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Abstract 

 

Land degradation in form of soil erosion is a significant problem in arid and semi-arid region of 

Lake Baringo catchment. Soil erosion by water is one of the major contributors of reducing soil 

fertility, eutrophication and contamination of water resources experienced in the catchment. The 

goal of this research was to assess soil erosion in the area by combining object based image 

analysis to map erosion and spatial modelling to assess erosion risk. The development of remote 

sensing technology with regard to Geographic Object-Based Image Analysis (GEOBIA) gives 

new improved techniques to map erosion and associated features from high spatial resolution 

imagery. GEOBIA method was reviewed, developed and tested for its capability of mapping 

erosion. Assessment of the magnitude of the soil loss was incorporated as well through some 

form of modelling. Erosion modelling helped in pinpointing the vulnerable areas. Unit Stream 

Power-based Erosion Deposition Model (USPED) was used to capture the erosion and deposition 

process. The output of the GEOBIA which is the spatial patterns of erosion was combined with 

the output from the USPED erosion model which is a quantitative prediction of erosion risk to 

improve soil erosion assessment within the catchment. 

Analysis of the USPED model results showed that around 56.5% of the catchment area is 

affected by erosion. Only 0.8% of the catchment is stable and not affected by either erosion or 

deposition process. Deposition occurs in the remaining 42.7%. Major erosion hotspots were 

found to be areas surrounding Radat, Kaptim, Kipcherera and Molo sirwe. GEOBIA 

classification results indicate that the method was able to detect the eroded areas in high 

resolution Rapid Eye image with a high level of accuracy. The results of the classification were 

checked against ground reference data in the area, resulting in an overall classification accuracy 

of 78.5%.From a conservation perspective, 10.8% of the watershed needs immediate watershed 

management intervention. Based on the results of this study, it is recommended that appropriate 

soil and water conservation measures should be implemented in these identified hotspots. This 

spatial information on the scale, severity level and exact coordinate location of badlands will 

give important insights to conservationists and stakeholders in planning and implementing 

mitigation measures. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Human beings have adjusted their environment to suit their needs. The ever-increasing world 

population and demands have resulted in the degradation of limited earth resources. Land 

degradation has been defined as depletion in the economic or biological productive capacity of 

land (UNCCD, 1994). The major cause of land degradation is anthropogenic activities, however 

it is increased by naturally occurring processes and worsened by the climate change effects. Land 

degradation assessments have been conducted globally and indicate that “the percentage of earth 

surface that is degraded has increased from 15% in the year 1991 to 25% by 2011” (UNCCD, 

2013). 

One of the main causes of land degradation globally is soil erosion (Valentin et al., 2005). It is an 

earth surface process that occurs naturally. This process removes and carries soil particles 

through the action of its agents such as air, wind, gravity, and water. Naturally, the erosion 

process and the creation of new soil is balanced in nature, however anthropogenic activities have 

accelerated this process of erosion thereby causing an unsustainable imbalance in the cycle. 

Approximately 24 billion tons of productive soil are lost to erosion in the world’s croplands 

(FAO, 2011). This destruction of the fertile land increases food insecurity. People living in rural 

areas are forced to migrate because of the destruction of fertile land resources which they depend 

on. At a global scale, water erosion is one of the most important land degradation problems 

(Eswaran et al., 2001). 

Traditionally, GIS and remote sensing technologies have been applied in soil erosion assessment 

and research through conducting aerial surveys. Interpretation of aerial photos leads to detection 

of erosion. Model input data for analysis could also be obtained from the imagery. Technical 

developments in earth observation, such as availability of higher spectral and spatial resolution, 

the advancement of new digital image processing technology and analysis workflows, have 

created new opportunities for research in earth science, and especially spatial soil erosion 

assessment. The increasing availability of higher spatial resolution optical imagery has triggered 
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a shift from traditional pixel based image classification methods to improve detection of erosion 

from imagery.  

This research project focuses on using an improved approach for spatial soil erosion assessment 

by combining erosion modelling to quantitatively analyze soil erosion risk and Geographic 

Object Based Image Analysis (GEOBIA) to extract erosion from high spatial resolution imagery. 

Mapping eroded lands would assist in providing the current status of the patterns and severity 

levels of the badlands. Locating the potentially vulnerable areas through modelling of the soil 

loss will provide crucial information required for devising conservation plans and measures. 

Erosion modelling can effectively represent the behavior of the real world erosion phenomenon 

which will allow for the comparison of the image classification and simulated outputs. The fact 

that the spatial pattern of erosion from GEOBIA would be available opens the possibility to 

combine the GEOBIA output to soil erosion model output to further improve on the level of 

detail on erosion. 

 

1.2 Problem Statement  

 

Soil erosion is a big environmental concern across the globe, especially in developing countries. 

In Kenya, it is an increasing problem in Lake Baringo catchment. Water erosion is one of the 

most influential factors that determine catchment quality and is considered a significant form of 

land degradation that affects sustained land-use productivity. 

Geospatial technologies like remote sensing and GIS have been used to assess soil erosion. 

However, in Kenya there is a lack of detailed spatial data with regards to the spatial extents of 

soil erosion at national scale. This study will attempt to address this problem of soil erosion 

assessment by combining soil erosion models and object based image analysis to improve 

detection and evaluation methods at the catchment. 

The emergence of high resolution satellite sensors has offered the remote sensing community 

increased flexibility to study finer scale geographic phenomena anywhere on the Earth’s surface. 

Geographic Object Based Image Analysis, a new paradigm shift in satellite image processing 

was used to map soil erosion and associated features. Classical pixel-based classification 

methods deliver results for land cover/use mapping that usually depend fully on the information 
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of each pixel and the immediate neighborhood only (Vrieling, 2007). Other important 

information that implicitly exists like shape and texture within the image space is not put into 

consideration during classification. This information that is left out in pixel-based methods may 

solve several problems of mapping soil erosion features like gullies and rills in optical satellite 

data by including context as one main facet of expert knowledge. Although higher accuracy 

could be achieved by manual digitizing of erosion features from high spatial resolution imagery, 

it is extremely laborious and time consuming with lots of subjectivity during image 

interpretations. A study like this will be expensive to repeat for the whole of Kenya for 

monitoring purposes. It is therefore necessary to develop GEOBIA methodologies that will be 

less expensive to repeat. 

Incorporating soil erosion models would enable a more precise soil loss value to be derived, 

which is crucial in devising an effective soil conservation plan and putting up strategies for 

sustainable development. In Lake Baringo catchment, so far soil erosion dynamics have not been 

assessed comprehensively. Quantitative assessment studies of erosion phenomena also do not 

exist in the catchment. 

 

1.3 Objectives. 

 

The main objective of this study was to assess soil erosion dynamics in Lake Baringo catchment 

through the application of geographic object based image analysis and spatial modelling. 

The specific objectives of this study were to: 

1)  Review the application of object based image analysis for soil erosion assessment. 

2)  Identify suitable data for soil erosion assessment. 

3)  Map soil erosion by applying object-based image analysis. 

4)  Model soil erosion rates. 

 

 

 

 



  

4 

1.4 Justification of the Study 

 

Most reports in the region point at alarming status of land degradation. This study has noted that 

no detailed GIS based degradation assessment and mapping efforts have been carried out to 

identify hotspot areas in the catchment. The only available studies have been done at national 

level with coarse resolution output. 

