, V. Krishnaveni, Y. Guo. MRI denoising using nonlocal neutrosophic set

approach of Wiener filtering. Biomedical Signal Processing and Control. February

2012, Vol. 8, No. 6, pp. 779-791.

70. J. Mohan, Y. Guo, V. Krishnaveni, K. Jeganathan. MRI denoising based on

neutrosophic Wiener filtering. February 2012 IEEE International Conference on

Imaging Systems and Techniques, Manchester,UK

71. J Mohan, V Krishnaveni, Y Guo A new neutrosophic approach of Wiener filtering for

MRI denoising. Measurement Science Review,Vol. 13, No. 4, pp.177-186

72. J. Mohan, V. Krishnaveni, Y. Guo A Neutrosophic approach of MRI denoising Image

Information Processing (ICIIP), International Conference of Image, Nov. 2011, Shimla

India pp.1-6.

73. J. Mohan, APTS Chandra, V. Krishnaveni, Y. Guo.Evaluation of Neutrosophic Set

Approach Filtering Technique for Image Denoising. The International Journal of

Multimedia & Its Applications (IJMA). Vol 4. August 2012.

74. J. Mohan, V. Krishnaveni, Y. Guo. Performance analysis of neutrosophic set approach

of median filtering for MRI denoising. International Journal of Electronics and

Communication Engineering, vol 3 no 2 pp148-163 September 2012.

75. J. Mohan, V. Krishnaveni, Y. Huo.Automated brain tumor segmentation on MR images

based on neutrosophic set approach. 2nd International conference on Electronics and

Communication Systems (ICECS), Cairo, Egypt. September 2015

76. J. Mohan, APTS Chandra, V. Krishnaveni, Y. Guo.Image Denoising Based on

Neutrosophic Wiener Filtering. Proceedings of Second international conference on

Advances in Computing and Information Technology, July 2012 Chennai India vol 1

No 1 861-869.

77. H. Gudbjartsson and S. Patz. “The Rician distribution of noisy MRI data”, Magnetic

Resonance in Medicine, 34(6), pp 910-914,1995.

http://www.cis.rit.edu/htbooks/mri.%201996-2004
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:W7OEmFMy1HYC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:W7OEmFMy1HYC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:Y0pCki6q_DkC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:Y0pCki6q_DkC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:u5HHmVD_uO8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:u5HHmVD_uO8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:9yKSN-GCB0IC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:9yKSN-GCB0IC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:u-x6o8ySG0sC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:2osOgNQ5qMEC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:2osOgNQ5qMEC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:d1gkVwhDpl0C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:d1gkVwhDpl0C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:eQOLeE2rZwMC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:eQOLeE2rZwMC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:UeHWp8X0CEIC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=LbWYeMAAAAAJ&citation_for_view=LbWYeMAAAAAJ:UeHWp8X0CEIC

117

APPENDICES

Appendix 1: Measures of quality

function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

% ==

% SSIM Index with automatic downsampling, Version 1.0

% Copyright(c) 2009 Zhou Wang

% All Rights Reserved.

%

% --

% Permission to use, copy, or modify this software and its documentation

% for educational and research purposes only and without fee is hereby

% granted, provided that this copyright notice and the original authors'

% names appear on all copies and supporting documentation. This program

% shall not be used, rewritten, or adapted as the basis of a commercial

% software or hardware product without first obtaining permission of the

% authors. The authors make no representations about the suitability of

% this software for any purpose. It is provided "as is" without express

% or implied warranty.

%--

%

% This is an implementation of the algorithm for calculating the

% Structural SIMilarity (SSIM) index between two images

%

% Please refer to the following paper and the website with suggested usage

%

% Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image

% quality assessment: From error visibility to structural similarity,"

% IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,

% Apr. 2004.

%

% http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

%

% Note: This program is different from ssim_index.m, where no automatic

% downsampling is performed. (downsampling was done in the above paper

% and was described as suggested usage in the above website.)

%

% Kindly report any suggestions or corrections to zhouwang@ieee.org

%

%--

%

%Input : (1) img1: the first image being compared

% (2) img2: the second image being compared

% (3) K: constants in the SSIM index formula (see the above

% reference). defualt value: K = [0.01 0.03]

% (4) window: local window for statistics (see the above

% reference). default widnow is Gaussian given by

% window = fspecial('gaussian', 11, 1.5);

% (5) L: dynamic range of the images. default: L = 255

%

%Output: (1) mssim: the mean SSIM index value between 2 images.

% If one of the images being compared is regarded as

% perfect quality, then mssim can be considered as the

% quality measure of the other image.

118

% If img1 = img2, then mssim = 1.

% (2) ssim_map: the SSIM index map of the test image. The map

% has a smaller size than the input images. The actual size

% depends on the window size and the downsampling factor.

%

%Basic Usage:

% Given 2 test images img1 and img2, whose dynamic range is 0-255

%

% [mssim, ssim_map] = ssim(img1, img2);

%

%Advanced Usage:

% User defined parameters. For example

%

% K = [0.05 0.05];

% window = ones(8);

% L = 100;

% [mssim, ssim_map] = ssim(img1, img2, K, window, L);

%

%Visualize the results:

%

% mssim %Gives the mssim value

% imshow(max(0, ssim_map).^4) %Shows the SSIM index map

%==

if (nargin < 2 || nargin > 5)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

end

if (size(img1) ~= size(img2))

 mssim = -Inf;

 ssim_map = -Inf;

 return;

end

[M N] = size(img1);

if (nargin == 2)

 if ((M < 11) || (N < 11))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

 window = fspecial('gaussian', 11, 1.5); %

 K(1) = 0.01; % default settings

 K(2) = 0.03; %

 L = 255; %

end

if (nargin == 3)

 if ((M < 11) || (N < 11))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

119

 window = fspecial('gaussian', 11, 1.5);

 L = 255;

 if (length(K) == 2)

 if (K(1) < 0 || K(2) < 0)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

 else

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

end

if (nargin == 4)

 [H W] = size(window);

 if ((H*W) < 4 || (H > M) || (W > N))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

 L = 255;

 if (length(K) == 2)

 if (K(1) < 0 || K(2) < 0)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

 else

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

end

if (nargin == 5)

 [H W] = size(window);

 if ((H*W) < 4 || (H > M) || (W > N))

 mssim = -Inf;

 ssim_map = -Inf;

 return

 end

 if (length(K) == 2)

 if (K(1) < 0 || K(2) < 0)

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

 else

 mssim = -Inf;

 ssim_map = -Inf;

 return;

 end

end

120

img1 = double(img1);

img2 = double(img2);

% automatic downsampling

f = max(1,round(min(M,N)/256));

%downsampling by f

%use a simple low-pass filter

if(f>1)

 lpf = ones(f,f);

 lpf = lpf/sum(lpf(:));

 img1 = imfilter(img1,lpf,'symmetric','same');

 img2 = imfilter(img2,lpf,'symmetric','same');

 img1 = img1(1:f:end,1:f:end);

 img2 = img2(1:f:end,1:f:end);

end

C1 = (K(1)*L)^2;

C2 = (K(2)*L)^2;

window = window/sum(sum(window));

mu1 = filter2(window, img1, 'valid');

mu2 = filter2(window, img2, 'valid');

mu1_sq = mu1.*mu1;

mu2_sq = mu2.*mu2;

mu1_mu2 = mu1.*mu2;

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;

sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;

sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 && C2 > 0)

 ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq +

C1).*(sigma1_sq + sigma2_sq + C2));

else

 numerator1 = 2*mu1_mu2 + C1;

 numerator2 = 2*sigma12 + C2;

 denominator1 = mu1_sq + mu2_sq + C1;

 denominator2 = sigma1_sq + sigma2_sq + C2;

 ssim_map = ones(size(mu1));

 index = (denominator1.*denominator2 > 0);

 ssim_map(index) =

(numerator1(index).*numerator2(index))./(denominator1(index).*denominator2

(index));

 index = (denominator1 ~= 0) & (denominator2 == 0);

 ssim_map(index) = numerator1(index)./denominator1(index);

end

mssim = mean2(ssim_map);

return

function [quality, quality_map] = img_qi(img1, img2, block_size)

%==

%

%Copyright (c) 2001 The University of Texas at Austin

%All Rights Reserved.

%

121

%This program is free software; you can redistribute it and/or modify

%it under the terms of the GNU General Public License as published by

%the Free Software Foundation; either version 2 of the License, or

%(at your option) any later version.

%

%This program is distributed in the hope that it will be useful,

%but WITHOUT ANY WARRANTY; without even the implied warranty of

%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

%GNU General Public License for more details.

%

%The GNU Public License is available in the file LICENSE, or you

%can write to the Free Software Foundation, Inc., 59 Temple Place -

%Suite 330, Boston, MA 02111-1307, USA, or you can find it on the

%World Wide Web at http://www.fsf.org.

%

%Author : Zhou Wang

%Version : 1.0

%

%The authors are with the Laboratory for Image and Video Engineering

%(LIVE), Department of Electrical and Computer Engineering, The

%University of Texas at Austin, Austin, TX.

%

%Kindly report any suggestions or corrections to zwang@ece.utexas.edu

%

%Acknowledgement:

%The author would like to thank Mr. Umesh Rajashekar, the Matlab master

%in our lab, for spending his precious time and giving his kind help

%on writing this program. Without his help, this program would not

%achieve its current efficiency.

%

%==

%

%This is an efficient implementation of the algorithm for calculating

%the universal image quality index proposed by Zhou Wang and Alan C.

%Bovik. Please refer to the paper "A Universal Image Quality Index"

%by Zhou Wang and Alan C. Bovik, published in IEEE Signal Processing

%Letters, 2001. In order to run this function, you must have Matlab's

%Image Processing Toobox.

%

%Input : an original image and a test image of the same size

%Output: (1) an overall quality index of the test image, with a value

% range of [-1, 1].

% (2) a quality map of the test image. The map has a smaller

% size than the input images. The actual size is

% img_size - BLOCK_SIZE + 1.

%

%Usage:

%

%1. Load the original and the test images into two matrices

% (say img1 and img2)

%

%2. Run this function in one of the two ways:

%

% % Choice 1 (suggested):

% [qi qi_map] = img_qi(img1, img2);

%

% % Choice 2:

122

% [qi qi_map] = img_qi(img1, img2, BLOCK_SIZE);

%

% The default BLOCK_SIZE is 8 (Choice 1). Otherwise, you can specify

% it by yourself (Choice 2).

%

%3. See the results:

%

% qi %Gives the over quality index.

% imshow((qi_map+1)/2) %Shows the quality map as an image.

%

%==

if (nargin == 1 | nargin > 3)

 quality = -Inf;

 quality_map = -1*ones(size(img1));

 return;

end

if (size(img1) ~= size(img2))

 quality = -Inf;

 quality_map = -1*ones(size(img1));

 return;

end

if (nargin == 2)

 block_size = 8;

end

N = block_size.^2;

sum2_filter = ones(block_size);

img1_sq = img1.*img1;

img2_sq = img2.*img2;

img12 = img1.*img2;

img1_sum = filter2(sum2_filter, img1, 'valid');

img2_sum = filter2(sum2_filter, img2, 'valid');

img1_sq_sum = filter2(sum2_filter, img1_sq, 'valid');

img2_sq_sum = filter2(sum2_filter, img2_sq, 'valid');

img12_sum = filter2(sum2_filter, img12, 'valid');

img12_sum_mul = img1_sum.*img2_sum;

img12_sq_sum_mul = img1_sum.*img1_sum + img2_sum.*img2_sum;

numerator = 4*(N*img12_sum - img12_sum_mul).*img12_sum_mul;

denominator1 = N*(img1_sq_sum + img2_sq_sum) - img12_sq_sum_mul;

denominator = denominator1.*img12_sq_sum_mul;

quality_map = ones(size(denominator));

index = (denominator1 == 0) & (img12_sq_sum_mul ~= 0);

quality_map(index) = 2*img12_sum_mul(index)./img12_sq_sum_mul(index);

index = (denominator ~= 0);

quality_map(index) = numerator(index)./denominator(index);

quality = mean2(quality_map);

123

Appendix 2: STAND ALONE FILTERS

Rician generation using two orthogonal Gaussian generators

==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% This is a method of generating Rician noise from two orthogal Gaussian

% genertors and also exact image characteristic including pixel

% intensity mean and standard devation for use in setting parameters of

% various parts of the combinational filters developed.

--

A= imread('C:/torso.bmp');
I = rgb2gray(A);
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)

FOURTH ORDER DENOISING
I=L

T=4

% Automatic noise removal using You method
% fourth order PDE
% Method : du/dt = - del^2[c(del^2(u))del^u]
% where u is the noisy input image.
function [frth]=fpdepyou(I,T)
% I = Noisy Image
% T - Threshold , Based on the threshold you will get scale sapce images.

At a particular
% value of T you will gwt the converged image.
[x y z]=size(I);
I=double(I);
dt=0.9; % Time step
I1=I;
I2=I;
t=1;

124

k=0.5;
for t=1:T
 [Ix,Iy]=gradient(I1);
 [Ixx,Iyt]=gradient(Ix);
 [Ixt,Iyy]=gradient(Iy);
 c=1./(1.+sqrt(Ixx.^2+Iyy.^2)+0.0000001);
 [div1,divt1]=gradient(c.*Ixx);
 [divt2,div2]=gradient(c.*Iyy);
 [div11,divt3]=gradient(div1);
 [divt4,div22]=gradient(div2);
 div=div11+div22;
 I2=I1-(dt.*div);
 I1=I2;
end;
frth=uint8(I1); % Converting to 8 bit image

WIENER WITH THRESHOLDING
==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% this is a Wiener filter application in denoising MRI with two dimensions

thresholding

--

I = imread('C:/torso.bmp');
I = rgb2gray(I);
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
%Val1=mean2(ID)
%Val2=std2(ID)
h=4
DenoiseDI = ThreshWave2(L,h,1,0.001,4,3,4)
figure ,imshow(DenoiseDI)
Val1=mean2(DenoiseDI)
Val2=std2(DenoiseDI)
[PD,noise] = wiener2(P,[3 3])
figure ,imshow(PD)
Val1=mean2(PD)
Val2=std2(PD)
DenoiseDP = ThreshWave2(P,H,1,0.001,4,3,4)
figure ,imshow(DenoiseDP)
Val1=mean2(DenoiseDP)
Val2=std2(DenoiseDP)
[JD,noise] = wiener2(J,[3 3])

125

figure ,imshow(JD)
Val1=mean2(JD)
Val2=std2(JD)
DenoiseDJ = ThreshWave2(J,H,1,0.001,4,3,4)
figure ,imshow(DenoiseDJ)
Val1=mean2(DenoiseDJ)
Val2=std2(DenoiseDJ)
[KD,noise] = wiener2(K,[3 3])
figure ,imshow(KD)
Val1=mean2(KD)
Val2=std2(KD)
DenoiseDK = ThreshWave2(K,H,1,0.001,4,3,4)
figure ,imshow(DenoiseDK)
Val1=mean2(DenoiseDK)
Val2=std2(DenoiseDK)
[LD,noise] = wiener2(L,[3 3])
figure ,imshow(LD)
Val1=mean2(LD)
Val2=std2(LD)
DenoiseDL = ThreshWave2(L,H,1,0.001,4,3,4)
figure ,imshow(DenoiseDL)
Val1=mean2(DenoiseDL)
Val2=std2(DenoiseDL)

C LANGUAGE WIENER DETAILS
wienerC(g,varargin)

function [f,noise,localVar] = wienerC(g,varargin)
%WIENERC Perform 2D adaptive noise-removal filtering.
%
% Modified MATLAB Wiener filtering with alternative
% noise estimation techniques (for additive Gaussian noise)
%
%
% 'Moda': Estimation with mode
% 'Med': Estimation with median
% 'Min': Estimation with minimum
% 'Mad': Median absolute deviation
%
% if 'inses' is added, the estimation of the variance is done
% over N-1 points
%
% Default estimation window=[3,3]. If 'big', [Wx Wy] is added
% estimation is done over a different window.
.

