Mierofilmed by Univ. of Wis:
Department of Photography

74-9,165

ANDERSON, Eugene Lawrence, 1939-
AN EXPERTMENTAL EVALUATION OF PROGRAMMED AGRTCULTURE INSTRUCTION IN A PRIVATE TANZANIAN SECONDARY SCHOOL

The University of Wisconsin, Ph.D., 1973 Education, theory and practice

University•Microfilms, Inc., Ann Arbor, Michigan
(This title card prepared by The University of Wisconsin)
PLEASE NOTE:
The negative microfilm copy of this' dissertation was prepared and inspected by the school granting the degree. We are using this film without further inspection or change, , If there are any questions about the film content, please write directly to the school.

UNIVERSITY MICROFILMS

AN EXPERIMENTAL EVALUATION OF PROGRAMMED AGRICULTURE INSTRUCTION IN A PRIVATE TANZANIAN SECONDARY SCHOOL

A thesis submitted to the Graduate School of the University of Wisconsin in partial fulfillment of the requirements for the degree of Doctor of Philosophy

BY

EUGENE LAWRENCE ANDERSON

December
Degree to be awarded: Ixproxag 1973 June 19__ August 19

人)
Date of Examination

Prevent In Buck
Dean, Graduate School

AN EXPERIMENTAL EVALUATION OF PROGRAMMED AGRICULTURE INSTRUCTION IN A PRIVATE TANZANIAN SECONDARY SCHOOL

By

Eugene Lawrence Anderson

A thesis submitted in partial fulfillment of the requirements for the degree of

> DOCTOR OF PHILOSOPHY
> (Curriculum and Instruction)
> at the

UNIVERSITY OF WISCONSIN

acknowledgements

The completion of this dissertation was possible only with the assistance of many people. I have sincerely appreciated the help received from:

Professors Walter T. Bjoraker, John F. Thompson and Harold R. Matteson whose extra efforts, advice, and suggestions were invaluable during the entire period of my graduate study and especially during the writing of this dissertation.

The students of Tumaini Secondary School for their participation in the experiment conducted as part of this study.

International Agriculture Programs at the University of Wisconsin for the Research Assistantship which provided financial support during a portion of my graduate study.

The Division of World Mission and Ecumenism of the Lutheran Church in America for its financial support and for making it possible for me to pursue an advanced degree.

Lora and Zachary for their understanding and patience.
TABLE OF CONTENTS PAGE
ACKNOWZLEDGEMENTS 1
LIST OF TABLES 6
CHAPTER I. EDUCATION IN TANZANIA AND THE RESEARCH PROBLEM 17
Secondary School Reorganization 21
Educational Problems 23
The Research Problem 25
Objectives of the Study 31
CHAPTER II. PROGRAMMED INSTRUCTION, THE ALTERNATIVE 32
Teaching Methods 32
Programmed Instruction--The Independent Variable 34
Student Performance--The Dependent Variable 39
The Hypotheses 40
CHAPTER III. AN EXPERIMENT AT TUMAINI 41
Tumaini Secondary School 41
The Students 43
The Instructional Units 58
Design of the Experiment 60
Internal Validity 62
External Validity 63
Statistical Analysis and Decision Making 67
Null Hypothesis A $: 67$
The Statistical Test 69
Sign Test 74
Significance Level 78

Power , . : 80
Procedures of the Experiment 85
Limitations of the Study . 93
CHAPTER IV. THE RESULTS: ANALYSIS OF DATA AND HYPOTHESIS TESTING96
Hypothesis 1--Effectiveness of Programmed Instruction 98
Hypothesis 1--Posttests 98
Hypothesis 1-Retention Tests 100
Hypothesis 2--Student Characteristics 107
Sex "101
Sex--Posttests 101
Sex--Retention.Tests 103
Success in School 104
Agriculture Class Rank--Posttests 105
Agriculture Class Rank--Retention Tests 105
Form Rank--Posttests 107
Form Rank--Retention Jests 110
English Ability 111
English Ability--Posttests 112
English Ability--Retention Tests 112
Teaching Method Preference 115
Method Preference--Posttests 115
Method Preference--Retention Tests 118
Other Observations 120
PAGE
CHAPTER V. PROGRAMMED INSTRUCTION: EFFECTIVE OR NOT? 121
Summary of the Study 122
The Problem 122
The Experiment 123
The Findings 125
Conclusions 131
Recommendations 134
Implications 135
BIBLIOGRAPHY

APPENDICES

A. Beginning of term agriculture class questionnnaire
B. Programmed learning units in agriculture
C. Posttest and retention test dates
D. Comparison of means for all statistical tes.ts
E. End of term agričulture class questionnaire

LIST OF TABLES

TABLE
PAGE

1. The sex distribution of students in Forms I
$\because \quad$ and II at Tumaini Secondary School first term 1973.
2. The home regions of the Form I and II students at Tumaini Secondary School first term 1973
3. The home location of Form I and II students at Tumaini Secondary School first term 1973
4. The occupational distribution of the fathers of Form I and II students at Tumaini Secondary School first term 1973
5. The occupation distribution of the mothers of Form I and II students at Tumaini Secondary School first term 1973
6. The highest educational level attained by the fathers of Form I and II students at Tumaini Secondary School first term 1973
7. The highest educational level attained by the mothers of Form I and II students at Tumaini Secondary School first term 1973.
8. The religious affiliation. of students in Form I and II at Tumaini Secondary School first term 1973
9. Distribution of Form I and II students at Tumaini Secondary School according to whether or not they were attending secondary school for personal or nationalistic reasons first term 1973
10. Field of work desired after completion of education by Form I and II students at Tumaini Secondary School first term 1973
11. The probability distribution generated from the binomial formula when the number of trials is twenty-two and the probability is fifty percent

81
12. The probability distribution generated from the binomial formula when the number of trials is twenty-two and the probability is seventyfive percent
13. The agriculture instructional units taught at Tumaini Secondary School during the first term 1973; those randomized together and the order of presentation
14. The randomly assigned treatments of the Form I and II agriculture classes at Tumaini Secondary School during first term 1973
15. Plusses observed from the comparison of the experimental and control group means of al1 students
16. Plusses observed from the comparison of the experimental and control group means when the students were divided according to sex
17. Plusses observed from the comparison of experimental and control group means when . the students were divided according to rank in agriculture class 106
18. Plusses observed from the comparison of experimental and control group means when the students were divided according to rank in form
19. Plusses observed from the comparison of experimental and control group means when the students were divided according to rank in English.class
20. The teaching method preference distribution of Form I and II students at Tumaini Secondary School at the end of first term 1973

TABLE
21. Plusses observed from the comparison of experimental and control group means when* the students were divided according to teaching method preference
22. Results of statistical comparisons between the test means of students taught by programmed instruction versus those taught by lecturediscussion for Form I and II agriculture classes at Tumaini Secondary School first term 1973.
23. The dates of posttests and retention tests and the time interval between them for the agricultural units taught at Tumaini Secondary School during first term 1973 508
24. The experimental and control posttest means and difference sign for each unit of agriculture instruction at Tumaini Secondary School first term 1973510
25. The experimental and control retention test means and difference sign for each unit of agriculture instruction at Tumaini Secondary School first term 1973
26. The experimental and control posttest means and sign for each unit of agriculture instruction for the boys at Tumaini Secondary School first term 1973
27. The experimental and control posttest means and sign for each unit of agriculture instruction for the girls at Tumaini Secondary School first term 1973

513
28. The experimental and control retention test means and sign for each unit of agriculture instruction for the boys at Tumaini Secondary School first 'term 1973
29. The experimental and control retention test means and sign for each unit of agriculture instruction for the girls at Tumaini Secondary School first term 1973
30. The expelfimental and control posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School - students ranking in the upper half of their agriculture class at the end of first term 1973

TABLE
31. The experimental and control'posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the lower half of their agriculture class at the end of first term 1973
32. The experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the upper half of their agriculture class at the end of first term 1973
33. ${ }^{\text {The }}$ experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the lower half of their agriculture class at the end of first term 1973
34. The experimental and control posttest mean's and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the upper half of their form at the end of first term 1973
35. The experimental and contról posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the lower half of their form at the end of first term 1973
36. The experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the upper half of their form at the end of first term 1973
37. The experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the lower half of their form at the end of first term 1973.
38. The experimental and control posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the upper half of their English class at the end of first term 1973525
39. The experimental and control 'posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the lower half of their English class at the end of first term 1973
40. The experimental and control retention test means and difference sign, for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the upper half of their English class at the end of first term 1973527
41. The experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students ranking in the lower half of their English class at the end of first term 1973528
42. The experimental and control posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students who indicated a preference for the programmed instruction method at the end of first term 1973
43. The experimental and control posttest means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students who indicated a preference for the lecture-discussion method at the end of first term 1973

44: The experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students who indicated a preference for the programmed instruction method at the end of - first term 1973
45. The experimental and control retention test means and difference sign for each unit of agriculture instruction for the Tumaini Secondary School students who indicated a preference for the lecture-discussion method at the end of first term 1973

AN EXPERIMENTAL EVALUATION OF PROGRAMMED AGRICULTURE INSTRUCTION IN A PRIVATE TANZANIAN SECONDARY, SCHOOL

Eugene Lawrence Anderson

Under the supervision of Professor Walter T. Bjoraker

The purpose of this study was to determine the effectiveness of programmed instruction for teaching agriculture in a Tanzanian secondary school. The rapid expansion of agriculture in the secondary school curriculum in Tanzania has created problems due to the lack of teachers, the use of underqualified teachers, and lack of teaching materials. Programmed instruction was identified as an alternative which could help alleviate some of these problems.
. An experimentwas conducted using a two-sample post-test-only control group design. The performance of students who used programmed instruction was compared with the performance of students taught by the lecture-discussion method traditionally used in Tanzania. All the students in Form I and Form II at Tumaini Secondary School during first term 1973 participated in the experiment. Twentytwo programmed units of agriculture instruction were developed. Each of the units became an experimental trial. The mean scores of the unit tests for the experimental and control groups were compared using the sign test, a
nonparametric statistical procedure. Posttests were given following each unit and retention tests were given four to six weeks later.

Two hypotheses were tested. One concerned the students' performance under programmed instruction. The other concerned the relationship of selected student characteristics and performance under the experimental methods. The following statistically significant results were observed in Form I and II agriculture classes at Tumaini Secondary School:

1. Programmed instruction was the more effective method of instruction for form I students at posttest time.
2. Programmed instruction was the more effective method of instruction at posttest time for Form I students who academically ranked in the lower half of their English class.
3. Programmed instruction was the more effective method of instruction at posttest time for Form I and Form II students who academically ranked in the jower half of their agriculture class and also for those who academically ranked in the lower half of their form.

4. Programmed instruction was the more effective method of instruction at pos'ttest time for Form I and Form II students who preferred the programmed instruction method over the lecturediscussion method.

Other observations included:

1. The statistically significant results favoring the programmed instruction method observed on posttest results tended to fade out by the time the retention tests were made.
2. None of the results of the experiment would have been statistically significant in favor of the lecture-discussion method if it had been compared with programmed instruction.

It was concluded that in agriculture classes at Tumaini Secondary School programmed instruction was at least as good as the lecture-discussion method and in certain instances it was a superiormethod. The effectiveness of programmed instruction observed in this.study indicates that it should next be attempted at other Tanzanian secondary schools.
\qquad
Date \qquad

CHAPTER I

EDUCATION IN TANZANIA AND THE RESEARCH PROBLEM

Education is an important tool of national development in Tanzania. 1 One of the purposes of education is to produce skilled manpower to develop the nation. In postprimary education the number of students and the kind and amount of education depend on the manpower requirements needed to fulfill the goals of the national development plan (Government of Tanzania, 1969, p. 148):?

Until recently, the only basic change since independence in Tanzania's secondary school system had been an increase in size. The number of schools and number of students had grown to meet the manpower demands of the development plans, but the form and basic purpose had not changed since before independence in 1961. The purpose of secondary school during the colonial period was to train the people needed in the lower and middle levels of government service and prepare students for the few places allotted to Tanzanians in higher education. Traditional European subjects were taught and the students wrote an overseas version of the Cambrịge school leaving examination.

[^0]Changes in national philosophy began to penetrate the educational system following the Arusha Declaration (Tanganyika African National Union, 1967). This document identified the path that the country would follow in order to achieve social and economic development. It changed the emphasis of development efforts from industry to agriculture, and it proclaimed socialism as the appropriate means of achieving development.

The role of education in the development of the country was defined, for the first time, by President Nyerere (1967, p. 8) shortly after the Arusha Declaration. The goals of producing the required manpower and achieving selfsufficiency in all jobs would continue. However, the means of achieving these goals and the philosophy of education needed to be changed to be in accord with the new emphasis on agricultural development in a socialist context. The educational system inherited from the colonialists did not provide the proper socialist atmosphere for the country's schoolswnor did it provide the proper education for the students who would eventually be working with farmers and villagers in rural areas to develop the nation.

Some changes toward providing an agricultural emphasis in the secondary schools took place quickly with the development of school farms and agricultural projects. These were
changes which the secondary school staff, members could make at their own schools. However, the secondary school curriculum was not affected. All secondary school leavers in Tanzania write a national examination. Their performance on this examination determines their future; whether they go on to higher education, obtain employment, or become one of the educated unemployed. The examination forced adherence to a national curriculum. An individual school cannot make a curriculum change without jeopardizing the future of its students. So the schools could not make curriculum changes to incorporate the political, social, and economic changes being made in the country. They had to wait for changes to be made first at higher levels.

I. SECONDARY SCHOOL REORGANIZATION

θ
The political and social philosophies chosen in 1967 finally penetrated the secondary school. curriculum in 1972 with a plan for the reorganization of the secondary education system (Ministry of National Education, 1971 , pp. 11-13). The reorganization eliminates the arts and sciences divisions in secondary schools and establishes five new kinds of secondary schools which are intended to provide the education needed for the development of the country. The five new biases are agriculture, commercial, home economics, technical, and craft. The reorganization is to be completed by 1975 at which time each secondary school will have assumed one or more of the new biases.

The purpose of the reorganization is to produce secondary school leavers who have had a specialized education in one of the areas important for national development. Practical work and training is to constitute a large part of the education. The purpose of secondary education continues to be the meeting of the manpower requirements of the country. The secondary school leavers in agriculture, for example, will go on to higher education in agriculture or assume technical positions in agriculture development work.

The plan for the reorganization of secondary schools called for the establishment of the agricultural bias at twenty-three of the seventy-seven government secondary schools which areto be in operation by 1975. In addition, some of the thirty-two private secondary schools currently in operation will probably also select an agricultural bias: Before the reorganization began in 1971, only one secondary school in the entire country taught a full agriculture course.

The development of agricultural secondary schools under the reorganization plan faced many problems. There were but few agriculture teachers in the country when the plan was announced, and this has affected the rate of implementation of the plan. For example, in 1973
fifteen schools were scheduled to have begun the new agricultural curriculum, but only four were actually teaching agriculture during the first term. Agriculture extension pếronnel are being trained as tèachers to alleviate this problem.

Each year the Ministry of Nat'ional Education specifies the number of student openings in each of the divisions of the University of Tanzania based on projected manpower requirements. In 1968 and 1969 the places for students in the science divisions were not filled because even though more than sufficient numbers of students completed secondary school in science areas, there were not enough who qualified academically for admission to the university (Government of Tanzania, 1969, p. 151). This may help illustrate another problem which exists in secondary education in Tanzania, teacher quality. The agriculture curriculum is new so it is impossible to judge the quality of agriculture instruction, but it is possible that poorly
qualified teachers will be used in the beginning, at least, to implement the reorganization plan.

Another problem is a shortage of teacher and student materials. Tanzanian secondary level agricultural text and reference books are non-existent. Very few are produced elsewhere in East Africa. Secondary school instruction is mainly in English so materials from other Englishspeaking countries could be used, but in most cases they are not appropriate. 'The basic principles of agricultural production are the same, but the application of these prinociples and the examples used are generally foreign to Tanzanian agriculture. The lack of materials results in the agriculture teacher lecturing to the students using information selected from available sources and from his own experience. The lecture is presented to the students, who dutifilly copy the information into their notebooks for reviewing before taking their secondary school leaving examination.
III. THE RESEARCH PROBLEM

The problem which existed in the development of the agriculture bias in Tanzanian secondary schools led to the research study which is the basis for this dissertation. The shortage of teachers, probable low quality of instruction, and lack of suitable teaching materials prompted a search for alternatives. One of the alternatives which showed promise was programmed instruction.

Programmed instruction has been developed and used in a wide range of situations in many subject matters at many levets of education in developed countries. Many studies and experiments to determine its effectiveness have accompanied its development. Studies in the United States and England have shown that programmed instruction can teach effectively; that students who use it do learn (Stulurow, 1969, p. 223; Lindvall and Bolvin, 1967, p. 1020). Studies comparing programmed instruction with other teaching methods indicate that programmed instruction produces results no worse than other teaching methods (Silverman, 1960, p. 33; Stolurow, 1962, p. 434; Lang, 1972, p. 59; Kay and others, 1968, p. 121).

Since programmed learning is an effective teaching method in the United States and England it should be useful in other countries such as Tanzania. Hartley (1964,
p. 24), however, warns that the effectiveness of programmed instruction in an emerging nation can only be guessed at and that research on it in a developed country may not be valid in a developing country. One of the possible problems, he points out, is that the main method of learning for students in emerging nationshas been rote-memorization. This may affect how well the students respond to the programmed instruction method. In the more developed countries, słudents have shown only a minimum af unfavorable reaction to programmed instruction (Lysaught and Williams, 1963, p. 155). Bunyard (1971, p. 264) found a similar favorable reaction to it in a study in a Nigerian school. But no research on the use of programmed instruction in Tanzanian secondary schools has been reported.

There are some reports-about the use of programmed instruction which indicate it might be appropriate in Tanzania. Lawless (1969, pp. 190-192) surveyed the subject of programmed instruction in Africa and reported that there were only isolated examples of its use in schools. He cited four examples from Africa of studies which compared the use of programmed instruction with traditional methods of instruction. The results indicated that there was no significant difference between programmed instruction and the other methods. He concluded that African students can

Tearn from programed materials, but that the program must be validated for local conditions if programs from other countries are used.

Schramm (1964, pp. 31-32) reported on a programmed instruction workshop which was held in Nigeria. The workshop concluded that programmed instruction is a potentially valuable addition to classroom learning when used carefully for topics suited to that method. It also concluded that programmed instruction has great potential value in teaching subjects in secondary schools. The workshop recommended that research and demonstration projects in programmed instruction be started in Nigeria. A recommendation for the integration of programmed instruction into the school curriculum was also made by the Fourth Commonwealth Education Conference (1968).

The role and qualifications of the teacher in programmed instruction is not clear. The Nigerian workshop (Schramm, 1964, pp. 31-32) concluded that programmed instruction has great potential value where qualified instructors are scarce. The Fourth Commonwealth Education Conference (1968) recommended that programmed instruction should be used to improve the quality of education where it was necessary to employ teachers with low academic qualifications. On the other hand, Pocztar (1972, p. 9) and Lysaught and Williams
(1963, pp: 21, 154) argue that a program doesn't substitute for a teacher; that a teacher is necessary. The use of a program permits the teacher to be more effective by providing personalized tutorial assistance in counseling, guiding; assisting, and stimulating the individual student. Corcoran (1970, p. 10) believes that programmed instruction requires good teachers. Poor teachers cannot teach well with programmed materials.

The use of English, a foreign language to the students, may affect the usefulness of programmed instruction in Tanzanian secondary schools. The results of one study of programmed instruction with medical students whose native tongue was not English showed that programmed instruction was more effective than the lecture (Owen and others, 1965, p. 10). In another case, Corcoran (1970, p. 11) reported that programmed instruction had merit for use with American Indian students and he recommended further study with them.

It is a waste of the teacher's time, according to Silverman (1960, p. 30), to present factual material in lecture form because it can be better provided by programmed instruction methods. Programmed instruction would therefore be a useful method for presenting the factual material taught in agriculture. Programmed instruction could also be valuable in Janzania in relieving the problem of teacher
shortage because it eliminates some of the tasks of preparation and presentation necessary with the other teaching methods. It thereby permits the teacher to supervise a larger group of students and still provide time for assisting individual students (DeCecco, 1964 , p. 12; Jacobs and others, 1966, p. 2).

Lysaught and Williams (1963, pp. 149-150) advocate that selected.. units of a course be programmed and inserted into the existing curriculum. They argue that it is difficult to program entire courses, but it would be advantageous to subsotitute programmed units for conventional methods of teaching in order to complement, enrich, remedy, and review other instruction. They also report (pp. 15-16) that slower Tearners generaTly do better when taught by programmed instruction methods. This is not always true, as Stolurow (1969, p. 1020) reports that a study in an American school showed that low aptitude students did better with a teacher and conventional methods while high aptitude students did better with a teacher and programmed methods.

From the foregoing it seems that programmed instruction could provide at least a partial solution to some of the problems encountered in the development of agricultural secondary schools in Tanzania. The problem of teacher
shortage would be alleviated because the teacher using programmed instruction could devote more time to the * students and less time to preparation and presentation and probably effectively teach a larger number of students. The expert preparation of programmed materials for use in all agricultural secon'dary schools would help eliminate the problem of low quality instruction. Finally, the local preparation of programmed materials would help solve the problem of textbook shortage. Before efforts are made to prepare programmed instruction materials, it must be decided whether or not this kind of material is effective in a Tanzanian classroom. This is the problem for this study.
IV. OBJECTIVES OF THE STUDY

The primary objective of this study is the evaluation of the effectiveness of using programmed instruction to teach agriculture in Tanzanian secondaryschools. A related secondary objective is to determine the relationship of selected student characteristics and performance under programmed instruction. These characteristics include: sex, success in school, English language ability, and attitude toward the programmed instruction method of learning.

This chapter introduces the subject of this dissertation. It focuses on education in Tanzania, the present situation, and on some of the current problems. Programmed instruction, as suggested by current research, was identified as a possible solution to some of the educational problems in Tanzania. The research problem was then defined and the objectives of the study stated. The next chapter will be concerned with the variables under study in the experiment devised to solve the research problem presented in this chapter. Later chapters will be concerned with the experiment itself, its analysis, and its findings.

CHAPTER II

PROGRAMMED INSTRUCTION, THE ALTERNATIVE

I. TEACHING METHODS

A teaching method is a particular way of teaching. The material to be learned is organized and presented to the student in a pattern or manner which can be repeated at another time by another teacher. The teaching method is purposely and recognizably directed toward the goal of student assimilation of some material (Hyman, 1970, p. 25). It takes into account all the psychological and sociocultural factors involved in learning the material. It also encompasses the various devices, aids, and techniques which are used to make the transmission and assimilation possible (Pocztar, 1972, p. 47). It is the job of the teacher to facilitate the transmission and assimilation.

There are several distinct teaching methods. More than one method may be used in a particular teaching-learning situation. However, the activities at any particular moment can often be defined in terms of a particular method. The teaching methods employed by a teacher depend on many things: his philosophy of education, his knowledge of the psychology of learning, his understanding of child growth and development, the resources available, the students, the type of school, and his own personality (Keuthe, 1968, pp. 126-127).

The traditional teaching methods of lecture, dis cussion, project, and recitation have been developed during the long history of teacher-student relations. New knowledge and understanding of the psychology of learning has resulted in the development of new teaching methods. Simulated environments, teaching games, and programmed instruction are three of the new methods which have been developed. These new methods are not as commonly used as the older methods and their application is usually more specialized (Kuethe, 1968, pp. 128-134).

II. PROGRAMMED INSTRUCTION - THE INDEPENDENT VARIABLE
"Programmed instruction is the process of arranging materials to be learned in a series of easy-to-master steps designed to lead a stưdent through self instruction from what he knows into the unknown of more complex knowledge and skill. The student responds at each step and when the response is correct he may proceed to the next step. If errors are made, the student is corrected immediately, before he proceeds to the next step." (Schramm, 1964, p. 31)

Programmed instruction resembles the Socratic method of asking a series of progressively more difficult questions in order to lead the student toward understanding and knowledge of a particular subject. Programmed instruction developed out of modern research in the psychology of learning. Although B.F. Skinner was not the first to develop the idea of programmed instruction, he is credited with being the first to bring the various parts of it together and with much of its development as a teaching method (Stolurow, 1969, p. 5).

A number of the principles of the psychology of learning which are difficult or impossible to apply with the traditional teaching methods are incorporated in programmed instruction. Programmed units of instruction are written to produce specific terminal behavior in the student. The objectives are stated in terms of performance, not as understandings or abilities (Brethower, 1963, p. 25).

With programmed instruction, each student has his own set of materials with which towork. This permits a degree
of individualized instruction because it allows each student to work at his own pace; as fast or as slow as he likes, with no effect on the other class members. Another dimension of programmed instruction is that the teacher is free to assist individual students with their problems as they develop.

The kind, level; and amount of information to which a student is exposed is completely controlled by the physical construction of programmed instruction units. The structure of a program demands that a student focus his attention and concentration on one unit of information at a time, without being distracted by other information. The material is prepsente to the student in a series of small steps. This step by step construction of the program permits the informaton to be presented to the student in a logical, graded process; from simple to complex and from the familar to the unfamiliar.

Active participation by the learner and immediate feedback are two more learning principles incorporated into programmed instruction. The student is required to actively respond regularly throughout a program to the material being presented to him.. This response may be convert or overt, simple or complex. Immediately following his response, the student learns it correctness. A correct response is thereby immediately reinforced. Errors seldom occur because the
programs are written in manner designed so the learner ${ }^{\prime}$ can usually respond correctly. If an incorrect response is made, the student observes that it is incorrect and proceeds with the program. After an incorrect response the student may either continue on to the next frame in the program or he may be directed to a review sequence of frames, depending on the construction of the program. The student is not penalized or marked down. An error, in effect, is disregarded. Learning is encouraged by continuous positive feedback (Pocztar, 1972, pp. 45-47).

Frames are the basic unit of programmed instruction. They are the structural units which are presented to the student one at a time. Frames are classified, according to what they contain, as teaching, review, practice, or test frames (Silverman, 1970, Panel S). Teaching frames are the most common. They contain a piece of new information; a stimulus which is often in the form of a question to elicit a response; and the correct response which is revealed to the student when he has completed his own response (Klaus, 1961, pp. 43-45).

A program is a series of frames ordered and ready for the student to follow. It is the completed route to mastery of the subject for which it has been prepared.

Teaching machine and programmed textbook are the most common techniques used to present programs to the student. A teaching machine is, simply, any mechanical device which presents a program to a student frame by frame. It has the advantage of complete control of program presentation because it insures that the student responds to each frame before the next one is presented. The disadvantages of teachin* machines are that they are usually expensive and are not usually portable. Programmed textbooks are portable and their cost is similar to other types of textbooks, but the student must exercise self discipline in order to use them properly.

Programs, whether presented by machine or book, may be either linear or branching. The linear or extrinsic program is "a sequential development of the material through which each student, regardless of his response, proceeds in exactly the same order. The student responds to the first item and then after receiving word of the accuracy and adequacy of his response, proceeds to the second item, and so on. The items are short, sequences build through graduated development, and the responses can be constructed by the student." (Lysaught and Williams, 1963, p. 71)

With the branching or intrinsic form of program the "material to be learned is given in small logical units.

Immediately after reading and digesting a unit the student is given a short test on it. The results of the test are used to determine what next unit of information shall be presented to the student." (Lysaught and Williams p. 81)

Although linear programming is more widely used than branching programs, neither type has proved to be consistently superior to the other (Jacobs and others, 1966, p. 14; Stolurow, 1969, p. 1020). The branching form does make it possible to include review and repetition branches for students who make incorrect responses. They can be directed to parts of the program which are passed over by the student who responds correctly.

Programmed instruction was the independent variable selected for this study. It was the experimental method in an experiment designed to determine its effectiveness in a classroom situation. The lecture-discussion teaching method became the control method in the experiment. The lecturediscussion method was selected as the control method because it is the common teaching method employed by secondary school teachers in Tanzania. It is the method with which the students are more familiar. It was the method of instruction used in agriculture class before the experiment began.

III. STUDENT PERFORMANCE - THE DEPENDENT VARIABLE

Educational achievment in Tanzanian secondary schools is determined by student performance on the secondary school leaving examination. This is a nationally set examination. Students writean examination in each subject matter field for which they have studied. The agriculture examinations. like many other of the subject matter areas, required factual recall. For example, students might be asked to: label the parts of a ruminant stomach, name three causes of damage to untreated wood used on the farm, or show the four successive strokes in the working of an internal combustion engine (Armbrester and others, 1967, pp. 98-112). Tests of factual recall are also commonly used to determine classroom achievement and to assign end of term marks.

The dependent variable chosen for this study was the amount of material learned under the conditions of the experiments. The amount of material learned was measured by the students' performance on multiple choice tests of the material taught. These tests were also used to determine the term marks for the students involved in the experiment.

IV. THE HYPOTHESES

The foregoing discussion provides a basis for testing the following hypotheses:

1. There is no significant difference, in a Tanzanian secondary schoot, between the performance of students taught agriculture by programmed instruction and the performance of those taught by the lecture-discussion method.
2. There is no relationship between the performance of students taught by programmed instruction and differences in their:
a. sex
b. success in.school
c. English language ability
d. attitude toward the programmed instruction method

AN EXPERIMENT AT TUMAINI
I. TUMAINI SECONDARY SCHOOL

Ideally, the sample for this study would have been - randomly selected from the population of all secondary schools in Tanzania. Two reasons made this impossible. First, the experimental materials were restricted to use in agriculture classes and only four of the 112 secondary school in Tanzania (during 1973) were teaching agriculture. Second, the researcher was assigned to Tumaini Secondary School and distance, time, and transportation problems made it impossible to conduct the experiment elsewhere. The next nearest secondary school was 40 miles away and it was over 150 miles to the next nearest school with an agriculture bias.

The necessity and convenience of Tumaini as the experimental site added another factor to the selection problem. This factor was that Tumaini was a private school. In 1973 the 112 secondary school were composed of 74 government schools, 32 private schools, and 16 seminaries. So Tumaini was not randomly selected and may not have been representative of other Tanzanian secondary schools.

Tumaini is a private co-educational boarding school located in Singida region in the central part of Tanzania. It was opened in 1969. The government is expected to *: assume operation of it in the near future. In 1973 it was operated as a non-profit institution by a religious organization. The operating costs of the school were met by the fees paid by the students.

The school entered the agricultural bias in 1972 with the introduction of agriculture into the Form I curriculum. The new bias was being phased in year by year. Agriculture was taught to Forms I and II in 1973. It will be extended to Form III in 1974. The secondary school year in Tanzanta had two terms. This experiment was conducted during the first term (January-June) of 1973. All the students studying agriculture, which included Form I and II students, participated in this experiment.

II. THE STUDENTS

Agriculture was a required class for all students in Forms I and II during the first term of 1973. These students were the subjects in this experiment. Each of - the forms was divided into two streams (grade sections). The two streams in each form became the experimental and control groups in this experiment. The students were randomly assigned to the streams by the investigator. An attempt was made to stratefy the randomization according to sex so that the two streams of each form would have equal numbers of boys and girls. Table 1 shows that the actual numbers of boys and girls in each stream was not equal. This happend in Form II because all of the expected students did not come. The unequalness in Form I resulted when some of the selected students did not arrive and substitutes were called. The substitutes were often not of the same sex as those they replaced on the original list. The randomization was not redone bacause some of the students arrived after the experiment began.

The students who participated in the experiment came from many parts of Tanzania. Table 2 shows that 18 of Tanzania's 22 regions wera represented. Slightly more than half (55.6\%) came from homes in Singida region where Tumaini was located. (The questionnnaire used to gather this information is located in Appendix A).
TABLE I
The Sex Distribution of Students in Forms I and II at
Tumaini Secondary School First Têrm 1973

2

The Home Regions of the Form I and II Students at Tumaint Secondary School First Term 1973

Region	Form I						- Form II						$\frac{\text { Forms 1 \& II }}{\text { Combined }}$	
	Stream A		Stream B		Total		\cdots	Stream A	Stream B		Total			
	No.	Percentage												
Singida	24	53.5	27	60.0	51	56.8	19	56.0	19	52.8	38	54.3	89	55.6
Kili.	6	13.4	5	11.2	11	12.4	\cdots	11.9	7	19.5	11	15.7	22 8	13.7 5.0
Shinya.	3	6.7	1	2.2	4	4.4	'3	8.9	1	2.7	4	5.7	8	4.3
Tabora	2	4.4	2	4.4	4	4.4	1	2.9	2	5.6	3	4.3	6	3.7
Mbeya	-	---	3	6.8	3	3.3	1	2.9	2	5.6 2.7	3	4.3	4	2.5
Arusha	1	2.2	-	--	1	1.1	2	5.8	3	8.4	3	4.3	4	2.5
Bukoba	1	2.2	-	2	1	$\underline{1.2}$	2	5.8	-	---	2	2.9	4	2.5
Tanga	1	2.2	1	2.2	2	2.2	$\underline{-}$	---	-	---	-	---	2	1.3
Coast	1	2.2	1	2.2	1	1.1	1	2.9	-	---	1	1.4	2	1.3
Dodoma	1	2.2	1	72	2	2.2	1	---	-	---	-	---	2	1.3
Iringa	1	2.2	1	2.2	2	2.2	-	---	-	---	-	---	2	1.3
Kigoma	1	2.2	1	$\underline{2.2}$	1	1.1	1	2.9	-	---	1	1.4	2	1.3
Morogoro	1	2.2	$\overline{2}$	---4	2	2.2	1	2.9	-	---	-	---	2	1.3
Myanza	-	---	2	4.4 2.2	1	1.1	-	---	-	-.--	-	---	1	0.6
Yara	1		1	2.2		1.1	-	-	-	--	-	--	1	0.6
Mtwars	1	2.2	-	---	-	--	-	---	1	2.7	1	1.4	1	0.6
Musoma Ruvuma	$\overline{1}$	2.2	-	---	1	1.1		---			-	---	1	0.6
Ruvuma													160	100
Total	45	100	45	100	90	100	34	100	36	100	70	100	160	100

Table 3 indicates the location of the homes of the students. Almost one quarter (24.5 percent) came from city homes. This in in contrast to the general population of Tanzania of which about five percent live in cities.

The occupational distribution of the fathers of the students shown in Table 4 indicates that 32.5 percent are farmers. The remaining 67.5 percent of the students' fathers are engaged in paid employment. This again is in contrast to most Tanzanians of whom approximately 90 percent are engaged in production agriculture.

The occupational distribution of the mothers of the students is more similar to the occupations of the general population than the fathers' distribution. Table 5 shows that 81.9 percent of the mothers are housewives or farmers. The housewife and farmer categories are the responses given by the students to an open-ended question. They are combined here because they may be be mutually exclusive.

Table 6 shows the highest level of education attained by the fathers of the students. It indicates that 6.3 percent had no formal education and 45.0 percent of the students had fathers who had completed two or more years of secondary education. The mothers of the Tumaini students (Table 7) have not attained educational levels as high as the fathers. The students reported that 13.7 percent of their mothers had no education and 7.6 percent received some secondary
TABLE 3
The Home Location of Form I and II Students at Tumaini Secondary School First Term 1973

$$
\text { TABLE } 4
$$

$$
\begin{aligned}
& \text { The Occupational Distribution of the Fathers of Form I and II Students } \\
& \text { at Tuma ini Secondary School First, Jerm } 1973
\end{aligned}
$$

-

TABLE 5
The Occupational Distribution of the Mothers of Form I and II Students

TABLE 6
The Higest Educational Level Attained by the Fathers of Form I and II Students at Tumaini Secondary School First Term 1973

Amount of Education	Form I						Form II						Forms I \& II Combined	
	Stream A		Stream B		Total		Stream A		Stream B		Total			
	No.	Percentage												
None	3	6.7	3	6.7	6	6.7	-	---	4	11.1	4	5.7	10	6.3
1-4 yrs	9	20.0	3	6.7	12	13.3	3	8.8	6	16.7	9	12.9	21	13.1
5-8 yrs	13	28.9	19	42.2	32	35.6	11	32.4	13	36.1	24	34.3	56	35.0
$\begin{aligned} & 2 \mathrm{yrs} \\ & \text { sec.sch. } \end{aligned}$	8	17.8	11	24.5	19	21.1	13	38.2	1	2.8	14	20.0	33	20.6
3-4 yrs sec. sch.	6	13.3	4	8.9	10	11.1	6	. 17.7	11	30.5	17	24.3	27	16.9
Form 6	2	4.4	2	4.4	4	4.4	-	---	-	---	-	-	4	2.5
Univ	4	8.9	2	4.4	6	6.7	1	2.9	1	- 2.8	2.	2.8	8	5.0
Univ resp.	4	8.9	1	4.4 2.2	1	1.1	-		-	---	-	---	1	0.6
No, resp.	-	100	$\frac{1}{45}$	2.2	90	100	34	100	36	100	70	100	160	100
Total.	145	100	45	100	90	100	34	100	36	100		100		

TABLE 7

The Highest Educational Level Attained by the Mothers of Form I and II Students at Tumaini Secondary School First Term 1973

education. The educational attainment of the parents of the Tumaini students is higher than that of the average Tanzanian. In 1973 Tanzania's limited educational facilities made it impossible for 50 percent of eligible children to enter standard 1 (first grade). At the same time, approximately 10 percent of those that finished primary school (standard 7) were able to go on to secondary school. The percentage that attended school at the time the parents did would have been lower because the number of schools has been greatly expanded in recent years.

The information in Table 8 on the religious affiliation of the students shows that the majority (78.8 percent) are Christians. This is not surpirsing since the school is run by a Christian organization. The rest (21.2 percent) of the students are Moslem. Every student is a Christian or a Moslem. One-third of the people in Tanzania do not profess either of these religions so the students are not typical of the country's population in this respect.

Tumaini is a private school and there are various reasons why the students come to study. The subjects in this experiment were asked for their main reason for attending secondary school. The responses were divided into two categories: self or personal reasons (to get a job with a good salary, for example) and for nationalistic reasons
3
TABLE 8
The Religious Affiliation of Students in Forms I and II at

(to help build the nation, for example). The distribution of the responses is shown in Table 9 . The responses were equally divided in Form II while in Form I a majority (60 percent) favored the personal reasons.

The future employment desires of the students is given in Table 10. Differences between Form I and II students appear in the clerical, agricultural, and education areas. The clerical and education areas are more popular with Form I students, while the Form II students prefer agricupture to a greater extent than the Form I students.

The information about the students presented in the foregoing tables indicates that they are not typical of Tanzanians of their age group. These Tumaini students are more likely to come from urban homes. Their parents are more likely to be educated and have salaried jobs. The fact that they are able to pay the fees to attend a private school also indicates that they are unusual. Many people could not afford to pay those fees.