With this shortcoming in mind, this study purposes to use an improved method combining 

spatially dynamic erosion modelling and object based image analysis to assess and map land 

degradation severity in the entire catchment at finer spatial scale. It is anticipated that this 

approach will result in finer resolution risk maps covering the entire catchment. Determining the 

erosion potential of an area would help conservationists target specific locations for appropriate 

initiation of conservation measures. The model's estimates of soil erosion would become an 

important component of sustainable land management plans (Bonilla, 2010). The estimates 

would help in prioritization of soil conservation based on severity levels in each region. These 

plans are designed to protect and recover soils. The spatial distribution of soil erosion and their 

severity levels are important input factors to be considered in watershed management and soil 

conservation planning (Kumar and Nair, 2006). 

 

1.5 Scope of work. 

 

The scope of this research project was to identify and map the extent and severity levels of land 

degradation. The study used an approach that combines object based image analysis and erosion 

model to assess and map soil erosion in the catchment. 

 Field survey would be carried out to validate the outputs of both object based image analysis 

and erosion models. The study area for this research is Lake Baringo catchment which was 

selected because of its agricultural and economic significance and the fact that it is one of the 

regions in Kenya that has suffered massive losses of productive land attributed to persistent land 

degradation which has also had direct implications to the ecosystem and livelihoods. 
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1.6 Organization of the Report. 

 

This project report is organized into 5 chapters where Chapter 1 contains the background, 

problem statement, objectives, and justification of the study and scope of work. Chapter 2 

discusses the previous literature written on the main aspects of the study i.e spatial assessment of 

soil erosion. Chapter 3 discusses the materials, data and the methods of data processing and 

analysis used during the study, chapter 4 focuses on the results of the data analysis processes and 

discussion of the results obtained with respect to the objectives. Chapter 5 gives conclusions 

drawn to the study in reference to the results obtained and objectives of the study and also 

recommendations provided to subsequent studies. Lastly the list of references is given after 

Chapter 5.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

 

Soil erosion is a multiphase geomorphic process, involving the removal of topsoil from the earth 

surface and their transport by agents like wind and water. A third stage called deposition happens 

when enough power is no longer available to carry the soil particles (Morgan, 2005) . The most 

crucial detaching agent that starts the whole process chain is rain splash. Once the raindrops 

strike a bare earth surface, the soil particles are propelled through the air over distances of a few 

centimeters. This repeated exposure to intense rainstorm phenomenon considerably wears out the 

soil surface. The earth surface is further broken up by physical, chemical and biological 

weathering processes. The alternate freezing and thawing, wetting and drying,  of the soil surface 

constitute mechanical weathering. Tillage activities on the farmland and stamping effects of 

livestock and people further disturb the earth surface. Wind and running water friction against 

earth surface also contributes to the detachment of soil particles. All these processes wear out the 

soil thereby enabling the agents of transport to remove it easily. The transporting agents consist 

of those that take action and contributes to the removal of a relatively uniform layer of soil and 

those that direct their action in water channels (Morgan, 2005). 

There are three major types of soil erosion by water. The first one is splash erosion in which it  

happens when topsoil particles are removed and shifted because of the collision with the falling 

raindrops as explained above. Subsequently, sheet or inter-rill erosion takes away soil in the thin  

upper layers and is as a result of combined effects of surface runoff and splash erosion. The other 

type of water erosion is rill erosion, whereby the removal of soil particles is caused by 

concentrations of flowing water. Rill erosion eventually becomes gully erosion which occurs 

when a huge amount of topsoil is removed by the increased surface runoff. This runoff 

cumulatively leads to the formation of deeply incised and wide rills, referred to as gullies. 

(Morgan, 2005). Several factors control water erosion. They include topography, soil properties, 

climatic characteristics, land and vegetation management. 
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2.2 Sustainable Land Management. 

Sustainable land use and management of earth resources plays an important role in human 

climate, and food security (Lal, 2001). Soil erosion is a global concern that threatens natural 

resources in both developing and developed countries. High levels of soil erosion rates has 

harmful ecological and economic effects (Lal, 1998). It creates both offsite and onsite impacts on 

productivity due to a decrease in the quality of soil health. According to UN's Institute for natural 

resources in Africa, “if current trends of land degradation continue, the continent might only be 

able to feed just a mere 25% of its total population by the year 2025”. This increase in land 

degradation over the past couple of years has led to a higher acknowledgement of the need for 

sustainable natural resource management. In response to this need, sustainable development 

goals (SDGs) were developed by the United Nations to direct a worldwide global development 

agenda. One of the sustainable development goals aims at “ protecting, restoring and promoting 

sustainable usage of terrestrial ecosystems, sustainably managing forests, combating 

desertification,  halting and reversing land degradation, and stopping biodiversity loss” (UNDP, 

2015). Therefore, SDGs provides a global dedicated effort towards combating land degradation 

and attaining degradation-free planet (Lal, 2012). 

Kenya is a signatory and is bound by several international agreements such as the Convention on 

Biodiversity (CBD), the Kyoto Protocol on Climate Change, United Nations Convention to 

Combat Desertification (UNCCD) and the resultant UN Framework Convention on Climate 

Change. All these efforts directly and indirectly champion for the establishment of planet 

monitoring methods to better identify and map degraded land, evaluate the changes in degraded 

land over time and to understand the causes of land degradation. Additionally, Kenya Vision 

2030, proposes the establishment of a GIS based system to aid in monitoring land use/cover 

changes. Vision 2030 prioritizes sustainable land management. The current land use practices in 

Kenya are conflicting with the ecological zones thereby catalyzing unsustainable use. 

Kenya’s Constitution (2010) also captures the need for sustainable management of resources. 

According to article 60 of the constitution, the section on land and the environment states that 

“land in Kenya shall be held and used in such a way that is efficient, equitable and sustainable”. 

Two of the key principles of land use are captured in sub-article (c) and sub-article (e) which 

advocates for sustainable management of land resources; and sound conservation and protection 
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of ecologically sensitive areas. Kenya has to manage and sustain its diverse natural resource base 

for it to be globally competitive. The country’s economy significantly relies on tourism and 

agriculture for it to earn foreign exchange which contributes to GDP. Despite this fact, Kenya is 

experiencing many challenges with the environment. They include soil erosion, land degradation 

and deforestation. Three steps have been proposed to solve the land degradation problem. They 

include spatial assessment, monitoring changes and implementation of mitigating actions and 

technologies. Spatial assessment is necessary to guide on the suitable counter measures to curtail 

the worsening degradation problems. Spatial Information on the scale, severity level and exact 

coordinate location of badlands will give important insights to conservationists and stakeholders 

in planning and implementing mitigation measures.  

2.3 Spatial Erosion Assessment. 

GIS and remote sensing are essential technologies used in erosion assessment because they 

provide location specific insights. There are three different ways of conducting spatial 

assessment of soil erosion. Measurement of soil erosion rates at different locations on the earth 

surface using a measuring device or erosion plots is one of the ways according to (Hudson, 

1993). Carrying out actual field measurements is a very intensive field survey activity. For one to 

achieve accurate and precise measurements it takes a lot of time. This manual method is very 

expensive and measurement equipment is not always available (Stroosnijder, 2005). Under the 

same circumstances, the measurement results may vary because of errors (Nearing, 1999). This 

method is most suitable for the determination of the role of a specific erosion factor, model 

design or validation. It is not suitable for spatial estimation of erosion. 

