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Abstract

0.1 Background

Survival trees and Random Survival Forests are extensions of classi�cation and regression
trees and random forests in analyzing time to event data. These methods are alternatives
to Cox Proportional hazards models when Proportional Hazard assumption is violated.
Survival tree methods are �exible and can handle high dimensional covariate data as they
are fully non-parametric. Random survival forests use the Brieman’s approach, �rst, by
employing a random selection of a bootstrap sample used for growing a tree then growing
tree learners by splitting the nodes on the randomly selected predictors. The performance
of the survival trees highly depended on the splitting method that is applied while growing
the tree.

0.2 Methods

In our analysis, we compare the performance of random survival forests in variable selecting
based on the following split rules; Log-rank splitting, Log-rank score splitting, and and
Conditioned Inference Forests. Our outcome variable is the under-�ve child mortality in
Kenya using 2014 DHS data. Covariates that were included in the models were chosen
based on the existing literature.

0.3 Results

Findings from this study show that Log-rank split rule outperforms Log-rank score split
rule. Both split rules analyze time to event data based on the bootstrap cross-validated
estimates for integrated Brier scores.

0.4 Conclusion

As much as it is evident that Log-rank is the best, there is need to investigate other split
rules and the nature of data that that best suit each split rule to be able to identify the best
slitting method.
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1 Introduction

1.1 Survival Analysis

Survival analysis is a collection of statistical techniques that were developed for analyzing
biological data, with a time to event outcome that is usually censored (Wang and Li, 2017;
Weathers and Cutler, 2017). There are three main types of censoring;left censoring, interval
censoring and right censoring, right censoring being the most common. A subject is right
censored if they die or drop out before the end of the study or completes the study before
experiencing the event of interest, the exact time at which the event occurs is not known.
An example, in a HIV study where a new antiviral drug is believed to be good at viral
suppression; if the subject’s viral load is not suppressed at their time of death or at the end
of the study then this subject is right censored. Interval censoring is the case where the
event happens within the period under investigation but the exact time at which the event
occur ed is not known. Left censoring is the least common, the exact time at which the
event occur ed is not known but the event happens before the period of investigation. The
survivor function, the probability that a subject survived beyond a certain time point, t, is
an important function in survival analysis, i.e S(t) = P(T > t) = 1−F(t), where F(t) is
the cumulative distribution function of the lifetime, T. The analysis of the survival function
can e either parametric or non-parametric based on the validity of model assumptions
(Weathers and Cutler, 2017).

1.1.1 Kaplan-Meier Estimator

This is a non-parametric estimator of the survival function that estimates the number of
events that have occurred for each unit of time and the time taken until the event occurs.
Kaplan-Meier estimate can also be used in prediction of some speci�c survival outcomes, an
example, the period taken to viral supression for a subject on a speci�c antiretroviral drug.
The survival curves, that are made up of the Kaplan-Meier estimates, are of a stepwise
form, such that the values of the survival probability estimate, y, only change for times at
which we actually observe the occurrence of an event, or the censoring of a survival time.
The value of the survival curve is held constant for the time between two observed events.
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Assuming the outcome of interest is death; let ti denote the time at death occurred for ith

individual where i⊂ 1, ...,n, n is the total number of subjects at risk. Let di denote the be
the number of individuals who died ti and ri be the number of subjects at risk at a time
before ti.
Then,

Ŝ(t) =

1 i f t j < t1

∏
n
j=1

[
1− d j

r j

]
if t ≤ t j ≤ tn

Alternatively written as:

Ŝ(t) = ∏
t j≤t

(
1−

d j

r j

)
The variance of the Kaplan-Meier estimator is given by:

V̂ [Ŝ(t)] = [Ŝ(t)]2σ
2
S (t) = [Ŝ(t)]2

i

∑
i=1

d j

r j
(
r j−d j

)
While computing Kaplan-Meier survival curves for several groups, an example treatment A
and treatment B, estimation of Ŝ(t) is done separately for each group then use the log-rank
test to compare the survival functions for the two groups (Weathers and Cutler, 2017).

1.1.2 Cox Proportional Hazards Model

This is a semi-parametric regression technique for analysing survival data by relating
several predictors, considered simultaneously, to survival time. Hazard rate, the risk of
getting the outcome event (i.e dying) after a subject has survived to a speci�c time, is the
measure of e�ect. The hazard represents the expected number of events per unit time. The
component related to the predictor variables is parametric while the estimate of the survival
function component is fully non-parametric thus making Cox model semi-parametric. The
Cox model allows both categorical and continuous predictors. Categorical predictors with
more than 2 levels have to be converted into a series of binary classes in order to perform
the regression.
Before �tting a Cox model the following assumptions must be satis�ed:

• Censoring must be statistically independent of the failure times



3

• The ratio of the hazards for any two groups should be constant over time, i.e, they are
proportional. Kaplan-Meier curves can be used for checking this assumption.