The family and social background of the Tumaini students is different from other young Tanzanians. However, they are likely to be similar to other private secondary school students because, like them, they failed to qualify academically for entrance into a government school and they are able to pay the fees for a private shcod. The similarity
TABLE 9
Distribution of Form I and II Students at Tumaini Secondary School According
to Whether or Not They Were Attending Secondary School for

```Reason for attending school```	Form 1						Form II						Forms I \& II   Combined	
	Stream A		Stream B		Total		Stream A		Stream B		Total			
	No.	Percentage												
Personal reasons	27	60.0	27	60.0	54	60.0	17	50.0	18	50.0	35	50.0	89	55.6
Nationalistic reasons	18	40.0	17	37.8	35	38.9	$17$	50.0	18	50.0 .	35	50.0	70	43.8
No resp.	-	---	1	2.2	1	1.1	-	---	-	---	-	---	1	0.6
Total	45	100	45	100	90	100	34	100	36	100	80	100	160	100

## TABLE 10

Field of Work Desired After Completion of Education by Form I and II Students at Tumaini Secondary School First Term 1973

				Form I						Form II			Form	A 1 \& II
		Stream A		Stream B		Total		Stream A		Stream B		Total		mbined
Desired	No.	Percentage												
Agricult.	8	17.8	16	35.5	24	26.7	18	53.0	12	33.3	30	42.9	54	33.8
Medical	8	17.8	5	11.2	13	14.5	:7	20.6	11	30.6	18	25.7	31	19.4
Education	10	22.2	11	24.4	21	23.3	5	14.8	2	5.5	7	10.0	28	17.5
Clerical	7	15.6	3	6.7	10	17.1	1	2.9	-	---	1	1.4	11	6.9
Police/ Army	$1 / 2$	4.4	2	4.4	4	4.4	-	--	6	16.7	6	8.6	10	6.2
Craftsmn	1	2.2	3	6.7	4	4.4	1	2.9	1	2.8	2	2.9	6	3.8
Engineer	2	4.4	3	6.7	5	5.6	1	2.9	$\because$	---	1	1.4	6	3.8
Law	2	4.4	-	---	2	2.2	-	---	-	-	-	---	2	1.2
Newsp	-	---	1	2.2	1	1.1	1	1.1	-*	---	1	1.4	2	1.2
Aviation	-	--*	-	---	-	---	-	---	1	2.8	1	1.4	1	0.6
Railway	-	--ワ	1	2.2	1	1.1	-	---	-	---	-	---	1	0.6
Wildife	-	---	-	---	-	---	-	---	1	2.8	1	1.4	1	0.6
Undecided	5	11.2	-	-	5	5.6	-	--	2	5.5	2	2.9	7	. 4.4
Total	45	100	45	100	90	100	34	100	36	100	70	100	160	100

between students at Tumaini and those at government schools is unknown. Tumaini students and government school students do have two things in common: a) they have completed primary school; and b) they are attending secondary school.

## III. THE INSTRUCTIONAL UNITS

It had been decided during the planning stage that the programmed units of instruction to be used in this study would be adapted from units available in the United States. However, a search revealed that there were no suitable commercial programs. Several programs developed by various researchers were located and were adapted to create seven of the programmed instruction units used in this study. A total of twenty-two units were needed. The remaining fifteen units were developed by the investigator prior to the beginning of the experiment. The information contained in the units came from agricultural instructional units originally prepared for use in United States secondary school agriculture classes. The information was adapted to the Tanzanian locale by the investigator, Who had previously managed an institution farm for two years and also had taught two years in Tanzania. (Appendix $B$ contains copies of the programmed units:)

The topics for the instructional units were selected from the syllabus of instruction for secondary school agriculture in Tanzania. The units were developed as programmed textbooks in a vertical linear format. A combination mask and answer sheet was provided for use by
the student. It permitted one new frame to be exposed at a time and the active written responses required from the students were recorded on it.

The same materials were taught to both Forms I and II. This was possible because the agricultural instruction the Form II students had experienced the previous year was social and political, not technical. The shortage of teachers also made it practical to teach the same material to both forms.

The twenty-two units of programmed instruction were developed according to the principles of programmed instruction. These units varied in length from thirty-six to seventy-eight frames. A comparison of the results of short and long programs has not shown marked differences and a number of comparisons are much better than an evaluation based on a single comparison (Kay and others, 1968, p. 1;24).

## IV. THE DESIGN OF THE EXPERIMENT

A true experimental design was utilized to meet the objectives and test the hypotheses of this study. This was possible because the investigator could, as*

Ferguson (1971, p. 198) says he must:
(1) Select the values or categories of the independent variable to be compared;
(2) Select the subjects for the experiment;
(3) Apply the rules or procedures whereby. subjects are assigned to the particular values or categories of the independent variable;
(4) Specify the observation or measurements to make on each subject.

A two-sample experiment of the Campbell and Stantey (1966, p. 25) posttest-only control group design was used. In a two-sample experiment such as this, the subjects are divided into two groups; one for treatment and one for control or for a second treatment (Kraft and van Eeden, 1968, p. 69). After treatment, both groups are observed.
The observations are compared to determine if any differences resultfrom the differences in treatment.

It is necessary in such an experiment to insure that both groups are equal before the treatment so that any differences observed afterward can be ascribed to the difference in treatment, an aspect of interal validity.
This could be done by pretesting the subjects and assigning them to the two experimental conditions on the basis of
the pretest to insure that each group is matched or equal before the experiment. But as Champion (1970, p. 143) points out, "matching can pose a significant obstacle to any research design because there are always factors over which the investigator has little control."

The posttest-only control group design is a fully valid experimental design even though a pretest is not used because the two groups are equalized in another way (Campbell, 1957, p. 274). One way of achieving preexperimental equation of groups is through randomization (Campbell and Stanley, 1966, p.2). Randomization eliminates the problem of selection bias by the investigator (Good, 1963, p. 457). At Stanley (1965, p.. 286) points out, "randomization guarentees that, before the experiment begins, the means of the various conditions for any variable will differ only randomly. This randomization forms the basis for tests of statistical significance." Good (1963, p. 457) also emphasizes that randomization without a pretest is "the most adequate all-purpose assurance of lack of initial bias between groups."

Siegel (1956, pp. 61-62) suggests a second method of overcoming the difficulty. This, he says, can be done by using matched or otherwise related samples in a study.

But since it is difficult to match people it is preferable to use each subject as his own control. This is accomplished by exposing each subject to both treatments at different times.

The fact that a pretest is not used with the posttestonly control group experimental design was advantageous in this study. A pretest would have been a disadvantage for two reasons. First, it might have led the students to guess that an experiment was taking place by arousing their curiosity. Secondly, the pretest mighthave affected the results on the posttest by alerting the students toward certain topics and enhancing the learning of that information (Apter and Boorer, 1971, p. 125).

Internal Validity
Two kinds of validity are of concern in experimental design. The first kind, internal validity, is concerned with whether or not the experimental stimulus did, in fact, cause the difference in the specific instance. Internal validity is concerned with things which by themselves produce changes in the dependent variable and which might be mistaken for the results of the experimental variable. External validity is concerned with generalization of the results from the experiment to the population of which the experimental sample belongs.

Campbell and Stanley (1966) have described experimental design validity in detail. They state that both external and internal validity are needed to the greatest extent possible in an experiment. However, "internal validity is the prior and more indispensible consideration than is exernal validity" (Campbell, 1957, p. 282). Campbell and Stanley (1966, p. 8) state that "internal validity is assured with the posttest-only control group design." External Validity

Campbell and Stanley (1966, pp. 5-6) identify four interaction effects which threaten external validity. They identify the first threat as the interaction of testing and the experimental treatment. This is the threat caused by a pretest. A pretest was not made in this experiment so there is no danger from this interaction effect on the posttest. There could, however, be an interaction effect on the retention test caused by the posttest.

The second interaction effect which threatens external validity is the interaction of selection and the experimental variable (Campbell and Stanley, 1966, p. 19). The selection referred to here is not that of assigning the subjects to experimental and control groups which is an aspect of internal validity. Rather it refers to the population from which these two groups were jointly selected. The amount of bias
in the selection of the school for this experiment affects the external validity, or the extent to which the results may be generalized. Tumaini Secondary School may or may not be representative of secondary schools in Tanzania. The school may be representative of private secondary schools, but almost certainly is not representative of government secondary schools since the students in private schools failed to qualify for a government school. They must also possess the money necessary for the tuition at the private school. The greater the similarity between Tuamini and other schools, the less this interaction would occur.

The third Campbell and Stanley (1966, pp.20-22) interaction effect on external validity is called reactive arrangements. This is the threat to external validity posed by the artificiality of the experimental setting and knowledge by the subjects that they are participating in an experiment. This interaction effect can be prevented by disguising the research from the subjects. This factor should not affect the vaildity of this experiment for several reasons. First, the random assignment to streams was made before the students came to school. Upon their arrival they found thay had been assigned to a particular stream. This was the usual administrative practice, except that this time the assignment had
been performed randomly by the investigator. Second, the students were not told that an experiment was being conducted and none, to the knowledge of the investigator, ever learned. The fact that one stream was taught by one method and the other stream by another method did not seem strange to the students since a shortage or teachers did exist and it was explained that using these two methods would ease that shortage. Finally, each stream was exposed to equal numbers of experimental and control treatments which made it possible foreach group to have similar experimental histories. The treatments were randomly assigned so the only possible interaction that could have resulted was that one group began with the control treatment, while the other group began with the experimental treatment.

The fourth and final interaction threat to external validity is what Campbell and Stanley (1966, p. 4) term multiple treatment interference. This is the hazard of giving multiple treatments to the same subject. Each group in this experiment was given twenty-two treatments, half underthe experimental condition and half under the control condition. This was done to help insure internal validity. The treatments were randomly assigned but there might have been a carryover effect depending on the sequence of methods experienced. Multiple treatment interference may have occurred, so it reduces the extent of generalization that
can be made from the experimental results. On the other hand, it may not be a problem in this experiment since there were twenty-two units. The effects may not be as great as when conly a few units are involved.

## v. STATISTICAL ANALYSIS AND DECISION MAKING

An experiment is usually conducted to provide a basis for determining whether a particular hypothesis should be accepted or rejected. The whole procedure is often referred to as hypothesis testing. The experiment is only a means of obtaining information on which the decision about the hypothesis will be made. The purpose of the experiment in this study was to provide information which could be used to determine the effectiveness of programmed instruction as a teaching method in Tanzania. The statistical analysis and decision making steps followed in this study were those outlined by Siegel (1956, p. 6):
(1) State null hypothesis ( $H_{0}$ )
(2) Choose a statistical tes C (one which most closely approximates the conditions of research and whose measurement requirement
(3) is met by the measures used in the research) and a sample size (N)
(4) Find or assume the sampling distribution of the statistical test under $H$
(5) On the basis of b, c, and d Obove, define the region of rejection
(6) Compute the value of the statistical test, using the data obtained from the samples, use that value to decide whether to reject or not reject $H_{0}$

Null Hypothesis
The first step was to state the null hypothesis. The null hypothesis is the hypothesis under test and may be written in either two-tailed or one-tailed form. A twotailed test would indicate only that a difference exists, not
the direction of the difference. Ferguson (1971, p. 151) states that "there are few, if any, instances where the direction is not of interest." He believes that directional tests should be used more frequently.

The purpose of this study was to determine the effectiveness of the programmed instruction method by comparing it with the lecture-discussion method of instruction. It was decided that this would be determined by comparing the performance of students taught by these methods. Programmed instruction would be judged effective if student performance was better under that method than under the lecture-discussion method. A one-tailed test of the hypothesis was therefore appropriate for this study because the direction of difference is important, not just existence of a difference between the two methods.

The null hypothesis $\left(H_{0}\right)$ is a hypothesis of no difference. It is usually formulated for the express purpose of being rejected. The alternative hypothesis $\left(H_{1}\right)$ is the operational statement of the investigator's research hypothesis. It may be accepted if the null hypothesis is rejected (Siegel, 1956, p. 7). The null hypothesis is the one under test and "if the differences observed in the data have an extremely small possibility of having occurred by chance, then the investigator may be willing to reject the null hypothesis and
accept the alternative possibility that the difference was due to differences in the treatment. The alternative hypothesis cannot be proven in terms of the data, but it does become more and more plausible as the null hypothesis. becomes less and less." (Ferguson, 1971, p. 486).

The first hypothesis, in null form $\left(H_{0}\right)$, in this study was: There is no statistical difference, in a Tanzanian secondary school, between the performance of students taught agriculture by programmed instruction and the performance of those taught by the lecture-discussion method.

The second hypothesis, in null form, was: There is not relationship between the performance of students taught by programmed instruction and differences in their sex, success in school, English language ability, and attitude toward the programmed instruction method.

## The Statistical Test

The second step was to choose a statistical test. Siegel (1956, p. 18) points out that every statistical test has an associated model and a measurement requirement. Often the conditions of the model cannot be proven and must be assumed to be met. These are termed the assumptions of the test. The statistical test employed depends upon the nature of the population involved, the manner of sampling, the type of data collected, and on information about the population.

In this study, a statistical test was needed to determine the relationship between the performance results of the students taught by programmed instruction and those taught by lecture-discussion. The group which had been exposed to the experimental treatment (programmed instruction) was compared with another group which had experienced the control treatment (lecture-discussion). This required a two-sample statistical test.

The usual parametric statistical technique for analyzing data from two related samples is to apply a t-test to the difference scores (Siegel, 1956, p. 62). The t-test assumes:
a) that the variable in the population from which the observations are drawn are distributed normally; and b) that there is a common variance in the population (Bradley, 1968, p. 23). However, in the setting of this study, it is difficult to justify these assumptions because there was no information available about the population variables prior to this study. It is not realistic to assume that these variables are distributed normally and that a common variable exists. Conover (1971, p. 85) cites two reasons why "it is dangerous to use a statistical test in a situation where the assumptions of the test are not valid. First the data may result in the rejection of the null hypothesis not because the data indicate that the null hypothesis is false, but
because the data indicate that one of the assumptions of the test is invalid. Hypothesis tests in general are sensitive detectors not only of false hypotheses but also of false assumptions in the model. The second danger is that sometimes the data indicate strongly that the null hypothesis is false, and a false assumption in the model is also affecting the data, but these two effects neutralize each other in the test, so that the test reveals nothing and the null hypothesis is accepted."

Bradley (1968, p. 9) emphasizes the danger of parametric methods because "it does not follow logically that approximate normality and homogeneity insure approximate validity of a test which assumes exact normality and exact homogeneity." Ferguson (1971, p. 517) cites another danger when using a one-tailed test. He says that "a one-tailed t-test is apparently more seriously affected by non-normality than is a two-tailed test." He (Ferguson, 1971, p. 321) goes on to state that when situations arise in experimental work where little is known about the population distribution of the dependent variable then nonparametric tests may be appropriately used.

Non parametric or distrubution-free methods provide tests which are independent of the shapes of the distribution from which the samples are drawn (Ferguson, 1971, p. 157).

Bradley (1968, P. 23) states that "the most common population assumption for nonparametric tests is that the population is continuously distributed. The continuity assumption is generally a sufficient, rather than a necessary condition, covering what are often more modest and easily satisfied necessary assumptions, which are sometimes highly insusceptible to violations. When the nonparametric assumption of continuous distribution is violated, both the fact and the degree of the violation tend to be readily apparent from the existence of tied scores (zero differences) in the obtained data. There is nothing so obvious when using parametric statistics."

Siegel (1956, p. vii) states that "the nonparametric techniques of hypothesis testing are uniquely suited to the data of the behavioral sciences because they do not assume that the scores under analysis were drawn from a normally distributed population." In fact the nonparametric tests for related samples do not require that all pairs be drawn from the same population (Siegel, 1956, p. 62). Populations can be whatever they are (Bradley, 1968, p. 12). According to Conover (1971, p. 3), with nonparametric statistics "approximate solutions to exact problems are found, as opposed to the exact solution to approximate problems furnished by parametric statistics." The probability
statements from most nonparametric statistical tests are exact probabilities. The accuracy of those statements does not depend on the shape of the population distribution (Siegel, 1956, p. 32). Another difference is that in many nonparametric procedures, neither the null hypothesis under test is formulated in terms of the parameters of the paren populations, nor are estimates of population parameters calculated (Ferguson, 1971, p. 322).

Nonparametric statistical procedures were chosen as the appropriate method to use for testing the hypothesis in this study. The next step was to choose a particular nonparametric procedure. The performance of the students in the study was measured at the end of each unit by multiple choice tests of the information presented in the unit. The test scores of all the students in each treatment group were combined. A mean was calculated. There were a total of twenty-two pairs of means.

The mean was selected as the appropriate measure of central tendency on which to make the statistical analysis for several reasons. The mean is an appropriate measure of central location for interval and ratio variables (Ferguson, 1971, p. 52). The arithmetic mean is the balance point of all the scores and it is easily calculated. Further, the effectiveness of programmed instruction as compared with
other kinds of instruction can be evaluated according to Jacobs, Maier, and Stolurow (1966, p. 49) by comparing the mean level of outcome. The median, an alternative measure of central tendency, was considered. It was rejected in favor of the mean because the median is an ordinal statistic and would be appropriate in this study only if the distribution of the variables showed gross asymmetry (Ferguson, 1971, p. 53). The means were calculated using the formula:

$$
\bar{X}=\frac{\sum X_{i}}{N}
$$

The Wilcoxson Signed Ranks Test is the appropriate nonparametric procedure to use in a study such as this when the numerical value has meaning and a comparison is being made between two related groups (Conover, 1971, p. 206). However, the Wilcoxson test requires that the tests from which the means were generated be equivalent. The twenty-two unit tests in this study had varying numbers of questions and therefore the resulting means were not equivalent and the Wilcoxson test could not be used. Sign Test

The sign test was selected for this study. It is a gross measure of the significance of difference. It does not take. into account the magnitude of difference in the scores under different conditions (Champion, 1970, p. 165).

It is applicable to the case of two related samples when it is desired to establish that two treatments are different (Siegel, 1956, p. 68). It is useful for testing whether two populations have the same mean where the observations come in pairs with one element of each pair from each population (Conover, 1971, p. 121).

The assumptions for the sign test are:
(1) That the variable under consideration has a continuous distribution (Bradley, 1968, p. 167);
(2) That the two groups were equivalent before the test, that they either were randonly assigned to the treatment and control groups (Kraft and van Eeden, 1968, p. 124) or the subjects act as their own control in some type of before-andafter experimental design or succession of treatment conditions (Siegel, 1956, p. 68);
(3) That there is independent performance by the subjects on the post and retention tests in this experiment.

No assumptions are made about the form of the distribution of the differences and there is no assumption that all subjects were drawn from the same population.

In this study, if there is no difference between the two teaching methods in their effect on student performance:
(a) half of the time the experimental treatment should show a positive advantage over the control treatment; and (b) half of the time, the control treatment should show a positive advantage over the experimental treatment. The theoretical probability that one is better than the other is fifty percent.

To determine which teaching method is better in this study the mean of the scores of the control group (lecturediscussion) was subtracted from the mean of the scores.of the experimental group (programmed instruction) for each unit of instruction. If the result was positive (the experimental mean greater than the control mean) it was assigned a plus sign. If the result was negative (the control mean greater than the experimental mean) it was assigned a minus sign. The sign of the difference (plus or minus) is the only relevant information used to calculate the sign test statistic.

The sign test procedure assumes that ties are impossible and that if they occur in a two-tailed test they should be disregarded (Conover, 1971, p. 123). However, in this experiment, the question of interest was one-tailed, whether the experimental method was better than the control method. Any ties which occurred were counted as minuses.

After the sign of the mean was determined for each of the twenty-two instructional units, the total number of plus signs was determined by counting. Since the sign testis a
binomially distributed test with a probability of fifty percent, an equal number of plus and minus signs would be expected if: a) the two treatments were identical; and b) chance was the only determiner of which treatment had the higher mean.

The theoretical probability of obtaining a particular combination of plusses and minuses was determined by the binomial expansion rule using a probability of fifty per: cent (the probability of each sign) and the total number of trials (Marascuilo, 1971, p. 97). Each instructional unit was an experimental trial in this study. The resulting probability is that associated with the occurrence under the null hypothesis of a value as extreme as the observed value of the experimental condition (Siegel, 1956, p. 75). oThe probabilities obtained with the sign test are the ratio of the number of successful outcomes of an event to a finite number of possible outcomes (Bradley, 1968, p. 12).

The operational statement of the hypotheses may now be stated in terms of the probability of a plus for the experimental method over the control method (Conover, 1971, p. 122):

$$
\begin{array}{ll}
H_{0}: & P(+)=P(-) \\
H_{1}: & P(+)>P(-)
\end{array}
$$

The null hypothesis is that the probability of a plus occurring (experimental mean greater than the control mean) is equal to
the probability of a minus occurring (control mean greater than the experimental mean). The alternative hypothesis is that the probability of a plus occurring is greater than the probability of the occurrence of a minus.

## Significance Level

The investigator, in the ideal situation, specifies the exact values of both the level of significance and type II error before he begins his research (Siegel, 1956, p. 89).. These values determine the size of the sample ( $N$ ) he needs for computing the chosen statistical test. The significance level is determined by first specifying all possible samples that could occur when the null hypothesis is true. Then a subset of the samples is selected which has a. very small probability, if the null hypothesis is true, that a sample actually observed will be among them.

The significance level, power, sample size, and sampling distribution for this experiment were determined during the planning stage of the study. First the number of units (N) and the significance level ( $\alpha$ ) were determined by a trial and error expansion of the binomial formula:

$$
\binom{N}{x} p^{x} q^{N-x}
$$

Various levels of $N$ (numbers of units) with the probability set at. 50 were calculated until a reasonable combination of $N$ and level of significance was discovered. The number of
trials decided on was twenty-two. An expansion of the binomial formula with the number of trials set at twentytwo and the probability set at fifty percent was used to generate a binomial distribution. This is the sampling distribution for this study and from which the significance level and decision rule could be determined. The formula used was:

$$
P\left[X=x \left\lvert\, \begin{array}{l}
P=2.50 \\
N=22
\end{array}\right.\right]=\binom{N}{X} \quad p_{q} x^{N-x}
$$

This formula was used to generate the probability distribution by calculating the probability of each possible outcome (each possible combination of plusses and minuses) beginning with twenty-two plusses ( $x$ ) out of twenty-two trials ( $N$ ), then twenty-one plusses out of twenty-two trials (21 plusses and 1 minus) and so on. This was continued until the cumulative probability reached an acceptable significance level for the study. The calculation of probability in this manner results in an unconventional, but exact, level of significance (alpha level).

Table 11 shows the sampling distribution of the statistical test. This distribution is calculated in terms of the null hypothesis. Under the null hypothesis, the probability of a plus is fifty percent. The table, therefore, shows the distribution of the probability of committing a Type I error and falsely rejecting a true null hypothesis for various
combinations of plusses and minuses. The table shows that if during twenty-two trials there are twenty-two plusses (the experimental method has a higher mean than the control method every time) the probability of committing a Type I. error if the null hypothesis is rejected is .00000023 . The probability of committing a Type I error for each combination of plusses and minuses is determined by cumulating the probability to that level. From Table 11 it is seen that by cumulating the probability of obtaining fifteen or more plusses out of twenty-two the total is .06587.

This is the significance level selected for this study. (For comparison, the table also indicates the probability of obtaining fourteen plusses our of twenty-two.) The decision rule for rejecting the null hypothesis in this study is with aipha equalling 0.659, reject the null hypothesis if the number of plusses equals fifteen or more out of twenty-two trials.

## Power

The power of a test is its probability of rejecting a specified false hypothesis. It is a procedure for comparing alternate procedures for testing hypotheses. It is the probability of rejecting the null hypothesis when that hypothesis is false. It is calculated by subtracting the

## TABLE 11

The Probability Distribution Generated From the Binomial Formula When the Number of Trials is Twenty-Two and The Probability is Fifty Percent


Type II error from one (1- $\beta$ ). Type II error is the failure to reject a false null hypothesis. The power of a statistical test depends on the level of significance, the alternative hypothesis $\left(H_{1}\right)$, and the sample size (Ferguson, 1971, p. 322).

Power is calculated using the binomial formula in the same manner as was the level of significance. However, for power calculations, the alternative hypothesis $\left(H_{1}\right)$ is the hypothesis of interest and the probability level selected is an arbitrary one. The probability distribution that results is. the probability that the null hypothesis will be rejected if the experimental method is really better than the control method.

The probability level selected to calculate the power of the test statistic in this study was seventy-five percent. This indicates the probability of rejecting the null hypothesis if in reality the experimental condition is better than the control condition seventy-five percent of the time. The power distribution for this study was calculated from the formula:

$$
P\left[X=x \left\lvert\, \begin{array}{l}
P=22^{.75}
\end{array}\right.\right]=\binom{N}{N} p^{x} q^{N-x}
$$

The resulting distribution is shown in Table 12 . The probability is cumulated for the same number of plusses out of the total as was used for determining the level of

TABLE 12
The Probability Distrbution Generated from the Binomial Formula When the Number of Trials is Twenty-Two and The Probability is Seventy-Five Percent

紋:

$N$	X	$\mathrm{P}=.75$
22	22	. 00178
22	21	. 01309
22	20	. 04577
22	19	. 10182
22	18	.16131
22	17	. 19407
22	16	. 17942
22	15	. 13671
$N=$ the total number of trials		
$\begin{aligned} x= & \text { the number of plusses observed } \\ & (e x p e r i m e n t a l ~ m i n u s ~ c o n t r o l) ~ \end{aligned}$		
$P\left[\begin{array}{l\|l} X=15,16,17 \\ 22 & P=22 \end{array}\right]$		$\begin{aligned} & 18,19, \\ & =.833 \end{aligned}$

significance (15 out of 22). Table 12 shows that with a sample size of twenty-two and a significance level of .0659 that the power is .8340 when there is a seventyfive percent probability that the experimental method is actually better than the control method. This indicates that this statistical test is unbiased since the power is larger than the level of significance (Conover, 1971, p. 87).

## V. PROCEDURES OF THE EXPERIMENT

All of the students in Forms $I$ and II at Tuamini Secondary School during first term 1973 participated in the experiment. They were randomly assigned to the first two streams in each form by the investigator. The randomization was performed from a table of random numbers before the students arrived at school. The randomization was stratified according to sex.

Three of the students expected in Form II did not return to Tumaini. No adjustment was made for this. The assignment of subjects was not revised since it wasn't known until after the experiment had begun that those students would not return. It was assumed that there was a random pattern for not returning and no adjustment in the experiment was made. Eleven of the Form I students selected and randomly assigned did not appear. Their places were assumed by alternates who were placed in the streams as they appeared at school. This also was assumed to have occurred randomly.

The scores of eight students were excluded from the analysis of the data. Four of these were Form $I$ students who joined the school after the middle of the term. The other four were Form II students who transferred to Tumaini from other schools and were not randomly assigned to their streams.

The order of presentation of the instructional units was randomly determined through the use of a table of random numbers as recommended by Good (1963, p. 457). Sequentially related units were assigned together as a group. Table 13 shows the sequence of presentation of the units and indicates those randomly assigned together. All of the units of instruction had been prepared for use before they were randomly sequenced. This eliminated possible bias due to sequence of preparation.

The two streams in each form were randomly assigned, using a table of numbers, to the experimental and control treatments for each instructional unit. These assignments are shown in Table 14. Each stream was randomly assigned to equal numbers of experimental and control treatments, eleven of each. The Form I and Form II agriculture classes met at the same time. The two streams (one from each form) randomly assigned to the control method, lecture-discussion, met together for their instruction in the dining hall. At the same time the two streams randomly assigned to the experimental method, programed instruction, met together in classroom number six in another part of the school. During unit one, for example (Table 14), stream A of Form I and stream B of Form II met together in room six for instruction by programmed instruction. At the same time, stream $B$

TABLE 13
The Agricultural Instruction Units Taught at
Tumaini Secondary School During First Term 1973; Those Randomized Together and the Order of Presentation

Randomized Group	Unit Number	Unit Title
1	1	Tyres for farm equipment
2	2 3 4	Raising dairy calves I Raising dairy calves II Raising dairy heifers and bulls
3	5	Caring for the sow and litter at farrowing time
4	6	Digestion in animals
5	$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \end{array}$	```Animal nutrition Feed characteristics Vitamins Minerals```
6	$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Plant nutrition } \\ & \text { Land I } \\ & \text { Land I I } \end{aligned}$
7	14	Castrating, docking and dehorning
8	15	The cow's udder and how it functions
9	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	Small engines I Small engines II
10	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	Introduction to animal breeding Animal breeding, part II
11	20 21 22	Making and using concrete on the farm, part I   Making and using concrete on the farm, part II   Making and using concrete on the farm, part III

TABLE 14
The Randomly Assigned Treatments of the Form I and II Agriculture Classes at Tumaini Secondary School During First Term 1973

Unit Number	Form I		Form II	
	Stream A	Stream B	Stream A	Stream B
$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{p} * \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{P} \end{aligned}$	$\bar{L}$	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	L	$\begin{aligned} & P \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	L
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$L_{L}$	$\begin{aligned} & P \\ & P \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	$\stackrel{L}{\mathrm{~L}}$
7 8	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	$\stackrel{L}{\text { P }}$	L	$\begin{aligned} & P \\ & P \end{aligned}$
$\begin{array}{r} 9 \\ 10 \end{array}$	$\stackrel{L}{\text { L }}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	P	L
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\stackrel{L}{\text { L }}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	L
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{p} \\ & \mathrm{P} \end{aligned}$	$\stackrel{L}{L}$	$\stackrel{L}{\mathrm{P}}$	$\begin{aligned} & P \\ & L \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{P} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} \\ & \hline \end{aligned}$
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	${ }_{\text {L }}$	$\begin{aligned} & P \\ & L \end{aligned}$
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\bar{L}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	L	$\begin{aligned} & P \mathrm{P} \\ & \mathrm{P} \end{aligned}$
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	P	$L$

of Form I and stream A of Form II met together in the dining hall for instruction by the lecture-duscussion method. The streams were reassigned according to the randomized schedule of treatments for each unit of instruction.

The agriculture classesmet for two consecutive forty minute class periods during each of the five school days per week. Identical information was. presented to both treatment groups. The lecture-discussion clàsses were taught from the same information sources used to prepare the programmed instruction units. The two streams assigned to the control method (lecture-discussion) for each unit were taught by the investigator, an experienced teacher qualified to teach agriculture. The two streams assigned. to the experimental method (programmed instruction) met together under the supervision of an experienced, qualified secondary school teacher; although not an agriculture teacher. It was necessary for a teacher not qualified to teach agriculture to supervise the programmed instruction and for the investigator to teach the lecture-discussion classes because no other teachers were available. No statistical calculations were made until after the experiment was complete in order to eliminate the possibility that the investigator would be influenced by early results.

At the beginning of the experiment the students were instructed on the use of the programmed materials. The
investigator explained the use and purpose of the programmed method. A short practice unit, as recommended by Lysaught and Williams (1963, pp. 152-153), was used to familarize the students with the programmed instruction method. This was done to help the students adjust to the new method before reaching the subject matter units. (A copy is included in Appendix B.) At the beginning of each unit, the number of class periods allotted for that unit was announced to the students in both treatment groups. The time was specified so that the students would know when to expect the unit test and to enable those using the programmed units to pace themselves.

The lecture-discussion class was conducted in the traditional manner with the teacher presenting the material orally using the blackboard as an aid. The students were encouraged to ask questions and were called on to respond to questions asked by the teacher. The programmed instruction group received the instructional materials at the beginning of the class period. These were collected at the end of the period to insure that the control group did not see them. The student's under the experimental conditions were permitted to make notes in addition to the responses made on the answer sheets which they were allowed to keep. The teacher was available in the classroom during the entire
class period to answer questions and assist the students using the programmed materials.

The posttests were given to all students at the same time, on the class day following the completion of the unit. These were multiple choice tests that had been prepared before the experiment along with the programmed units. The number of questions varied with the length of the unit. The posttest marks were, as the students had been told, used to determine the grades for each student at the end of the term. Following the marking of the posttests, the students were permitted to look at them to see the results and to check the teacher's marking. The tests were then collected and not returned to the students again. No makeup tests were given.

A retention test was given four to six weeks following the posttest. Appendix $C$ shows the dates of posttests and retention test and the time interval between them. originally, the retention test was planned for six weeks following the posttest. However, this was impossible because of school holidays. Therefore, the four to six week schedule was adopted. In that way the retention tests could be scheduled around the holidays. The retention tests were given unannounced during regular class periods to all students at one time. The retention tests were given on an irregular
schedule because of the four to six week interval. This made it unlikely that the students would be able to guess when one would occur. The students did not see the retention tests after they were marked.

Several students asked why the retention tests were given. They were told it was to see if they remembered anything. They did not have to study for them because the results would not affect their term grades. The retention test was the same test as the posttest. Lysaught and Williams (1963, p. 139) state that the same test can be used to insure equivalence of the two tests if given over a month apart.
VI. LIMITATIONS OF THE STUDY

The major limitation of this study is that the school where the experiment was conducted was not randomly selected from among all secondary schools in Tanzania. Neither was the experiment replicated at any other school. The reasons for this have been given previously. The students at Tumaini (the location of the study) are probably similar to students at other private secondary schools. They all failed to gain admission to government schools because their performance on the primary school leaving examination was inadequate. The second factor which they all have in commonis that they can afford to pay the fees which enable them to attend private school. This problem limits the generalizations which can be made from this study. The results cannot be logically generalized into a realm not represented in the study sample (Campbell and Stanley, 1966, p. 17). The generalizations from this study will be limited and restricted to the particular characteristics of the subjects sampled, the methods used, and the specific conditions of the experiment.

A second limitation was the active participation of the investigator in the experiment. He prepared the programmed instruction units and taught the lecture-discussion classes. There is, therefore, a possibility that unintentiond
researcher bias entered into the results. This was a fixed factor of the research and could not be avoided.

A third limitation of this study is that there was not control over the activities of the students outside the classrooms. The students taught under each of the two methods may have compared class notes, discussed the lessons, and studied together. This may have reduced the distinctiveness of each group's instruction by reducing the differences observed in the mean test scores and thereby blurring the results of the evaluation (Jacobs and others, 1966, p. 60). However, the actual method of instruction in the classroom was controlled and was distinct for each group.

One purpose of programmed instruction is to control the situation. If the students can cheat the control is not adequate. The use of a mask to expose only one new frame of the program at a time requires self-discipline on the part of the student for proper usage. This selfdiscipline was not always observed. The teacher of the programmed units did instruct the students in the proper use of the mask and the reasons why it was to their advantage to use it correctly. When improper usage was observed, the student was reminded to use it correctly. Improper usage could have affected the results of the
experiment. A related problem, although not as obvious, could have affected the lecture-discussion classes. This is the problem of students failing to 1 isten and participate in discussion. This could have affected the experimental results; but, like cheating, is something which could occur in a normal classroom situation.

A final problem, which may have affected the results of the experiment, was student absenteeism from class. Students were absent from class at various times. This was caused by truancy, assignment by school officials to punishment or other duties, and school activities. It was assumed that the absenteeism affected botheexperimental and control groups randomly, and therefore equally, so no adjustment was made.

THE RESULTS:
ANALYSIS OF DATA AND HYPOTHESIS TESTING

The data collectedx in the experiment consisted of the students' posttest and retention test scores for each of the twenty-two units of agriculture instruction. The analysis of the data began with the calculation of the means for the experimental and control groups for each of the units of instruction. To determine the mean, the scores of all the students in each group were added together and then divided by the number of students. Then, for each unit of instruction (experimental trial), the control mean was subtracted from the experimental mean and the sign of the difference (+ or - ) was determined. Finally, the number of plus signs was determined by counting.

The total number of plusses observed was the information needed to test the hypothesis of this study. The decision rule, which had been determined before the experiment, was: with alpha equalling .0659 , reject the null hypothesis if the number of plusses equals or exceeds fifteen. Therefore, in each case, if the number of plusses was fourteen or less the null hypothesis was not rejected. If there were fifteen or more plusses the null hypothesis was rejected and the alternative hypothesis accepted because
this indicated that the means of the experimental group exceeded the means of the control group a significant number of times at the .0659 level of significance.

Three groupings of the students participating in the experiment were tested under each hypothesis. One group was formed by combining the scores of the Form I and Form II students for an overall test of hypotheses. The other two groups were composed of the individual Forms, I and II.

Means were calculated and the hypotheses tested for each of these groupings of students for both the post and retention tests. In the discussion which follows, programmed instruction and lecture-discussion are used instead of experimental method and control method.
I. HYPOTHESIS 1 - THE EFFECTIVENESS OF PROGRAMMED INSTRUCTION

The first hypothesis was that there is no significant difference in a Tanzanian secondary school between the performance of students taught agriculture by programmed instruction and the performance of those taught by the lecture-discussion method. The alternative or research hypothesis was that students taught by programmed instruction perform better than students taught by the lecturediscussion method. The test of this hypothesis provided an overall evaluation of programmed instruction as compared with the lecture-discussion method.

Hypothesis 1 - Posttests
The posttest results are shown in Table 15. (Appendix D contains the experimental trial means comparison for each statistical test") when the scores for all students in Forms I and II were combined, the programmed instruction method had a higher mean than the lecture-discussion method twelve out of the twenty-two trials. The decision rule for rejecting the null hypothesis requires at least fifteen plusses so the null hypothesis could not be rejected.

However, when the forms were analyzed individually it was found that in Form $I$ the programmed instruction method had a higher mean for fifteen of the twenty-two trials. This was sufficient, according to the decision rule, to reject

## TABLE 15

Plusses Observed from the Comparison of the Experimental and Control Group Means of all Students.

	Number of Plusses		
	All Students	Form I	Form II
Retention Tests	12	$15 *$	11
*Statistically significant when $\alpha=.0659$			

the null hypothesis and accept the alternative hypothesis that there was a statistically significant difference between the means in favor of the programmed instruction method. The Form II results had eleven plusses, an equal division of success between the two methods, not enough to reject the null hypothesis.

Hypothesis 1 - Retention Tests
The results of the retention tests given four to six weeks after the posttests are also shown in Table 15. Identical results, thirteen plusses, were observed for all three groupings of students. This positive advantage for the programmed instruction method over the lecturediscussion method was not sufficient, according to the decision rule, to reject the null hypothesis.

The results of the testing of the first hypothesis, an overall comparison of the programmed instruction and lecture-discussion methods, indicates that Form I students performed statistically significantly better at posttest time when using programmed instruction than when taught by the lecture-discussion method. No advantage for either method was shown by Form II students at posttest time. None of the retention test results were statistically significant in the overall comparison of the two teaching methods. A positive numerical advantage is shown by both Form I and Form II students for programmed instruction, but is not sufficient to be statistically significant.

## II. HYPOTHESIS 2 - STUDENT CHARACTERISTICS

The second hypothesis of this study was concerned with the relationship of selected student characteristics to the performance of students taught by programmed instruction. The hypothesis stated that there is no relationship between the performance of students taught by programmed instruction and differences in their sex, success in school, English language ability, and attitude toward the programmed instruction method. The alternative hypothesis was that the performance of students taught by programmed instruction is related to differences in their sex, success in school, English language ability, and attitude toward the programmed instruction method.

Sex
Sex - posttests. Sex was the first student characteristic analyzed. The scores were dicotomized according to the sex of the student and means calculated from them. The results of the posttest programmed instruction and lecture-discussion means comparison of the boys is shown in Table 16 . There were twelve plusses when the scores of all the boys were. combined, not sufficient to reject the null hypothesis. The Form I boys, as a separate group, had sixteen plusses which was a sufficient number to reject the null hypothesis. The Form II boys had thirteen plusses, insufficient to reject the null hypothesis.

