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Abstract

Late blight causing Phytopthora infestans (Mont.) de Bary largely depends on weather
parameters such as temperature and relative humidity for survival, spread and its
ability to attach and infect new plants. The variations in weather across different
agro-ecological zones can be used to explain the different levels of disease severity
experienced across these regions.

Potato late blight disease evaluation data from five locations was coupled with GIS-
linked weather data. A series of neural network models were developed and validated
with 10-fold cross validation and the optimal model selected based on accuracy
achieved on validation set. The selected model had 1 hidden layer with 14 nodes
achieving an accuracy of 88% in the validation set. The final model was used to predict
disease severity with 89% accuracy on new data. It was also found that the number
of precipitation days and number of days with temperature and relative humidity
favorable to disease development were amongst the top significant variables in the
model hence a target for monitoring.

This model can be used to estimate the expected late blight severity in a target region
hence support the decisions on the appropriate varieties and management regimes to
be used, reducing yield loss and excessive use of fungicides.
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1 Introduction

1.1 Background

Potato diseases have been identified as the major constraint affecting production leading
to huge yield losses and high management cost. In Kenya, potato late blight is the second
major potato disease with over 67% prevalence after bacterial wilt (Kaguongo et al. 2010),
causing 30 to 75% yield losses and even up to 100% loss in susceptible varieties (Mariita,
Nyangeri, and Makatiani 2016). Potato is an important crop in Kenya with the total area
estimated at 192,341 hectares and an average yield of 7.9 tonnes per hectare in 2017
according to FAOSTAT, 2017. Most of the production is done by small-scale farmers
concentrated on the highland areas (1500 - 3000 masl) under rain fed conditions (Muthoni,
Nyamongo, and Mbiyu 2017). The weather patterns vary in different areas influencing
the crop productivity and disease incidences. Figure (1.1) and Table (1.1) show the
agro-climatic zones of Kenya with their respective characteristics. These zones differ in
amounts received for precipitation, temperature and relative humidity, hence introducing
variations in the disease risk.

Crop disease prediction models are based on the interaction between a susceptible host
plant and a pathogen under favorable weather conditions; constituting the disease triangle.
Potato late blight disease is caused by Phytophthora infestans (Mont.) de Bary and leads
to serious production losses through premature defoliation of the potato plants and further
during storage by infected tubers. Late blight is a polycyclic disease whose development
is depend on the host plant, environment, the pathogen and the management measures
applied to the exposed fields. The pathogen depends on weather factors for survival, spread
and ability to attach to and infect more plants. Shifts in weather conditions may lead to
favourable conditions for the disease development hence greatly affect production. The
continuous cultivation of the crop in the growing areas ensures abundant pathogen to
cause late blight through out the year (Muchiri et al. 2009), posing a challenge in the
disease management which is mainly by use of fungicides (Nyankanga et al. 2004).

A system is required to link the weather data with the disease pressure and severity for
particular region, so that decisions can be made on the selection of cultivars and application
of management technologies to ensure optimal crop performance with reduced cost and
negative environmental impact due to excessive use of fungicides. A disease model that
provides a magnitude of the disease pressure for a given agro-ecological zone under the
existing weather conditions would be a great tool in deciding on which varieties to expose
to various disease levels for resistance evaluation and also for selection of the best suited

http://www.fao.org/faostat/en/#data/QC
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varieties for a site. Therefore, a successful disease forecasting scheme should be reliable,
simple for the target users and should lower production cost compared to the existing crop
management practices.

Figure 1.1. Agro-climatic zones in Kenya and the selected study sites

Table 1.1. Characteristics of agro-climatic zones in Kenya

Agro-Climatic Zones Classification Moisture Index (%) Annual rainfall (mm) Land Area (%)

Zone I Humid >80 1100-2700 2
Zone II Sub-humid 65 - 80 1000-1600 5
Zone III Semi humid 50 - 65 800-1400 5
Zone IV Semi humid-Semi Arid 40 - 50 600-1100 5
Zone V Semi Arid 25 - 40 450-900 15
Zone VI Arid 15 - 25 300-550 22
Zone VII Very Arid 150-350 46
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1.1.1 Potato late blight disease development cycle

Figure 1.2. Late blight development cycle

Sporangia from volunteer plants, infected seed or piles of discarded potatoes are carried by
wind to the leaf surfaces. The mycelium starts to grow when temperature and moisture
are favorable, invading and killing the plant cells. Symptoms appear three to seven days
post infection as lesions. The fungus grow sporangiophores which produce more sporangia
starting a new cycle of infection. Tubers can be infected when rain water washes down
the sporangia and zoospores from the leafs into the soil (Figure 1.2). Weather parameters
have been found to influence the pathogen’s dispersal capability and the ability to attach
to new host plants.