Erosion field survey is the other method for assessment in which erosion and associated 

geomorphic features are identified. The features may include; pedestals, rills, gullies (Herweg, 

1996). In this method quantitative information may be obtained through repeated mensuration of 

feature dimensions. This type of survey is qualitative in nature since classification of the amount 

of erosion is done based on the features encountered. Surveys allow for spatial erosion mapping 

for small catchments of about 2 square kilometers (Vigiak et al., 2005), but for bigger regions 

this becomes very difficult. The other form of erosion survey is a structured visual identification 

of geomorphic features from aerial photographs/imagery. This could be done for larger areas up 

to 50 square kilometers (Bergsma, 1974). 
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The third and most common technique for spatial erosion assessment is by integrating spatial 

data on erosion factors in some kind of modelling. The most widely accepted and used erosion 

model is the empirical Universal Soil Loss Equation (Wischmeier and Smith, 1978). However, it 

is important to note that many other erosion models have been developed and they also are used 

for spatial evaluation of erosion (Merritt et al., 2003).  

Most models that capture the erosion process demand a big amount of detailed spatial data on a 

range of factors such as vegetation, soil, rainfall, and topography parameters. In most developing 

countries these data are not readily available or they have poor resolution. Recent development 

in the space technology and open data initiatives have improved availability of higher resolution 

data which is a huge benefit when conducting land degradation assessments. 

When conducting an assessment by using erosion models, the outcome is a quantified risk that 

erosion would happen at a certain location as compared to other locations in the region mapped. 

High resolution rapid eye imagery was used to map the current extents of eroded land. The 

availability of the spatial pattern of erosion opens up the possibility to improve assessment by 

combining the two outputs. From the above studies there are huge potential opportunities for 

spatial erosion assessment combining the latest remote sensing technology and erosion models. 

 

2.4 Geographic Object Based Image Analysis. 

 

Interpretation of aerial photos has been the most extensively applied method for mapping erosion 

and associated features like rills and gullies. However, this method involves conducting an aerial 

survey and interpretation of images by humans. This method consumes a lot of time, is affected 

by human subjectivity and only covers a small area. 

Remote sensing datasets have been effectively used for assessing eroded areas. In recent years 

pixel-based image classification techniques have been the main method used to map erosion 

from satellite imagery (Vrieling, 2007). A deep understanding of the region of interest and 

meticulous analysis of separability of spectral signatures is required during training and selection 

of adequate pixels. To add on this, spectral differences of the earth surface is affected by 

variability in mineral content, soil organic matter and moisture. This variation greatly affects the 
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performance of pixel-based image classifications algorithms. Pixel by pixel analysis is able to 

detect erosion pixels, however the inexactness of whether an image feature is an eroded area or 

not may require further analysis in context. This brings about the need to use a more advanced 

object based image analysis techniques that utilize contextual data to aid in the detection of 

erosion. 

In some studies already done, erosion types could be distinguished on satellite imagery based on 

derived vegetation cover and visual satellite image interpretation (Dwivedi and Ramana, 2003). 

Vegetation cover data and topographic attributes derived from additional data sources like DEM 

have also been used to map erosion (Yuliang and Yun, 2002). 

A better option compared to visual satellite image interpretation method is the semi-automated 

extraction/mapping of eroded lands. Supervised maximum likelihood algorithm together with 

principal component analysis of Landsat TM imagery was used by (Floras and Sgouras, 1999) to 

map soil erosion classes (Bocco and Valenzuela, 1988) also used the supervised classification 

algorithm on SPOT and Landsat images to distinguish erosion and vegetation classes. From their 

research, it was discovered that multispectral bands of Landsat Thematic Mapper produced a 

superior result of land cover, however high resolution imagery from SPOT satellite achieved 

much better results in the classification of eroded regions. 

(Dwivedi, 2018) ascertained that SPOT imagery provided superior quality classes of eroded 

lands than Landsat, however all Landsat bands were not used for the classification. An 

unsupervised classifier was applied to SPOT satellite data to extract four types of erosion 

(Serveney and Prat, 2003). 

Advancement in remote sensing especially in terms of GEOBIA and availability of higher 

resolution satellite imagery offers more new possibilities to map erosion in less time and at an 

acceptable level of accuracy. Studies done before suggests that supervised classification 

technique such as maximum likelihood classifier could not detect eroded land at an acceptable 

level of accuracy because of spectral similarities with other non-erosion features (Pirie, 2009). 

Application of object based erosion extraction methods have proven to be more effective than the 

classical pixel based unsupervised and supervised classification technique. (Jetten, 2011) used 

eCognition an object based image analysis software to extract gullies in Morocco by using a 
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combination of NDVI, slope, and catchment area thresholds. The accuracy assessment was good 

as it indicated negligible over estimation. In South Africa a study was done using eCognition to 

extract erosion gullies in tertiary catchment in eastern cape province. Vector segments 

representing homogenous landscape were derived by creating a bare soil mask. However 

segmentation was not done as it would have required a large amount of preprocessing especially 

at provincial scale. One of the advantages of using object oriented classification is that it uses 

both spectral and spatial patterns when classifying an image. 

 

2.5 Soil Erosion Modelling. 

 

Many soil erosion models have been designed to predict soil erosion. They can be divided into 

two major types namely: physically-based models and empirical models (Morgan, 1995). 

Empirical models have been developed with a statistical starting point. This is different from 

physically based models in which they describe the acting erosion processes on the basis of a 

storm event. However, most erosion models contain both physically-based and empirical parts. 

Empirical erosion models have been widely accepted and used worldwide. They play an 

important role in predicting soil erosion and supporting soil conservation management plans. In 

this study Unit Stream Power Based Erosion Deposition model (USPED) was used. 

USPED is a two dimensional soil erosion model. It assumes soil erosion and deposition depends 

on the sediment transport capacity of the surface runoff, unlike the one dimensional revised 

universal soil loss equation (RUSLE) model, which assumes erosion mainly depends on 

detachment capacity of rain. According to USPED model, if soil particles are already broken off 

from the earth surface by rain, but the runoff is not enough to transport the soil particles because 

of the topography or vegetation cover, the actual amount of erosion will be notably lower 

(Mitalsova et al., 1997). 

 USPED model has been developed on the foundation of the empirical Universal Soil Loss 

Equation (USLE) and its improved version Revised Universal Soil Loss Equation (RUSLE). 

USLE models have been accepted widely and used worldwide for agricultural application, 

however they are wanting when a much more complex terrain is involved. The major 
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advancement provided by the USPED model is the way in which it captures complex 

topography. The RUSLE model considers the earth surface to be a sequence of large planes. 

USPED model considers convergence and divergence of slope surface by modelling the entire 

upslope area that contributes to the overland flow of water across every point in the landscape in 

a GIS environment. This model comprehensively considers terrain complexity by including both 

the tangential curvature and profile curvature in the downhill direction. Computation of erosion 

and deposition is based on the change in sediment transport capacity in the direction of flow. 