TABLE 16
Plusses Observed from the Comparison of the Experimental and Control Group Means When the Students were Divided According to Sex

	Number of Plusses		
	Form I and II   Combined	Form I	Form II
Posttests			
Boys			
Girls	12	$16^{*}$	13
Retention   Tests.   Boys   Girls	14	$15^{*}$	13

*Statisticatly significant when $\alpha=.0659$

The same comparison for the girls is also shown in Table 16 and the results are similar to those obtained from the boys. The Form I girls had fifteen plusses which was sufficient to reject the null hypothesis. The Form II girls had thirteen plusses and the combined results of all girls had fourteen plusses, neither of which was sufficient to reject the null hypothesis.

These posttest results parallel those of the first hypothesis and indicate that the advantage for the programmed instruction method observed for the Form I students is distributed among both the boys and the girls. Similarly, the statistically non-significant results for Form II under the first hypothesis is not a factor affected by the sex of the student.

Sex - Retention Tests. The results of the comparison of the results of the retention test means for the boys is shown in Table 16. The results for three student groups, all boys and Forms I and II individually, indicated no statistically significant differences. There were nine plusses for the combined group, thirteen plusses for the Form I boys, and ten plusses for the Form II boys.

One statistically significant difference was observed in the results of the girls' retention tests as shown in Table 16. The combined group of all girls had fifteen
plusses, sufficient for rejection of the null hypothesis. But the null hypothesis could not be rejected in the form I group of girls with thirteen plusses nor in the Form II group of girls with fourteen plusses.

These results indicate that, when taught by programmed instruction, the girls performed better on the retention tests than did the boys. This is further supported by the fact that on the retention tests the girls in Forms I and II had higher numerical advantages for programmed instruction than did the boys. These results also indicate that, at retention test time, girls taught by programmed instruction tended to do better than girls taught by lecture-discussion. Success in School

The relationship of the students' success in school and their performance under the programmed instruction method was assessed in two ways. The first assessment was made on the basis of the students' academic record in agriculture class. The second assessment was made on the basis of their academic rank in their form (grade). In both cases the students were divided into upper and lower class halves on the basis of their rank at the end of the school term during which the experiment had been conducted.

Agriculture class rank - posttests. The results of the comparison of the posttest means of the students who ranked academically in the upper half of their agriculture class is shown in Table 17 . There were no statistically significant results. There were eleven plusses for the combined group, fourteen for Form. I, and ten for Form II. None was high enough to reject the null hypothesis.

There was a difference in the results of the comparison made with the students who ranked academically in the lower one-half of their agriculture class (Table 17). The combined group had sixteen plusses, the Form $I$ group fifteen plusses, and the Form II group sixteen plusses. In all three cases the nupl hypothesis could be rejected. This indicated that students who ranked in the lower half of their agriculture class performed statistically significantly better under the programmed instruction method than those under the lecturediscussion method.

Agriculture class rank - retention tests. The results of the retention test comparison of means is given in Table 17 for the students in both the upper half of their agriculture class and the lower half of the class. None of the six comparisons had sufficient plusses to reject the null hypothesis. The combined group in the upper half of the class had eleven plusses while the Form I upper half had twelve plusses

TABLE 17
Plusses Observed from the Comparison of Experimental and Control Group Means when the Students Were Divided According to Rank in Agriculture Class

	Number of Plusses		
	Forms I and II Combined	Form I	Form II
Posttests			
Upper half of agriculture class	11	14	10
Lower half of agriculture class	16*	15*	16*
Retention Tests			
Upper half of agriculture class	11	12	10
Lower half of agriculture class	14	12	13

*Statistically significant when $\alpha=.0659$.
and the Form II upper half had ten plusses. The lower half of the agriculture class (Table 17) had fourteen plusses for the combined group, twelve plusses for the Form I group, and thirteen $\mathrm{n}_{\mathrm{p}}$ pusses for the Form II group. Agriculture class rank - discussion of results. These results of statistical tests made on the basis of rank in agriculture class show that it made no difference whether a student in the upper half of his agriculture class was taught by programmed instruction or by lecture-discussion. The test results, both post and retention, showed no statistically significant difference between the two methods. However, the method of instruction did make a difference for students who ranked in the lower half of their agriculture class. The students who were taught by programmed instruction had statistically significantly higher marks on the posttests than those taught by lecture-discussion in both Forms I and II. On the retention test, there was a numerical, but not statistically significant, advantage for the programmed instruction method. It appears that programmed instruction has definite advantages for the poorer student and no disadvantage for the better student.

Form rank - posttests. The second assessment of the relationship between programmed instruction and success in school was based on the academic rank of the students in
their form. This rank was determined from a class standing determined by an average of their performance in all their classes at the end of the term during which they experiment was conducted.

The results of the comparison of the means of the posttests of students ranking in the upper half of their form is shown in Table 18. The combined comparison, Forms I and II together, resulted in fifteen plusses which was sufficient to reject the null hypothesis. The same is true in Form I; fifteen plusses resulted when the two methods were compared in that group and the null hypothesis was rejected. However, in Form II therewere only fourteen plusses, not sufficient to reject the null hypothesis.

Table 18 also shows the results of the comparison of posttest means between the two treatment methods for students ranking academically in the lower one-half of their form. The number of plusses in the combined group was sixteen, the Form I group also had sixteen, and the Form II group has seventeen. In all groups there were sufficient plusses to enable rejection of the null hypothesis.

These results indicate that form I students taught by programmed instruction performed statistically significantly better on the posttests than when taught by lecture-discussion. It made no difference whether they ranked in the upper or

TABLE 18

Plusses Observed from the Comparison of Experimental and Control Group Means When the Students Were Divided According to Rank in Form
*:

	Number of Plusses		
	Forms I and II   Combined	Form I	Form II
Posttests   Upper half of form   Lower half of form	$15 *$	$15^{*}$	14
Retention Tests   Upper half of form   Lower half of form	$16^{*}$	$16^{*}$	$17 *$
*Statistically significant when $\alpha=.0659$			

lower half of their form. This is consistent with the overall results observed under the first hypothesis, that programmed instruction was the better method for Form I.

The posttest results for Form II are divided. There was no statistically significant difference in performance between the two teaching methods for Form II students who ranked in the upper half of their form. However, the Form II students ranking in the lower half of their form produced statistically significant results in favor of the programmed instruction method. The test of the first hypothesis had indicated that form II students performed equally well under programmed instruction and lecturediscussion. The results here, however, indicate that this was true only for the better students, that the academically poorer form II students performed better when taught by programmed instruction.

Form rank - retention tests. The results of the comparison of the means of the retention tests of the students who ranked in the upper half of their form is shown in Table 18. The combined group had eight plusses, the Form I group thirteen plusses, and the form II group ten plusses. None was high enough to reject the null hypothesis.

Table 18 also shows the comparison of means of students who ranked academically in the lower half of their form. The overall comparison resulted in fifteen plusses which was sufficient to reject the null hypothesis. However, the Form I group had only thirteen plusses and the Form II group only fourteen plusses, neither of which was sufficient to reject the null hypothesis.

No statistically significant difference between the two teaching methods was observed at retention test time for students in either Form I or Form II who ranked in the academic upper half of their form. However, for students ranking in the lower half of their form, the programmed instruction method was superior. These statistically significant results for the combined Form I and II group and the numerical advantage for programmed instruction exhibited by the individual Form I and Form II groups again indicates that the programmed instruction method is superior to the lecture-discussion method for students who rank in the lower half of their form.
English Ability
English ability was another student characteristic which was analyzed to determine its relationship to student performance underprogrammed instruction. The rank of the student in his ENglish class at the end of the term during
which the experiment was conducted was the criterion used to divide the students into upper and lower groups.

English ability - posttests. The results of the posstest means of students ranking in the upper half of their English classes is shown in Table 19. The combined group had nine plusses. Form I had fourteen plusses and Form II had eleven plusses. Nonewas sufficient to reject the null hypothesis.

Different results occurred when the comparison of posttest means of those in the lower half of their English classes was made. There, as Table 19 shows, the combined group had eighteen plusses, the Form I group had seventeen plusses, and the Form II group had thirteen plusses. The results for the combined group and Form I group are sufficient to permit rejec̆tion of the null hypothesis. The Form II students in the lower half of their English class did produce a numerical advantage in favor of the programmed instruction method, but it was not sufficient for rejection of the ... null hypothesis.

English ability - retention tests. Jhe results of the comparison of the means observed on the retention tests for those ranking in the upper half of their English class is included in Table 19. The combined group had eleven plusses, Form I fourteen plusses, and Form II eleven plusses. A11 were insufficient to reject the null hypothesis.

TABLE 19
Plusses Observed from the Comparison of Experimental and Control Group Means When the Students were Divided According to Rank in English Class

	Number of Plusses		
	Form I and II   Combined	Form I	Form II
Posttests   Upper half of English class	9	14	11
Lower half of English class	$18 *$	$17 *$	13
Retention tests   Upper half of English class   Lower half of English class	11	14	11

*Statistically significant when $\alpha=.0659$

The comparison of retention test means for the students in the lower half of their English classes is also shown in Table 19. Each of the three groups had thirteen plusses. This indicated a numerical advantage for programmed instruction, but was not sufficient to reject the null hypothesis.

English ability, as determined by rank in English class; appears to be related to students' performance under programmed instruction. Students with greater English ability, upper half of class, performed equally well (statistically) under both programmed instruction and lecture-discussion methods of instruction on both the post and retention tests. However, programmed instruction was the better method for students ranking in the lower half of their class. The Form I students in the lower half of their English class performed statistically significantly better on the posttests when taught by programmed instruction than when taught by lecture-discussion. The Form II students in the lower half of their English class had a posttest numerical advantage for the programmed instruction method. On the retention tests, the students of lower English ability, in both Forms I and II, produced results which were numerically although not statistically in favor of programmed instruction.

## Teaching Method Preference

The students completed a questionnaire at the end of the experiment which included five questions about their preference of teaching method; programmed instruction or lecture-discussion. " (See Appendix E for a copy of the questionnaire.) The students were divided into two preference groups, those preferring programmed instruction and those preferring lecture-discussion. If three or more of their responses to the five questions (numbers $1,2,4,5$, and 7) were programmed instruction, they were placed in the group preferring programmed instruction. Likewise, if three or more of their responses were lecturediscussion they were placed in that group. Table 20 shows the distribution of the students according to the treatment they preferred. Approximately one-third preferred programmed instruction and two-thirds preferred the lecture-discussion method.

Method preference - posttests. Table 21 shows the results of the comparison of the means of the group of students who preferred the programmed instruction method. The combined group had seventeen plusses and the Form I and Form II groups each had eighteen plusses. All three were sufficiently high enough to provide a basis for rejecting the null hypothesis. This indicated that the students who preferred the programmed instruction method performed
TABLE 20
The Teaching Method Preference Distribution of Form I and II Students

Preference	Form I						Form II						Forms   I \& II   Combined	
	Stream A		Stream B		Total		Stream A		Stream B		Total			
	No.	Percentage												
Programmed Instruction	17	38.6	12	27.3	29	32.9	9	26.5	17	47.2	26	37.1	55	34.8
Lecture-   Discussion	27	61.4	32	72.7	59	67.1	25	73.5	19	52.8	44	62.9	103	65.2
Total	44*	100	44*	100	88	100	34	100	36	100	70	100	158	100

*One student in each stream left school before this information was collected.

TABLE 21
Plusses Observed from the Comparison of Experimental and Control Group Means When the Students Were Divided According to Teaching Method Preference

	Number of Plusses		
Posttests   Preferred   Programmed   Instruction	Forms I and I I   Combined	Form I	Form II
Preferred   Lecture-   Discussion	$17 *$		
Retention Tests   Preferred   Programmed   Instruction   Preferred   Lecture-   Discussion$\quad 12$	$18 *$	$18 *$	

better under that method than under the lecture-discussion method.

The same comparison made on the posttest means of those who preferred the lecture-discussion method, Table 21 , shows different results. The combined group had twelve plusses. The Form I group had fourteen plusses and the Form II group had ten plusses. None was sufficient to reject the null hypothesis.

Method preference - retention tests. The results of the comparison of means of the retention tests for those who preferred the programmed instruction method are shown in Table 21. The overall group had fifteen plusses and the Form II group had sixteen plusses. Both were sufficient to reject the null hypothesis. The null hypothesis could not be rejected on the basis of the twelve plusses observed in the Form I group.

Table 21 shows the results of the comparison of means of the group who preferred the lecture-discussion method. The combined group and the Form I group each had twelve plusses and the Form II group had nine plusses. None of the three was sufficiently high enough to reject the null hypothesis.

There results indicate a relationship exists between method preference and performance results. The students who indicated a preference for the lecture-discussion method exhibited no statistically significant difference between
their performance when taught by programmed instruction and when taught by the lecture-discussion method. This was observed on both the post and retention tests.

On the other hand, students of both Form I and Form II who preferred the programmed instruction method achieved statistically significantly higher scores on the posttests when taught by programmed instruction than when taught by lecture-discussion. The retention test results were statistically significant in favor of programmed instruction for Form II students who preferred that method. The Form I retention test results numerically favored the programmed instruction method, but were not statistically significant.
IV. OTHER OBSERVATIONS

Thirty statistical comparisons of student characteristics and experimental results were made of the posttest means. Fifteen of those comparisons had significant results. In addition, twelve of the other comparisons had results in which there was an even or greater number of times that the mean of the programmed instruction group was higher than the mean of the lecture-discussion group. In the three remaining comparisons the mean of the lecture-discussion group was higher a greater number of times than the mean of the programmed instruction group.

Thirty statistical comparisons were also made of the student characteristics and experimental results from the retention test means. Four were statistically significant for the programmed instruction method. Twenty of the other comparisons had results in which there was an even or greater number of times that the means of the programmed instruction group were higher than the means of the lecture discussion group. The remaining six comparisons had results in which the lecture-discussion means were higher than the programmed instruction means.

## CHAPTER V

PROGRAMMED INSTRUCTION: EFFECTIVE OR NOT?
A short review of the problem and its background, the design of the experiment conducted to find an answer to the problem, and a summary of the experimental findings is included in the first part of this chapter. The conclusions arrived at as a result of the experiment are then presented. Finally, the implications of the findings and conclusions are made.

## I. SUMMARY OF THE STUDY

## The Problem

Is programmed instruction an effective method of teaching agriculture in a Tanzanian secondary school?

This was the question for which the experiment conducted in this study attempted to provide an answer. The question developed out of the situation which existed in Tanzanian secondary education in 1972. At that time a reorganization of secondary schools was taking place which included the eventual introduction of an agricultural bias into almost one-third of the secondary schools in that nation.

The rapid expansion of agriculture into the secondary school curriculum, proposed in the reorganization plan, was slowed by several problems. These problems were created by the lack of teachers, the use of poorly qualified teachers, and the lack of teaching materials. A search for solutions to these problems indicated that programmed instruction might be useful.

The advocates of programmed instruction claim advantages for that method which would provide solutions to some of the problems observed in Tanzania. Programmed instruction could help make up for a lack of teachers because a larger group of students could be taught at one time than when using traditional teaching methods. Also, the use of
programmed instruction eliminates much of the preparation time a teacher needs when using a traditional teaching method. This would permit a teacher to teach more classes.

Good programmed materials, although not a substitute for a teacher, would help alleviate problems caused by underqualified teachers. Expert preparation of materials would insure that all students recieved a minimum level of education. The preparation of programmed materials in Tanzania would insure that they were appropriate for that country. This would also provide a solution to the problem resulting from the lack of teaching materials.

The question about the effectiveness of programmed instruction in Tanzania then arose. There is a great deal of information about the use of programmed instruction in the United States, but nothing was found about its use in Tanzanian secondary schools. Reports of its use in other developing countries indicated that it might be a useful method for Tanzania. It was then decided to investigate the possibility of using programmed instruction in Tanzania. The Experiment

An experiment with a posttest-only control group design was conducted to determine the effectiveness of programmed instruction in Tanzania. The location of the experiment, Tumaini Secondary School, was not randomiy selected. This
and the fact that Tumaini was a private school became the biggest limiting factors of the study.

Tumaini, at the time of the experiment, had entered the second year of a new agriculture syllabus. This meant that agriculture was taught to Form I and Form II students. All the students in these forms, boys and girls, participated in the experiment. The students were randomly assigned to the two streams in each form. These streams became the experimental and control groups for the experiment.

The experimental group was taught by programmed instruction; the control group by the lecture-discussion method traditionally used in Tanzania. The performance, as measured by a multiple-choice test of the material taught, of the students in the experimental group was compared with the performance of the students in the control goup to determine the effectiveness of programmed instruction. Posttests and retention tests were given. The experiment consisted of twenty-two trials. Each trial consisted of one unit of agriculture instruction.

The two streams of each form were randomly assigned to the two treatment methods for each experimental trial. This assignment was made with the condition that each stream experience each treatment an equal number of times. Each stream, therefore, served as the control group eleven times and as the experimental group eleven times.

The mean score of the students taught by programmed instruction was compared with the mean score of those taught by lecture-discussion for each unit of instruction. The results of the twenty-two experimental trial comparisons were statistically evaluated by a nonparametric statistical procedure, the sign test. A parametric statistical procedure was not used because the assumptions could not be justified in the setting of this study. The decision rule set for this study, before the experiment began, was: with alpha equalling . 0659, reject the null hypothesis if, out of the twenty-two experimental trials, the unit test means of the students taught by programmed instruction exceeded the unit test means of the students taught by lecture-discussion fiffteen or more times.

## The Findings

This statistical procedure was utilized to test two hypotheses. The first hypothesis involved an overall comparison of the performance of students taught by programmed. instruction with those taught by the lecture-discussion method. The null hypothesis was that the performance of students taught by programmed instruction would be no better than students taught by the lecture discussion method. The alternative hypothesis was that students would perform better when taught by programmed instruction than when taught by the lecture-discussion method.

The second hypothesis was concerned with the relationship between selected student characterisitcs and performance when taught by programmed instruction. The null hypothesis was that the performance of students taught by programmed instruction is not related to differences in their: sex, success in school, English language ability, and attitude toward the programmed instruction method. The alternative hypothesis was that the preformance of students taught by programmed instruction is related to differences in their: sex, success in school, English language ability, and attitude toward the programmed instruction method.

The results of the experiment were mixed. Neither hypothesis was fully supported nor completely rejected. Each hypothesis had some parts in which statistically significant results were observed and the null hypothesis could be rejcted and the alternative hypothesis accepted. Other parts of each hypothesis had results which were not statistically significant; for those parts the null hypothesis could not be rejected. A summary of the results of all the statistical comparisons made in testing these hypotheses is shown in Table 22.

The results of the test of the first hypothesis indicated that programmed instruction was a statistically significantly better method of instruction than lecture-discussion for Form I

TABLE 22
Results of Statistical Comparisons Between the Test Means of Students Taught by Programmed Instruction Versus Those Taught by Lecture-Discussion for Form I and II Agriculture Classes at Tumaini Secondary School, First Term 1973

*An X indicates a significant statistical difference ( $\alpha=.0659$ ) between the means in favor of those taught by programmed instruction.
students at posttest time. Four to six weeks after the posttest there was still a numerical advantage for the programmed instruction method, but the statistical significance had faded away. The Form II students produced results which indicated there was no statistically significant difference between their performance under the two methods of instruction.

Five subparts of the second hypothesis, which concerned the relationship between performance and selected student characteristics, were statistically tested separately. Sex of the student, the first subpart, was not a factor in posttest performance. The posttest results for the boys and girls of form II were not significant, while the boys and girls of Form $I$ produced statistically significant results in favor of programmed instruction. These results reflect those observed in the test of the first hypothesis, that programmed instruction was a statistically significantly better method for Form I students than was lecture-discussion.

The retention test analysis produced statistically significant results for the combined group of girls. This is confusing because neither the Form I nor Form II girls, as individual groups, produced statistically significant results. It indicates that the girls tended to perform better, at retention test time, when taught by programmed instruction
than by lecture-discussion. It also means that the girls performed better than the boys when both were taught by programmed instruction.

The second and third subparts of the second hypothesis concerned success in school. The academically lower ranking students in both Form I and Form. II achieved statistically significantly higher posttest marks when they used programmed instruction than when they were taught by lecture-discussion. This was observed when the comparison was made according to rank in agriculture class and when it was made according to rank in form. The statistical significance observed on the posttests diminished, so that at retention test time the only statistically significant results were for the combined Form I and II group who ranked in the lower half of their form.

English language ability, the fourth subpart of the second hypothesis, appeared to be related to performance in the experimentfor students of lower ability. The Form I students who ranked in the lower half of their English class achieved statistically significantly higher posttest results when taught by lecture-discussion. The Form II students in the lower half of their English class produced a numerical advantage for the programmed instruction method, but it was not statistically significant. At retention test time, the results, again, were not statistically significant for any student group.

The final subpart of the second hypothesis concerned the students' attitude toward programmed instruction. The Form I and Form II students who preferred the programmed instruction method achieved statistically significantly higher posttest marks when taught by programmed instruction than when taught by lecture-discussion. On the retention tests, the Form II students preferring programmed instruction produced statistically significant results for the programmed instruction method. The Form I students showed a numerical advantage for programmed instruction, but it was not statistically significant. The analysis of the test marks of the students who preferred the lecture-discussion method indicated that there was no statistically significant difference between their performance under the experimental methods on either the posttests or retention tests.

The overall finding of the study was that programmed instruction was as effective as the lecture discussion method and in some aspects more effective. Sixty-six comparisons of the means of the two teaching methods were made in this study. The results of fifty-one comparisons showed a numerical advantage for the programmed instruction method; twenty of which were statistically significant. Six comparisons had equal numerical result's for the two methods. Only seven of the comparisons resulted in a numerical advantage for the lecture-discussion method.

## II. CONCLUSIONS

The results of this study cannot technically be generalized outside the realm of the setting of the experiment because the location for the study was not randomly selected. But the results of this experiment can serve as a guide and indicator of what may be true in related areas. The similarity of Tumaini Secondary School students, the subjects of this study, to other secondary school students in Tanzania was not determined. However, the experience of the investigator indicates that the similarities are much greater than the differences. Tumaini students and other private school students had no known differences. The only known difference between private school and public school students was that the students in private schools had failed to be admitted to a public school; a difference based in a one-time primary school leaving examination. Completion of primary school and attendance at a secondary school were things which all secondary school students had in common and made them different from the general population of Tanzania.

The following conclusions seem logically drawn based on the results of the experiment in agriculture classes at Tumaini Secondary School and on the personal experience of the investigator:

1. Programmed instruction should be as effective a method in other private secondary schools in Tanzania as it was at Tumaini. The students in all Tanzanian private secondary schools have two common factors: a) they failed to qualify academically for public secondary school; and b) theyare able to pay the fees to attend a private school.
2. Programmed instruction would probably be an effective teaching method in public secondary schools.
3. Programmed instruction should be as effective in teaching factual information in other classes as it was in agriculture.
4. Programmed instruction must be effectively introduced to the students in order to obtain the best results.
5. The secondary school syllabus could be more effectively standardized throughout Tanzania with the use of programs adapted to or developed within the coutnry.
6. The problems of teacher shortage, use of underqualified teachers, and lack of material which hinder the development of agricultural secondary schools in

Tanzania, could be lessened by developing the suitable parts of the agriculture syllabus in a programmed format.

## RECOMMENDATIONS

Given the above data and conclusions, the following recommendations are made for the implementation of programmed instruction in Tanzanian secondary schools:

1. Programmed instruction should be introduced into Tanzanian secondary schools whenever and wherever possible.
2. Programmed instruction should be experimentally tried in a public secondary school and in a nonagriculture subject matter area to demonstrate its wide application.
3. Ministry of National Education officials must make a commitment to furnish financial and staff resources needed to develop or adapt programs for Tanzania and to implement their use.
4. Teachers must be trained to insure that the programmed materials will be used effectively.

## IMPLICATIONS

The implications of the development of programmed instruction as a valid teaching method in Tanzanian secondary schools would probably result in:

1. More students being taught by fewer teachers.
2. A faster rate of expansion for education.
3. A greater standardization of secondary education.
4. A faster rate of social and economic development for Tanzania.

## BIBLIOGRAPHY

- Apter, Michael J. and David R. Boorer. "The Effect of Mul-tiple-Choice Pre-Testing on Post-test Performance in Programmed Instruction, "Programmed Learning and Educational Technology, April, 1971, pp. 125-130.
Armbrester, P. Vernon, Newton M. Baughman, and Jon R. Moris. "Agriculture Science for Tanzanian Secondary Schools." Program proposal USAID/afr. 438. Morgantown, West Virginia: West Virginia University, 1969. (Mimeographed.)
Bradley, James $V$. Distribution-Free Statistical Tests. Englewood Cliffs, New Jersey: Prentice-Hall, 1968.

Brethower, Dale M. Programed Instruction: A Manual of Programing Techniques. Chicago: Educational Methods, Inc., 1963.

Bunyard: John. "The Learning of Nigerian Secondary School Children From Programmed Material," Programmed Learning and Educational Technology, October, 1971, pp. 257-265.
Campbell, Donald T. "Factors Relevant to the Validity of Experiments in Social Settings, "Psychological Bulletin, July, 1957, pp. 297-312.

Experimental Julian C. Stanley. Experimental and QuasiExperimental Designs for Research. Chicago: Rand McNally and Company, 1966.

Champion, Dean J. Basic Statistics for Social Research. Scranton, Pennsylvania: Chandler Publishing Company, 1970.

Commonwealth Education Conference. Report of the Fourth Commonwealth Education Conference (1968) Lagos. London: Commonwealth Secretariat, 1968.

Conovers" W. J. Practical Nonparametric Statistics. New York: John Wiley and Sons, 1971.

Corcoran, Bert $W$. The Pros and Cons of Individualized Programmed Instruction for Indian Students. Washington, D.C.: U. S. Department of Health, Education, and Welfare, Office of Education, 1970.

DeCecco, John P. (ed). Educational Technology. New York: Holt, Rinehart, and Wínston, 1964.

Ferguson, George A. Statistical Analysis in Psychology and Education. Thirdedition. New York: McGraw-Hill o Book Company, 1971.

Good, Carter V. Introduction to Educational Research. Second edition. New York: Appleton-Century-Crofts, 1963.

Government of Tanzania. Tanzania Second Five-Year Plan for Economic and Social Development, 1st July, 1969- 30th June, 1974. Dares Salaam: The Government Printer, 1969 .

Hartley, James. "Programmed Learning in Emerging Nations," Programmed Learning and Educational Technology, May, 1964, pp. 21-25.

Hays, William L. Statistics. New York: Holt, Rinehart and Winston, 1963.

Hyman, Ronald T. Ways of Teaching. Philadelphia: J. B. Lippincott Company, 1970.

Jacobs, Paul I., Milton H. Maier, and Lawrence M. Stolurow. A Guide to Evaluating Self-Instructional Programs. New York: Holt, Rinehart, and Winston, 1966.

Kay, Harry, Bernard Dobb, and Max Simel. Teaching Machines and Programmed Instruction. Middlesex, England: Penguin, 1968.

Klaus, David J. "The Art of Auto-Instructional Programming," Educational Technology, John P. DeCecco, editor. New York: Holt, Rinehart, and Winston, 1964. Pp. 35-50.

Kraft, Charles H. and Constance van Eeden. A Nonparametric Introduction to Statistics. New York: MacMiTYan Company, 1968.

Kuethe, James L. The Teaching-Learning Process. Glenview, Illinois: Scott, Foresman, and Company, 1968.

Lange, Phil C. "What's the Score on: Programmed Instruction," Today's Education, February, 1972, p. 59.

Lawless, C. J. "Programmed Learning in the Developing Countries of Africa," Programmed Learning and Educational Technology, July, 1969, pp. 189-196.

Lindvall, C. M. and John O. Bolvin. "Programmed Instruction in the Schools: An Application of Programming Principles in Individually Prescribed Instruction," Programed Instruction. Phil C. Lange, editor. Chicago: The National Society for the Study of Education, 1967. Pp. 217-254.

Lysaught, Jerome P. and Clarence M. Williams. A Guide to Programmed Instruction. New York: John Wiley and Sons, 1963.

Marascuilo, Leonard A. Statistical Methods for Behavioral Science Research. New York: McGraw Hill Book Company, 1971.

Ministry of National Education, Tanzania. "Diversification/ Vocationalization of Secondary Education." Dar es Salaam: Ministry of National Education, 1971. (Mimeographed.)

Nyerere, Julius K. Education for Self-Reliance. Dar es. Salaam: The Government Printer, 1967.

Owen, S. G., R. Hall, J. Anderson, and G. D. Smart. "A Comparison of Programmed Instruction and Lectures in the Teaching of Electrocardiography," Programmed Learning and Educational Technology, May, 1965, pp. 2-14.

Pocztar, Jerry. The Theory and Practice of Programmed Instruction. Paris: UNESCO, 1972.

Schramm, Wilbur. "A Note on Programmed Instruction," Programmed Instruction in West Africa and the Arab states, P. Kenneth Komoski and Edward J. Green, editors. UNESCO Educational Studies and Documents number 52. Paris: UNESCO, 1964. Pp. 6-9.

Siegel, Sidney. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw Hill Book Company, 1956.

Silverman, Robert E. How to Write a Program. Carlisle, Massachusetts: Carlisle Publishers, Inc., 1970.
"Auto-instructional Devices. Some Theoretical and Practical Considerations," Journal of Higher Education, December; 1960, pp. $\overline{480-486 .}$

Stantey, Julian C. "Quasi-Experimentation", School Review, Autumn, 1965, pp. 197-205.

Stolurow, Lawrence M. "Programmed Instruction," Encyclopedia of Educational Research. Fourth edition. Robert L. Ebet, editor. New York: MacMillan Company, 1969.

Trends "Implications of Current Research and Future Trends," Journal of Educational Research, June-July, 1962, pp. 519-527.

Tanganyika African National Union. The Arusha Declaration. Dar es Salaam: The Government Printer, 1967.

## APPENDIX A

Beginning of Term Agriculture Class Questionnaire

1. Jina lako $\qquad$
2. Mvulana au mbichana $\qquad$
3. Tarehe kuzelitra $\qquad$
4. Jaza jina la kijijji $\qquad$ là nyumba yako. milaya misoa nchi $\qquad$
shamba , kijiji $\qquad$ , kijijii cha
ujamaa $\qquad$ au aiji $\qquad$
$\qquad$ -
6.Je, ni Mitanzania $\qquad$
5. Jina la shule ya msiñi ulipotoka $\qquad$
6. Mwaka uliofuzu darasa la saba $\qquad$
7. Kama nwanafungi va IEidato cha pili, ulinaliza kidato cha kmenza shulc ya $\qquad$
8.     - Kazi ya baba $\qquad$
9. Baba yako amemaliza darasa la cani la mmisho $\qquad$
10. Kazi ya даma $\qquad$
11. Marna yoko anemaliza darasa la gani la maisho $\qquad$
12. Una kalsa wangapi $\qquad$
13. Jna dada manieji $\qquad$
14. Dini yako $\qquad$
15. Kwa nini unacona sisule la selkondari?
16. Je, un=pende kufana kazi ya shule?
17. Mna fugaji manyana gani nyumbani:
nembe $\qquad$ , mbuzi $\qquad$ kondoo $\qquad$ _'
punda $\qquad$ sungura $\qquad$
18. Mna fugaji ndege gani nyumbani: kuku __, bata $\qquad$ , пјіна $\qquad$ , bata mzinga _
19. Je, mne tunza nyuki nyumbani? $\qquad$
20. Hna panda mimea sani nyumbani: mahindi $\qquad$

21. Unapenda kufanya kazi gani baada ya kumaliza masono yako? $\qquad$

# (English Translation) <br> Agriculture Class 

1. Your name $\qquad$
2. Boy or girl $\qquad$
3. Date of birth $\qquad$
4. Fill in the name of the village $\qquad$ where your home is located. district $\qquad$ region $\qquad$ country $\qquad$
5. Where is your home located (choose one) farm $\qquad$ , village $\qquad$ , Ujamaa village $\qquad$ , city $\qquad$
6. Are you a Tanzanian $\qquad$
7. Name of the primary school you attended last $\qquad$ and its address $\qquad$
8. Year you finished standard seven $\qquad$
9. If you are in Form II, where did you finish Form I $\qquad$
10. Father's occupation $\qquad$
11. What was the last school grade your father finished $\qquad$
12. Mother's occupation $\qquad$
13. What was the last school grade your mother finished $\qquad$
14. How many brothers do you have $\qquad$
15. How many sisters do you have $\qquad$
16. What is your religion $\qquad$
17. Why are you studying at a secondary school $\qquad$
18. Do you like to do school work
19. What kinds of animals do you have at your home: Cattle $\qquad$ , goats $\qquad$ , sheep $\qquad$ , donkeys $\qquad$ , rabbits $\qquad$ .
20. What kinds of birds do you have at your home: chickens $\qquad$ , ducks $\qquad$ , doves $\qquad$ , turkeys $\qquad$ .
21. Do you keep bees at your home? $\qquad$
22. What kinds of crops do you plant at your home: corn $\qquad$ , millet/sorghum $\qquad$ , beans $\qquad$ , ground peas $\qquad$ , cotton $\qquad$ , cashew $\qquad$ , peanuts $\qquad$ , pineapple $\qquad$ , peas $\qquad$ , sugar cane $\qquad$ , vegetables $\qquad$ , and other such as $\qquad$ , $\qquad$ , $\qquad$ .
23. What kind of work do you want to do after you finish your studies? $\qquad$

## APPENDIX B <br> Programmed Learning Units in Agriculture



## Introduction to programmed instruction

Unit
Number

Unit Title

Page

1 Tyres for farm equipment 153
2 Raising dairy calves I *. 168
3 Raising dairy calves II 185
4 Raising dairy heifers and bulls $\quad 199$
$5 \quad \begin{aligned} & \text { Caring for the sow and litter at } \\ & \text { farrowing time }\end{aligned}$
6 Digestion in animals 228
7 Animal nutrition 244
8 Feed characteristics 260
9 Vitamins 275
10 Minerals 285
11 Plant nutrition 299
12 Land I 313
13 Land II 335
14 Castrating, docking and dehorning 354
15 The cow's udder and how it functions 371
16 Small engines I 388
17 Small engines II 402
18 Introduction to animal breeding 421
19 Animals breeding, Part II 442
$20 \quad \begin{aligned} & \text { Making and using concrete on the farm, } \\ & \text { Part I }\end{aligned} 459$
27 Making- and using concrete on the farm, 476
22 Making and using concrete on the farm, 495

## I:TRODECTION TO PRCGRAYPGD IHSTRUUMION

This is a prograrmed instruction unit to introduce you to programed Instruction.

In this unit you ars to learn:

1. The usefulness of procranmed instruction.
2. .\#av to use a prograined lesson.

## Instructions

You are provided with a progran and a combination ansmer sheet and makl to cover the answers.

1. Pl,ice the nask (answor sheet) over the answer in $a$ way that exposes one question (frame) at a time.
2. Trite your answer on the answer shect.
3. Move the anawer sieat down to ex-ose the next frame and ansref to tise the previous frane.
4. Should your anbyof be frong; write the correct answer above or along adde - do not erasc your incorrect arswer.





Homo $\qquad$ Fora $\qquad$
TIEST
ISARODUCTIOA: TU PROERASRAD IMSTRUCTIOM

$3:$

1. A nev type of teaciting and learninc athod wiifch ve will ure is $\qquad$ .
a. exjeriments
b. lectures
c. pictures
d. programed instruction
e. textbooks
2. In this new kind of instruetion students are required to write $\qquad$ .
a. answers to questions
b. assays
c. lossons
d. Ionc arswers
e. seatences
3. Samil bits of information are contained in spaces culled $\qquad$ in ti:is type of instruction.
a. boxes
b. frames
e. こaragraphe
d. wentences
e. squeres

When of studeri hos difficulty using a programed loncon ine can jet hely from $\qquad$ .
a. a textbook
b. another student
c. his fatiser
d. the headmaster
e. the teachor

## TUMATHI SECOMDARY SCHOOL

## TYRES FOR FAPM EQUIFIENT

Thice is a procramed instruction unit on tyras for farm equipnont. In this unit you are to learn:

1. the parts of a tyra.
2. that there are ceveral types of tyres.
3. the meaning of ply ratings, tyre grades and tyro sizes.
4. when to replace tyres.
5. hot tyres should be stored.
6. the importance of proper inflation.
7. how drive wheel slizpage can be reduced.

## Instructions

You are provided with a program and a combination anascr shect and madk to cover the answers.

1. Place the mask (answer sheet) over the answer in a way that axposea ono question (frame) at a tine.
2. Write your answer on the answer sheet.
3. Move the onswer sheet down to expose the next frame and anamer to the previoun irame.
4. Should your answer be triong, write the correct answer above or alons oide - do not erase your incorrect ancwer.









distortod	34. Larese tyres can be stored vortically in stalls. shift tho tyre position periodically to prevent ilat spottine. samiler tyres can bu pilud dorizontally. Do not pile tyros so hieh that the botton tyres are dictortod.   Tyres con be stored in pilce as lone as the botton tyrea do not boconc $\qquad$ "
grebauro	35. Invortence of Proner Inflation   UGe of proper pressuri is one of the nast inportant factors in satiefactory gurforamen ard asintanance of tractor erd inpleant tyres. Maintaining correct prosaure ic tic jecy to lons tyre life. Inproper inflaticen prossure is a lareo contributer to tyre foilure. Miany bind of fabric breaks tiat aicht ordinerily dectroy a. tyre $c=n$ be avoicad by frequant chuckine: of preseurc.   proper p $\qquad$ is recessary fer lon: tyre lifo.
underinflation overinflation	36. Undarinfotion (too little pressura) or overinflation (too wuch proseuro) can ruin tyres in a hurry. Underinilation mated the tyre soft and will cauce tio ridowall areas of the tyre to flex amorablly, wartually caucing brciates and separations in tho cord body. Overinfliution ackec the tyre body ririd, reduciaf its resietance to iapact and thus meleing it suscoptiblo to fabric breaks.   U Inflation and o inflation :re both heraful to tyrcs.
inflation	37. Tyre anpuarance, EvG: i. ol: does not sevo a pressuro Eaucer it is possible to jude tyre inflation for cenoral uso by appearance. Altrys bo alert for any tyre that appoare too aoft. An underinflatud tyre i. 3 badly buekled in the body on the undereside whon a traetor is atencing.   The $i$ $\qquad$ of a tyro can be costiantod fron its appearance.
inslated	38. An overinflated tyre has the tread bars off tie erount at the outsine odec. A peoperly iaflated tyro has tho entire length of the lower tread bar in contact with the Ground, the there is a very $31 i \operatorname{cht}$ buckling in the body of the tyre. If you viud the tyre from the direction of travel, there will be a slidett bulge at the botton of the tyre. An underinfletec tyre will have $=$ larce bulce in this area.   A properly i $\qquad$ rear tractor tyre has the lowest tread bar in full contect with tho cround.
caugu	39. Chcecin inflation presour irgqueitly. Check inflation proceure evory two or true veve. nocomendod infletion. pressuro based on total lest on tyres should bo used. For accuracy, use a spuci::? lov-prusaure gatugo trith onom kilogran cradations. Chick tin ;apo ngainat n now enuco occasionsily for accuricy. Gauces nay fet out of ordor and incorrect readings .ill bo niode.   Thro procoure ohould be cisectid froquently with a $\qquad$ -


botton	40. Uee a special inflatien couce to teat tyres filled with water. To deturnine the true operating pressure for $=$ vator-fillod tyru, tha $v$ ive should be at the botton of the tyrc. Trest tyras filled with weter wha hetion, cold and before the tractor is put into opuretion, beciuce the pressurc riscs as tho Eluid beconus wara.   Water-filled tyres siould be pressure chacked with tho value at tise $\qquad$ of tie tyre.
cold	41. A tyre tint las sufficient pressure whin it is hot rey bo umberinflated when it cools. Any sanil loss of air fron a liquid filled tyro onkes a aric:l greater decrease in prescure thion if tie tyre is filled 100 purcent with sir.   Yater-filled tyres should be precsure checked when thoy are c $\qquad$ -
valve eaps	42. ilveys replnce the velve caps to prevunt dirt frola gettin into the valve and to rovent the loas of ats in case the velvo icals.   $\frac{\mathrm{v} \quad \mathrm{c}}{\text { and provent }}$ should be used to keop the valvo elean
ploughine	43. Inflation adjusta-nts. To be sure the proveure in correct for certeire socific conditions, on say s.ed to neke certair ealjuitnuate. plougiting csuccs etilt to tho tractor beceuse one rear whece is usualiy in the furron. The pressurc should be corrected to conponsato for t:is tilt.   Tyrc pressure should bo adjusted when $:$ tractor is used for $p$ $\qquad$
-- .	44. The tilt of the tractor couses a sidowise thrust of thic reight aninst the trio. This thrust, cerbinced inith the heavy pull of the plough, canses the inawe siduvali of the tyro to bucklv. Tlic repuited flemint cruses cord oeparation :rad a sorics of brooko on the inside of the sidetrall ares. :then sir of air end water are used, facreass the pressure i: tac tyre on the furrow whers to 2 kilograns creater then that in the land tyre, providing daxinut feco: anded pressurc is not axcoeded.
Incroabed	45. Adjuct the plough lifte: li:terally so tint the tyre dous not nood to croud the furro: uall in ortce to ylough a fuil ridth cut. The furevi-nizol tyru con usunilly be obcorved by the operator so he should notice whether or not the tyre is erinkling or buckine.   Than ploughing, the pressure of tik furrow-whool tyro 151 $\qquad$ .


incrcased	46．Sidchil gavine cevese the reer tyrus on ench side of       prosisuro in both rent tymus dhon only one tyre is ir tho down pooition，it as my nuccosary to incruaze til piccsurs on the tyrs in ti：c down postition．    buih rear tyros should be $\qquad$ －＇
leand or foot	         р以   A $\qquad$     
clipuag	48．Beduction if                         $\qquad$ is norant．
traction	      $\xrightarrow{T}$ $\qquad$  
veight	         of $\because \ldots$ ．ニッ：   2\％e Granbe：2H2 in wincreased hy raing $\qquad$ tu the reav－i tibtaztor．



dry	57. Dry ballast has been in uae for several jears but it his not received the wholchoarted andorsanont by tyre manufacturers for several ruasuno. Onc of thi najor problenc with dry ballagt is the difficulty of anintainiag propor inflation prossuro.   It in ofton difficult to maintoin proper type pressure whon using $\qquad$ ballast.
Iiquid	58. The pressurc locs is dus to the problen of kecpinc an air-tight seal in the valva because the ballast naterials kece the valve fren functioning properly. The lose of Inflation cauces early tyre failures. Other difficulties Incluae probleas of adilise and renoving ballast and those connected with repairing tyros.   Most people prefur $\qquad$ ballast over dry ballast.

The infornation in this unit is based on VaS unit 3031 of the Vocntional Acricultural Service of the College of Arriculture, Univorsity of Illinois.
$\qquad$ Form
TEST
THRES FOR FARM EQUIPMUNT

## UNDERUIHE T:E CORAECT AHSTER

J. Tho
io the partion of the tyre mhich contacts the road or ground surface.

a.	bead
2. ply	
3. ríc	
4. tube	
5. troad	

2. Tho $\qquad$ is the outlet paseage for air from inside tho tyre.
a. bead
b. cord
c. Innertube
d. rim
o. velve sten
3. The ply ratine is an indication of the $\qquad$ of a tyre.
a. price
b. shape
c. size
d. strenfit:
e. quality
4. A tyre cerked $12-38$ mill fit a ris which ia $\qquad$ inches ride.

a.	6
b.	12
c.	19
d.	38
e.	50

5. Jyres should be replaced when $\qquad$ -
a. the tread is half worn avay
b. the tread showlder touches the ground
c. tho tyri pressure becomes too great
d. they are five years old
e. they are worn enough to cause excessive alippage
6. Unmounted tyres should be stored in a $\qquad$ place.

> a. cool, damp, dark
> b. cool, danp, light
> c. cool, dry, dark
> d. warn, damp, dark
> e. vara, dry, lizht
7. Exposure to of contact with $\qquad$ vili not cause tyres to deteriorate.