With the emergence of smart farming concept, there is a continued development of
high precision algorithms that help make agriculture more efficient and more effective.
Several algorithms have been employed in the area of crop management assisting in
yield prediction, crop quality control, weed detection and disease management (Yang
and Guo 2017). Artificial neural networks have found a wide scope of applications in
precision agriculture ranging from acquisition of meteorological data, disease forecasting,
and yield prediction - tasks that involve huge calculations and require quick execution.
Neural networks are inspired by the human brain functionality and can detect complex
patterns and relationships between different data structures and extract high dimensional
interactions. They can be used to solve both classification and regression problems with a
high degree of accuracy and performance.
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A multilayer perceptron neural network consists of neurons arranged in successive layers
from input to output layer through the hidden layer(s). It can therefore be interpreted as
a simple input-output model, with weights and biases as the free parameters in the model.
During the training phase, the model compares its own output to the target output and
tries to minimize the difference through a learning algorithm.

1.2 Problem statement

Late blight leads to huge losses in terms of yield and cost of managing the disease in fields.
The spatial variations in climatic conditions can be related to the disease risk to provide an
insight on the right choice of varieties to expose to the different risk areas. This will reduce
losses associated with the disease and also the environmental degradation caused by overuse
of fungicides. The proposed study focuses on the use of artificial neural networks which is
a generalization of logistic regression able to detect any possible interactions between the
predictor variables to predict late blight disease response in unobserved environments.

1.3 Objectives

1.3.1 General Objectives

The main purpose of this study is to use multi-environment late blight data alongside
weather data to develop a model for predicting late blight disease pressure in unobserved
environments characterized by their weather patterns .The study will use artificial neural
network model architecture to model both agronomic and weather data across seasons an
environments.

1.3.2 Specific Objectives

1. To aggregate data on existing multi-environment trial data with past geo-linked weather
data.

2. To develop a neural network model using crop and weather data.

3. To use the model to predict disease response in unobserved conditions.

1.4 Significance/Justification

Due to time, resources and financial constraints, it makes it hard to evaluate performance
of varieties for selection in different environments. This model will enable users to simulate
disease risk in new environments and help in deciding the best suited varieties for a
particular zone, thus reducing on time and cost of management.
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1.5 Limitation

This study assumes that late blight disease is present in all the selected sites and may not
apply to cases where the pathogen is not present.

1.6 Outline

The following sections include a detailed review of machine learning models used in
disease forecasting and models that have been specifically applied to forecasting of potato
late blight disease. The methodology describes procedures used for data acquisition
and preparation, a detailed description on artificial neural network model creation and
evaluation. The results on data preparation, model selection and evaluation are given and
interpreted in the results section. There is a detailed discussion on the obtained results
and a conclusion are given in the discussion section. Included is also an appendix on the
code used to develop and test the model.
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2 Literature Review

The chapter will focus on providing details on the potato late blight disease, machine
learning and precision agriculture models that have been used to monitor potato productivity.

2.1 General overview

2.1.1 Review of models used in late blight

Several predictive models have been developed and used to explain the the effects of
crop diseases under different climatic conditions (Hijmans, Forbes, and Walker 2000;
Crane-Droesch 2018; Rizzo, Conklin, and Dougherty 2003; Sannakki et al. 2013; Gu et al.
2016). Weather parameters such as temperature, intensity and duration of solar radiation,
precipitation and relative humidity are common in most of these models as they largely
affect the host-pathogen interaction hence determine whether a disease occurs or not.

The pathogen causing potato late blight depends a lot on the prevailing weather conditions
as these determine the pathogen’s spread and survival. Several models have tried to explain
how and which of these parameters should be monitored in order to predict the existence
or magnitude of late blight infection.

Initial models were based on a combination of weather parameters which included night time
dew, night temperature, average cloudiness and temperature developed by van Everdingen.
The model was used to predict late blight disease within 14 days of favorable conditions
in Holland (Henderson, Williams, and Miller 2007). The model was later modified by
Beaumont (1947) to include temperature-humidity rule in defining the favorable days.
Prediction was made 2 days when minimum temperature was above 10oC and relative
humidity above 75% in the UK.

Cook (1949) developed a simulation based on daily mean temperature and rainfall starting
at the onset of planting season. Farmers were advised to apply fungicides following a
build-up of rainfall and temperature beyond a certain threshold. Hyre classified Cook’s
days as either favoring or not favoring the disease initiation. Favorable days had the five
day moving average temperature below 25.6oC and for the previous 10 days with a total
precipitation of >3.0 cm. Smith considers favorable conditions to be 2 consecutive days
with 10oC minimum temperature and over 11hr exposure to relative humidity above 90%.
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Wallin (1953) introduced severity values for forecasting initial occurrence and subsequent
dispersion of late blight. The severity values are numbers assigned to specific combinations
between periods with relative humidity greater than 90% and mean temperature during
these periods. Initial occurrence of the disease was predicted within a fortnight after 18-20
severity value accumulation from the day of emergence. BLITECAST (Krause 1976) was
developed to combine the Wallin and Hyre models achieving success in application in North
America. Farmers could send weather data from potato farms to the forecasting center
and receive recommendations. The regions practical to BLITECAST were humid, with
high rainfall and frequent yearly blight incidences and using such humid based models may
not be applicable to Kenya where there is increased number of unfavorable conditions.

2.1.2 Artificial Neural Network Methods

Shastry, Sanjay, and Deshmukh (2016) has compared the prediction efficiency for ANN
and Multiple linear regression (MLR) to predict wheat yield using weather parameters and
nature of the soil. ANN was found to have a higher performance than a regular MLR
on the test dataset. The study shows that the ANN model was improved by varying the
number of perceptrons and hidden layers which increased R2 at a lower prediction error.