[nhood, block, noise, msg,estim,inses] = ParseInputs(varargin{:});

if (~isempty(msg))
 error(msg);
end

classin = class(g);
classChanged = 0;
if ~isa(g, 'double')
 classChanged = 1;

126

 g = im2double(g);
end

% Estimate the local mean of f.
localMean = filter2(ones(nhood), g) / prod(nhood);
% Estimate of the local variance of f.
localVar = filter2(ones(nhood), g.^2) / prod(nhood) - localMean.^2;

if inses
 localVar=(((nhood(1)*nhood(2)))./(nhood(1)*nhood(2))-1).*localVar;
end

% Estimate the noise power if necessary.
if (isempty(noise))
 if estim==2
 noise = moda(localVar,1000);
 %if noise<=1.7
 % noise=0;
 %end
 elseif estim==3
 noise=median(localVar(:));
 elseif estim==4
 noise=min(localVar(:));
 elseif estim==5
 [CA,CH,CV,CD] =dwt2(g,'haar');
 noise=(1.4826.*median(abs(CH(:)-median(CH(:))))).^2;
 else
 noise = mean2(localVar);
 end
noise=max(noise,0.0001);
end

% Compute result
% f = localMean + (max(0, localVar - noise) ./ ...
% max(localVar, noise)) .* (g - localMean);
%
% Computation is split up to minimize use of memory
% for temp arrays.
f = g - localMean;
g = localVar - noise;
g = max(g, 0);
localVar = max(localVar, noise);
f = f ./ localVar;
f = f .* g;
f = f + localMean;

if classChanged,
 f = changeclass(classin, f);
end

%%%---
%%% Subfunction ParseInputs
%%%

function [nhood, block, noise, msg,estim,inses] = ParseInputs(varargin)

127

g = [];
nhood = [3 3];
block = [];
noise = [];
msg = '';
estim=1;
inses=0;
dfsteppos = -1;

for i=1:length(varargin)

 flag =0;
 if i == dfsteppos
 flag = 1;
 end
 if(isstr(varargin{i}))
 if strcmp(varargin{i},'Moda')
 estim=2;
 flag = 1;
 elseif strcmp(varargin{i},'Med')
 estim=3;
 flag = 1;
 elseif strcmp(varargin{i},'Min')
 estim=4;
 flag = 1;
 elseif strcmp(varargin{i},'Mad')
 estim=5;
 flag = 1;
 elseif strcmp(varargin{i},'inses')
 inses=1;
 flag = 1;
 elseif strcmp(varargin{i},'big')
 big=1;
 flag = 1;
 nhood= varargin{i+1};
 dfsteppos = i+1;
 flag = 1;
 end
 else
 nhood = varargin{i};
 flag = 1;

 end
 if flag == 0
 error('Too many parameters !')
 return
 end
end

% checking if input image is a truecolor image-not supported by WIENER2
%if (ndims(g) == 3)
% msg = 'WIENER2 does not support 3D truecolor images as an input.';
% return;

128

%end;

%if (isempty(block))
% block = bestblk(size(g));
%end

function m=moda(u,N)
% MODA Mode of a distribution
%
% m=MODE(u,N) calculates the mode of the set of data "u" using the histogram.
% To avoid outliers, for the calculation are only taken into account those
% values in [mean-2sigma, mean+2sigma];
%
% INPUT:
%
% - u (set of data)
% - N: Number of points for the histogram. If N=0 then 5000 points are
% considered
%
%
u=double(u);
if N==0
 N=5000;
end
M1=mean(u(:));
V1=std(u(:));
C2=u((u(:)>=(M1-2*V1)) & (u(:)<=(M1+2*V1))) ;
%C2=u;
[h,x]=hist(C2,N);
[M,M2]=max(h);
m=x(M2);
%

 FAST BILATERAL FILTER
 I = imread('C:/torso.bmp');
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)
sigmaSxy=val7,
sigmaSz=val7,

129

sigmaR=val7
samS=4,
samR=4,

Ibf=bilateral3(I, sigmaSxy,sigmaSz,sigmaR,samS,samR,verbose)
% sigmaSxy and sigmaSz - spatial smoothing parameters (standard
% deviation of the Gaussian kernel)
% sigmaR - the smoothing parameter in the "range" dimension
% samS - the amount of downsampling performed by the fast
% approximation in the spatial dimensions (x,y). In z direction, it is
% derived from spatial sigmas and samS.
% samR - the amount of downsampling in the "range" dimension.
% verbose - optional, for debugging

%Notes:
% - the internal function, BILATERAL3I, allows you to vary all parameters,
% if you want to.
% - spatial sigmas are assumed to be in the units of "pixel".
% - range sigma is assumed to be in the units of range values whose
% minimum is 0 and maximum is 255 (i.e. 8-bit).

function Ibf=bilateral3(I, sigmaSxy,sigmaSz,sigmaR,samS,samR,verbose)
if ~exist('verbose','var'), verbose=0; end
I=range1(double(I),255);
%simplification #1
%smoothing and subsampling in x and y spatial directions is equal
sigmaSx=sigmaSxy;
sigmaSy=sigmaSxy;
samSx=samS;
samSy=samS;

%simplification #2
% obtain samSz by assuming samSz/samS=sigmaSz/sigmaSxy
c=sigmaSz/sigmaSxy;
samSz=ceil(c*samS);

%optional simpilification #3:
% obtain samR by assuming samS/sigmaS = samR/sigmaR
if ~exist('samR','var')
 samR = sigmaR*samS/sigmaSxy;
end

%re-scale sigmaR, samR to normalize them ([0, 255] --> [0, 1])
% samR has to be such that 1/samR is an integer
%e.g. if supplied samR is 12 (divide range [0,255] into bins of size 12):
%
%normalize: samR=12/256=0.0469;
%1/samR=21.3333 ~=22 bins (round up).
%the new samR = 1/22 = 0.0455;
%later on, when samR is used, 1/samR will yield the number of range bins,

22.
sigmaR = sigmaR/256;
samR = 1/ceil(256/samR);

%for debugging purposes:

130

if verbose
 displ('sigmaSx',sigmaSx);
 displ('sigmaSy',sigmaSy);
 displ('sigmaSz',sigmaSz);
 displ('sigmaR',sigmaR);
 displ('samSx',samSx);
 displ('samSy',samSy);
 displ('samSz',samSz);
 displ('samR',samR);
 disp(['{' n2s(size(I,1)) ',' n2s(size(I,2)) ',' n2s(size(I,3)) ...
 ',256} --> {' n2s(ceil(size(I,1)/samSx)) ','

n2s(ceil(size(I,2)/samSy)) ...
 ',' n2s(ceil(size(I,3)/samSz)) ',' n2s(1/samR) '}']);
end

%run the filter
Ibf=bilateral3i(I,sigmaSx,sigmaSy,sigmaSz,sigmaR,samSx,samSy,samSz,samR);

function

Ibf=bilateral3i(I,sigmaSx,sigmaSy,sigmaSz,sigmaR,samSx,samSy,samSz,samR)
I=double(I);
[N M P]=size(I);

%find the number of bins in each spatial dimension
Xbins=ceil(N/samSx);
Ybins=ceil(M/samSy);
Zbins=ceil(P/samSz);

Np=Xbins*samSx;
Mp=Ybins*samSy;
Pp=Zbins*samSz;

Xrem=ceil((Np-N)/2);
Yrem=ceil((Mp-M)/2);
Zrem = ceil((Pp-P)/2);

%zero-pad the image as symmetrically as possible to
%attain a size divisible by the subsample rate
Ip = padarray(I,[Xrem Yrem Zrem],0);
I = Ip(1:Np,1:Mp,1:Pp);

clear Ip

%%%%%
% 1. subsampling in spatial domain
%
% quantize intensity values
% a) map the image I onto a range [0,1].
% b) map the image I onto a range [0,1/sR].
% c) round the values to obtain an image Iq in which each pixel value
% Iq(x0) represents the range bin to which x0 belongs.
Iq=round((I-min(I(:)))/range(I(:))/samR);

%what bin does each pixel belong to, based on its x,y,z coordinate?
[X Y Z]=ndgrid(1:Np,1:Mp,1:Pp);

131

binX=floor((X-1)/samSx)+1;
binY=floor((Y-1)/samSy)+1;
binZ=floor((Z-1)/samSz)+1;
clear X Y Z
%find which range bin each location in the x-y-z-range space belongs to
binW=repmat(reshape(1:samSx*samSy*samSz,[samSx samSy samSz]),[Xbins,Ybins

Zbins]);

D=zeros(Xbins,Ybins,Zbins,samSx*samSy*samSz);
W=D;
D(sub2ind(size(D),binX(:),binY(:),binZ(:),binW(:)))=I(:);
W(sub2ind(size(D),binX(:),binY(:),binZ(:),binW(:)))=Iq(:);

clear Iq binX binY binZ binW

%- W represents which 4D bin each data point belongs to
%- D represents what the actual value of each data point is*
%both contain values oriented according to coordinate system:
%(subsampled-x,subsampled-y,subsampled-z,location-in-bin)
%- the ordering of values along the 4th dimension no longer matters after
%this point.

%* (D is simply the input image I suitably rearranged. numel(D)=numel(I).)
%if I was a 2D image of size 12 by 12, and bin size in X and Y was 3

pixels
%each,constructing D would amount to breaking the image into 3-by-3

chunks,
%then taking the 9 pixels in each chunk and arranging them in a vector,
%placing these vectors next to each other to create a 4-by-4-by-9
%rearrangement of I.

GData =zeros(Xbins,Ybins,Zbins,1/samR);
GWeights =zeros(Xbins,Ybins,Zbins,1/samR);

%for each range bin:
for k=1:(1/samR)
 %find the indices of pixels belonging to this range bin
 tmp = (W==k);
 %make a copy of D but zero out all values except those belonging to
 %k-th bin
 tmp2 = zeros(size(D));
 tmp2(tmp)=D(tmp);
 %GWeights will contain the number of pixels in k-th range bin for each
 %x-y-z bin
 GWeights(:,:,:,k) = sum(tmp,4);
 %And GData will contain the sum of their values
 GData(:,:,:,k) = sum(tmp2,4);
end

%2. Smoothing with gaussians
hSx=gkernel(sigmaSx/samSx);
hSy=gkernel(sigmaSy/samSy);
hSz=gkernel(sigmaSz/samSz);
hR=gkernel(sigmaR/samR);

132

GWeights=convnsep({hSx,hSy,hSz,hR},GWeights,'same');
GData=convnsep({hSx,hSy,hSz,hR},GData,'same');

%calculate coordinates in the non-subsampled X-Y-Z-Range plain
%to which filtered bin values belong
[n m p k]=size(GData);
Xloc=repmat(linspace(1,n,Np)',[1 Mp Pp]);
Yloc=repmat(linspace(1,m,Mp), [Np 1 Pp]);
Zloc=repmat(shiftdim(linspace(1,p,Pp),-1), [Np Mp 1]);
Rloc=(I-min(I(:)))/range(I(:))*(1/samR-1)+1;

%compute the pixel values that will go to locations computed above
Indx=GWeights~=0;
Data=zeros(size(GData));
Data(Indx)=GData(Indx)./GWeights(Indx);

clear GData GWeights Indx

%At this point, values at evenly spaced locations Xloc,Yloc,Zloc are
%known (stored in Data), but for the rest of the image they are unknown.
%Interpolation will find them.

Ibf=interpn(Data,Xloc,Yloc,Zloc,Rloc);

clear Data Xloc Yloc Zloc Rloc

%remove zero-padding
Ibf=Ibf(Xrem+1:N+Xrem,Yrem+1:M+Yrem,Zrem+1:P+Zrem);

%Auxiliary functions:

%displaying variable value
function displ(name,val)
disp([name '=' n2s(val) ';']);

%shorthand for num2str
function S = n2s(N,f)
if N~=fix(N)
 if ~exist('f','var'),S=num2str(N,'%4.2f');
 elseif f==0
 S=num2str(N);
 else
 S=num2str(N,f);
 end
else
 S=num2str(N);
end

%make a gaussian kernel
function [h,L] = gkernel(sd)
L=ceil(3.5*sd);
h=exp(-0.5*((-L:L)'/sd).^2);
h=h/sum(h);

133

function Y = range1(x,rg)
if ~exist('rg','var'),rg=1;end
Y=1/range(x(:))*(x-min(x(:)))*rg;

function y = range(x)
y=max(x)-min(x);

PHASE DENOISE
A= imread('C:/torso.bmp');
w=5
sigma_d=2
sigma_r=2
[X,Y] = meshgrid(-w:w,-w:w);
G = 2.71^(-(X.^2+Y.^2)/(2*sigma_d^2));

I = rgb2gray(A);
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)

function [x, mask0] = mri_phase_denoise(yi, varargin)
%|function [x, mask0] = mri_phase_denoise(yi, [options]) <- recommended

usage
%|function [x] = mri_phase_denoise(yi, l2b, niter, chat, wthresh) <- old

way
%|
%| in
%| yi [(N)] noisy complex image: y = mag .* exp(1i * x)
%| can be any size: 1D, 2D, 3D, ...
%|
%| options
%| l2b log_2(beta), regularization parameter
%| order regularization order (default: 1, for historical
%| reasons, but 2 is probably preferable)
%| niter # of iterations
%| chat 1 to show pictures
%| wthresh fraction of magnitude maximum to include in fitting
%| init initial image for iterations

134

%| isave which iterations to save. (default: last)
%| 'pl' 1|0 1 for new PL method (recommend), 0 for old way (default)
%| out
%| x [(N)] cleaned up phase estimate
%| mask0 [(N)] logical: 1 for high-magnitude pixels

if nargin < 1, help(mfilename), error(mfilename), end
if ischar(yi)
 [x mask0] = mri_phase_denoise_test(yi, varargin{:});
 if ~nargout, clear x mask0, end
return
end

% defaults
arg.chat = 0;
arg.l2b = -5;
arg.order = 1;
arg.niter = 150;
arg.isave = [];
arg.wthresh = 0.4;
arg.fmax = 0.05; % fraction of max threshold for trimmed median for wi_ml
arg.init = [];
arg.clim = []; % limits for phase display
arg.pl = false; % PL
arg.wi_ml = false; % use wi based on ML instead of threshold

% backword compatible for old argument list: l2b, niter, chat, wthresh
if length(varargin) && isnumeric(varargin{1})
 arg.l2b = varargin{1};
 if length(varargin) >= 2, arg.niter = varargin{2}; end
 if length(varargin) >= 3, arg.chat = varargin{3}; end
 if length(varargin) >= 4, arg.wthresh = varargin{4}; end
else
 arg = vararg_pair(arg, varargin);
end
if isempty(arg.isave), arg.isave = arg.niter; end

mag = abs(yi);
yi = angle(yi);
if arg.chat
 im clf, im pl 2 3
 im(1, mag, 'magnitude'), cbar
 im(2, yi, 'raw phase map', arg.clim), cbar
end

dim_yi = size(yi);

%
% specify weights: this needs more work to be automatic!
%
mask0 = mag > arg.wthresh * max(mag(:)); % ignore pixels with "too small"

magnitude
if arg.chat
 im(3, mask0, 'weights'), cbar
 im(4, mask0 .* yi, 'masked phase', arg.clim), cbar
end

135

%mean(mag(:))
%median(mag(:))
%clf, hist(mag(:), 100), pause
%median(mag(mag(:) > 0.05 * max(mag(:))))

if arg.wi_ml
 wi = mri_phase_wi_ml(mag(:), arg.fmax);
else
 wi = mask0(:);
end
W = diag_sp(wi);

%
% initial phase image
%
if isempty(arg.init)
 arg.init = yi;
 arg.init(mask0 == 0) = mean(yi(mask0 == 0));
end
if arg.chat
 im(5, arg.init, 'Initial phase', arg.clim), cbar
end

G = diag_sp(ones(prod(dim_yi),1));

%
% regularizer
%
if arg.order ~= 2, warn('order=2 recommended'), end
mask1 = true(size(yi)); % estimate / extrapolate to *all* pixels
R = Reg1(mask1, 'beta', 2^arg.l2b, 'order', arg.order);
%R = Robject(mask1, 'beta', 2^arg.l2b, 'order', arg.order);
% 'type_denom', 'matlab', ...

if 0 % old way
 [C wjk] = C2sparse('tight', mask1, 8); % todo: cut?
 C = spdiag(sqrt(wjk), 'nowarn') * C; % caution: missing prior to 2005-

11-28
 C = sqrt(2^arg.l2b) * C;
end

% report expected blur (at image center)
if 1
 qpwls_psf(G, R, 1, mask1, W);
end

%
% run qpwls algorithm for regularized fitting
%
xinit = arg.init(mask1);
if arg.pl
 med = median(mag(mag(:) > 0.05 * max(mag(:))));
 data = {yi(:), (mag(:)/med).^2}; handle = @phase_dercurv; % PL
%profile on % todo!

