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Abstract

String theory is a candidate theory for a unified description of physics. Unification of

the micro and macrocosm and also of the four fundamental forces. String theory is

however plagued by conceptual potholes, chief of which is the presence of extra dimen-

sions, large or compactified. It also lacks a consistent description of spacetime. This is

the problem of quantum gravity. Causal dynamical triangulation is a framework which

seeks to quantise gravity by quantising spacetime. This can be done because it accepts

the geometrodynamic definition of gravitation from general relativity. The quantum of

spacetime is called a simplex. Spacetime is then constructed by “gluing” these simplices

together. Causal dynamical triangulation is background independent. We investigate the

possibility of generating spacetime using the modes of vibrations of strings in string the-

ory. This is done by adding a version of the Regge action, generated in causal dynamical

triangulation, to the Polyakov action of bosonic string theory. After this, the equations

of motion are derived from application of the Euler-Lagrange equations on the Polyakov

action. The resulting differential equations are solved to generate mode expansions. From

these mode expansions, we get the Virasoro operators which can be used to generate the

generators of the Lorentz algebra of the theory. The Lorentz algebra of the theory then

defines the dimensionality of the model. A similar process is performed for superstring

theory. We thust formulate a “chimeric” string model using the Ramond-Neveu-Schwarz

formalism in superstring theory. The model exhibits spacetime simplices as a type of

mode expansion of the string. It is thus be background independent. There is no effect

on the dimensionality on string theory by the new model.
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1 Chapter One: Introduction

1.1 General Introduction

Unification has been a particularly challenging problem in theoretical physics for the last

half century. Unification proposes a coherent, single, and simple description of the four

fundamental forces using one mathematical framework, replacing the current disparate

descriptions of reality: The standard model of particle physics, and the general theory of

relativity (McMahon, 2009).

Several mathematical frameworks have already been proposed.The frameworks can be

placed under two general approaches: The quantum gravity approach, and the geometro-

dynamical approach. Because of the mathematical sophistication of quantum field the-

ory, quantum gravity, which seeks a quantum field theory of gravity, is preferred to the

geometrodynamical approach. String theory (McMahon, 2009), loop quantum gravity

(Perez, 2009), and causal dynamical triangulation (Forcier, 2011) are examples of quan-

tum gravity theories.

1.2 The Problem of Quantum Gravity

There are four fundamental forces in the universe:

i)The strong force

ii)The weak force

iii)The electromagnetic force

iv)The gravitational force

Because of the work of Feynman (Feynman,1948) and Schwinger (Schwinger, 1948), there

exists a quantum theory of electromagnetism. In the theory, electromagnetic attraction

and repulsion are modeled by the exchange of virtual particles. In the case of quantum

electrodynamics, these particles are photons. This is known as the theory of quantum

electrodynamics.
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The lagrangian of quantum electrodynamics can be written as (McMahon,2008):

LQED = − 1

4µ0

FµνF
µν + iψ̄γµ∂µψ −mψψ̄ − qψ̄γµψAµ. (1.1)

where:

LQED is the Lagrangian of quantum electrodynamics,

µ0 is the magnetic permeability of space,

Fµν and F µν are the electromagnetic stress-energy tensors in covariant and contravariant

forms respectively,

i =
√
−1 is the imaginary number,

m is the mass of the electron, ψ and ψ̄ are the Dirac field and its complex conjugate

respectively,

q is the charge coupling to the free fields,

γµ are the Dirac matrices,

Aµ is the four-current.

From the action, the equations of motion can be derived. In the interaction picture,

the equations of motion can be difficult to keep track of. The coupling of these fields

represents a challenge. This informs our use of the Feynman diagram shown below, in

the case of an electron-electron scattering event(McMahon, 2009):

Figure 1.1: Feynman diagram for the scattering of electrons

The Feynman diagrams help us track of interactions and hence, calculate their probabil-

ity in quantum electrodynamics.

Similar theories exist for the strong and weak nuclear force, where the exchange particles

are gluons and W/Z bosons. The theories that describe these forces are known as quan-
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tum chromodynamics, and quantum flavordynamics respectively (Buchmuller, Ludelling

2006).

It has been shown that these theories derive their mathematical structure from the the-

ory of groups. Under these symmetry groups, it is possible to unify these theories. For

example, the symmetry group governing quantum electrodynamics is the U (1 ) symmetry

group [6]. Quantum flavordynamics on the other hand is governed by SU(2) symmetry

group. Therefore, by considering U (1 )× SU (2 ) we unify the electromagnetic and the

weak nuclear force. The resulting theory is called the electroweak theory, developed by

Sheldon Glashow (1959) and Abdus Salam (Salam and Ward, 1959).

A similar class of theories exist that seek to unify electroweak theory and quantum chro-

modynamics. These class of theories are known as grand unified theories. The quantum

field theory that describes these interactions is known as the standard model (Buchmuller

and Ludeling, 1959) .

Gravitation remains particularly challenging. The main reason is that gravitation is not

described by a quantum field theory. Gravitation is modeled by the general theory of

relativity, proposed by Einstein (1915). In general relativity, gravity is understood to be

the result of the curvature of spacetime, a four dimensional Hausdorff manifold. This cur-

vature is caused by coupling to the stress energy tensor Tµν , a relativistic generalisation

of mass. This is codified in the Einstein field equations (McMahon, 2006):

Rµν −
1

2
gµνR = κTµν . (1.2)

where:

Rµν is the Ricci tensor,

gµν is the metric which solves the Einstein Field Equations,

R is the Ricci scalar,

κ = 8πG
c4

is the coupling constant, Tµν is the stress-energy tensor.

The equations are stated without the cosmological constant. The solution of these equa-

3



tions is the metric gµν , of which the Minkowski ηµν is the simplest case:

ηµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (1.3)

The metric describes a continuous, infinitely differentiable manifold. This is inconsistent

with the general research program of quantisation.

For gravity to be unified with the other forces, it needs to be rewritten in the language

of quantum field theory: quantum gravity. There exist quantum fields that can describe

gravitation (Feynman, 1995). However, as will be expounded in the next section, the

quantisation of the fields presents a challenge because of their non-renormalizability.

Because of this, “naive” quantisation of the gravitational fields fails to be predictive

(McMahon, 2009). This is the problem of quantum gravity.

1.3 Background Independence

Background independence is the ability of a model to produce the space in which it “lives”,

using internal mechanisms(Smolin, 2009). Background independence has the mathemat-

ical benefit of making the theories that possess it coordinate free. Coordinate-free de-

scriptions have the virtue of allowing the laws of physics to be invariant with respect to

coordinate transformations. This is in general desirable for a physical theory.

An example of a theory which suffers background dependence is classical mechanics. In

the model, Euclidean vector space is clearly preferred. It assumes the axioms of Eu-

clidean space to hold true generally. While Newtonian laws hold some form of invariance

with respect to coordinate transformations, the model does not interact consistently with

classical electrodynamics. This necessitates the introduction of special relativity (McMa-

hon, 2006). The new model has a restricted notion of invariance with respect to Lorentz

transformations. General relativity removes these restrictions by introducing the notion

of general covariance (McMahon, 2006). Thus, general relativity restructures its own

4



spacetime by associating it with a variable metric tensor. By definition, tensors are

generally covariant. Thus general relativity can be said to have manifest background

independence.

The solution of the Einstein field equations is a metric which then decribes the topology

of the ambient spacetime. This is another way of defining background independence:

the ability of a model to have its ambient spacetime as solutions of equations generated

within the theory.

Quantum mechanics is also not background independent. Time is not defined within the

theory. Time is thought to be observer-defined. The role played by space in the theory is

also not clear. Quantum field theory is a relativistic generalisation of quantum mechan-

ics. The theory seeks to understand the behaviour of forces using the exchange of virtual

particles. The fields on which the particles are based are known as relativistic quantum

fields. This poses a conceptual challenge: relativity requires that space and time are

put on the same footing: all backgrounds are created equal. In standard non-relativistic

quantum mechanics, an operator exists that describes a particle’s position in space, but

none exists that can do the same for time.

Quantum mechanics is thus inconsistent with relativity. Quantum field theory resolves

this impasse by demoting the position operator to a parameter (McMahon, 2006). The

relation of space and time is parametrised by the Minkowski metric. Physically this

means that quantum field theory is defined on an external ambient spacetime. Therefore,

it is not background independent.

The status of background independence in “theory of everything” type of theories is an

active area of research. Our position is that theories of everything ought to be background

independent: they are after all theories of everything (Smolin, 2009).

This informs our current interest in string theory. We have earlier introduced string theory

as a generalisation of quantum field theory. It therefore occurs in an ambient relativistic

spacetime. By this association, string theory is able to preserve Lorentz invariance. How-

ever, with this “virtue” comes a “vice”. The theory is background dependent. There exist

schemes that can introduce background independence into string theory. An example is

5



to use AdS/CFT correspondence into the theory. AdS here refers to an Anti-De Sitter

spacetime. It is a spacetime with global negative curvature. It is a specific solution of

the Einstein field equation. CFT refers in full to conformal field theory. Such theories

maintain invariance under conformal transformations. Part of conformal transformations

is the change of scale. Thus conformal theories are scale invariant. They can be thought

of as generalizations of quantum field theories which allow string theories to be expressed

in a simpler and more useful form.

AdS/CFT correspondence postulates that a conformal field theory on the surface of an

AdS hyperplane conforms to a gravitational type theory on the volume bounded by the

surface.

However, it is not clear how AdS/CFT can be introduced for any general spacetime

topology.The correspondence has not been established for any general topological trans-

formations. Proving this to be the case will introduce some form of invariance into string

theory. It is not agreed that string theory has background independence. What is needed

is a method of generating a background internally within string theory. This will be the

main thrust of our work.

The causal dynamical triangulation model is manifestly background independent. The

theory seeks to construct spacetime from 4-simplices. The possible configurations of these

4-simplices are analogous to the possible solutions of the Einstein field equations.The

arrow that is affixed onto the 4-simplice is a primordial notion of time. It imposes di-

rectionality on the fourth dimension. While it can be argued that causality has been

imposed from external considerations to the theory, causality is a philosophical predis-

position, it is not a background. Thus it is evident that causal dynamical triangulation

is a background independent model.

6



1.4 Statement of the Problem

String theory has successfully merged the four fundamental forces. It has also shown all

the matter particles to be the result of supersymmetric transformations on bosonic states.

However, the mechanism of the generation of spacetime in the theory is not well explored.

In fact, in standard string theory, the existence of a continuous spacetime, defined by an

external theory, special relativity, is assumed. For this reason, we hold that string theory

is not background independent.

1.5 Main Objective

To establish a string-simplex duality which will enable simplex-string transformations,

thus introducing a spacetime background to string theory.

1.5.1 Specific Objectives

I. To Establish string-simplex duality for bosonic string theory.

II. To investigate the effect of string-simplex duality on the dimensionality of bosonic

string theory.

III. To generalise string-simplex duality in superstring theory.

1.6 Justification

String theory is a promising “theory of everything”. However, it is unable to describe

spacetime internally. As such, this has crippled its potential of being a self-contained

theory. The preference given to a specific spacetime may limit the development of the

theory. An example of such is the fact that limiting mechanics to a Euclidean vector space

inherently limits any possible relativistic generalisation. As such, we hold the position

that string theory needs a “richer” space. We propose one way of building such a space.

The ability of string theory to describe spacetime within its own internal mechanisms may

help us improve our understanding of the theory. This will further the aim of unification.

Unification of all forces might propel humanity far beyond what our futurists can imagine.

7



2 Chapter Two: Literature Review

2.1 Quantum Field Theory

Quantum field theory began with the Dirac equation (Dirac, 1928), which applied to

electrons.The attempt at describing the Dirac equation as governing single particles led

to contradictions. It was eventually reinterpreted as a quantum field theory. Dirac then

considered a quantum mechanical theory of the electromagnetic field (Dirac, 1927). In

the theory Dirac quantised the electromagnetic field in the case of the electron and the

photon. He also showed the transition between energy levels as the result of change in

photon numbers. Later, Born and Jordan developed the second quantization formalism

in which “creation” and annihilation operators were developed(Heisenberg et al., 1925).

It was a full formalism developed without regard to the conservation of particle numbers

(Jordan, 1927). Thus, a search for a fundamental theory of particles was needed. The

expression of the electromagnetic field using harmonic oscillators was also done by Born

and Jordan. However, a problem of infinities persisted. It had to do with the self energy

of the electron, or more clearly: what is the strength of an electromagnetic field as one

arbitrarily approaches an electromagnetic source?

This was resolved by Schwinger(1948) and Feynman(1948) by a process that came to

be referred to as renormalisation. A full, covariant description of the electromagnetic

field was finally completed. It came to be known as quantum electrodynamics. Later

the mathematical structure of quantum electrodynamics came to be understood as the

U (1 ) symmetry group. Glashow(1959) and Salam(1959) later found a symmetry group

U (1 )× SU (2 ) which unified the electromagnetic and weak interaction. Weinberg showed

that under the action of a Higgs-like field, some vector bosons of the electro-weak model

acquire mass by symmetry breaking:the W /Z bosons acquire mass while the photon re-

mains massless (Weinberg, 1967). At this point, the search for a quantum field theory of

the strong interaction thus began.

8



2.2 String Theory

Heisenberg had earlier thought that the notion of spacetime broke down on a sub-nuclear

level. Following his typically positivistic intuitions, Heisenberg considered only what goes

into a sub-nuclear scattering event, and what gets out (Heisenberg, 1943). The matrix

which describes this event is called an “S-matrix”. It was realised that the S-matrix did

not contain enough information to determine the probability of scattering events in the

theory(Heisenberg, 1943) .

Gell-Mann developed a dispersion relation (Gell-Mann, 1956) which was thought to add

information to the “S-Matrix” theory developed by Heisenberg, in addition to the princi-

ple of Unitarity developed by himself. Later, Veneziano showed that a specific function

known as the Euler beta function, was able to describe four particle scattering events in

the sub-nuclear region(Veneziano, 1968). This was later generalised to the scattering of

N particles by Koba and Nielsen(1969).

Later, Nielsen (Koba et al.,1969) and Susskind(1969) interpreted this function to be the

physical description of the scattering of vibrating strings. This marked the birth of string

theory as a physical theory. However, string theory was supplanted by quantum chro-

modynamics as the favourite model for strong interactions (Yukawa, 1935). Revival of

interest in string theory came about when Yoneya showed that string theory predicted

the existence of the graviton (Yoneya, 1974). It was also noted that the spectrum of the

Hamiltonian could describe forces in the standard model. This model came to be known

as bosonic string theory. However, the model faced some challenges. Lovelace showed

that it only worked consistently in 26 dimensions and had some anomalies (Lovelace,

1971). Ramond (1971), Neveu and Schwarz(1971) showed the elimination of anomalies

by the implementation of a duality known as supersymmetry. Gervais and Sakita im-

plemented the spacetime supersymmetry established by Green and Schwarz to generate

fermionic states (Gervais et al., 1971). By 1980, there were five consistent string theories,

as listed in the introduction. Since it was thought that string theory was a potential

theory of everything, this was a bit strange.

Witten showed that the five versions of superstring theory were actually asymptotic, low-
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energy versions of single theory (Witten, 1995). It was later demonstrated by Polchinski

that for N = 1 supergravity to be consistent in eleven dimensional superstring theory, the

theory had to contain n-dimensional analogues of strings (Polchinski, 1995). He called

these objects Dirichlet Branes: D-Branes. The new theory formed from the Witten-like

dualities and these D-Branes came to be referred to as M-Theory.

Later, Douglas showed that flux compactifications led to different string vacua. The dif-

ferent string vacua had different coupling constants (Douglas, 2003). This implies that the

vacua correspond to different cosmologies. As such, it became important to understand

the number of possible string vacua. A number was suggested by Ashok and Douglas to

be 10 500 (Ashok et al., 2004). Maldacena proposed that a conformal field theory defined

on a surface is similar to string theory defined supergravity defined on an anti-De Sitter

bulk (Maldacena, 1998). This was referred to as AdS/CFT correspondence. This princi-

ple was helpful in deriving the Hawking Black Hole Entropy formula from first principles.

Using this notion, Horowitz showed that it is possible, at least in principle, to construct

spacetime on the CFT defined in the bulk6 of AdS geometry (Horowitz, 2005).

Recently, it has been hypothesised that string vacua with a positive cosmological con-

stant are unstable in string theory, they are colloquially referred to as the “swampland

of solutions” (Obied, 2018). This is interesting, since our cosmology requires a positive

cosmological constant(McMahon, 2006).

2.3 Causal Dynamical Triangulation

Whereas the background independence of string theory cannot yet be established, other

approaches to quantum gravity build spacetime from first principles and as such are

manifestly background independent. An early approach that attempted to do this was

Euclidean quantum gravity(Hawking, 1977). The model however had some failures. An

improvement on the theory came from imposing causality on the simplicial structure of

spacetime in Euclidean Quantum Gravity. This was done by Ambjorn et. al.(Ambjorn et

al., 2002) and gave rise to the theory of causal dynamical triangulations. The model was

10



able to reproduce the global structure of four dimensional spacetime, and was compatible

with the notion of a positive cosmological constant.

In this work we shall put together the ideas of symmetry developed from quantum field

theory to combine string theory and causal dynamical triangulation into a single model.
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3 Chapter Three: Theoretical Background

3.1 String Theory

String theory refers to a general class of theories that hope to solve the quantum gravity

problem by replacing the point particles of quantum field theory by minute vibrating

strands of energy (McMahon, 2009).

In the theory, the gravitational field is modeled by the action of a spin-2 quantum field,

whose behaviour is the equivalent of curved spacetime in general relativity. This is because

the Einstein-Hilbert action can be obtained by considering the behaviour of a nonlinear,

massless, spin-2 quantum field (Feynman, 1995). This is is formalised in a type of string

theory known as bosonic string theory. Bosonic string theory is formulated by deriving

the equation of a relativistic vibrating string: the Nambu-Goto Action (McMahon, 2009):

S = −T
∫ τ1

τ2

dτ

∫ l

0

dσ

√
ẊX ′2 − (Ẋ ·X ′)2. (3.1)

where:

T is the string tension,

τ is the worldsheet time coordinate,

σ is the worldsheet spatial coordinate,

X and X ′ are the worldsheet and its derivatives.

This is later reformulated into the Polyakov action using an auxiliary gauge field. This

is to make the quantisation of the action easier:5

SP = −T
2

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν (3.2)

where:

T is the string tension,

τ is the worldsheet time coordinate,

σ is the worldsheet spatial coordinate,

Xµ and ∂αXµ are the worldsheet and its derivatives,
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hαβ is the metric of the auxiliary field,
√
−h is the determinant of the metric,

ηµν is the Minkowski metric.

From this equation, we can derive the equations of motions for bosonic string theory:

∂−∂+X
µ = 0 (3.3)

where:

Xµ is the worldsheet,

∂− = (∂τ − ∂σ) and ∂+ = (∂τ + ∂σ) are derivatives in light-cone coordinates.

From the equations of motions, we can solve for the spacetime coordinates Xµ in the left

and right moving case:

Xµ
R/L =

xµ

2
+
l2s
2
pµ(τ ± σ) + i

ls√
2

∑
k 6=0

αµk
k
e−ik(τ±σ). (3.4)

where:

Xµ
R/L are the left-moving and right-moving solutions,

xµ is the four-position,

ls is the length of the string,

pµ is the four-momentum,

τ is the worldsheet time coordinate,

σ is the worldsheet spatial coordinate,

αµk are the mode expansions, interpretable as the modes of vibration of the string.

After this, appropriate boundary conditions can be explored. We can also quantise the

string action by imposing commutation relations on the mode expansions αµk :

[αµk , α
µ
l ] = mηµνδm+n,0. (3.5)

ηµν is the Minkowski metric,

δm+n,0 is the Kronecker delta.
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The mode expansions are actually operators. We can use them to define new operators

called Virasoro operators:

Lm =
1

2

∑
m

: αm−n.αn : . (3.6)

where :: denotes a normal ordered product.

String theory actually works by replacing the zero dimensional particles in the Feyn-

man diagram by extensible strings. Instead of worldlines, we have worldtubes for closed

strings, and worldsheets for open-ended strings. We can therefore easily construct feyn-

man diagrams using these notions(McMahon, 2009):

Figure 3.1: Feynman diagram for point particle adjacent to a Feynman diagram in string
theory

Because of the extensibility of the strings, it is possible to calculate the scattering am-

plitude of gravitons resulting in finite results. Thus in string theory, it is possible to

quantise the gravitational field.

As discussed above, the earlier models of spin-2 quantum fields were plagued by non-

renormalizability. This means that unresolvable divergences existed when one considered

the scattering matrix of the theory. By extending the formulation of the zero dimensional

graviton in quantum field theory to one dimensional vibrating strings, bosonic string the-

ory resolves this problem.

However, bosonic string theory is plagued by anomalies. The ground state of bosonic

string theory is a tachyon field. This can be established by using the Virasoro operator

to generate a mass-shell condition:

M2 = − 1

α′
, (3.7)

where:

α′ =
1

2πT
(3.8)
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, M2 is the mass-squared operator,

T is the string tension,

This is the mass shell condition got from the ground state. Tachyon fields present a

serious challenge to the theory because it is formulated relativistically. The theory of

relativity disallows the formation of tachyonic fields. Also, the presence of tachyonic fields

mean that the vacuum of bosonic string theory is unstable. Moreover, the theory fails

to consistently describe fermionic states. The theory also suffers from extra dimensions,

having a consistent description at twenty-six dimensions. This can also be established

using the mass shell condition:

M2 =
1

α′

(
N − D − 2

24

)
. (3.9)

where:

N is the number of string states,

D is the number of dimensions,

α′ is the inverse of the string tension as earlier defined.