Modelling of sediment deposition within the landscape is not possible with the empirical 

USLE/RUSLE equation.  

According to the USPED model, (ED) erosion and deposition is calculated as a change in flow of 

sediment in the direction of flow ( Mitalsova et al., 1997). 

where: T is the flow of sediment at transport capacity, dx, dy is the grid resolution, and a is the 

terrain aspect (direction of flow) of surface in degrees; The output ED can be negative, showing 

soil erosion, or positive, indicating deposition of soil. Transport capacity is given as; 

where: K is a soil erodibility index factor, R is a rainfall–runoff erosivity factor, C is a cover 

management factor, P is a support practice factor, A is the contributing area upslope, b is the 

terrain slope and n and m are constants. Transport capacity is defined as the highest amount of 

sediment that a given flow can carry without net deposition. Transport capacity and detachment 

capacity are correlated and it is their synergy that controls the magnitudes and patterns of both 

erosion and deposition (Slaymaker, 2003). 

 

 

 

 

              ED = d(Tcos a)/dx +  d(Tsin a)/dy       (2.1) 

 T = RKCPAm(sin b)n        (2.2) 
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2.6 USPED Factors. 

 

2.6.1 Rainfall-runoff erosivity Factor. 

 

This factor is also called R-factor. Rainfall-runoff erosivity factor is an approximation of the 

erosivity effect of rainfall. It is calculated as the product of maximum 30-minute intensity (EI30) 

and storms kinetic energy. The product of the maximum 30-minute intensity (I30) of a storm and 

total kinetic energy of the storm (E)  is directly proportional to storm soil loss from a rainfall 

rainfall event, when the other factors are kept constant (Arnoldus, 1980). This type of 

meteorological data is not available in Kenya, therefore mean annual and monthly rainfall data 

would be used as an alternative in calculating the R factor (Arnoldus, 1980). 

Rainfall-Runoff erosivity (R) is expressed as a combined measure of the intensities and amounts 

of each rainstorm throughout the year (Hudson, 1981). If rainfall intensity data is available, 

equation 2.3 below is used;   

where; R is rainfall runoff erosivity (MJ.mm.ha-1.h-1.yr-1), I30 is maximum 30-min rainfall 

intensity (mm/h), E is the total storm kinetic energy (MJ/ha), j is the index of the number of 

years used to produce the average, m is the number of storms in each year, n is the number of 

years used to obtain average and k is the index of number of storms in a year. 

In the absence of storm kinetic energy data and rainfall intensity, several different authors have 

come up with formulae that use mean annual rainfall data p, Fournier Index and monthly 

precipitation data pi as the inputs to calculate erosivity factor R (Arnoldus, 1980). Mean annual 

and monthly precipitation data of the area of interest would be obtained directly from CHIRPS 

and worldclim rainfall data, but the Fournier Index F is determined by using equation 2.4 as 

shown. 

 
             R =

1

𝑛
∑ [∑ 𝐸(𝐼30)

𝑚

𝑘=1

]

𝑛

𝑗=1

  
 

(2.3) 
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Many equations have been derived to determine the value of R-factor for a certain location. This 

brings about a new problem of selecting the right equation for a region because there is no 

guarantee that those model equation would work for all regions. To circumvent this issue, the 

different tested mathematical expressions were applied and the output rainfall erosivity indexes 

compared. To decide on the suitable equations that could be used at Lake Baringo catchment, 

nine equations given in Table 2.1 were tested based on the relationships between the Rainfall 

Erosivity (R) and Mean Annual Rainfall (MAR) show in Table 2.2 according to (Kassam et al., 

1992). 

 

           𝐅 =
1

𝑛
∑ [ ∑

𝑝𝑖
2

𝑝

𝑖=12

𝑖=1

]

𝑛

𝑗=1

  

 

(2.4) 
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Table 2.1: Tested R Factor Equations and their references (Kassam et al., 1992). 
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Table 2.2: Relationship between Rainfall Erosivity and Mean Annual Rainfall (MAR) (Kassam 

et al., 1992). 

 

2.6.2 Cover Management Factor. (C- Factor) 

 

C-factor is a general land cover factor that represents the collective effect of all interrelated land 

cover and management variables. Different land use types in terms of coverage and pattern 

influence the soil erosion potential of an area. This factor takes into account the earth surface 

protection against raindrop impact. This protection could be by vegetative cover at some height 

above the soil surface thereby reducing raindrop impact against the soil surface. It could also be 

protection against overland flow friction against the soil surface .C- factor has been described as 

the ratio of soil loss from continuous tilled bare fallow land to the corresponding loss from land 

maintained under specified conditions(Van der Knijff et al., 2000). Cover management factor 

values typically range from 0 for soils that are well protected to 1.5 for earth surface that has 

been finely tilled and generates much runoff, leaving it vulnerable to all types of erosion (Van 
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der Knijff et al., 2000). Rapid eye satellite images were used for the approximation of C factor 

using NDVI because of the range of land cover types with temporal and spatial variations. The 

Normalized Difference Vegetation Index, NDVI is a dimensionless index that characterizes the 

difference between near-infrared and visible reflectance of vegetation cover. It is an indicator of 

vegetation health and vigor. NDVI was used in the below equation 2.6 to create the C factor layer 

for USPED erosion model (Zhou et al., 2008). 

 

whereby where β and α are dimensionless variables which control the shape of the graph relating 

C factor and NDVI. The values of the variables β and α were determined to be 1 and 2 

respectively. It was found out that this method of scaling produced more desirable results than 

when a linear relationship is assumed (Van der Knijff et al., 2000). 

2.6.3 Soil Erodibility Factor. (K-factor) 

 

Soil erodibility is an indicator of the ability of soils to withstand erosion. It is determined by the 

physical characteristics of the soil. This factor represents both susceptibility of the soil surface to 

rate of runoff and erosion when studied under typical unit plot condition. Soil erodibility is 

affected by two factors namely; structural stability and the infiltration capacity of the soil 

(Renard et al., 1997). Typical K factor model values vary from 0.01 to 1. Soils that have a high 

content of clay are resistant to detachment process and have very low soil erodibility values of 

ranging from 0.05 to 0.15. Soils that have a high content of fine sand have higher K-factor 

values. Soils with coarse texture are detached easily but have very low runoff thus contributing 

to low K factor values ranging between 0.05 to 0.2. Medium textured soils are moderately 

suscepetible to detachment and they have a moderate K values of about 0.04 to 0.25. The most 

erodible soils are the ones with high silt content. These soils are easily detached because they are 

 
NDVI =

NIR − RED

NIR + RED
  

(2.5) 

 
C = exp [−∝

𝑁𝐷𝑉𝐼

(𝛽 − 𝑁𝐷𝑉𝐼)
]  

(2.6) 
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not sticky. They also tend to crust and produce high runoff rates. K-factor values for this type of 

soil are more than 0.4. 

K factor was approximated using the soil properties obtained from soil data from Africa Soil 

Information Service database by using equation 2.7 as proposed by (Williams, 1996). This 

equation was chosen because of the availability of soil properties data on sand, silt, organic 

carbon and clay content. K-factor equation is expressed as shown below:  

 

where: SIL is silt, SAN is sand, C is organic carbon content of soil, CLA is clay, SN is (1-

SAN/100). 