```
a. concrete
b. ozone
c. notrol
d. rain
e. sun
```

8．Overinflation is bad for a tyre becauce $\qquad$ －
a．it may cauce tho tractor to tip over．
b．It becones too heavy
c．Its impact rosistance is reduced
d．ite traction ic increasud to a danderous level
c．the eidevalls then flex abnornelly
9．Then plouthing，the prosourc in the raor furcow－aneel of the tractor should be $\qquad$ the otloer roar whoel．
a．creater than
b．loes tlien
c．tive atce as
10．The drawbar puli of a tractor can be increasod by $\qquad$ ：
a；addure vefght to the rear wheels
b．Greasiag the tyre treads
c，Encrasing tyre slippage
d．overinflating the tyres
c．undordiflatine the tyres
11．The nost comon acterial used for liquid reightine of tyree 16 $\qquad$ －＇
a．nercury
b．potこここ
c．wate：
d．water and calcium cinlorido
o．wator and sand
12．A tyre should bu filled to $\qquad$ percent of its capacity when using liquid weighting．
a． 25
b． 50
c． 75
d． 90
c． 100
13．The nost Emportant factor in obtaining a long service life from tyrea is $\qquad$ —•
a．daily inspection
b．Maintai ting correct inflation prossure
c．pro：er storage
d．regular cleaning
e．rebular－sc
14．Tho
is the part of a tyre contcining tires which anchor
the body pies．
a．beed
b．fin
e．tread
d．tube
d．tube
o．vel．vo

## TUMATNI SECONDARY sC:LOOL

## RAISTIGG DATRY CALVES I

Thic is a protraned instruction unit on raising dairy calves.
In this urit you are to learn:
3. the cere of cove at calvinc time.
2. the care of new-born calves.
3. threc methods of fecdine deiry calves:
a. liaited whole- 51 k and dry-colf-starter method.
b. whole-gilk aethod.
c. akinnile nethod.

## Instructions

You are provided with a procrai and a coubination answer sheot and mask to cover the answers.

1. Place the uask (onswer sheet) ove the insmer in a way that exposes onc question (frame) at a tice.
2. Trite your enawer on the answer sheet.
3. liove ti:e answer shect down to expose the noxt frape and answer to the previous frante.
4. Should your answer be wronf, write the correct answer above or alone side - do not erase your incorrect answer.


purchasing replaceaente   raicing calves	1. In rovenent in the inherent proacin: ability of a dainy herd thay be acconplished throus: cither purelincing réplaconents or raigine calves. Thw noct certain way of inproving the ability of the herd is to brecd the cous to sirco of lenom high-traistittinc, ebility, and to produce calvos that may be used are repleceriente.   Tho producing abillty of a doiry hord nay bo inproved by $\qquad$ or $\qquad$
four	2. Dairy cooperative records shorf thet the amund herdyopl.ceicent rate is about 20 perecnt. Not all the calves thet aro born aill live, develop, or breed satisfactorily, so about one-third as anay haifer celves nesd to be raised each year 20 there are cons in the herd. Then selection is possible, keep only calves from the best cowe.   an ujanac villago with a herd of twolve dairy cows needs to raise $\qquad$ heifer calves each year for herd rezlace:nint.
	3. Cero of the cow at Calvine Thine.   Nearly tho tialds of the develojnent of the foetus, or unborn calf, is curing tice linst threc nonths of the geotation period. Thile the foctal requiresents for Eromth ars net larce, tices is e direct relation bet:ocen the fecdine of the dan and the dovelopnent of the foetus and the vigour and thriftinoss of the newborn ealf.   A cov aust be fed vell if her I $\qquad$ is to devilop irell.
colostrun	1. The nutritive value of tice colostrue (the first rilk) is irfluenced by the ration fed prior to calving. The ration of the dan must bo ariequete in phosjhorous, cerlefur, vitanins $A$ and $D$, protein, and cinerify. To supply these requireuente, feed high-quality focds, ospecii.ily cood may.   C $\qquad$ is the first aille a cow produces after calving.
6 to 8	5. It is ipportent to dry off cows six to eifint vecks before they are tue to freshen sat to conilition theid properly for freshe:ing and for wroduction durins the next Iectation. Feod the dry cow all. the eood-quality rixed or legure hay sha will cat if eood-quality pasture is not arailable.   Cove should be dricd off $\qquad$ to $\qquad$ weoks before they are due to calve.
concentrate	6. Good-quality hey or pasture is not only an econonical courco of total diecostible nutrivats and of protein, but furntshen vitarine $A$ and $D$, esleiur, and gost of tise othur miner:is needed. The try cont nleo needs to be fud snough lor-protein concentrates to builil un a reserve of body int.   A dry :ow chould be fod both rou;inge (hivy or patioture) and a - onmprotein $c$ $\qquad$ -


1.75 to 2.8	7. A nixtury of 600 : $1110, \mathrm{r}$ ge of cureal ar-ins, 300 kilograts of wheat bran, and 100 kiloarong of sojbean rian auke $n$ food concutrats ration for tide dry cow Voually from 0.250 .4 kizocrus of concontrate is neoded cioily per 50 kilogrurn of body weight to got cove in tesirablc condition. Frue accec: to rater and ialt is also neceszary.   A dry cow weighing 350 kiloerans noude fron $\qquad$ to $\qquad$ kilo;rans of concentratu d.aily.	,
Incative	6. Achitional anounts of thent bran, aolasses, or other lexntive feeds najo be sujetituted for sill or part of tide concentrate nixture a fer dye before and after frcstiving.   A 1 $\qquad$ food nay be woin just bofore and after frestiming.	
freshening (colvint;	9. A forr diys befort the cou is du to freshen, stro3 her in $:$ roony, vell-heded wox stell. It is a good practice to thorouflily clen ind disinfect the anternity st?ll cac: time it is lacel. A anall posture near the harn, and -iay frue the hard aloo nakea a cood place for cows to froshen during worn ery veatior.   A cou b:ovild be put into a social stall or pasture for $£$ $\qquad$ .	$\therefore:^{\prime}$
283	10. The :orual ecstation period for cows is 203 days. Signs of auproaching fresiensing include a rimein: and loosenine of the ligaments around the twil head, filling of the udcer sid teats with colostrun, end a restles norvous diciosition on tis pert of the coll. Yoat cows rivo birti: to thcir calves whithout difiriculty, but it is good practice for a yorson to be on hand to render aid if nocescar's.   The gestation period for $=6$ :76 is $\qquad$ Rays.	
front feet	11. In norni calving: the ca-fis front foot ap pax firat with the head on $t$ 'x front Lugs. Usuilly the calf ic born arithin an horr afisi dilivery starts. If the cow secans to be havire aifficulty, oxariac hor to noo if tha calf is too lares to cone terou in hur mivis or is fin an abnoranl yosition, if tis calf is not in a noseal position, e pursor ma; heve to pus: it back into the uterus and straishton it.   A oulf is nornally born wit: the $\qquad$ appearine first.	$\because$ $\because$ - -
pullin;	12. If the roation is normal, aceizteree, if nooded, can be civen by pullina on tid c.ilf won the cow strains. A vetcrinary officer day bu reouired if the farmer is inc: perinaced or the delivery is complicatec, Care ruet be talken to be: that tive coir does nut becone cialled.   A cow nay be assiatud in calving by 2 $\qquad$ on the calf if the pocition of the calf is nornal.	






one	E1. Dry Cole Startor. Fewd the dry stertur at the berianing of the sucond wek. To. ive the can $a t$ tote of the startor, rub a little int: tio calf's acutin, wascially fter ench iouding oi gille. Puttine; frest zinctor in the foed box cach d:y alco belpe to increase concwiption.    calf will cle:n up.   Dry cilf starter is first fed whotho calf is $\qquad$ wels old.
12 to 14	reailily oat lari; soounta of steztor while othera arc clowor to accopt it. Fued saci: cilf =11 of tio stortor it       bricdo. For n mejority of cilves, thin ancunt in rectisd at sbout 12 to 14 mocks oi sce.   During the first $\qquad$ to $\qquad$ wedis calvos should be fed no inuch dry c: in startor as troy will eat.
dry pcllets	of theoc rore soli in the ferm of dry cical, gone in pellets ald others as : aixture ef noal anel meliets. Soins erlves any profer a starter in tiv noen form will otiers tile nore meadily to jelletis. Exoriconte zhol no particulnr sdventage to :itter type ai atorter or $t$ : a nixiure of    the minufacturer's dircetinne a. clucely $\because$. possible.   Gomercinl colf startors : an y bs in the formofad nonl or $p$
- =	377. Ir experimuts on diffcsent aturtive and acthods of feeding then, no one starter hes proved to be consjeteatly bettor thon athers. On the binibs oi sorne of tivese invoctizations, a hom-azde aixturi ti.nt hes given jood results is as follons:   Grounci raize (ycllow)   50 purcent (by weizht)   Growid oats   20 icrecnt   Soybean meal   27h purcent   Sterned bonraual   1;2 pereont   Salt   1 percont
water	38. Tator. Calvec otould havo fres accoss to cloan, frosh Fater at ill tinces after they are about threc wocise of age. This in eoveially invortant with the dry-otarter sybton beczuze the asuli of nill fod is relatiouly cianl, and young, erouiag aninals have a hï̈h vater requireavist.   Aftor three wooks of age, calves nocd frec access to w $\qquad$ -
Erowine	35. Grain inxture. Then a calf xwacies a mavioun eonsunption of Tron 1.6 to 1.0 kilogrins of $\mathrm{c} \cdot \mathrm{lf}$ sterter, or at abect 12 to $7^{4}$ wecks of ace, the feed e:n bo Eradually chonged over to : Growing or fitting mixtire.   After the starter mixture $a$ calf changec to a $\underset{\sim}{x}$ mixture.

6

- -	40. The follo.in: aixture is comonly recomended as a: E゙orring rideturs:   28, Ground maize   30\%' Ground onte   30,* Thesat bren   10\% Soybean or lineted nenl   1\% Salt  
16	41. This nixture centeins $\because$ but $3^{1}$ t to 16 percont total protein. If onc uses e 16 zurcent protein nixture for the dairy hord, thare is no russon why the site aixture is not statafactory fir colvec. In r-ct, if monle wie hay is fed, a 16 or 18 purcont proteir-Grian nixture i.: lilely to five better results tirn oar lown in protwin.   Whe zrain nixture fed for srowth sinulu cont an at least $\qquad$ percent tot l prutein.
16	42. A ce:1: ghoult be on the growin, "inture ant completely    about 2.3 kilocrass daily to a calf of a larger brecd and about 2 bilofrons asily for calves of the snallur brecds. If tho calves begin to laj on cincess fat the azounts fod shoule be reduced. Koc: selt before the calves eit all tiuce.   A crif shoult be reccivine only the grewias rixture aftcr $\qquad$ weske of acc.
hay   pasture	\%3. Hay sai Easture. For bu: mbiluta froa my cerf-feeding proprog, ent ospecially she ery-starter athos, it is eosential to तive calve- iros coces to ligb-quelity bey or pesture. any viriety of hos thet mes cut orrly ane cured in such a "ong t: preserve the leaves and oreon colour nekcs cood calf trof. Legive hay is cntirely sutisfactory..    $\qquad$ or $\qquad$ .
$\begin{aligned} & \text { =oft } \\ & \text { jlicule } \end{aligned}$	44. Seconk-cuttin; hey froi: a :ixture of lo.jubes and erasous that is onft and riliabla is icool. In addition to the       increntes their cayncity for rourtaco   The hay or fresturo fed to colves finuld be $s$ anc $\qquad$ *
hny   pasture	45. In tia calf-stroter ax, itiants, it ans been noted tint the rrouth rates $-:=1$ dejeicel cemition of the colves :ave variod diecotly ofth th. raility of h-y fed. atu: aigh-quality hay ans wed, fir ivetor resulte wors ontrined with the ame startur formulas tian was true Fhen it was asecseriy to ute leor-quality inty. The    sutisfactorily in the s.ertur foraule.   There is ne subetitute fer hifh quality 1. $\qquad$ or $p$ $\qquad$ .


second	46. Fecil lay or crass ns soun t:s the c.1: will eat it, ucually adout the eveon: weck. Allor $c=l i$ gress it uill ent. Kure ley will be atun if frem hoy    fecd the hay in racks rather thin on the fluor.   A cali shauli he siven hay or orase ebout the $\qquad$ now. a. .
- -	crectly betwen intivituel e lows, but the folloviag are    ionths of age:
- -	1.3. Grouth ratus to be oxpectad. Lura. buanh hifer colven,       the snaller breods shoul: Ein frot 0.5 ts 0.6 kilogran .
whole nill:	49. Wole-atls inetios.   Then price wrrite the fosinne of aile loger than the first fow wow, the whele-nily nethe oives ancollent results, Thele filk is the natural fiod for celves and is the best single feod.   The best single foeci for enves is $\qquad$ .
uill	5. Calvec raised on fiberal cu:atitics is whole milk usurily ase fatter and sacuthes time the cilws rajeed on other nethods. Care necde to be takon, howevor, not to feed too nuch ail:s ec this: x y limit beth the mount of hay or erasa asten and prower cevelownt of the criati.   Foodin; too E:HCh $\qquad$ is not joo: fer celves.
5.5 to 6.4	51. Follow the some ailk-fcerin; sciedur for the first thre       to a axciau: $\because 5.5$ to 6.4 kilowr wis fer day.   With the wolwnill mothod, the atowit of mill fed is cradually increnced to $\qquad$ to $\qquad$ kilagraus der day.


Eround	9?. Usually, a calf will st $r$ to oat sone irain by the end of the jucond wele. The yount calif cati wat: the second weck. The yount calf cou ent whole onts or coarsoly cracked anize $G$ other roins as roadily as it will a nixture of finclitround fowdie tat the c.lif zots olider, it mill not cien fled so fioroubhly as at $\therefore$ youncier sic; thorefore, all concontrates ahoule be cround. Gring for fount colves wed not je fincly fo $\qquad$ -
overfat	5j. The aroving ani fittine uixture is antisfactory right fron the beginning with the wolc-rilis setion. Enough of    catin! ajucut 1.5 nijogr: ns. Too unch rran minture linita tice arount of hay or Grasi a calf will oat. I'we cerce to keop the self ercoinge eit all tiaes but wreveat en ovoriet condition.   Calves shoule be prevented rron becomine 0 $\qquad$ *
masture hay	54. Hfghmunlity iossture or iny is -5 cssention yiti thic inthod as it is uith the dry-ster.tcs aretu.l. alle:r tie celf all the luafy: find stenneci lay it will eat.   Sufficient $\qquad$ or h $\qquad$ for the eali ic very inportan't with the wholu-EIle act.xi of rainins cilvos.
nurse	to thir celves by the uee of a nursu cov. Titht this phan of foudinc, thery is luse wor: than with pail foeding, and tiore seina to bo feate celf troublus, aspecicilly scours. Colves rajeod on this sister are often fattor ano. slecker in apnoarenca than now pail-fod calvos.   A $n$ __cow is sow which is used to food several colvoc.
nurso cow	56. The celvoe cut be womut :it froi? 7 to 10 vicke of ace and roised on a iry reterive or fort on the eew for tixeo to four ronthr, and ficd.. .ixile wrun rix -at hay as Lith the whole-:ill wot...d. It is possijus, thereforg:    lactation, Bull eriven ;rmer veal an nost satisractorily maiced e.t th.. aurs con.   - n $\qquad$ c can be ueed witin either tice Jinitod wholuailf or itole-ailk actiol of raisin" calvos.
- -	57. Ons nures sou cen hendl. sceverai cqlves, depending: upon hor production. E ouch colves shoule ic placed on the cow su thet cach calf will fot ajoui 4.5 to 5.5 kilorpras os malk each diy.




shade water	69. Shade ind water arc always essential in tho pasture lot. Be sure to furaish eone fislter to calves on jasture during the heat of the day and anke sonc provision for protection from flics.   S $\qquad$ snd $\qquad$ must be provided for calves pasture. A.

The inforeation in this unit is based on VAS unit 1021 of the Vocational Azriculturial Serviec of the college of agriculture, Univereity of Illinois.
$\qquad$ Fora $\qquad$
TEST

## RAISING DAIRY CALVES I

UTDERLIIE MRE CORRECT MNSHER

1. A lairy farn which hat 21 cows in its herd should raise $\qquad$ heifer calvos ecelt year as replacenento.
$\begin{array}{ll}\text { a. } & 3 \\ \text { b. } & 7 \\ \text { c. } & 10 \\ \text { d. } & 15 \\ \text { a. } & 21\end{array}$
2. Cons should be dried off $\qquad$ before thoy are due to freshen.
a. 2 ทeoks
b. 1 month
c. 2 nonths
d. 3 nonths
e. 4 anths
3. A dry cow needs to have frae access to $\qquad$ -
a. concentrate and water
b. hay and conceatrate
o. salt and concentrate
d. salt snd water
e. vitarins and hay
4. The noracl sestation period for cows is $\qquad$ days.
$\begin{array}{ll}\text { a. } & 201 \\ \text { b. } & 237 \\ \text { c. } & 248 \\ \text { d. } & 270 \\ \text { e. } & 283\end{array}$
-. 283
5. The first aill given by a cow after the birth of calf is $\qquad$ -
a. cheose
b. colostrun
c. dried mile
d. skin nilk
e. whole $\square$ 긴
6. A good rule to follow in feeding pill is not to exceed $\qquad$ percent of the calf's body weight in kilograns of nilk per day.
$\begin{array}{ll}\text { a. } & 1 \\ \text { b. } & 5\end{array}$
c. 10
d. 15

- 20

7. Celves are usually fod milk $\qquad$ per day.
```
a. ono timo
b. two tines
c. tharee times
a. four times
e. İve tines
```

8. Dairy calves should be allowed to nurse their mothors for $\qquad$ and then bo trained to drink fron a pail.
a. 1 day
b. 2 or 3 days
c. 1 woek
d. 2 woeks
e. 1 month
9. A celf on a whale-milk and dry-calf-atarter nethod of feeding should start cating the dry-cali-starter when it is $\qquad$ weeks old.
$\begin{array}{ll}\text { a. } & 2 \\ \text { b. } & 4 \\ \text { c. } & 6 \\ \text { d. } & 8 \\ \text { e. } & 10\end{array}$
10. Calves of arall dairy breeds receivinf thole milk are normally weaned whon they are $\qquad$ woeks old.
$\begin{array}{ll}\text { a. } & 2 \\ \text { b. } & 4 \\ \text { c. } & 6 \\ \text { d. } & 8 \\ \text { e. } & 10\end{array}$
11. Calves should not have to dopend upon pasture for all of their nourisiment until they are over $\qquad$ old.
a. 4 nonthe
b. 6 months
c. 10 nontis
d. 1 year
e. $1 \%$ yoars
12. In normal calvinj, the calf's $\qquad$ appear ( 6 ) first.
a. back fect
b. front feet
c. head
d. rung
e. tail
13. A very younc calf cannot be fed grass or hay because $\qquad$
a. grase and hay arelow in vitanin A
b. grass and hay have lotr avounts of fibre
c. it does not have eny teeth
d. its digestivo tract is underdeveloped
e. its stonach is soft.
14. Silage nay be fod to calves after they are $\qquad$ weeks old.
a. 3 to 4
b. 6 to 8
b. 10 to 12
a. 14 to 15
e. 16 to 18

## TUMATII SECONDARY SCEOOL

## Raisimg dainy caives ix

This is a worpanwed instruction unit on raisine dsiry calves. It is a continustic: of the previous unit.

In tils unit you are to learn:

1. the minerals anc vitanins noedod by caives.
2. the inportance of crood housing.
3. the manegenent of calves in matcinef, dehorning, renoving extra teats, and foot carc.
4. the prevention and control oi coanon celf ailacnts.
5. about vaccinations, flutc, worn, and tick control.

## Instructions

You are provtusd witi a progran and a conbination anower siect and wask to cover tiw inswors.

1. Place tha ansk (ansver sheet) over the ancwer is a was that oxposos one question (fraic) at a tirac.
2. Write your anever on tic answer siact.
3. Nove the amewer ainoot down to oxpose the nuxt frane and anewer to the provious fraac.
4. Should your answer bo wronig, write the correct suctuer above or slong sicte - do not erase jour incorrect ainuter.





3



dohorned	\|25. pehornine, There is no ecu: rcason to leve horns on Uairy cattle. Sac dairyen think it iaproves the appearance of their cattle, wut horiluss cottle are not discricuinatul agaiast in ary of the nejor cattle shows or salss. If horns on all gows wre resioved, thero would be fewer udice wad oydy injurices.   Dairy cattle sicululd be d $\qquad$ to prevert injury to other anizals.
calves	26. The best tine to renove durus is when the colves are tubut one or two wodes of agc, or as aoon ss the hoin buttons cen be disti:ictly f.it. The two nost cormon nethods are tha uce of ceustic potash and the use of spocial irons for jurnin: the inrn button. fisese proceduros if carried unt poperly what the calf is young leaves a roo:, scoot: poll that is nuch bettor in appoarnec than if the horns re cut or saved off after the animal reaches maturity.   Dairy ortimals ohould be ichorned witile they are $a$ $\qquad$ .
teats	127. Renoving ajere tants. Sometines toifor enlves ore born Hiti extra teats. Leter, these cetrect from tho appearence of the udider and at tizes interfere with nilking. riwy can io easily renoved at birth or before a year of ake with a pair of sharp scibsurs. Dieinfoct the cut area with tinctur, of iodinc or other antiscptic. A. veterinarj officer s:aull bo consulted if the extra teats are attached to one of the rucular teats or are hare to distinguich fron the regulin teats.   Extrs: $\qquad$ should bo rancved bufore the calf is a year ole.
fect	23. Care of the ecet. Then calves and heifers r-confined in pens or stanchions, the feut grove fastur than tioy arc worn off. Frequently the toos get lens and turn up. Thic nakes it impospibl. for the aniasi to stand or waik properly and aay ceuse reak jasterns ani arooked legs. Trin the toos back to $=$ normal shape witi: a wood chisel ar hoof elipyors. Uoe a wood rase to leval the betton of the toes. $\qquad$ which do not vicar down properly need to be $\overline{\text { trimach off peris dically. }}$
lead	29. Teach calves to 1心2d. Dairy brevders who sho.: or consiont catti- to sales want to train thuir esives to leed, stand, and posc. f wil-trained eninel is casier to handle when it las to be novod and it anowic to better adwantere in the shoy or seloe rinti, Onc of tho beat wnys to du this is to tic the calf with a ropu halte: tu a aill or opost a ford tiacs until it lestras that it is usoless to try to cscape. 'rien it ney be tausit to lear gore easily.   colves witic: are to be taleen to shows tuct be tausht
prevent control	30. Provention sul contrel of cocron calf silanta.   Colf lossut during variy life joretince run as hi, h as 20 percent. hany of the he lesses in cnlvee result fron dijective dicturbanceis that ircocuc pheminnia. Sorie diseases of calves are conteciou: and rusult in !ioch nurtility. Others any result in a puvere sotbaciz in the calf': Gruwtit an: development.   It is irijortant to $p$ $\qquad$ anc. $c$ $\qquad$ co::on calf ailnonts to prevent tho death of calves.






ticks	49.. Treat all animals in the herd, not just $:$ few obviously lousy once. Revent ony truatenent i. 10 to 15 days to kill thu lice which hatcil out following t!e indtial trestrunt.   there aninale ar rulerly dipped or sprayed fur ticke, tho control of lice is obtainus at the seny tiac.   Iifec are not a problen then eattlo are regularly treated for $\qquad$ -
liver fluke	50. Yoras and liver flukes resent a front unger to celvos and heifers. Livor flukes ar arevolent iu sw:by areas. sn infocted sninel usually irs e. roubh akin, ent gencraliy hac an unhealthy apoaranco. Thero aro druss available thich con effuctively ilirisatc liver flubics. Tioy chould be uscd in consultation with a veturinary officor.   The 1 $\qquad$ arens. ie = wrasite of cottle founc in suarpy
phenothiazine	51. Cattle infected witi stonich at intustithi ruund borms can show the following anetous: dopression, yrojreseive loss in emitition, ane:in, leck of apetitu, and scours ucually of a gersistant noture initi iluis wromiace of a derk colour. In cirrouic coses, axecintion follows and tho celves ivvelop a rousi coet. Round woras are trentua by ivinio c:ttie thrue sesac of pionotiiszine each Jこar.   Ruuncuoras are treated with $\qquad$
bruccilosis rinderpost	52. Vaccinctions. A11 heifors siuul: bc vaccinatwe auni:st brucellogis (contajious abertion) before they are one    inoculeted aioinst the disc.ase whon they are sbout eight aonths old. Thes injections should be mole only by a veterinary offiecr.   Calves should be vaccirated for ans durine their first year. $\qquad$ $\qquad$
diecase	53. Ticke.   Ticks transuit suveral suicus cuttic liseases. Amons thece aru East Coast Fuver, rod-unter, anajisenoais, whd hesetwater. Varicue zonouree ;uxh as irase burning and cultivation of loni heve boun rocomended for the control of ticise but their ieatruciion on the eattle by the andicotion of chenicel subsernces is still the nost practicel anc effective nuticu. This is usually ach ived by sipping or spraying.   Ticks arc ducerous to c.ttl. becnuse they con tranorit d to tiverio
dip	54. Diginn: is cerrica out oy :ovin; cattle thround a tant: containing a wator sulution ai comencala toxic tc ticks.    cattle subierio cumpletely ioun they jury in. another inportant consilaration is than the stringth of thu divinu: solution aust be arnt:ined at tise pruper strenctit.   The comion wothod of dealiris uith eattle ticks is to d $\qquad$ the cattle cuory 5 to 7 daya.


arsenic	35. For nany years, arsunic wise tho noet comnon netive ingrediant of liging sulutions. arsenical ojlutions wore very offective an. are still haod vetuncively sucr thouch they hove soav disa.ivanteves. It is ijehly toxic so eare nuet be used se the dipjine colution loos nut bocone ton stronc and wisa the telue is civaned it rust bo ilisposed ot carcfuily to srevent pollution of food and water.   The aost cowion chericni used in ispring has beon $\qquad$ .
resistance	56. A furthor Liscivantage in añuic ja that etrains of ticks in cortadr places leveloped $=$ resistatice to arscmic but the intro:ucticr. of ne: syntinetic insecticidus such: as jenachu dexachloride, tuxashone and chlordane heve reduced tin problen. It is r-corisaded that thin type of cheritical used do chenjod ioriodically to ruduce the possibility of lh. Evvilophont of resiet.int stroins of ticks.   Sone ticles have doveloped $=$ I $\qquad$ te cortain dip chericelo.
spray race	57. Instend of dioping, s.ait farisura use acatt? opray race, Cattlu Rre driv... throuritit mil insi:0 thuy are erpase: to - lense spray leliveres uncicr jreseure fran a systou of spocially ilsce: pipus. The uset zorsy solution dr-ins te a siall rosurvitr froa which it is circulatod by a put operatol oy $\because$ ganil vigine or a tractor.   natiur than dippinj, ticl contral can also bu acheived by wou of $:$ er
sprayli: dressiny	      tious oporator but it is z-aerall $\ddot{Z}$ igroctable wiare large nunvers oif minele ir invivad.   Tickes oar also bu contivollud iy hant $\qquad$ 23.3 hans $\qquad$ ."
Inend	greasy ciapounts, such s visu nisinic oil ts control ticks. It is conitionly usca to cortrol wutbreaks of    fecilitic: $\therefore 0$ not exict. It is $A$ time-cinsurinic task sid not ecunozical an the lorac acal. is a norial routine for tick evitrol.   11 $\qquad$ dressing to cuitrol ticks is seledun used.

The information in this unit ic bacce an Vis wit 1021 of the
 Univcroity af Ilinnois.

Name $\qquad$ Fora $\qquad$

THST
RAISI:': DAIRY CALVES II
UTODERLLIE ME CORKECT AHSS:TER


1. a norai: 1 retion
a. boncment
b. dicalciur i.nsphate
c. iodine
d. phosphourous
e. Galt
2. Calves do not need to be fed ovitcain in ouplisnent if they $\qquad$ $\because$
a. arc fod tisic motheris milk
b. are out in tho sun every day
c. aro veccinsted
d. est plonty of inain
c* exorciso at lu.st an boux per day.
3. The best sourco of vitarin a for colves is $\qquad$ -
4. Green rrace
b. irraijated yeast
c. binage
c. the surt
e. vator
5. yound celves siould be proventel fron $\qquad$ .
a. eatin.j $\quad$ a
b. catin malt
c. getting cercrise
d. EOinc outcillo
e. suckir: cecti other
6. Calves een be eermently marked for icentification jurpoecs by any of the folloring thetiods excent $\qquad$ -
a. branding
b. cuttin: rarks in the hoir
c. enrtasg
d. ear tettuoinc
e. nock cl:xin witil tra;
7. Calves should be de:tomud to $\qquad$ -
a. help prevent dievase
b. incrense mizk production
c. nalce thon look better
d. rainc ticin nore confortablo
e. reduce injurici to otiver aninals
8. Dohorning of your calves is co:muly done with $\qquad$ .
```
a. cauctic 心ta=h
b. A vajw of scissors
c. n piccu of viro
d. = pinctors
c.f c. Gaw
```

8. Extrn (noro tian four) teate on a calf
a. are on advantace during ailletng
b. neane she rill be a high aill producer
a. should bu loft uncieturted
d. should be renoved
o. rill causc mastitis
9. Calvos confined in pens or stanchions sodetimén noed
a. n bath

- b. dry akimailr:
c. rickets
d. their hair cut
c. their toes trimped

10. 

is ueually the 'Fésulf' of an upect dicestivo systen.
a. ncatr u:ro, , $\because$ :

b. comrnol scours
c. Best Cosst Fever
d. pnewionis
e. white scours
$\qquad$
11. Phenothiaziue civen three tines per year gives adequato control of
a. heartmater
b. liver flules
c. rickets
d. roundworns
e. tryntionisis
12. Calves should be vaccimated for $\qquad$ curing their first year.
a. snewia cai brucellosio
b. ancile and Best-Coust-Fever
c. brucolloais and rinderpest
d. Eaot-Coast-Fever anc rindorpest
o. rinderpest ant nemia
13. Cattle erc dizped or sorayod regularly to control $\qquad$ $;$
a. liec
b. liver flukes
c. prounonia
d. ticks
e. teetso flics

## TULAINI SECOND.REY SCHOOL

## FiISIIG DAIRY YITEERS $\therefore D$ SULIS

This is a grogramed instruction uit on raisin; deiry heifors and bulls.
In this unit you are to loarn:

1. the feeding of dairy hoifers.
2. the housin: of deiry heifers.
3. brseding adn: freshenin; practices.
4. the fadime ard care of the youns dairy bull.
5. about tive comon parasites ans diseases infectin disiry hoifers and bulls.

## Instructions

You ere provided with a program and a coajination answer ehect ond aeak to cover the ensacrs.

1. Piece the mask (ansuer siaet) over the answer in a tay tian exposes one question (frarie) at $=$ tine.
2. Write your answor on the answer sloset.
3. Nove the ansur sheet dow to ampoge tile noxt fraie and ensuer to the previous frame.
4. Shound your answer be :ronj, wite th, correct anstrer above or along aide - do not eraso your incorroct selswer.



1


## 2


 Weislit (kilo(rax:s)



Good. Liboral focding of good-qu:lity, leafy, sreen lay thet was cut

 lindicil tiwnt of silece. Puoz. Lite cut raturu hay or aty beilly wenther dianjed; litthe or he gou? quality ronchare.



432 to 53	13. Houcin: for i-ifore.   Fin atablint. The ien or Icoce-stablin: nethod of housine heifors is Fery officiant frow the lowour stand point and has the advantaee that ruphate cen be self-fed in rache. In fact, the ecsuntiol shalter requirenente, nojely protection froz wind and rain can be nut with a low-cost 2ole-type structuru. Allow fron $4 / 2$ to $53 / 5$ suare actros of floor spaec pur heach.   Heifers, kupt in pens, each notul $\qquad$ to $\qquad$ square netres of fllour sprece.
$\begin{aligned} & \text { 6ize } \\ & \text { ase }^{e} \end{aligned}$	14. The coilins siould be at least two netros hish. It is bost to divide the st-ble into several iwns so thet    tozother. Sixty cuntizetres of racle and croin-fecinc spesce are noeded yer bund. A corbination fect alley and anger between cyery two pens iackes in entisfactory irrangeacnt.   Heifers shoule be keist in pens with others of similar 5 $\qquad$ anc a $\qquad$
exercise	15. Exercisc Yard. : : :ell-draincd exersise yard is necded with sithor pon steisling or whan the heifors aro tied. Heifers that are allowed free access to outcoor oxercise have better appetites, luvelep straizhter and stroncer legs, and kecp their foet worn down to normal shape. It is also cesier to detect wign they are in incat. Sunlight is ati nduditionsil soures of ritanin $D$.   gesfors need duily outdoor C $\qquad$ .
weisht	16. Broedini ari Ercohenint Practicos.   Brooding. The age an zize thenic: iedfore should be brect Ere show in Figure 1. Fur exenple, a larie broed like Yolstein-Fresinn any be ored anytine aiter they voizh 335 kilocrans. Snall breeds like Jersey day bo bred whon they weifeh 225 kilograns.   Helfers should be bred after they have reaciced a cortain mindelur 17 $\qquad$ .
rainy	17. Cow whici fresinen at the beginninc of the rys produce nore ailk thas do cows thet freshen durin: the dry season. Erowding inuat bo glatued and controlled to insure that froshing occurs durin': the rains. It is easfer te breod heifors for rainy seasual freshoning than It is to chanet the frushenin; cycle of olver cows.   Cows should freshon during tho $\qquad$ soasen.
Ireshenint;	Freshen with ier first co?f, the shoula be ploced mith the ailyeinat horl so that she becones accustoned to the otias cove in the ser:i and to the wilkini routinc.    cood milking hebits.   Heifers shoult join the filking herd about two nonthe before $\qquad$ .


ration	19. At ti. ewde tinc tio hifer now to lu conditioned       encture ere novdec to set hoifers in the iesires physicul cminition.   Heifene neod to receive : usci-I $E$ is. crier to be properly conititiontal iur frestenine.	
ailkinc	20. Heifers arc lifuly to dovilop nore coniestion in the uider at irwshonia; tite titom olicer cos. In wiusually severu               If ioifers iuvion uncier coniostion, a $\qquad$ ony bo storted bofore froshoning.	
ailk	21. Trainin; to rilli. Tis life-long milkine hobits af - cor    at hur first ficghmine. Thu heirer chouls be treeted vith linndnoss :act suntlonese at aidring ti:ce.   Heifer: neve to $\mathrm{b}_{\mathrm{w}}$ trairod to g $\qquad$ .	: ' 7
3 to 4	22. If necisin. eillein: is to 'u used, start the wifor out on the rachine anc tr-in her for repisl ailking, Nassa, 0 the uble witll = :irn cloth iruis out of ware wator to atirulatu mill lot deme Angly tie twat cups in abut one-nalf ainutw. Runove the wachine in 3 or minntes or as scon as tine ubter is nilleed cut. Strip by machinc and nover prolon: hand strijpin:-   Nilling by ancinin sioula take only shout $\qquad$ to minutes par cow. $\qquad$	-
6	43. Focalin; nin Rioin tue voun Drizy Bull.          soxunl anturity at risout six no.lths of aje wal shound then be coparated fri: onen hifers to grevent unantect antinis.   Bull anc ibifer cetvoc should be ge:nratud atan tiley ere cbout $\qquad$ nonthe of ase.	"
Buํ)	24. Frol: this a!j on bulls turis tu oran morc rastily tian heifors anc med slizotly norw fuct, eovecially concentratef       erotring bulls is sesirsizle.   B $\qquad$ s:ould in fec well on they acvelo, propurly	



pastures	31. Larese nuribers of ceives confinud in saill lots are often hoavily infostus. Youn c-lves often bucoine infected in sesture or worciew lots. Surgegetion of cilvos and hoifers by ages is hulitiul. Aloo isering ecilvea under six noatic of aje off posturu ic a goo iractice.   younc calves usurlly becono infocted nith paragites which are piel:ed $u_{7}$ on i: $\qquad$ -
rounitroras   flukes   tapenoris	32. The csaton worn gernaites are broally claseiniod into tires zroups: riwnitsme, flukes, a: taguoras. \#orne are very couron in Tamzania an! one roruly exanines on cnimel :/hich : ⼼s not heriour at l:ast 5 futz socies. They occur in nost aorts ef th: boly. "orr1 rarnsites do not nultiply witi in tia host minul. Tluref.re the nuouer of wor"!s fown in in onizol is $a$ firect rosult of the number of wemasis theich inviliod the body.   Fince frounc of waras fount in cettle are: I , and $t$
rounchores	   nuber ef aneral grinciples apply to $2 l l$ the fostrointestinal woras. This ir ul of teris inclules such spocics 7.3 re: :is: wor: with = twistc: - -xearance found in the abonowi, biil. woras wheh produci nudules dre found in tha linei coivel, throselike wares are found in the intestines, ... the slood-suchins hookwtio are found in the siall intestinc.   ifony kinds of $r$ $\qquad$ on Iive in the diecstive tract.
diecstive systen	34. The life cyclu of tiose woras iavo cort in foutures in cowon. The sult figiles, living in the digostive systey of their host; lay hars: nubere oi ecge. The eges ranch the exterior i.: tio faucus and the: thoy aust underse furtace devilogment before beconifi; 0 en sible of infuctins : nother rimal. P! fact that ocos roquire some line outsidu the inst before becoring infective is nost ingortant in tite formuntion of contrul weasuros.   Roundrorns 2 aj siteir cars in the a s of the host.
Dryness	35. After boinj voidec by the host, dovelomont grocoods provided the tioverature, huriaty and availnioility of oxy:ca cre favcurablu. Scte zecies are 1re sencitive to fhe environesnt then ahiwrs, but uryass ic wroubtly the nost letied factur to all.   D $\qquad$ is harafuls to rouncwor: eces.
efige, larvac	etes or larvae in the fuod or abter. Hookwor:ts are also capable of watre:tin! the :inin. iffer whering the body, tics maj mi;rate srumnt tik boly, but all sjucics evintually sottlo loth in the stomeh ir intestines aiere they grow to anturity, rate, shi butia tu lay ciaja.   Cattle ict infectle .int:. whmetvoras by uetin: their - $\qquad$ or $\qquad$ -



beuf	49. Cattlu beconu infectes by enting tied trinuorin eoge passed       in the nuscle tiosum of cattie. Hon vocoras infuctol by uating rime cots in ineroperly coolew busf.   Ner Fota infocte? by topuoras by eatine inarupriy cooked $\qquad$ -
huatin	reeponsible icr $G$ rist losews thrua is conteruation wr sieciel trezcient of -ifecten carensnes. Gcatrol    حasturo, svoiding the usc wi suas: aunture $\because=$ scoute on tice lani, تnt insuris thet the juvil. wio henlle the cattlo eat prigely coolel icuat.   Tencuora infostations of cottle can be prevented by rrivoncin: enttic ia : cuntectius is $\qquad$ isecos.
Bruecllogis	51. Vecination for bruccllosis.   nrucellosis, Banuls fiscasc, or coltantious abortion in          now be controllus eni tias. losses roulucci.   3 $\qquad$ is a serious cattl: iserst.
$\begin{aligned} & 6 \\ & 12 \end{aligned}$	52. A progr. it of cif vacciantion ons blool tustin! is       :!onths. Thit vaccination is not competc an overlastiat protection iut it is Ai fhl: ruvative ras :racticei. Usuelly eill deiry colvus siould be vaceintetud acainst t:is lisensc.    are Jotbuch $\qquad$ . ล2. $\qquad$ aonths of - .ro.

The inforuation in thicu unit is jesed on vas unit 1022 of tik Vecationel

$\qquad$ Forn $\qquad$ Date


## RAISIIG DAIRT IELFARS AND BULLS

UIDERLIME M CORPEC: ATSTER
*).

1. If accies ars not available, the weight of a dairy heifer or bull may be esti-:ated by $\qquad$ -.
a. Iiftins the nnimal.
b. looking at the eniand
c. necourin; the soart firth ane convortine to kilogras fith a table
d. nctauring the lergth and rultiglyin: by tiree
e. neasurin the neck and comparim; vith a table
2. The lowest-cost cource of autrients for browing heifers is $\qquad$ -.
a. coacentrates
b. liay
c. cifterals
d. jasturo
e. zater
3. Heifers :ned vatcr $\qquad$ -
a. once cver: tro days
b. once jer ciry
c. trice zir iny
c. tiree tires jer day
e. avoilable at all tines
4. Heifers con derenil eatirely on zesture for thair feed after thuy are
$\qquad$ olu.
A. one nonth
B. threc siontiss
c. siz zonths
d. one joar
c. tro years
5. Then :wifers are kept in jons, abcut $\qquad$ square aetres of floor space should ì rllowe! for eac: heifer.
a. $\quad 1$
c. 5
d. 7
e. 10
G. Heifers usun?ly nee:t to be fed sook $\qquad$ in adcition $t:$ hay and silaze durine the dry seasen.
a. bediline
b. concentratcs
c. dry mature trass
d. strau
e. truc leaves
6. Keifers shonis se ircd after they have reuched a cortris: $\qquad$ -
a. ace
b. dinily extount of foce congurption
c. size
d. tien of tide year
e. weirst
7. Helfers should begin to be fed concontrates about $\qquad$ before freshenting.
n. 1 rreck
b. 2 wecks
c. 1 rio:th
d. 13 zionths
o. 2 nontis
8. Kilkiñ by necline sitould tako only about $\qquad$ per cow,
a. 1 minute
b. 3 :inutes
c. 5 minutes
d. 10 winutes
c. 15 minutes
9. Calves usually bucoze infected with paracites milich they get from $\qquad$ -
```
a. concertrates
b. hay
c. imsects
d. otior aminals
*. pesturcs
```

11. $\qquad$ are faresites conionly found in the digestive tract of eattle.
a. flukes
b. liec
c. ticks
d. tectse flies
e. \#orrs $\qquad$ -
12. Flukec ca:: be controlled by keepinc cettle atray fron
a. cattle with flut:e
b. dirty zestures
c. rate
d. snails
e. watcr
13. Tapeworne in cottle ar: important tecousc they $\qquad$ -
a. ent t.e food of ce.ttle
b. infect ear
c. kill cattle
d. Live in the bloed
o. rake ecttle sick
14. vaccinction of tac cettle
a. Brucocellosis
b. lastitis
c. Roundizr:s
d. S:aall:ox

- Tejemaris

15. Bulls can leat be curtrollec by $\qquad$ -
a. cuttin off tiwir horns
b. feceins goci ing
c. juttin a rin: in tho nosu
d. tyin" a rope arcuata the neck
e. tyin; the rear fect toget 0 er

## turaini secomp:ry school

## 

Thic is 2 programed instruction unit on ciring for the sour and litter at farrowing tine.

In this unit you are to learn:

1. the kinds of connos ferreving unsta.
2. hon the farroiting unit stould be propered.
3. hoa tho sow should be prepered for farrouling.
4. the care that should be fiven to the sor at farrowing time.
5. the carc littio pisencod at farroaing tiac.
6. the special care needed by orplan pize enc lare littors.

## Instructions

You are provided with a arosran und a coabination onsuer theot ani mask to cover the answers.

1. Place the ansk (inswer sticet) over the enswor in a way thint exposec one quasiion (frize) et a tiac.
2. Frite your aneuze on tive sazrit sheet.
3. Nove the ansuer aheot dom to ewess the nost frane anch ansuor to tho previous fris: .
4. Should your Eawer be wronis; writs the correct enswer above or alont: side - do not crese jour i: correct answer.



farrowinc stalls	4. a ioul herwetan can bive nore pies by boing progent at firrowini, but any ho. protuccre tho formorly "livod" with the cows at farroving tirn, nay zluce the sorf in farrorinc atelle to farrow unattendea except for routino checks or assictanco when it is netied.   Sown need Ifttie nttention at farroming tine if they aro in $\qquad$ -
outbide	stail or can to turnod out twics $s$ coy to $a$ pea or feolit: platform provided with a sulf-foeder sme nutometic materor. Turning tic sow out recuces tho enount of labour neclec ion cleaning menure out of the forrowing etall srca, siver the sow exorcise, and is preferred over fecrinz in the stall unloes equipaent is woll adaptad for stall fewdine.   It is best to fual the sovo $\qquad$ the farrowine atall.
pies	6. Use stalls that are about 75 centiactres vice and 2 to $2 / 2$ potree lons, the dizonsions denondin- upon the oize and condition of the so:is. The betton of the partitions should bl about 30 centinctres off the fleor, 50 the pies can nove into a aeatid aren between thi stalls.   The man purpose $c$ farrowin; stallo is to grevent the som from crushing the little $\qquad$ -
guard rails	7. Dsin: farrouinc; vens. Thile farrovin: atialls are Eonerally reco heated over farroving zuns, tiere ore still cifuntions wheri the stells nizht be inpracticel. Shere this is truw, the forrowine pon may be the bust netiol to usc. It sloulc be at least $2 \times 25$ getres for cilts and $21 / 2 \times 2,2$ motres for sous. The pen should be      A forrowinc gen neces to be equizied with $\qquad$ to prutuct the little zige.
Cisinfected	3. Scrusion: and diainfectin:. Soveral dajs vofore the farrouin; soacua strite, or the sov is confince if usi:- individumi houses, thoroughly scrub and disinfect the farrowine unit. i thorough cicaning oi the pen or house rill be nucussary before scrubbinc c: 0 be ions succossfully. Elow the pon by scroping loosc eny dirt or menure on the flocr ana. wills and s:ropina it out as well as possible.   Th farrowin: unit ruret be conjletely oletined nod $\geqq$ before use.
aprayer	9. Use a stoan eleaner or a hi,h jresoure sproyer, if jossible to clean the farroving unit. If a potar emrayer is usoc, tive aditition of an alknline duterecent will help with the clownin:*   A híul prescure $\qquad$ is very userul in elenning a farrouine unit.


lys	10. The unit cas also tu scrubjed aith boilin: lyo mater ( 3 kilocran of lyu te 1to Iitres of vator) an: n atiff broo: or brush. If lyo is used, bosiles and rubber cloves should be worit to avoid ettina ceustic burno.   Boiling $\qquad$ unit. viter is a gool insinfectont for a forrowng
vater	11. "̈itle cither syctuz of scrubling, cloan until all dirt and forein raterial heve been renoved. Rines tho clowed surfaces with clean Mater to renovs aty sotip or detercunt still rurainins.   After :erubiong, the unit ztuct be rfased vita clean $\qquad$ *
Fuaigation	12. Fumi    befor farrowing tire to kill the ilsence or, anisus. To fuicate a buildine, the following atevs are rucozended:   2. Tightly sual ell Loors nin i.i: Liows.   b. Ifoisten the floor with mater about 15 ninutes befort fund etion.   F $\qquad$ 1s a action of killing disesow prosucing orcenisas.
formaldehyde potarsium pormensoraté	13.   c. Ficurs the nutuber of cubic actros of sir speco in the building (lancth $X$ vidth $X$ luciont).   d. For necit too cubic actres of air since, uso 4.5 litros of formalicizde :.a.. 1 kilugran of jotassium , eranamanate.   e. Placu the forcelcehyle in tro or three fans, equalin seacec down the cintre of tic house.   The countenls neecion for this fuatgation are 2! - $\qquad$ $\qquad$
24	14.   f. Divia. the xiosaiun jeranganate, -2.3 startind at the bacte oi the house rn... invin, rapidly alonet dro: the zotanaiun ernangonato into the pans, and eet out of thu nousu imedirtoly.   E. Lesve the builuin: closul for 24 iours.   L. After the 24-hour period, open tho dours and efir the insicie thoroucilly.   The furization boses are aldowd to reanin in the house for $\qquad$ houre.
idlc	15. If possible lut the Funibated housa stai? Hile for a weok iefuri nuvin: ho:: in eboin. Theer sanit:tion       loft $\qquad$ for cortrin veriods zne not uecd continuously.




farrou	32. Cum of the So: at Farzuan: Fine.    incications that foretcill the probailu tiow. The    and tosts. Thum sia jesins caryine straw or surancing hor jod, sibe hay be axictes to farrow within twelve hours.   Fostlegonesg, filline of uidor and toste, n: carryinc etrav: are tigne that a suu will soon $\qquad$。
Earcoming	33. If the sow has tilicn ilaty of exurcies, inas been properiy fod, nni is in ce etronj conlition, she will suledon now any holp at farromina tine; :everthelese a close :ntech should je aaintainci. It is izgortent that $s$ sow or gilt necininJ holy jets it at the rizilt tiae.   Sorts should be ve testes closely at $\qquad$ tine.
turned	34. If a pis lonees at tive kivic oonce, it usunlly dies in 30 to 60 ainutus, if it raneins thore t:! or thres    loujos 24 hourc, the ruarinize of the littor rill anvo perighed, $A=$ goon as it is sece that continued labour is of no sveil, t: pigs shult be turnec so tint normai birtir any result.   A Gis thet lodges at the zulvie hones iust be $\qquad$ os it er ve born.
breathe	35. If the solv still ias troublu, i, ti:y bu necessary to zull the jig throust the ailvis cr cill $\therefore$ veteriaery       the envilodi:    $\qquad$ .
breathing	            en the sicic of its ina aill st ret it "urvitin, As lon: es tio heart cintinuss ts icat Eiv efforta are not hopeleas, wht ine cis necs of aurvivil orr slit if the jiz doosn't stert briationg :itioir if co: :inutce.   A. Nic nuecs to atort $\qquad$ mithin a fer ninutes of birth
nurse	birth $=$ yossible. 'Ie-k iize should bu helyed to a teat. The first ilis of the antior ecte as a ancotiv,       is believed -1 on thet it tarararily inn:unizes the jic asainat certain :ara infuctions.    $\qquad$ as scon aftur birtil as poscible.





pan	56. Then Foorlin: in $\because$ inn, uss enouth itill: is cover the          whother it irante $t$ or not. $i$ iesocia or two if this leinc: is suncrally ill tiat is necesuary before the pie will crink of its oun eccord.   Pics con bo fon :ilit fron on open 1 $\qquad$ .
3 or 4	57. Fod thw jide every 3 or 4 isurs for the firot fou vacks. Altiogh sood rosults iviv bein obtainul by fecding pigs 3 times a day right froa tise beginnina, il is ownerally better if they $r$ - foll enrs oftin at iifet.   At firat, oryiten dize zlauld be fut overy $\qquad$ hours.
ailk	50. liilk nosy b: sumpulated :ith Grain, shollus mize, and rround greon lucerne hay or pasture nes soun as the    increses the nount es fast is the inis rot uged to the feed.   Mv pions got oluce tiw -rount or $\qquad$ sl:vuld  

This unit j.s bosca on the infarastion containel in VIS unit 1037 of the Vocationsl AGrichitural Service of the collezu of suriculture, univorsity o: Illincis.

CARIUG FOR THE SOW AUD LITTRR AT FARMO:ING TIE
MDERLINE T: CORMECT AiSSER

1. The nain reason for using guard rails in a farrowing pen is $\qquad$ -
a. to kecp the pigs clean
b. to kewi thu "3iss verm
c. to kecp the sou fros stensin: $u_{i}$
d. to prevent thi $-i, j a$ fron beins crushed
c. to protect the ferfar
2. A recomonded disinfoctant for cioanine the farrowing houge before use i.s $\qquad$ -.
a. boiling ly : :nter
b. Dettol
e. for:zaldelyde
d. puri nater
e. ware soz?y water
3. Gunril rails siould be placud abcut $\qquad$ above the floor.
a. 2 continutroc
b. 5 cuntinctres
c. 20 eentinutres
a. 45 cuatinctres
e. 70 entinetree
4. $\qquad$ 1s : Cood bedijn $\mathrm{C}_{\mathrm{B}}$ anterial fur a farrowing yen.
a. Dry crass
b. Fresh grase
c. llaize cobe
d. Haize stalks
c. Serrdust
5. The recomenced tecperature for nowborn pigs is $\qquad$ -.
a. $20^{\circ} \mathrm{C}$.
b. $25^{\circ} \mathrm{C}$.
c. $30^{\circ} \mathrm{C}$.
d. $35^{\circ} \mathrm{C}$.
e. $40^{\circ} \mathrm{C}$.
6. $\qquad$ is ons siew that $e$ sow is abaut to farrove
a. Saliva dripping froz the eouth
b. Toats filling rith nilk
c. nuch crinkins of water
d. Not eatine
e. Sleepiness
7. A pie hover is a structure $\qquad$ -
a. for caring for orphan lies.
b. to foed pigs.
c. to leep pigs maxy.
d. to kuop the sow winile facrowing.
e. for tasiting the sow.
8. Tho navel of pies 3:hould bo $\qquad$ soon aftur birtio.

ล. burned
b. cut off
c. diainfuctua
d. measurca
e. ticd vith string
9. The box-like atructure about 75 conti:veren vise aild 2 to $21 / 2$ motres lont into whith eows are put for iarrowint is called a. $\qquad$ -
t. farrovin houge
b. farrowing hover
c. farrowina: nen
d. farrowine jletforr

- farrowint stall
*.

10. The zrocese of using a poisonous ear to kill disense orcandsus in $a$
farremin: house is callod $\qquad$ En:
```
a. airin!
b. futigation
c. cascinc
d. scrubbin:
e. veshing
```

11. A som shoule be weshed with wem soopy weter $\qquad$ -*
a. one day before farrowine
b. ene west vefore ferroxiat
c. one montil before farrowin.
d. while the is farrowing:
c. onc derf riter ferrowing
12. is often aciod to a sov's ration just before rni during farrowing.
a. Dry graos
b. Linestone
c. Hizize cobs
d. Iater
e. Thent bran
13. Duriag farouin: $:$ :ig that lones at the peivic boncs of the sor $\qquad$ -
a. aluays dies
b. ib not a provlem
c. is usui.11y a colo
d. should be luft at least 6 houre beforc turniag
e. shouli be turnec inmo:intely
14. A nev born pig ncuds $t$, becin nursing as soon after birth $=0$ possible
because the first ailk $\qquad$ -
a. contains antibiotics
b. helps mrevant discasu
c. helps tit: pis becin bruatlinas
d. is rich in finerols
e. -revents bull nose
15. Onc of the easicst ways of preventine bady pie anezia is to provide the pics with $\qquad$ .
16. conis nilk
b. fresh sad
c. hey
d. naizo cobs
c. calt
17. Pieg are usualiy anrivel for iduntification purposes by $\qquad$ -
a. cutting notches in their ears
b. cuttins their tails
c. peintiles nurivers on their sites
d. putting tars in thoir cars
e. renoval of corthin teath
18. Ain oryhen pig ney be fuc $\qquad$ se a suisetitute for lis notior's wilk.
a. copycras
b. conis rijlk
c. Incurnc woal
d. naize mezl in water
©. : suan solution

## TUMAIII GECClidary school

## DIEESTIO: TH ENISAS

This ic a programed instruction unit on Digestion in fainals.
In this unit you are to learn:

1. The parts of the aniucl uicustive systen.
2. Fi:c diesstion tixt occurs in the nouth.
3. Ttic eizeotion tixt uccurs in tie stonnch.
4. The dieuction tiat uccurs in the sn-11 intastine.
5. The direstion that occure in tive larye intestine.
6. The roll of angacs and bacteria in ingostion.
7. Fon ebsorption ei sizested focistuffo occure.

Instructicns
You arc ircivided wit: a procran nn: a corioination answer ohect and ass to cover tise answore.

1. Place the naci (onswer sheat) suer the answer in a nay that oxposes onv quistion (frorio) at a tizio.
2. Trite your enswer as the enstrer sheet,
3. Hove the anewer shect lown $t=0$ ansen tid nixt fran and answer to tha jrevicus frize.
4. Shouli: ycur answns j- arong, :ritu the cerrect anstor zueve or along sife - io not cress: your incorruct answor.





inver pancreas	15. The jancruas, lecatul slon; the upper ant of thu ganall Intectine, secretec the pancrentic juice used in the dicestion racess ia hu sanll intection.    $\qquad$ and the $\qquad$ -
tongue   tecta   salivary slands	16. The accosoory organ: if the dijestive systen are the teoth, tonguv, salivary ilands, liver an: ancrans. Thi first thre arc icumic i: the nouti, The tecti are used for toaring $w_{2}$ the fucu, ar! tion tongue coziste in directine the fucd tutio thrat for swallowing.   The $\qquad$ $\qquad$ , and $\qquad$ ary found in
seliva	17. Nite selivary elonis, locotca uncer the lowr jas and under the cora, rrusuce titu soliva uzod for digestion in tily mouth.   Tho salivary ilents irosuco $\qquad$ -
youltry	18. Fitu dizestive syote: of peultry is similar in principli    too. (Sou figure 3, mace 5.) One of the eliffurcances is that fisd gasoes into tite croy fer tongorary stora.e before reschin; the stonach. Here the roun is softened by selivg that :ma suallo:ed with tio food and iy secrutions frou the erop rill.   The cinestive sjotea $\mathrm{u}_{2}$ ? fron otlwe anirlile $\qquad$ is sorwhat airforent
Eizzard	19. :nothar ifforcace is that nfter passine thou;il the stonsch, the faod cnters the تizzard or nusculur stomech. Ito voils consist of loriv, rul, thick, powerful auccies       juices of the sicrect.   The $\qquad$ the $\bar{c} \mathrm{i}$ cker. urinis fook in th dirustive wiotue of
$\operatorname{cec} a$	two blime wucics, about 18 ciatimetrec Imac, attoched to the oseil intestine whon it crivtices into the lare intentinc. mo functi $n$ of the ceca is unknom. fitcy aw ustally fillod iti: suft, insty, unclisustod food.   The $\qquad$ untanom. nr. a anir of mucion whoce function is




Gnatric lipass	30. Gastric lipaso acts on mulsificd fats anc aplits then into inlecerol and fatty acinc. Hnosever, nost of the fots foine into tik stonnch are not unulsirfed, so caetric lipesw dous very littly in the dicestion procoss. bocause they arc nostly not caulsified. docs littli: to fats in tho etorach	:
snall intestinc	31. Soon after the thisticated feed enterc the stoanch, the muscular walle set ur a churnin: squeczinf action. The pushos the liquie portion of the feed on into the suall intestine and liaves the solic portion in the stomach for furthor action by the pastric juice.   The muscles of the domech walls causo the ilqufe in the stoanch to jass into the $\qquad$ - $\qquad$	
ruen	32. The dicestion in the stomech of rurinent enimals is quite different frog trist of non-ruainents. is the food is swallowed by ruaninente, tho solice zart, which is only portisily chuwed, passus intu the ruacn thile the liquid part peoses ints the raticulun, on through the oussun, and into the sbonssun or trua stonech.   Solid fod stallowe by ruainents passes into the $\qquad$ .	
Bacteris	33. Thile in the rumen, the fece is thorourhly mixed and partially broken dom by buctarial action anc. a slow churning acveacnt. This feed is later taken back to the wouth and rucheved. $\qquad$ help to brest lown foed in the runen.	
nouth	34. :hon it is suallowed th: seconct tirn, it will go back to the ruan if it still isn't chewh thorourgily enough, If it hes been thorougily chewed, it mill pess into the roticulw ens on into tiv ounsur or a: : $:$ :sss directly into the ornasur from the oosophactus.   Fecd pastes froat the rumen to tho $\qquad$ for further cherrine.	
vacterin	'35. The bacterian netion in the ruan ralonses considurable carbon diexise and methene cases. Thece aro usoluse to the enitual and aust be exeritoll through the digestive tract.   Gaces nfy furged by $\qquad$ in tha ruen.	


Bloat	36. If the cesus forn faster than they ean be removed fron the body, as happuns sumetimes when an animal cate a large enount of fresh erass or lugunea, bide aninel bloats.   B $\qquad$ is caused by teo auch tes forain: in the rumen.
reticulur	37. The liquid and soci of the fine jarticlos of the foed eccuralate in the reticulu bofor: boins passed into the onasur. Some of the liquid zortion of the fced from the reticulun is also ured to doisten the feed frop the runen as it is returncl to the nouth for ruanetion.   after beine surillowd, liquid soes first to the $\qquad$ In ruminants.
-	;38. The oanam reccives its fuod frow the runch, reticulum, or directly fron the ocscjaccus. The latter ic usually true only aftar the feed has gone back to the nouth for rumination.
-9ล3ม	39. The feed in the onesun is crusined and crounti by the squegin̄, raspine action of the horny muacular valls. The fucd is elvayo dry in tilis comprtneat es the linuid portion is equesed out innediately and foreed into the abomasuen.   Fecd in the $\qquad$ is always dry.
abanasum	40. In the a jonesum the feed is aixed ;ith gastric juice, and digestion, ss arplained for the sinple-stomached animels, is carrid on.   Digestion in the $\qquad$ is siailar to dijustion in the stonach of non-rujinents.
Chyme	41. Aftcr digection in the pouth an: stoanch, the food aaturiole are an acia, scilifluid, orey, pulpy anss when thoy antur he enall iniestias. This fiod nass is called "chyme". $\qquad$ is the naterial which jasecs frow the stomach cra:11 1:.testinc.


pancrentic juice   bile   intestinal fuice	42. Ciyme is mixod vith three dicestive juices soon aftor levine the ctoasch. Fley are the jancreatic juice, bilo, and intestinn:l juice. T:esw are alterine in nature ond iursuiately stop poitic digostion, which required an acid combition.   Frite the nemes of the throu dizestive jutices which aix with the chyme after enterinethe saall intestine.
4   trypsin pancreatic mylase pancreatic lipaco maltase	43. Pancrentie juicc, secrusted by the pancreas contanis the enzyoos trywain, ioncreatic anylase, pencreatic lipass, and saall aiounts of raltase.   , Pancreatic juice contains $\qquad$ enzyones. Phey are $\qquad$ ' $\qquad$ 1 $\qquad$ , and $\qquad$ .