Requiring the second term to be 1 forces D = 26 .

String theory attempts to solve these problems by invoking supersymmetry(McMahon,

2009). It is an extension of quantum field theory that establishes a duality between

fermionic and bosonic states. This is done by introducing a supersymmetric charge op-

erator, which implements the duality. Fermions are particles of half integer spin. Bosons

are particles of integer spin. Mathematically, bosons are associated with symmetric wave-

functions, whereas fermions are associated with antisymmetric wavefunctions. Thus, a

supersymmetric charge operator transforms anti-symmetric wavefunctions to symmetric

wavefunctions and vice versa.

Supersymmetry can be implemented by adding the Dirac field action to the Polyakov

action (McMahon, 2009):

S = −T
2

∫
d2σ
√
−hhαβ

(
∂αX

µ∂βX
νηµν − iψ̄µρα∂αψµ

)
. (3.10)

15



where:

T is the string tension,

τ is the worldsheet time coordinate,

σ is the worldsheet spatial coordinate,

Xµ and ∂αXµ are the worldsheet and its derivatives,

hαβ is the metric of the auxiliary field,
√
−h is the determinant of the metric,

ηµν is the Minkowski metric.

i =
√
−1 is the imaginary number,

m is the mass of the electron, ψ and ψ̄ are the Dirac field and its complex conjugate

respectively,

ρα are the Dirac matrices,

From the Lagrangian we can build new solutions for fermions and bosons respectively as:

ψµ±(σ, τ) =
1√
2

∑
n

dµne
in(τ∓σ) (3.11)

φµ±(σ, τ) =
1√
2

∑
n

bµne
in(τ±σ). (3.12)

where:

psiµ± is the fermionic solution.

dµn are the new mode expansions.

The result is string theory with supersymmetry: superstring theory. It is able to describe

bosonic and fermionic states.The number of dimensions needed to describe the new model

consistently is ten. Superstring theory is actually a set of five self-consistent theories with

different features(McMahon, 2009):

i) Type I string theory;

ii) Type IIA string theory;

iii) Type IIB string theory;

iv) SO(32 ) theory;

v) E8×E8 theory.
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By duality transformations, it can be shown that one class of string theory can be trans-

formed into another (Witten, 1995). The dualities are known as conifold , T, and S

dualities. These dualities can be argued to be evidence that these dualities are in fact

sub-classes of a more fundamental theory: M-Theory.

3.2 Causal Dynamical Triangulation

Causal dynamical triangulation theory is an improvement on Euclidean quantum gravity

(Forcier, 2011), (Ambjorn et al., 2002 ). Euclidean Quantum Gravity was proposed by

Hawking (1977). In the model, the techniques of quantum field theory are applied to

spacetime. It is taken to be a quantum field. A quantum field usually has excitations. In

the case of the Higgs field, it is the Higgs boson.

The excitation of the four dimensional spacetime quantum field is the 4-simplex. It is

often helpful to think of them as the four dimensional analogues of triangles. The hope

of euclidean gravity is to construct spacetime from these four simplices. The standard

approach of analysing the behaviour of quantum fields is using path integrals. In the case

of spacetime this can be formalised as (Forcier, 2011):

F (g1, g2; t) =
∑

eiSEH . (3.13)

where,

F (g1, g2; t) is the propagator from a certain simplice configuration g1 to a second simplice

configuration g2 over a time period t,

SEH is the Einstein-Hilbert action.

However, when the construction is done, the model fails (Ambjorn et al, 2002).

It results in an infinite dimensional spacetime. Each point in the spacetime is close to

all other points. This spacetime pathology is not descriptive of our universe. Large scale

description of the spacetime fails. The reason for this failure is the assumptions implicit in

Euclidean quantum gravity. One of the main tools of quantum gravity is Wick rotations.

A Wick rotation makes the replacement: t → it . The effect on the metric will be such
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that the length of line element becomes:

ds2 = −c2dt2 − (dx)2 − (dy)2 − (dz)2. (3.14)

where:

ds2 is a length of line element squared,

c is the speed of light,

dx,dy and dz are infinitesimal elements along the x , y and z axes respectively,

dt is an element of time.

The result is to place space and time on an equal footing. The implication of this is that

we have the possibility of moving both forward and backwards in time. This violation of

causality also allows the formation of wormholes. These wormholes result in the multiply

connected, infinite dimensional, we have discussed above.

Causal dynamical triangulation deals with the above problem by invoking causality(Forcier,

2011). Colloquially, causality is the notion that effect comes after cause. The principle

fixes directionality to time.

Operationally, an arrow is assigned to all simplices. In gluing the simplices together,

care is taken to make sure that the simplices have their “time arrows” alligned. This

method of implementing causality disfavours the formation of wormholes. The problem

of a pathological global spacetime is thus avoided.

Also, since time is included in the model, the spacetime geometry is dynamic and can

allow for topological evolution of the spacetime geometry. The model develops four di-

mensional spacetime from first principles. It also has within it a mechanism for the

inclusion of dark energy. This is favoured by the λ− CDM model of cosmology (Forcier,

2011).
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4 Chapter Four: Methodology

4.1 Introduction

The improvement of theories to accommodate new phenomena is usually done by extend-

ing the Lagrangian of the theory. In this section we introduce a spacetime background

to string theory by doing this. We first add the Regge Lagrangian to the Polyakov La-

grangian. We then investigate duality transformations which leave the resulting action

invariant, this is done by investigating for conserved currents on the worldsheet. We then

investigate for conserved stress-energy tensor.

Equations of motion are then found by applying the principle of least action on the

new action. Solving these equations yields mode expansions with appropriate boundary

conditions. We investigate the properties of these mode expansions with respect to the

distance operator of causal dynamical triangulations.This then allows us to quantise the

theory. This is done by applying Virasoro algebra on the mode expansions, in essence

specifying a commutator for the modes of vibration.

After this, the dimensionality of the theory is investigated. This is done by specifying a

commutator of the generators of the Lorentz algebra. By specifying a normal ordering

constant, we investigate the dimensionality of the theory.

We repeat above the same process, in the new case replacing Virasoro algebra by Super-

Virasoro algebra.
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4.2 Extension of Bosonic String Theory

4.2.1 Introduction

As discussed, we invoke the Ramond-Neveu-Schwarz(RNS) formalism to extend bosonic

string theory. In the formalism, the Lagrangian of bosonic string theory, the Polyakov ac-

tion, is extended by adding it to the Dirac Lagrangian. Symmetry principles are imposed

between the Dirac Spinors ψ and the Bosonic worldsheet currents Xµ. These symmetries

are then used to formulate the theory. This is done by defining invariants of transfor-

mation, specifying a stress-energy tensor and deriving the equations of motions of the

string.

We follow this formalism in extending bosonic string theory to account for spacetime,

using causal dynamical triangulations. In our case, the spinors are not fermions, but are

simplices, whose properties are specified by causal dynamical triangulation. There are

advantages and disadvantages of using the RNS scheme. The scheme implements duality

transformations using supersymmetry, a physical hypothesis with no observational or ex-

perimental evidence. It is also not clear whether the RNS formalism can be generalised

to other uses, apart from implementing boson-fermion duality. Nonetheless, we use it

because it is well defined. It has a well formulated algebraic structure whose implemen-

tation in string theory has been extensively studied and documented.

We extend the Lagrangian of bosonic string theory by adding it to a reformulated Regge

action. This is followed by an exploration of the symmetries of the action, beginning

with spatial translation. We then take variations of the Lagrangian, investigating for

conserved currents. This result will be used to derive a simplicial stress-energy tensor.

We establish boundary conditions for the action. Finally, the equations of motion got

from the zero divergence of the stress energy tensor will be solved to derive the mode

expansions for the simplices. We now begin by extending the Lagrangian.

4.2.2 Extending The Lagrangian

We wish to add the Lagrangian of causal dynamical triangulation (CDT) to the Polyakov

Lagrangian:
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LC = LP + LCDT (4.1)

where:

LC is the resulting Lagrangian, the “Chimeric” Lagrangian,

LP is the Polyakov Lagrangian,

LCDT is the CDT Lagrangian. We can rewrite (4.1) in terms of the action, which is the

time integral of the Lagrangian, i.e;

SC = SP + SCDT (4.2)

where:

SC is the resulting action,

LP is the Polyakov action,

LCDT is the CDT action.

We can rewrite (1) in terms of the action, which is the time integral of the Lagrangian.

Now;

SP = −T
2

∫
d2σ∂αX

µ∂αXµ (4.3)

and,

SCDT =
2Λ

16πG

∑
n

Vn (4.4)

where:

Λ is the cosmological constant,

Vn is the volume of the simplices,

T is the string tension,

σ is the worldsheet spatio-temporal coordinate,

G is the Gravitational constant,

Xµ and ∂αXµ are the worldsheet and its derivatives.
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Putting equations (4.3) and (4.4) in equation (4.2),we obtain:

SC = −T
2

∫
d2σ∂αX

µ∂αXµ +
2Λ

16πG

∑
n

Vn (4.5)

We want to write the second term on the right hand side of equation (4.5) in a way that

is amenable to the RNS formalism. We consider Vn by writing it as the integral of a

certain density function n(T ) such that:

∑
n

Vn =

∫
d2σn(T ) (4.6)

We now rewrite equation (4.4) as:

SCDT =
2Λ

16πG

∫
d2σn(T ) (4.7)

Adding equation (4.7) to equation (4.3), we get:

SC = −T
2

∫
d2σ∂αX

µ∂αXµ +
2Λ

16πG

∫
d2σn(T )

= −T
2

∫
d2σ

(
∂αX

µ∂αXµ −
2

T

2Λ

16πG
n(T )

)
= −T

2

∫
d2σ (∂αX

µ∂αXµ − βn(T )) (4.8)

where: β =
4Λ

16πTG
.

We now introduce a postulate of the model. The assumption is that the simplices which

contribute to the density function n(T ) are spinors. We shall however not rigorously

prove this statement. Intuitively, simplices can point forwards or backwards in time.

This means that they are describable by two numbers. This is analogous to the bispinor

fields φ that are used to describe fermions. We implement this postulate mathematically:

n(T ) = φ̄φ. (4.9)
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Where:

φ is the spinor,

φ̄ is its complex conjugate. We now rewrite equation (4.8)

SC = −T
2

∫
d2σ (∂αX

µ∂αXµ − βφ∗φ) (4.10)

Consider the behaviour of the derivative of spinors:

∂αφ = κφ

∴
1

κ
∂αφ = φ (4.11)

Where κ is an eigenvalue of the derivative operator. We insert equation (4.11) in equation

(4.10) and absorb κ in β giving,

SC = −T
2

∫
d2σ

(
∂αX

µ∂αXµ − φ̄β∂αφ
)
. (4.12)

We can thus read off the definition of the Chimeric Lagrangian:

LC = −T
2

(
∂αX

µ∂αXµ − φ̄β∂αφ
)

(4.13)

and can thus define the causal dynamical triangulation Lagrangian LCDT :

LCDT =
T

2
φ̄β∂αφ.

4.2.3 Symmetries

We now investigate the symmetries of the system. It is expected that the Lagrangian and

correspondingly, the action, will be invariant under certain transformations of the system.

This will result in the fact that the action-derived equations of motion will maintain the

same invariance with respect to these transformations. Physically, this means that the

laws of physics derived from this action are invariant with respect to these specified
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transformations.

Before we investigate the symmetries of the system we have set up, it is important that

we introduce duality transformations between Xµ and φ, i.e;

δXµ = ε̄φµ (4.14)

δφµ = ∂αX
µε (4.15)

where:

δ are variations,

ε, ε̄ are Grassman numbers.

Xµ are worldsheet coordinates,

φµ are the spinors.

Time should be taken to interpret equations (4.14) and (4.15), since they form the crux

of our work. These are the brane-simplex duality transformations. The implication of the

analogues of these equations in the standard RNS formalism is that there is a non-zero

probability that bosons can transform into fermions and vice versa. This is supersym-

metry, and hence superstring theory. In our case, the equations are to be interpreted to

mean that simplices can transform into bosons, and vice versa. A duality exists between

the building blocks of matter, forces and those of spacetime. These building blocks are

essentially the same entity. We posit that at the order of the Planck length, a distinction

between these two building blocks cannot be made.

We now investigate invariance under spatial translations. We can displace the worldsheet

coordinates by a value bµ:

Xµ = Xµ + bµ (4.16)

The simplices are not functions of the worldsheet coordinates so they are not subjected

to the displacement. Putting equation (4.16) in equation (4.13):

L′C = −T
2

[
∂α(Xµ + bµ)∂α(Xµ + bµ)− φ̄β∂αφ

]
= −T

2
[∂α(Xµ + bµ)∂α(Xµ + bµ)] + LCDT
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= −T
2

[(∂αX
µ + ∂αb

µ)(∂αXµ + ∂αbµ)] + LCDT

= −T
2

[∂αX
µ∂αXµ + ∂αX

µ∂αbµ + ∂αbµ∂
αXµ + ∂αb

µ∂αbµ] + LCDT

= −T
2

[∂αX
µ∂αXµ] + LCDT −

T

2
[∂αX

µ∂αb
µ + ∂αb

µ∂αX
µ]

where we have dropped the second order term in the derivative of the perturbation:

∂αb
µ∂αbµ.

The first two terms are our Lagrangian:

L′C = LC −
T

2
[∂αX

µ∂αb
µ + ∂αb

µ∂αX
µ]

−δL = −T
2

[∂αX
µ∂αbµ + ∂αb

µ∂αXµ]

δL =
T

2
[∂αX

µ∂αbµ + ∂αb
µ∂αXµ]

(4.17)

We wish to rearrange equation (4.17) in using index permutation and the Minkowski

metric. First, we reorder the product considering commutativity.

∂αb
µ∂αXµ = ∂αXµ∂αb

µ

= ∂α(ηµνX
ν)∂α(ηµσbσ)

= ηµνη
µσ∂αXν∂αbσ

= δσν ∂
αXν∂αbσ

∂αXν∂αbν = ∂αXµ∂αbµ (4.18)

Where we have used the property of dummy variables. We can similarly write equation

(4.18) as:

∂αXµ∂αbµ = hαβ∂βX
µhαγ∂

γbµ

= hαβhαγ∂βX
µ∂γbµ

= δβγ∂βX
µ∂γbµ
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= ∂βX
µ∂βbµ

= ∂αX
µ∂αbµ (4.19)

application of equations (4.18) and (4.19) in equation (4.17) yields:

δL = T∂αX
µ∂αbµ (4.20)

We can therefore define a momentum field conjugate to position. This is consistent with

the Noether theorem in which translations in coordinate space imply the conservation of

momentum. We can thus read off momentum as the term which multiplies the derivative

of the displacement bµ as:

P µ
α = T∂αX

µ (4.21)

where;

P µ
α are the four momenta,

T is the string tension,

Xµ is the worldsheet We have thus defined an invariance with respect to spatial transla-

tions. Finding a momentum field consistent with Noether’s theorem.

We now want to take variations of the entire Lagrangian. We shall invoke equations (4.14)

and (4.15) to establish symmetries which we use to find conserved currents. We also use

these equations to derive a stress-energy tensor for the Lagrangian of causal dynamical

triangulation.

4.2.4 Variations of the Lagrangian

We take a variation of equation (4.13):

δLC = −T
2
δ
(
∂αX

µ∂αXµ − φ̄β∂αφ
)

(4.22)

where:

δLC is the chimeric Lagrangian.
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We expand equation (4.22) fully as:

δLC = −T
2

(
∂α(δXµ)∂αXµ + ∂αX

µ∂α(δXµ)− (δφ̄µ)β∂αφ− φ̄µβ∂α(δφ)
)

Now, the order of the variation of the worldsheet coordinates does not matter, it is

commutative. This equation can be rewritten as:

δLC = −T
2

(
2∂α(δXµ)∂αXµ − (δφ̄µ)β∂αφ− φ̄µβ∂α(δφ)

)
(4.23)

We now invoke the brane-simplex duality transformations. Putting equations (4.14) and

(4.15) in equation (4.23) yields:

δLC = −T
2

(
2∂α(ε̄φµ)∂αXµ − (δφ̄µ)β∂αφ− φ̄µβ∂α(ε∂βX

µ)
)

(4.24)

Application of the properties of the Grassman numbers on the third term of equation

(4.24) gives this equation as:

δLC = −T
2

(
2∂α(ε̄φµ)∂αXµ − (ε̄∂βX

µ)β∂αφ− φ̄µβ∂α(ε∂βX
µ)
)

= −T
2

(2∂α(ε̄φµ)∂αXµ − 2(ε̄∂βX
µ)β∂αφ)

= −T [∂α(ε̄φµ)∂αXµ − (ε̄∂βX
µ)β∂αφ

µ] (4.25)

We use the product rule to expand the last term of equation (4.25) to yield:

δLC = −T [∂α(ε̄φµ)∂αXµ − ∂β((ε̄Xµ)β∂αφ
µ) + (ε̄Xµ)β∂α∂βφ

µ] (4.26)

We expand term 2 of equaton (4.26) by taking the derivative:

δLC = −T [∂α(ε̄φµ∂αXµ))−(((((
((ε̄φµ∂α∂

αXµβ − β(∂β ε̄)X
µφµ +((((

((((β(∂βε)∂βX
µφµ]
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We write the variation of the Lagrangian as:

δLC = −T [∂α(ε̄φµ∂αXµ))− β(∂β ε̄)∂βX
µφµ] (4.27)

We now want to look for the conserved current. The first term is a total derivative and

thus has no effect on the variation. The second term is relevant to our investigation. It

has coefficients multiplying the derivative ∂β ε̄ which we take as our independent variable.

We can thus read off the conserved current as:

Jµβ = β∂βX
µφµ (4.28)

4.2.5 The Simplicial Stress-Energy Tensor

Following the RNS formalism, we investigate for the stress energy tensor associated with

the worldsheet currents Xµ and the spinors φµ. The stress-energy tensor associated with

the worldsheet currents is well documented as the bosonic stress energy tensor. We shall

thus focus our efforts on the stress energy of the spinors, which are associated with sim-

plices. We will then interpret the result.

We begin by introducing a spatial translation on the worldsheet coordinates:

σα = σα + ϑα (4.29)

where:

σα are four-coordinates,

ϑα is the translation.

This will introduce a perturbation on Xµ and φµ:

Xµ = Xµ + ϑα∂αX
µ (4.30)

φµ = φµ + ϑα∂αφ
µ (4.31)
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We restate the definition of the simplicial Lagrangian:

LCDT = −1

2
φ̄µβ∂αφ

µ (4.32)

where:

LCDT is the Lagrangian of causal dynamical triangulation,

φµ is the spinor,

φ̄µ is the complex conjugate of the field,

where we have dropped the string tension term: T. We now introduce a variation of the

Lagrangian in equation (4.32):

δLCDT = −1

2
(δφ̄µ)β∂αφ

µ − 1

2
φ̄µβ∂α(δφµ) (4.33)

where:

δLCDT is a variation of the causal dynamical triangulation.

Now, consider a variation of φµ:

φµ = φµ + δφµ

⇒ δφµ = ϑα∂αφ
µ (4.34)

where δφµ is the variation.

Using equation (4.34) in equation (4.33):

δLCDT = −1

2
(ϑα∂αφ̄µ)β∂αφµ − 1

2
φ̄µβ∂α(ϑα∂αφ

µ) (4.35)

Opening up the second term on the right hand side of equation (4.35);

LCDT = −1

2
(ϑα∂αφ̄µ)β∂αφµ − 1

2
φ̄µβ∂αϑ

α∂αφ
µ − 1

2
φ̄µβεα∂β∂αφ

µ (4.36)
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We now introduce integrals to reduce the equation (4.36).

LCDT = −1

2

∫
(ϑα∂αφ̄µ)β∂αφµ − 1

2

∫
φ̄µβ∂αϑ

α∂αφ
µ − 1

2

∫
φ̄µβϑα∂β∂αφ

µ (4.37)

We do it term by term. We begin with the third term on the right hand side of equation

(4.36):

∫
UdV = −1

2

∫
φ̄µβε∂α∂βφµ (4.38)

We remove the constant negative fraction term to ease our writing:

∫
UdV = UV −

∫
V dU

U = φ̄µβε

dV = ∂α∂βφµ

V = ∂αφµ

dU = ∂β(φ̄µβε)

Now, the boundary term vanishes, using Dirichlet conditions:

∫
UdV =

�
�
�
��

0∫
UV −

∫
V dU (4.39)

Using equations (4.37) and (4.38):

∫
UdV =

1

2

∫
∂αφµ∂β(φ̄µβε) (4.40)

Removing the integrals, and putting equation (4.39) in equation (4.36):

δLCDT = −1

2
(εα∂αφ̄µ)βφµ − 1

2
φ̄µβ∂αε

α∂αφ
µ +

1

2
∂αφµ∂β(φ̄µβε) (4.41)
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Expanding the third term again and canceling like terms, we obtain:

δLCDT = −1

2
(εα∂αφ̄µ)βφµ − 1

2
φ̄µβ∂αε

α∂αφ
µ +

1

2
∂αφµ∂βφ̄µβε+

1

2
∂αφµφ̄µβ∂βε (4.42)

δLCDT =
���

���
���

−1

2
(εα∂αφ̄µ)βφµ − 1

2
φ̄µβ∂αε

α∂αφ
µ +
���

���
��1

2
∂αφµ∂βφ̄µβε+

1

2
∂αφµφ̄µβ∂βε

δLCDT = −1

2
φ̄µβ∂αε

α∂αφ
µ +

1

2
∂αφµφ̄µβ∂βε

The perturbation is constant:

∂βε vanishes such that:

δLCDT = −1

2
φ̄µβ∂αε

α∂αφ
µ +
��

���
���:

01

2
∂αφµφ̄µβ∂βε

δLCDT = −1

2
φ̄µβ∂αε

α∂αφ
µ (4.43)

Rewriting equation (4.42):

δLCDT = ∂αε
α

(
−1

2
φ̄µβ∂αφ

µ

)

From this we can read off the stress energy tensor associated with the simplices as:

T (CDT )
µν = −1

2
φ̄µβ∂αφ

µ

where T (CDT )
µν is the stress-energy tensor of causal dynamical triangultion.