2.6.4 Support Practice Factor. 

 

This factor is also called the P-factor. Support practice factor considers the various land 

management control practices that assist in reducing erosion. These practices directly or 

indirectly influence the runoff velocity, runoff concentration, drainage patterns and runoff 

hydraulic force on the soil. P factor has been defined as the “ratio of soil that is lost within a 

                                            𝐾 =  𝐴 ∗ 𝐵*C*D 

 

                 

(2.7) 

                           𝐴 =  (0.2 +  0.3exp(−0.0256 SAN (1 −  SIL/100)) 

 

                 

(2.8) 

                                        𝐵 =  (
𝑆𝐼𝐿

𝐶𝐿𝐴+𝑆𝐼𝐿𝑇
) 

 

                 

(2.9) 

 𝐶 =  (1 −
0.0256𝐶

𝐶 + exp(3.72 − 2.95 C)
) 

 

                 

(2.10) 

                                          𝐷 =  (1 −
0.7𝑆𝑁1

SN1 +  exp(−5.51 +  22.9 SN1)
) 

 

                 

(2.11) 
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specific support practice on croplands to the corresponding deficit with tillage up and down a 

slope” (Wischmeier and Smith, 1978). The effects of existing soil conservation practices such as 

terracing, strip cropping and contour farming on soil loss in an area are represented by this 

factor. These conservation practices affect erosion by water. They interfere with the direction of 

runoff, the pattern of flow thereby reducing speed and volume of runoff. P-factor model values 

reduce by embracing these supporting conservation practices as they reduce runoff impact and 

encourage the deposition of soil sediment on the slope surface of the hill. The better the 

management practice is for controlling soil erosion, the lower the P-factor value. Below table 

shows P factor values as designed by (Wischmeier and Smith, 1978). 

Table 2.3 Typical P factor Values (Wischmeier and Smith 1978). 

 

Land use Slope (%) Value for P 

factor 

Agriculture 0-5 0.1 

 5-10 0.12 

 10-20 0.14 

 20-30 0.19 

 30-50 0.25 

 50-100 0.33 

Other                

Land Covers 

 1 
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CHAPTER 3: METHODOLOGY. 

 

3.1: Introduction 

This section introduces and discusses the entire workflow that will be used to achieve the study 

objectives. Specifically, it looks at the entire methodology used from study area identification, 

data acquisition, data processing, intermediate products derivation, USPED erosion modelling in 

GIS, erosion mapping using GEOBIA, and field validation all the way to the final product which 

is the erosion hotspots map. Figure 3.1 is a flowchart that summarises the methodology used in 

this study.  

 

Figure 3.1 Summary of Methodology. 
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3.2: Study Area 

This study was in Lake Baringo Catchment as shown in Figure 3.2.  

 

Figure 3.2 Area of study. 

The climate of Lake Baringo catchment is classified as semiarid to arid with irregular dry and 

wet seasons. The dry season runs from September to February, while the rainy season is between 
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March and August. Mean annual rainfall ranges from about 600 mm on the east and south of the 

lake to 1500 mm on the western escarpment of the Rift Valley. The highland area of the 

catchment near the Tugen hills experiences a cool and wet climate, with an annual mean 

temperature of 25°C in combination with high precipitation. Along with the decreasing 

elevation, as the landscape is descending downhill towards the lake, the temperature gradually 

increases to an annual mean of 30°C and the drier climate characterizes the lower zones around 

the lake. Land cover of the catchment varies along with the topographic gradients. The highlands 

is characterized by temperate forests, whereas there exists desert shrubs, such as drier acacia-

species, on the valley floors. The major livelihood activities in the southernmost part of the 

catchment and the highlands is agriculture. In the lower parts of the catchment, the major 

livelihood is herding animals like cattle, sheep but mainly goats and some irrigated and rainfed 

farming. 

 

3.3: Data sources and Tools 

The datasets and tools used for the study are discussed below: 

3.3.1: Data Sources. 

Spatial assessment of catchment wide degraded lands will utilise input data layers for various 

variables required to compute the required principal products required in modelling. The 

quantitative estimation of the soil erosion risk by USPED model is based on its component 

factors such as: digital elevation model (DEM), rainfall data, soil type map, land cover map and 

satellite images. Most of these input layers were computed from a combination of two or more 

other data layers, as described below: 

i) High resolution satellite Imagery. 

High resolution rapid eye satellite imagery will be used for geographic object based image 

analysis. Rapid Eye satellite captures images in 5 spectral bands with 5m spatial resolution. 

Table 3.1 shows the satellites spectral bands and the wavelength range. 
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 Table 3.1 Rapid Eye Spectral Bands. 

Spectral  Band               Wavelength Range (nm) 

Blue 440 – 510 

Green 520 – 590 

Red 630 – 685 

Red Edge 690 – 730 

NIR 760 – 850 

ii) Rainfall. 

WorldClim rainfall data would be used here. WorldClim is a set of gridded climate data in raster 

format with a spatial resolution of about 1 km. This data can be used for mapping and spatial 

modelling. Since the principal rainfall product i.e. rainfall erosivity required high temporal and 

spatial resolution rainfall data to calculate both rainfall depth and intensity, this rainfall data was 

found to be most representative. The dataset was further processed to provide the monthly mean 

and annual mean required as input in the computation of the rainfall erosivity index. 

iii) Digital Elevation Model. 

The DEM used was ALOS 10 meter resolution. It was generated from data collected from the 

JAXA's ALOS satellite. 

iv) Soil. 

The soil data for this study was obtained from Kenya Soil Survey offices at KALRO. The data is 

in grid format for the different soil horizons. The dataset has a resolution of 250m. The Soil 

erodibility factor for the model would be calculated from soil properties obtained from Africa 

Soil Information Service (AFSIS) database. The data contained soil properties on the percentage 

of clay, silt, sand and organic carbon content. 
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 Table 3.2: List of data and data sources. 

Data Source Access Link  Principal 

Product 

Soil Africa Soil 

Information 

Service project 

KALRO Soil Erodibility  

 

Rainfall USGS Chirps ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP

S-2.0/africa_pentad/tifs/  

 

Rainfall 

Erosivity 

DEM JAXA ALOS KALRO Topographic 

Factor 

Satellite 

Imagery. 

Rapid Eye  Planet labs. Cover 

Management 

and Support 

Practice. 

Baseline 

Data 

Boundaries, 

towns, other 

( RCMRD) 

http://geoportal.rcmrd.org Baseline / 

Ancillary data 

 

3.3.2: Tools. 

The tools  that were used in this study include the following; 

Hardware – Personal computer. 

Software – GRASS GIS, QGIS Software, eCognition Developer software, Microsoft Office. 

 

3.4: Soil Erosion Assessment. 

This subsection describes the steps used to assess soil erosion in Lake Baringo catchment. This 

assessment was done by combining soil erosion modelling and Geographic object based Image 
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analysis technique. The model adopted for assessing soil erosion in this study is USPED. This 

section describes the processing stages of the various input parameters for the model i.e. 

vegetation cover condition, rainfall erosivity, terrain factor and soil erodibility. 

3.5: Data Pre-processing. 