• Nonlinear covariate relationships, assumes that each variable makes a linear contribu-
tion to the model.

Right censoring, the commonly used, the time to to the occurrence of the event is not
obtained due to various reasons. The possible reasons being a subject getting to the end
of the study before experiencing the outcome of interest, a subject dying, or in clinical
trials, a subject can be withdrawn from the study due to severe or life-threatening adverse
events. If a subject censored due to being discontinued from the study due to adverse
events or protocol violations, this kind of a scenario does not meet the assumptions of the
Cox model.

According to (Weathers and Cutler, 2017), survival analysis examines the association
between predictors and the survival distribution is of particular interest. This be done
by specifying a model for the log hazard (Crumer, A, 2008). The hazard function for a
parametric model based on an exponential distribution can be represented,

loghi(t) = α +β1xi1 +β2xi2 + ....+βkxik

this can also be expressed as ,

hi(t) = exp(α +β1xi1 +β2xi2 + ....+βkxik),

where=


Observation are denoted by i

Predictors are denoted by x’s

α is a constant representing the log-baseline hazard for the model.

A vector parameter β is estimated by the partial likelihood,

L(β ) = Π
D
i=1

exp[βxi]

∑ j⊂R(ti) exp[βx j]

, D is the total number of observed event times.
The unspeci�ed baseline hazard function in Cox model α(t) = loghi(t), having set all
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predictors to 0, the log-hazard function becomes,

loghi(t) = α(t)+β1xi1 +β2xi2 + ....+βkxik,

resulting to a hazard function,

hi(t) = ho(t)exp(β1xi1 +β2xi2 + ....+βkxikk),

leasing to a survival function,

Scox
i (t) = exp(ho(t)exp(β1xi1 +β2xi2 + +βkxikk)).

It can be shown that Cox model is a proportional hazards model, taking any pair of
observations, i and j, in which the values of the predictors are di�erent. Taking the linear
covariates, for these two observations,

ni = β1xi1 +β2xi2 + ....+βkxikk and n j = β1x j1 +β2x j2 + ....+βkx jkk,

the ratio of the two hazard functions is shown by

hi(t)
h j(t)

=
h0(t)exp[ni]

h0(t)exp[n j]
=

exp[ni]

exp[n j]
= exp[ni−n j],

and is independent of time. Thus, the ratio of the hazard functions is strictly proportional
to the (exponential of) di�erences in values of the predictor variables.

1.2 Random Survival Forests

Cox proportional hazard is commonly applied in analyzing right censored data. This
assumes proportional hazards which is often violated (Ishwaran and Udaya, 2007; Ng’andu,
NH, 1997; Nasejje et al., 2017). Survival trees and Random Survival Forests borrow the
concepts of classi�cation and regression trees and random forests in analyzing survival
data. These methods are alternatives to Cox Proportional hazards models when Propor-
tional Hazard assumption is violated. Survival tree techniques are fully non-parametric
thus making them �exible to handle high dimensional covariate data (Nasejje et al., 2017)
Random survival forest is an ensemble tree method applied in analysis of right censored
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survival data. Using trees as base learners in construction of ensembles can signi�cantly
improve the learning performance. Introducing randomization at the base learning stage
can boast ensemble learning-Random forests (Breiman et al., 2017). Random survival
forests use the Brieman’s approach, �rst, by employing a random selection of a bootstrap
sample used for growing a tree then growing tree learners by splitting the nodes on the
randomly selected predictors. The performance of the survival trees highly depended on
the splitting method that is applied while growing the tree (Nasejje et al., 2017)
Performance of RSF compares closely to methods like bagging and boosting. Notable
features on RSF are (i) Easy to build as only three features are required- no. of selected
parameters, number of trees and splitting criteria. (ii) they are highly adaptive thus over-
coming restrictive assumptions in the semi-parametric models like proportional hazards
(Ishwaran and Udaya, 2007).
The random survival forest algorithm is given by:

1. Draw ntree bootstrap samples from the original data.

2. Grow a tree for each bootstrapped data set. At each node of the tree randomly select
mtry covariates for splitting on using a speci�ed split rule. The nodes should be split
in a way that increases between the node heterogeneity and increases within the node
homogeneity thus maximizing survival di�erences across daughter nodes.

3. Grow the tree to full size under the constraint that a terminal node should have no less
than node size unique deaths.