136

 x = pl_pcg_qs_ls(xinit, G, data, handle, R, ...
 'niter', arg.niter, 'isave', arg.isave);
%profile report
 x = embed(x, mask1);
else
 warn 'recommend using "pl" option. use wls for historical only'
% data = {yi(:), wi(:)}; handle = @wls_dercurv; % qpwls
 x = qpwls_pcg1(xinit, G, W, yi(:), R.C, ...
 'niter', arg.niter, 'isave', arg.isave);
 x = embed(x, mask1);
end

if 0 % old way
 x = qpwls_pcg(x, G, W, yi(:), 0, R.C, 1, arg.niter);
 x = reshape(x, [dim_yi arg.niter]);
 x = x(:,:,end);
end

if arg.chat
 if ndims(yi) == 2
 im(6, x(:,:,end), 'QPWLS-CG phase', arg.clim), cbar
 else % 3d
 im(6, x(:,:,:,end), 'QPWLS-CG phase', arg.clim), cbar
 end
end

%
% mri_phase_wi_ml()
% wi based on ML estimation
% trick: normalize by median of non-background so that beta is "universal"
%
function wi = mri_phase_wi_ml(mag, fmax)
med = median(mag(mag(:) > fmax * max(mag(:))));
wi = (mag(:) / med).^2;

%
% phase_dercurv()
% wi * (1 - cos(yi - li))
%
function [deriv, curv] = phase_dercurv(data, li, varargin)
yi = data{1};
wi = data{2};
deriv = wi .* sin(li - yi);
curv = wi;

%
% built-in test/example
%
function [xq, mask0] = mri_phase_denoise_test(type, varargin)

% read data
f.dir = path_find_dir('mri');

137

f.dir = [f.dir '/phase-data/'];
f.dat = [f.dir 'phfit.mat'];
if ~exist(f.dat, 'file')
 fail('edit the path in %s!', mfilename)
end
yi = mat_read(f.dat);
clim = [-0.5 1.5];

%if nargout
% order = 1;
%else
% order = 2;
%end
[xq mask0] = mri_phase_denoise(yi, ...
 'clim', clim, 'init', [], 'chat', 1, varargin{:});
% 'init', 5*randn(size(yi)));
% 'init', 5*ones(size(yi)));
xq = xq(:,:,end);
if im
 title 'QPWLS-CG phase (simple wi)'
end

cpu etic
xpl = mri_phase_denoise(yi, 'pl', 1, varargin{:});
cpu etoc 'PL time'
im(4, xpl, 'PL-CG phase', clim), cbar

cpu etic
xml_qpwls = mri_phase_denoise(yi, 'wi_ml', 1, varargin{:});
cpu etoc 'PWLS time'
im(5, xml_qpwls, 'QPWLS-CG (ML wj)', clim), cbar

max_percent_diff(xpl, xml_qpwls)
%max_percent_diff(xpl, xq)
nrms(xml_qpwls, xpl)
nrms(xq, xpl)
%im(4, xpl-xq), cbar

%savefig fig_mr_phase_pl

FAST LMMSE filter

Im=L
Ws=[7,7]
function I_est=MRI_lmmse(Im,Ws,varargin)

%MRI_LMMSE Linear minimum Mean Square error Estimation of MRI data
%
% Filter assumes a Rician distribution with a Rayleigh Background
% Noise estimation is automatically performed using the background.
%
% Usage
%
% I_est=MRI_lmmse(Im,[7,7],[Noise method]);
%

138

%
% DEFAULT:
%
% I_est=MRI_lmmse(Im,[7,7]);
% Noise estimationmethod: mode2N
%
% INPUTS:
% - Im: input image
% - Ws: Size [M,N] of the square window used for local estimation
% Odd number recomended
%
% Noise Estimation Method:
% y= MRI_lmmse(...,'sigma',sigma) Standard deviation of noise given
% - sigma: Standar deviation of noise
% y= MRI_lmmse(...,'bckN2',threshold) Estimate the noise from the
% background of the image based on order 2 moment
% - threshold: Threshold value for the mask
% y= MRI_lmmse(...,'bckNm',threshold) Estimate the noise from the
% background of the image based on the mean
% - threshold: Threshold value for the mask
% y= MRI_lmmse(...,'momentN') Estimate the noise using the methods of
% moments
%
% The following methods may use a background mask
%
% y= MRI_lmmse(...,'mask',threshold) A background mask is used.
% - threshold: Threshold value for the mask
% y= MRI_lmmse(...,'histoN') Estimate the noise using the method
% based on the mode of the histogram [Sijbers06]
% y= MRI_lmmse(...,'mode2N') Estimate the noise using the mode of the
% local order 2 moment [Aja06]
% y= MRI_lmmse(...,'modeMN') Estimate the noise using the mode of the
% local mean [Aja06]
% y= MRI_lmmse(...,'modeVN') Estimate the noise using the mode of the
% local variance [Aja06]
% y= MRI_lmmse(...,'modeVN_NI') Estimate the noise using the mode of the
% local mean [Aja06]

[mask,thresM,noise,sigma] = parse_inputs(varargin{:});

%Noise Estimation---
%LOCAL STATISTICS
%Order 2 moment
En=filter2(ones(Ws), Im.^2) / (prod(Ws));
%Mean
Mn=filter2(ones(Ws), Im) / (prod(Ws));
%Variance
Vn=(prod(Ws)/(prod(Ws)-1)).*(En-Mn.^2);

if noise==0
%Sigma given
 sigma2=sigma.^2;
elseif noise==1
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));

139

 sigma2=0.5.*(sum((Im(mask)).^2))./sum(mask(:));
 sigma=sqrt(sigma2);
elseif noise==2
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma=sqrt(2/pi).*(sum(Im(mask)))./sum(mask(:));
 sigma2=sigma^2;
elseif noise==3
 M2=mean(Im(:).^2);
 M4=mean(Im(:).^4);
 sigma2=0.5.*(M2-sqrt(sqrt(abs(2*M2^2-M4))));
 sigma=sqrt(sigma2);
elseif noise==4
 if mask==0
 I2=round(Im);
 Tp=max(I2(:));
 Tpm=min(I2(:));
 [h,x]=hist(I2(:),Tp);
 sigma=x(argmax(h));
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 Tp=max(I2(mask));
 [h,x]=hist(I2(mask),Tp);
 sigma=x(argmax(h));
 end
 sigma2=sigma^2;
elseif noise==5
 if mask==0
 sigma2=(prod(Ws)/(prod(Ws)-1)).*(moda(En,1000)./2);
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma2=(prod(Ws)/(prod(Ws)-1)).*(moda(En(mask),1000)./2);
 end
 sigma=sqrt(sigma2);
elseif noise==6
 if mask==0
 sigma=sqrt(2/pi).*moda(Mn,1000);
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma=sqrt(2/pi).*moda(Mn(mask),1000);
 end
 sigma2=sigma^2;
elseif noise==7
 if mask==0
 sigma2=((2/(4-pi)).*moda(Vn,1000));
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma2=(2/(4-pi)).*moda(Vn(mask),1000);
 end
 sigma=sqrt(sigma2);
elseif noise==8
 if mask==0
 sigma2=((prod(Ws)-1)/(prod(Ws)-3)).*moda(Vn,1000);
 else
 mask =im2bw(double(imfill(Im>thresM,'holes')));
 sigma2=((prod(Ws)-1)/(prod(Ws)-3)).*moda(Vn,1000);
 end

140

 sigma=sqrt(sigma2);
end

%End Noise estimation---

%FILTERING---

Qua=filter2(ones(Ws),Im.^4)./prod(Ws);
%Squ=filter2(ones(Ws),Im.^2)./prod(Ws);
Squ=En;
%Squ=Squ.*(Squ>2.*sigma2)+(Squ<=2.*sigma2).*2.*sigma2;
%Qua=Qua.*(Qua>8.*sigma2^2)+(Qua<=8.*sigma2^2).*8.*sigma2^2;

K1=1+(4.*sigma2^2-4.*sigma2.*Squ)./(Qua-Squ.^2);
K1=max(K1,0);
I_est=sqrt(Squ-2.*sigma2+K1.*(Im.^2-Squ));
%I_est= sqrt(Im.^2-2.*sigma2+0.5.*(1-K1).*(Squ-Ac.^2));
I_est=abs(I_est);

%--
function [mask,thresM,noise,sigma] = parse_inputs(varargin)
dfsteppos = -1;
mask=0;
thresM=0;
noise=5;
sigma=0;

for i = 1 : length(varargin)
 flag = 0;
 if i == dfsteppos
 flag = 1;
 end
 if strcmp(varargin{i},'mask')
 mask=1;
 thresM = varargin{i+1};
 flag = 1;
 dfsteppos = i+1;
 elseif strcmp(varargin{i},'sigma')
 noise=0;
 sigma = varargin{i+1};
 flag = 1;
 dfsteppos = i+1;
 elseif strcmp(varargin{i},'bckN2')
 noise=1;
 thresM = varargin{i+1};
 flag = 1;
 dfsteppos = i+1;
 elseif strcmp(varargin{i},'bckNm')
 noise=2;
 thresM = varargin{i+1};
 flag = 1;

141

 dfsteppos = i+1;
 elseif strcmp(varargin{i},'momentN')
 noise=3;
 flag = 1;
 elseif strcmp(varargin{i},'histoN')
 noise=4;
 flag = 1;
 elseif strcmp(varargin{i},'mode2N')
 noise=5;
 flag = 1;
 elseif strcmp(varargin{i},'modeMN')
 noise=6;
 flag = 1;
 elseif strcmp(varargin{i},'modeVN')
 noise=7;
 flag = 1;
 elseif strcmp(varargin{i},'modeVN_NI')
 noise=8;
 flag = 1;
 end
 if flag == 0
 error('Too many parameters !')
 return
 end
end

%--
function m=moda(u,N)
% MODA Mode of a distribution
%
% m=MODE(u,N) calculates the mode of the set of data "u" using the histogram.
% To avoid outliers, for the calculation are only taken into account those
% values in [mean-2sigma, mean+2sigma];
%
% INPUT:
%
% - u (set of data)
% - N: Number of points for the histogram. If N=0 then 5000 points are
% considered
%
u=double(u);
if N==0
 N=5000;
end
M1=mean(u(:));
V1=std(u(:));
C2=u((u(:)>=(M1-2*V1)) & (u(:)<=(M1+2*V1))) ;
%C2=u;
[h,x]=hist(C2,N);
[M,M2]=max(h);
m=x(M2);
%

142

NOWAK2
==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% This program implement Nowak2 filter denoising and applies both soft and

hard denoising

--

h=4

Type=0

option=[0 3.6 0 1 0 0]T

%option = [0 3.6 0 1 0 0]

function [xd,xn,option] = denoise(L,h,type,option)

if(nargin < 2)
 error('You need to provide at least 2 inputs: x and h');
end;
if(nargin < 3),
 type = 0;
 option = [];
elseif(nargin < 4)
 option = [];
end;
if(isempty(type)),
 type = 0;
end;
if(type == 0),
 default_opt = [0 3.0 0 0 0 0];
elseif(type == 1),
 default_opt = [0 3.6 0 1 0 0];
else,
 error(['Unknown denoising method',10,...
 'If it is any good we need to have a serious talk :-)']);
end;
option = setopt(option,default_opt);
[mx,nx] = size(x);
dim = min(mx,nx);
if(dim == 1),
 n = max(mx,nx);
else,
 n = dim;
end;
if(option(5) == 0),
 L = floor(log2(n));
else
 L = option(5);
end;
if(type == 0), % Denoising by DWT
 xd = mdwt(x,h,L);
 if (option(6) == 0),
 tmp = xd(floor(mx/2)+1:mx,floor(nx/2)+1:nx);
 if(option(3) == 0),
 thld = option(2)*median(abs(tmp(:)))/.67;
 elseif(option(3) == 1),

143

 thld = option(2)*std(tmp(:));
 else
 error('Unknown threshold estimator, Use either MAD or STD');
 end;
 else,
 thld = option(6);
 end;
 if(dim == 1)
 ix = 1:n/(2^L);
 ykeep = xd(ix);
 else
 ix = 1:mx/(2^L);
 jx = 1:nx/(2^L);
 ykeep = xd(ix,jx);
 end;
 if(option(4) == 0),
 xd = SoftTh(xd,thld);
 elseif(option(4) == 1),
 xd = HardTh(xd,thld);
 else,
 error('Unknown threshold rule. Use either Soft (0) or Hard (1)');
 end;
 if (option(1) == 0),
 if(dim == 1),
 xd(ix) = ykeep;
 else,
 xd(ix,jx) = ykeep;
 end;
 end;
 xd = midwt(xd,h,L);
elseif(type == 1), % Denoising by UDWT
 [xl,xh] = mrdwt(x,h,L);
 if(dim == 1),
 c_offset = 1;
 else,
 c_offset = 2*nx + 1;
 end;
 if (option(6) == 0),
 tmp = xh(:,c_offset:c_offset+nx-1);
 if(option(3) == 0),
 thld = option(2)*median(abs(tmp(:)))/.67;
 elseif(option(3) == 1),
 thld = option(2)*std(tmp(:));
 else
 error('Unknown threshold estimator, Use either MAD or STD');
 end;
 else,
 thld = option(6);
 end;
 if(option(4) == 0),
 xh = SoftTh(xh,thld);
 if(option(1) == 1),
 xl = SoftTh(xl,thld);
 end;
 elseif(option(4) == 1),
 xh = HardTh(xh,thld);
 if(option(1) == 1),

144

 xl = HardTh(xl,thld);
 end;
 else,
 error('Unknown threshold rule. Use either Soft (0) or Hard (1)');
 end;
 xd = mirdwt(xl,xh,h,L);
else, % Denoising by unknown method
 error(['Unknown denoising method',10,...
 'If it is any good we need to have a serious talk :-)']);
end;
option(6) = thld;
option(7) = type;
xn = x - xd;

Dynamic non-local means (DNLM)

function fimg = dnlm(img, options)

% FIMG = DNLM(IMG, OPTIONS)
%
% Filters a 4D image using dynamic non-local means
%
%INPUT
% img is a 4D image
% options is a structure containing:
% options.k is a vector, holding the radius of the comparison window for each dimension
% if a single value is used an isotropic window will be used
% options.sig is the estimated noise standard deviation. If not given it
% will be automatically estimated using the method from "Noise Reduction for Magnetic
Resonance Images via
% Adaptive Multiscale Products Thresholding", Paul Bao, Lei Zhang, 2003.
% options.beta is the denoising factor. If not given, it will be set to be 1
% note that h^2 = 2 * beta * sig^2 * n_of_neighbours (according to the similarity window size)
% options.dstsig is the std, in pixels, to use for distance weighting (default is max(k)/2)
% options.win is a vector , holding the size of search radius in each dimension
% if a single value is used an isotropic search area will be used
% options.ancor is a scalar, 1 for classic NL-Means, 2 (default) for DNLM
% ancor=0 will use DNLM without noise thresholding (i.e. will denoise even differences
smaller than sig)
%
%OUTPUT
% A denoised image
%
size_x = size(img,1);
size_y = size(img,2);
size_z = size(img,3);
size_w = size(img,4);

fimg = zeros(size_x, size_y, size_z, size_w);

if length(options.k) == 1
 k = [options.k options.k options.k options.k];
else
 k = options.k;
end

145

if isfield(options, 'dstsig')
 dst_sig2 = options.dstsig * options.dstsig;
else
 dst_sig2 = max(k)*max(k)/4;
end

if isfield(options, 'ancor')
 ancor = options.ancor; % 0=Old DNLM, 1=ENLM, 2=New DNLM
else
 ancor = 2; % new DNLM
end

if isfield(options, 'win')
 if length(options.win) == 1
 win = [options.win options.win options.win options.win];
 else
 win = options.win;
 end
else
 win = [0 0 0 size(img,4)];
end

if isfield(options, 'sig')
 sig = options.sig;
else
 est_noise = 0;
 est_count = 0;
 for w=1:size_w
 for z=1:size_z
 [~, ~, est_MAV] = estimate_noise_dwt(img(:,:,z,w));
 est_noise = est_noise + est_MAV;
 est_count = est_count + 1;
 end
 end
 sig = est_noise / est_count;
end

if isfield(options, 'beta')
 sig2 = 2 * options.beta * sig * sig * (prod(2*k+1)-1); % = 2 * beta * noise^2 * n_of_neighbours
else
 sig2 = 2 * sig * sig * (prod(2*k+1)-1); % = 2 * noise^2 * n_of_neighbours
end

% Zero padding
size_px = size_x + 2 * k(1);
size_py = size_y + 2 * k(2);
size_pz = size_z + 2 * k(3);
size_pw = size_w + 2 * k(4);
pimg = zeros(size_px, size_py, size_pz, size_pw);
pimg((k(1)+1):(k(1)+size_x),(k(2)+1):(k(2)+size_y),(k(3)+1):(k(3)+size_z),(k(4)+1):(k(4)+size_w))=img;

% Building a distance Gaussian filter
dist_flt = zeros(k(1)*2+1, k(2)*2+1, k(3)*2+1, k(4)*2+1);
for wx=1:(k(1)*2+1)
 for wy=1:(k(2)*2+1)
 for wz=1:(k(3)*2+1)

146

 for ww=1:(k(4)*2+1)
 dst = norm([wx-k(1)-1 wy-k(2)-1 wz-k(3)-1 ww-k(4)-1]);
 dist_flt(wx,wy,wz,ww)=exp(-dst*dst/dst_sig2);
 end
 end
 end
end
dist_flt(k(1)+1,k(2)+1,k(3)+1,k(4)+1)=dist_flt(k(1),k(2)+1,k(3)+1,k(4)+1); % Reduce central weight to
avoid over-weighting
dist_flt = dist_flt / sum(dist_flt(:));
%dist_flt = dist_flt / prod(2*k+1); % Normalise by number of pixels

% pixel external loops
for w=(k(4)+1):(k(4)+size_w)
 for z=(k(3)+1):(k(3)+size_z)
 for y=(k(2)+1):(k(2)+size_y)
 for x=(k(1)+1):(k(1)+size_x)
 pix_win = pimg((x-k(1)):(x+k(1)), (y-k(2)):(y+k(2)), (z-k(3)):(z+k(3)), (w-k(4)):(w+k(4)));
 mean_pix_win = mean(pix_win(:));
 win_len = length(pix_win(:));
 Zi = 0;
 Wval_sum = 0;