We symmetrize the terms because we wish to have a symmetrical stress energy tensor.

We make the relabeling: α→ ν.

T (CDT )
µν = −1

4
φ̄µβ∂νφµ −

1

4
φ̄µβ∂νφµ (4.44)

Equation (4.43) has an interesting consequence: the simplices have a stress-energy tensor.

This means that the simplices have energy. Now we recognise that these simplices are

to be used to construct spacetime. Therefore, the spacetime constructed from these
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simplices will have an associated intrinsic energy. This could be interpreted as dark

energy. Vafa et. al(2018) have proposed that dark energy is inconsistent with a stable

universe in the landscape of solutions in string theory. Universes with dark energy occupy

the “swampland” solutions.

Equation (4.43) represents a possible way in which string theory could be formulated in

such a way that it not only is consistent with dark energy, but requires it. This could

provide an explanatory basis for dark energy, subject to further investigations.

We can write the full stress energy tensor, including the contribution from bosonic terms

The bosonic stress energy tensor is (McMahon, 2006):

T
(Bosonic)
αβ = ∂αX

µ∂βX
µ

Tαβ = T
(CDT )
αβ + T

(Bosonic)
αβ

Tαβ = ∂αX
µ∂βXµ −

1

4
ρβφ̄µβ∂αρβφµ −

1

4
φ̄µβ∂αρβφµ (4.45)

We now invoke lightcone coordinates: this will later aid in quantisation. In this case it will

help us arrive to the equations of motion with relative ease. We can decompose the tensor

and the simplicial fields into “positive-positive” and “negative-negative” components.

Tαβ = T++ + T−− (4.46)

φ̄µ = φ̄µ+ + φ̄µ− (4.47)

φµ = φ+ + φ− (4.48)

∂α = ∂+ + ∂− (4.49)

where:

T++ and T−− are the respective stress-energy tensor components,

φ+ and ∂− are the bispinor field components in lightcone coordinate.

We consider the bosonic stress-energy tensor T
(Bosonic)
αβ together with equations (4.45)
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through (4.48) to get:

T
(Bosonic)
αβ = (∂+ + ∂−)Xµ (∂+ + ∂−)Xµ (4.50)

We expand equation (4.49):

T
(Bosonic)
αβ = (∂+X

µ + ∂−X
µ) (∂+Xµ + ∂−Xµ) (4.51)

T
(Bosonic)
αβ = ∂+X

µ∂+Xµ + ∂−X
µ∂+Xµ + ∂−X

µ∂+Xµ + ∂−X
µ∂−Xµ (4.52)

We have imposed the condition of symmetry on the stress-energy tensor: we do not

envision cross terms:

T+− = T−+ = 0 (4.53)

where:

T
(Bosonic)
++ = ∂+X

µ∂+Xµ (4.54)

T
(Bosonic)
−− = ∂−X

µ∂−Xµ (4.55)

We now work out the simplicial stress energy tensor in terms of light cone coordinates.

We first decompose the simplicial stress energy tensor into its lightcone components.

T
(CDT )
αβ = T

(CDT )
++ + T

(CDT )
−− (4.56)

We will now expand equation (4.43) in terms of equations (4.46) to (4.48). We work with

only one term because of the similarity of the two terms:

We drop the tensor notation in our following computations

T
(CDT )
αβ =

1

4

(
φ̄+ + φ̄−

)
(∂+ + ∂−) (φ+ + φ−) (4.57)
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Expanding equation (4.57) while at the same time dropping cross-terms:

T
(CDT )
αβ =

1

4

(
φ̄+ + φ̄−

)
(∂+φ+ + ∂+φ− + ∂−φ+ + ∂−φ−)

=
1

4

(
φ̄+ + φ̄−

)
(∂+φ+ + ∂−φ−)

=
1

4

(
φ̄+∂+φ+ + φ̄+∂−φ− + φ̄−∂+φ+ + φ̄−∂−φ−

)
(4.58)

We open the brackets:

T
(CDT )
αβ =

1

4
φ̄+∂+φ+ +

1

4
φ̄+∂−φ− +

1

4
φ̄−∂+φ+ +

1

4
φ̄−∂−φ−

We again drop cross terms:

T
(CDT )
αβ =

1

4
φ̄+∂+φ+ +

1

4
φ̄−∂−φ− (4.59)

Recalling that we had left out a term from equation (4.53), we will now double equation

(4.59):

T
(CDT )
αβ =

1

2
φ̄+∂+φ+ +

1

2
φ̄−∂−φ− (4.60)

By comparison of equation (4.54) and equation (4.58), we can establish that:

T
(CDT )
++ =

1

2
φ̄+∂+φ+ (4.61)

T
(CDT )
−− =

1

2
φ̄−∂−φ− (4.62)

We finally write the stress energy tensor components in full:

T++ = T
(CDT )
++ + T

(Bosonic)
++

= ∂+X
µ∂+X

µ +
1

2
φ̄+∂+φ+ (4.63)

and:

T−− = T
(CDT )
−− + T

(Bosonic)
−−
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= ∂−X
µ∂−X

µ +
1

2
φ̄−∂+φ− (4.64)

From these equations, we can get the equations of motion of the simplices and worldsheet

currents of the bosonic string as:

∂+φ
−
µ = ∂−φ

µ
+ = 0 (4.65)

and:

∂−∂+Xµ = 0 (4.66)

4.2.6 Establishing Boundary Conditions

We wish to rewrite the simplicial action in lightcone coordinates. We introduce the Dirac

matrices to assist us. We restate the simplicial action with the Dirac matrices:

SCDT = φ̄µραφµ (4.67)

where:

φµ is the spinor,

φ̄µ is the complex conjugate of the field,

ρα are the Dirac matrices.

We sum over repeated indices: We consider a two dimensional case, with one of space

and one of time.

SCDT = φ̄µ
(
ρ0φ0 + ρ1φ1

)
φµ (4.68)

We expand equation (4.68) using the full form of the Dirac matrices and complete the

computation:

ρ0φ0 =

0 −i

i 0

 ∂τ
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ρ1φ1 =

0 i

i 0

 ∂σ

Thus the term inside the brackets of equation (4.68) becomes:

(ρ0φ0 + ρ1φ1) =

0 −i

i 0

 ∂τ +

0 i

i 0

 ∂σ

=

 0 −i∂τ

i∂τ 0

+

 0 i∂σ

i∂σ 0


=

 0 −i(∂τ − ∂σ)

i(∂τ + ∂σ) 0


=

 0 −2i∂−

2i∂+ 0

 (4.69)

We put equation (4.69) in equation (4.68):

SCDT = φ̄µ

 0 −2i∂−

2i∂+ 0

φµ

=

(
φ− φ+

) 0 −2i∂−

2i∂+ 0


φ−
φ+


=

(
φ− φ+

)−2i∂−φ+

2i∂+φ−


=

(
φ− φ+

)
2i

−∂−φ+

∂+φ−


=

(
φ− φ+

)
2i

0 −i

i 0


−∂−φ+

∂+φ−


=

(
φ− φ+

) 0 2

−2 0


−∂−φ+

∂+φ−
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(
φ− φ+

)2∂+φ−

2∂−φ+


(
φ− φ+

)
2

∂+φ−
∂−φ+


= 2 (φ−∂+φ− + φ+∂−φ+) (4.70)

where we have used the fact that φ̄µ = ρ0φ∗ since φ is a Dirac field.

Equation (4.70) is our action without constants. We use equation (4.70) without the

multiplicative factor 2. Consider the resulting simplicial action :

SCDT =

∫
d2σ(φ−∂+φ− + φ−∂+φ−) (4.71)

We break equation (4.71) into parts to ease the integration process:

SCDT =

∫
d2σ(φ−∂+φ−) +

∫
d2σ(φ−∂+φ−)

SCDT 1
2

=

∫
d2σ(φ−∂+φ−) (4.72)

We take variations of equation (4.72):

δSCDT 1
2

= δ

∫
d2σ(φ−∂+φ−)

=

∫
d2σ[δφ−∂+φ− + φ−∂+δ(φ−)]

=

∫
d2σ[δφ−∂+φ−] +

∫
d2σ[φ−∂+δ(φ−)] (4.73)

From the equations (4.65) of motion , we notice that the first term of equation (4.73)

vanishes. We thus consider the second term of equation (4.73). We use integration by

parts to reduce it:

∫
d2σ[φ−∂+δ(φ−)] =

∫
UdV = UV −

∫
V dU

V = δφ−
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dU = ∂+φ−

U = φ−

dV = ∂+(δφ−)

∴
∫
d2σ[φ−∂+δ(φ−)] = φ−δφ−

∣∣∣σ=π
σ=0
−
∫
d2σδφ−��

��*
0

∂+φ− (4.74)

⇒
∫
d2σ[φ−∂+δ(φ−)] = φ−δφ−

∣∣∣σ=π
σ=0

(4.75)

Where we have again used equation (4.65) to conclude that the second term of equation

(4.74) vanishes. We do the same for the first term of equation (4.73):

∫
d2σ[φ+∂−δ(φ+)] =

∫
UdV = UV −

∫
V du

V = δφ+

dU = ∂−φ+

U = φ+

dV = ∂−(δφ+)

∴
∫
d2σ[φ+∂−δ(φ+)] = φ+δφ+

∣∣∣σ=π
σ=0
−
∫
d2σδφ+�

��
�*0

∂−φ+ (4.76)

⇒
∫
d2σ[φ+∂−δ(φ+)] = φ+δφ+

∣∣∣σ=π
σ=0

= 0 (4.77)

We now put the equations together to come up with:

∫
dτ(φ+δφ+ − φ−δφ−)

∣∣∣
σ=π
− (φ+δφ+ − φ−δφ−)

∣∣∣
σ=0

(4.78)

The result in equation (4.78) should vanish: it is a variation of the Lagrangian. We

thus select appropriate boundary conditions such that this requirement is satisfied. We

want the simplices to be distinct, that is, the simplices should have different “quantum

numbers”. We therefore use fermionic boundary conditions:

φµ−(0, τ) = φµ+(0, τ) (4.79)

φµ−(π, τ) = φµ+(π, τ) (4.80)
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4.2.7 Solving the Equation of Motion

We begin with the fact that:

∂−∂+φ
µ
− = 0 (4.81)

where:

∂− = (∂τ − ∂σ) and ∂+ = (∂τ + ∂σ) are derivatives in light-cone coordinates,

φµ− are the bispinor fields.

∂− =
∂

∂τ
− ∂

∂σ
(4.82)

∂+ =
∂

∂τ
+

∂

∂σ
(4.83)

Putting equations (4.82) and (4.83) in equation (4.81):

(
∂

∂τ
− ∂

∂σ

)(
∂

∂τ
+

∂

∂σ

)
φµ− = 0(

∂2

∂τ 2
+
�
�
��∂

∂τ

∂

∂σ
−
�
�
��∂

∂σ

∂

∂τ
− ∂2

∂σ2

)
φµ− = 0(

∂2

∂τ 2
− ∂2

∂σ2

)
φµ− = 0 (4.84)

We now open equation (4.84):

(
∂2

∂τ2

)
φµ− −

(
∂2

∂σ2

)
φµ− = 0 (4.85)

Now, φµ− is a multivariate function of σ and τ . We thus invoke separation of variables.

We can express φµ− as the product of two functions:

φµ− = S(τ)M(σ) (4.86)

where:

S is a function of a single variable τ ,
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M is a function of a single variable σ. Putting equation (4.86) in equation (4.85):

∂2

∂τ2
S(τ)M(σ)− ∂2

∂σ2

S(τ)M(σ) = 0

M(σ)
d2

dτ 2
S(τ)− S(τ)

d2

∂σ2
M(σ) = 0

1

S(τ)M(σ)
M(σ)

d2

dτ 2
S(τ)− 1

S(τ)M(σ)
S(τ)

d2

∂σ2
M(σ) = 0

1

S(τ)

d2

dτ 2
S(τ)− 1

M(σ)

d2

∂σ2
M(σ) = 0

1

S(τ)

d2

dτ 2
S(τ) =

1

M(σ)

d2

∂σ2
M(σ) (4.87)

Since the left hand side and right hand side of equation (4.87) are each a function of

a distinct variable, application of the theory of ordinary differential equations demands

that equation (4.87) is equal to a constant, say: −α2, so that:

1

S(τ)

d2

dτ 2
S(τ) = −α2

1

M(σ)

d2

∂σ2
M(σ) = −α2

d2

dτ 2
S(τ) = −α2S(τ)

d2

∂σ2
M(σ) = −α2M(σ)

d2

dτ 2
S(τ) + α2S(τ) = 0 (4.88)

d2

∂σ2
M(σ) + α2M(σ) = 0 (4.89)

We can now proceed to solve equations (4.88) and (4.89).

Solving equation (4.89) using the D operator where D = d
dσ

and dropping the functional

dependence of M and N we obtain:

D2S + α2M = 0

(D2 + α2)M = 0

(D − iα)(D + iα)M = 0

(D − iα)M = 0 ; (D + iα)M = 0
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(D ± iα)M = 0(
d

dσ
± iα

)
M = 0

d

dσ
M ± iαM = 0

d

dσ
M = ∓iαM

dM

M
= ∓iαdσ∫

dM

M
=

∫
∓iαdσ

lnM = ∓iασ + C (4.90)

M = Ae∓iασ (4.91)

where we have taken exponentials about equation (4.90) to generate equation (4.91), and:

A = ec

We can carry out a similar process for equation (4.88):

D2S + α2S = 0

(D2 + α2)S = 0

(D − iα)(D + iα)S = 0

(D − iα)S = 0 ; (D + iα)S = 0

(D ± iα)S = 0(
d

dτ
± iα

)
S = 0

d

dτ
S ± iαS = 0

d

dτ
S = ∓iαS

dS

S
= ∓iαdτ∫

dS

S
=

∫
∓iαdτ

lnS = ∓iατ + C1 (4.92)

S = Be∓iατ (4.93)

41



We put equations (4.93) and (4.91) in equation (4.86):

φµ− = ABe∓iατe∓iασ

φµ− = Le∓iατe∓iασ

φµ− = Le∓iατ∓iασ

φµ− = Leiα(∓τ∓σ) (4.94)

We impose causality on the proper time coordinate. We reject −τ . We express L in

tensor notation Dµ

φµ− = Dµeiα(τ∓σ) (4.95)

We can carry out a Fourier decomposition equation (4.95) and express it as the sum of

different functions with different coefficient weights.

φµ− =
∑
n

Dµ
ne

iα(τ∓σ) (4.96)

The weights Dµ
n are the expansion modes of the simplices. In the next section we proceed

to quantise the theory by expressing a commutation relation for these expansion modes
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4.3 Calculating the Number of Critical Dimensions

4.3.1 Introduction

Since we have defined the theory in terms of the extended Polyakov action and understood

the corresponding symmetries, we are now in a position to quantise the theory. We in-

herit the standard quantisation procedures from the Ramond-Neveu-Schwarz formalism.

In this case, this is done by promoting the mode expansions into operators by defining

a commutation relation for the same. Since Virasoro modes are defined using expansion

modes, this amounts to defining a commutation relation for the Virasoro modes, in effect

promoting them into operators. The associated algebra is known as Virasoro algebra. In

the case of superstring theory, this is known as super-virasoro algebra.

We’re specifically concerned with generators of the Poincare algebra which can be defined

in terms of the (now quantised) expansion modes. It has a physical consequence that is

particularly interesting to us. String theory is formulated on a manifold with properties

consistent with general relativity, and quantum field theory. The theory is expected to

preserve Lorentz invariance. It can be demonstrated that the case of the classical string

maintains this invariance: generators of the Poincare algebra are commutative. Thus

Lorentz invariance is one of the symmetries of the Polyakov action. It should be noted

that this symmetry is continuous.

The challenge with quantisation is that it breaks the continuous symmetry, and hence

the Lorentz invariance. Thus quantised string theory is not consistent with relativity in

general. This is an inconsistency that must be cured, since it implies an inconsistency

within the theory itself. There exists a procedure of doing this in the theory. One be-

gins by imposing that some of the commutators of the generators vanish and finding out

what variables in the theory must be fixed. It turns out that for the theory to preserve

Lorentz invariance, the variable that has to be fixed is the number of dimensions. This

fixed number is referred to as the critical dimension of the theory. While involving, this

calculation has been referred to as the most important calculation in string theory, since

it gives the theory its distinctive feature of fixed number of dimensions. In the section,

we calculate the critical dimension of the theory.
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4.3.2 Defining the Generators

The generators of the Poincare algebra were derived in the earlier section in the classical

case. We consider the quantisation relations imposed on the mode expansions, and writing

the generators in terms of both light cone and transverse coordinates:

Jµν =
1

2
(xµpν − pµxν)− xµpν − i

∞∑
n=1

1

n

(
$µ
−n$

ν −$ν
−n$

µ
n

)
− i

2

∞∑
n=0

[φµ−n, φ
ν
ν ] (4.97)

where:

Jµν is the generator of the Lorentz algebra,

xµ is the four-position vector,

pµ is the four momentum,

$µ
−n are expansion modes,

φµ−n are the new simplicial fields.

For simplicity, we split this equation into three separate terms;

Θµν =
1

2
(xµpν − pµxν)− xµpν (4.98)

Ξµν = −i
∞∑
n=1

1

n

(
$µ
−n$

ν −$ν
−n$

µ
n

)
Φµν = − i

2

∞∑
n=0

[φµ−n, φ
ν
n]

Such that equations (4.97) becomes:

Jµν = Θµν + Ξµν + Φµν (4.99)

We can define another generator Jαβ such that:

Jαβ = Θαβ + Ξαβ + Φαβ (4.100)
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We now calculate the commutator
[
Jµν , Jαβ

]
:

[
Jµν , Jαβ

]
=
[
Θµν + Ξµν + Φµν ,Θαβ + Ξαβ + Φαβ

]
= ΘµνΘαβ + ΘµνΞαβ + ΘµνΦαβ + ΞµνΘαβ + ΞµνΞαβ+

ΞµνΦαβ + ΦµνΘαβ + ΦµνΞαβ + ΦµνΦαβ−

ΘαβΘµν −ΘαβΘµν −ΘαβΦµν − ΞαβΘµν − ΞαβΞµν−

ΞαβΦµν − ΦαβΘµν − ΦαβΞµν − ΦαβΦµν

= ΘµνΘαβ −ΘαβΘµν + ΘµνΞαβ − ΞαβΘµν + ΘµνΦαβ − ΦαβΘµν

+ΞµνΘαβ −ΘαβΞµν + ΞµνΞαβ − ΞαβΞµν + ΞµνΦαβ − ΦαβΞµν

+ΦµνΘαβ −ΘαβΦµν + ΦµνΞαβ − ΞαβΦµν + ΦµνΦαβ − ΦαβΦµν

where we have expanded the commutator and rearranged the terms to get the following

sum of independent commutators:

[
Jµν , Jαβ

]
=
[
Θµν ,Θαβ

]
+
[
Θµν , Ξαβ

]
+
[
Θµν ,Φαβ

]
+
[
Ξµν ,Θαβ

]
+
[
Ξµν , Ξαβ

]
+
[
Ξµν ,Φαβ

]
+
[
Φµν ,Θαβ

]
+
[
Φµν , Ξαβ

]
+
[
Φµν ,Φαβ

] (4.101)

We want to work in both transverse and light cone coordinates. The first two coordinates

will be labeled by “+” and “−”. That is, the coordinates in configuration space will be

labeled by x+ and x−. The remaining coordinates will be labelled by i and j. It is these

coordinates that are referred to as transverse coordinates. We use this system because

pertinent commutators are well defined in it. We thus make the replacement:

µ→ i

α→ j

ν, β → −

Such that equation (4.101) now becomes:
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[
J i−, J j−

]
=
[
Θi−,Θj−]+

[
Θi−, Ξj−]+

[
Θi−,Φj−]

+
[
Ξ i−,Θj−]+

[
Ξ i−, Ξj−]+

[
Ξ i−,Φj−]

+
[
Φi−,Θj−]+

[
Φi−, Ξj−]+

[
Φi−,Φj−]

(4.102)

To compute the nine commutators in equation (4.102), we will make use of a standard

commutation table in string theory:

Table 1: Commutators in Quantized String Theory

[,] p+ p− pj xj x− $j
m $j

m

p+ 0 0 0 0 i 0 0
p− 0 0 0 −i pi

p+
−ip−

p+
−2πT

p+
m$j

m −2πT
p+
$−m

pi 0 0 0 iδij 0 0 0
xi 0 −i pi

p+
iδij 0 0 i δ

ijδm
4πT

i$
i
m

p+

x− −i ip
−

p+
0 0 0 0 i$

−
m

p+

$i
n 0 2πT

p+
n$i

n 0 −i δijδn
4πT

0 nδijδm+n

√
4πT
p+

n$i
n+m

$−n 0 2πT
p+
n$−n 0 −i$

i
n

p+
−i$i

p+
-4πT
p+
m$i

n+m [$−n , $
j
m]

where:

p+ = pτ + pσ up to a factor,

p+ = pσ − pτ up to a factor,

pi where (i = 1, 2, 3) is the momentum,

xi where (i = 1, 2, 3) is the four vector,

n and m define the number of string states, and are also an index of states,

T is the string tension,

δij is the Kronecker delta,

δm−n is the Dirac delta.