4. Calculate an ensemble cumulative hazard estimate by combining information from the
ntree trees. One estimate for each individual in the data is calculated

5. Compute an out-of-bag (OOB) error rate for the ensemble derived using the �rst b
trees, where b = 1, . . . ,ntree.

Diagrammatically, the above steps can be summarised as shown in the �gure 4 below:
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Figure 1. Illustration of the computation of Random Survival Forests using 1000 bootstrap
samples
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1.3 Statement of the problem

Random Survival Forests (RSF) is robust to many statistical assumptions. However the
splitting criteria often used is the logrank test statistic. This splitting rule assumes pro-
portional hazards in the survival data. Conditional Inference Forests (CIF) (Wei, Fu and
Simono�, S., 2017), has been used analyze determinants of time to even data, as a way of
trying to overcome this challenge. Based on one unique dataset, do we gain e�ciency by
using CIF over and above RSF?

1.4 Objectives

1.4.1 Overall objective

The broad objective of this study is to apply survival analysis using machine learning on
Demographic Health Survey to identify the risk factors to under-�ve child mortality in
Kenya. Random Survival Forests machine learning technique under several split rules will
be used.

1.4.2 Specific objects

1. Selection of predictors of under-�ve child mortality using log-rank, log-rank score split
rules in RSF.

2. Apply conditional inference method in selecting the predictors.

3. Identify the best split rule based on the error rates of the three models above.
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1.5 Justification of the study

The studies that have been done aimed at shrinking the rate of child mortality in Africa
with various suggestions for improvement. According to UNICEF, malnutrition, infectious
diseases such as tetanus, pneumonia, diarrhea, and meningitis resulted in many deaths in
2015. This situation can only be improved by employing public insights to take informed
action to o�er curative and preventive measures in Kenya that demands the utilization
of large under-5 mortality data sets from 2014 DHS and these data sets comprises many
variables as well as regression approaches. The nature of this information poses a statistical
challenge such as handling for multicollinearity and correlation for multiple testing, among
others. These bottlenecks have only been scarcely solved and thus limiting current statisti-
cal methods. This research, therefore, seeks to bridge the gap by employing multivariate
classi�cation method, mainly the random survival forest to identify the risk factors of
under-�ve mortality.
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2 Literature review

2.1 Child Mortality

According to (Khodaee et al., 2015), child mortality is a core indicator of both child health
and well-being. Despite the improvement of the survival of under-�ve children between
1990, 2015, the goal of the fourth-millennium development goals target of at least a two-
thirds decrease in the mortality rate of under 5 is yet to be achieved globally. Out of 5.9
million deaths of under-�ve children, 2.7 million took place in the neonatal period in 2015
were attributed to the preterm birth complications, pneumonia, and intrapartum-related
events. According to WHO, however, this rate has decreased by 58% with regards to the
estimation of 93 deaths per 1000 live births recorded in 1990 to about 39 deaths in 1000
lives births registered in 2017. In the pursuit towards the achievement of SDGs to end
preventable deaths among the children under �ve years and newborns, the international
community has developed a new framework that adopted by 117 member states and ex-
pected to achieve the target by 2030. According to (UNICEF, 2019), the elimination of
preventable child deaths required concrete details about the current distribution of major
causes of under-5 mortality that vary with time.

(UNICEF, 2019), estimation of the child mortality by cause between 2000-13 as well as the
cause-speci�c scenarios to 2030 and 2035 established that sub-Saharan Africa will exhibit
33% of the births and 60% of the deaths di�erent from 25% and 50% respectively in 2013.
This region has the highest percentage of neonatal deaths, with 1.1 million newborns dying
in the �rst month. In the entire African continent, the likelihood of a child under �ve years
dying is about seven times higher compared to the WHO European Region. In addition
to this, the existence of inequities in the under-�ve mortality between the low-income
and high-income communities remain large in Africa. A signi�cant di�erence exists in
the distribution of the under-5 deaths by cause across di�erent regions of Africa. West
and Central Africa recorded the highest rate of one in seven children dying before �ve
years in 2008. Despite the global progress towards the reduction of child mortality over the
past decade, child mortality remains high concerning the millennium development goals.
Kenya recorded 46.37 deaths in every 1000 live births in 2018, which represent a signi�cant
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reduction of under-5 mortality from 164.34 deaths in 1000 live births in 1969. (King, B. E.,
and Rice, J., 2018). Their investigation of trends in child mortality shows a downward trend
in the under-5 mortality rate, child mortality rate, and infant mortality rate between 1993
and 2008 in both urban and rural areas. This decline was more statistically signi�cant in the
rural areas, unlike in the metropolitan regions, posing a gap in the urban-rural di�erentials
narrowed over time (King, B. E., and Rice, J., 2018). Similar trends are portrayed in slum
areas between 2003 and 2010, revealing a decrease from 113 to 79, 33 to 24, and 83 to 57 for
U5MR, CMR, and IMR respectively. According to Hastie et al. (2005), under-�ve mortality
is majorly caused by neonatal sepsis. Pneumonia causes a more signi�cant number of
deaths among under-5 children globally, worse in developing countries where there is
limited access to e�ective and low-cost alternatives and other clinical services. Over 15%
of the newborn deaths in Africa are linked to the infections associated with the delivery
process in 2010. Globally, 11% of the under-5 children die from diarrhea, with 90 percent
of the deaths taking place in Sub-Saharan Africa.