 % internal search loops
 for ww=max(w-win(4),k(4)+1):min(w+win(4),k(4)+size_w)
 for zz=max(z-win(3),k(3)+1):min(z+win(3),k(3)+size_z)
 for yy=max(y-win(2),k(2)+1):min(y+win(2),k(2)+size_y)
 for xx=max(x-win(1),k(1)+1):min(x+win(1),k(1)+size_x)
 comp_win = pimg((xx-k(1)):(xx+k(1)), (yy-k(2)):(yy+k(2)), (zz-k(3)):(zz+k(3)), (ww-
k(4)):(ww+k(4)));
 mean_comp_win = mean(comp_win(:));
 if (mean_comp_win > 0)
 if ww ~= w && ancor ~= 1
 %if ww ~= w && ancor ~= 1 && 2*mean_pix_win/sig >= 3 &&
2*mean_comp_win/sig >= 3
 diff_win = comp_win-pix_win;
 diff_mean = sum(abs(diff_win(:)))/win_len;
 if diff_mean > sig || ancor == 0 % old DNLM
 comp_win_factor = mean_pix_win / mean_comp_win; % original factor
 comp_win = comp_win * comp_win_factor;
 else
 comp_win_factor = 1;
 end
 else
 comp_win_factor = 1;
 end

 diff_win = comp_win-pix_win;
 diff_nrm2 = sum(dist_flt(:).*diff_win(:).*diff_win(:)); % norm2 convolved with a
Gaussian
 nb_Wij = exp(-diff_nrm2/sig2);

 Zi = Zi + nb_Wij;
 Wval_sum = Wval_sum + (nb_Wij*pimg(xx,yy,zz,ww)*comp_win_factor);
 end
 end % closing internal search loops

147

 end % closing internal search loops
 end % closing internal search loops
 end % closing internal search loops

 if (Zi > 0)
 fimg(x-k(1),y-k(2),z-k(3),w-k(4)) = Wval_sum / Zi; % normalising
 else
 fimg(x-k(1),y-k(2),z-k(3),w-k(4)) = 0; % normalising
 end

 end % closing pixel external loops
 end % closing pixel external loops
 end % closing pixel external loops
end
CoherenceFilter(u,Options)

ANISOTROPIC FILTER
function u = CoherenceFilter(u,Options)
% This function COHERENCEFILTER will perform Anisotropic Diffusion of a
% 2D gray/color image or 3D image volume, Which will reduce the noise in
% an image while preserving the region edges, and will smooth along
% the image edges removing gaps due to noise.
%
% Don't forget to compile the c-code by executing compile_c_files.m
%
% Iout = CoherenceFilter(Iin, Options)
%
% inputs,
% Iin : 2D gray/color image or 3D image volume. Use double datatype in

2D
% and single data type in 3D. Range of image data must
% be approximately [0 1]
% Options : Struct with filtering options
%
% outputs,
% Iout : The anisotropic diffusion filtered image
%
% Options,
% Options.Scheme : The numerical diffusion scheme used
% 'R', Rotation Invariant, Standard Discretization
% (implicit) 5x5 kernel (Default)
% 'O', Optimized Derivative Kernels
% 'I', Implicit Discretization (only works in 2D)
% 'S', Standard Discretization
% 'N', Non-negativity Discretization
% Options.T : The total diffusion time (default 5)
% Options.dt : Diffusion time stepsize, in case of scheme H,R or I
% defaults to 1, in case of scheme S or N defaults to
% 0.15.
% Options.sigma : Sigma of gaussian smoothing before calculation of

the
% image Hessian, default 1.
% Options.rho : Rho gives the sigma of the Gaussian smoothing of the
% Hessian, default 1.
% Options.verbose : Show information about the filtering, values :
% 'none', 'iter' (default) , 'full'

148

% Options.eigenmode : There are many different equations to make an

diffusion tensor,
% this value (only 3D) selects one.
% 0 (default) : Weickerts equation, line like kernel
% 1 : Weickerts equation, plane like kernel
% 2 : Edge enhancing diffusion (EED)
% 3 : Coherence-enhancing diffusion (CED)
% 4 : Hybrid Diffusion With Continuous Switch (HDCS)
%
% Constants which determine the amplitude of the diffusion smoothing in
% Weickert equation
% Options.C : Default 1e-10
% Options.m : Default 1
% Options.alpha : Default 0.001
% Constants which are needed with CED, EED and HDCS eigenmode
% Options.lambda_e : Default 0.02, planar structure contrast
% Options.lambda_c : Default 0.02, tube like structure contrast
% Options.lambda_h : Default 0.5 , treshold between structure and noise
%
%
% The basis of the method used is the one introduced by Weickert:
% 1, Calculate Hessian from every pixel of the gaussian smoothed input

image
% 2, Gaussian Smooth the Hessian, and calculate its eigenvectors and

values
% (Image edges give large eigenvalues, and the eigenvectors

corresponding
% to those large eigenvalues describe the direction of the edge)
% 3, The eigenvectors are used as diffusion tensor directions. The
% amplitude of the diffusion in those 3 directions is determined
% by equations below.
% 4, An Finite Difference scheme is used to do the diffusion
% 5, Back to step 1, till a certain diffusion time is reached.
%
% Weickert equation 2D:
% lambda1 = alpha + (1 - alpha)*exp(-C/(mu1-mu2).^(2*m));
% lambda2 = alpha;
%
% 0 : 3D, Weickerts equation, plane line like kernel
% lambda1 = alpha + (1 - alpha)*exp(-C/(mu1-mu3).^(2*m));
% lambda2 = alpha;
% lambda3 = alpha;
% (with mu1 the largest eigenvalue and mu3 the smallest)
% 1 : 3D, Weickerts equation, plane line like kernel
% lambda1 = alpha + (1 - alpha)*exp(-C/(mu1-mu3).^(2*m));
% lambda2 = alpha + (1 - alpha)*exp(-C/(mu2-mu3).^(2*m));
% lambda3 = alpha;
% (with mu1 the largest eigenvalue and mu3 the smallest)
% 2 : 3D, Edge Enhancing diffusion
% lambda3e = 1;
% lambda2e = 1;
% lambda1e = 1 - exp(-3.31488 / (Gradient_Magnitude_Squared /

lambda_e^2)^4);
% 3 : 3D, Coherence Enhancing diffusion
% lambda1c = alpha + (1 - alpha)*exp(-

ln(2)*lambda_c^2/(mu2/(alpha+mu3))^4));
% lambda2c = alpha;

149

% lambda3c = alpha;
% 4 : Hybrid Diffusion With Continuous Switch
% Xi : = (mu1 / (alpha+mu2)) - (mu2 / (alpha+mu3))
% epsilon = exp (mu2*(lambda_h^2(Xi-abs(Xi)-2*mu3))/ (2 * lambda_h^4)

)
% lambda1 = (1 -epsilon) * lambda1c + epsilon *lambda1e;
% lambda2 = (1 -epsilon) * lambda2c + epsilon *lambda2e;
% lambda3 = (1 -epsilon) * lambda3c + epsilon *lambda3e;
%
% Notes:
% - The standard and non-negative discretization only allow small time
% steps before they become unstable. The Implicit discretization
% was introduced to allow larger diffusion time steps.
% Previous schemes were not rotational invariant, under certain angles
% edges blur away. Thus Weickert introduced a rotational invariant

scheme.
% His scheme sufferes from checkerboard artifacts, due to the central
% differences used. This code contains our own improved version of his
% scheme in which the data is upsampled before calculating the image
% derivatives for the diffusion flux, to prevent those checkerboard

artifacts.
%
% - If the time step is choosing to large the scheme becomes unstable,

this
% can be seen by setting verbose to 'full'. The image variance has to
% decrease every itteration if the scheme is stable.
%
% Literature used
% - Weickert : "A Scheme for Coherence-Enhancing Diffusion Filtering
% with Optimized Rotation Invariance"
% - Mendrik et al, "Noise Reduction in Computed Tomography Scans Using
% 3-D Anisotropic Hybrid Diffusion With Continuous
% Switch", October 2009
% - Weickert : "Anisotropic Diffusion in Image Processing", Thesis 1996
% - Laura Fritz : "Diffusion-Based Applications for Interactive Medical
% Image Segmentation"
% - Siham Tabik, et al. : "Multiprocessing of Anisotropic Nonlinear
% Diffusion for filtering 3D image"
%
% example 2d,
% I = im2double(imread('images/sync_noise.png'));
% JS = CoherenceFilter(I,struct('T',15,'rho',10,'Scheme','S'));
% JN = CoherenceFilter(I,struct('T',15,'rho',10,'Scheme','N'));
% JR = CoherenceFilter(I,struct('T',15,'rho',10,'Scheme','R'));
% JI = CoherenceFilter(I,struct('T',15,'rho',10,'Scheme','I'));
% JO = CoherenceFilter(I,struct('T',15,'rho',10,'Scheme','O'));
% figure,
% subplot(2,3,1), imshow(I), title('Before Filtering');
% subplot(2,3,2), imshow(JI), title('Standard Scheme');
% subplot(2,3,3), imshow(JN), title('Non Negative Scheme');
% subplot(2,3,4), imshow(JI), title('Implicit Scheme');
% subplot(2,3,5), imshow(JR), title('Rotation Invariant Scheme');
% subplot(2,3,6), imshow(JO), title('Optimized Scheme');
%
% example 2d, color HDCS 2D not in literature
% I = im2double(imread('images/lena.jpg'));
% I = I+(rand(size(I))-0.5)*0.3;

150

% JO =

CoherenceFilter(I,struct('T',1,'dt',0.1,'rho',4,'Scheme','O','eigenmode',0

));
% JO_EED =

CoherenceFilter(I,struct('T',1,'dt',0.1,'rho',4,'Scheme','O','eigenmode',2

));
% JO_HDCS =

CoherenceFilter(I,struct('T',1,'dt',0.1,'rho',4,'Scheme','O','eigenmode',4

));
% JS_HDCS =

CoherenceFilter(I,struct('T',1,'dt',0.1,'rho',4,'Scheme','S','eigenmode',4

));
% JR_HDCS =

CoherenceFilter(I,struct('T',1,'dt',0.1,'rho',4,'Scheme','R','eigenmode',4

));
%
% figure,
% subplot(2,3,1), imshow(I), title('Before Filtering');
% subplot(2,3,2), imshow(JO), title('Optimized Scheme');
% subplot(2,3,3), imshow(JO_EED), title('Edge Enhancing Optimized

Scheme');
% subplot(2,3,4), imshow(JO_HDCS), title('HDCS Optimized Scheme');
% subplot(2,3,5), imshow(JS_HDCS), title('HDCS Standard Scheme');
% subplot(2,3,6), imshow(JR_HDCS), title('Rotation invariant Scheme');
%
% example 3d,
% % First compile the c-code by executing compile_c_files.m
% load('images/sphere');
% showcs3(V);
% JR = CoherenceFilter(V,struct('T',50,'dt',2,'Scheme','R'));
% showcs3(JR);
%
% example 3d, Mendrik
% load('images/sphere');
% showcs3(V);
% JS =

CoherenceFilter(V,struct('T',5,'dt',0.15,'Scheme','S','eigenmode',4));
% JO =

CoherenceFilter(V,struct('T',5,'dt',0.50,'Scheme','O','eigenmode',4));
% showcs3(JS);
% showcs3(JO);
%

% add all needed function paths
try
 functionname='CoherenceFilter.m';
 functiondir=which(functionname);
 functiondir=functiondir(1:end-length(functionname));
 addpath([functiondir '/functions2D'])
 addpath([functiondir '/functions3D'])
 addpath([functiondir '/functions'])
catch me
 disp(me.message);
end

% Default parameters

151

defaultoptions=struct('T',2,'dt',[],'sigma', 1, 'rho', 1, 'TensorType', 1,

'eigenmode',0,'C', 1e-10,

'm',1,'alpha',0.001,'lambda_e',0.02,'lambda_c',0.02,'lambda_h',0.5,'RealDe

rivatives',false,'Scheme','R','verbose','iter');

if(~exist('Options','var')),
 Options=defaultoptions;
else
 tags = fieldnames(defaultoptions);
 for i=1:length(tags)
 if(~isfield(Options,tags{i})),

Options.(tags{i})=defaultoptions.(tags{i}); end
 end
 if(length(tags)~=length(fieldnames(Options))),
 warning('CoherenceFilter:unknownoption','unknown options found');
 end
end

if(isempty(Options.dt))
 switch lower(Options.Scheme)
 case 'r', Options.dt=0.15;
 case 'o', Options.dt=0.15;
 case 'i', Options.dt=0.15;
 case 's', Options.dt=0.15;
 case 'n', Options.dt=0.15;
 otherwise
 error('CoherenceFilter:unknownoption','unknown scheme');
 end
end

% Initialization
dt_max = Options.dt; t = 0;

% In case of 3D use single precision to save memory
if(size(u,3)<4), u=double(u); else u=single(u); end

% Process time
process_time=tic;

% Show information
switch lower(Options.verbose(1))
case 'i'
 disp('Diffusion time Sec. Elapsed');
case 'f'
 disp('Diffusion time Sec. Elapsed Image mean Image variance');
end

% Anisotropic diffusion main loop
while (t < (Options.T-0.001))
 % Update time, adjust last time step to exactly finish at the wanted
 % diffusion time
 Options.dt = min(dt_max,Options.T-t); t = t + Options.dt;
 tn=toc(process_time);

152

 switch lower(Options.verbose(1))
 case 'n'
 case 'i'
 s=sprintf(' %5.0f %5.0f ',t,round(tn)); disp(s);
 case 'f'
 s=sprintf(' %5.0f %5.0f %13.6g %13.6g

',t,round(tn), mean(u(:)), var(u(:))); disp(s);

 end

 if(size(u,3)<4) % Check if 2D or 3D
 % Do a diffusion step

if(strcmpi(Options.Scheme,'R')&&(Options.eigenmode==0)&&(exist('CoherenceF

ilterStep2D')==3))
 u=CoherenceFilterStep2D(u,Options);
 else
 u=Anisotropic_step2D(u,Options);
 end
 else
 % Do a diffusion step
 if(strcmpi(Options.Scheme,'R'))
 u=CoherenceFilterStep3D(u,Options);
 else
 u=Anisotropic_step3D(u,Options);
 end
 end
end

function u=Anisotropic_step2D(u,Options)
% Perform tensor-driven diffusion filtering update

% Gaussian smooth the image, for better gradients
usigma=imgaussian(u,Options.sigma,4*Options.sigma);

% Calculate the gradients
switch lower(Options.Scheme)
 case {'r','o','i'}
 ux=derivatives(usigma,'x'); uy=derivatives(usigma,'y');
 case {'s','n'}
 [uy,ux]=gradient(usigma);
 otherwise
 error('CoherenceFilter:unknownoption','unknown scheme');
end

% Compute the 2D structure tensors J of the image
[Jxx, Jxy, Jyy] = StructureTensor2D(ux,uy,Options.rho);

% Compute the eigenvectors and values of the strucure tensors, v1 and v2,

mu1 and mu2
[mu1,mu2,v1x,v1y,v2x,v2y]=EigenVectors2D(Jxx,Jxy,Jyy);

% Gradient magnitude squared

153

gradA=ux.^2+uy.^2;

% Construct the edge preserving diffusion tensors D = [Dxx,Dxy;Dxy,Dyy]
[Dxx,Dxy,Dyy]=ConstructDiffusionTensor2D(mu1,mu2,v1x,v1y,v2x,v2y,gradA,Opt

ions);

% Do the image diffusion
switch lower(Options.Scheme)
 case 'o'
 u=diffusion_scheme_2D_novel(u,Dxx,Dxy,Dyy,Options.dt);
 %u=diffusion_scheme_2D_high_rotation(u,Dxx,Dxy,Dyy,Options.dt,b);
 case 'r'
 u=diffusion_scheme_2D_rotation_invariant(u,Dxx,Dxy,Dyy,Options.dt);
 case 'i'
 u=diffusion_scheme_2D_implicit(u,Dxx,Dxy,Dyy,Options.dt);
 case 's'
 u=diffusion_scheme_2D_standard(u,Dxx,Dxy,Dyy,Options.dt);
 case 'n'
 u=diffusion_scheme_2D_non_negativity(u,Dxx,Dxy,Dyy,Options.dt);
 otherwise
 error('CoherenceFilter:unknownoption','unknown scheme');
end

function u=Anisotropic_step3D(u,Options)
% Perform tensor-driven diffusion filtering update

% Gaussian smooth the image, for better gradients
usigma=imgaussian(u,Options.sigma,4*Options.sigma);

% Calculate the gradients
ux=derivatives(usigma,'x');
uy=derivatives(usigma,'y');
uz=derivatives(usigma,'z');

% Compute the 3D structure tensors J of the image
[Jxx, Jxy, Jxz, Jyy, Jyz, Jzz] = StructureTensor3D(ux,uy,uz, Options.rho);

% Gradient magnitude squared
gradA=ux.^2+uy.^2+uz.^2;

% Free memory
clear ux; clear uy; clear uz;

% Compute the eigenvectors and eigenvalues of the hessian and directly
% use the equation of Weickert to convert them to diffusion tensors
[Dxx,Dxy,Dxz,Dyy,Dyz,Dzz]=StructureTensor2DiffusionTensor3D(Jxx,Jxy,Jxz,Jy

y,Jyz,Jzz,gradA,Options);