Alves et al. (2017) investigated the prediction capacity of ANN to obtain AUDPC values for
tomato late blight using fewer evaluations. Different combinations of the evaluation data
points representing the percent leaf area damaged by the pathogen at three days intervals.
The ANN architecture was Multilayer perceptron (MLP) with one to three neuron for
the input layer, two to sixteen neurons for the hidden layer established iteratively and a
single output node. The model used logistic sigmoid and hyperbolic tangent activation
functions. The studied model predicted AUDPC values with correlation of 0.94 with
two evaluations and 0.97 with three evaluations between the observed and the predicted
AUDPC values. This could translate to reduced investment in human, time and economic
resources dedicated to screening the fields multiple times.

Vianna, Cunha, and Oliveira (2017) has evaluated a computational approach to early
detection of tomato late blight by using a pair of two multi perceptron artificial neural
networks to analyze digital images from fields and classify the image pixel. One ANN
identifies the healthy leaf areas while the other ANN identifies the damaged areas. The
output from the two is combined to produce a final classification with the injured areas
highlighted with 97% accuracy. This can be used as an early detection system for large
fields and assist in timely application of control measures employed.

Yang and Guo (2017) has reviewed the use of machine learning algorithms in plant disease
prediction. The study highlights the use of Naïve Bayes, SVM and ANN in detection,
identification and prediction of crop disease and the need to focus more on prediction and
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quantification models than identification and classification problems as implied by precision
agriculture.

Sharma, Singh, and Singh (2018) studied potato late blight prediction from weather
variables using ANN while comparing three activation functions for the model. The results
shows that a maximum prediction accuracy of 90.9% when using the logistic activation
function, outperforming ReLU and hyperbolic tangent activation functions on the test
dataset. Taylor et al. (2003) also compared the efficiency of five predictive models for
potato late blight with the goal to improve the accuracy of disease alert system. Among
the evaluated models, NegFry (Hansen 1995), which combines a negative prognosis model
with a weather element based model was the most ideal predictive model for a 10 day alert
system.

Maina (2016) and Toroitich (2017) have studied disease forecasting by ANN in Kenya.
Maina explored the use of a vision based model to classify maize diseases from images
taken from maize fields
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3 Methods

The model to predict disease pressure based on weather variables uses data from past
years coupled with variety performance data under different environments and treatments.

3.1 Data sources and Data preparation

3.1.1 Agronomic data

Late blight evaluation data was obtained from field experiments performed between years
2009 and 2015 in Kisima, Koibatek, Limuru, Njabini and Kabete regions (Kromann et al.
2012). Two-way factorial strip-plot design was used in each site with late blight treatment
and potato genotypes as the factors. Late blight disease occurred naturally in all the
experiments. Percentage leaf area damaged by late blight was assessed and recorded
from one month after planting until there was 100% infection on control experiments on
susceptible genotypes. The disease assessments were used to calculate area under disease
progress curve (AUDPC) according to Shaner (1977) :

AUDPC =
[ n−1∑

i=1
[(yi + yi+1)/2]× (ti+1 − ti)

]
, (3.1)

where yi and yi+1 are the percentages of damaged leaf area observed between time ti and
ti+1 and n is the total number of evaluations.

Table 3.1. Sample field experiment data showing disease scores for different treatments and
varieties across sites and seasons

site season treatment variety audpc raudpc year

UoN SR Control Arka 4998.00 0.89 2010
Kabete SR Control Tigoni 581.00 0.09 2011
Njabini LR Phosphonate Kenya Karibu 91.00 0.02 2010
Limuru LR Agrifos Shangi 1168.85 0.25 2014
Limuru LR Fosphite Asante 1285.09 0.27 2014

UoN LR Control Asante 1074.50 0.16 2011
UoN SR Fosphite Mavuno 2352.00 0.42 2010

Koibatek SR Ridomil Kenya Karibu 857.50 0.27 2010
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In order to compare disease incidences across multiple environments, relative Area Under
Disease Progress Curve (rAUDPC) was calculated by dividing the AUDPC with the highest
value expected, assuming 100% disease incidence (Table 3.1). Mean group clustering
was used to define the varieties using the rAUDPC estimates of the control experiments
accordin to a hierarchical clustering method proposed by Scott and Knott (1974), where
the varieties with the lowest means were taken to be the representatives of the most
resistant varieties . Mean grouping was also done on the treatments where the groups
with the lowest means were considered the most effective treatments. Disease incidence
was split to generate three categories according to the relative AUDPC scores.

3.1.2 Weather data

Past daily weather data on temperature, precipitation, relative humidity and windspeed was
obtained from NASA POWER using geo-points for all the sites. The GIS-linked weather
data for all the sites was combined and model variables extracted according to the growing
seasons. These are factors known to favor disease development during the growing season.