Research by (Kanmiki et al., 2014) reveals that the under-5 mortality rate is dependent on
the educational level of mothers, marital status, age, and presence of co-wives. Mothers
with junior high school or primary education exhibit 43% lesser chances of encountering
under-5 deaths contrary to mothers lacking formal education. Malaria accounted for
over 500,000 deaths of under-5 children worldwide in 2011, where a more signi�cant frac-
tion is experienced in sub-Saharan Africa. In 2010, 6% of the deaths in Africa were linked
to HIV, especially in countries where prevalence is high such as Swaziland and South Africa.

Under-�ve mortality is considered a critical indicator of the state of a society’s public health,
and thus, an array of studies has been done aimed at creating an optimal intervention
for improving child survival by 2030. (Hastie et al., 2005), focused on generating high-
resolution estimates for the neonatal and under-5 all-cause mortality across 46 African
countries. The �ndings underscore a more vital bene�t of tracking geospatially granular
patterns in child survival. (Kanmiki et al., 2014), explored the relationship between demo-
graphic and socio-economic factors and the under-5 mortality in the impoverished areas
in the rural northern Ghana which revealed that causes of a high rate of under-�ve death
are complex and thus demands concerted e�orts to enable clarifying the implications to
boost child survival.
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2.2 Variable Selection

Variable section is fundamentally crucial to high dimensional modeling that includes
both regression and classi�cation. The most suitable variable selection technique can
improve the accuracy of estimation by precisely identifying the subset of relevant and
vital predictors as well as enhancing the interpretability of the model with parsimonious
representation (Liu et al., 2016). Di�erent variable selection techniques are tailored to
establish the minimal set of the strongest predictors linked to the under-5 mortality and
are hence useful in the identi�cation of potential diagnostic, prognostic or prognostic
biomarkers of the risk factors. The commonly used variable selection techniques include
SBRT, MS Prime, Stochastic gradient boosting, Random Forests, Linear regression, and
Support Vendor Machine (Shi et al., 2018).

Linear regression utilizes forward, backward elimination, stepwise, R-squared, or All-
possible subsets to identify the best subset from a set of many variables include within
the mode. (Hitziger, M., and Ließ, M., 2014) describe gradient boosting model, (2014), as a
technique in which boosting draws the bootstrap of predictor data samples, �ts the tree,
and eliminates the prediction from the original data. In (Yu, L., and Liu, H., 2003), SBRT
technique is a hybrid feature selection algorithm that relies on Boruta and SVM-RFE and
combines the bene�ts of both wrapper and �lter that has proved most e�ective in the
identi�cation of tsAPA sites in rice.

Variable selection is continuously evolving from regression and classi�cation of inde-
pendent data structures to multilevel techniques capable of handling dependent data
structures that enable better dissection of treatment e�ects (Yu, L., and Liu, H., 2003).
The focus on the linear model started in the 1960s when vital developments occurred,
and computing was costly. The traditional idea of best selection methods of a subset is
computationally expensive for most modern statistical applications that have prompted
incorporation of machine learning to cope with the high dimensionality. These techniques
have been utilized widely in simultaneously selecting required variables and estimating
their impacts in obtaining a high dimensional statistical inference. Today, statistical proce-
dures are anchored on three critical pillars, including model interoperability, statistical
accuracy, and computational complexity.
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The commonly used variation selection techniques, including linear regression, su�ers a
signi�cant drawback. Despite clear solutions to the issues of selection bias, more advanced
solutions are yet to be developed to deal with variable selection using multiple model
classes. Also, the problems increase with the demand for data mining of massive data
sets. Availability of numerous variable selection procedures and various justi�cations
poses the likelihood of getting misled. Random survival forest technique bridges this gap,
especially when handling high or ultra-high dimensional data due to its ability to deal with
a large number of predictor variables for time-to-event data. Compared with regression-
based techniques, random survival forests technique is entirely data-driven and therefore
independent of model assumptions. RSF employs a model which better explains the data
and thus it is the most suitable tool in the exploratory analysis of under-5 mortality where
information is limited (Hastie et al., 2005). Random forest, unlike regression techniques, is
free from limitations such as over�tting, in�ated standard errors, and unreliable estimation
of the regression coe�cients (King, B. E., and Rice, J., 2018). In the research aimed at
developing a hybrid method for waveband selection and classi�cation of the hyperspectral
data, (Liu et al., 2016), demonstrated a higher classi�cation accuracy when a union of
RFE and Boruta selected wavebands are used in the analysis. As per (Liu et al., 2016),
Random Forest has been successfully used in genetic, metabolomics, gene expression,
proteomics, and methylation and hence suitable in predicting quantitative traits associated
with under-�ve child mortality.
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3 Split rules