The table shows the commutation relations between x , y and the expansion modes of

the string in various components. The table is computed using Poisson brackets, and we

reproduce the table here for the reader’s benefit:

Our tools are now in place, we now begin the computation:
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4.3.3 Calculating commutator [Θi−,Θj−]

The first term in equation (4.97) is usually referred to as the angular momentum gen-

erator. We calculate their commutators in this section. We begin by expressing the

commutator in full:

[
Θi−,Θj−] =

[
1

2

(
xip− − p−xi

)
− x−pi, 1

2

(
xjp− − p−xj

)
− x−pj

]
(4.103)

Opening up brackets:

[
Θi−,Θj−] =

[
1

2
xip− − 1

2
p−xi − x−pi, 1

2
xjp− − 1

2
p−xj − x−pj

]

We now create a dictionary to ease our computation:

A =
1

2
xip−

B = −1

2
p−xi

C = −x−pi (4.104)

D =
1

2
xjp−

E = −1

2
p−xj

F = −x−pj

Putting equations (4.104) in equation (4.103) we get:

[A+B + C,D + E + F ] = AD + AE + AF +BD +BE +BF + CD + CE + CF

−DA−DB −DC − EA− EB − EC − FA− FB − FC

= (AD −DA) + (AE − EA) + (AF − FA) + (BD −DB) + (BE − EB)

+(BF − FB) + (CD −DC) + (CE − EC) + (CF − FC)

= [A,D] + [A,E] + [A,F ] + [B,D] + [B,E] + [B,F ] + [C,D] + [C,E] + [C,F ]

(4.105)
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Putting equation (4.104) in equation (4.105) we get:

[
Θi−,Θj−] =

[
1

2
xip−,

1

2
xjp−

]
+

[
1

2
xip−,−1

2
p−xj

]
+

[
1

2
xip−,−x−pj

]
+

[
−1

2
p−xi,

1

2
xjp−

]
+

[
−1

2
p−xi,−1

2
p−xj

]
+

[
−1

2
p−xi,−x−pj

]
+

[
−x−pi, 1

2
xjp−

]
+

[
−x−pi,−1

2
p−xj

]
+
[
−x−pi,−x−pj

]
=

1

4

[
xip−, xjp−

]
− 1

4

[
xip−, p−xj

]
− 1

2

[
xip−, x−pj

]
−1

4

[
p−xi, xjp−

]
+

1

4

[
p−xi, p−xj

]
+

1

2

[
p−xi, x−pj

]
−1

2

[
x−pi, xjp−

]
+

1

2

[
x−pi, p−xj

]
+
[
x−pi, x−pj

] (4.106)

We need to calculate the nine commutators in terms of equation (4.106) individually. We

use the identities in table 1 above to calculate these commutators. We start with term 1.

1

4

[
xip−, xjp−

]
=

1

4

(
xip−xjp− − xjp−xip−

)
=

1

4

(
xip−xjp− − xjp−xip− − p−xixjp− + p−xixjp−

)
=

1

4

(
xip−xjp− − p−xixjp− − xjp−xip− + p−xjxip−

)
=

1

4

(
xj(xip− − p−xi)p− − (xjp− − p−xj)xip−

)
=

1

4

(
xj[xi, p−]p− − [xj, p−]xip−

)
(4.107)

From equation (4.107), we can read off the commutators from table 1:

=
1

4

(
xji

pi

p+
p− − i p

j

p+
xip−

)
= i

1

4

(
xj
pi

p+
p− − pj

p+
xip−

)
=
i

4

(
xjpi − xipj

) p−
p+

(4.108)

We proceed to term 2 of equation (4.106):

−1

4
[p−xi, p−xj] =

1

4
(p−xip−xj − p−xjp−xi)

=
1

4
(p−xip−xj − p−xjp−xi − pixixjp− + pixixjp−)
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=
1

4
(p−xixjp− − p−xjp−xi + p−xip−xj − p−xixjp−)

=
1

4
(p−xj(xip−p−xi)− (xjp− − p−xj)p−xi)

=
1

4
(p−xj[xi, p−]− xi[xj, p−]

=
1

4

(
xji

pi

p+
p−i

pj

p+
xip−

)
=
i

4

(
pixj − pjxi

) p−
p+

(4.109)

Term 3:

−1

2
[xip−, x−pj] = −1

2
(xip−x−pj − x−pjxip−)

= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−x−xip−)

= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−xix−p−)

= −1

2
((xipj − pjxi)x−p− − (x−p− − p−x−)xjp−)

= −1

2
([xi, pj]x−p− − [x−, p−]xjp−)

= −1

2

(
iδijx−p− − i p

j

p+
xip−

)
= − i

2

(
x−p−δij − p−

p+
xipj

)
= − i

2

(
x−p−δij − xipj p

−

p+

)
(4.110)

Term 4:

−1

4
[p−xj, p−xi] =

1

4
(p−xjp−xi − p−xip−xj)

=
1

4
(p−xjp−xi − p−xip−xj − pjxixjp− + pjxixjp−)

=
1

4
(+pjxjxip− − p−xip−xj + p−xjp−xi − pjxjxip−)

=
1

4
(p−xi(xjp− − p−xj)− xi(xip− − p−xi)p−)

=
1

4
(p−xi[xj, p−]− xi[xi, p−])

=
1

4

(
xii

pj

p+
p−i

pi

p+
xjp−

)
=
i

4

(
pjxi − pixj

) p−
p+

(4.111)
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Term 5:

1

4

[
p−xi, p−xj

]
=

1

4

(
p−xip−xj − p−xjp−xi

)
=

1

4

(
p−xip−xj − p−xjp−xi − p−xixjp− + p−xixjp−

)
=

1

4

(
xip−xjp− − xjp−xip− − p−xixjp− + p−xixjp−

)
=

1

4

(
xj(xip− − p−xi)p− − (xjp− − p−xj)xip−

)
=

1

4

(
xj[xi, p−]p− − [xj, p−]xip−

)
=

1

4

(
xji

pi

p+
p− − i p

j

p+
xip−

)
= i

1

4

(
xj
pi

p+
p− − pj

p+
xip−

)
=
i

4

(
xipj − pjxi

) p−
p+

(4.112)

Term 6:

−1

2
[p−xi, x−pj] = −1

2
(p−xix−pj − x−pjp−xi)

= −1

2
(p−xix−pj − x−pjxip− + p−x−xip− − p−x−xip−)

= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−xix−p−)

= −1

2
((xipj − pjxi)x−p− − (x−p− − p−x−)xjp−)

= −1

2
([xi, pj]x−p− − [x−,−p−]xjp−)

= −1

2

(
iδijx−p− − i p

j

p+
xip−

)
= − i

2

(
x−p−δij − p−

p+
xipj

)
= − i

2

(
pjxi

p−

p+
− p−x−δij

)
(4.113)

Term 7:

−1

2
[x−pi, xjp−] = −1

2
(x−pixjp− − xjp−x−pi)

= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−x−xip−)
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= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−xix−p−)

= −1

2
((xipj − pjxi)x−p− − (x−p− − p−x−)xjp−)

= −1

2
([xi, pj]x−p− − [x−,−p−]xjp−)

= −1

2

(
iδijx−p− − i p

j

p+
xip−

)
= − i

2

(
x−p−δij − p−

p+
xipj

)
= − i

2

(
xjpi

p−

p+
− x−p−δij−

)
(4.114)

Term 8:

−1

2
[x−pi, p−xj] = −1

2
(x−pip−xj − p−xjx−pi)

= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−x−xip−)

= −1

2
(xip−x−pj − x−pjxip− + p−x−xip− − p−xix−p−)

= −1

2
((xipj − pjxi)x−p− − (x−p− − p−x−)xjp−)

= −1

2
([xi, pj]x−p− − [x−, p−]xjp−)

= −1

2

(
iδijx−p− − i p

j

p+
xip−

)
= − i

2

(
x−p−δij − p−

p+
xipj

)
=
i

2

(
xjpi

p−

p+
− x−p−δij−

)
(4.115)

And finally, term 9:

[x−pi, p−xj] = (x−pip−xj − p−xjx−pi)

= (xip−x−pj − x−pjxip− + p−x−xip− − p−x−xip−)

= (xip−x−pj − x−pjxip− + p−x−xip− − p−xix−p−)

= ((xipj − pjxi)x−p− − (x−p− − p−x−)xjp−)

= ([xi, pj]x−p− − [x−,−p−]xjp−)

=

(
iδijx−p− − i p

j

p+
xip−

)
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=

(
x−p−δij − p−

p+
xipj

)
=

(
xjpi

p−

p+
− x−p−δij−

)
(4.116)

Putting equation (4.107) through to equation (4.116) together, we get:

[
Θi−,Θj−] =

1

4
(xjpi − xipj)p

−

p+
+
i

4
(pixj − xipj) p

−

p+
− i

2

(
x−p−δij − xipj p

−

p+

)
− i

4
(pixj − xjpi) p

−

p+
− i

4
(pjxi − pixj)p+

p−
+
i

2

(
p−

p+
pjxi − p−x−δij

)
+
i

2

(
p−

p+
pjxi − p−x−δij

)
− i

2

(
xjpi

p−

p+
− x−p−δij

)
− 1

2

(
p−

p+
xjpi − x−p−δij

)

Opening up brackets:

[
Θi−,Θj−] =

i

4
xjpi

p−

p+
− i

4
xipj

p−

p+
+
i

4
pixj

p−

p+
− i

4
xipj

p−

p+
− i

2
x−p−δij +

i

2
xipj

p−

p+

− i
4
pixj

p−

p+
+
i

4
xjpi

p−

p+
− i

4
pjxi

p+

p−
+
i

4
pixj

p+

p−
+
i

2

p−

p+
pjxi − i

2
p−x−δij

+
i

2

p−

p+
pjxi − p−x− i

2
δij − i

2
xjpi

p−

p+
+
i

2
x−p−δij − 1

2

p−

p+
xjpi − x−p1

2
δij

(4.117)

To simplify equation (4.117), we split it into blocks of terms: terms pre-multiplied by p−

p+
,

post-multiplied by p−

p+
and the δij terms. We evaluate the blocks of terms separately:

Pre- multiplied block:

= − i
4

p−

p+
pjxi +

i

4

p−

p+
xjpi − i

4

p−

p+
xjpi − i

4

p−

p+
pjxi +

i

4

p−

p+
pixj − i

2

p−

p+
pjxi − i

2

p−

p+
xjpi

= − i
4

p−

p+
(−pjxi + xjpi − xjpi − pjxi + pixj − pjxi − xjpi)

= − i
4

p−

p+
(−2pjxi + 2pjxi + xjpi − 2xjpi + pixj)

=
i

4

p−

p+
(−xjpi + pixj)

=
i

4

p−

p+
(pixj − xjpi)

=
i

4

p−

p+
[pi, xj]

(4.118)
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The post-multiplied block

=
i

4
xjpi

p−

p+
− i

4
xipj

p−

p+
+
i

4
pixj

p−

p+
+
i

4
pixj

p−

p+
− i

4
xipj

p−

p+
− i

2
xjpi

p−

p+
+
i

2
xipj

p−

p+

=
i

4
(xjpi − xipj + pixj − xipj − 2xipj + 2xipj)

p−

p+

=
i

4
(xjpi + pixj − 2xjpi)

p−

p+

=
i

4
(−xjpi + pixj)

p−

p+

=
i

4
[pi, xj]

p−

p+

(4.119)

The Kronecker delta block:

=
i

2
x−p−δij +

i

2
x−p−δij − i

2
p−x−δij − i

2
x−p−δij

=
i

2
(x−p− + x−p− − p−x− − x−p−)δij

=
i

2
(x−p− − p−x−)δij

=
i

2
[x−, p−]δij (4.120)

Putting equations (4.118), (4.119) and (4.120) together:

[
Θi−,Θj−] = i[x−, p−]δij +

i

4
[pi, xj]

p−

p+
+
i

4

p−

p+
[pi, xj]

=
i

4
(−iδij)p

−

p+
+
i

4
(−iδij)p

−

p+
+
i

2
i
p+

p−
δij

=
i

4
(−iδij)p

−

p+
+
i

4
(−iδij)p

−

p+
+
i

2
i
p+

p−
δij

=
1

4
δij
p−

p+
+

1

4
δij
p−

p+
− 1

2

p+

p−
δij

=
1

2
δij
p−

p+
− 1

2

p+

p−
δij

=
1

2
δij
p−

p+
− 1

2
δij
p+

p−

= 0 (4.121)
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Therefore,

[
Θi−,Θj−] = 0 (4.122)

Thus the generators of angular momentum commute.

We now proceed to calculate terms 2 and 4 of equation (4.97):

4.3.4 Calculating commutator [Θi−, Ξj−] + [Ξ i−,Θj−]

We first take cognisance of the following definitions:

Θi− =
1

2

(
xip− − p−xi

)
− xip−

Ξ i− = −i
∞∑
n=1

1

n

(
$i
−n$

− −$−−n$i
n

)
Θj− =

1

2

(
xjp− − p−xi

)
− xjp−

Ξj− = −i
∞∑
n=1

1

n

(
$j
−n$

− −$−−n$j
n

)
(4.123)

Such that,

[
Θi−, Ξj−]+

[
Ξ i−,Θj−] =

[
1

2

(
xip− − p−xi

)
− xip−,−i

∞∑
n=1

1

n

(
$j
−n$

− −$−−n$j
n

)]

+

[
−i

∞∑
n=1

1

n

(
$i
−n$

− −$−−n$i
n

)
,
1

2

(
xjp− − p−xi

)
− xjp−

]
(4.124)

We will work this equation out term by term: We start with term one,

[
Θi−, Ξj−] =

[
1

2

(
xip− − p−xi

)
− xip−,−i

∞∑
n=1

1

n

(
$j
−n$

− −$−−n$j
n

)]

=

[
1

2
xip− − 1

2
p−xi − xip−,−i

∞∑
n=1

1

n
$j
−n$

− + i
∞∑
n=1

1

n
$−−n$

j
n

]
(4.125)
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We invoke a dictionary for simplification:

A =
1

2
xip−

B = −1

2
p−xi

C = −xip−

D = −i
∞∑
n=1

1

n
$j
−n$

−

E = i
∞∑
n=1

1

n
$−−n$

j
n (4.126)

So equation (4.124) becomes:

[
Θi−, Ξj−] = [A+B + C,D + E]

= (AD + AE +BD +BE + CD + CE −DA−DB −DC − EA− EB − EC)

= AD −DA+ AE − EA+BD −DB +BE − EB + CD −DC + CE − EC

= [A,D] + [A,E] + [B,D]

+[B,E] + [C,D] + [C,E]

(4.127)

Writing equation (4.129) in terms of equation (4.126):

[
Θi−, Ξj−] = [

1

2
xip−,−i

∞∑
n=1

1

n
$j
−n$

−] + [
1

2
xip−,−i

∞∑
n=1

1

n
$j
−n$

−]+

[−1

2
p−xi,−i

∞∑
n=1

1

n
$j
−n$

−] + [−1

2
p−xi, i

∞∑
n=1

1

n
$−−n$

j
n]+

[−xip−,−i
∞∑
n=1

1

n
$j
−n$

−] + [−xip−, i
∞∑
n=1

1

n
$−−n$

j
n]

= − i
2

∞∑
n=1

1

n
[xip−, $j

−n$
−] +

i

2

∞∑
n=1

1

n
[xip−, $j

−n$
−]+

i

2

∞∑
n=1

1

n
[p−xi, $j

−n$
−]− i

2

∞∑
n=1

1

n
[p−xi, $−−n$

j
n]+

i

∞∑
n=1

1

n
[xip−, $j

−n$
−]− i

∞∑
n=1

1

n
[xip−, $−−n$

j
n]

(4.128)
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We carry out a similar process for [Ξ i−,Θj−]:

[
Ξ i−,Θj−] =

[
−i

∞∑
n=1

1

n

(
$i
−n$

− −$−−n$i
n

)
,
1

2

(
xjp− − p−xi

)
− xjp−

]

=

[
−i

∞∑
n=1

1

n
$i
−n$

− + i
∞∑
n=1

1

n
$−−n$

i
n,

1

2
xjp− − 1

2
p−xi − xjp−

]

F = −i
∞∑
n=1

1

n
$i
−n$

−

G = i

∞∑
n=1

1

n
$−−n$

i
n

H =
1

2
xjp−

I = −1

2
p−xi

J = −xjp−

= [F +G,H + I + J ]

= (FH + FI + FJ +GH +GI +GJ −HF −HG− IF − IG− JF − JG)

= FH −HF + FI − IF + FJ − JF +GH −HG+GI − IG+GJ − JG

= [F,H] + [F, I] + [F, J ] + [G,H] + [G, I] + [G, J ]

= [−i
∞∑
n=1

1

n
$i
−n$

−,
1

2
xjp−] + [−i

∞∑
n=1

1

n
$i
−n$

−,−1

2
p−xi] + [−i

∞∑
n=1

1

n
$i
−n$

−,−xjp−]+

[i
∞∑
n=1

1

n
$−−n$

i
n,

1

2
xjp−] + [i

∞∑
n=1

1

n
$−−n$

i
n,−

1

2
p−xi] + [i

∞∑
n=1

1

n
$−−n$

i
n,−xjp−]

= − i
2

∞∑
n=1

1

n
[$i
−n$

−, xjp−] +
i

2

∞∑
n=1

1

n
[$i
−n$

−, p−xi] + i

∞∑
n=1

1

n
[$i
−n$

−, xjp−]+

i

2

∞∑
n=1

1

n
[$−−n$

i
n, x

jp−]− i

2

∞∑
n=1

1

n
[$−−n$

i
n, p
−xi]− i

∞∑
n=1

1

n
[$−−n$

i
n, x

jp−]

(4.129)

We now want to simplify the equations further: We will factor out terms and manipulate

them to simplify the equations. We start with equation (4.129). Combining terms (1),
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(2), (3), (4):

= − i
2

∞∑
n=1

1

n
[xip−, $j

−n$
−
n ] +

i

2

∞∑
n=1

1

n
[xip−, $−−n$

j
n]+

i

2

∞∑
n=1

1

n
[p−xi, $j

−n$
−
n ]− i

2

∞∑
n=1

1

n
[p−xi, $−−n$

j
n]

=
i

2

∞∑
n=1

1

n
(−[xip−, $j

−n$
−
n ] + [xip−, $−−n$

j
n]+

[p−xi, $j
−n$

−
n ]− [p−xi, $−−n$

j
n])

=
i

2

∞∑
n=1

1

n
(−(xip−$j

−n$
−
n −$

j
−n$

−
n x

ip−) + (xip−$−−n$
j
n −$−−n$j

nx
ip−)+

(p−xi$j
−n$

−
n −$

j
−n$

−
n p
−xi)− (p−xi$−−n$

j
n −$−−n$j

np
−xi))

=
i

2

∞∑
n=1

1

n
(−xip−$j

−n$
−
n +$j

−n$
−
n x

ip− + xip−$−−n$
j
n −$−−n$j

nx
ip−+

p−xi$j
−n$

−
n −$

j
−n$

−
n p
−xi − p−xi$−−n$j

n +$−−n$
j
np
−xi)

Collecting like terms in the coordinate factors:

i

2

∞∑
n=1

1

n
(−xip−$j

−n$
−
n +$j

−n$
−
n x

ip− + xip−$−−n$
j
n −$−−n$j

nx
ip−+

p−xi$j
−n$

−
n −$

j
−n$

−
n p
−xi − p−xi$−−n$j

n +$−−n$
j
np
−xi)

=
i

2

∞∑
n=1

1

n
(xip−($−−n$

j
n −$

j
−n$

−
n )− p−xi($−−n$j

n −$
j
−n$

−
n )

+($−−n$
j
n −$

j
−n$

−
n )xip− − ($−−n$

j
n −$

j
−n$

−
n )p−xi)

=
i

2

∞∑
n=1

1

n
([xi, p−]($−−n$

j
n −$

j
−n$

−
n ) + ($−−n$

j
n −$

j
−n$

−
n )[xi, p−]

=
i

2

∞∑
n=1

1

n
([xi, p−]2($−−n$

j
n −$

j
−n$

−
n ))

= i
∞∑
n=1

1

n
([xi, p−]($−−n$

j
n −$

j
−n$

−
n ))

= i
∞∑
n=1

1

n
(i
pj

p+
($−−n$

j
n −$

j
−n$

−
n ))

= − 1

p+

∞∑
n=1

1

n
(pj($−−n$

j
n −$

j
−n$

−
n ))
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= − 1

p+

∞∑
n=1

1

n
(($−−n$

j
n −$

j
−n$

−
n )pi) (4.130)

We perform a similar computation for the remaining terms of equation (4.129):

= − i
2

∞∑
n=1

1

n
[$i
−n$

−
n , x

jp−] +
i

2

∞∑
n=1

1

n
[$i
−n$

−
n , p

−xj]

+
i

2

∞∑
n=1

1

n
[$−−n$

i
n, x

jp−]− i

2

∞∑
n=1

1

n
[$−−n$

i
n, p
−xj]

= − i
2

∞∑
n=1

1

n
([$i

−n$
−
n , x

jp−] + [$i
−n$

−
n , p

−xj]

+[$−−n$
i
n, x

jp−]− [$−−n$
i
n, p
−xj])

=
i

2

∞∑
n=1

1

n
(−($i

−n$
−
n x

jp− − xjp−$i
−n$

−
n ) + ($i

−n$
−
n p
−xj − p−xj$i

−n$
−
n )

+($−−n$
i
nx

jp− − xjp−$−−n$i
nx

jp−)− ($−−n$
i
np
−xj −$−−n$i

np
−xj))

=
i

2

∞∑
n=1

1

n
(−$i

−n$
−
n x

jp− + xjp−$i
−n$

−
n +$i

−n$
−
n p
−xj − p−xj$i

−n$
−
n

+$−−n$
i
nx

jp− − xjp−$−−n$i
nx

jp− −$−−n$i
np
−xj +$−−n$

i
np
−xj)

=
i

2

∞∑
n=1

1

n
(xjp−($−−n$

i
n −$i

−n$
−
n )− p−xj($−−n$i

n −$i
−n$

−
n )

+($−−n$
i
n −$i

−n$
−
n )xjp− − ($−−n$

i
n −$i

−n$
−
n )p−xj)

i

2

∞∑
n=1

1

n
([xj, p−]($−−n$

i
n −$i

−n$
−
n ) + ($−−n$

i
n −$i

−n$
−
n )[xj, p−]

=
i

2

∞∑
n=1

1

n
([xj, p−]2($−−n$

i
n −$i

−n$
−
n ))

= −i
∞∑
n=1

1

n
([xj, p−]($−−n$

i
n −$i

−n$
−
n ))

= −i
∞∑
n=1

1

n
(i
pi

p+
($−−n$

i
n −$i

−n$
−
n ))

=
1

p+

∞∑
n=1

1

n
(pi($−−n$

i
n −$i

−n$
−
n ))

=
1

p+

∞∑
n=1

1

n
(($−−n$

i
n −$i

−n$
−
n )pj) (4.131)
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Putting equations (4.131) and (4.130) together with the remainder terms, we get:

[
Θi−, Ξj−]+

[
Ξ i−,Θj−] = 2

p−

p+

∞∑
n=1

1

n
($i
−n$

j
n −$

j
−n$

i
n) +

1

p+

∞∑
n=1

1

n
(($−−n$

i
n −$i

−n$
−
n )pj)

− 1

p+

∞∑
n=1

1

n
(($−−n$

j
n −$

j
−n$

−
n )pi)

(4.132)

4.3.5 Calculating commutator [Ξ i−, Ξj−]

We now proceed to calculate the fifth term of equation (4.97). We start by studying

the commutator of Ξ i− with individual expansion modes. This will help us simplify our

computation of the commutator. We begin by calculating [Ξ i−, $−m].