antino acics	44. Trypsin acts on the rroteins not broken un by pepsin and breaks down sone of the protoosis and poptones to poptids. Ench of thic protcin convowids in the disestion process is a prozressizcly simpler conbinatien of conno aciels than the ones ahead of it.   Protoins are braken down into enzyocs. $\qquad$ $\qquad$ by
starch	45. Pancruatic anylas changes the starch of the feed that wes not acted on by salivary anylase to anltose. In General the penerestic anylase dues the Jroater share of the di:costint of starchis because it is prosent in a larcer anount anl has a longer tise to rect than tio ecilivary maylese.   Pancrentic snylase changus $\qquad$ to anliose.
1ipase	46. Lijesu bruas dom the fats of the fuod into fatty coids and slycerol. T:A fetty acilis then conbine with the alkaline anlts of the anacreatic juice and bile to fora ooluble bile salta.   Fits are brokun low by the enzyon 1
azitase	47. Mithas actis on the sujar anltose and ehanges it finto n siapler sucar, elucosu.   Maltose is chanjed to elucose by the enayos $\qquad$ -



bacteria	54. Huch misestion in the larae intestine, especielly of crude fibre ane the undi!gested proteins is corried on by bacturitl action. Thic croatoo nany jases which cive the facees thisir offensive odor.   Difeotien in the laree intestine ig aided by $\qquad$
Faeces	55. The reacinine undigocted, unnbsorbed fece antorials, renains of the diovstive juiess, living ent lesd bacteria, an: dese colls from the walle of the digestive tract are passed out as facecs of the anian. $\qquad$ are the waste products of the digestion process.
absorption	56. Absorption is the process by thich the difosted foolstuff aro taben fate the bliod end lyaph strearn for distribum tion to the body colle sill tissues.   Disobited fooc passis into the blood and lyaph by a $\qquad$ -
small intestine	57. Nost of the aigosted food aterials are absorived froa the samll intestine ani the remindor fron the large intcstine.   Most absorption taices pilace in the $\qquad$
Villi	58. The walls of tiv simall intestine are lined with a larye number of small cono - or club-singed projuctions, callica vil.li. Eac!: villus contai.:s a lyoph vorsol and a netrexl of Llow: copillarics.   V $\qquad$ line the insidg of the anell intestine.
liver	59. The digestw pretcins (amino-acids), starches $=$ at sugars (ciucose, fructusu, enc: alinctose), and orule fibre (short ciained fatty acicis) nre sbsorbud by the blood conillarics, pasod tirough tho liver, ene inte tho feneral circulation of the lulood.   All cticested food absorbed by the blocd pasces through the 1 $\qquad$ *




OIDERLIEF THE CORPECT id:STER

1. which cen de ued by thu body ccile.
a. abecrption
b. di cetion
c. meatication
a. runination
c. calivation
2. The atomach of a ruainent iz divicicd into $\qquad$ divisions.
a. one
b. two
c. three
d. four
o. Ifve
3. Tho $\qquad$ naks up aluut 80 gorcont of a runinent's stonach.
a. aboncsua
b. Caccul
c. crasua
d. rotyculun
o. rumen
4. Host cifestion is conpleted an: nest nbsarption takes place in
the $\qquad$ _.
a. caccua
b. larce intestinc
c. posorinejus
d. sanil jntostinc
e. stomach
5. Dijestion takes place in the $\qquad$ -
a. alimentary cannl
b: circulatorysoy"toz
c. sullet
d. liver
e. spleen
6. Nicro-crienisas that live in the rumen oyntiaceizo $\qquad$ and
$\qquad$ (Choose the revers)
a. cerbohydratos

- b. fints
c. minurale
d. proteins
e. vitazins

7. In joultry, the $\qquad$ oruches food particien and rixen then with digestive juiecs or ink stowach.

$$
\begin{aligned}
& \text { n. cnocun } \\
& \text { b. crop } \\
& \text { c. gullot } \\
& \text { d. Sizzord } \\
& \text { d. liver }
\end{aligned}
$$

8. Di:cation beyine in the $\qquad$ .
n. 2arge intestinc
b. mouth
c. осворадиии
d. cuali intostine
e. stocach
9. $\qquad$ in zeneral do nost of the actusl difestine.
a, Bactoris
b. Enzyrocs
c. Gastric juices
d. Pancreatic juices
e. Salivary juices
10. The alinentery canal includes the $\qquad$ ond the $\qquad$ - (Choone two anawers.)
a. gall bladder
b. Iiver
c. mouth
d. pencroas
e. ctomach
11. The threc iticestive juices; mizad trith the food in tik samil intestinc. (Choose threcenswors.)

## a. b1le

b. cactrie juice
c. hydrochioric scin
d. Intestinel juice
c. rancreatic jutco
f. saliva
12. Diesstion of cruce fibre and undicestal yrotoins is carried out by of cruce farg intestinc.
a. bacteria
b. bile
c. enzynces
d. Éstric juice
c. pancreatic juice
13.
is the process by wimel the Ligested foodstuffa are taken Into the sloci syeten for distrijution to the body cells.
a. abser;tion
b. digestion
c. diffusion
d. aissolution
c. zesticetion
14. The uallo of the grell iatcstine are lined with a laree nubbor of saall cone or club-shapei prujections called $\qquad$ -*
sanil caeca

> b. cnzyues
> c. Glands
> d. nodules
> e. villi

## ANIMAL NUTRITION

This is a prozranacd instruction unit on animal nutrition.
In this unit you are to 1earn:

1. the aain conposition of planto and animels.
2. the nutritional roquirenonts of animals.
3. tho different croups of animal nutrients ant their noed by animale.
4. sone $2 r a c t i c a l$ rules of $i$ inn for fecdinc livestock.
5. the Peareon Souare licthod of iinding the proportion or percentage of two (or nore) fecds wizich, when mixed togetior, will furntsh a desired percent protein.

## Instructions

You are frovided with a progras and a conbination answer shect and mask to cover the answors.

1. Placo the mask (answer shect) ever the anowor in a way thet exposes one question (frame) at a time.
2. Frite your answer on the answer sheot.
3. Rove the angwer sheet down to expose the noxt frane and angwar to tho previous frase.
4. Should your answer le mrongi frite the correct answer above or along sido - do not eraso jour incorrect ansucr.





:Tater   carbihycrates (organic nitter) ash	1. Plants ani anianls arc comaud of (1) water, (2) organic netter, and (3) sinersl nattur or ash. Orenic matter is       rineral Lutter is neither anin: l nor vesutablu; it is an inoreneic honogencous sumatance.   Plants and aninals :aro compsed of $\qquad$ $\qquad$ , anci $\qquad$ -
3	2. Corbohyrates able up about threc-fourtiog of all the dry natter i: : Innts, ane they ris the elinf source of cnerey and heat for enitals. Carbohydratce aro composed of carbon, hycruen, :nd onysen.   corbohydrater form about $\qquad$ of sil cry aatter in plents.
(1) unter   (2) earbohy isata   (3) nineral natter or ash	3. Plants and animals ari conpoced of (1) $\qquad$   (2) $\qquad$ , and (3) $\qquad$
carbohydrates	4. Anian nutritionel sequirasonts ar a tost comveniently spoicen of as reauirceents icr raintenence, Erizth, fettonin: proluetion, ne reproduction. eneriy for aniaile. aro tie chicf sourcu of heat and
quintain	5. To sustain life with no los: or s-in of vight requires sufficiont foed to $\qquad$ the animal.
crowth	6. In adaition to a aintona:ice ration, an andaci requiros cdeitional foed to iut on wei;j:t suc incroase in rusclo sin: bene.   This is colled : $\qquad$ renuirenent.




mino acide	19. Protetiae are very eompler substences, nate up of 24 or mors cifferent anino acius. In the decostion of fuod the proteins arc cillit into thase aitino ectus wilich isc abeorlud fron the diguctive cyetuan and onter the bloud strezat. $\qquad$ $\qquad$ are the cenponent ports of protein.
fats	20. Fats in thu forasof estors of fatty $=0$ alds and clycerol are the hich-inezgy coapouni's of fucle. Thwy are =lso the cerriers of ceny of the vit mins present in feeds. $\qquad$ are the hish-cnergy conpounds of feeds.
blood etroam	21. lifnerels are the rinjor ilements of bones and teeth and a vital part of asin tiscuce, orfans, ame the body's oneype systes, se :ell. se the saft tiseues ind tho iluas of ticu body.   Tho saino acicis are zbsurbed by tic andnel body tirough the $\qquad$ $\qquad$ -
minerals	22. C-1ciur, jhozphorous, souitu, chlorine, potestiat, sulfur, macoesius, iron, iodinc, copper, cojalt, zinc, tuagansec, mulyblenur, florin, anc sorsmic aro $\qquad$ that    fcoding.
proteins.	23.    in aderuite sumbentit:l forme in cottonsocd weal and fish:1oal.
anino acids	24. Protejns are made up of $\qquad$ ent! are articularly ingutent to met the froveth requireaonts.


protein   Grouth   mointenance   roproduction	25. Youn: $=$ nimels require tha nutricnt 2 $\qquad$ to nowt 5 $\qquad$ ruquirucionte.   Mature cattiu nuod nutrients to uaintain the asac woight. This is a $\qquad$ requirencnt.   Brod cattlu require an adeitional $f$ $\qquad$ roquirement.
growth maintenance production	26. A fattenint raticn uust satisfy $\qquad$ n , cne p $\qquad$ requirctants of the aninal.
carjohydrates	-27. $\qquad$ Includes starches, sutiors, and cojlulose.
fats	28. $\qquad$ cupply 2.25 tines es nuch enorey as carbohydrates. Fats aid! in Absorption frea food uf Viiacim A ani ary help in the absozption of calciun.
organic	29. Vitarins are traco orgaic nutricnts. Escontial    or $\mathrm{B}_{1}$, nizcin or nicotinio :scic, $\mathrm{B}_{12}$, and C or aucorivic ecid, cholinc pyrisucin, biotin, ad folic scid.   Vitanins are trace $\qquad$ nutrients.
Green forace crops	130. One if tite nost inportint facts in livestock groduction is that all zrisa fureor crozs are rich in wost of the vitamins requirct 'y fara aninils. The only excention secns to be Vitanin $D$ and Vitrain $B_{12}$.   Vitanin $D$ snd Vitamin B12 are nut supplied by $\qquad$ $\qquad$ $\qquad$ -



carbohydrates fats	37. Csubhyorates and fats are required for iattoniug.    in the ration thent is not usud othorwise cen be used by the body for finttenin;: Fruteins are ivi. frally aore oxpensive, howover, than cerbohydrates an: fats. $\qquad$ and $\qquad$ 7orc purposes then the reterin fecds. The purpase of P fattoniac is to cauco "ararblinsi in the lean weat (deporition of fat in the lean neat) ani: ecovering of fat over the carcasc.
fal60	38. The nutrients that are needed for production vary according to the typu of production. ikilk is injin in calcium, irotein, and picsohorous, and feeds for ailk cons should be high in these elenents.   All production requircments are the sanc. True or felse?
	39. Ejes ar rich in motcin, rats, minerale, vitenins, and water. Feode hirin in thes nutrionts dieq to be fed to layins hons.
calcium phosphorous	40. Mille production ruquires feeds hisil in the ninurals $\qquad$ ond $\qquad$ -
nutrition	41. The fertility of broudir, stock is dependent on adequate nutrition levels. Sm:ll and weak litters of pigs and poor hatchnbility in joultry result fron inadequate ratione.   Flushinc of swine anc sheve are two cxamples of the importence of scequato $\qquad$ to fertility of breeding stock.
vitanins	42. Breedin; herts or flocks should be provided = liberal supply of rotein, aineralis, and vitauins.   Liberal oupplics of proteinc, ainerals and $\qquad$ are necossary to meintain higin fertility.


$24^{\cdots}$	43. A ration is the onount of focd allowd an aninal durinc a 24-hour day. If a ration costains all the nutriwnts in proportion and ariounts necesorary for projer nourishnent, thu ration is asis to wo belanced.   A ration is the snount of fecu allowed an anianal durinc $\qquad$ -hour jeriod.
balanced	44. A Eood ratien in ad:ition to contsining: rutrients in the groper ansunte should (1) be as ecunorical as poosible, (2) not be ineraful to the animal, (3) siould be palatible, and (4) be in the proper proyortion.   A ration that arrees with the abcvo requiramonts is said to be E $\qquad$ ration.
$\begin{aligned} & 2 \\ & 3 \\ & 1 \end{aligned}$	45. The follouing are serie practical "rules of timbu" for foeding livectocl:. For beff cattio naintwance, food    substitute 3 kilocrens of silase for 1 lijoogres of air dry rouchace. Pretsin and airaral suphlonentis nay havo to bo adled to the hey or :ilaü rations.   A rule of thurl ration of fouchaze for boof cattle would be $\qquad$ shace is used, suistitute ris of liversicitht. If vac. kilo-rins of -ir try ruabhace.
1	46. For beef cattle fettering, fead aproxiantely if to 1 cilogron of air dry roubiaco and 2 kilograts of concontrate por 100 kilosian liveweitht to cattlo on full foed.   The ratio of roughas te concontrate is $\qquad$ to $\qquad$ -
- -	47. For dairy oattlo foud 2 kilugrens of elr dry roughice per 100 kilograns of liverexint and concentrate as follows:   wiik brecds, food 1 kill renz cuncontrate for evory 3 kilograis milk producod.   Dual purpose brecds, feed 1 killojrem culleontrate for every 4 kilogreas of rills produced.
${ }_{3}^{1}$	48. Hills breeds of c:ttle ruquire a ratio of ecncentrate to aills of $\qquad$ to $\qquad$ .



roughase wheat   naize or barloy	55. Bred sows end eilte shoul: wo fed $1 / 3$ $\qquad$ $1 / 3$ $\qquad$ , and 1/3 $\qquad$ with yronor suppinicme.
	a

56. The Pearson Squere Nethod of balainciaj rations is used to aiaplify, and systenatizu tise procedure.

To find the proportion or percentajes of $t$ tw feeds rhbeh, when aixed to;ether, wijl furnioh the desired ereccint of pretein (or any other nutriont ) use the square as follows:

Calculate the anount of agiae ( $10 \%$ crude protein) and sojabean ail mocl ( $50 \%$ crude protein) thet vill be noccec to furnisil 10 lijloirans of a mixture containing 20\% erude protein.

1. Drary a square with lines connecting opposite cormers.
2. In the centre of the square, ontur the cruce jrotein percentage degired in the adsture.
3. At he loft-iand coracrs of the sounre, urite the aterials aixed together and tivir crudempotein cintunt.

4. Subtract alon: the diagonale, the zunllur from the larior, and place the difference at the opeosite end of the diagonals. Thus 20 ainus 10 is 10 , and 50 ainus 20 is 30.


The 30 then becores the jerts of neize requiris in the retion and the 10 , the perts of soybean exal.

Maize	10	20	30	
Cottenseed neal	50		$\frac{10}{40}$	
			tetal perts	

5. To find the yercentaje of ecci foad in the cesired aixture, divide the parts of each by the total parts.

Haize	$30 \div 40 \times 100=75 \%$
Cottonsed ncal	$10+40 \times 100=25 \%$

6. Since tu vent 10 kilogrizs of the aixturc, aix ( $10 \mathrm{~kg} . \mathrm{x} 75 \mathrm{fj}$ ) 7.5 ke . of maize with ( $10 \mathrm{~kg} \cdot$ : $25 \%$ ) 2.5 kc . of cottunsud neal.
7. Calculato, using the pearson Square, thu awount of thoat ( 8 ; crudo protein) and $\quad$ oyaboan oil:noal (50\% crucc protein) that trill so needel to furnioh 100 kilegrans of a mixture containing $18 \%$ crudo protein.

Theat

Suyabean meal


32 - $42=76$ parta or 76 wheat
$10 \div 42=24$ parta or $24 \%$ soyabuan total parta 011 neol

The 100 kilogra naixturo ehould bs nade un of 76 kilograne of whoat and 24 keiloisrens of soyaboan oil neal.
58. Calculeto, using the Peareon Squar:, the arount of theat (90j protein) and cottonseod cake ( 426 pretein) that ifill be needed tc furnish 100 kilograns of a mixture containin tesi protein.

 9.1 kilocrans of cottonseed colce.
59. Suppose you jlan to use 20\% wheat at $10.5 \%$ yrotein, $40 ;$ barlay at $9 \%$ protein and los: nill run at 13é protoin. You vill supplenent this erain
 usine the pearson Square for 100 vilocrais of fced.

Wheat $=.105 \times 20=2.10 \quad$ Barley $=.09 x^{4} 0=3.60 \quad$ Mill run $=.13 \times 40$ $=5.20$
$2.1+3.6+5.2=10.9 \%$ protein in the nixtire of whoat, barley, and mill run at the percentacos ivon.

The 100 kilogran mixture shoule su node up of 88.6 kilocrase of nixed crain and 11.4 kilograns of protein eupolpoont.

Sufficient
nutrionts in a
24-hour period in proportion to requiruments of the aniana.
60. Tho key to profitable livestock feading is to feod a balanced ration.

Define such a ration.

This unit is basod on a siaular ono propared by Gilbert Long of tho college of Education at Tashincton Stato Univeraity, Pularian, Fashington.

## Riane

$\qquad$ Form $\qquad$ Date

TEST

## chIT:AL iUUSEITIOI

URDERLITB THS COLABCE ASSR

1. Aninals reguse nutricate to gust:in life aith no loss or zain of weizht. Tine is celled $\qquad$ -
a. fatitening
b. rrouth
c. maintenciece
d. iroduction
2. 

a. Cerisohyirates
b. Fats
c. Mincrals
d. Preteins
3. The nutriente to provicie aill wil:ol are celled the requirenent for $\qquad$ -
a. in.tteniay:
b. rrovth
c. production
d. rercouction
4. $\qquad$ incluin starcies, surars, an.' eslluloce.
a. Curbohydratus
b. Fats
c. Itiner:le
d. Prot.ins
5. Feeds thite re hi.ih in $\qquad$ inciule acise, cotic, sarley, sid ohu=t pollards.
a. carl: istrates
b. fats
c. Hincrais
d. Mr:t心は
G. The kinl ant yuzlity of $\qquad$ are fully as ingortant as the shounte.
2. csryontirstes

1. fats
c. ainercls
d. zretuins
2. $\qquad$

a. Ealciut
b. Carbudycrates
c. IMnersis
d. proteinis
3. 


-m......
a. Gole
b. Mancanes
c. PJ. tinma
d. silver
c. Soliun
9. Fat: $\mathrm{cu}_{\mathrm{z}} \mathrm{Iy}$ $\qquad$

a. 2.00
b. 2.25
c. 2.50
d. 2.75
10.

a. Gres:th
b. itaintuatace
c. Prucucizon
d. Re.r: asction
11. $A(n)$ is the arount of food nutrients in the propor proportion for a 24-hour pixiod.
a. ziequate supply
b. balanced ration
c. increnent
a. mation
$\qquad$ are ceinon zrotcin supitenent foeds. (Choose tho answers.)
a. Barluy
b. Bone zual
c. Cottonceod nesl
d. $:=a=0$
e. Octe
f. Soyaboan neal
13. To recuec zain oi bred sowe or filts, feed nore $\qquad$ and loss $\qquad$ -
(Choose tres answers.)
a. erain
b. ifnurals
c. protein
d. routinare
e. viterdins
14.


[^1]
## FEED CHARACTORISSICS

This is a procrammed instruction unit on feod characteristics.
In this unit you are to learn:

1. to clasaify feede into tio folloning groupe:
a. total dizestible nutricnto
b. net encrity
c. concentrates
de. protain sopplononta (onimal and plant)
©. rougheces
f. lecumes and non-legures fomge qunlity.
2. Enercy volue as $=$ nocaure of focding value.
3. Mointenence and produation-feed requirementa.
4. Tho iaportanco of forace tectinit as an conomic tool for efficisat fooding of livestock.
5. The nethom of ratchin: forarentest infornation mith erain requirenents for aniry cettlo.

## Instructions

Tou are provided with a progrem anc i combination answor shoet and gask to cover the answers.

1. Plece the ansk (answer shect) over the ansuer in a way that exjoces one ruestion (frare) at a tirae.
2. Irite your mnawor on the answer sheet.
3. Hove the answer sincet down to expose the next frane nad answer to the previous freme.
4. Should your snswer bo wrong, write the correct answer above or along gide - do not erase your incorrect answer.
Feod
Characteriatics
If you have not
read the cuver
page, do so now,
than irocced to
frane 1.




20	7. Protein concontrates contain $\qquad$ or nore percent rotein.
Aninal	8. Proteial concentrates arc derived iroa cither animel or vecutail. substaces. Pruteinc c.crives fron anmal or auiazl by-jroducts ar. izinh quality protein feeds valuable for pouitry and stinc. Fhey are zore oxpensive than ilant proteins. $\qquad$ proteins aro hish quality proteins.
vegetable or plant   animal	9. Vozetable or pilat proteins are found in the by-roducto of :lnts.   Soynbusn oil mes, linseid oil seal, cottonsoud aeal, and eroundnut oil neal are $\qquad$ protein cencentrates.   Tenkeje, noat ecroje rat fish ucal are $\qquad$ protein concentrates.
animal	10. The ruanant-stonached livestock ar fes veiotajle proteins isceuse $\qquad$ proteins are bore ox moive and aro not coscitinl ioud stuffs for ruanent animels. They synthesize theiv own pretein "quality zrotoins" whercas suinc and youltry connot.
protein	11. Cottonseed oil wal, soyijear oil acol, shd linsed oil neal have in exccos of 20 jurcont groteia sad are clasoifiec as $\qquad$ surpluents.
grains or hich cnergy feeds	12. Tho orains are the sest sourcs or enex:y for the comon feed stuifa she they have the jest fattonini: value. Maize and whest are exampes of $\qquad$ -




6

- -	
- -	32. The net energy figuris are go acaninifill than the TDN (total digestibel nutricnte) figures in most cesee then balancine feel ratiune.
Forajes greins	35. . The nutrient requirurwate of deiry enttle are satisfied liareciy by forajes un.? treine.   $\frac{F}{201}$ $\qquad$ acke up 60-80 percent oi the total nutriente for deiry cettlc. the Lither 20-40 zercent of the mutriunts
Low	34. The protein in the jrin aixture should coaplenent tho protein suialied by the ferage. Tic grain, of course, is the priaury energy fod.   A high protein hay voulc require a $\qquad$ pratein erain.
- -	35. A poor quality hoy :ay require : Aifh pretuin orein costinj es muc: as shs. 105 :105u jur 1000 ?:iloerans.    protcin for graas hay an: 10.6-2ly, for lofure hay.
errore	36. Hese quality tififurumeen denonetrate differcnces in harvestin:, climetc, soila, ent varicty of scil. Usint average valuc: wi furages win vilancine: the protein lovol in urain niztures lende to lerse (nuve:t, ces, cruors).

7. 

-	37. Visual estin: tes of iorace quality, ns arc gometimes used for erading of hay, are ofte. in orror. Erros as huch as 5 purcont in crude protein and 9 yerccint TDi (tutill di, estiblu nutributs) aro uade by traincd individuals.
- -	38. The casu for rorace testing is beced upon the reletion between the chnical curiposition of a foraju and its feeding vilue for enimals. As a plent nutures, its digcstibility decreasco ind its protcin contint coclinec. Chenicelily these changes are refiected by an increase in erudo fibre (and licmin) and by faceroast in crudo protein. This is the basis of foracu tustins. Liys that are weathered also show an increso in fibre and a decrense in protein since vulujle nutrients are washed out by riin and leavec are lost durin. 'inryest.
declines increases   fibre protefn	39. As a plant natures its Nicestibility $d$ AS 2 plant antures, crude fibre content $i$ $\qquad$ Fecthered hay shows in inereasc in f $\qquad$ zal $n$ decrease in E $\qquad$ -   "octhered haj loevs vitamin A in lergo anounte, but does not loss $=$ like sount of eneryy unless the bey nolds.
1ess	40. As dïuectibility of a feed coclines and lts cruide fibre content increases, tie viluc of this particular fesd becencs $\qquad$ *
fibre   protoin	41. Forace testin; tests for the ancunt of crude f.... and, thercfore, cruio ? $\qquad$ .
15	42. Way varies with the way in whicin it is room, curci, and stored. Soils, clieate, nd varicty ui phant alc" affect quality of hay. Where are of ten cifferendes in quality within the sane field due to weation chances durine harvest. A representative sumic is, therefore, ixportant (15\% approxirately).   To sarple a 5,000 kilorraia unit of hay unc should take at least ( $5,12,15$ ) core samples fron different placec.



## 9



fornge	54. The basis for in economical foeding syotea for dairy cows is $\qquad$ testinc.
are not	55. High quality lucernc lay reçuires a mixture of hoae gromn Erains plus y trace aineralized.   Protein suppleaents (arc, are not) necessary with this kind of forage.
Shs. 4,410.00	56. Through forace testing it was foum that $:$ deiry farmer needed 10\% protein erain rather than the 130 protein grain he had been feedine. This risulted in a savinc of She. 35.00 per 1,000 kilograns of arain. aver : 10 nonth period, fuuding 60 cous at an averace of $?$ kilocrame per enimal per day, the faraer eeved Shs. $\qquad$ .
$\begin{aligned} & 2,3,5-A \\ & 1,4,6,7-\mathrm{I} \end{aligned}$	157. Label the plant derived protein supplonents with is $P$, and the animal derivech protein supplemente with an A . $\qquad$ 1. Soyabean oil neal $\qquad$ 2. Tankage $\qquad$ 3. Mont scraps $\qquad$ 4. Cottensced oil aesl $\qquad$ 5. Fish :zeal $\qquad$ 6. Iinsecd oil neel $\qquad$ 7. Groundnut oil ncal
andual	50. (Plant jroteins or deinal prutoins) are hiober quality proteinc and are norc expensive.
concentrato	59. Barley, theat, and pollerde are (protcin oupplencots, cincontrates).


See frames 48-49	60. Supjose a forag test indicatod a $16 \mathrm{r}^{\prime}$ arude pretein hay. That percont protein orain is necessary?
	v: ${ }^{\text {a }}$

This unit is based on a sinilar one prepared by Gilburt Iong of the college of Education at rashincton State University, fullarn, Jashington.

Narto $\qquad$ Fara $\qquad$

TEST
FコSD CUMRACTANISIICS

4. Livestuck fieds or icnerally classifiec zecordiat to the anouni of $\qquad$ they provirle.
a. avail: نility
b. colour
c. net cner:jy aveilable
d. autricats not fat
e. totill ficestible nutricnts
2. Fecds tint contain relaiively ionse siounts of $\qquad$ are called rougheyes.
a. ach
b. fibre
c. licnin
d. :inter=ls
e. protein
3. Foeds thai euntain relatively arin arounts of $\qquad$ are ailled concentrites.
a. car'sonycrates
b. fibre
c. uinerinis
d. proteir
e. Vater
4. $\qquad$ are foeds thet have a congaratively aich dicestibility.
2. Concentrites
b. Lezuncs
c. Drotein
d. Rouriaces
e. Totil dipestible mutricuts
5. $\qquad$ are fueds tiat inve a comparntively lout lỉestibility.
a. Carbobycirates
b. Cuicenitrites
c. :innerals
d. Pritein
e. Rougine?
6. Protein su.glvents contain $\qquad$ or nore jercent protein.
a. 10
b. 15
c. 20
e. ${ }^{\text {d }} \mathrm{O}$
7. Tandace is classificd as a $\qquad$ -
a. concentrate
b. foed eckitive
e. Lowifiore fied
a. zrotein sup: lainnt
e. vitamin
8. Protein surysenonts oribinate fron $\qquad$ or $\qquad$ - (Choose 2 anowers.)
2. animals
W. corceis
c. fibrous
d. minerils
o. 2lanta
9. Fich real is $\qquad$ -
a- an animal derivitive motein nuppleracat
b. a cernoditirabe zusetitute
c. E little usod motoin sumpencat

o. an uncrictainle foed.
10. The derivitive groteins are the best quality proteins of the common protein supilencatc.
c. aninal
b. enzaric
c. rincral
d. vlint
c. vozetable
11. The staz11 Graing are $\qquad$ .
a. concentrates
b. die: Eixact Iovis
c. Iow encrity fucds

- protsin supplowsites
a. rou;heres
 SMom, nothods of harvesting Ete
a. do. not vary
b. vary
c. vary but do 60 in no particular order

13. The $\qquad$ Litormincs to soñ extont the quality of the foed.
a. distri'jution 'utiovis
b. :
c. orice
d. quantity
c. Huight
 losses throuth undizcsten matarion in tion feede.
c. Arino acia
b. Energ'
c. Kineral
d. Protoi:
o. 1'irnc
14. Thu $\qquad$

purnoses, suct: as ;1bvtil.
a. eneray vilue
b. net enorig v-lue
c. net proituction vilue
d. re=l inconte vialut
e. total \&izociblo anergy
15. For zurpeses oi balanciu: ratisns winust kno: the $\qquad$ and the $\qquad$ -
(Choose 2 answers.)
a. cost of tiiv feads
b. nutricut cont int of she fivd
c. nutricai requifenitats of tive aninal
d. prefurencos of the oincr
c. tyi:o of faedin; systoil hsed
16. 

a. a carivoijcircic
b. Cruce protcin
c. Divestible rotein
d. Enarioy
e. is rincral
18. iist encriy requizwinnt: are sucken donn intc requirescnts for $\qquad$
a:1:1 $\qquad$ - (Choose $\underset{-}{ }$ に.asicrs.)
a. dirurtion
b. 'rcu:th
c. ruaintusatec
d. proditction
e . tiki=:
19. Livestocle reçuirc nisuut $\qquad$ tines as nuc: enerzy as protein.
a. $\quad 3$
b.
4
c. 5
4. 7

ع. 12
20. NEp stends for $\qquad$ -
a. nit uncriy.
b. nets cnerigy for iroduction
c. net inury jotcreial
d. nut ener:y ower
e. new enurg 1Motuction
21. The value of a feed $\qquad$ as tifesti'bility decreacos and crule fibre incresesu.
a. cescraves
b. increases
c. stays the sarne
82. Ruaineit etomachod arinels arv fod $\qquad$ protein feeds because the lizher
 oxpensivc.
a. energy

う. plent
c. T.D.I.
d. total .ineatiolc
c. unus뇨극
23. The sin is fost ingortant sten in foraje tosting is $\qquad$ -.
a. nocurate size serples
b. = lazt satilo
c. a roportionsi serolu
d. Eval 5:-2plo

24. Roughtres are :ivincd inte $\qquad$ and $\qquad$ - (Choos: 2 answors.)
a. concentracus
3. fibres
c. srains
c. jrains
e. non-1: चuco

TURII:I SECOMDARE EC:OOL

## VICuII:

This is a procraged instrucion unit on vitanatac.
In this unit you are to learn:



4. i:o the individut vitrina ere rovidei tr livostock.
5. "nr.t antinvitu:inere re
6. S, $\because$ tun 0 : viterin deficiency.
7. Atict vit-aint ori conony cescisat uitilin particular classes of livustnc!: .
8. The i!:orta:se of vitrains to remosuction.

## Instructicas:

 to cover the ens:iurs.
 cxrases one , uestion (frace) at : tine.
2. Frite four ansticr on tic mates sinst.
 to t:e wevious Er:ule.





D	1う. A otudy of vitasin: is :ect complete riftout soav aention of the entiviterins. antivibuine are substances that prevent thu action of tice viticin or even destroj it.   The sun suyilics vitanan $\qquad$ to enluala cirectly and indirectly through hay.
A	14. Vita:in $\qquad$ nust be i:scluded in an animale' feed in tive forn of carotonc.   This vitaain is escential for amintenance of mature andanas and in creater mountr: for groath, reproduction, and lectation.
carotene	15. The so-c.:Ilud "cottonseed-neal poisonina", produced whon cattle ax fed fur lenjtlig Eériode on sucit a ration an cottonscod anal and cottonsesd hulls, is due primarily to the lenck of Vitasin A.   Vitain $A$ is found in plants as $c$ $\qquad$ -
Vitenin A	1G. Suvero lossus of vitzain $A$ occur through aziuntion curinc hay andini: or lon; storafy periods. Ines stored a yenr or longer ins little or no vitisilis A ficd volue.   MCottonsect-ncal weisoninc: is causod pri:urily by :-short-: o: $\qquad$   Pain on drjing: $\therefore$ ay zesults insvere losses of vitarin $A$. Eineruy losses occur if ralcia; vecurs.
Antivitaxing   A	very low in vitenin $A$. $\qquad$ are substances that irevent the ection of Viteninijor uve: dustroy tien.   Scvere losses of vitemia $\qquad$ vecur durine tic iney rakina procese due to the dryins netion of the sun (aridation).
A	16. Adequate vitanit $D$ is ascesesary for the jrojer isesicnilation and uts of calciut ne wothiorous and tic dovilonnent of    during erovth, ilucil lose vic.enin $D$ i:j necciseary for nadntenance of aeture aninate.   The corcal Graine, ith yollow maize the one excontion, are low in vitusin. $\qquad$ -

4


saythesize or 2ruduce	25. Sheco, beof, and dairy cattle $\qquad$ the D-complex viturins in the rumen.
swing	26. F'ores of yeaci sucit as brewers dricd yunet are sonotinos tse! as a b-cotiplex vitenin eupplenent. $\qquad$ de not sunthaize a-complair vitanins in their digentive tracts and, for this reason, nust receive adequate E -conirI: vitunne in their focd.
Riboflavin	27. Riboflevin or Vitarain $3_{2}$ is recuired in large forounte for       eajecially ric: in rijoflavin.. Thuy :w v :lu:ble poultry fuede. $\qquad$ is vitaxin s.
yeasts   riboilsvin   cijlve producte	28. $\qquad$ axt soneti-us used as D-comilex ritanin suphwents.   Vitavin B2 or $\qquad$ is oupplisd in good anounts by : $\qquad$ $\qquad$ -
rich	29. Iiacin or nicotinic acid is a B-conplex vitionin that is nocoseary for mll ainals. Ruminantu syntivaize toir oin supply. IU: supyly in ticic : coud.   Mills and deiry arejucts ere : $\qquad$ boures of riboflavin.
Ruainante   lumenc   dogs, تintre,   or poultry	30. Dried yeast, rics polich, rice jran, wheat bran, Gromdnut oil ncal, tad gruen forcece and pasiure grops are rich in the viterin wiacin. Goud quality toy supplics a fair a runt, while naize, erain, onts, ryc, and dairy by-prolucte heve $e$ rather low content. $\qquad$ Eynthecizo theis om supily of niacin; do not.


$\qquad$

TEST
VITNIIITS
UNDERLITE THE CSRRECS FHSTER

1. The chomical acke-up and fuactions of vitanins are $\qquad$ .
a. different fror cach cther
b. sinilar but distinct
c. Bicilar to cach other
2. Vitanin $\qquad$ is raquired by all animels and aust be present in the $\because$.
foeds.
a. $A$
b. B
c. $\mathrm{B}_{12}$
d. $\quad \mathrm{c}$
3. Research in vitasins is $\qquad$ .
a. easy
b. ocononical
c. extensive
d. liaitod
e. questionable
4. So called "cottonsecd zeal poiconing" is really a deficiency of vitazin $\qquad$ -
n. A
b. $\mathrm{B}_{12}$
$\begin{array}{ll}\text { C. } & C \\ \text { d. } & D \\ \text { e. } & F\end{array}$
5. Severe losses of vitamin $\qquad$ occur tirrough oxdation during hay uatine or lens storege jeriods.
a. $h$.
b. $\mathrm{B}_{2}$
c. $\mathrm{B}_{12}$
d. E
6. Acequate vitazin $D$ is necessary for the proper assiailation and use of the oinerals $\qquad$ and $\qquad$ - (Choose tyo anbwars.)
a. calcium
b. iron
c. anaganese
d. aagnesiurs
e. Jhosphorous
f. zinc
7. Poultry necd nore vitazin $\qquad$ in their rations than do ofher fara stocle, cojecially for eft production.
a. A
b. $B$
c. C
e. $E$
8. Deficicracy of vitanin $\qquad$ causes ricketa.
a. A
b. B
c. $\mathrm{B}_{2}$
a. $\mathrm{B}_{12}$
c. D
9. Surne need bocnuss they do not synthesizc it in thoir digestive tracts as sheep, becf, and dairy cattle do.
a. Vitamin $A$
b. Vitanin B-complex
c. Vitamin $C$
d. Vitenin D
o. Vitarin $F$

* 

10. A11 Green forages ere $\qquad$ sources of vitazias.
a. expansive
b. inadoquatc
c. Doderate
d. poor
e. rich
11. A deficioncy of vitrain $\qquad$ accomparied by loosenting of the teeth is ovidence of scurvy
a. A
b. $\mathrm{B}_{2}$
c. B12
d. C
12. An $\qquad$ prevents tle actions of vitanins or kills the vitanins.
a. antibiotic
b. antiduto
c. antivitanin
d. exovitanin
c. leillar vitasin
13. Vitanin is necessery for reproduction in poultry, rats, and perhaps sons othor animals.
a. A
b. C
c. D
e. G
14. Lack of vitanin $\qquad$ secas to cauce "white auscle disease.:"
a. $\quad \therefore$
b. $C$
c. $D$
d.
e. K
15. Slow hedine wounds arv syoptonatic of e doficiency of vitanin $\qquad$ .
a. A
b. $\mathrm{B}_{12}$
$\begin{array}{ll}\text { c. } & C \\ \text { d. } & D\end{array}$
-. K

## TURLIHI SECOEDARY SCHOOL

$$
1
$$

MIUERALS
This 15 ה irciraurad instruction unit on fesd ciraracteristics.

In this unit ycu are to Icarn:

1. the ingortance of aincrals for sainel Grouth snd reproduction
2. wilch minernis aro requirol.
3. witch functions minerrls norfort in thi body.
4. whoi axiequat: mincril nutrition disuncs on.
5. sy:jtonc ef aineral ieficiencies.

6. Bult Lofici-ncy syi..tons.
7. byajtoms of doficiuncy fir the nojor ans minur derants.
8. sucjfic niner.i infurmation for oeraon fecds for diffurent clases of livosiucle.

## Inatructions

You are providucl witil $\because$ _rograi ans: a conbingtion ansucr shect and anale to cover the msucrs.

1. Place the wasis (ansuor satet) cver-tia ansiter in a woy that ex:osec ons (!ucتtion (frrec) :t . tinc.
2. Wite your :nswe on t!cijusuer siect.
3. :love tite ansitcr siect iden tw exyusc the noxt frans and answor to tise revieus in $x$.
 slong side - to not or :se you: incurrec insuer.


Minorals	1. A ration containinit an trundanco of protioin, caroohydrates, and fat without 1inersis will fencrally result in the death of en ininial Gooner than it no fooc at all is given. $\qquad$ are necessary for anny body processes inclulins erowth : n: rceotuction.
15	2. Fifteen separate end distinct mincral eleaente arciknomn to be required by sni.kis. S: :e of the inportant function they erffors in fic body sre: (1) they coitribute to the body structure, particulerly she bones end tecth, (2) they aid in nueculs. activitics, in tim reproduction processes, and in lactation ence cr:; production, unc (3) they pronote digestion of food, repiir the joij tiasucs in maintenanco, fermation of nub tiasue in growti, and liberation of cnerey for aucculur work anc. activity and tia procuction of heat.   Hinorols are kncurn to be ronuired by adinale.
ainerals	3. fidequete rinera? nutrition ic deandent on: (1) $\varepsilon$. surficient iaturs o: sech roeuren wlatht, (2) zresencu of the slement:3 in for:ie bicio-ically zovilatic to anixale, (3) a suitabl, valanes bethion aac: of the elenents, an: (4) abenust surply and $b=$ ance of other nutriant fuctors.   Sufficiont waraj und vitzine in balence witikether nutrients are necessory to insure dequate sborption of availablo $\qquad$
$\begin{aligned} & 3 \\ & 2 \\ & 1 \text { and } 3 \\ & 4 \end{aligned}$	4. To nust know thio tyan si ration and the form in which the giucral is fos bascd unon ite: $\qquad$ listed ia frane 3 auove   Fortilizer clogents Edded te advijci.nnt so.il aîht result in a deficiuncjoi a minornl elencat juviously zdeçunte in the fead ration anc probabl:̈ sdecuately suridiod nove. This condition coulis be coplainect by $\qquad$ and $\qquad$ 1isted in frate 3.   Irrigation may wasi anay solulde airerals such as calciun. Calcitu aijat bueonu cuiticivot bucrucc of $\qquad$ and/or 15sce: in fronc 3.
- -	5. Hun appluentin! $1 \times$ tions, only those :incrals that are doficiont neud bu adeci. As mucestary ar minerais are, an oversumbly can raduc- :urforance on in su cases evai be toxic. as an wandu, cobalit is aust coscaticl yet when i.s littlu :s 12 jim (.1 ersa/ias) is fed,    fecders ernot oprate on the theory thet if a srall wount of :javon is cood tires tinuc inis lovel would be bettur. Indiecrisin.tu uze of minwela ray bo cxpunsive in cost anci in reducina :crfurnacu.
False	6. Minural deficiencies miy bo sic slicitt is to be hardly noticcejl. or acute enoagh to caues iceth. Coirect feeding iroctices rust include fuodias of tw ainorals thet the enimal neods. rothing is erince in adidat a mincrial to a ration in when wavigh of that inineral is alrusdy included.   Extra minerils fud ai "incurancet are an ccononical sumperiunt to feed. Trie or Folse?


cannot	T1. Sturlios at one univercity indicate t!at arianls at 20 locitionave vere fed rativis containins $=$ a alequate rount of wost mincrale with the exce, tion of covere. Cortoin by-jrocuct fucd: er- excentionclly low in onv or zors bincrale, and a deficiency proportional to the soount of tio by-\%roduct fid mieht occur. alav, when rapid gains are exectod itu strues ia likely to increase the ruquirunenta over thet nora-11\% noedad ior many of the rinurals. Gonurad fucomendations of ainurad suphinionts for all rations (can or canot) be iade with essurance, for a whole country.
feed lot agerstions.   False   May cause inbalance she thereby cause a deficiency	fi. Minerel deficiancy will be rore lifely with a (faed lot ouration or cow anc cilf operntion).   Extra ainerals foc liberelly as :iasurancell are an conmical sur leacnt to aration. True or Faise? ?hy or why not?
sodium and chlorine or salt	17. Sodiun and chlori:n coisined as rodiwn clilaridu is comon salt. The syortons of $\because$ solt deficicncy are, an intense crivin's for salt, rusid weicit loue, lucturless uyes, and in the cesc of dairy cattle, dininished ille jecuction,   A rajid wijitit lose can bc eymtonetic of $a$ $\qquad$ Ueficiency in catile.
6nIt	14. Calvoe and sino. resciro 7 to 14 frans of salt jer day, while hifl zocrucing cow: may require as aucin es 75 cruas. Salt ina de included in the soinc ration (\% to 1 jercent) but eencrally it is edviseble to supily animals free choice also. Block sall shoul:i not be dopunded $u_{i}$ on ac the lone surply of salt for aversge to tifin producin; dairy cattie.   Lusterless ojes, raide lona of weicht nne diainished milk production aru syapto:s of $\qquad$ Aeficienč.
kill or anke sicl:	15. sainsis thet hav not ar.e salt for son tias should not bo siven frue secess to it b.enura they may cat nough to couso diccstive dicturbaccs or cven duath. Thoy should be fiven somil cuantitics daily until the cravin; kas larguly disa: cored.   inin:ls with $:$ craving for selt besud unon : lenstiy doficicnoy acy cat unourin to $\qquad$ if given frec rececos to 1.rese meunt: of it.
reculatinc body   procises:	A...ut 80 rercent oi it is used for struchural purposus. Like colciw, it is ixutate in bon Faration, but this                    





anozia	30. Anoain in anivis ruwate froa = dericichey of iron. It             to coil sinc colves, sud to liant or colte kuit too lons on tilk as thif wily ined. ifllt is duficie.it in iron.   A derieicney uf iron resulte in $\qquad$ -
i=dine	131. Irdine is nuecosery for the farmetion of thyrorize which Is a serwone of the theyruil gilenc. When - weficicney of iodill wists, tilu inni enlergee in an offort io arivide acre thyroxdre. $\qquad$ io necessary for tim formation of thyrozinc.
$\begin{aligned} & \text { iodized snlt } \\ & \text { ioctine } \end{aligned}$	   in the birt: of wok, decd wr vorllese younc.   St-milized $\qquad$ is $:$ gund way $t$ provile $\qquad$ .
copyor	33. Coper deficioncy iny uxist as -rinary efficiercy or in    Cozjur doficiency secne to jo associnted ath eneain.    eryecially the gentr ane a the youth. $\qquad$ cioficioncy axy axiat as a jrigary ioficicrey or $\overline{\text { In cuininaticu wit cobnit fne posijule irea deĩiciencies. }}$
copiper	   hearolotia syathe:j.- oxiet:- symptone $\because$ crer ur doficionc    $z$ relysi:; or ty inádurers.   A. defoct i:s howcicisin syntitsion ary ruault froa a iron.  
vitariin $\mathrm{E}_{12}$	35. The :grtant functien of cus $1 t$ it: shwor rutrition is to manote syathuil: if viteining in the rwen. cbalt deficin...é cause a luzu of apetite, lack of thrift,    and wool. prestiction.    of $\qquad$ -


sulfur	36. sulfur i: easenti~1 in liv. stock iicts. It functions in tite cynthesiu of sulfur costrinin, aninc eicls i: the rumen and eert-in whe zulfur cuapounds of the body.       sorforinince. $\qquad$ functions in the syathesis oi sonc natio ncide in the runci.
nanganese	137. The syartoms of mamaicse delicicacy are poor hatehability    prowing ciscleons. Hattas containin; wheat or Nent         A deficicacy in $\quad \therefore$ as :ifoct hatchebility of  
anlt	   satigfios tio minowel noode sacunt for orlt.   _..... is the otly nisaral not edequately su. gliud to তosra ion wotei: requircents are stiafied i.ith tadcagg, midu: by-aroducts or Fibhagal.
sunshine	   legu:a hoy, sic accoss to sunli ht will prove, t riclsoto unc cur it in its wurly stise   Plunty of $\qquad$ will helo prevent rickets.
Dicalciua :   phespiate	colciua ndied to thoir ration. Dicnteiua dowhate is a       onough celciwa but ;'2osituru: $1 \because \%$ be l-clina. $\qquad$ is : 500 source of sher"horus.
Ground linegtone or dicolciun phosinato	41. Bulls fed mixe: hay m: oriin turin; the dry conom noed       freo cibice ar aicalaul wosphate.    be supplicd rith. $\qquad$ -




This unit is basce on : تinilar unc jroxarol by Gilbert Lon: of tinc College ci Jeucetion at the University of "ashington, Pualman, tashin;ton.


TEST
MIMERALS
URDERLIIE T:E CORPECT ROSTER

1. A ration containing an abundance of grotein, carbohycreteg cnif frt, fithout minerals will conerally result in the deatin of an aninel $\qquad$ than if no food at all is tiven.
a. at the care tine
b. soonor
c. letor
2. Extra nincrals fed $=0$ :insurance: $\qquad$ an econorical supplement to feed.
a. are
b. are not
3. Mineral deficiencies arc important snly if deficiency syptoms can bo observed.
a. True
b. Falge
4. Block salt
bs doyended uion as a lone oupoly of salt for averace to high producing datiry cattlo.
A. should
b. chould not
5. Animale rith a craving for salt basuc uzon a Iengthy deficiency may oat enough to $\qquad$ -"
a. catch up on tidir requirements
b. causo bloat
c. causo constijation
e. require none for i: jeried of time
6. Lucorne is clasend as $\qquad$ in :hosinhorus.
a. anderste
b. joor
c. rich
7. Plenty of $\qquad$ will helv jrevent rickets.
a. exerciso
b. Iucerne hay
c. rilk
d. jrotoin
e. sunlizit
8. $\qquad$ connot get cnougit block salt th satisfy their requirements.
a. Cattle
b. Goats
c. Horses
d. Sheep
e. Swinc
9. $\qquad$ is a good source of celciun.
a. Boncmenl
b. Dicalciun phosphate
c. Ground limestonc
d. Heat scr:ps
o. Sodium ciloride
f. Tankaco
10. An enimel :ceds ;hosphorus for all of tho following except $\qquad$ -
a. bone fornation
b. necegany for usase of lat by aninal
c. necessary for usare of protein by onimal
d. prevention of rickete
o. .rreculating body mrucesaes
11. Mineril doficioncice $\qquad$ sconorile losses even thoush deficiancy symptons are not visibly ayerent.
a. cen causa
b. cannct cauco
12. sncmia in smiands results fron a deficisney uf $\qquad$ -
a. cobalt
b. iron
c. load
d. 5 silt
c. water
13. 

thyrofl eland
n. Cobelt
b. Iodino
c. Iron
d. Hangenveo
o salt
14. Slijeged tendons in zroting chickens result froc $\qquad$ doficioncy.
a. crlciun
b. cobalt
c. iron
d. nancencse
e. mangesiua
15. Hatch the fellowing teterisls with the ainerels they rovide:
a. iron sulfatc
b. oyctersicill
c. sodivi chluride
$\ldots \begin{aligned} & \text { celciurt } \\ & \text { salt }\end{aligned}$
.
$\square$ or rs).
a. dicslciuti phosphate
b. iron sulfatu
c. oystervinell
d. oteantic jone nes 1
e. vitanin A
f. vitarin $D$
17.
and phosphorus.
a. Azed
b. Hature
c. Youne

## TURAIII SECOHD:RE SCIOOL

## pLutit IUTRTTIOH

This is a procrannec instruction unit on food characteristies.
In this unit you are to laorn:

1. chenical elenente necesecry for wlent Erowth, Erouped by:
n. sources of als, water an: soil.
b. nejor and ainor elenente.
c. primary plant fcods.
d. secondary :lant foods.
2. Functions of nitrojo:, ihosyhorus, and potas: for grouth and anturity of plents end rusiotince $i$, diseisce.
3. The function of the :carricr" :reterial in comercial fertilizers.
4. The iaportince of cheaic:l soil tests to establish fertilizer needs.
5. The plant processus; photosynthosis, transitation, ent rcopiration.
6. Barnyard nanurc as a oource of nutriants to the soid.
7. Green nanure crops.
8. Convercial fertilizer lobeling.
9. The nitrogen cycle.
10. The carbon-nitrogen ratio.

## Instructions

You are provicuc! with $=$ progres and a combination answer cheot and ansk to cover the encuers.

1. Place the nack (answor shect) over the answor in a way that exiones onc question (irage) at a tine.
2. 7rite your answer on the saswer sheet.
3. Nove the answer sheat down to axpose tho nuxt frere and anewer to the previous frant.
4. Should your answer bo wrona, write the correct answer sibuve or along eide-do not eraco your incorrect nucwor.



carbon hydrogon oxyten	T. Feurtwen eleaents have jeon recornized as beine. necoseary for plent growth. Three froit eir and ureter are carbon, hydroden, and oxyion. These clements necomit for over 20 yercent of the total wizht of the plant.   The three elenenti; furnished $3 y$ air and woter are $\qquad$ $\cdot$ $\qquad$ , $\qquad$ -
oxygon hydrocen oarbon	2. The atmosphere Trovides c $\qquad$ , h $\qquad$ , and o to plants.
nitrosen	3. Mitroge: is telen fron the nir by cert,in :Grours of Uncteris. Whe nitrugen asicialated by these organisas underiocs 2 ciange vefore it is used by higine plante. cortain sreuss of bacteria renove: $\qquad$ iron tive air.
nitrogen	4. The bacteris telsin; nitrogen from the wir auy be sesociated ;ith nost, if not rill, lewhes. Lezurinous plante arc nitrogen-fi:ing: plants.   yon-lugutes do not fix $\qquad$ .
oxygen hydrogen carbon	5. Tise aitroes which is t-luan fron the air by lactoris is combined in tine soil $t$ : nade uclutle cofovuils berore it cen ordinirily : used ushizter illents. Therefore, it is ordinarily sioted that 3 ulemente conc froil air and :mener.   The three from air ans nater (other than nitrogen) are $\qquad$ ' $\qquad$ , ~~2 $\qquad$。
aitrogon ;hosphoric acid potach	6. Twelve Uicitute ars provided by the :eil. Iitroten, phosohoric acid, an zotabl ar known as "Mrimery plant foodsp and orc neuded by allante in relatively lare thounts and itive lor.; been recociajed as those rost 1yedy to be veficiont in suils.   Copy thed in the anu:ur aipace.


calciun   sulfur   aagnesiun	7. Calciun, sulfur, and nathesiun are seconlary ilant foods. These ececotiory ilent fiois are usurily readed in relativaly laric mounts.   Copy then in the answer Efice.
nitrogen   phosphoric actu   potash   calcium   sulfur   nagnesiun	8. $\qquad$ , $\qquad$ , and $\qquad$ are "prinary $\qquad$ , and $\qquad$ are "scontlary piant foodsi.
iron   danzanese   cuprer   zinc   boron   nolyidenus	9. Iron, nancenecs, cojuer, zinc, boron, and molyidenum are ucualiy colled the "rarer clenents: or :ininor plent foods. They are needed in ainute anounts but are ossentinl.   Cojy thea in the ansucer mpeec.
iron   tratanese   copper   zinc   boran   nolybdenum	10. Continuing rescarch is studying sune eleven other ainoral elowents. However, $\qquad$ ' $\qquad$ 1 $\qquad$ 1 ——, $\qquad$ , 2 nl $\qquad$ a arc the rarare plant arouth. $\qquad$ be essontini to
growth naturity	11. Introgen functions to increase ornath ind d-fer naturity. It ;rocuces $\approx:$ :ooi leff ans sten devilojuiunt and oives to ths inent the: luxurious inrli-green colour which is se desirable in rairing orepo.   Nitrogon incres.3us $\qquad$ and lefors $n$ $\qquad$ -
nitrocen	12. Ho matter aoy auch mosphoric acil :n! :otash there may be in the soil, the erage era uGe only quanitities in proportion to tise arowih of the glants, ant the jrouth of the plints will se in proportion to the $n$ $\qquad$ in tile sail.


phoophoric acic	15. Phoaphoric aci.: itetens naturit; of crope in. aide in   .. transferring ubiatences fror: thu st-li=, le:vea, ne    plutp and full. $\qquad$ incroseses the yroportion of erain to stred ent algo stiaulates root dovelopent in younc plants.
phospheric acie	14. $\qquad$ $\qquad$ hastens the alaturity of crozs. Potash appears to aid the zlants resistine cartain dieseses.   An insufficiency or potash results in the corly ripening or dyini of the stens and leaves of plents while the seegs or fruit are still irwature.
potash carbon hydrogen oxygen	15. $\qquad$ appears to aid plents in resisting cortain $\qquad$ $\qquad$ , rnd $\qquad$ are elenents Furnishod by wir athrater. They inke up 90 percent of the veight of the plent.
nitrogen   potasi   phoophoric acid	16. The torn "carrier" is used to indicate tho natorial in which the plant nutrient is founs.   Fer inetance, sedius nitrate, superpisosphate, anc potsoniun sulfate are carxiers of the primary plent fooss"; $\qquad$ , $\qquad$ , crel $\qquad$ -
carrier	17. The tor: c $\qquad$ in used to indicate the acterial in which tho Jin:it nutrient is found.   Cherical soil iest'; heve 'een develoned te daterrine which fertilizer ilenents are less than aciequate in a marticular soil.
leas	18. Soil tyre hes a aerled erfect en the rejulte of feritizer noplied to suile !eavirs tio swa chozen test result. claj ailic ar, usu:lly ricticr i: plant nutricats tiann sandy ocils. Snady soilis luach 4 ally comparod to clay seils.   Curtain cheolic-J. forme of $\because$ fortilizer elezento are sore quictily sveilajle dat :rw mers धoluhlu than otliee forts. A senty lone in $\qquad$ rich in plant reutricats tinn a silty ch. z lu:n.


clay sandy	19. Cheaical soil tosts are inportant to a fertilimation prouran.   A flela trial based upon the chonical tests results can definitely establicia tia rate of fertilizer aivilcetion    chericel test to gorine crope ent by roasurin; the differences in crop yisid. $\qquad$ soila do not iecch as badly as do $\qquad$ soils, End, therefore, to not lose nutrients as quickiy.
araendment	20. Line is called $=$ soil "anendnent" rather then a fertilizer, as it coes not carry nitrofen, yhosphoric acid or potash.   The acicity of the soil determines the kincs of crops that c.n se grown on $=$ soil.   Line is asoil. $\qquad$
photosyntkesis	Frowt: En: nutrition of crojs.   Photosyntissis is tis process by wieh grech plants conbine crrbon dioxide and water in tiw wesence of sumfight, to form car'sehydrates. P $\qquad$ results in formation if carbolybrates.
-	22. Pl,nts nued a certein :ifount of mater in currijing on their physialo,ical processes. fovever, only a saall porcentaig of tis watur.thet is susprbud br tise root hairs and zasses upent? to the leoves is used in these processes. The romiander evaporates throuth the atomete as unter vapour. This arcocos is called trangiration.
Respiration	23. Pes;iration wilik: jhotosyathesis, wich is linitod to cort:in colls in the 2uver, takcs alece in every living cell. Recraration is a sestructive procesi by enich food is destroyid with it consecuint relinse cif crergy, intale $i f$ oxycon and out on of carbon dioxidu an: water.   R results in reluss of carbon cio:ide and water.
Transjirntion nospiration	24. is the process of absorptien of water by the reot hajre, ani, noveriont up tir, it the stens, to the leaver. $\qquad$ is the yracess involvin; ruluas: of eneryy, fintale of oxyten and outco of carbon dioxide and water.





- -	43. Fiuc: of the nitrcein added to the soil underceece aray transforwations jeforw it is racoved. itH4 (esenoniua) chancee to 102 (nitrate). Jise aitrate form ie either used by aicroorcaniens an:! hicher nlente, or is reaved in crainas or volatilization. fnd so the cycle coos on and on. 4.-.
- -	44. Study the nitragen cycle.
incone outgo	45. Croz residuc is considered nitrozen (out: Drainage is considered nitrogen (outgo, incone).
$10 \%$   $\rightarrow$	46. A eloas re?ations:iy existig between the orsanic aatter and nitrocen contents us soils. This ratio of c.i-bon to aftrugen in the orsaide antter of the plourin furrua slico ranges frua 8:1 to 15:1. Tilia ratio cantrale tite cyailabie nitrocen, total ormaic natter, $\because$ : rate or orienic becay. The relationsini is enliou the carbon-uitru-cn ratio.   Grean manure crups save : (low, hirg) ratio of carboat to nitrogen.
- -	47. Coupetition for available nitrocen results when residucs    00:1 corto: to nitrosen ratic for ea: alle). Then n hich corbon reaidue is added to $\therefore$ soil hevine, o nerrust C all ratio, the deann: ior nitrate nitruetn beconce so ;reat by the nicroorenaima rapicily deconeoint the organic untter tiat little nitrate nitrocen is availabie for izuher ylumts. Thic elows urowtil of plants.

 Eduantion at the tniversity of dashiation, Pull.va, ?asinicton.


URDERLIME THE CORREGT ANSTEK

1. Fater and air furnisi threc clements for plant erowth. They are $\qquad$ $\rightarrow$
$\qquad$ , and $\qquad$ - (Choose 3 answars.)
a. carbon
b. coppor
e. hydrogen
d. mancanese
e. oxyzen
f. phosphoric acid
h. zinc
2. is taken fren the air by certein groups of bacteria. It is available to plants through these becteria.
a. Calciun
b. Cerbon
c. Hitrogen
d. oxygen
o. Phosphorous
3. Which thrce are lenomn as priacry plant fools? (Choose 3 answers.)
a. carbon
b. Iron
c. nitrozar
d. phosphoric acte
e. potzsh
f. zinc
4. $\qquad$ functions to increase growth and slow up maturity.
5. Colcim
b. Lead
c. iftragen
d. Oxymen
Q. Phosihhorous
6. 

a. Calciur
b. Iitroger
c. Phogphoric acid
a. Potash
o. Sulphur
6. $\qquad$ appoara to aid plants in resisting certain diseases.
a. Gypsum
b. Nitrogen
c. phosphorie actd
d. Phosphorous
e. Potash
7. The term is used to indicate the naterial in which the plant nutrient is found in concercial fertilizers.
a. carrior
b. conveyer
c. dryer
d. hoat
e. surplus
8. 12-15-7 etands for a consercicl fertilizer mixture of $12 \%$ $\qquad$ , 15\% $\qquad$ -' and 'ro' $\qquad$ - (choose 3 answore.)
a. calciup
b. lisue
c. nitrogen
d. phosphoric acid

- potazh
f. culfur

9. is the yrocess rusultini in roduction of carboindratos.
a. Dicostion
b. Photoaynthesis

- Rospiration
d. Transipiration
e. Transportation

10. is the process of eusorption of water by root haing, movenent
up tirough the ateis, to the laves. The ruainder of tho water is lost by evajoration through the stomati.
a. Porspirntion
b. Photosynthesis
o. Respiration
a. Transpiretion
e. Transjortation
11. consequint release of energy, intoki oi o:yyen, and outio oi carion
dioxide and watex.
a. Exhalation
b. Oemcois
c. Photosyntiosis
d. Resiriration
o. Trenspiration
12. Barnyard asnure is viluable for ita nutrient elenents and for its
a. calciun
b. nitrojer
c. organic matter
d. phospisric acid

日. salt
13. one type of $\qquad$ includec $a$ casi crop, a cultivated crep, and a
legune or hay crop.
ก. a carben cyele
b. erop rotation
c. nitrification
d. nutrition
0. soil erosion
14. $\qquad$ In the soil is solublo and essily-lost to drainage.
a. Iron
b. Hitrocen
c. Phosi:horic acid
d. Putrish
e. Sulfur
15. The relationship between mitroien and carbon is called the $\qquad$ .
a. carbon-nitrouen equivalunt

1. carbon-nitrocon ratio
c. nitrogen-curban ratio
a. nitruzan cycle
e. potash cycle
2. 

nioroorgaisuo on: neadily availa
a. $N_{1}$ nitrogen
b. MaCl: sait
c. $\mathrm{HH}_{4}$, aithoniun
d. $\mathrm{NO}_{2}$, uitrite
e. NO ${ }_{j}$, nitrato

## TULIINI SECONDIRI SCHOOL

## LAMD I

This is : prosramec instruction unit on land.
In this unit you are to Iuarn:

1. Why land is clascificd.
2. how the following are usod in classifyint land:
=. soil depth.
2 . soil profilo.
c. suil surfaco texture.
d. soil ¥erzeability.
c. soil cilour.

## Instructions

You are provided with a jrocrarn and a coluination answer sheet and mask to covor the enswers.

1. Place the aask (answer sheet) ovor the cinswer in a way that exposes one question (frame) at a tine.
2. \#rite ycur nnewer on the answer sicet.
3. Move the answer ohect down ti expuse the next fraze end answer to the previous frane.
4. Should your answer be wron', write the cerrect answer ajove or blong side - do not erase jour incorrect inswer.



- -	1. Defore you stert the rrasen, you :isoul: real the instruction theet. If ycu have not alrusing done so, rend the instruction shect nov. If you have rual it, wroceal to fruae 2.
caizajility	2. For the gosf inaziri frwa lend usaje wh classify our soils inte "evility to jrocucc" Groups, or lend cructility classus.   The eicht copability clasess art divider acerraing to their c $\qquad$ -
classify	3. Just as a doctor cheds julse and temperative of a putient befurt clnscifyine the sieknect, se to we learn to check tilu sovial symptese of our hand lizurs atterintin: tu $\qquad$ it.
soven	4. IN look for $\qquad$ factors or symenton is fore clisaifyiny the nini nh recomendiny cortain oru? usage fur it.
```classifyinc: or clascificntion```	5. The reason for c $\qquad$ of lend is t-wak the best use of the lamul. A wich to , ain the biesest return fron our invetianat aithout :ermenont lou: of the soil or its fortility.
factors or sym;tors	6. Efficient ca:scaification of the lima rill requirc a deteiled inno:ledre of the suven \qquad シ.