% Free memory
clear J*;

% Do the image diffusion
switch lower(Options.Scheme)
 case 'o'
 u=diffusion_scheme_3D_novel(u,Dxx,Dxy,Dxz,Dyy,Dyz,Dzz,Options.dt);

154

%u=diffusion_scheme_3D_high_rotation(u,Dxx,Dxy,Dxz,Dyy,Dyz,Dzz,Options.dt)

;
 case 'r'

u=diffusion_scheme_3D_rotation_invariant(u,Dxx,Dxy,Dxz,Dyy,Dyz,Dzz,Options

.dt);
 case 'i'

u=diffusion_scheme_3D_implicit(u,Dxx,Dxy,Dxz,Dyy,Dyz,Dzz,Options.dt);
 case 's'

u=diffusion_scheme_3D_standard(u,Dxx,Dxy,Dxz,Dyy,Dyz,Dzz,Options.dt);
 case 'n'

u=diffusion_scheme_3D_non_negativity(u,Dxx,Dxy,Dxz,Dyy,Dyz,Dzz,Options.dt)

;
 otherwise
 error('CoherenceFilter:unknownoption','unknown scheme');
end

155

Appendix 3: CHI SQUARE COMBINATION
==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% This program implements method two developed i.e wavelet hybrid MRI

%denoising scheme using chi square and unbiased risk estimate with

% bilateral filtering

--

 I= imread('C:/torso.bmp');

w=5
sigma_d=2
sigma_r=2
[X,Y] = meshgrid(-w:w,-w:w);
G = 2.71^(-(X.^2+Y.^2)/(2*sigma_d^2));

I = rgb2gray(A);
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)
% Apply bilateral filter for boundary enhancement.
dim = size(J);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);
 figure, imshow(I)
 % Compute Gaussian intensity weights.
 H = 2.71^(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);

156

 B(i,j) = sum(F(:).*I(:))/sum(F(:));
 figure, imshow(B);
 figure, imshow(A);
 end

end

level 4 decomposition
I = rgb2gray(R);
noisy_image=I
[cA,cH,cV,cD] = dwt2(I,'Haar')
%[wc] = fwt_image(noisy_image,6); % 6-level DWT: lowest band is 16x16
[CA1, CH1, CV1, CD1] = dwt2(cA,'Haar');
[CA2, CH2, CV2, CD2] = dwt2(CA1,'Haar');
[CA3, CH3, CV3, CD3] = dwt2(CA2,'Haar');
[CA4, CH4, CV4, CD4] = dwt2(CA3,'Haar');
[CA5, CH5, CV5, CD5] = dwt2(CA4,'Haar');

% Reconstruction algorithm
% ca5 ch3_w cv3_w cd3_w ch2_w
% cv2_w cd2_w ch1_w cv1_w cd1_w
% -------------------------------

ch5_w = wiener2(CH5,[5 5], sigman^2);
cv5_w = wiener2(CV5,[5 5], sigman^2);
cd5_w = wiener2(CD5,[5 5], sigman^2);

ch4_w = wiener2(CH4,[5 5], sigman^2);
cv4_w = wiener2(CV4,[5 5], sigman^2);
cd4_w = wiener2(CD4,[5 5], sigman^2);

ch3_w = wiener2(CH3,[5 5], sigman^2);
cv3_w = wiener2(CV3,[5 5], sigman^2);
cd3_w = wiener2(CD3,[5 5], sigman^2);

ch2_w = wiener2(CH2,[5 5], sigman^2);
cv2_w = wiener2(CV2,[5 5], sigman^2);
cd2_w = wiener2(CD2,[5 5], sigman^2);

ch1_w = wiener2(CH1,[5 5], sigman^2);
cv1_w = wiener2(CV1,[5 5], sigman^2);
cd1_w = wiener2(CD1,[5 5], sigman^2);

% reconstructed image
% ---------------------------

ca5 = CA5;

wc = [ca5 ch5_w
 cv5_w cd5_w];
wc = [wc ch4_w
 cv4_w cd4_w];
wc = [wc ch3_w
 cv3_w cd3_w];
wc = [wc ch2_w

157

 cv2_w cd2_w];
wc = [wc ch1_w
 cv1_w cd1_w];
 X = idwt2(cA,cH,cV,cD,'Haar')

%out = iwt_image(wc,6);
psnr = feval('psnr',clean_image,out);
% Apply bilateral filter for feature enhancement.
dim = size(J);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);
 figure, imshow(I)
 % Compute Gaussian intensity weights.
 H = 2.71^(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));
 figure, imshow(B);
 figure, imshow(A);
 end

end
Level 4 decomposition
I = rgb2gray(R);
noisy_image=I
[cA,cH,cV,cD] = dwt2(I,'Haar')
%[wc] = fwt_image(noisy_image,6); % 6-level DWT: lowest band is 16x16
[CA1, CH1, CV1, CD1] = dwt2(cA,'Haar');
[CA2, CH2, CV2, CD2] = dwt2(CA1,'Haar');
[CA3, CH3, CV3, CD3] = dwt2(CA2,'Haar');
[CA4, CH4, CV4, CD4] = dwt2(CA3,'Haar');
[CA5, CH5, CV5, CD5] = dwt2(CA4,'Haar');

% Reconstruction algorithm
% ca5 ch3_w cv3_w cd3_w ch2_w
% cv2_w cd2_w ch1_w cv1_w cd1_w
% -------------------------------

ch5_w = wiener2(CH5,[5 5], sigman^2);
cv5_w = wiener2(CV5,[5 5], sigman^2);
cd5_w = wiener2(CD5,[5 5], sigman^2);

ch4_w = wiener2(CH4,[5 5], sigman^2);
cv4_w = wiener2(CV4,[5 5], sigman^2);
cd4_w = wiener2(CD4,[5 5], sigman^2);

158

ch3_w = wiener2(CH3,[5 5], sigman^2);
cv3_w = wiener2(CV3,[5 5], sigman^2);
cd3_w = wiener2(CD3,[5 5], sigman^2);

ch2_w = wiener2(CH2,[5 5], sigman^2);
cv2_w = wiener2(CV2,[5 5], sigman^2);
cd2_w = wiener2(CD2,[5 5], sigman^2);

ch1_w = wiener2(CH1,[5 5], sigman^2);
cv1_w = wiener2(CV1,[5 5], sigman^2);
cd1_w = wiener2(CD1,[5 5], sigman^2);

% reconstructed image
% ---------------------------

ca5 = CA5;

wc = [ca5 ch5_w
 cv5_w cd5_w];
wc = [wc ch4_w
 cv4_w cd4_w];
wc = [wc ch3_w
 cv3_w cd3_w];
wc = [wc ch2_w
 cv2_w cd2_w];
wc = [wc ch1_w
 cv1_w cd1_w];
 X = idwt2(cA,cH,cV,cD,'Haar')

%out = iwt_image(wc,6);
psnr = feval('psnr',clean_image,out);

function [fima]=mixingsubband(fimau,fimao)

s = size(fimau);

p(1) = 2^(ceil(log2(s(1))));
p(2) = 2^(ceil(log2(s(2))));
p(3) = 2^(ceil(log2(s(3))));

pad1 = zeros(p(1),p(2),p(3));
pad2 = pad1;
pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);

[af, sf] = farras;
w1 = dwt3D(pad1,1,af);
w2 = dwt3D(pad2,1,af);

w1{1}{3} = w2{1}{3};
w1{1}{5} = w2{1}{5};
w1{1}{6} = w2{1}{6};
w1{1}{7} = w2{1}{7};

159

fima = idwt3D(w1,1,sf);
fima = fima(1:s(1),1:s(2),1:s(3));

% NAN checking
ind=find(isnan(fima(:)));
fima(ind)=fimau(ind);

% negative checking (only for rician noise mixing)
ind=find(fima<0);
fima(ind)=0;

 % s = size(fimau);
%
% p(1) = 2^(ceil(log2(s(1))));
% p(2) = 2^(ceil(log2(s(2))));
% p(3) = 2^(ceil(log2(s(3))));
%
% pad1 = zeros(p(1),p(2),p(3));
% pad2=pad1;
% pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
% pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);
%
% [af, sf] = farras;
% w1 = dwt3D(pad1,1,af);
% w2 = dwt3D(pad2,1,af);
%
% w1{1}{1} = (w1{1}{1} + w2{1}{1})/2;
% w1{1}{2} = (w1{1}{2} + w2{1}{2})/2;
% w1{1}{3} = w2{1}{3};
% w1{1}{4} = (w1{1}{4} + w2{1}{4})/2;
% w1{1}{5} = w2{1}{5};
% w1{1}{6} = w2{1}{6};
% w1{1}{7} = w2{1}{7};
%
% fima = idwt3D(w1,1,sf);
% fima = fima(1:s(1),1:s(2),1:s(3));

% Apply bilateral filter for final enhancement.
dim = size(J);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);
 figure, imshow(I)
 % Compute Gaussian intensity weights.
 H = 2.71^(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

160

 figure, imshow(B);
 figure, imshow(A);
 end

end

% Close waitbar.
%close(h);
% Pre-compute Gaussian distance weights.

PHASE DENOISE

A= imread('C:/torso.bmp');
w=5
sigma_d=2
sigma_r=2
[X,Y] = meshgrid(-w:w,-w:w);
G = 2.71^(-(X.^2+Y.^2)/(2*sigma_d^2));

I = rgb2gray(A);
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)
% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);
 figure, imshow(I)
 % Compute Gaussian intensity weights.

161

 H = 2.71^(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));
 figure, imshow(B);
 figure, imshow(A);
 end

end

% Close waitbar.
%close(h);
 function [x, mask0] = mri_phase_denoise(yi, varargin)
%|function [x, mask0] = mri_phase_denoise(yi, [options]) <- recommended

usage
%|function [x] = mri_phase_denoise(yi, l2b, niter, chat, wthresh) <- old

way
%|
%| in
%| yi [(N)] noisy complex image: y = mag .* exp(1i * x)
%| can be any size: 1D, 2D, 3D, ...
%|
%| options
%| l2b log_2(beta), regularization parameter
%| order regularization order (default: 1, for historical
%| reasons, but 2 is probably preferable)
%| niter # of iterations
%| chat 1 to show pictures
%| wthresh fraction of magnitude maximum to include in fitting
%| init initial image for iterations
%| isave which iterations to save. (default: last)
%| 'pl' 1|0 1 for new PL method (recommend), 0 for old way (default)
%| out
%| x [(N)] cleaned up phase estimate
%| mask0 [(N)] logical: 1 for high-magnitude pixels
%|
%| Example of weighted "denoising" of MRI phase images.
%| This is a "simple" way to estimate good field inhomogeneity maps
%| from the usual approach of two readouts with a short delay.
%| It also smoothly interpolates over regions with signal voids.
%|
%| Copyright 1999, Jeff Fessler, University of Michigan

if nargin < 1, help(mfilename), error(mfilename), end
if ischar(yi)
 [x mask0] = mri_phase_denoise_test(yi, varargin{:});
 if ~nargout, clear x mask0, end
return
end

% defaults
arg.chat = 0;
arg.l2b = -5;
arg.order = 1;
arg.niter = 150;

162

arg.isave = [];
arg.wthresh = 0.4;
arg.fmax = 0.05; % fraction of max threshold for trimmed median for wi_ml
arg.init = [];
arg.clim = []; % limits for phase display
arg.pl = false; % PL
arg.wi_ml = false; % use wi based on ML instead of threshold

% backword compatible for old argument list: l2b, niter, chat, wthresh
if length(varargin) && isnumeric(varargin{1})
 arg.l2b = varargin{1};
 if length(varargin) >= 2, arg.niter = varargin{2}; end
 if length(varargin) >= 3, arg.chat = varargin{3}; end
 if length(varargin) >= 4, arg.wthresh = varargin{4}; end
else
 arg = vararg_pair(arg, varargin);
end
if isempty(arg.isave), arg.isave = arg.niter; end

mag = abs(yi);
yi = angle(yi);
if arg.chat
 im clf, im pl 2 3
 im(1, mag, 'magnitude'), cbar
 im(2, yi, 'raw phase map', arg.clim), cbar
end

dim_yi = size(yi);

%
% specify weights: this needs more work to be automatic!
%
mask0 = mag > arg.wthresh * max(mag(:)); % ignore pixels with "too small"

magnitude
if arg.chat
 im(3, mask0, 'weights'), cbar
 im(4, mask0 .* yi, 'masked phase', arg.clim), cbar
end

%mean(mag(:))
%median(mag(:))
%clf, hist(mag(:), 100), pause
%median(mag(mag(:) > 0.05 * max(mag(:))))

if arg.wi_ml
 wi = mri_phase_wi_ml(mag(:), arg.fmax);
else
 wi = mask0(:);
end
W = diag_sp(wi);

%
% initial phase image
%
if isempty(arg.init)

163

 arg.init = yi;
 arg.init(mask0 == 0) = mean(yi(mask0 == 0));
end
if arg.chat
 im(5, arg.init, 'Initial phase', arg.clim), cbar
end

G = diag_sp(ones(prod(dim_yi),1));
%
% regularizer
%
if arg.order ~= 2, warn('order=2 recommended'), end
mask1 = true(size(yi)); % estimate / extrapolate to *all* pixels
R = Reg1(mask1, 'beta', 2^arg.l2b, 'order', arg.order);
%R = Robject(mask1, 'beta', 2^arg.l2b, 'order', arg.order);
% 'type_denom', 'matlab', ...

if 0 % old way
 [C wjk] = C2sparse('tight', mask1, 8); % todo: cut?
 C = spdiag(sqrt(wjk), 'nowarn') * C; % caution: missing prior to 2005-

11-28
 C = sqrt(2^arg.l2b) * C;
end

% report expected blur (at image center)
if 1
 qpwls_psf(G, R, 1, mask1, W);
end

%
% run qpwls algorithm for regularized fitting
%
xinit = arg.init(mask1);
if arg.pl
 med = median(mag(mag(:) > 0.05 * max(mag(:))));
 data = {yi(:), (mag(:)/med).^2}; handle = @phase_dercurv; % PL
%profile on % todo!
 x = pl_pcg_qs_ls(xinit, G, data, handle, R, ...
 'niter', arg.niter, 'isave', arg.isave);
%profile report
 x = embed(x, mask1);
else
 warn 'recommend using "pl" option. use wls for historical only'
% data = {yi(:), wi(:)}; handle = @wls_dercurv; % qpwls
 x = qpwls_pcg1(xinit, G, W, yi(:), R.C, ...
 'niter', arg.niter, 'isave', arg.isave);
 x = embed(x, mask1);
end

if 0 % old way
 x = qpwls_pcg(x, G, W, yi(:), 0, R.C, 1, arg.niter);
 x = reshape(x, [dim_yi arg.niter]);
 x = x(:,:,end);
end

if arg.chat

164

 if ndims(yi) == 2
 im(6, x(:,:,end), 'QPWLS-CG phase', arg.clim), cbar
 else % 3d
 im(6, x(:,:,:,end), 'QPWLS-CG phase', arg.clim), cbar
 end
end

%
% mri_phase_wi_ml()
% wi based on ML estimation
% trick: normalize by median of non-background so that beta is "universal"
%
function wi = mri_phase_wi_ml(mag, fmax)
med = median(mag(mag(:) > fmax * max(mag(:))));
wi = (mag(:) / med).^2;

%
% phase_dercurv()
% wi * (1 - cos(yi - li))
%
function [deriv, curv] = phase_dercurv(data, li, varargin)
yi = data{1};
wi = data{2};
deriv = wi .* sin(li - yi);
curv = wi;

%
% built-in test/example
%
function [xq, mask0] = mri_phase_denoise_test(type, varargin)

% read data
f.dir = path_find_dir('mri');
f.dir = [f.dir '/phase-data/'];
f.dat = [f.dir 'phfit.mat'];
if ~exist(f.dat, 'file')
 fail('edit the path in %s!', mfilename)
end
yi = mat_read(f.dat);
clim = [-0.5 1.5];

%if nargout
% order = 1;
%else
% order = 2;
%end
[xq mask0] = mri_phase_denoise(yi, ...
 'clim', clim, 'init', [], 'chat', 1, varargin{:});
% 'init', 5*randn(size(yi)));
% 'init', 5*ones(size(yi)));
xq = xq(:,:,end);
if im

165

 title 'QPWLS-CG phase (simple wi)'
end

cpu etic
xpl = mri_phase_denoise(yi, 'pl', 1, varargin{:});
cpu etoc 'PL time'
im(4, xpl, 'PL-CG phase', clim), cbar

cpu etic
xml_qpwls = mri_phase_denoise(yi, 'wi_ml', 1, varargin{:});
cpu etoc 'PWLS time'
im(5, xml_qpwls, 'QPWLS-CG (ML wj)', clim), cbar

max_percent_diff(xpl, xml_qpwls)
%max_percent_diff(xpl, xq)
nrms(xml_qpwls, xpl)
nrms(xq, xpl)
%im(4, xpl-xq), cbar