Writing in full:

[Ξ i−, $−m] =

[
−i

∞∑
n=1

1

n

(
$i
−n$

− −$−−n$i
n

)
, $−m

]
(4.133)

We manipulate the commutator further:

[Ξ i−, $−m] = −i
∞∑
n=1

1

n

[(
$i
−n$

−
n −$−−n$i

n

)
, $−m

]
= −i

∞∑
n=1

1

n

(
$i
−n$

−
n$

−
m −$−−n$i

n$
−
m −$−m$i

−n$
−
n +$−m$

−
−n$

i
n

)
= −i

∞∑
n=1

1

n
($i
−n$

−
n$

−
m −$−−n$i

n$
−
m −$−m$i

−n$
−
n +$−m$

−
−n$

i
n

+$i
n$
−
m$

−
n −$i

n$
−
m$

−
n +$−−n$

−
m$

i
n −$−−n$−m$i

n)

= −i
∞∑
n=1

1

n
(($i

−n$
−
m −$−m$i

−n)$−n +$i
−n($−n$

−
m −$−m$−n )

−($−−n$
−
m −$−m$−−n)$i

n +$−−n($−m$
i
n −$i

n$
−
m))

= −i
∞∑
n=1

1

n
([$i

−n, $
−
m]$−n +$i

−n[$−n , $
−
m]− [$−−n, $

−
m]$i

n +$−−n[$−m, $
i
n]) (4.134)

From here, we can read off the commutators from table 1:

[$i
−n, $

−
m] =

√
4πT

p+
$i
m−n (4.135)
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[
$−n , $

−
m

]
=
√

4πT
m− n
p+

$−m+n +
√

4πT

(
D − 2

12
m(m2 − 1) + 2am

)
δm+n

(p+)2
(4.136)

[
$−−n, $

−
m

]
=
√

4πT
m+ n

p+
$−m+n +

√
4πT

(
D − 2

12
m(m2 − 1) + 2am

)
δm−n
(p+)2

(4.137)

Putting (4.135), (4.136) and (4.137) in (4.134) we get:

[Ξ i−, $−m] = −i
∞∑
n=1

1

n
(−
√

4πT

p+
n$i

m−n +$i
−n

(√
4πT

p+
(m− n)$−m+n

)

+

(√
4πT

p+
(m+ n)$−m−n

)
$i
n −

4πT

p+
n$−−n$

i
n+m)

+i
χ(m)

m

(4.138)

where:

χ(m) =
√

4πT
m(m− n)

p+
$−m+n +

√
4πT

(
D − 2

12
m2(m2 − 1) + 2am

)
δm+n

(p+)2

+
√

4πT
m(m+ n)

p+
$−m+n +

√
4πT

(
D − 2

12
m2(m2 − 1) + 2am

)
δm−n
(p+)2

(4.139)

D is the number of dimensions.

We now manipulate equation (4.138):

[Ξ i−, $−m] = −i
√

4πT

p+

∞∑
n=1

1

n
(−n$i

m−n +$i
−n(m− n)$−m+n

+(m+ n)$−m−n)$i
n − n$−−n$i

n+m)

+i
χ(m)

m

= −i
√

4πT

p+

∞∑
n=1

1

n
(−n$i

m−n + (m− n))$i
−n$

−
m+n

+(m+ n)$−m−n)$i
n − n$−−n$i

n+m)

+i
χ(m)

m
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= −i
√

4πT

p+

∞∑
n=1

1

n
(−n$i

m−n +m$i
−n$

−
m+n − n$i

−n$
−
m+n

+m$−m−n$
i
n + n$−m−n$

i
n − n$−−n$i

n+m)

+i
χ(m)

m

= −i
√

4πT

p+

∞∑
n=1

1

n
(−n$i

m−n +m$i
−n$

−
m+n − n$i

−n$
−
m+n

+m$−m−n$
i
n + n$−m−n$

i
n − n$−−n$i

n+m)

+i
χ(m)

m

= −i
√

4πT

p+

∞∑
n=1

1

n
(−n$i

m−n − n$i
−n$

−
m+n

+n$−m−n$
i
n − n$−−n$i

n+m)− i
√

4πT

p+

∞∑
n=1

1

n
(−m$i

−n$
−
m+n +m$−m−n$

i
n)

+i
χ(m)

m

= −i
√

4πT

p+

∞∑
n=1

1

n
n(−$i

m−n$
−
n −$i

−n$
−
m+n

+$−m−n$
i
n −$−−n$i

n+m)− i
√

4πT

p+

∞∑
n=1

1

n
m(−$i

−n$
−
m+n +$−m−n$

i
n)

+i
χ(m)

m

= −i
√

4πT

p+

∞∑
n=1

(−$i
m−n$

−
n −$i

−n$
−
m+n

+$−m−n$
i
n −$−−n$i

n+m)− i
√

4πT

p+

∞∑
n=1

1

n
m(−$i

−n$
−
m+n +$−m−n$

i
n)

+i
χ(m)

m

= −i
√

4πT

p+

∞∑
n=1

(−$i
m−n$

−
n −$i

−n$
−
m+n

+$−m−n$
i
n −$−−n$i

n+m)− i
√

4πT

p+

∞∑
n=1

m

n
(−$i

−n$
−
m+n +$−m−n$

i
n)

+i
χ(m)

m

(4.140)
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We are interested in terms (1) and (3) of equation (4.140) which we manipulate further:

We begin by changing the summation limit from infinity to m:

=
m∑
n=1

(
$i
−n$

−
m+n −$−−n$i

n+m

)
=
(
$i
−1$

−
m+1 −$−m−1$i

1+m

)
+ ...

(
$i
−m$

−
2m −$−−m$i

2m

)
≈ 0 (4.141)

Therefore these terms partially cancel. We are thus left with:

[Ξ i−, $−m] = −i
√

4πT

p+

m∑
n=1

(−$i
m−n$

−
n +$−m−n$

i
n)

−i
√

4πT

p+

∞∑
n=1

m

n
(−$i

−n$
−
m+n +$−m−n$

i
n)

+i
χ(m)

m

(4.142)

We focus on the first two terms of equation (4.142) for further manipulation. We make

the substitution: k = m− 1

m∑
n=1

$−n$
i
m−n =

0∑
k=m−1

$−m−k$
i
k =

m−1∑
n=0

$−n$
i
m−n (4.143)

Putting equation (4.143) back in the first two terms of equation (4.142)

=
m∑
n=1

(−$i
m−n$

−
n +$−m−n$

i
n)

= −
m∑
n=1

$i
m−n$

−
n +

m∑
n=1

$−m−n$
i
n

= −
m−1∑
n=1

$i
m−n$

−
n −$i

0$
−
m +

m−1∑
n=1

$−m−n$
i
n +$i

0$
−
m

= $i
0$
−
m −$i

0$
−
m −

m−1∑
n=1

$i
m−n$

−
n +

m−1∑
n=1

$−m−n$
i
n

= $i
0$
−
m −$i

0$
−
m −

m−1∑
n=1

(
−$i

m−n$
−
n +$−m−n$

i
n

)
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= $i
0$
−
m +$i

0$
−
m +

m−1∑
n=1

(
$−m−n$

i
n −$i

m−n$
−
n

)
(4.144)

We now focus on the term in the summation:

m−1∑
n=1

(
$−m−n$

i
n −$i

m−n$
−
n

)
= ($−m−1$

i
1 −$i

m−1$
−
1 ) + · · ·+ ($−1 $

i
m−1 −$i

1$
−
m−1) (4.145)

Where we have performed the full summation to get equation (4.145). We now rearrange

it by coupling the first term to the last, the second to the second last, and so on and so

forth:

m−1∑
n=1

(
$−m−n$

i
n −$i

m−n$
−
n

)
= ($−m−1$

i
1 −$i

1$
−
m−1) + · · ·+ ($i

m−1$
−
1 −$−1 $i

m−1)

=
[
$−m−1, $

i
1

]
+ · · ·+

[
$i
m−1, $

−
1

]
=

m−1∑
n=1

[$−n , $
i
m−n] = −

m−1∑
n=1

[$i
m−n, $

−
n ]

=
m−1∑
n=1

√
4πT

p+
(m− n)$i

m

=

√
4πT

p+
$i
m

m−1∑
n=1

(m− n)

=

√
4πT

p+
$i
m

m(m− 1)

2
(4.146)

Putting result (4.146) into expression (4.144) and putting the resulting terms in equation

(4.142) we get:

= $i
0$
−
m +$i

0$
−
m +

√
4πT

p+
$i
m

m(m− 1)

2
(4.147)

[Ξ i−, $−m] = i

√
4πT

p+
($i

0$
−
m +$i

0$
−
m)− i

√
4πT

p+
m

n
(−$i

−n$
−
m+n +$−m−n$

i
n)

+i
4πT

(p+)2

(
m(m− 1)

2
− f(m)

m

)
$i
−m (4.148)
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We now proceed to calculate another commutator [Ξ i−, $j
m]

[Ξ i−, $j
m] =

[
−i

∞∑
n=1

1

n

(
$i
−n$

− −$−−n$i
n

)
, $j

m

]
(4.149)

= −i
∞∑
n=1

1

n

[(
$i
−n$

− −$−−n$i
n

)
, $j

m

]
= −i

∞∑
n=1

1

n
($i
−n$

−
n$

j
m −$−−n$i

n$
j
m −$j

m$
i
−n$

−
n +$j

m$
−
−n$

i
n) (4.150)

We manipulate terms 2 and 3 of equation (4.150) further:

[Ξ i−, $j
m] = −$−−n$i

n$
j
m −$j

m$
i
−n$

−
n −$−−n$j

m$
i
n +$−−n$

j
m$

i
n

= −$−−n$i
n$

j
m −$−−n$j

m$
i
n −$j

m$
i
−n$

−
n +$−−n$

j
m$

i
n

= −$−−n$j
m$

i
n −$j

m$
i
−n$

−
n +$−−n$

j
m$

i
n −$−−n$i

n$
j
m

= −$−−n$j
m$

i
n −$j

m$
i
−n$

−
n +$−−n($j

m$
i
n −$i

n$
j
m)

= −$−−n$j
m$

i
n −$j

m$
i
−n$

−
n +$−−n[$j

m, $
i
n]

Reading off the commutator tables;

[Ξ i−, $j
m] = −$−−n$j

m$
i
n −$j

m$
i
−n$

−
n +$−−nnδ

ijδnm (4.151)

Putting equation (4.151) in equation (4.150)

[Ξ i−, $j
m] = −i

∞∑
n=1

1

n
($i
−n$

−
n$

j
m +$j

m$
−
−n$

i
n−$−−n$j

m$
i
n−$j

m$
i
−n$

−
n +$−−nnδ

ijδnm)

(4.152)

= −i
∞∑
n=1

1

n
($i
−n$

−
n$

j
m +$j

m$
−
−n$

i
n −$−−n$j

m$
i
n −$i

−n$
j
m$

−
n +$−−nnδ

ijδnm)

= −i
∞∑
n=1

1

n
($i
−n$

−
n$

j
m −$i

−n$
j
m$

−
n +$j

m$
−
−n$

i
n −$−−n$j

m$
i
n +$−−nnδ

ijδnm)

= −i
∞∑
n=1

1

n
($i
−n($−n$

j
m −$j

m$
−
n ) + ($j

m$
−
−n −$−−n$j

m)$i
n +$−−nnδ

ijδnm)

= −i
∞∑
n=1

1

n
($i
−n[$−n , $

j
m] + [$j

m, $
−
−n]$i

n +$−−nnδ
ijδnm)
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= −i
∞∑
n=1

1

n
($i
−n[$−n , $

j
m] + [$j

m, $
−
−n]$i

n +$−−nnδ
ijδnm)

(4.153)

= −i
∞∑
n=1

1

n
($i
−n[$−n , $

j
m] + [$j

m, $
−
−n]$i

n +
��

���
���:0

$−−nnδ
ijδnm)

= −i
∞∑
n=1

1

n

(√
4πT

p+
m$i

−n$
i
n+m −

√
4πT

p+
mαin+m$

i
n

)

= −i
∞∑
n=1

m

n

(√
4πT

p+
$i
−n$

i
n+m −

√
4πT

p+
$i
n+m$

i
n

)

= −i
√

4πT

p+

∞∑
n=1

m

n

(
$i
−n$

i
n+m −$i

−n+m$
i
n

)
(4.154)

We repeat the computation for [Ξ i−, $j
−m]

[Ξ i−, $j
−m] =

[
−i

∞∑
n=1

1

n

(
$i
−n$

−
n −$−−n$i

n

)
, $j
−m

]
(4.155)

= −i
∞∑
n=1

1

n

[(
$i
−n$

− −$−−n$i
n

)
, $j

m

]
= −i

∞∑
n=1

1

n
($i
−n$

−
n$

j
−m −$−−n$i

n$
j
−m −$

j
−m$

i
−n$

−
n +$j

−m$
−
−n$

i
n) (4.156)

= −$−−n$i
n$

j
−m −$

j
−m$

i
−n$

−
n −$−−n$

j
−m$

i
n +$−−n$

j
−m$

i
n

= −$−−n$i
n$

j
−m −$−−n$

j
−m$

i
n −$

j
−m$

i
−n$

−
n +$−−n$

j
−m$

i
n

= −$−−n$
j
−m$

i
n −$

j
−m$

i
−n$

−
n +$−−n$

j
−m$

i
n −$−−n$i

n$
j
−m

= −$−−n$
j
−m$

i
n −$

j
−m$

i
−n$

−
n +$−−n($j

−m$
i
n −$i

n$
j
−m)

= −$−−n$
j
−m$

i
n −$

j
−m$

i
−n$

−
n +$−−n[$j

−m, $
i
n]

= −$−−n$
j
−m$

i
n −$

j
−m$

i
−n$

−
n +$−−nnδ

ijδnm
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= −i
∞∑
n=1

1

n
($i
−n$

−
n$

j
−m +$j

−m$
−
−n$

i
n −$−−n$

j
−m$

i
n −$i

−n$
j
−m$

−
n +$−−nnδ

ijδnm)

= −i
∞∑
n=1

1

n
($i
−n$

−
n$

j
−m −$i

−n$
j
−m$

−
n +$j

−m$
−
−n$

i
n −$−−n$

j
−m$

i
n +$−−nnδ

ijδnm)

= −i
∞∑
n=1

1

n
($i
−n($−n$

j
−m −$

j
−m$

−
n ) + ($j

−m$
−
−n −$−−n$

j
−m)$i

n +$−−nnδ
ijδnm)

= −i
∞∑
n=1

1

n
($i
−n[$−n , $

j
−m] + [$j

−m, $
−
−n]$i

n +$−−nnδ
ijδnm)

= −i
∞∑
n=1

1

n
($i
−n[$−n , $

j
−m] + [$j

−m, $
−
−n]$i

n +$−−nnδ
ijδnm)

= −i
∞∑
n=1

1

n
($i
−n[$−n , $

j
−m] + [$j

−m, $
−
−n]$i

n +
��

���
���:0

$−−nnδ
ijδnm)

= −i
∞∑
n=1

1

n

(√
4πT

p+
m$i

−n$
i
n−m −

√
4πT

p+
mαin−m$

i
n

)

= −i
∞∑
n=1

−m
n

(√
4πT

p+
$i
−n$

i
n−m −

√
4πT

p+
$i
n−m$

i
n

)

= −i
√

4πT

p+

∞∑
n=1

−m
n

(
$i
−n$

i
n−m −$i

−n−m$
i
n

)
(4.157)

Putting these results in the commutator [Ξ i−, Ξj−] we obtain:

[
Ξ i−, Ξj−] =

√
4πT

p+

∞∑
n=1

1

n
(−$j

−n$
−
0 $

i
n +$j

−n$
i
0$
−
n +$i

−n$
−
0 $

j
n −$−n$i

0$
j
n)

· · · −
∞∑
n=1

4πT

(p+)2

(
n− 1

2
− χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n)

· · ·+ ($i
−n$

−
n−m$

j
m −$

j
−m$

−
m−n$

i
n)$j

m

· · · −$−−m($i
−n$

j
m+n −$

j
m−n$

i
n) (4.158)
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Indeed, we can demonstrate that this is the commutator. We do this by manipulating

term two of equation (4.158).

−
∞∑
n=1

4πT

(p+)2

(
n− 1

2
− χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n)

= −
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

(
n− 1

2
− χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n)

=

(
−
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n)

= −
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$i
−n$

j
n +

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$j
n$

j
n −

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n (4.159)

We consider terms (1) and (2) of equation (4.159):

= −
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$i
−n$

j
n +

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n

Term (1) can be rewritten as:

−
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$i
−n$

j
n = −

∞∑
n=1

$i
−n

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$j
n

= −
√

4πT

(p+)

∞∑
n=1

$i
−n

√
4πT

(p+)

1

n

n(n− 1)

2
$j
n (4.160)

Now,

√
4πT

(p+)

n(n− 1)

2
$j
n =

√
4πT

(p+)

n∑
k

(n− k)$j
n

=
n∑
k

√
4πT

(p+)
(n− k)$j

n

=
n∑
k=

[$−k , $
j
n−k] (4.161)
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We now reassemble the solution by putting equation (4.161) into equation (4.160).