Table 3.2. Weather variables calculated from 2009 to 2015 for 5 sites for construction of a
neural network model

Variable (Units) Description

FDTP (days) Number of days with 5 day average temperature below 25oC

and a 10 day precipitation total of 30mm or above
FDTRh (days) Number of days with temperature between 10 and 25oC and

relative humidity of above 80%
AP10d (mm) Average precipitation for 10 consecutive days during the grow-

ing season
PD (days) Number of days with precipitation of 0.25 mm or higher
PT (mm) Total Precipitation over the growing season

MRH Mean relative humidity over growing season
Tmax5 Average Maximum temperature for 5 consecutive days
Tmin5 Average Minimum temperature for 5 consecutive days
Tav5 Average temperature for 5 consecutive days

WIND Average Wind Speed at 2 meters above the surface

Both datasets were combined to make the working data for model development.

3.2 Model description

3.2.1 Introduction: The logistic function

https://power.larc.nasa.gov/data-access-viewer/
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The logistic/sigmoid function is a probability soft threshold function that maps output to
a range between 0 and 1.

σ(z) = 1
1 + e−z

(3.2)

Large negative z values makes the denominator to grow exponentially and consequently
σ(z) approaches 0. Large positive z values shrink the e−z term to zero hence σ(z)
approaches 1.

Weighted input sum, z =
d∑

i=0
wixi (3.3)

The hypothesis h(x) = σ(z) is interpreted as a probability of the output given x and the
signal z = w>x referred to as the risk score. In order to calculate the error gradient, the
derivative of the sigmoid function, ∂

∂z
σ(z) is required. This can be obtained as:

σ′(z) = ∂
∂z

(
1

1+e−z

)
= e−z

(1+e−z)2

= 1+e−z−1
(1+e−z)2

= 1+e−z

(1+e−z)2 −
(

1
1+e−z

)2

= σ(z)− σ(z)2

σ′(z) = σ(z)(1− σ(z))

(3.4)

Figure 3.1. A representation of Linear/Logistic regression as a computation node

A logistic regression employs a link function that maps the output to a probability range of
0 and 1. The goal is to minimize the negative log-likelihood of the Bernoulli distribution.
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3.2.2 Artificial Neural network

Artificial neural network (ANN) resembles the computational model of the brain with a
characteristic node (artificial neuron) and node connectivity network. A neural network can
be viewed as a series of many stacked logistic regressions that generate features from the
input data and an output layer. The model structure contains a series of highly connected
nodes (neurons) with each connection having a different weight.A basic node consists of
three elements. A set of inputs (X1, X2 . . . , Xn) characterized by weights which define
their contribution to the nodes computation, a summation of all the input signals weighted
by their respective signal strengths and an activation function which defines the output of
the node.

Figure 3.2. A feedforward-back propagation multilayer perceptron neural network

The activation function takes the weighted sum of all the inputs to a particular node,
transforms it and generates an output. Given a set of inputs, x1, x2, the weighted sum is
a linear discriminator given by:

f(x1, x2) = b+ w1x1 + w2x2 (3.5)

f(X) = b+
∑

i

wixi (3.6)

In regression, the predicted output is given while in classification, the predicted class is
given by

Class =

1, if f(X) > 0
0 if f(X) ≤ 0

, (3.7)
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where wi is the signal weight for each neuron and b term is the bias which controls how
the neuron outputs close to 0 or 1, irrespective of the weights. If n variables are added to
equation (3.5), the linear function for the weighted sum becomes

f(x) = b+ w1x1 + w2x2 + · · ·+ wnxn (3.8)

In matrix notation,

f(x) = b+W>X where W =



w1

wj

...
wm


and X =



x1

xi

...
xn


(3.9)

Setting the original weighted sum of inputs to a variable z, we have

z = b+
∑

i

wixi (3.10)

and transforming the sum z using the sigmoid activation function σ(z) condenses the
output to a range between 0 and 1.

A neural network may consist of several hidden layers between the input and the output
layers. The hidden layers prevent the model from mapping inputs directly to the output.
The effect of the inputs on the model output is highly interdependent and hidden layers
enable the model to capture the the fine interactions among the input variables which
affect the final model output. Each of the neurons in the hidden layers combine the inputs
differently to learn different characteristics of the data and the final model output is a
function of these characteristics instead of the raw input values. The neural network model
learns by finding a set of approximate weights that can generalize well on new data.

3.2.3 Model Learning Process

Back propagation is a widely used algorithm for training multilayer networks by minimization
of the sum of the squared errors using gradient descent methods. The signal is transferred
from the input neurons through the hidden layers to the output layer by a feed forward
mechanism. Initially, the random weights are assigned to the network to obtain the initial
error estimate then the weights are adjusted to obtain the lowest possible error value
through gradient descent method which attempts to determine which direction the loss
function steeps downwards the most with respect to adjusting the weight parameters. A
loss function is defined in order to determine how good the line of best fit is. It is a
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measure of the distance between the model output O given a set of inputs X and the
actual target value of y. A common loss function is the mean squared error (MSE) which
is the average squared difference between the model output and the target y value.

E(X, θ) = MSE = 1
n

∑
i

(yi −Oi)2 (3.11)

The gradient of the loss function is then calculated with respect to all the parameters to
find the direction in which the function steeps downhill the most using chain rule and
product rule in differential calculus. The gradient is a vector of partial derivatives of the
loss function with respect to each variable.