3.1 Split Rule Notations

Assume that we are node h in the process of growing a tree and we want to split node h
into two daughter nodes. Assume that node h is of size n. Let σ i be an indicator variable
and Ti be the time variable. σ [i] = 1 is death occurred at T[i] and 0 if and individual is
right censored.

The split of node h on a predictor is given in such a way that x > c or x <= c, obser-
vations that satisfy the �rst criterion are placed into one sub-node and those which don’t
are grouped into a second sub-node. This creates two sub-nodes at every criterion that is
evaluated until all the possible criteria are evaluated. This kind of splitting this works well
only if the covariates are time independent.

In the scenario where Xi j changes with time, Xi j(t) < C for t < t∗ but Xi j(t) > C for
t > t∗. In this case it is impossible to assign i to a node as there is no clear distinction. To
handle time-varying covariates, every observation is split several pseudo-subjects based
on the criterion x(t) <= C, in that every pseudo-subject represents a non-overlapping
time interval and either x(t)>C or x(t)<=C in the entire interval. For observation i, the
procedure splits the record at time t into two pseudo-subjects, one with X j(t)<C (since
< t∗) and one with X j(t)>=C (since t >= t∗). These two pseudo-subjects can then go to
separate sub-nodes.

Let t1 < t2 < < tN be the distinct death times in the parent node h, and let di, j and
Yi, j the number of deaths and individuals at risk at time ti in the daughter nodes j = 1,2.

Yi, j is the number of individuals in daughter j who are alive at time ti, or who have an
event (death) at time ti. Let Yi = Yi,1 +Yi,2 and di = di,1 +di,2. Letn j be the total number of
individuals in node j. This means that, n = n1 +n2 (Wei, Fu and Simono�, S., 2017; Nasejje
et al., 2017).
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3.1.1 Log rank split method

The method uses the log rank statistic, the best split is one with the largest value of log
rank statistic. The disadvantage of this method is that it favors predictors with a larger
number of split points. An example, a dataset with an outcome y variable and independent
variables x1 and x2 where n2 < n1, in this case x1 will have a higher chance of having a
split point with a larger e�ect on y. Introduction of bias at the point of split point variable
extends this bias to other parameters like the variable of importance (Wright et al., 2017).
According to (Nasejje et al., 2017; Ishwaran and Udaya, 2007; Bou-Hamad et al., 2011;
Ciampi at al., 1987; Segal MR,, 1988), the log-rank statistic for a predictor x at a split value
c is given by:

L(c,x) =
∑

N
i=1

(
di,1−Yi,1

di
Yi

)
√

∑
N
i=1

Yi,1
Yi

(
1− Yi,1

Yi

)(
Yi−di
Yi−1

)
di

The Log-rank Survival Tree Algorithm

This algorithm was proposed by (Nasejje et al., 2017):

1. Select
√

p− predictors randomly as candidates for splitting at every node and split
into two sub-nodes, α and β , p is the total number of covariates.

2. Calculate the logrank value impurity measure for the sister nodes and at node h.

3. Select the covariate with the highest statistically signi�cant value of the statistic
obtained from one of the sub-nodes obtained from the splits. The predictor with the
highest value of the statistic is partitioned into two daughter nodes.

4. Treat each sub-node as a root node and iterate steps 2 and 3.

5. A node is considered as the terminal node if it has no d0 > 0 unique observed events.
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3.1.2 Log-rank split score rule

This split utilizes the log-rank cores to improve on the log-rank split method. Suppose
the rank vector of survival times given by r = (r1,r2, ...,rN), and their indicator vari-
able (T,σ) = ((T1,σ1),(T2,σ2)...(TN ,σN)) and a = a(T,σ) = (a1(r),a2(r), ...,aN(r)) rep-
resents the score vector that depends on ranks in vector r. Suppose the ranks order the
predictors in that x1 < x2 < ... < xN .

At time Tl an observation is scored by:

al = al(T,σ) = σl−
Yl(T )

∑
k=1

σk

N−Yk(T )+1
, (1)

where

Yk(T ) =
N

∑
l=1

x[Tl ≤ Tk]

accounts for the number of subject who experienced the outcome of interest or censored
before or at time Tk

i(x,s∗) =
∑x j≤s∗(a j−R1ā)√
R1

(
1− R1

N

)
S2

a

ā is the mean and S2
a the variance of the scores {a j : j = 1,2...n}.The best partition optimizes

i(x,s∗) on all x′js and possible partitions s∗. The tree algorithm for implementing this split
is same as the one used in the log-rank test above.