= −
√

4πT

(p+)

∞∑
n=1

1

n
$i
−n

n−1∑
k=1

[$−k , $
j
n−k] +

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n (4.162)

We are interested in elucidating the commutator in term (1) of equation (4.162) further:

n−1∑
k=1

[$−k , $
j
n−k] =

n−1∑
k=1

[$−k , $
j
n−k] +$−0 $

j
k −$

j
0$
−
n −$−0 $

j
k +$j

0$
−
n

= $−0 $
j
k −$

j
0$
−
n −$−0 $

j
k +$j

0$
−
n +

n−1∑
k=1

[$−k , $
j
n−k]

= $−0 $
j
k −$

j
0$
−
n −$−0 $

j
k +$j

0$
−
n +

n−1∑
k=1

($−k $
j
n−k −$

j
n−k$

−
k ) (4.163)

= $−0 $
j
k −$

j
0$
−
n −$−0 $

j
k +$j

0$
−
n +

n−1∑
k=1

$−k $
j
n−k −

n−1∑
k=1

$j
n−k$

−
k

= −$−0 $
j
k +$j

0$
−
n +

n−1∑
k=0

$−k $
j
n−k −

n−1∑
k=0

$j
n−k$

−
k

= −$−0 $
j
k +$j

0$
−
n +

n−1∑
k=0

($−k $
j
n−k −$

j
n−k$

−
k ) (4.164)

Putting expression (4.164) back into equation (4.162):

= −
√

4πT

(p+)

∞∑
n=1

1

n
$i
−n

(
−$−0 $

j
k +$j

0$
−
n +

n−1∑
k=0

($−k $
j
n−k −$

j
n−k$

−
k )

)

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n (4.165)

So we can now repeat the process for terms (3) and (4) of equation (4.159). The two

terms are:

=
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$j
−n$

i
n −

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n (4.166)
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We focus on term one of expression (4.166)

−
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$j
−n$

i
n = −$i

−n

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

n− 1

2
$i
n

= −
√

4πT

(p+)

∞∑
n=1

$i
−n

√
4πT

(p+)

1

n

n(n− 1)

2
$i
n

√
4πT

(p+)

n(n− 1)

2
$i
n =

√
4πT

(p+)

n∑
k

(n− k)$i
n

=
n∑
k

√
4πT

(p+)
(n− k)$i

n

=
n∑
k=

[$−k , $
i
n−k]

= −
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

n−1∑
k=1

[$−k , $
i
n−k] +

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n

=
n−1∑
k=1

[$−k , $
i
n−k] +$−0 $

i
k −$i

0$
−
n −$−0 $i

k +$i
0$
−
n

= $−0 $
i
k −$i

0$
−
n −$−0 $i

k +$i
0$
−
n +

n−1∑
k=1

[$−k , $
i
n−k]

= $−0 $
i
k −$i

0$
−
n −$−0 $i

k +$i
0$
−
n +

n−1∑
k=1

($−k $
i
n−k −$i

n−k$
−
k )

= $−0 $
i
k −$i

0$
−
n −$−0 $i

k +$i
0$
−
n +

n−1∑
k=1

$−k $
i
n−k −

n−1∑
k=1

$i
n−k$

−
k

= −
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

(
−$−0 $i

k +$i
0$
−
n +

n−1∑
k=0

($−k $
i
n−k −$i

n−k$
−
k )

)

= −
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

(
−$−0 $i

k +$i
0$
−
n +

n−1∑
k=0

($−k $
i
n−k −$i

n−k$
−
k )

)

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n (4.167)

We now put equations (4.167) and (4.165) together:

= −
√

4πT

(p+)

∞∑
n=1

1

n
$i
−n

(
−$−0 $

j
k +$j

0$
−
n +

n−1∑
k=0

($−k $
j
n−k −$

j
n−k$

−
k )

)
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· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n

· · · −
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

(
−$−0 $i

k +$i
0$
−
n +

n−1∑
k=0

($−k $
i
n−k −$i

n−k$
−
k )

)

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n

Opening brackets partially:

= −
√

4πT

(p+)

∞∑
n=1

1

n

(
−$i

−n$
−
0 $

j
k +$i

−n$
j
0$
−
n

)
−
√

4πT

(p+)

∞∑
n=1

1

n
$i
−n

(
n−1∑
k=0

($−k $
j
n−k −$

j
n−k$

−
k )

)

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n

· · ·−
√

4πT

(p+)

∞∑
n=1

1

n

(
−$j

−n$
−
0 $

i
k +$j

−n$
i
0$
−
n

)
−
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

(
n−1∑
k=0

($−k $
i
n−k −$i

n−k$
−
k )

)

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n

We now collect terms with the ground state of the mode expansions:

= −
√

4πT

(p+)

∞∑
n=1

1

n

(
−$i

−n$
−
0 $

j
k +$i

−n$
j
0$
−
n

)
−
√

4πT

(p+)

∞∑
n=1

1

n

(
−$j

−n$
−
0 $

i
k +$j

−n$
i
0$
−
n

)

· · · −
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

(
n−1∑
k=0

($−k $
i
n−k −$i

n−k$
−
k )

)

−
√

4πT

(p+)

∞∑
n=1

1

n
$i
−n

(
n−1∑
k=0

($−k $
j
n−k −$

j
n−k$

−
k )

)

· · ·+
∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$j
−n$

i
n +

∞∑
n=1

√
4πT

(p+)

√
4πT

(p+)

χ(n)

n2
$i
−n$

j
n

Factoring out the summation:

= −
√

4πT

(p+)

∞∑
n=1

1

n

(
−$i

−n$
−
0 $

j
k +$i

−n$
j
0$
−
n +$j

−n$
−
0 $

i
k +$j

−n$
i
0$
−
n

)
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· · · −
√

4πT

(p+)

∞∑
n=1

1

n
$j
−n

(
n−1∑
k=0

($−k $
i
n−k −$i

n−k$
−
k )

)

· · · −
√

4πT

(p+)

∞∑
n=1

1

n
$i
−n

(
n−1∑
k=0

($−k $
j
n−k −$

j
n−k$

−
k )

)

· · ·+
∞∑
n=1

4πT

(p+)2
χ(n)

n2

(
$j
−n$

i
n +$i

−n$
j
n

)
(4.168)

Thus, we have recovered term (1) of equation (4.158) in (4.168). The others can be

recovered using similar processes. Thus the commutator can be calculated using the sub-

commutators developed in equations (4.148), (4.154) and (4.157). We now focus on the

last term of equation (4.158). The algebraic manipulation of this term will help us link

equation (4.158) with equation(4.168) later in the work when finalising the calculation

of the critical dimensions: We will refer to the last term of equation (4.158) as Cij. The

reader trained in the cosmological steady state theory should not conflate this with the

C -fields present in the theory.

Cij = −
√

4πT

(p+)

∞∑
m,n=1

1

n
($j
−m($i

−n$
−
m+n −$−m−n$i

n)− ($i
−n$

j
n+m −$

j
−m−n$

i
n)$−m

· · ·+ ($i
−n$

j
n+m −$

j
−m−n$

i
n)$j

−m −$−m($i
−n$

−
n−m −$−m−n$i

n)) (4.169)

Opening brackets:

Cij = −
√

4πT

(p+)

∞∑
m,n=1

1

n
($j
−m$

i
−n$

−
m+n −$

j
−m$

−
m−n$

i
n)− ($i

−n$
j
n+m −$

j
−m−n$

i
n)$−m

· · ·+ ($i
−n$

j
n+m$

j
m −$

j
−m−n$

i
n$

j
m)−$−−m($i

−n$
−
n−m −$−m−n$i

n)) (4.170)

We are interested in term (1) and term (4) of equation (4.170):

=
∞∑

m,n=0

($j
−m$

i
−n$

−
m+n −$i

−n$
j
n−m$

−
m) (4.171)
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We want to manipulate equation (4.171) further by invoking a change of indices:

∞∑
m,n=0

($j
−m$

i
−n$

−
m+n −$i

−n$
j
n−m$

−
m) (4.172)

= $j
0$

i
0$
−
0 −$i

0$
j
0$
−
0 +

∞∑
m,n=1

($j
−m$

i
−n$

−
m+n −$i

−n$
j
n−m$

−
m)

=
∞∑
n=1

∞∑
m=1

($j
−m$

i
−n$

−
m+n −$i

−n$
j
n−m$

−
m)

=
∞∑
m=1

m∑
n=1

($j
−m$

i
−n$

−
m+n −$i

−n$
j
n−m$

−
m)

=
∞∑
m=1

($j
−m$

i
−1$

−
m+1 −$i

−1$
j
1−m$

−
m)

+ · · ·+ ($j
−m$

i
−m$

−
2m −$i

−m$
j
0$
−
m)

=
∞∑
m=1

($j
−m$

i
−1$

−
m+1 −$i

−1$
j
1−m$

−
m)

+ · · ·+ ($j
−m$

i
−m$

−
2m −$i

−m$
j
0$
−
m)

u 0 (4.173)

Similarly:

m∑
n=1

($−−n$
i
n$

j
m +$−−m$

i
−n$

j
m+n) =

∞∑
m=1

m∑
n=1

($−−m$
i
−n$

j
m+n −$−−n$i

n$
j
m)

=
∞∑
m=1

m∑
n=1

($−−m$
i
−1$

j
m+1 −$−−1$i

1$
j
m)

+ · · ·+ ($−−m$
i
−m$

j
2m −$−−m$i

m$
j
m)

u 0 (4.174)

So that we’re left with:

Cij =

√
4πT

p+

m∑
n=1

(
−

n∑
m=1

1

n
$i
−n$

j
n−m$

−
m +

n∑
m=1

$−−m$
j
m−n$

i
n

)
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+

√
4πT

p+

∞∑
m,n

($j
−m−n$

i
n$
−
m +$i

−n$
i
−n$

−
n−m$

j
m −$

j
−m$

−
m−n −$−−m$i

−n$
j
m+n) (4.175)

The first term of the second line of equation (4.174) is not normal ordered, this presents

a quantum field theoretic challenge. With respect to the conservation of energy states.

We do not expect that an annihilation operator annihilates the vacuum. So we need to

manipulate the term in such a way that it can be consistent with these notions. This is

the normal ordering procedure. We perform it below:

∞∑
m,n

$j
−m−n$

i
n$
−
m =

∞∑
m,n

($j
−m−n$

i
n$
−
m +$j

−m−n$
−
m$

i
n −$

j
−m−n$

−
m$

i
n)

=
∞∑
m,n

($j
−m−n$

i
n$
−
m −$

j
−m−n$

−
m$

i
n +$j

−m−n$
−
m$

i
n)

=
∞∑
m,n

$j
−m−n($i

n$
−
m −$−m$i

n) +$j
−m−n$

−
m$

i
n

=
∞∑
m,n

$j
−m−n[$i

n, $
−
m] +$j

−m−n$
−
m$

i
n

=
∞∑
m,n

$j
−m−n($j

−m−n$
−
m$

i
n + [$i

n, $
−
m])

=
∞∑
m,n

$j
−m−n$

−
m$

i
n +

∞∑
m,n

$j
−m−n[$i

n, $
−
m])

Writing in full and reading the commutator table:

∞∑
m,n

$j
−m−n$

i
n$
−
m =

∞∑
m,n

1

n
$j
−m−n$

−
m$

i
n +

√
4πT

p+

∞∑
m,n

1

n
$j
−m−n$

i
n+m (4.176)

m+ n = k
√

4πT

p+

∞∑
m,n

1

n
$j
−k$

i
k

∞∑
n,m=1

1

n
$−−m$

i
−n$

j
m+n =

∞∑
n,m=1

1

n
$i
−n$

−
−m$

j
m+n +

√
4πT

p+

∞∑
k=2

(k − 1)$i
−k$

j
k

We now get:

Cij =

√
4πT

p+

∞∑
m,n=1

(
∞∑
m=1

1

n
$i
−n$

j
n−m$

−
m +

n∑
m=1

1

n
$−−m$

j
m−n$

i
n

)
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√
4πT

p+

∞∑
m,n=1

1

n
($j
−m−n$

−
m$

i
n −$i

−n$
−
−m$

j
m+n −$i

−n$
−
n−m$

j
m −$

j
−m$

−
m−n$

i
n)

4πT

(p+)2

∞∑
n=2

(n− 1)($j
−n$

i
n −$i

−n$
j
n) (4.177)

Partial cancellation allows us to get rid of the second line of equation (4.176)

√
4πT

p+

∞∑
m,n=1

1

n
($j
−m−n$

−
m$

i
n −$i

−n$
−
−m$

j
m+n −$i

−n$
−
n−m$

j
m −$

j
−m$

−
m−n$

i
n)

=
∞∑
m,n

1

n
$j
−m−n$

j
−m−n$

−
m$

i
n +

√
4πT

p+

∞∑
m,n

1

n
$j
−m−n$

i
n+m (4.178)

m+ n = k
√

4πT

p+

∞∑
m,n

1

n
$j
−k$

i
k

∞∑
n,m=1

1

n
$−−m$

i
−n$

j
m+n =

∞∑
n,m=1

1

n
$i
−n$

−
−m$

j
m+n +

√
4πT

p+

∞∑
k=2

(k − 1)$i
−k$

j
k

We now get:

Cij =

√
4πT

p+

∞∑
m,n=1

(
∞∑
m=1

1

n
$i
−n$

j
n−m$

−
m +

n∑
m=1

1

n
$−−m$

j
m−n$

i
n

)

+
4πT

(p+)2

∞∑
n=2

(n− 1)($j
−n$

i
n −$i

−n$
j
n) (4.179)

Opening brackets in line 1:

Cij =

√
4πT

p+

∞∑
n=1

n∑
m=1

1

n
$i
−n$

j
n−m$

−
m +

√
4πT

p+

∞∑
n=1

n∑
m=1

1

n
$−−m$

j
m−n$

i
n

4πT

(p+)2

∞∑
n=1

(n− 1)($j
−n$

i
n −$i

−n$
j
n) (4.180)

Using methods similar to the ones used in obtaining equation (4.179) we can obtain terms
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with the ground state mode expansions:

=
4πT

(p+)2

∞∑
n=1

=
1

n
($j
−n$

i
0$
−
n −$−−n$i

0$
j
n −$i

−n$
j
0$
−
n +$−−n$

i
0$

j
n −$i

−n$
j
0$
−
n

+ · · ·$−−n$
j
0$

i
n −$

j
−n$

−
0 $

i
n +$i

−n$
−
0 $

j
n −$i

−n$
−
0 $

j
n +$i

−n$
−
0 $

j
n +$j

−n$
−
0 $

i
n)

+$i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n

Separating:

=
4πT

(p+)2

∞∑
n=1

=
1

n
($j
−n$

i
0$
−
n −$−−n$i

0$
j
n −$i

−n$
j
0$
−
n +$−−n$

i
0$

j
n −$i

−n$
j
0$
−
n

+ · · ·$−−n$
j
0$

i
n −$

j
−n$

−
0 $

i
n +$i

−n$
−
0 $

j
n −$i

−n$
−
0 $

j
n +$i

−n$
−
0 $

j
n +$j

−n$
−
0 $

i
n)

+$i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n

=

√
4πT

p+

∞∑
n=1

1

n
($j
−n$

i
0$
−
n −$−−n$i

0$
j
n −$i

−n$
j
0$
−
n +$i

−n$
−
0 $

j
n −$−−n$i

0$
j
n−

$i
−n$

j
0$
−
n +$−−n$

j
0$

i
n −$

j
−n$

−
0 $

i
n +$i

−n$
−
0 $

j
n −$j

n$
−
0 $

i
n)

+
4πT

(p+)2

∞∑
n=0

1

n
($i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n +$i

−n$
−
0 $

j
n −$

j
−n$

−
0 $

i
n)

(4.181)

We now consider lines (1) and (2) of equation (4.181)

=

√
4πT

p+

∞∑
n=1

1

n
(($j

−n$
i
0$
−
n −$−−n$i

0$
j
n)− ($j

−n$
j
0$
−
n − ($−−n$

j
0$

i
n))

=

√
4πT

p+

∞∑
n=1

1

n
(($j

−n$
−
n −$−−n$j

n)
pi√
4πT

− ($j
−n$

−
n −$−−n$i

n)
pj√
4πT

=
1

p+

∞∑
n=1

1

n
(($j

−n$
−
n −$−−n$j

n)
pi√
4πT

− ($j
−n$

−
n −$−−n$i

n)
pj√
4πT

(4.182)

Considering term (2) of equation (4.181)

√
4πT

p+

∞∑
n=0

1

n
(2$i

−n$
−
0 $

j
n − 2$j

−n$
−
0 $

i
n)
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· · · = 2
√

4πT

p+

∞∑
n=0

1

n
($i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n)

= $−0
2
√

4πT

p+

∞∑
n=0

1

n
($i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n)

= $−0
4
√
πT

p+

∞∑
n=0

1

n
($i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n) (4.183)

Thus, the commutator [Ξ i−, Ξj−] becomes:

[
Ξ i−, Ξj−] = $−0

4
√
πT

p+

∞∑
n=0

1

n
($i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n)

+
1

p+

∞∑
n=1

1

n
(($j

−n$
−
n −$−−n$j

n)pi − ($j
−n$

−
n −$−−n$i

n)pj

−
∞∑
n=1

4πT

(p+)2

(
(2n− 1)− χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n) (4.184)

4.3.6 Calculating commutator [Ξ i−,Φj−]

We now calculate the commutator [Ξ i−,Φj−]. We write the term Φj− as:

Φj− = − i
2

∞∑
n=0

1

n
(σjnσ

−
−n − σ−−nσjn) (4.185)

Such that the commutator becomes:

[
Ξ i−,Φj−] =

[
−i

∞∑
n=1

1

n
($i
−n$

−
n −$−−n$i

n),− i
2

∞∑
n=0

1

n
(σjnσ

−
−n − σ−−nσjn)

]
(4.186)

We begin the manipulation,

[
Ξ i−,Φj−] = i

∞∑
n=1

1

n

i

2

∞∑
n=0

1

n

[
($i
−n$

−
n −$−−n$i

n), (σjnσ
−
−n − σ−−nσjn)

]
(4.187)
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Following earlier arguments, we shall invoke a dictionary to assist with our computations.

This will be done by replacing each term with a letter.

A = $i
−n$

−
n

B = −$−−n$i
n

C = σjnσ
−
−n

D = −σ−−nσjn

(4.188)

[A+B,C +D] = (AC + AD +BC +BD − CA− CB −DA−DB)

[A+B,C +D] = [A,C] + [A,D] + [B,C] + [B,D] (4.189)

Replacing the letters for values:

[A+B,C +D] = [$i
−n$

−
n , σ

j
nσ
−
−n] + [$i

−n$
−
n ,−σ−−nσjn] + [−$−−n$i

n, σ
j
nσ
−
−n] + [−$−−n$i

n,−σ−−nσjn]

= [$i
−n$

−
n , σ

j
nσ
−
−n] +−[$i

−n$
−
n , σ

−
−nσ

j
n] +−[$−−n$

i
n, σ

j
nσ
−
−n] + [$−−n$

i
n, σ

−
−nσ

j
n] (4.190)

= ($i
−n$

−
n σ

j
nσ
−
−n − σjnσ−−n$i

−n$
−
n −$i

−n$
−
n σ
−
−nσ

j
n +$i

−n$
−
n σ
−
−nσ

j
n−

$−−n$
i
nσ

j
nσ
−
−n + σjnσ

−
−n$

−
−n$

i
n +$−−n$

i
nσ
−
−nσ

j
n − σ−−nσjn$−−n$i

n)

(4.191)

Collecting like terms in the bosonic mode expansions:

[A+B,C +D] = $i
−n$

−
n [σjn, σ

−
−n] + [σjn, σ

−
−n]$i

−n$
−
n +$i

−n$
−
n [σ−−nσ

j
n] + [σjn, σ

−
−n]$i

−n$
−
n

−$i
−n$

−
n [σjn, σ

−
−n]− [σ−−n, σ

j
n]$i

−n$
−
n −$i

−n$
−
n [σ−−nσ

j
n] + [σjn, σ

−
−n]$i

−n$
−
n

= 0 (4.192)

77



We can use result (4.192) to calculate [Φi−, Ξj−] i.e,

[
Φi−, Ξj−] = −

[
Ξ i−,Φj−] δij = 0 (4.193)

4.3.7 Calculating commutator [Φi−,Φj−]

We calculate the final commutator:

Φi− = − i
2

∞∑
n=0

1

n
(σinσ

−
−n − σ−−nσin) (4.194)

Φj− = − i
2

∞∑
n=0

1

n
(σjnσ

−
−n − σ−−nσjn) (4.195)

Thus:

[
Φi−,Φj−] =

[
− i

2

∞∑
n=0

1

n
(σinσ

−
−n − σ−−nσin),− i

2

∞∑
n=0

1

n
(σjnσ

−
−n − σ−−nσjn)

]
(4.196)

We manipulate it further

=
i

2

i

2

∞∑
n=0

1

n

∞∑
n=0

1

n

[
(σinσ

−
−n − σ−−nσin), (σjnσ

−
−n − σ−−nσjn)

]
(4.197)

We aqain introduce a dictionary for further manipulation:

A = σinσ
−
−n

B = −σinσ−−n

C = σinσ
−
−n

D = −σ−−nσjn

(4.198)

[A+B,C +D] = (AC + AD +BC +BD − CA− CB −DA−DB)

[A+B,C +D] = [A,C] + [A,D] + [B,C] + [B,D] (4.199)
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We similarly put dictionary (4.198) into equation (4.199)

[A+B,C +D] = [σinσ
−
−n, σ

i
nσ
−
−n] + [σinσ

−
−n,−σ−−nσjn] + [σinσ

−
−n, σ

i
nσ
−
−n] + [σinσ

−
−n,−σ−−nσjn]

(4.200)

= [σinσ
−
−n, σ

i
nσ
−
−n]− [σinσ

−
−n, σ

−
−nσ

j
n]− [σinσ

−
−n, σ

i
nσ
−
−n] + [σinσ

−
−n,−σ−−nσjn]

(σinσ
−
−nσ

i
nσ
−
−n − σinσ−−nσinσ−−n − σinσ−−nσ−−nσjn + σ−−nσ

j
nσ

i
nσ
−
−n

−σinσ−−nσinσ−−n − σinσ−−nσinσ−−n + σinσ
−
−nσ

−
−nσ

j
n −−σ−−nσjnσinσ−−n)

= 0 (4.201)

Putting equations (4.123), (4.132), (4.184), (4.193) and (4.201) together we arrive at the

result: [
J i−, J j−

]
= $−0

4
√
πT

p+

∞∑
n=0

1

n
($i
−n$

−
0 $

j
n −$

j
−n$

−
0 $

i
n)

−
∞∑
n=1

4πT

(p+)2

(
2(n− 1)− χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n)

+
1

p+

∞∑
n=1

1

n
(($j

−n$
−
n −$−−n$j

n)pi − ($j
−n$

−
n −$−−n$i

n)pj

2
p−

p+

∞∑
n=1

1

n
($i
−n$

j
n −$

j
−n$

i
n)+

− 1

p+

∞∑
n=1

1

n
(($j

−n$
−
n −$−−n$j

n)pi − ($j
−n$

−
n −$−−n$i

n)pj (4.202)

The terms in 1
p+

cancel out leaving:

[
J i−, J j−

]
= $−0

4
√
πT

p+

∞∑
n=0

1

n
($i
−n$

j
n −$

j
−n$

i
n)

−
∞∑
n=1

4πT

(p+)2

(
2(n− 1)− χ(n)

n2

)
($i
−n$

j
n −$

j
−n$

i
n)

−2
p−

p+

∞∑
n=1

1

n
($i
−n$

j
n −$

j
−n$

i
n) (4.203)
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Collecting like terms allows us to group terms (1) and (3) of equation (4.203)

= ($−0
4
√
πT

p+
− 2

p−

p+
)
∞∑
n=0

1

n
($i
−n$

j
n −$

j
−n$

i
n)

=
1

p+
($−0 4

√
πT − 2p−)

∞∑
n=0

1

n
($i
−n$

j
n −$

j
−n$

i
n)

=
1

p+
($−0 4

√
πT − 2p−)

∞∑
n=0

1

n
($i
−n$

j
n −$

j
−n$

i
n)

=
1

p+
($−0 4

√
πT − 4

√
πT$̂0)

∞∑
n=0

1

n
($i
−n$

j
n −$

j
−n$

i
n)

=
4
√
πT

p+
($−0 − $̂0)

∞∑
n=0

1

n
($i
−n$

j
n −$

j
−n$

i
n)

Now, because of level matching, $−0 = $̂0 and therefore����
��: 0

$−0 − $̂0

We are then left with term (2) of equation (4.203) which we now write in full considering

equation (4.139):

[
J i−, J j−

]
= − 4πT

(p+)2

∞∑
n=1

[(
d− 2

12
− 2

)
n+

1

n

(
2a− d− 2

12

)]
($i
−n$

j
n −$

j
−n$

i
n)

(4.204)

Now, one should remember that we require the Lorentz generators to commute with each

other if we are to maintain Lorentz invariance. Thus, we expect the term in equation

(4.204) to vanish. The mode expansions in equation (4.204) are arbitrary, we do not

expect them to vanish, thus the term inside our brackets will vanish. We set a = 1

consistent with renormalisation in bosonic string theory. We have done this because

none of the chimeric terms we have introduced contribute to the commutator.