 These different spatial data obtained from different sources have different projections, formats, 

spatial resolution and quality. GIS will provide the framework necessary to standardize manage 

and manage these data. A thorough evaluation of these datasets is a must before they are used in 

modeling. This is because the uncertainties regarding data and its sources may bring about larger 

uncertainties in the form of errors in soil erosion estimates. Significant effort will be put to the 

assessment and pre-processing of data, such as data conversion, registration, interpolation and 

metadata.  All the acquired spatial datasets will be converted to appropriate data formats for 

application in the extraction and modelling process. All data will be georeferenced in a standard 

coordinate reference system. 

3.5.1 Generation of Watershed Boundary. 

In generating the watershed boundary, the digital topographical maps and a DEM of the study 

area were used. The watershed boundary was then manually defined from the digital topographic 

maps using onscreen digitization. This was aided by features like the nature of the contour lines 

in the area of study and the general flow of rivers. The catchment boundary so generated was 

general and had to be further refined by use of hydrological tools provided in QGIS software. 

For the purposes of refinement of the boundaries of the drainage, GRASS GIS software was used 

with a 30m raster SRTM DEM of the catchment area to achieve a more precise catchment area 

boundary.  

The procedure first required that sinkholes or depressions on the DEM are filled in so that the 

boundaries are delineated properly. Then the FLOW DIRECTION function was executed.  

Conceptually this function defines which direction water would flow from each of the grid cells 

assuming the surface is impermeable. The output from the FLOW DIRECTION function then 

served as input for the next step of determining flow accumulation. The FLOW 

ACCUMULATION function was executed and defined the drainage network by calculating the 

contribution of each cell to its neighboring cells. 
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The final step was to run the WATERSHED function to automatically delineate the watershed 

boundary. Once the watershed boundary was delineated from the original DEM, the output data 

file was used as a template to cut out, or extract the area of interest from other digital maps. 

 

3.6 USPED modelling. 

The USPED model was run using QGIS and GRASS software. The various factors in the 

formulae were computed first. This will be done at 10 meters resolution. Raster layers having 

different resolution were resampled to 10m. 

According to USPED model Erosion-Deposition is calculated as divergence of sediment flow 

transport capacity as shown below in equation 3.1 

where: T is the flow of sediment at transport capacity, dx, dy is the grid resolution, and a is the 

terrain aspect (direction of flow) of surface in degrees. Transport capacity is given as; 

where: K is a soil erodibility index factor, R is a rainfall–runoff erosivity factor, C is a cover 

management factor, P is a support practice factor, A is the contributing area upslope, b is the 

terrain slope and n and m are constants.  

To compute specific land-surface parameters included in the model, such as directional 

derivatives and flow divergence, a map algebra module r.mapcalc and partial derivatives 

computed by the RST modules or r.slope.aspect was used in GRASS GIS. 

First the sediment transport capacity in x and y directions were calculated using r.mapcalc tool in 

GRASS GIS. 

r.mapcalc "flowtopo.dx=flowtopo * cos(aspect)" 

r.mapcalc "flowtopo.dy=flowtopo * sin(aspect)" 

This was then followed by deriving partial derivatives for sediment transport. 

              ED = d(Tcos a)/dx +  d(Tsin a)/dy       (3.1) 

                                        T = RKCPAm(sin b)n        (3.2) 
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r.slope.aspect elev=flowtopo.dx dx=qs.dx 

r.slope.aspect elev=flowtopo.dy dy=qs.dy 

The net erosion deposition is then computed by the below equation: 

r.mapcalc "topoindex = qs.dx + qs.dy" 

mapcalc "erdep=qsx_dx + qsy_dy"  

The sediment transport capacity was calculated by combining the rainfall erosivity factor, soil 

erodibility factor, cover management factor and support practice factor with the topographic 

sediment transport factor.  

 

3.6.1 Processing Vegetation Cover Management Factor. 

The vegetation cover management factor was calculated from NDVI values that were generated 

from Rapid Eye image of 23rd march 2018. The NDVI was then derived using QGIS software by 

applying equation 2.5 by using the raster calculator function. NDVI was further processed to 

generate C factor by applying equation 2.6. 
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Figure 3.3 NDVI Lake Baringo Catchment 
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3.6.2 Processing Rainfall Erosivity Factor. 

 

Rainfall and runoff play an important role in the process of soil erosion and were together expressed 

as the R factor. The greater the duration and intensity of a rain storm event, the higher the erosion 

potential. According to (Hudson 1981), rainfall- runoff erosivity factor (R) for any given period is 

obtained by summing for each rainstorm the product of total storm energy (E) and the maximum 

40mm intensity. since the values for these factors were not available at standard meteorological 

stations, an alternative method using long term satellite rainfall estimates was used. For the 

computation of R factor two components were computed from the CHIRPS rainfall data: Mean 

monthly and mean annual rainfall. These mean values were used to compute the Fournier index by 

applying equation 2.4. 

 

Figure 3.4 Fournier Index of Lake Baringo Catchment. 



  

30 

A 

x 

3.6.3 Processing Soil Erodibility Factor. 

 

The K factor expresses the susceptibility of soil erodibility due to its soil properties. Soil texture, 

organic matter, gravel content and permeability (water holding capacity) are some of the factors 

that determines the erodibility of soil. K factor is an indicator of the change in the soil per unit of 

the applied external force of energy since it reflects the ease with which soil is detached by 

agents of erosion. It is related to the integrated effects of rainfall, runoff, and infiltration on soil 

loss, accounting for the influences of soil properties on soil loss during storm events on upland 

areas (George, 2013).  

 

Soil erodibility factor of the catchment was estimated based on the sand, clay, silt and organic 

carbon fractions data obtained from the Africa Soil Information Service (AfSIS) data using 

equation 2.7. 

Below shows intermediate products when calculating soil erodibility. Images A, B, C, D are 

products of applying equation   2.8, 2.9, 2.10 and 2.11 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

A B C D 

x x x 

  Figure 3.5 Intermediate Soil Erodibility factor products A, B, C, D. 
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3.7 Erosion Features Extraction. 

Object-based image analysis (OBIA) for rapid eye satellite imagery using was done using 

eCognition Developer software. The application of GEOBIA for erosion classification can be 

categorized into a set of process steps as described below: 

i) Segmentation. 

In image segmentation, an image is grouped into objects based on spectral and/or spatial 

properties of an image (Wang et al., 2010). Several segmentation algorithms are available, 

whereas region-based algorithms are the ones most applicable within the field of remote sensing 

(Wang et al., 2010). The reason is its capability to merge pixels into spectrally homogeneous 

areas, and at multi-scales thus reflecting the human perception, which tends to group the 

geographic space into hierarchies of homogeneous objects. Segmentation process is essential in 

the development of OBIA procedure for mapping erosion. To come up with correctly segmented 

images, suitable multiresolution segmentation with a scale factor of 50, 0.3 shape factor and 0.5 

compactness value. The above parameters were obtained after a series of repetitive trials and 

testing. Figure 3.5 shows the level 1 segmentation process. In this segmentation figure 

parameters are clearly captured. 

 

 

Figure 3.5 Segmentation parameters in eCognition software. 
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ii) Image Classification 

The second step of the GEOBIA process was devoted to image classification. This step can be 

further divided into a set of subcategories. Calculating statistics is an important subcategory of 

image classification in order to successfully separate between different desired thematic classes. 