4

This unit is besed on es sinilar one prepared by Gilbert Lons of the college of inucation at the University of Thshington, pulluan, fashington.

MILERLIIE THE CORRECT ADISTER

1. Soil depth is the effective dopth that roots and \qquad can penotrato
the soil.
:1.
a. nofsture
b. a post lolo sicgor
c. a shallo:t rooted ilent
d. a plough
e. worns
2. Soil wracability refers to the rate of mbvenent of \qquad and \qquad throuth the soil. (choose 2 niswers.)

-

a. air
b. fertilizer
c. noisture
d. plouchs
e. roots
3. Soils thet feel "sticky" when aoist are \qquad textured soils.
a. coarsc
b. fine
c. loan
d. nedium
o. silt
4. "Silty" or "locny" toxtured soils are \qquad -
a. coarso
b. heavy
c. mediun
d. fine
e. soft
5. Land thet is very doep is creater then \qquad continetres deep.
a. 10
b. 70
c. 100
d. 125
o. 150
6. The incivicual parts of soil ars called soil \qquad -
a. ciump
b. conglonerates
c. dirt
d. particles
e. pieces
7. A common exa:plo of a soil profile baving limiting peraeability is one havine a heavy layer of \qquad in the subsoil.
e. cley
b. minerals
c. nutrients
d. sand
e. stones
8. Soil surfoce texturc is classified as finc, nodiua, or \qquad -
a. coarse
b. hard
c. loan
d. rough
o. silt
9. The aineral ingrediants of soil are of trroe sizes; sand, silt, and \qquad -
a. clay
b. fine
c. Gravel
d. hunus
10. A soll havinG excessive permeability vould consist largely of \qquad 4
a. clay
b. humus
c. loan
d. Band
o. silt
11. Soil with a high inherent fertility levol is ustuelly classified as having a \qquad colour.
a. black
b. dark
c. Erecn
d. 1ight

- nediup daris

Lhid II

Thio is a promraned instruction unit wich continves the instruction becan in Land I.

In this unit you are to learn:

1. hou the folloring are used in elnssifying land:
a. Eloje.
b. sutil dreinace.
c. orostion.
2. what p!! is ani its cffact on plent crocth.
3. the cherecteriatics of each of the lani clasaifications.

Instructions

You aro providod with a grouran ant: a crabinction ancuor sicet and mask to cover the answers.

1. Place tho ansis (answer shect) over tho ansmer in c way that oxposes one question (frane) at a tidu.
2. Frite your answer on the answer sheot.
3. Nove the answer sheet sorm te expose the next frome whe answor to the zrevious frane.
4. Should your answer be mronit, write the correet ens:er sibve or slong side - Lo not araso your incorrect enswer.

Land II

If you have not read the
information panel, do 8 a now
thon proceed to
frame 1.
-cut-

$$
\because \pi
$$

Mingting	14. aith linitine suil drainage, water is renoved so slowly that tite suil reai:ins wet for a laree pert of the tine. Swanpy lands would have \qquad drainaco.
adequato	15. $\frac{\text { Adequato }}{\text { Probicna }}$ drainage is nornal drainaco with no water probicne. A soil with adequate porcoability and no slope problen will prebaily bave \qquad soil drainasc.
	16. A heavy clay subsoil and a "flat" sloje nisht indicate \qquad soil drainese.
adequato	17. A nodios textured soil profile (topsoil ans subsoji) with an oven, moderate slape mill probsioly heve \qquad soil drainage.
oexcessive	18. A soil \qquad suil arainage.
acoruste	19. A fine eurface texture with a nedium tenture subsoil will probably have \qquad soil drainage. Soil drainage is a function of trater novenent through the soil (percenbility) and acrose the soil furface (olope).

6

This unit is based on a sinilins one prepsred by Gilbert Lon: of tho Collece of Education nt tho University of risikngton, Pullnan, :Isabington.

	Nane	Forr
	Dato	
TEST		
Laild II		

OHDERLIT THE CORRECT ALSSTAR

1. Land classes suitable for cultivation are \qquad - \qquad ,

and \qquad Choose 4 answers.)
B. I
c. III
d. IV
o. VI
f. VII
2. VIII
3. Land classes not suitable for cultivation are \qquad , \qquad , and \qquad \rightarrow (choose 3 answors.)
a. I
b. II
c. III
d. IV
e. VI
4. VII
g. VIII
5. Land slope is defined as the number of actres fall per \qquad .
a. 10 metres
b. 100 zictres
c. 25 aetros
d. 1,000 metres
c. 50 nctres
6. \qquad is the najor influence for rate of water run-off.
a. ccrer
b. Flexibility
c. Peracability
d. Slope
e. Soil drainace
7. Soin \qquad refers to how rapidly the land drains after beavy rains.
a. drainaco
b. length of lige
c. percenbility
d. slope
e. texture
8. Moderate erocion is $=$ loss of topsoil betrieen \qquad porcent.
a. $10-20$
b. 15-30
c. 25-75
d. $30-60$
e. 50-90
9. The acidity or alkalinity (swectness) of a soil are peasured in terme of
\qquad -
a. bH
b. cation exchange
c. pH
d. sourness
e. tacte
10. Land that can bo used rocularly for crops in a good rotation but needs intensive treatment and is subject to severe Limitations in use for crop land is land class \qquad .
a. I
b. III
c. IV
o. VIII
11. The \qquad of the land is the major influence on erosion.
a. depth
b. fertility
c. Elope
d. sail drainage
o. texture
12. The loss of soil by the effects of water and wind is called \qquad -
a. alluviva

8 b. conservation
c. draining
d. erosion
e. fertility
11. A naze crop can be groan every year on land in land class \qquad -
a. I only
b. I and II
c. I, II, end III
d. II only
c. I, II, III, and IV

TUMATNI SECOND.RY SCHOOL

CASMRATITG, DOCKING, :IND DEMORYIIG

This is a :rogramed instruction unit in erstrating, docking, an. dehorning.

In thic unit jou are to luarn:

1. Jethosa uf castrating pics.
2. aethols of cestrating cattle.
3. notheds of castr:ting sheap.
4. nethods of docking lanise.
5. acthods of dehorming cattle.

Instructicns

You aru proviled with e pregran and a combination answor sheet and nask to cover the enswers.

1. Place tho aask (answer ohect) over tho answer in a way that expasce one question (frame) =t $=$ tinc.
2. Trite your angwer on tho answer siact.
3. Nove the answer sheet dewn to expose the next frane ant answer tc the irevious frame.
4. Shouli your nncmer be wrons, write the ecrroct answir eyove or clong side - dc not ornsc your incorrect enswer.

3

2	13. To verfora tho operation, heve an assistaut bols tho pif on its back or sicie on the floor ur table, or by tho Lind lege with the body and sead botveon the knces. Gastration of pies requires at loast \qquad peoplo.
- -	14. If the andaal is lying on its aide, rave tho luvar testicls first. Nelse the incicion parallel to and about 1 centinotre frua the line or rapile. mas incision - Bhould jass throujh the slizin near the lower ead of the toeticle and throud the tosticular coverina into the boay of the testicle itsulf.
Incision	15. A connon aist-ke is co cut too hieh on t'ac serotua. Unicas the incision is properly nade, it is irppossible for the wound to arain :roperly rien the :ic is sten:ing or rungin: arounc. Tle \qquad aust be ande ecrrectly to insure that the weund eandrain iroporly.
cord	16. Following th. incision slip the testiclo out tirouith its nowbranes nil cut the attaciments excupt the cord. Then pull the corc until it breds an: cones sut. Renove the second testicle in a siailar :.anacr. The \qquad of the tosticle should not be cut, but pulled until it breols.
ticd	17. Then enstratin: olcer boars, Epeciel means of holding tho anianl are necessary Toping the fest and throwing the anianl on its back ir side is cener:ily the onsiust. olcor pigs must bo \qquad down for castration.
bleeding	18. Porform the oporation in th: sume menner es on mand pige, the only precaution boine tho jrevention ef excescive uluodinc. Excoecivo \qquad aust be prevented then canirating older board.

tied, held, or fastoned	31. :hen perfurning the castration operation, the ealf nay. be throm anc tied, or fastened in sone tyge of a "squeczo". The calf rust be firuly \qquad for the castration operation.
drainage	32. If thrown, renove the button testicle firat by slitting the far sice of the corotun parallel to the aediez line. The incision should be ande over the side of the testicle, and fron the to: onc-third to the lower end of the acrotuat to jerait proper drainage. It is iaportant thet the incision aade for cestration is correct se that proper \qquad cinn vecur.
- -	3j. A common actiod is to gresid the lowor on- of the scrotur, pull it out tishtly, inc cut of the lover-one-third, exposinc the ende of both testiclus. Renove one testicle at a time.
median one-third	34. Do this by pullinï or pressing it out of the scrotur, alitting the covorine meabrane, an! soverin; the cord, allowing two or three inches of the cord to ruacin on the testicle. The scrotur may be slit parallel to the \qquad Ino on each eide or the lower \qquad of the scrotific cut of to ronove the testicles.
antisentic	35. Perfora the operation with clean instrunente ane saritary ccisitiens. Jirst scrub your hands, knife, and serotun with a sonjo or picco of absurbent cotton saturated with a weck nitionptic solution. An \qquad solution ic lecel to ielp prevert infection from the operation.
standinc	36. To cnatratu a standing aniasl, stand close egainst tho left side, face the rear, ond with the left hand draw the serotur iack butucia the hind lows. "ith this gethod the animal should be tied securely with a short rope or luad. In other reopucts perfoza the opurition in the sowe manner as when the animel has beon thrown. Cattle resy be cestreted oither while E \qquad or after boin: thruw.

blood	43. This banc: stute off all circulation of blood, causinc the scrotur to slou,h off in about a month, leaving the groin repion perfectly snooth. With the elastrator, a strong rubber band is uced to cut off \qquad circulation which causes tho scrotum to $\begin{aligned} & \text { ry } u \text { ank fall off. }\end{aligned}$
-	24. Castration with tho knife is concrally reconracded ovor the two "bloodless" castration aotlods ceacribod.
7 to 14	45. Rem lamus (shoop) should be cestrotec when they are 7 to 14 days old. Chossc a bri.eht day; do not cestrato lambs on a. latp, chilly, or reiny cay. Sheep chouls do castrated at \qquad cays of agu.
excited	15S. Select fron the flock all lambs that are to be gastrated and fence thon off so they can be ceucht without too much excitconent. place tiva in a clean stall or jea after the operation is :urformed. The lanbs should ve as little as yonsible before castration. \qquad
testicles cords	47. Castration Lay be done by either of tro authots. In one you renove the testicles by operation, while in the other you pinch the corde, causing the testicles ti shrivel up, due to laci of nouriohmeni. Re:ovin; of the testiclec is by far the aore comicn practice. The tirc aethode of castration are; recoving the ane vinchine the \qquad \qquad *
	18. To perfors the opuretion, hold the lank on ito ruap with its hine lees wide asart. Cut off the lower thind of the sicrotur an!. ith the left hend squeeze the toiticles down. Next erasp the tosticles firaly betfoen tive thwib and fingerecf the right hime and pull thew wut with the sdherinf corle.

djefectant	49. Thio nork choult we tone quicky but not rourtily, ant the testicles and adherin. cords shoula be uram out orith estoady pull. The woun shouls then ie trozted ritil ent of the sulfa oiatacnts, : vesle carbolic solution or lysol ireparation. Castration younds of lambe should be trented with a \qquad d -
blcoding	50. If the lame are nore tian three weoks cil? before the operation is jerfurned, do not pull the cerds out but scrape thou in two, wacie of the testicle, with a knife. The serajing is tune to prevent excessive bleedine. Costration of older lariss is rarc ifficult because excessive \qquad nay occur.
Burdizzo (extesculatowe)	51. A. bloodless rethod of eastration is perforeed with special jinciorrs called Burdi:zzus or oriasculatone. The cord just bacl of each testicle is pirehed one at a tige so sowe scroturd is left unclamed fir cireulation. Lambs onn be bloodlessly castrated with the \qquad
infection	52. This type of castrotion dues aitey with all den;er of infection, but unless very carefully cene, any protuce sone "slips" in rixich castration is nut eccoriolished. Bloodless enstration has the advantace thet all danger of 1 \qquad is climinate.
Elistration	53. The elastratur may siso be used iur oheep. The rujber bond cuts off all blood ourily cousin:; the acrotum and tosticles to slough off in fiow woeks. Care must be tewen to be sure that both the testicles aro bulos the rubler band when it is aplied. $\underset{\mathbf{E}}{\mathbf{E}}$ \qquad is enother metioll of blocdess enstration.
tail	54. Tho docking of lanivs is inactice: bucause the tril io of no seneĩat to the dainel ond the resence ic injurious bocausc of the filth mich accurivictis sround anc bemeath it. Docking neanc renovil of the \qquad .

	61. If clocking with a hot iron in wara moather, gune fly rupoliant any be neceesary, tateh the $1=n b=$ for $a f$ fou days to se.. that they are recoverinc entiainctorily.
2 to 4	G2. Docking is sorotiaces done with a knifc, osjecially in enell flocks. 7ith o knife, feel on the undersi.: of the taill to locate the joint tu vo cut (2 to 4 eontiactroo fren the body). Mate the cut frou the uncersite toward the top or wooly sick. The tail shoult. bo declsed \qquad cuntinotres from the body.
cora res-hot iron	63. If tiac teil bleeds too wuch, tie $:$:icec of cort ticitily around it or touch the cut onc li-htly with a rech-hot iron. If yeu use the ecri, romove it in a few houre to keen the tail stub from sloughing off. Sxcecsive blucding after icekini; cen be tratod by tyinza \qquad arjund it or tuaching the en: with 2 \qquad -
Dehernine	64. Herns on conacraial cattle are extreacly objectionable. The loceec fron burisut cercanseo and denngod hidoa aro so ereat on alaugiter cattle shippol br marliet that horned cattic often sell for 8 to 12 purcent luos than if tiey were polled or cenorned. \qquad D helps to -revent loss to sleughter enttle froa bruises.
	65. Torns aru slso rijjectionelios on the fari, asioceiclly in feodluts. Tinicl ueak aniavels sere forced aray from foed anc shelter by stront, harned ones.
polled	66. Dehorning may bo dono in one of auvoral wayd. the use of a pure (honozysous) polled jull is one we.. favoured sirc nothin; but horniess calves oven wi:en ucod on hornod ccis. One way of obtaining palled calves ifs to uac a pure 2 bull.