3.2.4 Back propagation algorithm

Back propagation is a supervised learning algorithm based on error correction and the
minimization of the error function with respect to the weights of the neural network. The
error function can be decomposed into a sum of all the error terms for all input-output
pairs, thus the derivatives can be calculated for individual terms and then summed at the
end - the derivative of a sum of functions is the sum of the derivatives of each function.
The derivation begins by applying chain rule to the error function and then steps back
into the hidden layers.

Notation

• xj : Input to node j

• Wjk : Connection weight from node j to node k

• σ(z) = 1
1+e−z : The sigmoud activation/transfer function

• Oj : Output of node j

• yj : Target value of node j in the final layer

The output layer: Given a set of input variables x1 to xn, the output of node k the final
layer Ok and the respective observed levels for the dataset, yk, the error can be expressed
as:

E = 1
2
∑
k∈K

(Ok − yk)2 (3.12)
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If E is the error obtained from a single network iteration, we need to calculate the rate of
change of E with respect to connectivity weights, ∂E

∂Wjk
, so that it can be minimized. For

the nodes in the final output layer;

∂E

∂Wjk

= (Ok − yk) ∂

∂Wjk

Ok (3.13)

The output at Ok is obtained by passing the weighted sum of inputs to the output node k
to the transfer function σ(zk).

∂E

∂Wjk

= (Ok − yk) ∂

∂Wjk

σ(zk) (3.14)

Substituting σ(zk) with its derivative in Equation 3.4 above and applying the chain rule
we get

∂E

∂Wjk

= (Ok − yk)σ(zk)(1− σ(zk)) ∂

∂Wjk

zk (3.15)

which can be simplified to

∂E

∂Wjk

= (Ok − yk)Ok(1−Ok)Oj (3.16)

since the derivative of the weighted sum zk with respect to the input weight Wjk is the
output of the node j, Oj. We can define δk to be the expression (Ok − yk)Ok(1−Ok)
involving k and rewrite the error derivative as

∂E

∂Wjk

= Ojδk (3.17)

where δk = (Ok − yk)Ok(1−Ok).

The hidden layer: We compute the derivative of the error with respect to the weights in
the hidden layer as follows;-

∂E

∂Wij

= ∂

∂Wij

1
2
∑
k∈K

(Ok − yk)2 (3.18)

∂E

∂Wij

=
∑
k∈K

(Ok − yk) ∂

∂Wij

Ok (3.19)

∂E

∂Wij

=
∑
k∈K

(Ok − yk) ∂

∂Wij

σ(zk) (3.20)
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∂E

∂Wij

=
∑
k∈K

(Ok − yk)σ(zk)(1− σ(zk)) ∂zk

∂Wij

(3.21)

∂E

∂Wij

=
∑
k∈K

(Ok − yk)Ok(1−Ok) ∂zk

∂Oj

· ∂Oj

∂Wij

(3.22)

∂E

∂Wij

= ∂Oj

∂Wij

∑
k∈K

(Ok − yk)Ok(1−Ok)Wjk (3.23)

∂E

∂Wij

= Oj(1−Oj)
∂zj

∂Wij

∑
k∈K

(Ok − yk)Ok(1−Ok)Wjk (3.24)

∂E

∂Wij

= Oj(1−Oj)Oi

∑
k∈K

(Ok − yk)Ok(1−Ok)Wjk (3.25)

Recalling the expression of δk, Equation 3.25 can be rewritten as

∂E

∂Wij

= OiOj(1−Oj)
∑
k∈K

δkWjk (3.26)

We can also define all terms except Oi to be δj such that

∂E

∂Wij

= Ojδj (3.27)

where
δj = Oj(1−Oj)

∑
k∈K

δkWjk

Once all the δ parameters have been calculated, a gradient descent can be performed
by adjusting each of the connectivity weights to achieve a lower error rate. The back
propagation algorithm can be summarized as follows:

1. With the inputs, run the network forward to obtain the model output

2. Calculate δk for each of the output layer nodes where δk = Ok(Ok − yk)(1−Ok)

3. Calculate δj for each of the hidden layer nodes where δj = Oj(1−Oj)
∑

k∈K δkWjk

4. Update the network weights as follows
Given ∆W = −αδlOl−1 where l = network layer and α is the learning rate.

Wnew ← Wold + ∆W
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The hidden layers introduce several local minima and stochastic gradient descent (SGD) is
used to overcome this by randomizing the observations and updating the weights after
each sample has been propagated through the network. Too low of a learning rate makes
the learning process very slow. Too high of a learning rate will result in no weight update
at all and the model may fail to converge. A negative is introduced to ensure that the
gradient steeps downwards.

The process of training a neural network model iterates trough a series of weight modification
cycles known as epochs. Once new weights have been set, the inputs are feed into the
model resulting into a new error value and then another back propagation process begins.
This goes on until the model converges - achieving the best accuracy for the given set of
conditions.