Thus;

∞∑
n=1

[(
d− 2

12
− 2

)
n+

1

n

(
2a− d− 2

12

)]
= 0
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∞∑
n=1

n

(
d− 2

12
− 2

)
= −

∞∑
n=1

1

n

(
2a− d− 2

12

)
∞∑
n=1

n 6=
∞∑
n=1

1

n

∴

(
d− 2

12
− 2

)
= 0

d− 2

12
= 2

d− 2 = 24

d = 26 (4.205)

Equation (4.205) implies that the symmetry we have introduced has no effect on the

dimensionality of string theory, at least in the case of the bosonic theory. However, it

also shows that the symmetry can be implemented in a mathematically consistent way,

without “breaking” the theory.
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4.4 Extending Superstring Theory

4.4.1 Introduction

We now want to extend superstring theory using the same method we employed in bosonic

string theory. Supersting theory, as discussed in the introduction, is an extension of

bosonic string theory. The theory only describes bosons. By introducing supersymmetry,

we can introduce fermionic fields into the theory. A by-product of the theory is to reduce

the dimensionality of the new theory to 10 dimensions.

The model we have used is the Ramond-Neveu-Schwarz model as discussed. We introduce

a new duality between the fermions and bosons while maintaining an equality between

fermions and simplices.Thus we do not expect a transition between fermions and sim-

plices: simplices are fermions.

Figure 4.1: Illustration of the proposed dualities and equivalences.

We first write the superstring theory Lagrangian down, (McMahon, 2009) i.e:

SSST = −T
2

∫
d2σ(∂αX

µ∂αXµ − iϕ̄µγα∂αϕµ) (4.206)

where:

T is the string tension,

τ is the worldsheet time coordinate,
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σ is the worldsheet spatial coordinate,

Xµ and ∂αXµ are the worldsheet and its derivatives,

i =
√
−1 is the imaginary number,

m is the mass of the electron,

ϕ and ϕ̄ are the Dirac field and its complex conjugate respectively,

γα are the Dirac matrices,

introducing the simplicial action and adding it to equation (4.206):

SC = −T
2

∫
d2σ(∂αX

µ∂αXµ − iϕ̄µγα∂αϕµ − φ̄µβφµ) (4.207)

We now introduce the duality transformations between fermions, simplices and bosons.

This means that, in addition to the duality transformations in Objective 1, we have

supersymmetric transformations:

δXµ = ε̄(φµ + ϕµ)

δφµ = ε∂αX
µ

δϕµ = ε∂αX
µ

(4.208)

These are the duality transformations that we will use in this section. From the action

in equation (4.207) we can get the Lagrangian:

LC = −T
2

(∂αX
µ∂αXµ − iϕ̄µγα∂αϕµ − φ̄µβφµ) (4.209)

We want to introduce a variation in equation (4.209)

δLC = −T
2
δ
(
∂αX

µ∂αXµ −−iϕ̄µγα∂αϕµ − φ̄µβφµ
)

Expanding;

δLC = −T
2

(
∂α(δXµ)∂αXµ + ∂αX

µ∂α(δXµ)− (δφ̄µ)β∂αφ− φ̄µβ∂α(δφ)− iδϕ̄µγα∂αϕµ − iϕ̄µγα∂αδϕµ
)
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Collecting terms (1) and (2) together, reduces this equation to the form:

δLC = −T
2

(
2∂α(δXµ)∂αXµ − (δφ̄µ)β∂αφ− φ̄µβ∂α(δφ)− iδϕ̄µρα∂αϕµ − iϕ̄µρα∂αδϕµ

)
(4.210)

We invoke equations (4.208) in equation (4.210):

δLC = −T
2

(
2∂α(ε̄φµ)∂αXµ − (δφ̄µ)β∂αφ− φ̄µβ∂α(∂βX

µε)− iϕ̄µρα∂α(ε̄ρβ∂βX
µ)− iϕ̄µρα∂αδϕµ

)
= −T

2
(2(∂α(ε̄φµ∂αXµ) + ∂α(ε̄ϕµ)∂αXµ)− (δφ̄µ)β∂αφ− φ̄µβ∂α(∂βX

µε)− iϕ̄µρα∂α(ε̄ρβ∂βX
µ)−

iϕ̄µρα∂αδϕ
µ))

= −T
2

(2(∂α(ε̄φµ∂αXµ) + ∂α(ε̄ϕµ)∂αXµ)− 2ε̄∂βX
µβ∂αφ− 2∂α(ε̄ρβ∂βX

µραϕµ)

= −T ((∂α(ε̄φµ∂αXµ) + ∂α(ε̄ϕµ)∂αXµ)− ε̄∂βXµβ∂αφ− ∂α(ε̄ρβ∂βX
µραϕµ)

= −T ((∂α(ε̄φµ∂αXµ) + ∂α(ε̄ϕµ)∂αXµ)− [∂β(ε̄Xµβ∂αφ)−

ε̄Xµβ∂α∂βφ+ ∂β(∂αε̄ρ
βXµραψµ)− ∂α∂β ε̄ρβXµρϕµ]

= −T ((∂α(ε̄φµ∂αXµ) + ∂α(ε̄ϕµ)∂αXµ)− ∂β(ε̄Xµβ∂αφ)+

ε̄Xµβ∂α∂βφ− ∂β(∂αε̄ρ
βXµραψµ) + ∂α∂β ε̄ρ

βXµρϕµ

(4.211)

= −T (∂α(ε̄φµ)∂αXµ − ∂αε̄(ρβ∂βXµ)ραϕµ − ε̄ρβρα(∂α∂βX
µϕµ − ∂α(ε̄Xµβ∂αφ) + ε̄Xµβ∂α∂βφ)

(4.212)

We will introduce new terms using the product rule to cancel out like terms in equation

(4.211) to obtain:

δLC = −T (∂α(ε̄φµ∂αXµ)− ε̄φµ∂α∂αXµ + ∂α(εϕµ∂αXµ)− ε̄ϕµ∂α∂αXµ − ∂αε(ρβ∂βXµ)ραψµ

+ε̄ραρβρα(∂α∂
βXµ)ϕµ − ∂β(ε̄Xµβ∂αφ+ ε̄Xµβ∂α∂βφ)

= −T (((((
((((∂α(ε̄φµ∂αXµ)−(((((

((
ε̄φµ∂α∂αX

µ + ∂α(εϕµ∂αXµ)−(((((
((

ε̄ϕµ∂α∂αX
µ − ∂αε(ρβ∂βXµ)ραϕµ

+ε̄ραρβρα(∂α∂
βXµ)ϕµ − ∂β(ε̄Xµβ∂αφ+((((

(((ε̄Xµβ∂α∂βφ)
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which leaves us with:

δLC = −T (∂α(εϕµ∂αXµ)− ∂αε(ρβ∂βXµ)ραϕµ + ε̄ραρβρα(∂α∂
βXµ)ϕµ − ∂β(ε̄Xµβ∂αφ))

(4.213)

collecting like terms together, we get:

δLC = −T (∂α(εϕµ∂αXµ)− ∂αε(ρβ∂βXµ)ραϕµ + ε̄ραρβρα(∂α∂
βXµ)ϕµ − ∂β(ε̄Xµβ∂αφ))

(4.214)

δLC = −T (∂α(εφµ∂αXµ) + ∂α(ε̄ϕµ∂αXµ))

= −T∂α((εφµ∂αXµ) + (εϕµ∂αXµ))

= −T∂αε((φµ∂αXµ) + (ϕµ∂αXµ))

= −T∂αε(φµ + ϕµ)∂αXµ (4.215)

We are not interested in the term in equation (4.214): it is a whole derivative. We are

thus left with:

δLC = −∂β ε̄(ρβ∂βXµ)ραϕµ − β(∂β ε̄)∂βX
µφµ

this leads to the conserved Noether current:

Jµβ = −ρβ∂βXµραϕµ − β∂βXµφµ (4.216)

We now want to develop the stress energy tensor analogous to the procedure we used in

objective 1. We will develop the fermionic part since we had already done the same for

the simplicial part. We write the standard transformations:

σα = σα + εα

Xµ = Xµ + εα∂αX
µ

φµ = φµ + εα∂αφ
µ

85



ϕµ = ϕµ + ερα∂αϕ
µ (4.217)

We recall the simplicial and fermionic lagrangian

LCDT = −1

2
φ̄µβ∂αφ

µ

LF = − i
2
ϕµρα∂αϕµ (4.218)

We add equations (4.217) together and take variations:

δLCDT + δLF = −1

2
δφ̄µβ∂αφ

µ − 1

2
φ̄µβ∂αδφ

µ − i

2
δϕµρα∂αϕµ −

i

2
ϕµρα∂αδϕµ (4.219)

Now we pay attention to the variations using these systems of equations:

φµ = φµ + δφµ = φµ + εα∂αφ
µ

ϕµ = ϕµ + δϕµ = φµ + ερα∂αϕ
µ (4.220)

Putting variations of equation (4.218) into equation (4.217), we get:

δLCDT + δLF = −1

2
β∂αφ̄µε∂αφ

µ − 1

2
ε∂αφ̄µβ∂αφ

µ − i

2
ερα∂αϕ

µ∂αϕµ −
i

2
ϕµρα∂αερ

α∂αϕ
µ

(4.221)

We shall now concentrate with the fermionic part since the simplicial part has been

developed.

δLF = − i
2
εαρα∂αϕ

µρβ∂βϕµ −
i

2
ϕµρα∂αερ

αρβ∂βϕ
µ (4.222)

We further manipulate equation (4.218) in a way to make it further amenable to integra-

tion. We use the product rule on term 2 of equation (4.218):

δLF = − i
2
εαρα∂αϕ

µ∂αϕµ −
i

2
ρα∂α(ϕµεα)ρα∂αϕ

µ +
i

2
ραϕµεαρα∂α∂αϕ

µ

δLF = − i
2
εαρα∂αϕ

µ∂αϕµ − (
i

2
ρα∂α(ϕµεα)ρα∂αϕ

µ − i

2
ραϕµεαρα∂α∂βϕ

µ) (4.223)

To continue we must use integration by parts as we did in objective 1. We work on term
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(3) of equation (4.222)

=
i

2
ραϕ̄µεαρα∂α∂βϕ

µ

=
i

2

∫
ραϕµεαρα∂α∂βϕ

µ (4.224)

U = ϕ̄µ

dV = ∂α∂βϕ
µ

dU = ∂α(ϕ̄µραεα)

V = ∂βϕ
µ

So that equation (4.223) becomes:

∫
UdV = UV −

∫
V dU

The integral thus becomes:

∫
ραϕµεαρα∂α∂βϕ

µ = ϕ̄µ∂βϕ
µ −

∫
∂βϕ

µ∂α(ϕ̄µραεα)

∫
ραϕµεαρα∂α∂βϕ

µ =���
��:0

ϕ̄µ∂βϕ
µ −

∫
∂βϕ

µ∂α(ϕ̄µραεα)

Such that the integral becomes:

i

2

∫
ραϕµεαρα∂α∂βϕ

µ = − i
2

∫
∂βϕ

µ∂α(ϕ̄µραεα)

We open the third term up again:

δLF = −1

2
(εα∂αϕ̄µ)ραψµ − 1

2
ϕ̄µρα∂αε

α∂αϕ
µ +

1

2
∂αϕµ∂βψ̄µρ

αε+
1

2
∂αϕµϕ̄µρ

α∂βε (4.225)

We can cancel out like terms and are left with:

δLF = −1

2
ϕ̄µρα∂αε

α∂αϕ
µ +

1

2
∂αϕµϕ̄µβ∂βε
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The perturbation is constant: ∂βε vanishes such that:

δLF = −1

2
ϕ̄µβ∂αε

α∂αϕ
µ +
��

���
���:

01

2
∂αψµϕ̄µβ∂βε

δLF = −1

2
ϕ̄µρα∂αε

α∂αφ
µ (4.226)

Rewriting equation (4.225):

δLF = ∂αε
α

(
−1

2
ϕ̄µρα∂αϕ

µ

)

From this we can read off the stress energy tensor associated with the fermions as:

T (F )
µν = −1

2
ϕ̄µβ∂αϕ

µ

We symmetrize the terms because we wish to have a symmetrical stress energy tensor:

T (F )
µν = − i

4
ϕ̄µρα∂αϕµ −

i

4
ϕ̄µβ∂αϕµ (4.227)

We now invoke lightcone coordinates: this will later aid in quantisation. We can decom-

pose the tensor and the simplicial fields into “positive-positive” and “negative-negative”

components.

Tαβ = T++ + T−− (4.228)

ϕ̄µ = ϕ̄µ+ + ϕ̄µ− (4.229)

ϕµ = ϕµ+ + ϕµ− (4.230)

∂α = ∂+ + ∂− (4.231)

We now work out the fermionic stress energy tensor in terms of light cone coordinates.
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We first decompose the fermionic stress energy tensor into its lightcone components as:

T
(CDT )
αβ = T

(CDT )
++ + T

(CDT )
−− (4.232)

We now expand equation (4.226) in terms of equations (4.227) to (4.230). We will work

with only one term because of the similarity of the two terms:

We drop the tensor notation in our following computations:

T
(F )
αβ =

1

4
(ϕ̄+ + ϕ̄−) (∂+ + ∂−) (ϕ+ + ϕ−) (4.233)

Expanding equation (4.232) while at the same time dropping cross-terms:

T
(F )
αβ =

1

4
(ϕ̄+ + ϕ̄−) (∂+ϕ+ + ∂+ϕ− + ∂−ϕ+ + ∂−ϕ−)

=
1

4
(ϕ̄+ + ϕ̄−) (∂+ϕ++) + ∂−ϕ−)

=
1

4

(
ϕ̄+∂+ϕ+ + ψ̄+∂−ϕ− + ϕ̄−∂+ϕ+ + ϕ̄−∂−ϕ−

)
(4.234)

We open the brackets:

T
(F )
αβ =

1

4
ϕ̄+∂+ϕ+ +

1

4
ϕ̄+∂−ϕ− +

1

4
ϕ̄−∂+ϕ+ +

1

4
ϕ̄−∂−ϕ−

We again drop cross terms:

T
(F )
αβ =

1

4
ϕ̄+∂+ϕ+ +

1

4
ϕ̄−∂−ϕ− (4.235)

Consider that we had left out a term from equation (4.231) we will now double equation

(4.234):

T
(F )
αβ =

1

2
ϕ̄+∂+ϕ+ +

1

2
ϕ̄−∂−ϕ− (4.236)

From these equations, we can get the equations of motion of the simplices and worldsheet

currents of the bosonic string.

∂+ϕ
−
µ = ∂−ϕ

µ
+ = 0 (4.237)
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and:

∂−∂+Xµ = 0 (4.238)

We use the standard RNS boundary conditions. We can invoke them after solving equa-

tion (4.237) in the same way we solved objective one as:

∂−∂+ϕ
µ
− = 0 (4.239)

∂− =
∂

∂τ
− ∂

∂σ
(4.240)

∂+ =
∂

∂τ
+

∂

∂σ
(4.241)

Putting equations (4.239) and (4.240) in equation (4.238):

(
∂

∂τ
− ∂

∂σ

)(
∂

∂τ
+

∂

∂σ

)
ϕµ− = 0(

∂2

∂τ 2
+
�
�
��∂

∂τ

∂

∂σ
−
�
�
��∂

∂τ

∂

∂σ
− ∂2

∂σ2

)
ϕµ− = 0(

∂2

∂τ 2
− ∂2

∂σ2

)
ϕµ− = 0 (4.242)

We now open equation (4.241):

(
∂2

∂τ 2

)
ϕµ− −

(
∂2

∂σ2

)
ϕµ− = 0 (4.243)

Now, ϕµ− is a multivariate function of σ and τ . We thus invoke separation of variables.

We can express ϕµ− as the product of two functions:

ϕµ− = L(τ)N(σ) (4.244)

Putting equation (4.243) in equation (4.242):

∂2

∂τ 2
L(τ)N(σ)− ∂2

∂σ2

L(τ)N(σ) = 0
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N(σ)
d2

dτ 2
S(τ)− L(τ)

d2

∂σ2
L(σ) = 0

1

S(τ)N(σ)
M(σ)

d2

dτ 2
L(τ)− 1

N(τ)N(σ)
L(τ)

d2

∂σ2
L(σ) = 0

1

L(τ)

d2

dτ 2
L(τ)− 1

N(σ)

d2

∂σ2
N(σ) = 0

1

L(τ)

d2

dτ 2
L(τ) =

1

N(σ)

d2

∂σ2
N(σ) (4.245)

We can now use separation of variables to separate equation (4.243). If the two terms

are equal, then by the theorem of ordinary differential equations, they are equivalent to

a third constant: we will use −α2 .

1

L(τ)

d2

dτ 2
L(τ) = −α2

∴
1

N(σ)

d2

∂σ2
N(σ) = −α2

d2

dτ 2
L(τ) = −α2L(τ)

d2

∂σ2
N(σ) = −α2N(σ)

d2

dτ 2
S(τ) + α2S(τ) = 0 (4.246)

d2

∂σ2
N(σ) + α2N(σ) = 0 (4.247)

We can now proceed to solve equations (4.245) and (3.246). We begin with equation

(4.245). We will first begin by replacing the operator d
dσ

with the operator D We drop

the function notation.

D2L+ α2N = 0

(D2 + α2)N = 0

(D − iα)(D + iα)N = 0

(D − iα)N = 0 ; (D + iα)N = 0

(D ± iα)N = 0(
d

dσ
± iα

)
N = 0
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d

dσ
N ± iαN = 0

d

dσ
N = ∓iαN

dN

N
= ∓iαdσ∫

dN

N
=

∫
∓iαdσ

lnN = ∓iασ + C (4.248)

N = Be∓iασ (4.249)

where we have taken exponentials on equation (4.247) to generate equation (4.248) and:

B = ec

Similarly equation (4.245) yields:

LnL = ∓iατ + C1 (4.250)

L = Fe∓iατ (4.251)

putting equations (4.250) and (4.248) in equation (4.243) we get:

ϕµ− = DFe∓iατe∓iασ

φµ− = Le∓iατe∓iασ

φµ− = Le∓iατ∓iασ

φµ− = Leiα(∓τ∓σ) (4.252)

We impose causality on the proper time coordinate. We reject −τ . We express L in

tensor notation Cµ

ψµ− = Cµe
iα(τ∓σ) (4.253)

ψµ− =
∑
n

Gµ
ne
iα(τ∓σ) (4.254)
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The weights Gµ
n are the expansion modes of the fermions. These solutions are equivalent

to those obtained earlier in objective one for the simplices. This shows that there is an

equivalence between fermionic and simplicial states, and second, that there may exist a

duality between bosonic and fermionic, and simplicial states. We will not calculate the

effect of quantisation on the generators of the Lorentz algebra, because as we have shown,

we do not expect the simplicial states to contribute to the dimensionality of the theory.

Thus,the dimensionality of the theory is still 10.
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5 Chapter Five: Results and Discussions

5.1 Duality between Spacetime Simplices and Bosonic Strings

In objectives one and three of our work, we have established a duality transformation

between bosons and simplices. These were introduced using RNS- like dualities on the

bosonic fields modelled using four derivatives of the worldsheet. These bosonic fields were

then transformed into simplices which in themselves were understood as Dirac fields. This

was formalised using the duality transformations:

δXµ = ε̄φµ (5.1)

δφµ = ∂αX
µε (5.2)

where:

δ are variations,

ε, ε̄ are Grassman numbers.

Xµ are worldsheet coordinates,

φµ are the spinors.

We have then investigated the duality further to establish its consistency. This has been

done by studying the variations of the Lagrangian and then investigating the symmetries

which conserve the principle of least action. This has allowed us to find conserved Noether

currents:

P µ
α = T∂αX

µ (5.3)

Where:

P µ
α is the four momentum,

T is the string tension,

∂αX
µ are the derivatives of the worldsheet coordinates, the bosons.

By taking variations on the Lagrangian, we have obtained the stress energy tensor. The

physical implications of this are discussed in the next section. Since we understand that

four derivatives of the stress energy tensor vanish because of conservation of energy, we
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have derived equations of motion and solve them to yield:

φµ− =
∑
n

Dµ
ne

iα(τ∓σ) (5.4)

φµ− is the solution,

Dµ
n are the simplicial mode expansions,

α is the separation constant,

τ is the time coordinate, σ is the spatial coordinate.