Statistics are generated primarily from the bands of the imagery in hand. Statistics of each band, 

such as mean, standard deviation, and ratio is calculated either locally for each object as 

generated from the antecedent step of image segmentation, or globally for a segmented image as 

a whole. These statistics are often referred to as features, feature statistics, object features. 

 To overcome the problem of colour (spectral) similarities of the imagery bands, some additional 

statistics, or features, are often needed. These additional features were size, mean NDVI, shape, 

texture, brightness and others, can be calculated from ancillary data, such as from elevation data, 

NDVI and similar. The purpose of feature statistics will be to add information so that objects can 

be easier merged by resemblance into thematic classes.  

 

After the step of adding feature statistics to the analysis, the objects would be finally classified 

into a set of classes using some classification method. Object based classification methods can be 

divided into two types, namely supervised classification (using training data and classifier), and 

rule-based thresholding (Trimble, 2015). The former uses training data in the form of objects, 

selected for each class. The number of training data, or samples, selected for each class varies 

from case to case. Samples, which contain information about each feature calculated, should 

each one represent a typical characteristics of a particular class. Based on the object samples 

selected, a classification algorithm is applied so that to find similar objects that are merged into 

thematic classes. There are many types of algorithms, whereas for example Bayes, nearest 

neighbour (NN), and decision tree, are classifiers embedded in eCognition. The classification 

method based on training data and classifier is vital when a complex set of classes has to be 

classified, as it enables for a wide range of features to be incorporated in the analysis. 

 Support Vector Classification algorithm was chosen for supervised classification. This is 

because it has proven successful in binary classifications, is well adapted to deal with data of 

high dimensions, less expert knowledge is required in training data collection and it is also 

competitive as other classifiers. 
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 Different from the above explained classification procedure is the rule-based methodology by 

thresholding. It simply divides objects into classes based on for example mean threshold as 

defined by different features. This is a preferred method if for example classes are easily 

separated using only a few features. This was not possible in Lake Baringo catchment because 

the area is semi-arid and coming up with thresholding criteria to map eroded areas would be 

difficult. 

After classification was completed its accuracy was assessed according to (Lillesand et al., 

2011). The accuracy assessment was carried out for the resulting image using ground reference 

data collected. A class with high accuracy indicates that the level of agreement between class 

assigned by the ground reference data and the class allocations by SVM classifier was of high 

degree. An error matrix (2*2) was prepared to express the accuracy. Assessment of the 

classification accuracy quantitatively was done by comparing two maps i.e. classification derived 

map and reference map. This referenced data was obtained from a combination of field collected 

point data and manually digitized eroded areas from higher resolution google earth imagery in an 

error matrix. The error matrix is a standard method of assessing the degree of accuracy and has 

been widely used in erosion classification accuracy assessment (Taruvinga, 2008). A total of 98 

equalized random sample points (46 for non-erosion class and 50 for erosion class) were 

generated using eCognition tool for accuracy assessment. The results of the error matrix were 

interpreted using the overall classification accuracy statistics. The overall classification accuracy 

summarizes the producer's and the user's accuracy and is the ratio between the numbers of 

samples that are correctly classified and the total number of test samples. 

 

3.8 Assessment of GEOBIA and models results. 

Overlay analysis will be done on the two layers to help in the identification of vulnerable areas 

and hotspots according to the model and actual erosion status on the ground based on GEOBIA 

results. The common element for assessment would be spatial pattern and area coverage.  
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3.9 Field Validation. 

Field validation was carried out to establish evidence of degradation. The field tools that were 

used included a camera for taking photos of degraded areas, note book and pen for jotting down 

the characteristics of hotspots based on observations and conversations with local communities 

and a handheld GPS for recording the coordinates of degraded spots. Due to budget limitations 

and the large size of the catchment, field validation was restricted to several hotspot areas. 
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                                CHAPTER 4: RESULTS AND DISCUSSIONS. 

 

The combined use of GEOBIA and USPED erosion model has been used to assess the severity 

and spatial distribution of erosion in Lake Baringo catchment. For the USPED model the various 

model input parameters such as rainfall erosivity(R), vegetation cover management(C), soil 

erodibility (K) and topography factor were resolved. The results of USPED modelling and 

GEOBIA is shown in figure 4.3 and 4.4 respectively. 

4.1 Spatial distribution of erosion. 

4.1.1 Segmentation. 

Segmentation process is needed in the development of OBIA method for detecting erosion. To 

come up with correctly classified images, suitable multiresolution segmentation with a scale 

factor of 50, 0.3 shape factor and 0.5 compactness value. Figure 4.1 shows the image obtained 

after level 1 segmentation process. In this segmentation eroded areas and vegetation cover have 

been captured. 

 

 Figure 4.1 Level 1 segmentation results. 
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4.1.2 Classification. 

 

GEOBIA classification approach led to a spatially exhaustive detection of erosion-affected areas. 

From classification results, the total land that is eroded is 123 km2. These results show that 

eroded areas were able to be characterized and mapped as shown in figure 4.2. 

 

 

 

RAPID EYE IMAGE SITE 1 SEGMENTATION   OBIA CLASSIFICATION RESULT  

 

RAPID EYE IMAGE SITE 2 SEGMENTATION OBIA CLASSIFICATION RESULT  
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RAPID EYE IMAGE SITE 3 SEGMENTATION   OBIA CLASSIFICATION RESULT  

 

 Figure 4.2 Zoomed in Screenshots showing OBIA results. 
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Figure 4.3 GEOBIA results spatial distribution of erosion for the whole Catchment. 
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4.1.3 Accuracy assessment Results. 

Classification accuracy assessment enables a degree of confidence to be attached to the 

classification results. In this study, this was achieved by comparison between classification 

results with presumably correct information (ground reference) through conventional accuracy 

assessment. Table 4.1 below summarizes the accuracy statistics of derived erosion map in 

comparison with ground truth data. The GEOBIA map has the overall classification accuracy of 

78.5%. The non-eroded class has the user's accuracy of 84.4%, the producer's accuracy of 76%. 

Erosion class has the user's and producer's of accuracy of 76.5% and 84.7% respectively. 

 Table 4.1 Summary of accuracy statistics. 

 Reference Source 

C
lassified

 O
B

IA
 M

ap
 

Accuracy Report Eroded 

Area 

Non Eroded 

Area/other. 

Total 

Eroded Area 39 12 51 

Non Eroded 

Area/other. 

7 38 45 

Total  46 50 96 
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4.2 Erosion Model Results.  

 

Figure 4.4 Spatial distribution of erosion-deposition (rates). 
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The resulting erosion-deposition USPED map shows a rich pattern of deposition and erosion 

typical for this catchment which has areas with complex topography and land cover. Variation in 

blue-green shades represents deposition whereas the orange-brown-yellow areas represent 

erosion and in figure 4.2. It has been observed that concentrated flow in river valleys and steep 

slopes for the highlands have the highest erosion rates, about one magnitude lower erosion is 

predicted in the agricultural fields. 

Analysis of the USPED model results shows that around 56.5 % of the catchment area is affected 

by erosion. Only 0.8% of the catchment is stable and not affected by either erosion or deposition 

process. Deposition occurs in the remaining 42.7%. The stable areas and low erosion and 

deposition zones cover only 5.7 % of the area. Based on the model, erosion sites and deposition 

sites are adjacent to each other, especially near or within the stream networks. It is expected that 

not all of the eroded soil will be carried out of the fields as a substantial portion can be deposited 

directly in the field concave areas and at the border of the fields where water is slowed down by 

vegetative and the other land covers.  