3.2.5 Model evaluation

The trained model is tested on new data to asses the quality of predictions. The metrics
may be in form of a score, a matrix or a curve. Some of the model metrics can be calculated
using the true positive(tp), true negative (tn), false positive (fp) and false negative(fn)
values from the confusion matrix. The model metrics used in this study include:

Confusion Matrix

This is a matrix of the model’s predicted classes against the actual classes. It shows the
extend to which the model is confused between the classes and highlights instances where
one class is confused with the other. The leading diagonal shows the models correct
classifications.

Classification Accuracy

This is the ratio of correctly predicted classes to the total number of predictions made.It is
given by the sum of the diagonal values of the confusion matrix divided by the entire table.

Accuracy = tp+ tn

tp+ tn+ fp+ fn
(3.28)
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Kappa Statistic

This is computed as a measure of agreement between predictions and observed labels.
It compares the overall accuracy of the model to the expected random chance accuracy.
High Kappa values show shows a better classification model.

Kappa = Model Accuracy− Expected Accuracy
1− Expected Accuracy (3.29)

No information Rate

The No information Rate (NIR) metric shows the largest class percentage in the data. It is
the best guess when we decide to always pick a member of the majority class. A significant
model should perform better than a choice that always predicts the most common class.

Class-wise Precision, Recall and F-1 measure

When the class levels have non-uniform distribution, a single class may have most instances
and therefore members of this dominant class may be predicted all the time hence showing
a misleading accuracy. Precision and recall (sensitivity) metrics can be calculated for each
class to support the accuracy values achieved. Precision (Positive Predictive Value) is
the fraction of correct predictions for a particular class while Recall is the ratio of class
members that were correctly predicted. The weighted average of precision and recall is
called the F-1 Measure.

Precision = tp

tp+ fp
(3.30)

Recall(sensitivity) = tp

tp+ fn
(3.31)

F1 = 2× Precision×Recall
Precision+Recall

(3.32)

3.3 Model Development

Neural networks with different combination of hidden layers and number of neurons per
hidden layer were developed and compared to choose the best simple model that would
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best fit to the data. For the model selection, training was done on a subset of the data
and another subset was used for testing the predictive capacity of the trained model.
A 10-fold cross-validation was also done to ensure that the model does not overfit the
training data. This involved splitting the data into 10 equal portions, training on 90% of
the observations and testing on the remaining 10%, and repeating the process 3 times.
Classification models developed to explain the disease pressure using weather variables. For
classification, the late blight disease incidence was divided into five categories (1-3) with
‘1‘ indicating cases were low or no disease was observed to ‘3’ with the highest disease
recorded, while considering the relative AUDPC value . Prediction results from the model
was compared to the observed values to asses the model performance on test data. Model
accuracy on the test data was used to select the best model for classification. Accuracy
and Kappa metrics were calculated to asses the overall model performance. Class wise
performance was assessed by calculating the class precision, recall and F1 measure. All
the computations were done using R and Rstudio software.
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4 Results

4.1 Data Preparation and overview

The final dataset contained 817 cases and 14 variables. Relative risk of late blight incidence
was the response variable. 80% of the data was used to train and validate the model and
the rest was used to test the models performance on unobserved data. The cases to train
and test model performance were selected at random.

Table 4.1. Sample observations from the final dataset used in model
lb_risk season treatment variety FDTP FDTRh Tmax5 Tmin5 Tav5 AP10d PD PT MRH WIND

Low 2 c b 16.00 0.00 26.68 14.18 19.89 17.46 78.00 161.68 62.64 2.54
Medium 1 a b 45.00 43.00 23.66 13.87 18.12 48.51 82.00 444.28 78.12 1.87
Medium 1 a b 15.00 0.00 26.21 14.27 19.36 17.38 73.00 150.40 68.35 2.49

High 1 a b 57.00 30.00 23.35 13.65 18.13 50.18 85.00 427.50 77.47 1.15
Low 2 c b 16.00 0.00 26.68 14.18 19.89 17.46 78.00 161.68 62.64 2.54
Low 2 c b 16.00 0.00 26.68 14.18 19.89 17.46 78.00 161.68 62.64 2.54
Low 2 a b 50.00 11.00 25.37 14.31 19.07 34.75 87.00 319.13 71.63 2.71

Medium 1 d b 15.00 0.00 26.21 14.27 19.36 17.38 73.00 150.40 68.35 2.49
Medium 2 a a 50.00 11.00 25.37 14.31 19.07 34.75 87.00 319.13 71.63 2.71
Medium 1 b b 15.00 0.00 26.21 14.27 19.36 17.38 73.00 150.40 68.35 2.49

Varieties in the control experiments were put into 3 clusters using Scott-Knott mean
clustering method at p < 0.05 (Table 4.2 and Figure 4.1).

Table 4.2. Variety mean groups on rAUDPC of the control experiments
Variety Means Scott-Knott

(p < 0.05)

Arka 0.81 a
Nyayo 0.64 a
Desiree 0.60 a
Asante 0.47 b

Purple Gold 0.46 b
Dutch Robjin 0.45 b

Shangi 0.44 b
Tigoni 0.42 b

Mavuno 0.40 b
Dutch Robijn 0.36 b

Kihoro 0.27 c
Kenya Karibu 0.15 c

Kenya Sifa 0.09 c
Kenya Mpya 0.04 c
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The control represents the varieties genetic resistant characteristics as there is no masking
by treatment. This grouping agrees with previous studies on resistance evaluation done by
Kamuyu 2017. Similarly, the treatments were put into five clusters (Figure 4.2).
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4.2 Model Results

4.2.1 Neural Network Model

The model was trained on 651 observations, with 10 fold cross validation repeated 3 times.
The numeric variables were preprocessed by scaling between 0 and 1 and centered. 7
different model combinations were run and the optimal model chosen based on the largest
accuracy value.