3.1.3 Split based on Conditional Inference Forests approach

As opposed to the log-rank score and log-rank methods, conditioned inference forests
(CIF) separates the process of picking the best predictor to split on from that of picking
the optimum split point (Nasejje et al., 2017). In the �rst step, the best-split variable is
established by doing tests of association of all the predictors with the survival outcome
variable by us of linear rank test based on log-rank scores. Based on the permutation tests,
the predictor with the highest association with the outcome variable, the one with the
smallest p-value, is picked for splitting (Nasejje et al., 2017; Hothorn T, Hornik K, and
Zeileis A, 2006). The second step grows a binary tree is grown.



16

The entire forest is then grown because single trees are considered not stable (Nasejje
et al., 2017; Wright et al., 2017; Hothorn T, Hornik K, and Zeileis A, 2006). According to
(Nasejje et al., 2017; Hothorn T, Hornik K, and Zeileis A, 2006) the algorithm for growing
conditioned inference forests is given by:

1. For case weights w, test for independence between any of the p predictors and the
outcome variable, K. Stop if the null hypothesis cannot be rejected otherwise select the
j∗th predictors X j∗ with highest association to K.

2. Select a set B∗ ⊂ X∗j inorder to partition X∗j into two distinct sets i.e. B∗ and X∗j B∗. The
weights wα and wβ determine the two subgroups with αw,i = wiI

(
X j∗,i∗ ⊂ B∗

)
and

wβw,i = wiI
(
X j∗i∗ 6= B∗

)
for all i = 1,2, ...,n.

3. Repeat the above steps with modi�ed weights wα and wβ , respectively.

3.1.4 Maximally selected rank split rule

Maximally selected statistic rank statistic (MSR-RF) is implemented in the conditional
inference forests environment (Wright et al., 2017). In the CIF, the optimal variable for
splitting is established by a linear rank statistic, whereas the best split point is based on
a binary split, MSR-RF overcomes this challenge. The optimal split variable is identi�ed
through a dichotomous-based split statistical test, factoring in adjustments for multiple
testing for several possible split points. This reduces the bias in the selection of the optimal
variable selected for splitting. There is no requirement for multiple testing for binary split
variables like gender (Wang and Li, 2017).

3.1.5 R-Squared split rules

According to (Strasser H, and Weber C, 1999), R2 statistic can be used as prediction measure
in a nonlinear models for right-censored time-to-event data. R2 split method has three
advantages:

1. When there is no censoring, the statistic converges to the classical coe�cient of
determination.

2. When predicting the conditional mean response for correctly speci�ed models, R2 is
an accurate in approximating the non-parametric coe�cient of determination.



17

3. R2 can be applied to a variety of right-censored survival data even if the model is not
correctly speci�ed.
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4 Methodology

In this section, were are going to explore our data and the methods that we used in the
evaluating the models.

4.1 Random Survival Forests

The Random Survival algorithm is as discussed in section 1.2 of chapter 1. Log rank and
Log rank score split rules were used in the RSF models as detailed in sections 3.1.1 and
3.1.2 respectively in chapter 3.

4.2 Data

Demographic Health Surveys are done in di�erent countries in the world. The DHS
program if funded by USAID and PEPFAR among other donors. In our analysis we used
data a speci�c sample for Kenya, 2014 DHS. DHS data has information on the household
wealth index, family planning, malaria, child nutrition among others, immunizations.
Our study focuses on a subset of Kenya DHS data on the child section. The dataset
contains information on women of reproductive age, 15-49years. Our study picked the
child information section that contains children between 1-59 months with a total of
1099 variables and 20943 records. In our analyses we only picked 63 variables that are as
predictors of child mortality based on (Khaoya,M.,, 2018; Nuwasiima,A.,, 2018).

4.3 Missing data imputation

The R software packages randomForestSRC and party have inbuilt algorithms for imputing
missing data. The imputation is usually done at the parent node when splitting the selected
variables (Ishwaran et al.,, 2008). For p candidate variables at node m, the following steps
are used to impute that:
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1. Before splitting, impute the missing values at every node m. Let X0
r,m denote observed

data values for the rth coordinate in the training data of X-covariates at node m. Denote
f
(
X0

r,m
)

as the posterior distribution of X0
r,m .

2. Draw from f
(
X0

r,m
)

at node m to impute missing data for every case in the training
data for the rth coordinate.