%savefig fig_mr_phase_pl

166

Appendix 4: COMBINATION NON-LOCAL MEANS FILTER

==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% This program implements method one a hybrid and adaptive MRI denoising

% method involving a bilateral filer enhancement and Non-local means

% wavelet based method

I = imread('C:/torso.bmp');
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.707
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)

% BFILTER2 Two dimensional bilateral filtering.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end

167

w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

168

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

169

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);
% BFILTER2 Two dimensional bilateral filtering for feature enhancement.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

170

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

171

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);
 J=NLMF(I,Options)

function J=NLMF(I,Options)
% This function NLMF performs Non-Local Means noise filtering of
% 2D grey/color or 3D image data. The function is partly c-coded for
% cpu efficient filtering.
%
% Principle NL-Mean filter:
% A local pixel region (patch) around a pixel is compared to patches
% of pixels in the neighbourhood. The centerpixels of the patches are
% averaged depending on the quadratic pixel distance between the patches.
%
% Function:
%
% J = NLMF(I, Options);

172

%
% inputs,
% I : 2D grey/color or 3D image data, of type Single or Double
% in range [0..1]
% Options : Struct with options
%
% outputs,
% J : The NL-means filtered image or image volume
%
% options,
% Options.kernelratio : Radius of local Patch (default 3)
% Options.windowratio : Radius of neighbourhood search window (default

3)
% Options.filterstrength : Strength of the NLMF filtering (default 0.05)
% Options.blocksize : The image is split in sub-blocks for efficienter
% memory usage, (default 2D: 150, default 3D: 32);
% Options.nThreads : Number of CPU Threads used default (2);
% Options.verbose : When set to true display information (default false)
%
% Beta Options:
% Options.enablepca : Do PCA on the patches to reduce amount of
% calculations (default false)
% Options.pcaskip : To reduce amount of PCA calculations the data for

PCA
% is first reduced with V(:,1:pcaskip:end) (default

10)
% Options.pcane : Number of eigenvectors used (default 25)
%
% Literature:
% - Non-local filter proposed for A. Buades, B. Coll and J.M. Morel
% "A non-local algorithm for image denoising"
% - Basic Matlab implementation of Jose Vicente Manjon-Herrera
%
%
% First Compile c-code!!!!, with :
% mex vectors_nlmeans_single.c -v
% mex image2vectors_single.c -v
% mex vectors_nlmeans_double.c -v
% mex image2vectors_double.c -v
%
% Example 2D greyscale,
% I=im2double(imread('moon.tif'));
% Options.kernelratio=4;
% Options.windowratio=4;
% Options.verbose=true;
% J=NLMF(I,Options);
% figure,
% subplot(1,2,1),imshow(I); title('Noisy image')
% subplot(1,2,2),imshow(J); title('NL-means image');
%
% Example 2D color,
% I=im2double(imread('lena.jpg'));
% I=imnoise(I,'gaussian',0.01);
% Options.kernelratio=4;
% Options.windowratio=4;
% Options.verbose=true;
% Options.filterstrength=0.1;

173

% J=NLMF(I,Options);
% figure,
% subplot(1,2,1),imshow(I); title('Noisy image')
% subplot(1,2,2),imshow(J); title('NL-means image');
%
% Example 3D,
% load('mri');
% D=squeeze(D); D=single(D); D=D./max(D(:));
% Options.verbose=true;
% Options.blocksize=45;
% V=NLMF(D,Options);
% figure,
% subplot(1,2,1),imshow(imresize(D(:,:,3),5),[]); title('Noisy slice')
% subplot(1,2,2),imshow(imresize(V(:,:,3),5),[]); title('NL-means slice')
%
% See also NLMF2Dtree.
%
% Function is written by D.Kroon University of Twente (April 2010)

if((min(I(:))<0)||(max(I(:))>1)),
 warning('NLMF:inputs','Preferable data range [0..1]');
end
if((~isa(I,'double'))&&(~isa(I,'single')))
 error('NLMF:inputs','Input data must be single or double');
end

is2D=size(I,3)<4;

% Process inputs
defaultoptions=struct('kernelratio',3,'windowratio',3,'filterstrength',0.0

5,'blocksize',150,'nThreads',2,'verbose',false,'enablepca',false,'pcaskip'

,10,'pcane',25);
if(is2D), defaultoptions.blocksize=150; else defaultoptions.blocksize=32;

end
if(~exist('Options','var')), Options=defaultoptions;
else
 tags = fieldnames(defaultoptions);
 for i=1:length(tags), if(~isfield(Options,tags{i})),

Options.(tags{i})=defaultoptions.(tags{i}); end, end
 if(length(tags)~=length(fieldnames(Options))),
 warning('NLMF:unknownoption','unknown options found');
 end
end

kernelratio=round(Options.kernelratio);
windowratio=round(Options.windowratio);
filterstrength=Options.filterstrength;
blocksize=round(Options.blocksize);
nThreads=round(Options.nThreads);
verbose=Options.verbose;
enablepca=Options.enablepca;
pcaskip=round(Options.pcaskip);
pcane=round(Options.pcane);

if(is2D)

174

 Ipad = padarray(I,[kernelratio+windowratio

kernelratio+windowratio],'symmetric'); %,
else
 Ipad = padarray(I,[kernelratio+windowratio kernelratio+windowratio

kernelratio+windowratio],'symmetric'); %,
end

% Separate the image into smaller blocks, for less memory usage
% and efficient cpu-cache usage.
block=makeBlocks(kernelratio,windowratio, blocksize, I, Ipad, is2D);

tic; erms='***';
J=zeros(size(I),class(Ipad));
for i=1:length(block);
 if(verbose)
 disp(['Processing Block ' num2str(i) ' of ' num2str(length(block))

' estimated time remaining ' erms]);
 end
 if(is2D)
 Iblock=Ipad(block(i).x1:block(i).x2,block(i).y1:block(i).y2,:);
 else

Iblock=Ipad(block(i).x1:block(i).x2,block(i).y1:block(i).y2,block(i).z1:bl

ock(i).z2);
 end

 if(isa(Ipad,'double'))
 % Get the local patches of every pixel-coordinate in the block

V=image2vectors_double(double(Iblock),double(kernelratio),double(nThreads)

);
 else

V=image2vectors_single(single(Iblock),single(kernelratio),single(nThreads)

);
 end

 if(enablepca)
 % Do PCA on the block
 [Evalues, Evectors, x_mean]=PCA(V(:,1:pcaskip:end),pcane);
 % Project the block to the reduced PCA feature space
 V = Evectors'*(V-repmat(x_mean,1,size(V,2)));
 end

 % Do NL-means on the vectors in the block
 if(isa(Ipad,'double'))

Iblock_filtered=vectors_nlmeans_double(double(Iblock),double(V),double(ker

nelratio),double(windowratio),double(filterstrength),double(nThreads));
 else

Iblock_filtered=vectors_nlmeans_single(single(Iblock),single(V),single(ker

nelratio),single(windowratio),single(filterstrength),single(nThreads));
 end

 if(is2D)

175

J(block(i).x3:block(i).x4,block(i).y3:block(i).y4,:)=Iblock_filtered;
 else

J(block(i).x3:block(i).x4,block(i).y3:block(i).y4,block(i).z3:block(i).z4)

=Iblock_filtered;
 end

 if(verbose)
 t=toc; erm=(t/i)*(length(block)-i); erms=num2str(erm);
 end
end
toc;

function block=makeBlocks(kernelratio,windowratio,blocksize, I,Ipad, is2D)
block=struct;
i=0;
blocksize_real=blocksize-(kernelratio+windowratio)*2;
if(is2D)
 for y1=1:blocksize_real:size(Ipad,2)
 for x1=1:blocksize_real:size(Ipad,1)
 x2=x1+blocksize-1; y2=y1+blocksize-1;
 x2=max(min(x2,size(Ipad,1)),1);
 y2=max(min(y2,size(Ipad,2)),1);
 x3=x1; y3=y1;
 x4=min(x1+blocksize_real-1,size(I,1));
 y4=min(y1+blocksize_real-1,size(I,2));
 if((x4>=x3)&&(y4>=y3))
 i=i+1;
 block(i).x1=x1; block(i).y1=y1; block(i).x2=x2;

block(i).y2=y2;
 block(i).x3=x3; block(i).y3=y3; block(i).x4=x4;

block(i).y4=y4;
 end
 end
 end
else
 for z1=1:blocksize_real:size(Ipad,3)
 for y1=1:blocksize_real:size(Ipad,2)
 for x1=1:blocksize_real:size(Ipad,1)
 x2=x1+blocksize-1; y2=y1+blocksize-1; z2=z1+blocksize-1;
 x2=max(min(x2,size(Ipad,1)),1);
 y2=max(min(y2,size(Ipad,2)),1);
 z2=max(min(z2,size(Ipad,3)),1);
 x3=x1; y3=y1; z3=z1;
 x4=min(x1+blocksize_real-1,size(I,1));
 y4=min(y1+blocksize_real-1,size(I,2));
 z4=min(z1+blocksize_real-1,size(I,3));
 if((x4>=x3)&&(y4>=y3)&&(z4>=z3))
 i=i+1;
 block(i).x1=x1; block(i).y1=y1; block(i).z1=z1;
 block(i).x2=x2; block(i).y2=y2; block(i).z2=z2;
 block(i).x3=x3; block(i).y3=y3; block(i).z3=z3;
 block(i).x4=x4; block(i).y4=y4; block(i).z4=z4;
 end

176

 end
 end
 end
end

function [Evalues, Evectors, x_mean]=PCA(x,ne)
% PCA using Single Value Decomposition
% Obtaining mean vector, eigenvectors and eigenvalues
%
% [Evalues, Evectors, x_mean]=PCA(x,ne);
%
% inputs,
% X : M x N matrix with M the trainingvector length and N the number
% of training data sets
% ne : Max number of eigenvalues
% outputs,
% Evalues : The eigen values of the data
% Evector : The eigen vectors of the data
% x_mean : The mean training vector
%
s=size(x,2);

% Calculate the mean
x_mean=sum(x,2)/s;

% Substract the mean
x2=(x-repmat(x_mean,1,s))/ sqrt(s-1);

% Do the SVD
[U2,S2] = svds(x2,ne,'L',struct('tol',1e-4));
Evalues=diag(S2).^2;
Evectors=U2;

function [fima]=mixingsubband(fimau,fimao)
s = size(fimau);

p(1) = 2^(ceil(log2(s(1))));
p(2) = 2^(ceil(log2(s(2))));
p(3) = 2^(ceil(log2(s(3))));

pad1 = zeros(p(1),p(2),p(3));
pad2 = pad1;
pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);

[af, sf] = farras;
w1 = dwt3D(pad1,1,af);
w2 = dwt3D(pad2,1,af);

w1{1}{3} = w2{1}{3};
w1{1}{5} = w2{1}{5};
w1{1}{6} = w2{1}{6};
w1{1}{7} = w2{1}{7};

fima = idwt3D(w1,1,sf);

177

fima = fima(1:s(1),1:s(2),1:s(3));

% NAN checking
ind=find(isnan(fima(:)));
fima(ind)=fimau(ind);

% negative checking (only for rician noise mixing)
ind=find(fima<0);
fima(ind)=0;

% s = size(fimau);
%
% p(1) = 2^(ceil(log2(s(1))));
% p(2) = 2^(ceil(log2(s(2))));
% p(3) = 2^(ceil(log2(s(3))));
%
% pad1 = zeros(p(1),p(2),p(3));
% pad2=pad1;
% pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
% pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);
%
% [af, sf] = farras;
% w1 = dwt3D(pad1,1,af);
% w2 = dwt3D(pad2,1,af);
%
% w1{1}{1} = (w1{1}{1} + w2{1}{1})/2;
% w1{1}{2} = (w1{1}{2} + w2{1}{2})/2;
% w1{1}{3} = w2{1}{3};
% w1{1}{4} = (w1{1}{4} + w2{1}{4})/2;
% w1{1}{5} = w2{1}{5};
% w1{1}{6} = w2{1}{6};
% w1{1}{7} = w2{1}{7};
%
% fima = idwt3D(w1,1,sf);
% fima = fima(1:s(1),1:s(2),1:s(3));

% BFILTER2 Two dimensional bilateral filtering final stage.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.

178

if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

179

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

180

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

/* Details on ONLM filter */

#include "math.h"
#include "mex.h"
#include <stdlib.h>
#include "matrix.h"

/* Function which compute the weighted average for one block */
void Average_block(double *ima,int x,int y,int z,int neighbourhood size,double *average, double
weight, int* vol_size)
{
int x_pos,y_pos,z_pos;
bool is_outside;

int a,b,c;

int count = 0;

 for (c = 0; c<(2*neighbourhood size+1);c++)
 {
 for (b = 0; b<(2*neighbourhood size+1);b++)
 {
 for (a = 0; a<(2*neighbourhood size+1);a++)
 {

 is_outside = false;

 x_pos = x+a-neighbourhood size;

 y_pos = y+b-neighbourhood size;

 z_pos = z+c-neighbourhood size;

 if ((z_pos < 0) || (z_pos > vol_size[2]-1)) is_outside = true;

 if ((y_pos < 0) || (y_pos > vol_size[0]-1)) is_outside = true;

 if ((x_pos < 0) || (x_pos > vol_size[1]-1)) is_outside = true;

181

 if (is_outside)

 average[count] = average[count] +

ima[z*(vol_size[0]*vol_size[1])+(x*vol_size[0])+y]*weight;

 else

 average[count] = average[count] +

ima[z_pos*(vol_size[0]*vol_size[1])+(x_pos*vol_size[0])+y_pos]*weight;

 count++;

 }
 }
 }
}

/* Function which computes the value assigned to each voxel */

void Value_block(double *Estimate, double *Label,int x,int y,int z,int neighbourhood size,double

average, double global_sum, int vol_size)

{

int x_pos,y_pos,z_pos;

int ret;

bool is_outside;

double value = 0.0;

double label = 0.0;

int count=0 ;

int a,b,c;

 for (c = 0; c<(2*neighbourhood size+1);c++)

 {

 for (b = 0; b<(2*neighbourhood size+1);b++)

 {

 for (a = 0; a<(2*neighbourhood size+1);a++)

182

 {

 is_outside = false;

 x_pos = x+a-neighbourhood size;

 y_pos = y+b-neighbourhood size;

 z_pos = z+c-neighbourhood size;

 if ((z_pos < 0) || (z_pos > vol_size[2]-1)) is_outside = true;

 if ((y_pos < 0) || (y_pos > vol_size[0]-1)) is_outside = true;

 if ((x_pos < 0) || (x_pos > vol_size[1]-1)) is_outside = true;

 if (!is_outside)

 {

 value =

Estimate[z_pos*(vol_size[0]*vol_size[1])+(x_pos*vol_size[0])+y_pos];

 value = value + (average[count]/global_sum);

 label = Label[(y_pos + x_pos*vol_size[0] + z_pos

*vol_size[0] * vol_size[1])];

 Estimate[z_pos*(vol_size[0]*vol_size[1])+(x_pos*vol_size[0])+y_pos] = value;

 Label[(y_pos + x_pos*vol_size[0] + z_pos *vol_size[0] *

vol_size[1])] = label +1;

 }

 count++;

 }

 }

 }

}

183

double distance(double* ima,int x,int y,int z,int nx,int ny,int nz,int f,int sx,int sy,int sz)

{

double d,acu,distancetotal,inc;
int i,j,k,ni1,nj1,ni2,nj2,nk1,nk2,kk;

acu=0;
distancetotal=0;

for(k=-f;k<=f;k++)
{
 for(i=-f;i<=f;i++)
 {
 for(j=-f;j<=f;j++)
 {
 ni1=x+i;
 nj1=y+j;
 nk1=z+k;
 ni2=nx+i;
 nj2=ny+j;
 nk2=nz+k;

 if(ni1<0) ni1=-ni1;
 if(nj1<0) nj1=-nj1;
 if(ni2<0) ni2=-ni2;
 if(nj2<0) nj2=-nj2;
 if(nk1<0) nk1=-nk1;
 if(nk2<0) nk2=-nk2;

 if(ni1>=sx) ni1=2*sx-ni1-1;
 if(nj1>=sy) nj1=2*sy-nj1-1;
 if(nk1>=sz) nk1=2*sz-nk1-1;
 if(ni2>=sx) ni2=2*sx-ni2-1;
 if(nj2>=sy) nj2=2*sy-nj2-1;
 if(nk2>=sz) nk2=2*sz-nk2-1;

 distancetotal = distancetotal + ((ima[nk1*(sx*sy)+(ni1*sy)+nj1]-
ima[nk2*(sx*sy)+(ni2*sy)+nj2])*(ima[nk1*(sx*sy)+(ni1*sy)+nj1]-ima[nk2*(sx*sy)+(ni2*sy)+nj2]));
 acu=acu + 1;
 }
 }
}

d=distancetotal/acu;

return d;

184

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{

/*Declarations*/
mxArray *xData;
double *ima, *fima,*average;
mxArray *Mxmeans, *Mxvariances, *MxEstimate, *MxLabel;
double *means, *variances, *Estimate, *Label;
mxArray *pv;
double label,estimate,epsilon,mu1,var1,h,w,totalweight,wmax,d,mean,var,t1,t2,hh;
int init,Ndims,i,j,k,ii,jj,kk,ni,nj,nk,v,f,ndim,indice;
const int *dims;