Table 4.3. Resampling results across tuning parameters to select the best tune model

Model Size Decay Accuracy Kappa

Model 1 2 0.10 0.87 0.74
Model 2 6 0.13 0.87 0.76
Model 3 10 0.16 0.87 0.76
Model 4 14 0.19 0.88 0.76
Model 5 18 0.22 0.87 0.75
Model 6 22 0.25 0.87 0.75
Model 7 26 0.28 0.87 0.75

Table 4.3 and Figure 4.3 show the that the best performing model by accuracy has 14
nodes in the hidden layer, achieving an accuracy of 88%.

Accuracy (Repeated Cross−Validation)
#Hidden Units

W
ei

gh
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ay
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0.28
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0.874

0.875

0.876

0.877

0.878

0.879

0.880

Figure 4.3. Best model structure by Accuracy
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4.2.2 Network Interpretation Diagram

A network interpretation diagram for the final model show the nature of the various
connections among the network nodes. Each of the of the variables in the input layer
connects to all the computational nodes in the hidden layer, contributing to the final sum
of inputs to the node, z, either positively or negatively as shown in Figure 4.4 below.

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

season
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var_category
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FDTRh

Tmax5

Tmin5

Tav5

AP10d

PD

PT

MRH
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H1

H2
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H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

O1

O2

O3

1

2

3

B1 B2

Figure 4.4. Neural network interpretation diagram for the final model with 14 nodes in the
hidden layer. Positive connection weights in red and negative weights in blue.

4.2.3 Model Performance

Comparing the predicted labels with the actual data labels, the confusion matrix shows
most of the classifications in the main diagonal. Out of 166 labels in the test data, 148 are
correctly classified leading to 0.892 classification accuracy with a 95% confidence interval
range between 0.834 and 0.935 and only 10.8% misclassification rate (Table 4.4). A
significant accuracy level was obtained with a p− value[Acc>NIR] of 1.39× 10−9. Cohen’s
Kappa value of show that the model accuracy was 75% greater than random expected
chance accuracy.

Table 4.4. Confusion Matrix

Actual

Predicted Low Medium High
Low 34 5 0

Medium 7 109 5
High 0 1 5

Table 4.5. Statistics by Class

Low Medium High

Precision 0.87 0.90 0.83
Recall 0.83 0.95 0.50

F1 Measure 0.85 0.92 0.62
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Table 4.5 show how the model performed in correctly predicting the classes. The values
for precision, recall and F1 metrics were generally high.

Table 4.6. Distribution of the response variable

Disease Risk

Levels Low Medium High
Training 30% 62% 8%
Testing 25% 69% 6%

Predicted 23% 73% 4%

Although recall value for the third class was low compared to the others, the F1 Measure
shows that optimal levels of precision and recall were achieved in the model. The plot
below shows a precision-recall curve with an area under curve of 0.93 which means that
the model has a good class separation performance.
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Figure 4.5. Area under curve for the three classes. Multi-class area under the curve = 0.93
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4.2.4 Variable importance and feature selection

In order to select the most significant contributors to the model’s performance, the scaled
variable importance result show that the type of late blight management treatment used
has the most significant effect on the model output followed by the number of days with
precipitation of 0.25mm or higher. The number of days with favorable temperature and

Table 4.7. Top five model features ranked by scaled average variable importance across the
classes

Feature % Importance

1 Treatment category 100.00
2 PD(days) 61.85
3 FDTRh(days) 47.34
4 Variety category 41.95
5 Season 33.62

relative humidity is also a significant model feature
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5 Discussion

5.1 Data preparation and overview

Most of the selected sites fall under areas with annual precipitation above 1000mm and
relative humidity of above 60% as shown in Figure 1.1, conditions that favor the disease
development. The regions however experience different weather patterns that have an
impact on the magnitude of late blight experienced.

5.2 Model building and selection

The model selection followed a seven series of iterations with varied connectivity parameters.
Each of the model was subjected to a repeated cross validation process to ensure that
the final model fitted to the training set as well as generalizing to new dataset with a
significant accuracy. 10 - fold cross validation was performed while training model and the
best model selected with 88% accuracy on the validation set and a Kappa agreement of
76%. Cross validation introduces a form of rotational estimation while building the model
to asses the performance of the model outside the sample before applying it to the test
set. It ensure that a stable model is selected.

The presence of multiple computational nodes in the hidden layer, each producing a δ
gradient estimate might cause the model to get stuck in one of the many local minima.
To counter this, stochastic gradient descent was employed whereby weights updates were
performed after running a sample of the dataset through the model as opposed to running
the entire dataset before updating the weights. This ensure that the model does not get
stuck in local minima and achieves the best accuracy possible as the global minimum.