-	73. Frea 3 acnths up $t:$ isut 10 nonthe, re techanicel lehorncr with half-reun? cutting bleckec hea wroven best. Beyond this age ruchenical clipgers or s seni is eenorally usced.
```using pura polled bull, chomicela, clectrical dehorner, nechanical dehorner```	74. Ordinarilü, ajout to 1 centinctre of flezt and hair chouli se sut cff it the bass of the horn in erier to insure a snooth heal. A good fly repellent, such as pinc tar shoul? be uasd round the wiunc, if flies are prosent.   The four asin waye of dolorninc enttle are: $\qquad$ 1 $\qquad$ $\qquad$ , An d $\qquad$ -

The inforantion in this unit was taken fron tie University of Illincis VAS unit 1032.


TEST
Castrating, Docking, ent Dehornins
ONDERLIITE THE CORRECT IUSTTR
4. Gastration is an operation to remevo the $\qquad$ of animals.
A. horns
b. ovariea
c. ponis
d. tatils
e. tosticles
2. Castration is porformed on animals to $\qquad$ an: $\qquad$ - (Choose 2 answers)
a. holp kecp the anizal clean
t. inprovo tho quality of neat
$c$. meet relicious requireacats
d. provont indiacrininate brucding
o. prevent injury to cthor animale
3. Then should aninels be costrated?
a. after reacliniz sexual maturity
b. at an carly ac ${ }^{\circ}$
c. just before slauchter
d. at birth
e. can be cone at any tino
4. An animel which has not been correctly or ecmpletely castrated is known as a $\qquad$ -
a. boar
b. buiz
c. ram
d. slip
e. stac
5. Pitus should jo castrated when they arc $\qquad$ old.
a. 1 day
b. 2-3 mocks
c. 10-12 veeles
c. 5 monthe old
e. 1 year
6. After cestration, eninals should bo kept in clean surroundfnge to prevent
$\qquad$
c. bleoling
b. broedine
c. erasculation
d. Infection
c. pein
7. Whon castratinc with cknife, it is inportant that the iscrotur be cut correctly so that proper $\qquad$ of the wound fill occur.
a. blecdinc
b. $\operatorname{dockin} \mathrm{n}_{\dot{B}}$
c. draining
d. infection
o. brelling
8. Then cactrating young piga, the cord should be $\qquad$ -
a. cut with a scissors
b. cut with a knife
c. pulled mentil it brapks
d. smashed yith a stone
o. tiod with a string
9. Bloodloss castration of cattio can be donc with a $\qquad$ or $a$ $\qquad$ -
a. Burdizzo eni:sculetone (Choose 2 answers.)
b. elantrater
c. knifo
d. razor blada
c. aciasors
10. Bloodiont cisivation 10 advantegooun whon $\qquad$ -
a. files :re troublusodo
b. it is cold
c. ridrelings are castrated
d. the inimals arc very old
o. there is no danger of infection
11. Docking is an operation to reaove the $\qquad$ of sheep.
a. horns
U. ovorias . it:
c. ponis
d. tails
e. tosticlos
12. Sheep are docked. to $\qquad$ -
a. lecop them elean
b. nect relłたjous reçureaents
c. provent brecding
d. Jrevent injury to other animala
e. provent join
13. Sheep shoul: we docked $\qquad$ from the body.
a. 1-2 ailifuetres
b. 2-4 centiuetres
c. 10-12 centinctros
d. 40-50 centizetrus
e. 75-80 contiactres
14. Cattle ere dehorned to $\qquad$ .
a. keep then clean.
b. aect religtous ruquirements
$c$. prevent brecaing
d. provent injury to other aninals
3. provent pain
15. Dohorning chenicala such as caustic potash should be used when the aninal
is $\qquad$ old.
a. 3-10 lays
3. 25-30 dayo
c. 2 nonths
d. 6 months
a. 1 year
:6. Electrical dehorners chould not be used on aninals over $\qquad$ of ace.
a. 2 vecles
b. 1 nonth
c. 2 monthis
d. 4 months
o. 10 nontins
17. Sheep shoult be castrated when they are $\qquad$ old.
a. 1-2 days
b. 7-14 days
c. 1 menth
d. 2- 3 nonths
c. 6-8 nonths
18. Cattle shouid bo cactrated when they ars $\qquad$ old.
a. 1 weels
b. 1-4 nonths
c. 10-12 nonths
d. 1 year
o. 2 ycars
19. One woy of revonting horns is to use a $\qquad$ bull who will produce
only horniess calves.
a. castrated
b. dehorned
c. groule
d. heterozycous pollad

- honozytious polled

THE COTAS UDDER MHD HO: IT FGOCTOITS

Thic is a progranucd instruction unit in tho cou's uliser and how it functions.

In this unit you pre to learn:

1. the parts of the utcer.
2. how milk issocreted in the wider.
3. hoid nilk 15 corried to the tecta.
4. the parts of the teat.
5. how $=$ corr leta down her nivis.

## Inctructions

You are provided with a progran and a combination anower shoot and mod to eover the encwurs.

1. Place the thack (ancwer sheot) over the anguer in 2 fay that exposes onc question (frame) at a tiric.
2. Irite your ancwer on the enswer sile et.
3. Hove the anaver slect dom to expuse the noxt frain and enswer to the previous franc.
4. SLould your answer bo brons, orite the correct anzwer above or aloní side - do not erase jour incorrect encwer.




10bules	3. Each quarter is dividud in a lurce number of diviaions callod lobeo. Eacil lobe is drained by $n$ sinaclo duct. ghe lobec in turn are divided into hany lobujus, oach of which is drained by a duct leading to the gain Iobar duct (Fig. 4).   Lcues are dividad into aany 1 $\qquad$ .
cornectivo	9. Doth tho lobes and lobules are surrounded and supported by connective tiesue nonurano. This is part of the bannock-lifo weabranc that oupperts the giland tissue of the ulder.   Tha lobes and lobules are supported by $\qquad$ tissue.
epithelial alveoli	10. A lobule is nado up of a larie nuriver of alveoli, spherical structures with a wall made up of a aingle layer of epitholini celle, winch nenufacturc or secreto tho will (Fis. 5). Each cilveoluc is connectec by a duct to in holding suace within the lobule and is connected to the interlobular duct.   Nill: is secreted by e $\qquad$ cells located in the $n$ $\qquad$ .
	E is $:$ hollow, sherical structure where the nillk is made.
nyoopitholical	11. Coapletely surrouncin; an alvolus are crouns of fibres, called cypopithojii:I colls, whicit have the ability to contract or siorton when they ire stimulated. These act ruch liju rubser bencis rhici: stretcil out as the alveolus fille up with nilk and contract, forcing out the mills, when the co:t is tirmalated to "let down" her mills.   The $n$ $\qquad$ colle, when stinuleted, contract to force the ainit out of the alveoli.

Fig. 6. The lifferont stajec of aills secretion are: 1. rilk aking meterial
 larber, 4 \& fot fiobule bre-king abny fron secretory eell, and 6. flattened cells cieted by riju: fillini in the :lvocius.




8


bacterin	31. One function of the stronk cancl is to keep dacteria fron cainin; entrance inte the tei.t. For idis rencon sonc datry firmors chaia tint unsy rilking cous are wore suscu;tible to mustitis tiun hi.n milleors, but as yet there is insufiiciont evinence to prove it.   The streak cenal irevento b $\qquad$ tent. fron entering the
noro	32. Toats vary in size sn: wingu; front teats ususily being lareor then the rear. The rane quarture, however, usually have fore capacity for milk then the front quarters.   Thu roar quasters of thi uider usually have gore-less caiacity fur :ifis than the front quirtors.
size	33. Tith wider use of ailliny ancidnes, the aleptabilicy of the covis ucier and tecta to inceine militing is a factor to bo considered. For lund ailking, the nost serious dofoct of tho tant is insufficiunt size to proparly grasp and easily pills. Tight sominctered teats calie tho job of hand aillini: slo: and hard.   Thu $\qquad$ of thu tests is the nost inportint factor for hand nilycinc.
wher	34. For aeciline ailicing, teats too widely emacos, as they are on poorly shered ulcers, er. nor: lifificult to qills, bectuse of tise difinculty of distributing the iension on sach qu:rter. This is necessary to leepp all of the rilk euctis ipon for frec ails flow, ferticularly in the last onu or two ainutes of aillines.   A woIl shajed u $\qquad$ is inportent for nachine milking.
30 to 45	35. juove the streal canal, the con's tusi rinels out into a cavity that holus 30 to 45 nillilitres of wilk. Though the tiferness of the tert :rall is fairly uniforn, the siapo and size of the cavities varius.   The teat cistern holds to nillitres of aills. $\qquad$ $\qquad$
nastitis	36. The nombran lininit the eistern of the tent mey wo cither at:ooth or have pouches or fulds. Jtese poucheg probably hol: ailk curine: the iaterval ketw, n aillincs, she if castitis ofconicas are jresunt, the jouches sorve ae a retniner or trap from widich they can spread upward inte the ulder.   M $\qquad$ is : bacterial inflection of the ucder.



stituleted	41. How a Cour :Lats Down" ILer Villt.   Then a cou is stiaulated, cithar by wasinin; or rubbing the udder as one rupares it for :illaing (Fici. 16), hur cooperation is. ahom by a cwolling an.. tensanecs of the'teにts.   A cow rust be s $\qquad$ to let down ier nill.
Fig. 16. Thu ris lated by veshin udder, discior: horaone into the the contraction	uitary blont., stimum or rubbin: of tho the "rilk-let-ctorm'i    of the muscie-Iile cells arount the olvoli. or aiter.
prossure	42. A prossuro bauci connected to a ail: tupo insorted in a teat will show = irent increase in mils pressurc. "Ithin ninutes after stinulation, the nill: presurure doubles (Fís. 17). This rise in nill jressure is duo to tilut-cown .r forcinc: dorn of the mill alreacy aceurulated in the uider.   Milk let-down cauces the ? $\qquad$ of nilk in the udder to incroasc.
pituitary	43. For a cour to let dum her sille, the stinulation is carricl by nerves to the krain, then to ? Gasell endocrine glani callud the pituitary, which hanes down like a crail tonato fron the base of thi brain (Fic. 1/3).   The stinulation of the uder is carried to tho p Elane by the nerves.
milk-1et-iown	44. The norve inpulse cances the pituitary to disciarain a chorical substanco, cellita a hornonu into the blood strees. This hornone is cenluc the "eille-lot-tomi" hormone, bucause it flows through the blood stresel to the cov's uller and eaurws tice contraction of the tiny muscle-like cells (nyoopitholiun) around the Ivooli.   The pituitary gienc produces the $\qquad$ homiono which cauces the ayonitioliun to contract.

Fig. 18. If the cov is friftatencd or in pain, in adrenalfn-lilec aubetance 13 released into tho blood atroan. It causes a contraction of the ancill bloon voasels ans pravents tide "latmionm" hornone frem actine on the alveoli.

13.

let-cown	49. it cout has no voluntary control evur the let-ciown horione in her body ont should not bu helc reaponsible for her lacl: of lot-down ronction under unfevoralio conditions.   Tho milking unvironnent iust be plensent in orcher for the $\qquad$ horacne to be comuleteiy effective.

The inforantion in this unit mas teleen frow the Univeraity of Illinoie
Vis unit 1025 .


TEST
Tho Cow's Jdder and How it Functions TNDERLIIE THE CORRECT MiIS.ER
A. A. conls ulter is divided into $\qquad$ Wistinct elands.
a. $\begin{array}{ll}\text { b. } & 2 \\ \text { c. } & 3 \\ \text { d. } & 4 \\ \text { e. } & 5\end{array}$
e. 5
2. The $\qquad$ are spherical structures with a mall aade up of a sinclo layor of cpitialial cells which aznufacturs the ailk.
a. alveoli
b. claterna
c. labules
d. mogbranes
e. udders
3. The mille sucretini epithelial cells absorb the milk-adkinc materials fron the $\qquad$ -.
a. blood
b. ducts
c. horaones
d. lobes
c. Iumon
4. Nill: is carried fron the individual mill secreting parts of each gland to the teat by a systea of $\qquad$ -
a. alveoli
b. connective tissue
c. ducts
d. Iobes
o. meabranes
5. The $\qquad$ is = Inrge opering in the centre of the teat into which the nilk drains.
a. canel
b. cistern
c. duct
d. Gland
e. quarter
6. When using a cilling aachine, the teat cups should be pulled down at the end of the ailling jeriod to $\qquad$ .
a. nassage the teats
b. release trapped rills
c. protect the connective tissue
a. protect the anchine
e. stimulate the cor
7. Tho $\qquad$ is the opening at the botton of the teat.
a. central duct
b. Iuren
c. sphincter
d. streck ca:ial
c. teat cistern
8. A rifking achine reatos ailit fron the teat by $\qquad$ *
a. applytins a vacuus to the end of the teat
b. applying aresoure to the ond of tho teat
c. gassabin; the cad of the toat
d. squecing the toot
o. wnshing the toat
$-9$. $\qquad$ :s the nost inportant aspect of 2 cow's udder for hand wilking.
a. Adequate sized teats"
b. Easc of tillinc
c. Softnecu
d. Spacing of teats
o. Unfformess

TO. The nills-let- dom hornone causes the contraction of the nyoopitholum a which forces the ntik out of the $\qquad$ -
a. alveoll
b. cistern
c. lobule
d. toat
o. udder

1:. The nill-let-down hornone is produced by tho
a. heart
b. kiancys
c. ailk sland
d. pituitary elenc
e. stomach
12. The milk-let-Comn hormone is released into tho blood when $\qquad$ -
a. the covis face is rubbed
b. the cou's udacor is washed
c. the cow iears loud, unusual noises
a. the cull is fed
c. the cou is frizhtenod
13. IFilking should be completed within $\qquad$ after tho $\mathrm{arilk}-1 \mathrm{ct}-$ dom horgone has jeen relecsed.
a. 1 ainute
b. 5 minutos
c. 10 ninutos
d. 15 minutes
e. 30 minutes
it. All of the following, except will cause the action of the nill:-lot-down hormone to be stop.ed farmediately.
n. attachinc a nilking aachine without waiting at least a minute after stinulation
b. fricht
c. pain
d. tying the rear legs together sfter beginning the nilking process
c. uclder stinulation

## SHRLL EXGI:AES I

This is a prosranced instruction unit in snell enginos.
In this undt you are to learn:

1. the comon typus of snall cingines.
2. the urinciples of conpression.
3. Lov to calcul.te piston displacecent,
4. how to cilculete conpression ratio.
5. the inportance of and function of valves.

## Instructions

tou are provided with a procren and a conbination nenswer shoct and ansk to cover tite enamers.
T.- Place the :ask (answer sleet) over the ancwor in a vay that exposes onu question (frario) at a tiac.
2. Irite your answer on the answer shect.
3. Hovo the answer shect doun to expose the next frame and ansver to the previous frane.
4. Should your ansrer be wrong, write tice ecrect anster biove or along sido - do net urase your incorrect answer.

-cut-


1

engines	1. Simal internal combustion encince are an itportant source of povar on the ferm. Single-cylinder gncines developine from onc to ten or wore horsepower arc "मilely used to drive irrigation pyppe, encll tractore, chsin sars, mater punps, air comprccsors, eloctric eenerators, and arny other.leinds of equipaent.   Suall $\qquad$ are an inportant source of power on farins.
samil encines	2. Several anall entines nay go found on wost larger faras today. It is therefore inport-at thei people workind on these ferns understand sometinir:; abut these engines so they can oporato then efficiently and adjust and naintein then properly.   A knowledic of 5 $\qquad$ is necesbiry for operating thon projerly.
copinder	3. Sincle-cylinder entines are zencrally retril burnine, have spark i,inition, and are air cooled.   Scall cucines are sincle-c $\qquad$ ongines.
four-cycic two-cycle	4. They Lay be eithor four-cycle or tro-cycle tyyes. Each type has cortain advantacos and disadvantajes. Jefore considering these it is necesciry to unceratant the basic difforences between the two types.   Snall oncines any be sither f $\qquad$ -cjcle or $\qquad$ -cycle.
intake   compression jover exhaust	5. Four-cycle or four-stroke cycle engines nale two revolutions of tioc cranleshift for each jover strole of the piston. There are feur listinct strokes for each coaplate cycic: intule, conpression, pover, and exhaust.   Tho four stroleve of a four-cyclo ongine are: $i$ $\qquad$ , c $\qquad$ , 2 $\qquad$ , and c $\qquad$ -
$\begin{aligned} & \text { fuol } \\ & \text { air } \end{aligned}$	6. On the iatalie atroke (ris. 1) the intake valve opens while the o:deuct valve renking cloaed. The ipiston noves downward and a aizturc of fucl inc air is dram Into the cylinder.   On the intelse strole : enixture of $£$ $\qquad$ and $\qquad$ is draus ints. the cyilndor.




3



## 5




Fic. 4. silig providad bet: cylinder at than et the	nore elcerance is tic piston and on of the piston (A) (B).	Fig. 5. Floxible ringe are provided to seal the picton in the cylincier.
fuel-air	33. The ends of the piston rings ars suparated by a gap so they can exert rregesire on the cylinder walls to aoke a tiont secil but enn still expend without breaking when they becone hot.   piston rinos prevent the $\qquad$ aixture fron escajing into the ercincos.se.	
Piston rings	34. The rinis also scrape the oil back awey frou the combuction chaber to keep it fron beins uaraed dions with the fuel.$\qquad$ also irevent crankease oil from entering the eylinder.	
compression oi1	35. Uyea rings are solid and called "conprescion rings". The bottorn ring is ofter perforated to pernit oil to be spread onto the cylinder wall and is called on "odl rinct.   Two leinds of aston rings are $\qquad$ ringe and $\qquad$ rinie.	
$\cdots$	36. Piston cisplacenunt refers to the spoce insplaced by tho jifion in its Eravel. Piston diapleeciont can bo conputed in cubic ceatinetres by the following fornula:   Piston displacenunt $=$ radius $^{2} \times \mathrm{T} \times$ stroko	


	37. For examplo, the piston cisplacenent of an encino with a 5 centinetra bore and a. 5 centinetre stroke vould 50: $2.5^{2} \times 3.1416 \times 5=98.175 \text { cubic centinetres }$
307.96 cubic centinctres	38. What is the jistondisplacoment of an engine with a 7 continctre bore $二 n d$ in 8 centi-netre stroke? $3.5^{2} \times 3.1416 \times 8=$ $\qquad$
	39. In larger enzines the piston displecenent is often expressed in litros. ( 1000 culic contizotres $=1$ litro).
paner	40. Piston cis:incenent is a reacero of the quantity of fuel-air aixture that cen bo telen into the cylindor on an intale stroke and therefere is at indication of the pornor the ongine cen covilou. Incraasing the size of the bore, lenftl of strole, or both, iacreases the potentiul power of tive engine.   The lorger the yiston disclacerent the zore $p$ and engine can develop.
volune	41. Coapression ratio is a cow.parison between the velure of the culiniter when the piston is at the botton of its strole the volue of the cylincer when it is at the top of its ctrolse (FiE. 6).   Compression ratio is a comparicon betweon the $v$ of the cylindor at the top and jottor miston strokes.

Fic. 6. Thito ngino has a compresaion rillo of 6 to 1 .




#  <br> Ngno <br> $\qquad$ <br> Forn <br> $\qquad$ T25T <br> Snall EnGinge I 

URDERLIIE THE CORRECT AHS.IER

1. The two strokes of a twomoycle ungine aro $\qquad$ and $\qquad$ - (choose 1

- comprescion and porror
b. cooling and iatoleo
c. displacorent and intaleo
d. oxhaut and lubrication
e. powor and cxhaust

2. The four atrakes of a four-cycle engine are: 1 thd $\qquad$ , (Choose only 1 ansroref)
A. carburotion, exhacst, displacenent, lubrication
b. carburetion 1 lubrication, oxhaust, pover
c. dieplacocont, lubrication, corburotion, conpression
d. intako, carburction, jorir, cooling
e. intake, compression, pover, exhaust
3. In a four-cycle encine, the fuci-air mixture is dram into the eylinder during the $\qquad$ strake.
a. carlurotion
b. compronaion
c. oxhaust
d. intalio
e. Iubrication
4. Chain sawe and other portable oquipaent usually use $\qquad$ engines.
a. diesel
b. four-cycie
c. one-cycle
d. etoan
o. two-cycle
5. The threc prianry essentials for the operation of an interaal combustion ongine are $\qquad$ -
a. carburotion, intalso, jouer
b. copprossion, carburetion, isnition
c. cooling, compreseion, carburation
d. intake, exiaust, lubrication

- lubrication, cooling o:rhaust.

6. $\qquad$ forn a seal betwec the eylinder walls and the piston.
a. Crankeases
b. Piston rings
o. Rocd velves
d. Rotary valves
c. Spark plucs
7. Piston displaceocnt is a measure of the $\qquad$ or an eneine.
a. officiency
b. Iubrication
c. powor
d. value
c. voicht
8. Vnives are rainly cooled by $\qquad$ .
a. conduction
b. convection
c. oil
a. radiction
e. wator
9. If a cortain oncino has a cylinder volume of 25 cubic centinctres when the piston is at the tep of its stroke and a voluac of 150 cubic centiactres at the botton of ite stroke, what is the conpression ratio of that cmgine?
a. 1:1
b. $1: 4$
c. 5:1
o. 10:1
:4.
10. If valves do not fit properly thero will be a loss of $\qquad$ -
a. carburotion
b. coaprosaion
c. oxhaust
d. IEnition
a. oil
11. One of the advantagos of a tro-cycle engine ovor a four-cycle encine is that it $\qquad$ --
a. is hanvier
b. is cacier to start
c. is sinpler in construction
d. uses lese petrol
o. has no crankeaso

12: The fucl-air nixture is oxploded in the eylinder by $\qquad$ - •
a. hoat

3 b. the piston
c. preseurc
d. a spark
e. the velves
13. Tro-cycle engines do not havo $\qquad$ -
a. conprossion
b. oxhaust vaives
c. reed valves
d. pistons
e. powor

## SWELL EHGIIES II

Tlis is a wrocranci instruction unit in sanil encines which follons the scell envines $I$ unit.

In this unit yoll are to Iacrn:

1. the anjor :arts of the eirrburction sostem.
2. the differenece ani ginilunties between the uravity and suction fuol syctuas.
3. the opuration of thi corburetor
4. the fapertance of the air clonncr and breather.
5. the gejor arte of the inntion nystom.
C. the operation of the mapneto. $=$
6. the secindary functions of cooling and lubrication in entine

- oserntion.


## Instructions

You are iroviced with $a$ :rogren ans a combination answer sheet and noak to cover the anci:cre.

1. Place the aask (anc:er sheet) over the nacier in a way that oxioses one quostion (franc) at a tiac.
2. !rite your encior on the ansuer shect.
3. Hove the ancuer shoot down ts exposo the next frane and ansuer to the ?revious fraio,
4. Should your angwer be urone, write the correct answer above or along eite - de not eraso your incorrect ansume.



Fig. 1. In the the fuel tant: is carburetor.	Fic. 2. A sedinent joul is tenerally proviced in the fuel line of a gravity feed cysten.
float valve	the engine, the flont lowers sme   in. Ifus - constent livel of fuel is carisurator bowl. This levol is high ai anplo supply at full tirottlo but ant leakin; or incocins. $\qquad$ is to anintsin a constant carburetor sown.
sir vent	is provised in the fuol thni: cap to the t-inf as the fuel flows utit. an air yeat in the enruuretor bowl to cape as fucl flows in.   permits air to ontor er oscapo as the in both the ruel tenle and exploureter
secinent borr	often grovided in the fuel line of : (Fig. 2). Ful flo:/s fron tiac tenis wowl m: ui through a ocreen into the carburctor. Doth witer sac sulid ior then potrol anc sill suitio out in 2072.   3 $\qquad$ $\qquad$ $\qquad$ is to ronlove water


sodinent bowl	10. The bowl is aede of claws or other trensesrent neterial so that the accuablation of water and sedinuat ean ba seen. Thus the operator een toll then to rowovo and cloan the sediesont bo:n,   The $\qquad$ $\qquad$ is trinspsrent so that water and seminent recumuleted in it con be seen.
suction feed	11. Suction systiag. in the suction-iooi fiel syston (FiJ. 3), the fucl tinl: is sountel julo: the cerburetor so the tonk itcolf tekes the place of the corjuretor jowl. i.unever, tive lovel of fuel is not cunstant like in: $:$ eirburetor $\mathrm{b}=\mathrm{wl}$ with ito float control. $\qquad$ ${ }_{4}^{4}$ bowl. fuol systen does not have a carburetor
	ction fect system the al bulou the   Fif. 4. Air aving throuch the venturi causes fucl to be drawn fron the nozzle and atonized.
foot vinuo	12. Fuel i: ©rown fras the toni= thrsu:i the fucl tulue by the ersing ouction. is foot valve in the loottom of thise tuid kecpe the fuel fro: rumbin:- back and thus insures that the tulu ic full of fusl at all tines.   A $\quad V \quad$ wrevente fued fron running out of the fucl tuise bacie into the fuod tianls.




22. A principle videly uscul ia carbureture for onall enzincs is the "ade blesd". a vent is proviced which allowe air to mix rith the fucl in the anin jet before it enturs the air Uleod air etroan at the vonturi (Filjo 8).   An a $\quad \mathrm{b}$ bysted is oftun used to componsate for the fucl-air mixturi incroase in richness during acceleration.	
Fit. 7. The proyer fucl-ane nixture for idle sipeed operation is obtained by adjusting the idlo valve.   Fic. 8. In the sir-blacd syston, wir onters the viat and aixes with tho fucl in the zain fuel nozzle.	
23. As suction incrusscs, aors air enters tirough the vont, prevonting the aixture fres bucoming too rici at high speeds. At low sirecis when vacuur dripe, reletively nore fuol entors fron the anin jet bocause luso air pixes with the fuel.   The $n$ $\qquad$ Velve contrels the enount of fuel in the fuci-air ruxxture.	
24. Choke. Starting an engine wion it is coll requires a Ficier fuol wixture than then it is wara. Plis is because coll potrol does not vaporize readily wis therefore a su'stentially freator propertion of liquia fucl tust be introduced into the air strev to odtais a coobustible   richor zixture. This is outcine: by "chocincil*   Startint a oold ongine raquires $\therefore r$ $\qquad$ fuel :ixture than when it is wara.	$\because$ $\therefore$ -
25. A sucoad utterfly valve is zoncrally placed in the fir horn of the cariburutor so chat you coia cloos, or inartially cluse the opsinz ant iacreas the suction at the vonturi. This causus a rush of fuol fron tio nozzlo into a relatively atall abount of cir. athe r-sulting aixture has a larcor proportion of fucl tis air and will periat ency startin;; ovell it low vapurization.   A choko usually ciniota of : annually operated $b$ valvo.	


cholto	26. Thu chcke (FiG. 9) 1s clused for ctartinc anc ojonod again an soon as the ensine fircs. If thu ongon coughs or starts to iile, it niz requiru dore choking for a chort tire while cold. Do nut load the enoino until it will run of thout clokins.   Tho $\qquad$ Is usod only to start the engino unc: zot it hoated 41.
Fig. 9. Th anc upened	Choke closed   e is closed ti restrict air intalie when sterting a cold cigino, as secn ca it atarts.
011	27. Prolongot chokint noy bo harnful to the entinc as it cousoc too suci "raw" or liquil petrol to be dram into the cylindor. T'is will wasid niay tho lubricating oil filn front the cylinder uall and piston, caucing unduo boce of these jurts.   Exceseive choking can harn an angine by caucin; the Iubricatinc $\qquad$ te be meshed away.
cir cleanor	20. Air Clamer mill Brusther. Sanll onjibes often sporato in dusty, inity concicions. It is ingertant to ;reveat dirt rand grit frwi: buina carrica into the onizinu througil the carburetior. $\qquad$   in a c renoves cirt fran tin air ontorint the criburctor.
air cleancr	29. It it osticated thet a sianll uncine pourcting at 3600rpan (revoluticne jur ainute) uses about 11 cubic atres of aif per ixur. in air cleaner is provised t.. ruatovo haraful cirt fron this air.   lleraful dirt is provent.ec fron enturina the endine tirou;h tho carisuretor $\mathrm{in}_{\mathrm{j}} \mathrm{an}$ $\qquad$。


30. Thore erc neveral fooct types of sir clesnore. The oil-bath typo (Fig. 10) hne a quantity of lubricatinc oil in ites basi ani all of the air nacies through this oil hefors it eature the eir horn of the carburetor.   Ono type of air cleancr it tho ob typo.	
Fig. 10. Tho ofl-bath airecleaner contrins a quantity of ofl through wifich all of the fntelic air nust pass.	
31. Dust and dirt are rached jut of the sir and accuaviato in the button of the oil cup :es acdiaent. This air elocner nust be maintained jrojeriy if itt is to do ite job. The sedinent shoulc be rancvod rugularly an.. the cleaner rofilled tith clesn oil up to the level incieated on the cup.   In the ofl-inatly type oir cleaner Nirt and dust in renovad frod the cir by $\qquad$	$\gamma$
32. Tha oil-staurntca tyec of nir cleciner has an sletunt of fine wirc nesh which is coturntod witit lulariceting oil. As the air jesaces through thio element, the dirt clinje ts the fila of oil on the nesil ond is roanved frow the oil. This air cloener is serviced by masling the oleaent in leorosenc or solvent, followed by dippine in cleen oil, draining, ind ropiacinc.   In the $0 \quad-s$ typo air cleanor, dirt and dust sticks to afilg of oil on a :rire noch.	
33. Dry-tysic air clenners contain a filtor elenent which any be waile of felt, soss, or :aper. Sorte dry-type ar   - cloarer cletunts can be cjeanod in selvent and dried before reassambly. Others leve dismonatile alenents plizeh ire replaces then they beconc cloziod. Instructions printad on the air clanor or in the instruction annuin should be follorred carefully in servicing these cloanors. In a d $\qquad$ type air claner, dirt and lust is filterod out by draint the air timough = fiae acshed dry filter.	
34. Every four-stroko cycle on;ine has gente surt of $a$ orinkense ireather eysten. dir is forced out of the urcation when the piston hoves toireral the cranisense on cranlicazo tho intalio and power strolies. Then tine piston noves away fron tho crandense on the comprosbion and oxhauet atrokes, air io draten through the breather.   The cranlecad breatien jornite air to flow in ond out of the $\qquad$ -	



megnets	39. Hoving-coil or wound-roter gagnetos were uidely usod at one time. ifociern hajnetos, hovever, conorally use uovine macnets and the armature, which consiote of a soft iron core wound with a coil af insulated wire, stands still.   In modern magnetos the $\qquad$ aovo.	4
flytheel	40. Meny samil engines have magnets iajocded in the flywheol and the ermeture hes polu picess tint ars eoperated    move past the pole picces, thic mannetic fiuld is concentrated in the soft iron arasture sid lines of force are cut through the srature cuil.   In snell encincs, the angets re often contained in the $\qquad$	
-	41. The coil has ir jrinary and $a$ soconcary tincine. The primery vinting hes relatively fo: turns of lerge :irc while thi secondary aincing has any turns of very fine ぃric.	
primary	42. The ends of the princry coil are connected to the breaker points. ictuolly one and -5 the prianry coil 1.c "grounded: to the frame of tiau encine and one of the bresker points is siailerly grounded. The other was of the primary coil is connceted by on insulated , Fire to the undrounced brealser point (FiG. 12).   The ends of the $\qquad$ coil arc cunncted to the breaker points.	
breaker points	43. As the moving napnets in the flywhed amonci the armetur jolo pieces, th: uronctic fivin cuts tirough the turns of the primary coil, but no current flows until the breaker points clusc.   The 4 $\qquad$ act as $=$ switch in the primary circuit of the arnature.	
breaker points	44. Then the brosier pointa close the current stirts to flou she a stronger matncicic ficld buil.ls up eround the irnature core. fitun the oreater points open, this fiola suddanly collapses, the lincs of forec asin cut throuth the priniary coil and a surge of curront i.t at aut 100 volts occurs throu $\mathrm{i}_{\mathrm{i}} \mathrm{h}$ the coil.   oponing the $\qquad$ causes a shiden surce of oloctric current throuft the coil.	



Iining	48. Tinine the mpoka: In dugiging the ignition systen, the manuf:cturir srovides for tinine the giark to cone nt the proper noment in the enciae cyclu. This is tone by having the brecker points open at the risht tiae. $\qquad$ meane that the ignition sinark oceurs at exactly tine in the encinc eycle.
zagnets	49. Thu aegnets muat also so at the jroper position vitis reforence to the nagneto arnature or etntor. Sone engines hnve their tioini fixed sad are non=山justinble.   Tining aeans that the the proper josition at the rifit tiae. of the Eacreto nust be in
- -	50. Other snines heve provicion for sifint adjustant of the tining of the innition sjaric, usually by noving the najnoto stator ilate. innuals for these encines cencrally specify the correct timing citiur in cogress or in aillactres of picton travel befors top deal contro.
$\operatorname{con}$	51. Bretker zoints are opens: :at. closed by scae lind of terat action. All two-cycle and sone four-cycle ongines have the $c$ an the crantshaft so the brewer points close anc open once eaci ruvolution.   A c... setion is used te open or close the breaker points on nost saall ansines.
- -	52. A. conson syaten is to bave a breater-point filuager, Generally made of fibre, with one end ridine on the crantshaft. The otier encl of the iluiger juars eealnet the brealear-\%oint ara ( $F \mathrm{i}_{0}$. 15) . Ei flat suot is machined on ons side of the cronksitift. inen the luition rides on this flot $s$ ot, it allows thu irever roints to elosc, but oivns the jointe :hten it rithos on the full circuiterence of the shaft.
cranksinaft	3. Thus da tiis syoten tic points are norarily ofon and a oinarle oecurs once caci: revolution of tiou crankehnift. Evory other one of these siarle is useful in ths fourcycle encine; the one that occurs at the end oi the comprascion atrolec. An oxtri or tanverickl ajarle occurs at the ead of the exhaust stroke, himed loes ni foot, and aay siorton the life of the breaker wints iun sionk :ilus.    once ench revolution of the $c$



Fig. 15. In sose engines, the breaker jointe are oponed and closed by n iluncer thich rides on the creniaghaft.

clogod acneto out;ut to imation requireaunts. is produced at slow gieeds for starting jut the voltago at operating spoeds is not uxcessive.

Better isnition systens ineve i:oi:ts thich ore normally c $\qquad$ -
57. This ienition systen also mates it jossible to uce a dovice to autonetically retari the s;ark at low ejoons and to ncivance it at high sieds. This is usunlly done
sjarle by centrifugal action of : woinht on thi camehaft gear.

Autoantic adjuetment of the tialing of the $\qquad$ is found on sonc encines.

$\begin{aligned} & \text { cooling } \\ & \text { lubrication } \end{aligned}$	58. Secondary functions.   As ras nontioned reviously; in acilition to the primary functions anc cystens of conrression, carburetion, and icoition; secondary functions of cooling and lubrication must ales be jerformed.   The secondary functions required for engine operation aro $\qquad$ and $\qquad$ -
air	59. Coolin:   Most sanll oneines used on farms are air cooled rather then liquic: cooled. Efficient cooling is ironoted in tro ways. The cyltider and colinder head are cencrally made uith cooling fins or ridgos.   Most snall engines are a cooled.
air	60. This neves it jossible to have theac parts thinese, with ridzes acting as reinforcins corubers to furnish the neccossary strenfth. It also ereatly increascs the suriace aroa exposed to the gir and romotes heat transfer to the air surrjuncing the engine. $\qquad$ cooled enfines cencrally have cooling fins or ridges to promote rajid heat trensfer.
fiywhoel	61. The second feature is the yrovieion of fins on the flywhecl minch wekes it operate as a fon. This ilows sir onto the hot jarte of the encine and jronotes cooling.   Fins on the $\qquad$ also help cool the encine.
cooling	62. It is important to kocy saln encines clenn as an accursulation of dirt and otiver foreica natter on the outside of the cylinder an: un;inc aay causu tiecse iorts to overiseat. overhuatinc or unequal cooling any cause wor:in: and burning of engino iarts, jerticularly the valves.   Engines must be kopt clean to insure iropor coolin! tises ilnce.
oll alinger	63. Lubrication.   The four-cycle engine 16 lumpicated fron $a$ supply of oil In the crankcase. Some en;ince havo a dijmelash systen rith a di. C er on the conncetin:; rod bonrinc caj; or on oil slinger thet is gear driven.   Twe systuns of lubricating a four-cycie encinc aro $\qquad$ and $\qquad$ -



Tho information in tinis unit uss tafen from thu fnivorsity of Illinois VAS unit3014.

Hane Dato $\qquad$ Forra $\qquad$

TEST
Saall Engino II
WIDERLINE THE CORRECT ANS:ILR

1. Tho usuri source of energy to groduce the eloctric gark for igniting tho fuolacir nixtura in gacli ancines is a $\qquad$ -.
a. battery
b. carburctor
c. cosदrenegr
d. macneto

- biparls iluc

2. Tho seconclary functions nocessary for the successful operation of an engine are $\qquad$ -
a. corburction ant comprecsion
b. conprestion an. ienition
c. cooling and lubrication
d. ignition and cooling

- Iubrication en!! cerburction

3. In a gravity tyro of fuel system the lovel of fuel in the carburctor is controlled by a $\qquad$ -.
a. buttorfly
b. Tloat valve
c. foot vinvo
d. covernor
e. needlevalve
4. The seced of on eneine is controlled by the position of the
a. carburetor
b. choke
c. filter
d. throttic butterfiy
C. venturi
5. When the $\qquad$ open $=$ current flow is seat to the syark plup sufficient to cauce a sivark to jung the zap in the sark pluc.
a. brecker pointis
b. cans
c. coils
a. magreto
6. valves
7. Most saall encines aro cooled by $\qquad$ -"
a. air
b. flywhecls
c. angnets
d. oil
e. rator
8. Nany Gravity feod fuel syctens contain a $\qquad$ In which vater and solid particles can settle out from the fuol.
a. carburetor
b. crankease
c. cylincer
d. fucl tank
e. sedinent borl
9. Tho bost fuel-air operating alxturo for an engine is about one jart fuel to $\qquad$ parts air.
a. two
b. five
c. twolve
d. rifteen
c. twenty
10. Tho of an ienition systom causes the adenctic field to collapso very quickiy.
a. bredkor joints
b. condenser
c. marnots
d. prinary coll
e. spark plut
11. Tro-eycle onvines aro lubricated by zuttinc oil in the $\qquad$ -
a. coil
b. condenser
C. crankease
d. fuel
e. flywhecl
12. Fuel is vaporized and aixed with air in the $\qquad$ *
a. carburetor
b. coil
c. crank case
d. cylinter
e. fuel tank
13. An encine is choked, the richuess of the ruetair aixturt increased, when 1t is $\qquad$ _
a. dirty
b. nou
c* overheated
d. started cold
o. under heavy load
14. The is a restricted oir passare in the earburotor fialch causes
the velocity of the air to be increased.
a* air horn
b. butterfiy
c. cholic
d. throat
e. venturi
15. The $\qquad$ removes duct ent dirt fron the air entering the carburetor.
a. air clenner
b. butterfly
c. magnoto
d. oil bum
e. sediment voul

## TUMATII SECOBDARY SCECOT

## 

This is a procramicd instruction unit in anianl broeling.
In this unit you ire to learn:

1. what celle are.
2. what cell Civision an: gaturation are.
3. that reprocuction is.
4. what fortilization is.
5. the use of tie anuare nathod to ieteraine the probeblo dintrijution ratio of jenes when anding various crosses.

## Instructions

You are provilled with a prepran and a canbination snsiser sheet ans: nask to cover the answare.

1. Place the anale (:nower itiect) over tive anower in a way that exposes uns quasticn (frose) at a tine.
2. Trite your snater on the answer s: oct.
3. Nove the answar shect down to expose the next fracio and answor to the jrevious freme.
4. Should your anawer bs wrong, urite the correct answer above or along sicic $=$ de net eanse your incorrect ansirer.



4


0
$E$



asexually	16. Accxuil ruprotuctivn :ccurs without thi git: of forn cull. .    as in the case of becterice of, other ainje-celled or sinple forme of life.   Bacteria rozroluce $\qquad$ -
Buldinc	17. Another muthod ic by buxding, in which new indivicuris are forned fron ju: H. Heasis rupoluce this way. Yeasts reqruluce by $\qquad$
coll	18. Every sexumlly roduce. andinl startod as a ainglo fortilizut cell. The lergo bull or tio omell bay chicir cach started frod = ainele fertilized cell. The colla frea piaich $\therefore$ nev individurl ins produceu ar colled renrocuctive culle, cornmocils, or rowtes.   Sceunlly zrojuced arimals besan life as or single $\qquad$
- -	cclls, s,aras, or secretozon (sim;ular - sieractozoen).
- -	20. Those forme: by the fom:le are called forale jori: colls, agte, or ove (singular - cvari).
$\begin{aligned} & 24 \\ & 21 \end{aligned}$	21. Bofore the malc and fuane gera-colls unite they so throuch a yrocess knom as neturation (FiE. 4). It should be noter: that in the eaturation process the numer of chronosomsi in both the ralu and fomale jernecelle is reduecd to half the oricinal amever.   ifunan crera-culle eacli contain $\qquad$ chronoscmes and rat Eern colls each contain $\qquad$ cirunosomes.



Fig. 4. Stue in maturation of anie eni feale roproiuctive ecils.

$48$	22. This is quite different fron what heypens witn celle divide $u$ n ritosia since in livision iy that process each noty cell conteins the sati nuriber of clironosones es the jurent cell.   Ench hutin cell, after division by oitosis, contains $\qquad$ chroneeones.
$\begin{aligned} & 4 \\ & 1 \end{aligned}$	23. Onc cosontial iifferonce betwon the maturation of the ande and fatisle ;ern-cells in that in the foracis only one of the fowr resulting iclls is ituctionel, whereas in the nale ail four are functionel anc. cepoble of producineg a now indivicual aftur uniting with an oud.   Onw si:orm coll forns $\qquad$ functional sjorme, while one cec cell forms $\qquad$ Functicncl ect.
OCSC	24. In the anle, larse nurlere of giorantiozos are formod often rillions. This aties tixe forinetion of younf nore lokely iceatise the fensle ;rouces only a satll number of $\qquad$ - The number produced ly s fentide at a tivent tian js prubably intic.icd to wonc extent by the nwgiter of youns proluced at birth.




8


.. 10




Fif. 71. To dotermine whether e bull is zure for tic polled concition, eross him vitt: horned cows. If the is pure, all thw offgprini will bu polled (left diacram). If he is inpure fur yolled condition, approxin:tely onc-ialf of the ealvoa till we hernod (right ildagran).

one-holf	55. The procerture given ean be usce to detormine bitch individuals are juxe (or inpure) for aliost any chernctor resulting froa : sinail cominent eenc.   If a bull is injure (huterozyjous) for the polled concition cicut $\qquad$ of hic oftionting fron horned cove will be hornci.
- -	56. Hotcheryag have culled sut rany hite fyendotte inny chicks because they ine single conbs, instead of roso conbs, thinch a "Yundotte is aupposed to inve. Eron some iyendette fleci:e the zerccantres of chiciss with siinjle combs runz quito lijik, Yut it is ? rulatively siaplo netter to sot un a brec.ing grogran thet will :rectically elfainate siable cen's chiclay from such crocses.
doajnant recoseivo	57. Whe examplus eiven are truicel of these crososs :hure the ifffercnce betwen two cheracters (sinclu coub and rose coub) involves one pair of ilicles.   The knowledco of : $\qquad$ คn:: $\qquad$ cherecturs can help of faraer improve his herd thengh a brecding procran.
- -	58. There is a larec nuiber ot such characturs ami if jou are interceted in workinï out aduitional crosees you ni;at be intereates in the following:   Elack colour in cattle is deuinant to red.   Thito faco in cettlo is iominnt to coloured face. Rose coub in chickens is doainint to sincle comb. Colour in animale $i ; 3$ doninant to albinisa. yellow colourei cotyledens in jers is lominant to craen colcured cotyludons.





ratio	ratios woull be 9：3：3：1．＂Ith t＇：ree peirs of heterozycous chterectors，the retio mnuld be 27：0：9：9：3：3：3：1．rote that for esch anditionel character til：retio io chenged to thu extent of aultivivine the recodinc ratio by $3: 1$ ．   Then indivistume witl horexifoue characters aro ented， the offinuing do not differ fr ille parents ont thore is no $r$ $\qquad$ of el：racter distriwution．
charactore ${ }^{\text {c }}$	69．Pertape your uncoritsining of hou charactors are transaitted dill nua onably you to swreciate rore fully the truth of the statesant iande provioucly tinet the inheritance of cucl：in inprovuint ：s nore eges jur hen was quite conpliceted．   Inmpocaent of enimels tiroujh bruedill：becoees nore com：licstcc ss the nunter of $c$ $\qquad$ influcincine an asoct of an in：ividucl incroases．
breeding	70．For exnajla，－．t losist fivu inlocitec ciaracters neu involved in uGu production，azaely；corly suxunl iaturity， intencity，Eruodiness，sent．nal y－use，sne joraistency． Furtioer，at least t．io änes are involvad in laduliness en：at leest the senc for cerly sixu：d anturity in aex Inines．   The ingrovoant of mindele throurh $\qquad$ is $=$ complicate：＂roeess．

4:

	BP：7	嫁：	27	3P1	bp：	bPW	bit	bpa
BP：I	Bippent	nspayis	İP，\％ra	BDP？${ }^{\text {ma }}$	Ebepat	उEPriv：	万bpera	23 P
EPw	BBPP：／fu	3BPP：nY	В3PワサV	33P\％az	B1\％	sbpp：\％．	¢＇pyma	Esprem
Pp	$3 \mathrm{BP}_{2}=1 \mathrm{~N}$	E3F9＂：	בвр27	3эуу＂：	Dhepat	isbpy	D6：ppr	
Bnw	paperive	nepmut	Eungr	35：\％\％	3bPy	Bbppury	2tmey	Ebs
Ex	Buprent	В1：PP＂：	Supyou	Bbpamir	SbPP：	Elpry	QLPC：m	LbF．）！w
3 Pv	B＇0ppat	Buppum	R PP\％	Ebpprit	sbereitiv	L＇JPP：A	bbpylw	1，h？${ }^{\text {max }}$
S	B\％pmit		3 zmia	Liom，	befyan	U3P3：	buery	b39， mm
bpu	B6P；	Ebppan	Bbera	Blaphry	bermor	і也ррия		bupivers



FtE．18．Descriptions inl expected ration fron crosses betivecn individuals that are heternzvous fir M－nte colvur，gollud contition，and wite face（Bupph：$X$ 2 zp p （1） ．

The infurration in tiic unit was takon from the wiversity of Illinois Vhs unit 1009.
Introduction to Antaal Brvodiag

UIDERLIIE THE CORRECT ATSTER

1. The $\qquad$ is the basic of inproving andmals tinrough breeding.
a. allelo
b. cell
c. cytoplaca
d. charactor
c. CGE
2. Ordinary cell division, the grocese by mlich aoct frovith occurs, is callod
a. bueding
b. fertilization
c. naturation
d. aitosis
e. ropreduction
3. During anturation, the nubber of chroaosones in the cern cells $\qquad$ -
a. inulies
b. reanine the sane.
c. is increasec by cne-half
d. ie docrcased iv one-helf
4. The natericl carrice by the cironosones willeh gives rise to a character are callod $\qquad$ -.
a. chromatin

- b. eges
c. Garietes
d. genes
o. Geramcells

5. Vialo jeru-cells are callod $\qquad$ .
a. eses or enos
6. genes or speras
c. ova or eges
d. sipartis or eggs
e. sioarnatezoe or sierus
7. 1 $\qquad$ fenc hides or azats the prosence of another tonc.
a. doninant
b. hoterczjifous
c. honozyorus
d. mutant
o. recessive -
8. An individual is Baid to be $\qquad$ for a character if he carries two uifferent iunes for that charscter.
a. doninant
b. heterozyocus
c. honozycous
d. qutant
e. recessive
9. An indivicual, tho is the result of sexuel reiroduction, ans recoived oi his genes from hits rother.
a. all
b. ono-aightl.
c. onowfourth
d. one-half
e. nono
10. The undin or cecrn ant cen to calloa $\qquad$ .
a. Certillation
11. Iaturation
c. EItosio
c. putation
c. rerroduction
12. acen - bull, henovereun fer yolled condition (pp), io natod with a cou, homezytous for hormed concition (pp), all of their orfsprinc rill be $\qquad$ .
a. Slacl
b. honiczyiouas
c. hornod
C. polled
o. mitc-raced
(The pollod condition is doninont to the hernea concition in cattio.)
13. Ansmor the next questions fron fnfornetion found in this table:


Table shouint the expacted results of natinc cattle hetorozyous for the polled conilition.
11-1. N. PD (Pclled) 11-2.
a. DE (Pollod)