3. Using the imputed data split nodem using the speci�ed split criteria in the model.

4. Reset the imputed values to missing in the daughter node after splitting the parent
node m.

5. Iterate steps 1 to 4 until the tree reaches the saturation point.

6. Impute OOB using the same rule.

4.4 Variable Importance

Best predictors were selected based on variable importance measure. To compute VarImp
for x, OOB cases are dropped in their training survival tree. Daughter nodes are assigned
in a randomly whenever x split. Both ensemble CHF and resulting predicting error are
computed. The di�erence between the new and original prediction errors yields VarImp.
Larger values of VarImp shows the covariates are highly predictive.

4.5 Model evaluation

4.5.1 Ensemble estimation

The ensemble cumulative hazard function (CHF) has to be computed to enable the compar-
ison of the e�ectiveness and precision of the di�erent split rules that were used in building
the models. This starts by computing the CHF at each and every node h in every survival
tree. According to (Ishwaran and Udaya, 2007; Hong Wang,Xiaolin Chen, and Gang LI,
2018): Suppose (t1,h) represent de�nite death times in h. Assume dl,h is the number of
deaths and Yl,h individuals exposed to the risk factor at time tl,h. At node h the CHF is
given by

Ĥh(t) = ∑
t1,h≤t

dl,h
Yl,h
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Every tree has a series of Ĥh(t) estimates, the number of these estimates equals to the
number of nodes in a tree. For a subject i with predictor xi,Ĥh(t) is computed by dropping
xi down the tree. This applies to both out and in of bag data. The desired estimator for i is
achieved by the terminal node. This is given by:

Ĥh(t\xi) = Ĥh(t), if xi ⊂ h (1)

This estimate is just for one tree 1, the ensemble, CHF, is calculated by getting the average
for all the trees. Let, Ĥb(t\x) represent the estimate of the cumulative hazard 2.1 for tree b
= 1....ntrees (Ishwaran and Udaya, 2007).Let an indicator variable Ii,b=0 when i does not
belong to an out of bag for b and Ii,b=1 when i belongs to an out of bag point for b. The
estimator of OOB ensemble cumulative hazard (Ishwaran and Udaya, 2007) for i is given
by:

Ĥ∗e (t\xi) =
∑
ntrees
b=1 Ii,bĤ(t\xi)

∑
ntrees
b=1 Ii,b

This estimate is only for the bootstrap samples whee i is an out of bag value. The total
CHF uses all data points from all the samples and thus given by

Ĥe(t\xi) =
∑
ntrees
b=1 Ĥb(t\xi)

∑
ntrees
b=1 Ii,b

4.5.2 Concordance error rate

According to (Ishwaran and Udaya, 2007), Ĥe(t\xi) is the estimator for the ensembles OOB
cumulative hazard estimator. To calculate the error rate, Harrell’s Concordance index was
used (Ishwaran and Udaya, 2007; Harrell, C., Pryor, L., and Rosati, 1982). To compute the
Concordance index it is required that we de�ne what makes up a worse predicted outcome.
Let t∗1 , ...., t

∗
N represent all distinct survival times in the data.A subject i is considered to

has a worse outcome than j if

Ĥ∗e (t
∗
k \xi)> Ĥ∗e (t

∗
k \x j)
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Computation of concordance error rate is done by:

1. Check the data set and establish all possible pairs

2. Select the pairs with uncensored shorter survival time. If Ti = Tj, ignore the pairs i and
j with exception of the case where one is an event(death). Let Permissible represent
the number of permissible pairs.

3. In the event of a worse predicted outcome in the shorter event time, count 1 for
every permissible pair. If there is a tie in the predicted outcome then count 0.5. Let
Concordance be the total of all permissible pairs.

4. The concordance index C is de�ned as, C = Concordance
Permissible

5. Compute the error rate, Error=1-C. The error interval is between 0 and 1 with an error
of 0 showing perfect accuracy while an error of 0.5 is just same as tossing the coin.
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5 Results

5.0.1 Exploratory analysis using Kaplan-Meir plots

In order to explore the risk of death for the under-�ve children, we used Kaplan-Meir
survival curves to explore the time to death for the children under two predictors, sex of
the child and the region where the children live. Time to death was recorded in years but
we converted it into months in our analysis.