The best tune for final model chosen had a [13-14-3]- structure with one hidden layer and
a weight decay of 0.19 (Figure 4.4). Overall, the model was able to predict new cases
with up to 89% accuracy on the test dataset and 75% agreement between the predictions
and the data labels.

5.3 Model evaluation

The results show that the model fit performed significantly both in-sample and outside
sample by achieving a cross validation accuracy of 0.88 and a significant out-of-sample
accuracy of 0.89. This model accuracy is larger than the majority class thus the model
performs better than a prediction done by always choosing the majority class. This is an
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important measure for the selected model because the data used to train and test the
model has a high level of class imbalance as in Table 4.6, showing the ’Medium’ class
as the majority class and ’High’ class as the minority class. A model that would always
predict the majority class would have achieved a 0.69 accuracy, which is outperformed by
the final model selected. A kappa statistic validates the accuracy achieved by the model
against a random accuracy and shows a 75% agreement between predicted results and the
actual observations.

Class metrics in Table 4.5 show that the model performed well in predicting individual
classes. The probability of the model to correctly identify the classes (precision) was high
for all the three classes. The recall value was small for the "High" class compared to the
other classes. This could be due to the high level of class imbalance in the data as seen in
Table 4.6 with the third class having the least number of occurrences overall.

There is evidence, however, that all the classes have been correctly identified. This is
supported by the precision recall curve (PR-C) in Figure 4.5 above which shows an 93.3%
area under curve . In a PR-C curve, 100% area shows a perfect test while a 50% area
shows a no skill model.

5.4 Feature selection

Each of the input variables contributes a certain strength of signal, either positive or
negative, towards achieving the outcome. As shown in Figure 4.4, the intensity of the color
shows how strong an input contributes towards the final result. A variable importance
rank in Table 4.7 shows which variables contribute most across the predicted classes. The
model shows that the treatment used, the number of precipitation days, the number of
temperature - relative Humidity disease favorable days and the genotype as among the top
most important contributors to the model outcome.

Conclusion

Artificial neural network model architecture was successfully implemented to predict late
blight disease pressure using data on weather conditions and data on crop management
practices. Performing a 10-fold cross validation produced a stable model that fits the
training data well and generalized well on new datasets. The model would play a significant
role in forecasting the expected magnitude of late blight incidence to be experienced in
a particular region, given that the pathogen is present. It also highlights the weather
variables that require close monitoring as these have a significant influence on the disease
development cycle. The model can be coupled with existing late blight models to provide a
strong decision support tools for potato variety choices and the type of late blight control
measures that can be employed in various agroecological zones to minimize crop damage
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and excessive use of fungicides. To use this model, however, a few validation trials would
be required in order to calibrate the model before performing predictions.



29

6 Appendix 1

6.1 R code used for computation

6.1.1 Data partition

agro_weather <- readRDS("agro_weather.rds")
#processing data for use in training and testing model
data <- agro_weather %>%

mutate_if(is.factor, funs(match(., unique(.)))) %>%
dplyr::select(-audpc, -raudpc, -yield_tha, -year, -site) %>%
na.omit() %>%
mutate(lb_risk = factor(lb_risk)) %>%
dplyr::select(lb_risk, everything())

# create data partition
set.seed(123)
ind <- sample(2, nrow(data), replace = T, prob = c(.8, .2))
trainingDF <- data[ind == 1, ]
testDF <- data[ind == 2, ]

6.1.2 Model training

set.seed(1234)
train_params <- trainControl(method = ’repeatedcv’,number = 10,repeats = 3)

future::plan(’multiprocess’)
model_nnet_class <- caret::train(

trainingDF[-1],trainingDF$lb_risk,
method = ’nnet’,
trControl = train_params,
maxit = 500,
tuneGrid = data.frame(

#iterate through different model structures to
#select the structure with the highest accuracy
size = seq(2,28,by=4),
decay = seq(0.1,0.3, by= 0.03)
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),
#Normalize the data before training the model to improve numerical accuracy
preProcess = c(’scale’,’center’),
na.action = na.omit, # Omit any cases with missing values
trace= FALSE,skip = TRUE

)

#Testing the model performance on new data
pred_nnet <- predict(model_nnet_class, testDF)
postResample(pred_nnet, ordered(testDF$lb_risk)) %>% round(2)

6.1.3 Calculating model classwise metrics

cm_nnet <- confusionMatrix(pred_nnet, testDF$lb_risk)
cmatrix <- cm_nnet$table
n <- sum(cmatrix)
nc <- nrow(cmatrix)
dg <- diag(cmatrix)
rowsum <- apply(cmatrix, 1, sum)
colsum <- apply(cmatrix, 2, sum)
x <- rowsum / n
y <- colsum / n
acc <- sum(dg) / n
expAcc = sum(x*y)
kap <- (acc-expAcc)/(1-expAcc)

Classwise performance scores

prec <- dg / colsum
rec <- dg / rowsum
f1 <- 2 * prec * rec / (prec + rec)
x <- round(data.frame("Precision" = prec,

"Recall" = rec,
"F1 Measure" = f1),

2)
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