We have used this solution to establish that simplices can be modelled as mode expansions

of a supersymmetric string. Thus the duality is established as mathematically consistent.

However, is it physically correct, or even viable?

The question to be answered is whether we can envision a physical situation in which

spacetime simplices can spontaneously transform into bosons. Is this merely a mathe-

matical curiosity or does it carry physical implications? To answer this question we shall

turn to general relativity.

In general relativity, the classical Newtonian field is replaced with spacetime curvature.

The coupling of a body with matter and energy to spacetime curvature is modelled by

the Einstein field equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (5.5)

where:

Rµν is the Ricci tensor,

gµν is the metric which solves the Einstein Field Equations,

R is the Ricci scalar,

κ = 8πG
c4

is the coupling constant,

Tµν is the stress-energy tensor.

Therefore, to interpret this equation in the case of a star system i.e a system consisting of

a star with bodies several orders of magnitude lower than it in mass, we say that the star

curves spacetime. The lighter bodies (planets, asteroids e.t.c) follow prescribed orbits in
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this curved spacetime. This class of orbits is known as a geodesic. This is illustrated in

the figure below:

Figure 5.1: Sketch of a star curving spacetime, consistent with general relativity

Using approximation methods, Einstein was able to correctly model the orbit of Mercury

and to explain the advance of its perihelion. Consider the formation of black hole. The

mass of the star collapses beyond the event horizon. This collapse of the star marks the

beginning of the formation of the black hole. The remainder of the process is not yet

understood. However, in general relativity, black holes are modelled as a Vacuum field

solution of the Einstein Field Equations. This means that the stress-energy tensor Tµν in

equation 5.5 vanishes:

Tµν = 0 (5.6)

This is illustrated by the diagram below:

Figure 5.2: Sketch of a blackhole, showing a “hole” in spacetime, with matter absent.
The hole exists formally as a manifestation of geodesic incompleteness

If we consider the collapse of a massive star forming a black hole, then a transition can
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be implied by studying the stress energy tensor:

Tµν 6= 0→ Tµν = 0 (5.7)

Strictly speaking, this is a violation of conservation of energy. The entire mass energy of

a star is lost in the process of formation of a blackhole. This presents a challenge to our

understanding of classical theories, of which general relativity is part of. To remedy this

situation we try to understand the behaviour of spacetime in the process of collapse of

the star. In the case of the star before collapse, spacetime has a well defined curvature,

at least to an approximation. Furthermore, the curvature has a gentle transition. In the

case of the black hole, the curvature diverges, at the centre. Thus, there is a change in the

behaviour of spacetime from the collapse of the star to the blackhole. If we pay attention

to both spacetime and the collapsing star, then our understanding of the process becomes

clearer. We posit that a consistent description of the above process can be developed if

the energy of the star is converted into spacetime. The increase of curvature of spacetime

is accounted for by the loss of energy of the star. Thus, general relativity seems to require

the existence of some form of spacetime-matter duality. Brane-simplex duality serves as

a possible mathematical scheme of implementing this.

5.2 The Problem of Dark Energy in String Theory

From cosmological observations (Riess et al., 1998), it is understood that the universe

is undergoing an acceleration in its expansion. This is thought to be the result of a

cosmological constant (Peebles et al., 2003), or a quintessence field (Peebles et al., 2003).

The cosmological constant is thought to be energy intrinsic to space time modeled by an

extra term in the Einstein Field Equations (McMahon, 2006) ;

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν (5.8)

where:

Λ is the cosmological constant, coupled to the metric.
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Rµν is the Ricci tensor,

gµν is the metric which solves the Einstein Field Equations,

R is the Ricci scalar,

κ = 8πG
c4

is the coupling constant,

Tµν is the stress-energy tensor.

This results in a uniformly accelerated expansion of the universe. While Λ is well under-

stood mathematically, the physical mechanism underlying the extra term is not known.

The possibility of using the quantum field vacua results in catastrophic disagreement

with observation. The deviation between observational data and theoretically calculated

value is 121 orders of magnitude (Carroll, 2001). This has led to the proposal of new

models. A popular model is the quintessence field which is a scalar field modelled akin

to the inflaton field causing a similar expansion of the primordial universe. The proposed

model seems to be consistent with the cosmological constant. In the literature review, we

have discussed the apparent inconsistency between string theory and dark energy. Dark

energy is not acceptable as part of stable vacuum solutions. The vacuum solutions are

obtained by flux compactifications. Superstring theory satisfies Lorentz invariance in 10

space time dimensions. To recover four dimensional space time, the extra dimensions are

compactified to plank-scale lengths. The compactifications are described by topological

spaces called Calabi-Yau manifolds. The mode expansions of the string are determined

by those manifolds compactifications. This means that the physical properties of the uni-

verse are determined by these mode expansions, and ultimately by the compactification

of the manifold. It has been estimated that the number of possible compactifications is

10500 which corresponds to 10500 possible universe states. This is known as the landscape

of solutions. There exists a set of solutions that correspond to unstable vacuum.

These vacua can potentially decay because of tachyonic states which have negative en-

ergy states. Vafa et. al(2018) have shown that universe solutions with a cosmological

constant have an unstable vacuum. This means that universes with dark energy live in

the swampland. This is problematic for string theory, since it means that string theory

is inconsistent with dark energy. In this work, we have posited that a duality exists be-
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tween fermionic matter and simplices in causal dynamical triangulations. This gives the

simplice Fermionic properties, including energy. This is determined by simplicial stress

energy tensor as developed in subsections 4.1 and 4.3. The result we obtained was:

T (CDT )
µν = −1

4
φ̄µβ∂νφµ −

1

4
φ̄µβ∂νφµ (5.9)

where:

T
(CDT )
µν is the simplicial stress-energy tensor,

φµ and φ̄µ are simplicial spinors and their Dirac adjoints respectively,

∂ν are four derivatives.

The effect of this is to “thread” energy through space time, giving the effect of dark en-

ergy. Thus in the proposed model, RNS superstring models are not only consistent with,

but also require dark energy .

As promising as this is, there is need for more work to understand the model and its phe-

nomenological implications. It is not yet understood whether the simplicial stress energy

tensor has all the properties that satisfy the cosmological constant, or quintessence. For

example, is the simplicial stress energy tensor constant, does it lead to overall accelerated

expansion of the universe, i.e negative pressure? The proposed model seems to be consis-

tent with the cosmological constant. This will be subjected to more rigorous theoretical

investigation.

5.2.1 Possible Mechanism for Generating the Cosmological Constant

If we accept that simplices are in fact fermions, then we can envision a mechanism for

maintaining dark energy density as a constant. We know that the universe is expanding.

Speaking in the language of causal dynamical triangulations, this implies a creation of

more simplicies, which corresponds to more space and time. Now, if we accept that these

simplicies have energy, then each time a simplice is created, energy is created. We must

be careful with notions of density however: classically energy density is defined as the
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quotient of energy and the volume of space:

ρE =
E

V
(5.10)

Where V is defined dimensionally as (Length)3. Length and energy are usually taken as

arbitrarily continuous, giving density as an arbitrarily continuous function. In the sim-

plicial picture, this is replaced by discreteness. Thus the energy density of the simplices

must be described as the energy per unit simplice. We use a two dimensional analogy in

the figure below;

Figure 5.3: An area of spacetime containing four simplices

Classically we would calculate the area of the square by:

A = L× L (5.11)

Since we have lost these notions of continuity, we can only measure the area of the square

as 4A. If we assume that each simplice has an energy E then we can calculate the two

dimensional classical energy density as;

ρ =
4E

A
=

4E

L2
(5.12)
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.However, in the simplicial case, we should calculate it as:

ρE =
4E

4A
=
E

A
(5.13)

Now, as we have discussed, the simplicial analogue of the expansion of the universe is the

creation of new simplices. The new simplices created cannot share the same quantum

state with the old simplices, they are “Fermionic” they thus have to go into new quantum

states;

Figure 5.4: Expansion of spacetime, manifesting as the creation of new simplices

The new calculated energy density after expansion is:

ρE =
16E

16A
=
E

A
(5.14)

Thus the energy density of the simplices is constant independent of the expansion of the

universe. This “steady state” mode of dark energy is consistent with modern observations.

This may satisfy the cosmological constant solutions.
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5.3 The Dimensionality of String Theory and Flux

Compactifications

As we discussed in our proposal, we expected that the duality would introduce a new

“supersymmetry”. The introduction of new Fermionic fields was expected to further

cancel anomalies, leading to a reduction in the number of dimensions needed to describe

RNS Superstrings consistently. This is the procedure which is invoked when making the

transition from bosonic to superstring theory (McMahon,2009) theory. This expectation

was however not fruitful. We established that the dimensionality of the theory is 26.

There could be several reasons for this; including mathematical oversight. The most

probable reason for this is that we did not implement supersymmetry in the simplicial

states fully. In section 3.3, we defined the simplicio-fermionic field using the formula:

Φi− = − i
2

∞∑
n=0

1

n
(σinσ

−
−n − σ−−nσin) (5.15)

Φj− = − i
2

∞∑
n=0

1

n
(σjnσ

−
−n − σ−−nσjn) (5.16)

where:

Φ is defined by the equation above,

n is a counting integer denoting the nth expansion mode’

j and i are spacetime indices,

σ are the expansion modes of the dual simplice states.

This may not be the full definition of the field. It was established in cononance with

the standard RNS formalism. Further, the commutation relations imposed between the

fermionic and simplicial expansion modes $m and σi respectively may not have been

correct. We imposed these on physical grounds, we do not envision a situation in which

expansion modes do not commute with each other; the ideal measurement of expansion

modes of a simplicial state should not affect the measurement of a fermionic state. How-

ever upon closer physical inspection, this argument may fail. After all, we are imposing

dualities between separate states. Thus we may expect that a relationship between ex-
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pansion modes exists in view of this duality. This relation may be properly expressed as

a commutation relation. Thus the mode expansions may not commute. The argument

against such a positon comes from RNS supersymmetry itself. The expansion modes of

RNS superstrings commute with each other, thus, the formalism we have adopted requires

that we accept that expansion modes for different fields mutually commute. If we accept

that our implementation of the duality, and the corresponding commutation relations is

correct then we are led into an interesting conundrum. If it is in fact true that there exist

a symmetry between space time and matter to be implemented in a supersymmetry- like

fashion then there are no more fields to be added to the theory. The perturbative form

of the theory is background independent, yet it accounts for both fermions and bosons.

With the addition of simplicial space time fields, there may be no more fields to add to the

theory. If our implementation of the theory is correct, then it means that superstring the-

ory really is 10-dimensional. This necessitates the introduction of flux compactifications

to bring the theory into concordance with cosmological and astrophysical observations of

a 4-dimensional universe. With this comes the ontological and epistemological measure

problem: How do we do statistics on an infinite set of possibilities? Ultimately: How do

we make testable predictions?

We had hoped to side-step this problem by reducing the number of dimensions in RNS

superstrings, thus reducing the number of vacua states emergent from the flux compacti-

fications. An optimum result would have been to obviate the need for flux compactifica-

tions. This was unsuccessful. We hold that flux compactifications are a worrying feature

of RNS superstrings and string theories in general.

5.4 Is Spacetime Quantised?

Ever since the introduction of calculus to physics by Newton, space and time have been

taken to be continuous. All the spaces associated with classical mechanics (vector space,

parameter space, phase space) are held to be continuous and differentiable. With the

introduction of special and general relativity, the introduction of differentiable manifolds

further solidified the status of continuous spacetime in physics(McMahon, 2006). The
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introduction of quantum mechanics did not revolutionize our understanding of the pa-

rameter space. A particle is understood to have quantized energy but its wave function

is a continuous function of position and time, which are themselves thought to be contin-

uous. The momentum and energy of the particle are thought to be quantized, however,

with the full understanding of Fourier transformation techniques, one can turn these

quantized momenta into a continuous “Momentum Space” and do quantum mechanics

consistently; quantum field theories traditionally live in the Minkowski Space time of

Special Relativity which is continuous, and defined by the length of line interval:

ds2 = c2dt2 − dx2 − dy2 − dz2 (5.17)

where:

ds2 is the length of line interval,

c2 ≈ 9× 1016m/s is the speed of light squared,

dt, dx, dy and dz are length of line intervals for time and the three spatial dimensions

respectively.

Where dt2, dx2, dy2, dz2, and hence ds2 can be made arbitrarily small. Thus, quan-

tum field theory relies on some notion of arbitrary continuity. While there are forms of

quantum field theory in a discrete space time such as lattice quantum chromodynamics,

these are understood to be numerical approximations of a “true” continuum theory. With

quantum gravity, we face challenges. It is understood that general relativity is defined

on a continuous, differentiable manifold; the coupling of the stress energy tensor to the

Einstein tensor gives rise to the Einstein field equations,

Rµν(x, t)−
1

2
gµν(x, t) = Gµν(x, t) =

8πG

c4
Tµν(x, t) (5.18)

where the fact that the tensors are continuous functions of a continuous space time man-

ifold is stressed. The Einstein tensor encodes the gravitational field: The gravitational

field is geometrical nature. The problem of quantum gravity is thus stated: How do we

express the gravitational field quantum mechanically? There are two general approaches
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to answering this question

5.4.1 Challenge Geometrodynamics; Accept Continuity.

In this picture, the notion that gravity is geometrical in nature is challenged. This is done

by introducing a gravitation field whose vector is the graviton. The gravitational field is a

spin 2 field which couples to the stress energy tensor in an equivalent way to the Einstein

Tensor. The introduction of the graviton leaves space time no dynamics. The introduction

of the graviton field however introduces new challenges. By power counting, the graviton

scattering amplitudes are non- renormalisable, this is because the gravitational field is

non-linear. String theory cures this problem by replacing point particles of quantum

field theory with strings. This results in a renormalisable theory. The status of space

time is less clear, at least in the case of perturbative string theory. String theory is

deliberately formulated in such a sense that the theory satisfies Lorentz symmetry, a

continuous symmetry which is the result of special relativity. In the classical formulation

of the theory, it can be shown that the Lorentz symmetry is trivially satisfied. However,

after quantization, the Lorentz symmetry is broken because of the non-zero commutation

relations between mode expansions(McMahon, 2009). This break, including the presence

of tachyonic ground state, has led workers in the field to impose Lorentz symmetry on

string theory. This has led to an imposition of dimensionality of the theory because of the

relation of commutation relations defined using the trace of the Mikowskian in the light-

cone gauge. Thus, it has become accepted that, least in the perturbative formulation of

the theory, a background which preserves Lorentz symmetry is required. This has the

implication of making the background of theory continuous.

We followed similar arguments while calculating the dimensionality of the theory, where

we used the “mixed index” components of the generators of the Lorentz algebra Jµν . Since

the uniform components close under commutation, we required the mixed components to

commute. The commutator we found was:

[
J i−, J j−

]
= − 4πT

(p+)2

∞∑
n=1

[(
d− 2

12
− 2

)
n+

1

n

(
2a− d− 2

12

)]
($i
−n$

j
n−$

j
−n$

i
n) (5.19)
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where:

J i− and J j− are the mixed components of the generators of the Lorentz algebra,

π = 22
7
is pi, the ratio of the diameter of a circle to its circumference,

T is the string tension,

p+ is the momentum in lightcone coordinates,

n ∈ 1, 2, 3... = N is a counting integer,

d is the number of dimensions,

a is the normal ordering constant, $ are the expansion modes.

We then fixed the normal ordering constant and forced [J i−, J j−] = 0. This led to the

case:

d = 26 (5.20)

In the case of the non- perturbative formulation of the theory, the understanding is a

bit more nuanced and incomplete. A popular way of formulating string theory is using

AdS/CFT duality discussed in the introduction. In this, two surprising results have

emerged: The entanglement of states in the conformal field theory on the boundary

corresponds to the definition of space time in the bulk. This interesting new development

may shed light on the emergence of space time at high energy scales in string theory.

However, there still exists a problem with the very definition of the AdS/CFT duality:

The definition of the AdS boundary is a solution of the Einstein field equations. a

continuous, differentiable manifold. Thus, we have spacetime emerging from structures

dual to entangled states in continuous space time. A duality implies a transformation,

or the existence of a more fundamental structure. For example, the duality of length

contraction and time dilation measurements implies the existence of a more fundamental

structure: spacetime. The existence of wave-particle duality implies the existence of

a quantum field. The existence of excitations satisfy the Schrödinger equation, or its

relativistic forms. A possible direction of research in perturbative string theory may be

to understand the fundamental structure implied by AdS/CFT . The approach is popular

among workers in quantum gravity because it preserves Lorentz invariance.
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5.4.2 Accept Geometrodynamics, Challenge Continuity

In this case, we accept that gravity is inherently geometrical in nature. However, the

notion of a continuous differentiable manifolds modelled by a metric, is rejected. Instead,

the notion of quantization is introduced on space time. The theory works in an analogous

scheme to Planck quantization of radiation. There are two major ways of implementing

this: causal dynamical triangulations and loop quantum gravity. causal dynamical trian-

gulations is a version of euclidean quantum gravity where simplices are the “quanta” of

space time. The addition of all these simplices (integration over all possible configura-

tions) yields our classical manifold. From this we can recover the usual classical notions

of diffeomorphism invariance and the equivalence principle. As discussed in the introduc-

tion, causal dynamical triangulation improves Euclidean quantum gravity by imposing

causality on the simplices. A similar implementation exists in loop quantum gravity, with

spin networks being the analogous structures of simplices. Loop quantum gravity has be-

come particularly useful in proposing “bounce” cosmologies and bounce astrophysics, in

which there is a limit to to how much energy spacetime can hold. This places limits on

the energy density of space time: any density higher than this will lead to a repulsive

force analogous to the degeneracy pressure of neutron stars and brown dwarfs. This then

leads to an expansion which is interpreted as a big bang (Ashtekar, 2009) in cosmology,

or as a fast radio burst in stellar astrophysics. There is one challenge shared by both

schemes: testability. String theory has the potential of providing a consistent, renormalis-

able quantum theory of gravity. It however provides us with a measure problem as earlier

discussed. For us to quantize space time as scheme (2) proposes, we may need to break

Lorentz invariance, at least in some scale. There is no evidence that this occurs in nature.

Astrophysical measurements (Jacobson et al.,,2003) and more recently measurements in

particle physics (Mestres, 1997) have shown that Lorentz invariance is not broken at the

scales of the respective investigations. Further, some workers have proposed that the

repulsive force arising from the reaching of the energy density bound levels to emissions

by black holes in the form of fast radio bursts. however, there significant constraints on

loop quantum gravity models with this picture.
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In our scheme, we challenge both geometrodynamics and continuity. We hold that the

introduction of a gravitation field with quantum field theoretical properties is the correct

way of implementing quantum gravity. We make this decision on physical arguments;

three of four fundamental forces are described by quantum fields, it would be strange

if the fourth wasn’t described by a quantum field. We also challenge continuity on the

basis of physical arguments: imagine two points of space time that are arbitrarily close

together. If we would wish to specify the positions of this points in configuration space,

if the points are near infinitely close together (the definition of infinitesimals) then it

would need more space than the entire universe to specify the positions of this space

information. Theoretically, on the other hand, to resolve the two points, we would need

more energy than that of the observable universe. It is on the basis that we reject the

notion of continuity. However, there must be a mechanism of recovering some notion of

effective continuity at the observable scale. This would allow us to use the continuous

symmetries which preserve Lorentz invariance. Causal dynamical triangulation recovers

the classical structure of space time (Forcier, 2011).
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6 Chapter Six: Conclusions and Recommendations

6.1 Conclusions

We have postulated a new duality, brane-simplex duality which allows us to describe

spacetime simplices in terms of fermionic functions. The bosonic string theory has been

extended by linking the Polyakov action to the Regge action. We then studied the

symmetries of the extended Polyakov action has then been studied leading to a stress

energy tensor associated with the simplices. We have then discussed the possibility that

this stress-energy tensor is dark energy. We have then solved for the fermionic simplices

getting mode expansions for the extended bosonic string.

The generator of the Lorentz algebra was then invoked. The generators specified have

to mutually commute if Lorentz invariance is to be maintained in the new extended

theory. We have calculated the commutator considering the extra simplicial fermionic

fields added to the traditional angular momentum generator because of the new duality.

We have found no effect on the dimensionality of bosonic string theory. We have discussed

the possible reasons for this.

The development of the full superstring theory has then been done. Akin to objective one,

we have developed the symmetries of the action which gives us the stress-energy tensor

in the standard fermionic case. We have not calculated the dimensionality of the new

theory because it was demonstrated that the new duality does not affect dimensionality.

6.2 Recommendations

Work remains to be done to fully understand the duality. There is need for more re-

search to be done to understand whether constructing spacetime out of fermionic fields

is consistent.The stress energy tensor needs to predict the exact value of dark energy

for the model to be phenomenologically and empirically relevant to cosmology. Another

approach would be to tie the value of the cosmological constant to the theory, hopefully

making it a “unique” string theory. We can then perform phenomenological computations

using the theory. This may be thought analogically with the coupling constant renormal-
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ization in quantum field theory.

The fact that the new symmetry does not affect the dimensionality of the two respective

string theories needs to be verified. If this is because of incomplete treatment and imple-

mentation of the new duality, then we recommend better implementations of the duality.

This could possibly lead to the reduction of critical dimensions in the new “Chimera”

theories.

The work could possibly be extended to non-perturbative string theory. We find the

aspect of AdS/CFT duality particularly interesting. The duality provides for the gen-

eration of spacetime simplices in the bulk by linking it to entanglement of CFT states

on the surface. The boundary acts like a set of boundary consitions of the model, whose

existence is independent of the theory. By constructing spacetime using simplices, this

boundary may be constructed within the theory, making non-perturbative formulations

of string theory “fully” background independent.
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