Figure 2. Survival probabilities of the child by gender
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Survival probabilities of female children is higher than that of male children across all the
ages as shown in �gure 4 above. This could be attributed to physiological and genetic
disparities between girls and boys.
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Figure 3. Survival probabilities of the child by region
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As shown in �gure 3, children in the coastal region of Kenya have the lowest survival
probabilities. The children in the sample died before the age of 10 years. This could be as a
result of high malaria prevalence in this region.
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5.1 Summary results from log-rank and log-rank score models

Table 1. Summary characteristics of the fi�ed split rules

Log-rank Log-rank score

Sample size 20964 20964

Number of deaths 871 871

Was data imputed yes yes

Number of trees 1000 1000

Forest terminal node size 15 15

Average no. of terminal nodes 321.605 809.989

No. of variables tried at each split 8 8

Total no. of variables 63 63

Resampling used to grow trees swor swor

Resample size used to grow trees 13249 13249

Analysis RSF RSF

Family surv surv

Number of random split points 10 10

Error rate 5.35% 14.72%

Table1 shows the summary results from the three models. Log-rank and log-rank score
split rules applied permutation importance to estimate the importance of risk factors in
determining the under-�ve child mortality in Kenya. As discussed in Section 3.3, based
on the error rate Log-rank model outperformed the Log-rank score model.
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Figure 4. Prediction error rate and variable importance rankings for determinants of under-five
child mortality in the log-rank model
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Figure 4 above shows the prediction errors and variable importance rankings from the log-
rank score model. The error rate signi�cantly drop after after the �rst 150 trees. Daughters
who have died, number of children living and Births in the last �ve years are identi�ed as
the most in�uential predictors of under-�ve mortality in Kenya.
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Figure 5. Prediction error rate and variable importance rankings for determinants of under-five
child mortality in the log-rank score model
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As shown in Figure 5 above, log-rank score split rule has a higher error rate than log-
rank. The results from the variable importance with the log-rank model on Duration of
breastfeeding as one of high risk factors of child survival in Kenya.
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Table 2. Variable importance scores for under-five risk factors in the log-rank model

Risk factor VarImp score

v207-Daughters who have died 0.1084

v218-Number of children living 0.0559

v208-Births in the last �ve years 0.0336

m4-Duration of breastfeeding 0.0223

m5-Months of breastfeeding 0.0222

b4-Sex of the child 0.0219

bord-Birth order number 0.0168

v201-Total children ever born 0.0093

v404-Currently breastfeeding 0.0079

b12-Succeeding birth intervals 0.0066

b0-Child is twin 0.0043

b10-Completeness of information 0.0027

v024-Region 0.0012

v128-House wall material 0.0006

v106-Highest level of education 0.0006

v501-Current marital status 0.0004

m18-Size of the child at birth 0.0004
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Table 3. Variable importance scores for under-five risk factors in the log-rank score model

Risk factor VarImp score

m4-Duration of breastfeeding 0.0326

v218-Number of children living 0.0285

m5-Months of breastfeeding 0.0167

b12-Succeeding birth intervals 0.0128

v208-Births in the last �ve years 0.0074

b0-Child is twin 0.0046

v201-Total children ever born 0.0042

bord-Birth order number 0.0040

v024-Region 0.0039

b11-Preceding birth interval in months 0.0037

v136-Number of household members 0.0031

v131-Ethinicity 0.0029

v128-House wall material 0.0027

v207 -Daughters who have died 0.0027

v106-Highest level of education 0.0027

v012-Current age of the mother 0.0025

v190-Wealth index 0.0020

Tables 2 and 3 above shows the �rst 17 top ranked under-�ve mortality risk factors.
According to (Ishwaran et al.,, 2008) predictors with VarImp < 0.002 are important in
predicting the outcome event. Log-rank model has 7 while log-rank score model has 3
highly predictive risk factors.
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6 Discussion and Conclusion

6.1 Discussion

High rates of child mortality is a major public health challenge in developing countries
especially in the Sub-Saharan region. Our research focuses on identifying the possible risk
factors of deaths of children under the age of 5 years using log rank and log rank score
split methods in Random Survival forests.

Random Survival Forests employs the concepts of classi�cation and regression trees and
random forests in analyzing survival data. The performance of the survival trees highly rely
on the split rule used in growing survival trees (Nasejje et al., 2017). Daughters who have
died, number of children living, births in the last �ve years, duration of breastfeeding, sex of
the child and child birth order number were picked as the highly predictive factors of under-
�ve child mortality in the log rank model while the log rank score model picked duration
of breastfeeding, number of children living, months of breastfeeding and succeeding birth
intervals.

The two models agree on duration of breastfeeding,number of children living and months
of breastfeeding as the important predictors of under-�ve child mortality. This is consistent
with the results from (Khaoya,M.,, 2018; Nasejje et al., 2017).

6.2 Conclusion

Findings from this study show that Log-rank split rule outperforms Log-rank score split
rule. Both split rules analyze time to event data based on the bootstrap cross-validated
estimates for integrated Brier scores.

6.3 Study Limitations

RSF algorithm does not run on missing data. It imputes data for all missing �elds even in
the cases where a skip pattern was used in collecting data.
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6.4 Future Research

There is need to investigate other split rules and the nature of data that that best suit each
split rule to be able to identify the best slitting method.
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