/*Copy input pointer x*/
xData = prhs[0];

/*Get matrix x*/
ima = mxGetPr(xData);

ndim = mxGetNumberOfDimensions(prhs[0]);
dims= mxGetDimensions(prhs[0]);

/*Copy input parameters*/
pv = prhs[1];
/*Get the Integer*/
v = (int)(mxGetScalar(pv));

pv = prhs[2];
f = (int)(mxGetScalar(pv));

pv = prhs[3];
h = (double)(mxGetScalar(pv));

hh=2*h*h;
Ndims = pow((2*f+1),ndim);

/*Allocate memory and assign output pointer*/

plhs[0] = mxCreateNumericArray(ndim,dims,mxDOUBLE_CLASS, mxREAL);
Mxmeans = mxCreateNumericArray(ndim,dims,mxDOUBLE_CLASS, mxREAL);
Mxvariances = mxCreateNumericArray(ndim,dims,mxDOUBLE_CLASS, mxREAL);
MxEstimate = mxCreateNumericArray(ndim,dims,mxDOUBLE_CLASS, mxREAL);
MxLabel = mxCreateNumericArray(ndim,dims,mxDOUBLE_CLASS, mxREAL);

average=(double*) malloc(Ndims*sizeof(double));

185

/*Get a pointer to the data space in our newly allocated memory*/
fima = mxGetPr(plhs[0]);
means = mxGetPr(Mxmeans);
variances = mxGetPr(Mxvariances);
Estimate = mxGetPr(MxEstimate);
Label = mxGetPr(MxLabel);

for (i = 0; i < dims[2] *dims[1] * dims[0];i++)
{
 Estimate[i] = 0.0;
 Label[i] = 0.0;
 fima[i] = 0.0;
}

for(k=0;k<dims[2];k++)
{
 for(i=0;i<dims[1];i++)
 {
 for(j=0;j<dims[0];j++)
 {
 mean=0;
 indice=0;
 for(ii=-1;ii<=1;ii++)
 {
 for(jj=-1;jj<=1;jj++)
 {
 for(kk=-1;kk<=1;kk++)
 {
 ni=i+ii;
 nj=j+jj;
 nk=k+kk;

 if(ni<0) ni=-ni;
 if(nj<0) nj=-nj;
 if(nk<0) nk=-nk;
 if(ni>=dims[1]) ni=2*dims[1]-ni-1;
 if(nj>=dims[0]) nj=2*dims[0]-nj-1;
 if(nk>=dims[2]) nk=2*dims[2]-nk-1;

 mean = mean +
ima[nk*(dims[0]*dims[1])+(ni*dims[0])+nj];
 indice=indice+1;

 }
 }

186

 }
 mean=mean/indice;
 means[k*(dims[0]*dims[1])+(i*dims[0])+j]=mean;
 }
 }
}

for(k=0;k<dims[2];k++)
{
 for(i=0;i<dims[1];i++)
 {
 for(j=0;j<dims[0];j++)
 {
 var=0;
 indice=0;
 for(ii=-1;ii<=1;ii++)
 {
 for(jj=-1;jj<=1;jj++)
 {
 for(kk=-1;kk<=1;kk++)
 {
 ni=i+ii;
 nj=j+jj;
 nk=k+kk;
 if(ni>=0 && nj>=0 && nk>0 && ni<dims[1]
&& nj<dims[0] && nk<dims[2])
 {
 var = var +
(ima[nk*(dims[0]*dims[1])+(ni*dims[0])+nj]-
means[k*(dims[0]*dims[1])+(i*dims[0])+j])*(ima[nk*(dims[0]*dims[1])+(ni*dims[0])+nj]-
means[k*(dims[0]*dims[1])+(i*dims[0])+j]);
 indice=indice+1;
 }
 }
 }
 }
 var=var/(indice-1);
 variances[k*(dims[0]*dims[1])+(i*dims[0])+j]=var;
 }
 }
}

/*filter*/

epsilon = 0.00001;
mu1 = 0.95;
var1 = 0.5;
init = 0;

187

for(k=0;k<dims[2];k+=2)
{
 for(i=0;i<dims[1];i+=2)
 {
 for(j=0;j<dims[0];j+=2)
 {

 for (init=0 ; init < Ndims; init++)
 {
 average[init]=0.0;
 }
 /*average=0;*/

 totalweight=0.0;

 if ((means[k*(dims[0]*dims[1])+(i*dims[0])+j])>epsilon &&
(variances[k*(dims[0]*dims[1])+(i*dims[0])+j]>epsilon))
 {
 wmax=0.0;

 for(kk=-v;kk<=v;kk++)
 {
 for(ii=-v;ii<=v;ii++)
 {
 for(jj=-v;jj<=v;jj++)
 {
 ni=i+ii;
 nj=j+jj;
 nk=k+kk;

 if(ii==0 && jj==0 && kk==0) continue;

 if(ni>=0 && nj>=0 && nk>=0 && ni<dims[1]
&& nj<dims[0] && nk<dims[2])
 {

 if
((means[nk*(dims[0]*dims[1])+(ni*dims[0])+nj])> epsilon &&
(variances[nk*(dims[0]*dims[1])+(ni*dims[0])+nj]>epsilon))
 {

 t1 =
(means[k*(dims[0]*dims[1])+(i*dims[0])+j])/(means[nk*(dims[0]*dims[1])+(ni*dims[0])+nj]);
 t2 =
(variances[k*(dims[0]*dims[1])+(i*dims[0])+j])/(variances[nk*(dims[0]*dims[1])+(ni*dims[0])+nj]);

188

 if(t1>mu1 && t1<(1/mu1)
&& t2>var1 && t2<(1/var1))
 {

 d=distance(ima,i,j,k,ni,nj,nk,f,dims[1],dims[0],dims[2]);

 w = exp(-d/(h*h));

 if(w>wmax) wmax =
w;

 Average_block(ima,ni,nj,nk,f,average,w,dims);

 totalweight =
totalweight + w;
 }
 }

 }
 }
 }

 }

 if(wmax==0.0) wmax=1.0;

 Average_block(ima,i,j,k,f,average,wmax,dims);

 totalweight = totalweight + wmax;

 if(totalweight != 0.0)
 Value_block(Estimate,Label,i,j,k,f,average,totalweight,dims);

 }

 Average_block(ima,i,j,k,f,average,wmax,dims);

189

 }
 }
}

label = 0.0;
estimate = 0.0;

/* Aggregation of the estimators (i.e. means computation) */
for (k = 0; k < dims[2]; k++)
{
 for (i = 0; i < dims[1]; i++)
 {
 for (j = 0; j < dims[0]; j++)
 {
 label = Label[k*(dims[0]*dims[1])+(i*dims[0])+j];
 if (label == 0.0)
 {
 fima[k*(dims[0]*dims[1])+(i*dims[1])+j] =
ima[k*(dims[0]*dims[1])+(i*dims[0])+j];

 }
 else
 {
 estimate = Estimate[k*(dims[0]*dims[1])+(i*dims[0])+j];
 estimate = (estimate/label);
 fima[k*(dims[0]*dims[1])+(i*dims[0])+j]=estimate;

 }
 }
 }
}

return;

}

190

APPENDIX 5: LMMSE COMBINATION
==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% This program implements method three and LMMSE diffusion weighted MRI %

wavelet based algorithm with bilateral feature enhancement

--

I = imread('C:/torso.bmp');
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.707
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)

% BFILTER2 Two dimensional bilateral filtering.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.

191

if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%

192

% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else

193

 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);
% BFILTER2 Two dimensional bilateral filtering for feature enhancement.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

194

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)

195

 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

Im=L
I_est=MRI_lmmse(Im,Ws,varargin)

function I_est=MRI_lmmse(Im,Ws,varargin)

%MRI_LMMSE Linear minimum Mean Square error Estimation of MRI data
%
% Filter assumes a Rician distribution with a Rayleigh Background
% Noise estimation is automatically performed using the background.
%
% Usage
%
% I_est=MRI_lmmse(Im,[7,7],[Noise method]);
%
%
% DEFAULT:
%
% I_est=MRI_lmmse(Im,[7,7]);
% Noise estimationmethod: mode2N

196

%
% INPUTS:
% - Im: input image
% - Ws: Size [M,N] of the square window used for local estimation
% Odd number recomended
%
% Noise Estimation Method:
% y= MRI_lmmse(...,'sigma',sigma) Standard deviation of noise given
% - sigma: Standar deviation of noise
% y= MRI_lmmse(...,'bckN2',threshold) Estimate the noise from the
% background of the image based on order 2 moment
% - threshold: Threshold value for the mask
% y= MRI_lmmse(...,'bckNm',threshold) Estimate the noise from the
% background of the image based on the mean
% - threshold: Threshold value for the mask
% y= MRI_lmmse(...,'momentN') Estimate the noise using the methods

of
% moments
%
% The following methods may use a background mask
%
% y= MRI_lmmse(...,'mask',threshold) A background mask is used.
% - threshold: Threshold value for the mask
% y= MRI_lmmse(...,'histoN') Estimate the noise using the method
% based on the mode of the histogram [Sijbers06]
% y= MRI_lmmse(...,'mode2N') Estimate the noise using the mode of

the
% local order 2 moment [Aja06]
% y= MRI_lmmse(...,'modeMN') Estimate the noise using the mode of

the
% local mean [Aja06]
% y= MRI_lmmse(...,'modeVN') Estimate the noise using the mode of

the
% local variance [Aja06]
% y= MRI_lmmse(...,'modeVN_NI') Estimate the noise using the mode of

the
%

[mask,thresM,noise,sigma] = parse_inputs(varargin{:});

%Noise Estimation---
%LOCAL STATISTICS
%Order 2 moment
En=filter2(ones(Ws), Im.^2) / (prod(Ws));
%Mean
Mn=filter2(ones(Ws), Im) / (prod(Ws));
%Variance
Vn=(prod(Ws)/(prod(Ws)-1)).*(En-Mn.^2);

if noise==0
%Sigma given
 sigma2=sigma.^2;
elseif noise==1
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma2=0.5.*(sum((Im(mask)).^2))./sum(mask(:));

197

 sigma=sqrt(sigma2);
elseif noise==2
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma=sqrt(2/pi).*(sum(Im(mask)))./sum(mask(:));
 sigma2=sigma^2;
elseif noise==3
 M2=mean(Im(:).^2);
 M4=mean(Im(:).^4);
 sigma2=0.5.*(M2-sqrt(sqrt(abs(2*M2^2-M4))));
 sigma=sqrt(sigma2);
elseif noise==4
 if mask==0
 I2=round(Im);
 Tp=max(I2(:));
 Tpm=min(I2(:));
 [h,x]=hist(I2(:),Tp);
 sigma=x(argmax(h));
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 Tp=max(I2(mask));
 [h,x]=hist(I2(mask),Tp);
 sigma=x(argmax(h));
 end
 sigma2=sigma^2;
elseif noise==5
 if mask==0
 sigma2=(prod(Ws)/(prod(Ws)-1)).*(moda(En,1000)./2);
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma2=(prod(Ws)/(prod(Ws)-1)).*(moda(En(mask),1000)./2);
 end
 sigma=sqrt(sigma2);
elseif noise==6
 if mask==0
 sigma=sqrt(2/pi).*moda(Mn,1000);
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma=sqrt(2/pi).*moda(Mn(mask),1000);
 end
 sigma2=sigma^2;
elseif noise==7
 if mask==0
 sigma2=((2/(4-pi)).*moda(Vn,1000));
 else
 mask =im2bw(1-double(imfill(Im>thresM,'holes')));
 sigma2=(2/(4-pi)).*moda(Vn(mask),1000);
 end
 sigma=sqrt(sigma2);
elseif noise==8
 if mask==0
 sigma2=((prod(Ws)-1)/(prod(Ws)-3)).*moda(Vn,1000);
 else
 mask =im2bw(double(imfill(Im>thresM,'holes')));
 sigma2=((prod(Ws)-1)/(prod(Ws)-3)).*moda(Vn,1000);
 end
 sigma=sqrt(sigma2);
end

198

%End Noise estimation---

%FILTERING---

Qua=filter2(ones(Ws),Im.^4)./prod(Ws);
%Squ=filter2(ones(Ws),Im.^2)./prod(Ws);
Squ=En;
%Squ=Squ.*(Squ>2.*sigma2)+(Squ<=2.*sigma2).*2.*sigma2;
%Qua=Qua.*(Qua>8.*sigma2^2)+(Qua<=8.*sigma2^2).*8.*sigma2^2;

K1=1+(4.*sigma2^2-4.*sigma2.*Squ)./(Qua-Squ.^2);
K1=max(K1,0);
I_est=sqrt(Squ-2.*sigma2+K1.*(Im.^2-Squ));
%I_est= sqrt(Im.^2-2.*sigma2+0.5.*(1-K1).*(Squ-Ac.^2));
I_est=abs(I_est);

%---

-
function [mask,thresM,noise,sigma] = parse_inputs(varargin)
dfsteppos = -1;
mask=0;
thresM=0;
noise=5;
sigma=0;

for i = 1 : length(varargin)
 flag = 0;
 if i == dfsteppos
 flag = 1;
 end
 if strcmp(varargin{i},'mask')
 mask=1;
 thresM = varargin{i+1};
 flag = 1;
 dfsteppos = i+1;
 elseif strcmp(varargin{i},'sigma')
 noise=0;
 sigma = varargin{i+1};
 flag = 1;
 dfsteppos = i+1;
 elseif strcmp(varargin{i},'bckN2')
 noise=1;
 thresM = varargin{i+1};
 flag = 1;
 dfsteppos = i+1;
 elseif strcmp(varargin{i},'bckNm')
 noise=2;
 thresM = varargin{i+1};
 flag = 1;

199

 dfsteppos = i+1;
 elseif strcmp(varargin{i},'momentN')
 noise=3;
 flag = 1;
 elseif strcmp(varargin{i},'histoN')
 noise=4;
 flag = 1;
 elseif strcmp(varargin{i},'mode2N')
 noise=5;
 flag = 1;
 elseif strcmp(varargin{i},'modeMN')
 noise=6;
 flag = 1;
 elseif strcmp(varargin{i},'modeVN')
 noise=7;
 flag = 1;
 elseif strcmp(varargin{i},'modeVN_NI')
 noise=8;
 flag = 1;
 end
 if flag == 0
 error('Too many parameters !')
 return
 end
end

%--
function m=moda(u,N)
% MODA Mode of a distribution
%
% m=MODE(u,N) calculates the mode of the set of data "u" using the

histogram.
% To avoid outliers, for the calculation are only taken into account

those
% values in [mean-2sigma, mean+2sigma];
%
% INPUT:
%
% - u (set of data)
% - N: Number of points for the histogram. If N=0 then 5000 points

are
% considered
%
% Author: Santiago Aja Fernandez
% www.lpi.tel.uva.es/~santi
% LOCAL STATISTICS TOOLBOX
%
% Modified: Feb 01 2008
%
u=double(u);
if N==0
 N=5000;
end
M1=mean(u(:));
V1=std(u(:));
C2=u((u(:)>=(M1-2*V1)) & (u(:)<=(M1+2*V1))) ;
%C2=u;

200

[h,x]=hist(C2,N);
[M,M2]=max(h);
m=x(M2);
%
function [fima]=mixingsubband(fimau,fimao)

s = size(fimau);

p(1) = 2^(ceil(log2(s(1))));
p(2) = 2^(ceil(log2(s(2))));
p(3) = 2^(ceil(log2(s(3))));

pad1 = zeros(p(1),p(2),p(3));
pad2 = pad1;
pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);

[af, sf] = farras;
w1 = dwt3D(pad1,1,af);
w2 = dwt3D(pad2,1,af);

w1{1}{3} = w2{1}{3};
w1{1}{5} = w2{1}{5};
w1{1}{6} = w2{1}{6};
w1{1}{7} = w2{1}{7};

fima = idwt3D(w1,1,sf);
fima = fima(1:s(1),1:s(2),1:s(3));

% NAN checking
ind=find(isnan(fima(:)));
fima(ind)=fimau(ind);

% negative checking (only for rician noise mixing)
ind=find(fima<0);
fima(ind)=0;

% s = size(fimau);
%
% p(1) = 2^(ceil(log2(s(1))));
% p(2) = 2^(ceil(log2(s(2))));
% p(3) = 2^(ceil(log2(s(3))));
%
% pad1 = zeros(p(1),p(2),p(3));
% pad2=pad1;
% pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
% pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);
%
% [af, sf] = farras;
% w1 = dwt3D(pad1,1,af);
% w2 = dwt3D(pad2,1,af);
%
% w1{1}{1} = (w1{1}{1} + w2{1}{1})/2;
% w1{1}{2} = (w1{1}{2} + w2{1}{2})/2;

201

% w1{1}{3} = w2{1}{3};
% w1{1}{4} = (w1{1}{4} + w2{1}{4})/2;
% w1{1}{5} = w2{1}{5};
% w1{1}{6} = w2{1}{6};
% w1{1}{7} = w2{1}{7};
%
% fima = idwt3D(w1,1,sf);
% fima = fima(1:s(1),1:s(2),1:s(3));

% BFILTER2 Two dimensional bilateral filtering final stage.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

202

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

203

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

204

APPENDIX 6: TOTAL VARIATIONAL COMBINATION

==

% Rician noise generation using two orthogal Gaussian generators

% copyright © 2016 Kenneth Kagoiya

% Permission to use, copy or modify this software and its document.