Based on the model results the total quantified erosion happening within the catchment is 

59728.225 tonnes which is more than deposition 49603.05 tonnes yearly. This means that 

approximately 10125.18 tonnes of soil is deposited into the lake Baringo. This explains why 

during the last decade both the depth and the area of Lake Baringo have decreased dramatically due 

to siltation. The erosion model output was further reclassified to various classes based on the 

USPED design estimates as shown in table 4.1 and figure 4.5. 

Major erosion hotspots were found to be areas surrounding around Radat, Kaptim, Kipcherera 

and Molo sirwe. The study further noted that the areas experiencing very low degradation were 

forested areas. These are areas occupied by the Tugen hills forest. 
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Table 4.2 USPED Classified Erosion Results. 

Erosion Deposition 

ton/(acre.year) 

Description         Area(km2) Percentage (%) 

-169 -  -50 Severe Erosion 300.8 10.8 

-50  -  -5 High Erosion 939.5 33.8 

-5    -  1 Moderate Erosion 254.7 9.3 

-1    -  -0.1 Low Erosion 72.5 2.6 

-0.1 -  0.1 Stable  23.0 0.8 

 0.1 -  1 Low Deposition 64.0 2.3 

 1    -    5 Moderate Deposition 203.2 7.4 

 5    -   50 High Deposition 632.3 22.7 

 50  -    200 Severe Deposition 287.0 10.3 

 TOTAL 2776.8 100 
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 Figure 4.5 USPED Classified Erosion Results. 

4.2.1 Rainfall Erosivity Factor. 

 

 Figure 4.6 Erosivity Factor Map 

The spatial distribution of the R factor for the area of study is shown in figure 4.6. The average 

annual R factor value varies from 110 to 412 MJmmha-1year-1.More rainfall erosivity was 

observed in the western part of the catchment with higher elevation (Tugen hills) as indicated 
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with the red colour. If rainfall was the only factor affecting erosion then the western part of the 

catchment would be affected most in terms of the soil erosion. 

4.2.2 Vegetation Cover management Factor. 

The C factor represents the effect of cropping and agricultural management practices as well as 

the effect of tree and grass covers on reducing soil loss. As the vegetation cover increases, the 

soil loss decreases. In general it was noted that the C factor has an inverse relationship with 

NDVI. The C factor value varies from 0.04 to 1.4 and its mean is 0.73. As seen in figure 4.7, the 

far western and east region of the watershed have the lowest values. This is attributed to the 

presence of forest. Bareland has the highest values of C factor as indicated by the vibrant green 

colour. 
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Figure 4.7 Cover Management Factor. 



  

47 

4.2.3 Soil Erodibility Factor. 

The average soil erodibility factor value in the study area varies from 0.004 to 0.022 t ha h 

MJ−1ha−1 mm−1 and the mean value is 0.0167 t ha h MJ−1ha−1 mm−1 as shown in figure 4.8. The 

standard deviation is 0.0015. It can be seen from the soil erodibility map that the K factor value 

is higher in the some patches spread all over the catchment. These regions have a high content of 

silt except for some particular places. 
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 Figure 4.8 Soil Erodibility Factor. 
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4.2.4 Support Practice Factor. 

Since data was lacking on permanent management factors and there were no management 

practices, P- factor values suggested by Wischmeier and Smith (1978); that consider only two 

types of land uses (agricultural and non-agricultural) and land slopes were used. Agricultural 

land was assigned values based on slope values as shown in table 3. Other land use classes were 

assigned a value of 1. 

 

Figure 4.9 Support Practice Factor 
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4.3 Discussion of the results. 

Overall and as observed by findings from field validation at Lake Baringo Catchment, massive 

land degradation through soil erosion in the catchment is experience in several locations as 

located by GEOBIA and USPED model. This is caused by a combination of poor agriculture 

practice in the basin which results in vegetation clearance and exposure of topsoil to erosion 

agents. A large part of the basin is occupied by small holder farmers practicing arable and mixed 

agriculture. Lack of awareness combined by poor agricultural extension services in the 

marginalized rural setups acts as the precursor to the hazard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Erosion Hotspot at Ratat Area  and Molo Sirwe at Lake Baringo Catchment. 
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The Erosion Deposition model result clearly shows that nearly 56.5 percent of the lake Baringo 

catchment area requires application of different soil conservation measures to promote 

sustainable management of land resources. Implementing of conservation measures could also be 

prioritized based on the different severity levels such that only selected areas that are severely 

affected are given more attention to help reduce soil loss. The lack of understanding among 

farmers of soil loss or their lack of participation in conservation measures may, however, limit 

the implementation of soil conservation technologies to a few priority areas only. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this project, the use of GEOBIA and USPED erosion model has proved useful and effective in 

assessing land degradation in Lake Baringo catchment. The model output which is a quantified 

erosion risk map shows the spatial variation in soil erosion severity in the catchment enabling the 

study to point out the major land degradation hotspots in the catchment which are mainly found 

around these areas: Radat, Kaptim, Kipcherera and Molo sirwe. Stakeholders in erosion 

management can have added benefit of knowing areas to prioritize for soil conservation. This 

information on the nature, extent, severity and geographic distribution of degraded land is of 

paramount importance for planning reclamation strategies and setting up preventive measures for 

sustainable natural resource management. From a conservation perspective, 10.8% of the 

watershed needs immediate watershed management intervention. 

 GEOBIA method can be beneficial for erosion detection and mapping, not only in Kenya, but 

in other regions around the world. The potential of using GEOBIA to map areas of severe 

erosion provides a means of obtaining valuable information on the extent, nature and magnitude 

of erosion in rural areas. This study has demonstrated that GEOBIA can be used for the spatial 

assessment of the driving forces present at different scales which is considered to be 

fundamental in future steps towards controlling erosion in Kenya. 

This improved assessment method that combines GEOBIA and USPED model can thus be 

applied in other parts of Kenya for assessment and delineation of erosion-prone areas for 

prioritization of areas for conservation. The method is an efficient use of limited resources with 

limited field work.  

This study therefore has fully achieved its objectives which were to review the application of 

object based image analysis for soil erosion assessment; to identify suitable data for soil erosion 

assessment; to map soil erosion by applying object-based image analysis and to model soil 

erosion rates. 
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5.2 Recommendations. 

 

Generally, this research study provided an approach for spatial assessment of soil erosion in 

Lake Baringo Catchment by using GEOBIA and USPED model. This is an improved technique 

to predict and map land degradation at catchment scale. However, when running the model an 

error occurrence in any of the input data or factor values will produce an equivalent error in the 

estimation of erosion and deposition. If each parameter is better estimated, the accuracy of the 

predicted erosion and deposition can be improved. For instance, R factor value can be improved 

by using rainfall intensity data and direct storm energy data which was not available during the 

study. The C factor and P factor can be improved by using a higher resolution satellite imagery. 

Verification with independent datasets is required to assess the accuracy of the produced model 

maps. This can be obtained from detailed soil surveys. 
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