% This program implements method method four a total valuation wavelet

based structural MRI denoising method with bilateral feature enhancement

I = imread('C:/torso.bmp');
I = rgb2gray(I);
for phi= 0:0.375:1.5
II=I*cos(phi)
J = imnoise(II,'gaussian',0.0,0.0005);
J = imresize(J,[480 480])
figure,imshow(J)
K=I*sin(phi)
K = imnoise(K,'gaussian',0.0,0.0005);
K = imresize(K,[480 480])
figure,imshow(K)
L=(J+K)*0.75
figure,imshow(L)
end
val1 = std2(I)
val2 = mean2(I)
val3 = std2(II)
val4 = mean2(II)
val5 = std2(K)
val6 = mean2(K)
val7 = std2(K)
val8 = mean2(K)
% BFILTER2 Two dimensional bilateral filtering boundary enhancement.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end

205

w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

206

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end

207

 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

% BFILTER2 Two dimensional bilateral filtering edge enhancement.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%

208

% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);

209

G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

clear all;
close all;

210

Ref=input('Reference noise-free image available? (y/n) ','s');

% Read reference, noise-free image
if (Ref=='y')
 InputType=0;
 while (InputType~=1 & InputType~=2 & InputType~=3 & InputType~=4)
 InputType=input('\nReference image format:\n1. "*.tif"\n2.

"*.sg2"\n3. "*.mat"\n4. "*.bin"\n>> ');
 end
 imload;
 Xclean=SCAN;
 clear SCAN;
 [M,N]=size(Xclean);

 Choice=input('Choose 1 or 2:\n1. An arbitrary noise variance\n2. A

stored noisy image\n ');

 if(Choice==1)
 NoiseStd=input('Standard Deviation of added noise in each qadrature

channel: ');
 Xnoisy=Xclean+randn(M,N)*NoiseStd+sqrt(-1)*randn(M,N)*NoiseStd;
 Xnoisy=abs(Xnoisy);
 clean_image=input('Reference image name: ','s');
 image_name=strcat(clean_image,'_std',num2str(NoiseStd));
 else
 InputType=0;
 while (InputType~=1 & InputType~=2 & InputType~=3 & InputType~=4)
 InputType=input('\nNoisy image format:\n1. "*.tif"\n2.

"*.sg2"\n3. "*.mat"\n4. "*.bin"\n>> ');
 end
 imload;
 Xnoisy=SCAN;
 clear SCAN;

 %Extract the image name from the filename
 image_name=filename(1:(length(filename)-4))
 end

else % No reference noise-free image image available

 % Read noisy image
 InputType=0;
 while (InputType~=1 & InputType~=2 & InputType~=3 & InputType~=4)
 InputType=input('\nNoisy image format:\n1. "*.tif"\n2. "*.sg2"\n3.

"*.mat"\n4. "*.bin"\n>> ');
 end
 imload;
 Xnoisy=SCAN;
 clear SCAN;

 %Extract the image name from the filename
 image_name=filename(1:(length(filename)-4))
end

211

 [M,N]=size(Xnoisy);
 figure('units','normalized','position',[0.05 0.1 0.3 0.8]);
 subplot(2,1,1),imagesc(abs(Xnoisy));title('Input image');
 colormap(gray);

 Xsqmag=abs(Xnoisy).^2;

 %--
 %Parameters

 Thr_factor=2;
 Thr_factorINFO='s';
 while((Thr_factorINFO~='y')&(Thr_factorINFO~='n'))
 Thr_factorINFO=input('The threshold multiplication factor is set to

default value K=2. \nChoose other value (y/n)? ','s');
 end
 if(Thr_factorINFO=='y')
 Thr_factor=input('Multiplication factor for threshold (1-5): ');
 end

 WS=5;
 WS_INFO='s';
 while((WS_INFO~='y')&(WS_INFO~='n'))
 WS_INFO=input('Window size is set to default 5. \nChoose other value

(y/n)? ','s');
 end
 if(WS_INFO=='y')
 WS=1;
 while((WS~=3)&(WS~=5)&(WS~=7))
 WS=input('Window size (3, 5, 7): ');
 end
end
W=(WS-1)/2;

 %---

 %---
 %Linear rescaling - for the sake of a faster computation in later steps
 R=1000/max(max(Xsqmag));
 Xsqmag=Xsqmag*R;
 %---

 [A1,HL1,LH1,HH1]=wt3det_spline(Xsqmag,0);
 [A2,HL2,LH2,HH2]=wt3det_spline(A1,1);
 [A3,HL3,LH3,HH3]=wt3det_spline(A2,2);
 [A4,HL4,LH4,HH4]=wt3det_spline(A3,3);

212

 sigma=thr_univ(HH1);
 SIGMA_HH=[1.00 0.22 0.09 0.04]*sigma;
 SIGMA_LH=[0.79 0.25 0.11 0.05]*sigma;

 sig_hh1=SIGMA_HH(1);
 sig_hh2=SIGMA_HH(2);
 sig_hh3=SIGMA_HH(3);
 sig_hh4=SIGMA_HH(4);

 sig_lh1=SIGMA_LH(1);
 sig_lh2=SIGMA_LH(2);
 sig_lh3=SIGMA_LH(3);
 sig_lh4=SIGMA_LH(4);

 sigma=sig_hh1 %This is an estimate of R*2*NoiseStd^2 because we are

processing the square magnitude!

%====================================
% Processing scale 2^3

Scale=3

[HL3p,M_hl3]=rem_noise_adapt(HL3,HL4,sig_lh3,Thr_factor,W);
[LH3p,M_lh3]=rem_noise_adapt(LH3,LH4,sig_lh3,Thr_factor,W);
[HH3p,M_hh3]=rem_noise_adapt(HH3,HH4,sig_hh3,Thr_factor,W);

%figure
%subplot(3,2,1),imagesc(HL3);
%subplot(3,2,3),imagesc(LH3);
%subplot(3,2,5),imagesc(HH3);
%colormap(gray);
%subplot(3,2,2),imagesc(HL3p);
%subplot(3,2,4),imagesc(LH3p);
%subplot(3,2,6),imagesc(HH3p);
%colormap(gray);
clear HL4 LH4 HH4 z;
%====================================
% Processing scale 2^2

[HL2p,M_hl2]=rem_noise_adapt(HL2,HL3,sig_lh2,Thr_factor,W);
[LH2p,M_lh2]=rem_noise_adapt(LH2,LH3,sig_lh2,Thr_factor,W);
[HH2p,M_hh2]=rem_noise_adapt(HH2,HH3,sig_hh2,Thr_factor,W);

Scale=2
%figure
%subplot(3,2,1),imagesc(HL2);
%subplot(3,2,3),imagesc(LH2);
%subplot(3,2,5),imagesc(HH2);
%colormap(gray);

213

%subplot(3,2,2),imagesc(HL2p);
%subplot(3,2,4),imagesc(LH2p);
%subplot(3,2,6),imagesc(HH2p);
%colormap(gray);

clear HL3 LH3 HH3;
%====================================
% Processing scale 2^1

Scale=1

[HL1p,M_hl1]=rem_noise_adapt(HL1,HL2p,sig_lh1,Thr_factor,W);
[LH1p,M_lh1]=rem_noise_adapt(LH1,LH2p,sig_lh1,Thr_factor,W);
[HH1p,M_hh1]=rem_noise_adapt(HH1,HH2p,sig_hh1,Thr_factor,W);
%figure
%subplot(3,2,1),imagesc(HL1);
%subplot(3,2,3),imagesc(LH1);
%subplot(3,2,5),imagesc(HH1);
%colormap(gray);
%subplot(3,2,2),imagesc(HL1p);
%subplot(3,2,4),imagesc(LH1p);
%subplot(3,2,6),imagesc(HH1p);
%colormap(gray);

clear LH2 HL2 HH2 LH1 HL1 HH1;

%===
% Reconstruction
%===

 %A2p=iwt3det_spline(A3-sigma,HL3p,LH3p,HH3p,2);
 A1p=iwt3det_spline(A2-sigma,HL2p,LH2p,HH2p,1);
 A0p=iwt3det_spline(A1p,HL1p,LH1p,HH1p,0);

 Xden=abs(A0p/R).^0.5;

figure('units','normalized','position',[0.05 0.1 0.3 0.8]);
subplot(2,1,1),imagesc(Xnoisy); title('Input image');
subplot(2,1,2),imagesc(Xden); title('Denoised image');
colormap(gray);

clear A3 A4
clear HL1p HL2p HL3p LH1p LH2p LH3p HH1p HH2p HH3p;

if(Ref=='y')
 Ps=std2(Xclean);
 Pn=std2(Xclean-Xnoisy);
 Prn=std2(Xclean-Xden);

 snr_input=20*log10(Ps/Pn)
 snr_res=20*log10(Ps/Prn)

214

 MSE_res=mean(mean((Xclean-Xden).^2));
 MSE_input=mean(mean((Xclean-Xnoisy).^2));
 PSNR_input=10*log10(255^2/MSE_input)
 PSNR_res=10*log10(255^2/MSE_res)
end

%==
% Save result

Save_image_mat=input('Save the result as a mat file? y/n ','s')

if (Save_image_mat=='y');

Filename=strcat(image_name,'_linfit_T',num2str(Thr_factor),'_W',num2str(WS

),'.mat');
 X=Xden;
 WindowSize=WS;
 if(Ref=='y')

save(Filename,'X','snr_input','snr_res','PSNR_input','PSNR_res','WindowSiz

e','Thr_factor');
 else
 save(Filename,'X','WindowSize','Thr_factor');
 end
end

Save_image_tif=input('Save the result as tif image? y/n ','s')

if (Save_image_tif=='y');

Filename=strcat(image_name,'_linfit_T',num2str(Thr_factor),'_W',num2str(WS

),'.tif');
 X=Xden;
 X(X<0)=0;
 X(X>255)=255;
 imwrite(uint8(X),gray(256),Filename,'tif');
end
function Xden=genlik_MRI_fun(Xnoisy,Thr_factor,WindowSize);

 [M,N]=size(Xnoisy);
 Xsqmag=abs(Xnoisy).^2;
 W=round((WindowSize-1)/2);

 %---
 %Linear rescaling - for the sake of a faster computation in later steps
 R=1000/max(max(Xsqmag));
 Xsqmag=Xsqmag*R;
 %---

215

 [A1,HL1,LH1,HH1]=wt3det_spline(Xsqmag,0);
 [A2,HL2,LH2,HH2]=wt3det_spline(A1,1);
 [A3,HL3,LH3,HH3]=wt3det_spline(A2,2);
 [A4,HL4,LH4,HH4]=wt3det_spline(A3,3);

 sigma=thr_univ(HH1);
 SIGMA_HH=[1.00 0.22 0.09 0.04]*sigma;
 SIGMA_LH=[0.79 0.25 0.11 0.05]*sigma;

 sig_hh1=SIGMA_HH(1);
 sig_hh2=SIGMA_HH(2);
 sig_hh3=SIGMA_HH(3);
 sig_hh4=SIGMA_HH(4);

 sig_lh1=SIGMA_LH(1);
 sig_lh2=SIGMA_LH(2);
 sig_lh3=SIGMA_LH(3);
 sig_lh4=SIGMA_LH(4);

 sigma=sig_hh1; %This is an estimate of R*2*NoiseStd^2 because we are

processing the square magnitude!

%====================================
% Processing scale 2^3
[HL3p,M_hl3]=rem_noise_adapt(HL3,HL4,sig_lh3,Thr_factor,W);
[LH3p,M_lh3]=rem_noise_adapt(LH3,LH4,sig_lh3,Thr_factor,W);
[HH3p,M_hh3]=rem_noise_adapt(HH3,HH4,sig_hh3,Thr_factor,W);
clear HL4 LH4 HH4 z;
%====================================
% Processing scale 2^2
[HL2p,M_hl2]=rem_noise_adapt(HL2,HL3,sig_lh2,Thr_factor,W);
[LH2p,M_lh2]=rem_noise_adapt(LH2,LH3,sig_lh2,Thr_factor,W);
[HH2p,M_hh2]=rem_noise_adapt(HH2,HH3,sig_hh2,Thr_factor,W);
clear HL3 LH3 HH3;
%====================================
% Processing scale 2^1
[HL1p,M_hl1]=rem_noise_adapt(HL1,HL2p,sig_lh1,Thr_factor,W);
[LH1p,M_lh1]=rem_noise_adapt(LH1,LH2p,sig_lh1,Thr_factor,W);
[HH1p,M_hh1]=rem_noise_adapt(HH1,HH2p,sig_hh1,Thr_factor,W);
clear LH2 HL2 HH2 LH1 HL1 HH1;
%===
% Reconstruction
%===
 %A2p=iwt3det_spline(A3-sigma,HL3p,LH3p,HH3p,2);
 A1p=iwt3det_spline(A2-sigma,HL2p,LH2p,HH2p,1);
 A0p=iwt3det_spline(A1p,HL1p,LH1p,HH1p,0);

 Xden=abs(A0p/R).^0.5;
 clear A3 A4
 clear HL1p HL2p HL3p LH1p LH2p LH3p HH1p HH2p HH3p;
function [fima]=mixingsubband(fimau,fimao)

s = size(fimau);

216

p(1) = 2^(ceil(log2(s(1))));
p(2) = 2^(ceil(log2(s(2))));
p(3) = 2^(ceil(log2(s(3))));

pad1 = zeros(p(1),p(2),p(3));
pad2 = pad1;
pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);

[af, sf] = farras;
w1 = dwt3D(pad1,1,af);
w2 = dwt3D(pad2,1,af);

w1{1}{3} = w2{1}{3};
w1{1}{5} = w2{1}{5};
w1{1}{6} = w2{1}{6};
w1{1}{7} = w2{1}{7};

fima = idwt3D(w1,1,sf);
fima = fima(1:s(1),1:s(2),1:s(3));

% NAN checking
ind=find(isnan(fima(:)));
fima(ind)=fimau(ind);

% negative checking (only for rician noise mixing)
ind=find(fima<0);
fima(ind)=0;

% s = size(fimau);
%
% p(1) = 2^(ceil(log2(s(1))));
% p(2) = 2^(ceil(log2(s(2))));
% p(3) = 2^(ceil(log2(s(3))));
%
% pad1 = zeros(p(1),p(2),p(3));
% pad2=pad1;
% pad1(1:s(1),1:s(2),1:s(3)) = fimau(:,:,:);
% pad2(1:s(1),1:s(2),1:s(3)) = fimao(:,:,:);
%
% [af, sf] = farras;
% w1 = dwt3D(pad1,1,af);
% w2 = dwt3D(pad2,1,af);
%
% w1{1}{1} = (w1{1}{1} + w2{1}{1})/2;
% w1{1}{2} = (w1{1}{2} + w2{1}{2})/2;
% w1{1}{3} = w2{1}{3};
% w1{1}{4} = (w1{1}{4} + w2{1}{4})/2;
% w1{1}{5} = w2{1}{5};
% w1{1}{6} = w2{1}{6};
% w1{1}{7} = w2{1}{7};
%
% fima = idwt3D(w1,1,sf);

217

% fima = fima(1:s(1),1:s(2),1:s(3));

% BFILTER2 Two dimensional bilateral filtering final stage.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

218

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end
 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);

219

B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;

 end
 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);
% BFILTER2 Two dimensional bilateral filtering final stage.
%
%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
 error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
 min(A(:)) < 0 || max(A(:)) > 1
 error(['Input image A must be a double precision ',...
 'matrix of size NxMx1 or NxMx3 on the closed ',...
 'interval [0,1].']);
end

220

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
 numel(w) ~= 1 || w < 1
 w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
 numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
 sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
 B = bfltGray(A,w,sigma(1),sigma(2));
else
 B = bfltColor(A,w,sigma(1),sigma(2));
end

%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax);

 % Compute Gaussian intensity weights.
 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));
 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 B(i,j) = sum(F(:).*I(:))/sum(F(:));

 end

221

 waitbar(i/dim(1));
end

% Close waitbar.
close(h);

%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
 A = applycform(A,makecform('srgb2lab'));
else
 A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
 for j = 1:dim(2)

 % Extract local region.
 iMin = max(i-w,1);
 iMax = min(i+w,dim(1));
 jMin = max(j-w,1);
 jMax = min(j+w,dim(2));
 I = A(iMin:iMax,jMin:jMax,:);

 % Compute Gaussian range weights.
 dL = I(:,:,1)-A(i,j,1);
 da = I(:,:,2)-A(i,j,2);
 db = I(:,:,3)-A(i,j,3);
 H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));

 % Calculate bilateral filter response.
 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
 norm_F = sum(F(:));
 B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
 B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
 B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;
 End

222

 waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
 B = applycform(B,makecform('lab2srgb'));
else
 B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