11-3. a. FP (polled)
c. - (Pallod
c. pp (Ilorned)

11-4. a. pp (Policd)
b. $P_{D}$ (polled)
c. pp (iorned)

11-5. In e very larco nutser of such aninge, what round te the resultine ratio of yollod to hornoc of sprine?
a. an1 of fsprinc berucd
b. ell offopring polled
c. 1 pollod ta 3 hernod
d. 2 polled to 2 lorned
o. 3 polled to 1 harned
12. In a crose botuecn incividuels heterozyfous for a doninant character, the oxpocted ratio goced on the appearanco of the offsprine would be $\qquad$
a. 2:2
b. $1: 3$
c. 51
d. $0: 4$
c. $4: 0$
13. The colour of Shorthorn catt 10 is an exarple of incominte dominance. Shorthorn catt? any he red, white or roan in colour. jnsier tho next questions from information cound in this tabie:

	$n$	$n$
$R$	$13-1 .-$	$13-2$,
$R$	$13-30-$	$15-4$.

Table mothuc the orecotor results
 of nating shortiown enttle, the rele beint red ( $\pi$ ) ansl the ronale voinc yoan (tI).

## TUMEIII SECONDARY SC:HOL

AIIMAL SRESMKM, PART II

This is a programed instruction unit in animal brosding phich continues the stwily lucin in thu unit Introiuction to A:tnal Broeding.

In this unit you aro to loarn:

1. boy sex is deterained.
2. what sex-lindied characters are.
3. the importance of iinkago, crossine over, and nutation.
4. hos iaprovement cen be made by selection.
5. the c:ures of indivicuel variation.
6. the notincde of scluction.

## Instructions

You are provided idtin modran nad a ccuilnation anower shect and anak to cover the answers.

1. Flace the gask (answer shect) sver the answer in a way that ex.oses one question (:rene) it a tine.
2. Trite your answer on the answer shoct.
3. Move the answer sheot down to exposo the next framo and answer to tho previous fraile.
4. Should your answer b wrone, write the correct answer ebove or alone side - do not ernse your incorrect ancwer.

-cat-

(1. Sox is detorained at tho tinle of

## 2




SPERIS


EGGS

F15. 3. In poultry, after maturation cll of the spores and half of the ecge will carry a $Z$ chroniosonc.


.	$2^{3}$	$z^{\text {B }}$
	$z^{5} z^{5}$	$2^{5} 2^{5}$
$z^{\text {b }}$	$\stackrel{\text { Mile- }}{\text { binrod }}$	$\begin{aligned} & \text { Hallo- } \\ & \text { b. rrod } \end{aligned}$
	$\mathrm{z}^{3} 7$	$2^{\text {B }} 7$
i	Feaniotarrod	Focallebarred

Fif. 5. Natines betucen blacl: hens and berred ::10s produce all barred clicks.


Fig. 6. gesults of crosses involving colour blindacss in people. Loft dincran ehove rosulta of : crecr botwoen a malo with normal vision and a fowale that is heterozycous for this condition. Richit dincran shown resulte of a cross betwon a colour blind nele and a norail colour vision fonalo:



scloction	23. No natter wiat syetec of brwilini you follow or how high tha quality of the stock, prozres will be deterained to a eroat extent by the selection precticed.   Decidi. C whic! individutis to be allowed to reproduce in called $\qquad$ .
variations	24. At first you ciay bo dioccuraged bj the seconingly endiess variations that are possible and lilecly to oceur in croases. The intelligent indiviclual, iovevor, welconces these variations, because aitiout thes there could be no progress.   The v $\qquad$ from crosses of individuals provides the atarisi on which selection cen be nade.
improveaent	[25. It is obvicus that if thers were no differences, then there would be no basis for selection and therofero no profress in broodine for izprovurant of plants and animals.   Variations betwen individuale is the basis of 1 $\qquad$
natural artificiel	126. Solection may be dividod roushly into two kinds - natural and artificial.   Tha tro kinds of sulection are $\qquad$ and $\qquad$
natural	27. Natural solection refers to that kind of selection which takes place out in the wild. The slimination of wite arinals in the aild, bscausi such a colour ankes then eady prey for their enomiec, is a sood exanile of notural selection. $\qquad$ selection takec place without aid fros humans.
artificial	28. The kind of selection animal anc plant broeders are interested in may be teracd artificial nolection. This is the selection tiat ana practices in orler to develop docirable types and varivtioc. $\qquad$ plants and animals.   eclection is used by man for iaprovement of his


boreditary	29. Since selection it so inpurt:nt, it is very neceseary for us to leno" that the differences upon whici we base selection aro peranont - that they aze due to horedity rather the: to fluctuating, tonperary, giviromontal differences.   Selection is based on $h$ $\qquad$ differences.
environ=:ent, recuabinatior of cjaracters, nutation	50. This leads us to consider the cnucus of variation and tho relation of eclection to cach. The cauces of variations may be clawsed widr tirus heads: environnent, recoabination of charrciaro, and autation.   The tireo ceuses of veriatict are $\qquad$ : $\qquad$ and $\qquad$ -
Environnint	31. The firut couss of variation is environment. All living thinge diffor creatly on account of envircnaental conditions. plants differ because of differences in soil, ncisture, lijfit, and sany stiacr circuastancet. ininals differ because of the cifferent athodo usod in fiochine, tic difforent feeds usin, the loc.lity in wich the animals axo brought tiv, and 50 on.   $\pm$ $\qquad$ can cause variatien iotwen living thincs.
environnent	32. These ars ill differences due to environnent cond are not caused by differcaces in cera-colls. A jure variety of a plant nay produce individuals of difforont sizes tuo to the environient.   Differences dus to $\qquad$ are not couscul by difforunces in gera-colls.
crvironaent	33. It siouid be clear that selection based upon differencos due to the unironacht will be ineffective. Sclection can be effecitve only witon the difforonecs are tue to the feration of different linds of gern-cells, as has been chomn.   Solection should not be aade on differences due to the $\qquad$ -
corn-cella	34. If therc are environgential colditions midich affect the cerm-celle directly, there mu: jo effect: showing in tio offsiming. It is obvious that nothine can be transuitted to the offsring unleus it ig carricd in the gorn-cells.   Characters are trannattod to offsrrinit in the 5 $\qquad$ $-\mathrm{c}$ of the pareate.



offeprinc	35. There-fore the question is, are there thinies in the unvirsmiont which one effect tice gern-culle ilirectly, and cunsequently be tranizititud to the of isprinct $a$    way,   Sone onvironmental concitiane niny effect the gera-cello and these offects bill be traseitted to the $\qquad$
heroditary	36. Amonf theac aro X-rays an: certai: chenicals by which mutations aro intuecd. Such cimnizs nre hereditary, that 13; they arc trensaitecu frun mo foneration to tio next. $\qquad$ change: are trinshittud from one geareation
-	B7. Kuch has buwa sade sbut the relative inportance of herodity ant envircmeent, or of nature end nuture, bui the fiat of the vacle question con be out siriply by saying that usual envir.andental con:itions to net preduce in tho indivicurn -nytinin which it has not received by inheritace dan: tiat $a$ fuvoursbla environe:snt is necessery to cevelop the characters trich heve been reccived by inheritiace.
taheritance	38. Sone charactore aro auch nore casily influcucud by the anviromment than are aticra. In aniasle such o character as colour is littlo influcaced by unviroment, theicas such a character $2 s$ size is vex: do endent upon the enviromacat for its expression.   Environsent influences ths iuvaiopaint of charactors reculved by $\qquad$ -
inheritances	39. It is nut true that overy individual receives the sene charactirs that isery other inulivilual recuives, anc it is not true that all ianivisounls have the eapacity to develop in the same way if the envirument is the sand for a11.   Tro poople zroring $u_{\text {- }}$ in exactly thu same environaent pill have differcat charactirs becante licy have different $\qquad$ -
gura-cells	40. The sucond cause of variation is remobinaticn of chiracterc. fihts is onc of the rinjor causes wf difforences anunt plants and animal: Those differences are due to the fect that difforent kinde of gern-cells are produced.   A recoabination of ciaracturs is insecd on fror we evencration to another tirough the greace


roconbiuation of charactors	41. Sclecticil hased upon differuncec arizin; fron tifis causo is offective, fur the rensan liat tike differences are inherited gertinently and are not temporary on aecount of the envirernent.   Differences cauned by $r$ $\qquad$ e aro an effectivo basis for eiloction.
recorbinetion of charactore	42. The formation di oui difforent bricde of andinls and of oany varietice of ilente is proef of the effectivenens of sulection based urer such differences.   Solection can be offective if based on variations cauced by $\qquad$ $\qquad$ $\qquad$ -
sutation	43. The third cauco si varistion is nutatien, ds ireviouchy acntioned, hwover, soluction maced on a eutetion ie peranent, but gext authtiens are n..t bensficial. Pioy do not adese $=$ busie for rajii: prozress in inprovenent by seloction.   Variation causac by n $\qquad$ is inincrited.
jucting pedicreo actuel production prozeny test	44. Thitre aro asveral nethods used in selection. timong which the follosing are the aost iuportant: juditac, podizrec, actual roduction ane the proguay test.   Four pethods usec in selection are: $\qquad$ $\qquad$ ${ }^{\prime}$ $\qquad$ $\qquad$ ' $\qquad$ , and $\qquad$ -"
- -	45. In jutcing, you esn only osti:inte rouginly the velue of thu different points nu-ut tice eniral as they irepear on tho outaide. This, hencevr, neans a great deal because we know that the animal wust josesss the characters which Live it tilis ajpearance, lhough at the coneo time it any jossess some characters which is not show and wizich rifulht be vory undeairable.
typo	46. Judging has boen one of the ruat effective factors in the inprovenent of animals. It is usually casy to distinguish types. In cattle, for exaple, the conforaation of a beof tyee isj very different fron that of a dafry type.   Jubring is the viounl ubservation of an arimal to dotermine if it fitg a certain $t$ $\qquad$ .





The infcration in this unit was taken fria thi Univorsity of Illinois VAS unit 1009.

PEST
Animal Dreeding, Part II
UIDERLIIE THE CORRECT AHS:TER

1. The sox of an individual is doterminod at the time of
a. crossinc-over
b. fortilization
c. naturation
d. aitasio
c. Eutation
2. Curt-in gones located on the sex chromosones are knom as $\qquad$ Eenes.
a. character
b. factor
c. gamn-cell
d. nutant

- 日ex-linked

3. $\qquad$ is in interchange of cutire segacints of certain chronosonea.
a. Crobsing-over
b. Inniage
o. liztosis
d. Futation

- Sex-linliace

4. 

to rejroduco.
a. Dreoding
b. Scloction
c. Judging
d. Linknea
o. Mutation
5. The sex of an individual is tetermined by the sex $\qquad$ -
a. alleles
b. chroncsones
c. factors
d. jenes
e. gera-cells
6. A $\qquad$ is scnething witich occurs which actually chaitses a genc.
a. erossing over
b. factor
c. linkago
d. nutation
e. recombination of chnractere
7. Farmers can iaprove plants and animale by $\qquad$ .
a. breeding and nutation
b. changine the environnent and breuding
c. crossing uver and brooding
d. fortilization and ninturation
e. mutation and chansiag the eavironmont
8. Changes in individuals caused by $\qquad$ can be transalited from one ecneration to another.
a. accidents
b. dizeace
c. feed
d. neatlier
e. X-raya

Forale   Gera-   Celle	Male Gern-Gelio		
		$x$	$\underline{Y}$
	$x$	xx	XY
	X	XX	XY

Table 1. The results . . . exjected in the doteraination of sex of memals.
9. The cex of an offonring with chrowogomes $X x$ will be $\qquad$ - (Soe table 1.)
a. aalo
b. fearale
c. reftacr
10. The expected ratio of rialo to fuale offispring is $\qquad$ in table 1.
a. $4:$ :
b. 3:1
c. 2:2
d. 1:3
e. $0: 4$
11. Improvenent of anirails or plents by selection nust be basca on variationa phich are cue to $\qquad$ $\rightarrow$
a. tho onvironaent
b. aeredity
c. incomilute duminanco
d. sex-linked charactors
e. complote cominance
12. ancegtry. is the selection of an animal for breeding on tho basis of its
e. conforaity
b. judging
c. podigree evaluntion
d. progeny testing
e. aroduction testing
15.
tozother.
a. crossing over
b. linizago
c. ntiosio
d. uutation

- reconbination of characters

14. Individunls vary fron one another becausc they differ in $\qquad$ -
A. ervironment and nitosis
b. fertilization an: horedity
c. heredity and environmant
d. mutation and aitosis
e. aitosics and heredity
15. Veriation caused by $\qquad$ is not a good besis for naking rapid prouross
in inproving animale by selection.
a. Iinikage
b. nitoosis
c. nutation
a. receesivo characters
c. recoabination of characters
ib. solection of sn individual based on its external apparance is callod $\qquad$ -
a: breodiniz
b. characterization
c. judging
d. pedirrce ovaluation
e. irogeny teating

## MAKTHG ATD USIIG CORCNOE CN THS FAMH

Toin is the first of threc procranaed instruction undes in askinf anc using concrato on the ferm.

In this unit you are to learn:
-1. the advantages of concrete construction.
2. the incradiants of concrete.
3. the selection and testing of concrete ingrediants.
4. the proportionine of the ingrediants of concrete.
5. Tho sters in prejaring a vorkable concretu aixture.

## Instructions

You arc pr vided with a progran and a cocrbination ansuer sheet and aak to cover the anewers.

1. Place the aask (answer ohect) over thu asswer in a way that exposes one question (frize) at a tinc.
2. Irite jour answer on the ansure shact.
3. Move the answer sheet down to wiejose the next frase and anawer to the previous freac.
4. Should your answer bs wronc, write the correct answer above or clons side - do not orabe your incorrect answer.

-cut-


concrete	1. Concrete is a very inportant construction aoterial on tho farm. It is widely used for footings, foundation walle, vills above cromic, anil floors for all kinds of buildincs.   C $\qquad$ is an inpartant fara construction waterial.
- -	2. It is also usod for many farn inprovaments such as faeding flaors, paved bots, waterind tanks and troughs, silos, cisterns, vell platforms, sicuevilcs, driverays, retaining walle, and seztic tanks. Concrete nas neny adventafoe as n building anterial on the fara. Tha folloming are some of the outstendin: alvantiojes.
burn	3. Tiresc.fe. Concrete is :oncoabuctible and clivinates much of the fire hazard mhich is alvayo a probleas on farns.   Concrete does not $\qquad$
insects rodents	4. Insect and rodent proof. Insects, articularly ternites, cause ruch diajage to fary buileings. zato ane other rodents cestroy nillions of base of jruia and do countless other damage to poultry end livestock each year. Concrete can not be damajed by tilese yoste. $\qquad$ and $\qquad$ can not damago concrete.
stornes	5. Atorn resistant. Concrete it a very donse naterial which will mitistend windstores anc other attacks of the elemontsh In fact, reinforced concrete is the etencierd material used for building stora anc bomb sholters.   Concrete buildings are reststint to datage by - $\qquad$
rot decay	6. Pornanent, Conerete is not subject to rot and decay. Good-quality concrete vill last a lifetime with no mointenance required.   Concrete mill not $\qquad$ and $\qquad$ -



## 3

1treatono shale	13. Portland oment.io usually iurcinsed in raper baies. Ench bas containe 50 kilogrins of cet:ent. "portland" ic not a brand nane but deszantes a tyere of ewnent minch io jadu by buraing pulvorized linestone and aialo together to form a clinker.   Portland eczont 1 s made froa $\qquad$ nad $\qquad$ :
Portland conent	14. This clincer is then cround to a finenese such that 90 gercent or nore will yoss tirough i 200-nech bereon (thio sizo scroen will hold tacter).   Th: elinker formed by burning linestone and shale together is croun:' up to form $?$ $\qquad$ $\therefore$ -
dry ${ }^{\prime}$	15. Portland concnt nust be siored in a dry place. If it contains lume thit canot be pulverized between tho thual and finger, it should not be used.   Portland ewant ruct be otored in a $\qquad$ 2laco.
rater	16. In genoral, water suitable for making co:eretc sheuld bo fit to drink. Dhis neans thet it should be free fron oil, acid, alkalai, and haraful ajounts of dirt. $\qquad$ for making concrete :ust be clean enough to drink
Iinc	17. Actregates nay be claseified necerding to the size of particles as cither finc or cosrae. Fino arurcinte consists of sand or other suituble fine interial.   Sand is a $\qquad$ acisregate .
6	18. A cooc sand for concreto will contein particles varying uniforaly in aize fron vory fine un to those wheh will just pass through a ó aillinetre noah eacraen (each nesh is    help to fill the spaces iotween the larger particies. Sand should be frec fron dirt or arganic natter.   A finc acgrecato has particlos up to in diancter. $\qquad$ gillimetres

4
is required to pass then placinc.
should not be too large or the quelity of the
coarse acsurcgate
concrete vill be reciuced.
4. In sone ercas, concrete is ando fron the notural mixture of fine and coarce agcregates as tal:ch from a gravel bank or pit. This gixture is ofton callect bank-run gravel. highoquality concrete.
$\frac{B}{\text { GOOd }} \frac{-r}{\text { concrete. }}$ Gravel is usunlly not suitabla for making


Fig. 1. liaking a silt test.
A. Haterials noedod:

1. Sailize of aceregate to be tested.
2. Glass container (one litre or larger).
3. Weter
4. Rulo
5. Steps to follow:
6. Fill the container to a depth of 50 ma uith a repregatative sample of the dry natorial to le tested.
7. idd woter until the container is about 3/4 full.
8. Fasten cover on and shake vicorously for 1 minute, wehinf the lant fow sizakes in a siderise direction to level off the sand.
9. Allow the container to stand for an hour, or until tive liquial above the sand is clear.
10. Neasure the thicknes:s of the ailt deposit on top of the aceregats. If thin layer is more than 3 nin thick, the ageregate is not suitable for concrete work unless excacc.ailt is removed by washine.

6

Washing	27. The excess ailt in finc azGregato can be removod by
organic aatter	28. The organic-antter tost is used to detect the prisence of haruful :wsunte of orgaric matter (fig. 2). $\qquad$ 21 can be hirmful to concrete..
,	

Fig. 2. Maleine en orefanic-anter test.
A. Matcrials noeded:

1. Sample of agoregite to be tested.
2. A 500 nl prescri?tion bottle with cork or cap.
3. A 3 percent solution of sodium hy droxide (oado by dissulvinc 25 grans of solium hydroicide, household lye, or caustic soda, in a litre of uater, irsferably distillod).
B. Steps to follow:
4. Fill the prescri: tion bottle to the 125 nl reark :attlogerate.
5. Fill to tio 200 al aerk :ith the 3 :\#rcent aclution of sodiuri hylroxide.
6. Shake thorouchly for 1 or 2 ninutes and allow to stand for 24 hours.
7. Read test.

The colour of the liquid will indicate thethor or not the ajeragato cont.ins two auch orgenic מatter.
A. A colourleas liquit! indicntes a cleon agregate, free frou urgenic matier.
D. A licht yellow colourod solution, indicates soad srisuic nater but not enough to be ruriounily objectionable.
c. Darker culours soon tia-t it contitias injurious swounto of oruanic nastier and blowld net be usid uniess it is mosied and tested ugnin.

7

Hashing	29. Excess organic-natiter nay be renovod frod fine accrogato by $\qquad$ -
ailt	30. • A $\qquad$ test is made to determino if too much extromely finc antorial is present in fine agorecate.
organic-zatter	31. An $\qquad$ test is nade to :etormine if thers ere barafui niounts of organic-natter in the fiuc actrceate.
water	32. Controling unter-cenent ratio.   strength, durability, and vatertightness of concrete aro controlled by the anount of watur used per bas of cenont.   The amount of $\qquad$ used per bay of cenent is inportant in eeteraininc the quality of the concrete.
vater	33. In general the less mater used the better the quality of the concrete, so long as the aixture is plastic and workable. Some concrete jobs nuet be stronger and nore batertight then others; for such concrete we lees water.   Generally, the less $\qquad$ the better the concrete.
mater	34. The roconnendod anounto of water por bag of cement are as follows:   a. 32 litres of witer for each bag of cenent for such jobs as waterticht floors, watertieht foundations, and water tanks.   b. 37 Iitron of water for each bag of ceacnt for ordinary foundation malis and cootings. The 32 Iitro :ix is also suiteble for foundation valis and footines but tho 37 litre aix is soneviat nore oconomicri.   By ruducinc: the the concrete vecomes more weterproof.

$\varepsilon$


2. Threo litro jars
3. Heasuring cup
5. Thres mixing pars

- Stops to follow:
- Sproad about 4 litres of send on a clean floor, ar or envas ana allow to dry thorourhly a cood todoorature Stir occabi-nally and continus drying until sine :ill flou fresly.
111 the thred jurs lovol fuli with dry sand. eparate par.

3. Add 70 aliftres of water to pan $A, 140$ militros ,o pan B, and 210 millitrcs to pan $C$, aixing
anch thoroueniy
until you can ersily recognize the aiffercnco In zoisture contont. The threo samples should handle as folicun:

Pan A $=$ Dent sand - focla slightiy donp to the hands.

Pan B - Fot sand - fusls rut and forns a ball when squeozwd. It Ioaves gono noistury on

Pan C - Very weti kind - drip,ing wet and siarkies. It leaves aore noisture on the hande than wot sand.
5. Save the naterjal for the next denonotration.


Fit. 3. Sand bulks considerably with e small amount of noisture.

vater	44. Further additions of vater tend to flood or :ack the sand, decressine the saount of bulting. 觛en sunct is completely covered vith rater, itio volum is ajout the same as when nosurvi dry and loose.   Bulting of sanci is ruduect when the increases beyond 5 jercent. $\qquad$ content
Ine	45. The inner the sand, the nore it will bulk for a given noisture content. The size uf the neasury and the gothou of filling also aficet bulling and should be tiken into coneidoration for each job. coarse aberceates do nut bull noticonbly by the addition of water.   Bulkine: occure with $f$ $\qquad$ ace crogates.




cry	55. Uaunl proportion of fine and cinrec agereato on the dry basis fur morknble nixturen (ucod rith 1 ;art cumant) $\overline{\text { aro }}$ for 32-litre ouxture $2 /$ parto send to   3 parta coargo ageregate   for 37-14tre alxturo 2 zerte and to   4 parts coarse aEgrecate   The projortion of fine and coarec accrecates ard deternined on a $\qquad$ basis.
vator cement	56. If the proportions augbested do nut make a workable nixturo in the first or trial batch, chente the proportion of fino and coarse agerecate ali;intly but do not change the amult of conent anc water.   Kever chinno the arount of $\qquad$ anc $\qquad$ when adjusting $e$ conent nixture.
- -	157. Then usiat bank-run ageregatec or another in winch the fine and coarsu accregates are nlready mixed, the stops in wreparinc a workeble airture ers the canc es those for ugias soparated aecrecates exccitt thet you add the aggregate mixture to the mix until a pl::stic, mushy bixiture is obtained.
triol	158. The adount of bank-run or othe: combinod agircgite added In the trici batch aill be the lasis fur civermining the arount te adc in succeeding betches.   The anount of coabincel agarezate to aid to a concrete aixture is deterrined by a $\qquad$ batch.
- -	59. In usinc a mixture that containg jotit finc and coorse aberegate (cuch as bank-run (urivel), reacmber that the fine ajeregate is largely corriod in the void suces betwoen the , articles of crarse aturuste. For eanaplo, Y culvic aetre of fine abgregetes plus 1 cubic retre of course aunire;ate would aroiebly rosult in $\therefore$ voluac of only : little nore than 9 cubic metre when cuabined together.
Portland couent   rator   fine asgregate charse ageregate	60. Liost jravol bonks contain en excuse; of and in proportion to coarse material. This dees nit make the root ocononic.il aixture for concrete work, larifoly becautu nore eenent ;atate is required to covor the surfece area of fine particles. Phese particles eust be coveod by $\qquad$ to 1 roduce a bish quality concrote.   The indrediants of concrete are: $\qquad$ , and $\qquad$ - $\qquad$ , $\qquad$ :

The infornation in thic mit :anz talien fron the tniveroity of Illinois
Vis unit 3027.

## TEST

Moking and Using Concrete on the Farn, Part I
GIDERLITE TIE CORRECT AUSUER

1. Tro of the ingrediants of concrete are $\qquad$ and $\qquad$ - (Choose 2 answers.)
a. organic gatter
b. Fortland cenent
c. silt
d. etran
e. water

2 . A fine ajgragato is one whose particles are no larger than $\qquad$ in diameter.
a. 1 aillinetre
b. 6 aillinetres
c. 20 mililinetres
d. 30 aillinetres
o. 50 mililimetres
3. $\qquad$ is comonly used as a finc aderegate in concrete.
a. Ceacnt
b. Clinker
c. Gravel
d. Sand
e. Silt
4. Portland coment that contains very hard lume $\qquad$ -
a. can be used as usual
b. ahould not be uaed
c. should be usod only for foundations
d. should bo . Ieced in water overnight
e. should bo used only for wator tanks
5. Dirt in concrote $\qquad$。
a. Cecreabes ite hardening time
b. helps fill tho ojaces between the ageregates
c. Incraases itc etrength
d. lowers its quality
e. makes it more waterprool
r. The larcest particlee of coarso ajeregate should not be more than $\qquad$ the thickess of the concrote beine placed.
ع. $1 / 10$
b. $1 / 3$
e. $1 / 2$
$1 / 2$
$2 / 3$
. $9 / 10$
7. A test is run to deteraine if the ageregate contains too much
extronaly fine material.
a. dirt
b. pH
c. sand
d. silt
e. water
R. $\quad$ onter for cakinc concrete should $\qquad$ -
A. have an acid reaction
b. be bolled
c. be clean enough to drink
d. come only fron wells
e. contain sone oil
9. A bag of portland conont containg $\qquad$ kilograns of cenent.

e.	25
b.	40
c.	50
d.	56
a.	60

10. _Forthand-cement is aado from $\qquad$ -
a. clay and sand
b. Grianite and shale
c. ilimestone and clay
d. Portliand chalk and limestono
o. shale and linestone
11. 

a. clay
b. crushed stone
c. organic matter
d. sand
e. Bilt
12. Streagth, durability, and watertightness of concrete are deternined by the anount of $\qquad$ used por bas of coment.
a. coment paste
b. coarse aseregate
c. finc cegregate
d. stones
o. vater
13. The first stev in preparine a vorkable concrete nixture is to deternine the correct $\qquad$ _.
a. ceaent-agsrejate proportion
b. fine asgregate-coarsc acgregato proportion
c. water-ageregate proportion
d. water-cenent proportion
c. nixing tige
14. The recomended mount of mater to use to moke vaterticht concrete is iftres per bac of cunent.
a. 20
b. 25
c. 32
a. 37
15. The rocomended arount of water to use for aaking ordinary concrete is _._._ litres per ber of cement.

a.	20
b.	25
c.	32
c.	37
e.	45

16. then usine wet aand, the amount of water added to the concrete filuture nust $\qquad$ -
a. be bulked
b. be increased
$c$. be reduced
d. remain the sarse
17. Dirt nay be ranoved fron the finc aggregate by $\qquad$ .
a. filterine
b. screoning
e. testing
d. washing
c. minnowing
18. Concretc is a-rood forn building material because it is $\qquad$ -
a. conbustible and light uricht.
b. expensivs and insect proof
c. Insect proof and lifit weight
d. permanent and insect proof
o. porous to water and permanent

## TUMAINI SECOHDARY SCTOOL

## 

This is the second of three programed instruction units in rakins and using concrete on the fiarn.

In thens unit you aro to icern:

1. procodures for nizing concrete by hand and by aachine.
2. naking and shaping of forns.
3. projer placina of concrete.
4. concrete finishing.
5. concrete curing.
6. reinforcemont of concrete.

## Instructions

You are provided :itil a jrograty and a conbination answer shect and mash to cover the ansiters.

1. Place thu und (anwer sheot) over the snswor in a way that asposcs one rucstion (franc) at $\therefore$ time.
2. Trite your answor on the ansver strect.
3. Nove the anoaes steut doum to expose the next frame anil ansider to the previous frnne.
4. Should your answer bo wrons, write the correct answer above or aloniz side - do not erase your ineurrect answer.



Nolinis anc usini* coscretc on the farn, Part II
continued



66.	71.	74.
67.		75.
63.	72.	76.
69.	73.	77.
70.		76.

1

concrete	1. It is inportant to mix concrete thoroushly. Continue nixing until the cerient paste (cencat and zater) complately covors every particle of ageragate and fills the vaids between then. $\qquad$ must be thoroughly nixed to be of liek quality.
ceaont paste	2. Nasty or incoaplete mixinf will result in concrotc that is not of uniforn high quality.   The concrete must be nixed so that the $c$ $\qquad$ p covers every particle of argregate.
sand oczent	3. Concrets cen bembed by hand ia s:1all quantities. To hadt mix, plecs the noastred raount of sand on a watcertisht nixing pletform. Srwec the cenent ovonly over the senic and turn the two anterials with a shovel until a uniform colous shows that the sand and coucnt are thoroughly aixed togetier.   The firet step in raking concrete by and is to mix the $\qquad$ and $\qquad$ togatier.
coarse ageregate	4. Then sproad this mixture out ovenly and aud the noacured azount of coarso ajgrogate. Mix thorouchly arain.   Aftor aizing the senc end cement, the $\qquad$ is adocd and thoroughly mixed in.
rater	5. Then form hollow in the metcrial and slowly aud the neasurad quantity of water. Continue niying until every particle has been conpletely covered with cetunt paste. $\qquad$ is tho final ingrediant adder when nixinc concrete by hand.
mixed	6. A macitine nixar of the drum type is comonly uscd for miximis conercte. It is usually powered by an engine, - tractor, or clectric notor. It siould turn at a specd    fron the to of the drus an it revolves.   A conercte nixer must turn slov cnough to cnable the ingrediants to be properiy $\qquad$ -

2


sand \|coarso actrogate	13. Step 6. Dlace tine counted number of shoveloful of sand in the mixer. Then add the reraining chovelsful of coarss acerecate.   Following the wator, part of the coarse acgregate, and conent; the $\qquad$ and the romaining $\qquad$ are put into the mixer.
1 to 2	14. Step ?. allow the nixer to run for 1 to 2 ainutes after all Ingrediante have been adced to - ecure thorough mixing.   Tho aixer s:ould run for $\qquad$ vinutes after all. Ingrediants have been edsed.
consistency	15. Step 8, Observe the consistency of the aix earefully as it is dunped fron the infer to sec that it is mushy and rorkable.   The $\qquad$ of the $a: x$ nust be observed as the concrete comes fron the nixer.
aggregate cemont mater	16. Ste: 9. After this first or trial betcl: Las been made, anounts of asurcgate cen be changed for succeeding batcies if necessary to chanco the consistency of the milx. The anounts of cewut and sator, however, should remain the sanc.   To chance the consistency of the mix, adjust the amount of $\qquad$ - :iover adjust the anount of $\qquad$ or $\qquad$ -
forms	17. Forms arc the no ds or receptacles into wich the concrete mixture is ileced so thet it will hive the desired shaja when hardened. Concrete, beins plasiic at the time of mixing, can be wolecd into ilmost any desired shayc. The degrce of success obtained $\therefore$ ozends lergely on the forps used.   Concretc is illaced in $\qquad$ to iarden.
substantial strons)	18. Forms must bu substantial enoujit to retain their correct shape wion filled. Fresily mixed conerste exerts erent presaure.   Concrete forac must be $\qquad$ -



P0580	23. Night joints can be obtained by using aatchod lurbur, such ae shifilni, or tonguesun-crooved stock. For foundation whils, titie lunber 1 s often used ngain for roof sisentitiag or sonc iinilar piriposc.   Luable: used for $\qquad$ ca: be reuela later in other parts of tive conatruction.
	i24. Tho sizes of lumber comonly uswa fer foras are: 25.31 stock for flocr, foundation, and rall forms, colums, and boars sides; 50 mar fur beat butions an' henvy concrote construction; 50 mn X 100 man stuel: for stuis, colum roteca,    for otringers, males, in: jofsta; Fiom X 100mar or 100an X 100na aticels for nosts, struts, siores, ad sonstizes for stringers; 25:m X 100m stock for cleats; ind 25an X 150m stock for crossties and siailar br:cins.
plysood pancls	jorticularl: when they car be used repeatully. Jxterier plymoot vite: is exde with vatergroof gluo should be chosen for tiis purpose. $\frac{p}{\tan } \text { ar. nesirci. }$   can be uecd for feras whon snooth
concrute	26. Stecl, cast iron, and otion aotels fake excolient foras for concroto and are uscd extonsively iy contractore. Hetal units can be asceribled in $s$ verivty of oinges for soceind purjoses. Nutal furis ar: viry durable and the cost of the forn ror unit constructed ducreases :ith tho number of tiacs used.   Ifital is $n$ ewod anterial for noking e $\qquad$ foras.
Bascero	27. After the forms are gatu be sure tive .ro mill broced in positiun, lavil s.i.: pluat. Finot, sineere are often used for walls to liolid opiosite for: faces tiw rizht distance apart.   Forn walls ero held the cerrect isstance apart by $s$
Tires	128. Use vire tios, nassid tirourth or around fort stuls and across the swace betw-en forns, te tichton the forns    tall uill bs atraiglat anc: unifora int tidelnege.  



ofled	35. Dry, untreated forms rill absorb water from the concrete. Often leavin; the aurface too dry for best results. Forne nay also warp badly if not oiled.   0 $\qquad$ foras usually result in higher quality concrete.
water	36. If concrete slabs are built over : dirt or sani bottom, thorourbly sonk the surfece with mater before the concrete is placed. otheraise tive try meterinl nay absorb so much vater fron the concrate mix that the quality of the finished product will be inpaired.   Soil and sand mhich cone in contact with concrete should bo soalred wit's $\qquad$ before placins the concreto.
wheelbarrons	37. On small jobs concrete is usually transiorted fron the wixer to the foras in wheclbarrota. On lareer jobs bugifes and chutes are comonly wed. $\qquad$ are usually used to transport concrate on 6:10工1 jobs.
transportod	38. Thatever metiod is used for transport, care should be taken to prevent separation of coarsc fron fine particles. Such soparation is litscly to occur when concrete is transported over rough ground or runvays, particularly if the mixture is too sloppy.   separation of cocrse and fine partieles must be prevented when the concrete nix is $\qquad$
forno	39. Dejosit tho concrete in level layers in the fores, trapins and spacing just onough to aake it settle thorourliyy and produce a ciense nass. Srading the concrete noxt to the forts insures a snooth, Gense surface whon forms are reaoved.   Conerito should not be overworked after boing placed in the $\qquad$ -
foras	40. It is just as iaportant to prevent separation of nateriale In the forns as it is in transportine concrete fron the aixer to the forns. Deposit the concrete uniforaly around the forts whero it is to be used rather than placing it eit a for pointe and dracioing or causing it to flow where noeded.   The concrete mix should be placod in the $\qquad$ at the jlace it is to bo used.




cenent	52. It is nuver a good practice to sprinkle dry conent or a mixture of dry cement and fino ageregate on fresh concrete to take up surface water. Theso daterizic only form a layer on the surface that io likely to duct, hair check, or peel off after the concrete hardone.   Surface vater on concrete should nover bo taken $u_{p}$ by putting dry $\qquad$ on it.
broom vood flont	[53. For livestock floors, paved yards, drivowaye, sidewadiso rad other trork there a non-wid surface is required, the fincil finish may be jut on with the trood float or a broom. Broon strokes diould be in the direction of the sloje.   A non-akid finigh nay be put on concrete with a $\qquad$ or $\qquad$ -
non-skid	54. For sidewalks and porch steps a hair broom fintoh is most satisfactory. This broomiaz operation is jor Soraed after the surface has been steel troveled onec. oreryine degrecs of rouchness car bo provicud by varying the tive between tho steol troculing and broomin; or by varying the coarseness of the fibre in the broon.   A broom is usse to make the concroto surface $n$ $\qquad$ $-9$ -
stcel	55. For a sracoth finish fuch as is roguirod for feed manjers, poultry iousa floors ant dieiry barn guttors; follow the wood float with a stcel trovel after the surface has become quite stiff.   A $\qquad$ trowel is used to obtain a smooth finish.
temperature	56. In extremely hot weather, steel troweing :1yy be started withing the hour after the concrete is placed. In cool veather, several hours axy we required befor: troveling begrino.   The time to pecin steel troweline dependo on the $\qquad$ .
atiff	57. To securu a smooth, dense surface on concrete, at lenst twice over eitit the steul irowel is raquired. However, use the stecl trowel sparingly until the concrete has become quite stiff.   The concrete should be quito $s$ $\qquad$ before the stacl troisel is uned.


Fortland coment water	58. Proper curing of concrete is neceseary for obtaining streagth, durability, anci watertif, tincos. Cuncrote hardens bucatuse of a chumicel resction betwen Portland cenent and wator.   Concreto herdens due to a chemical reaction betwen $\qquad$ and $\qquad$ -
temperaturo moisture	59. Hardening continues as long as toweraturs are favorable and noistury is prescat to hycrato the coacnt. ioist curing greatly increases the strength of concrete.   Proper hardening of concrete requires the proper $\qquad$ and n $\qquad$ concitions.
damp-cured	60. Testa show that concrete rhich is danp-cured for 7 days is about 50 percent stronger than similur concreto thich is peraittod to dry out. Concrete dompeured for 1 ronth is about 100 pereent stronizer than siailar concrete kept in dry air.   Concrete is ctronger if it is $\qquad$ $-c$ .
danp-cured	61. Thorough danp-curing aitis in producing matertifint concrete. As the cenent paste in concrete hardens, additional solid matter is formed winch clases off tio space between the coment purticles through thich water might othervise seop.   Concrete that is to be wetcrtight should bo _. $\qquad$
dense	62. The more cumplete the hydration, tike denser and noro vatertight the cenent peste becoaes.   Dami-curine :selps to make the concrete d $\qquad$ -
tearing	63. It is vary important to casp-cure flours, javesuate, and other surfaces subject to wear becauce aampecurinc produces $n$ harder nearing surface. Continuous dowp-curing particularly in the carly stajes of bardeninci, helps to nake a hard dense ourface and to provent checking and ducting.   Danp-curing holig to produce $n$ hard :i $\qquad$ surfaco.


moict   (damp)   (Het)	64. Some coman methodo used in curint concreto are to cover the concroto with- otraw, sand, wet burlap, canvas, or heavy paper 25 soon as it can be done thithout parring ths surface. The covering nust bu kept continuously wet by sprinklint.   Conercto is covered to koep it $\qquad$ .
gater	65. The oanc result can be obtainod without covoring if the surface can be flooded with uater. In ocras cases it is possible to build small cartli dikes to huld the water on the suiface.   Concrete can be cured by kecping it covered uith $\qquad$ $\qquad$ .
7	66. Talls ani other vertical surfaces can be protected by leavins the forns in place teaporarily, or by hancing burlap or eanvas ovar thea. Kecp thesc coverings conctantly moist by sprinkling. Curins should continue for at least 7 deys, and for longer periods when prnetical,   ... Concrete should be cured for at least $\qquad$ days.
reinforcement	67. Reinforceuent is the tern used to deseribe the steol bars or mesh placed in concrete, ueually to increase its tensile strength.   Steel bars placed in concrete aro called $\qquad$
Roinforcenent	68. Concrete is : anterial minch is very atrong in compression thet is, in rosistine loads that aro pleced directly upon it. However, stecl bers or other metal reinforcenent in sose structuros sill sreatly increase its resiatence to streoses or foreces thit tend to beni or pull it apart.   R. incroseos the resistince of concrate to Sinding and zulline stresnes.
Roinforcing $\quad$.	69. In a efrapla bean, such as a concrato lintel ovor a window or door ojening, where tho forces applice arc primarily in a comnard direction, the uijuer half of the bean is in conpression and the lower half is in tencion. Therofore the reinforcing stcel should be placed in the lowor half of thu bean.   in simple beans should be placod in the Fowar inile of the bewn.


	70. Long beans, such as those supporting large floors and extending continuously over a number of colurins or other supporte, may bo subject to negative bendinc, or tension on the upper sice of the supports.
uppor   lower	71. In this case, reinforcoment is placed in the uppor portion to carry these tensile stresses. Roinforcement is also placed in tho luder portion of the bean to tuke caro of tensile strcsess oceurring in the bean between supports.   Long beams need to be reinforced in both the $u$ and 1 $\qquad$ portions.
reinforcoment	72. Reinforconant may also ba usod in walle and floors to prevent creching of the concrete from expansion tue to temperature chances. In extrenc cesses, the reinforcesont may not prevent shriakaco cracks fron apearing but will keer tho surface facss from ehifting or separcting.   cracking of floors and talls may bo prevented by usins $\qquad$ *
overlap wired	73. Reinforcint bars should overlan each othor and be wirod securely together at each joint (fie. 3).   Roinforcing bars should $\qquad$ anc: be y $\qquad$ together.
Tic bar wi.tb $F I_{E} \cdot 3$	Roinforcin: bare should be bont around cornerc, lappod, nol wired securely together.


	74. Detercining tho size, ty-je, and spactug of reinforcing stcol for a particular concrete structure is a vroblem for the desitn onginecr. Sixcifications on plans and bluoprints should be folloved closcly in farm concreto construction.
clean	75. The following general rulus for the uge of reinforciad concrete sice important:   a. Uac only clean rinforcing rods or aceh, free from rust, paint, or scale. (Old fence, scrap iron, otc., are not satisfactory.)   Reinforcing metal nust be $\qquad$ .
20	76. b. Place stecl no closer than 20an from exposcd surfeces.    smallest openings between reinforcinu membors.   Sted reinforcing shouli be \#lacei no eloser than $\qquad$ min from concrete surfaces.
48	77. d. Lap reinforcing rods 48 tines their diancter (10ne rods should be lapaed 480 na and ared together).   Reinforcing rods are lejped $\qquad$ times their diameter when they are foined together.
tension	78. c. Study the structure ant place the reinforceaent where there is likely to be tension.   Reinforca:tent ehould be placed where is likoly to occur. $\qquad$

The infornation in tils unit was tiven fron the iniveraity of Illinois VAS unit 3007.


Noliting and Using Concrete on the Farm, Part II
MIDERLIIE TH: CORESCP AHSTRR

1. Thun mixine concrete by hand, the first step is to fix the $\qquad$ together.
a. sund and cosres ageregete
b. sand and conert
c. bend sad water
d. coarg. agerceite and sand
c. rater and cantut
2. Then mixise concreto by maine the firgt ingrodiant placed in the machinc is $\qquad$ -
a. cerient
b. coarse arriregate
c. concrets
d. send
e. valcs
3. If the consistency oi iachine mixod concrete is not correct, then tho anount of $\qquad$ in the mixture should be chaneed.
a. augrecato
b. cemont
c. concrato
d. reinforccasnt
e. wate:
4. Concrete nust io mixad until every particle is coverad with $\qquad$ -
a. canent
b. conent zaste
c. coarsc nemegatc
d. Einhü
c. atace
5. Forns anc used to hole concrete while it $\qquad$ .
a. hardens
b. is mode matertight
c. Ls rado firesafe
d. is mivec
c. is roinforced
6. Concrete forms should be tight to prevent the escaje of the $\qquad$ -
a. aferegato
b. cement
c. cenent paste
d. sand
e. rater
7. Concrete fords for floors and roofs should be left in place for at least days aftor placiag tise concretc.
a. 2
b. 4
c. 7
d. 10
8. Defore piacias concrete on a dirt bottom, the dirt should be $\qquad$ .
a. coverod with eloth
b. covered with maner
c. covered metis enind
d. drice completoly
o. soaked :Zith vater
9. Garo uust be talien when tranaporting concrete to prevent $\qquad$ .
10. exceseive nixinc;
b. copration of corrac fro finc particles
$c$. the conent paste fron $\because$ sappenring
d. the concrute miztury from beconing too slopy
e. the reiniorcenent Fron sottline out
11. Then joining wew concsote to old, the old surface chould be brughed with
$\qquad$ beiore placiar the net concrete.
a. coment
b. concat-water paste
c. paint
d. petrol
c. water
12. To finish the surface of concrete it should first be morked vith $\qquad$ -
a. a broon
b. :- Ghovil
c. a stuel tromel
d. the hends
e. a bood float
13. Then finishine concrete, wher which appears on the surface should be $\qquad$ -
b. allowed to evaporate
b. izmorod
c. runoved by sprinkline uith dry cement
d. renoved by sprinkling with dry eand
e. reaovel by sprinkling with a mixture of coment and sand
14. llon-skid surfaces fer iivestock floors and sidewalks can bo nade by using a $\qquad$ to finish the surface.
a. broon
b. rake
c. shovel
d. stoel trowel
c. troc brench
15. A smooth eoncrete surface is obtainod by using a $\qquad$ to finfsh the surface.
こ. broon
b. forn
c. shovel
d. steol trovel
c. wood float
16. Proper curing of concrete occurs when it is kept $\qquad$ -
a. COOL
b. coverad
c. $d=: ?$
d. dark
o. hot
17. Curing should continue for at loast $\qquad$ -.
a. 2 days
b. 7 days
c. 2 mecks
d. 3 weoks
-. 1 month
18. Reinforceaent sioull como nc closer than $\qquad$ to any exposed surface.
a. 5 uillimetres
b. 10 aillinetres
c. 20 nillinutres
19. 30 millinetres
c. 50 millinotrus
20. noinforcing rode 10 aillimetros in diaacter should bo lapped $\qquad$ at joints.
a. 10 millinetres
b. $2^{4}$ milliluztres
c. 4 a willinetrco
d.. 76 aillinatues
\&. 100 aillinetres
21. The forn faces an be $\qquad$ to prevent concrete fron sticking to then.
i. divinfected
b. oiled
c. painied
d. reinforced
o. son'red in mator

## MKIHG WID USIIG COACDOTE U! THE FMiU!

## PhRT III

## Thlis $1 s$ tio third of thres progranced instruction units in making and

 usinf concreto on the faritIn tiris unit you nre to Iccrn:

1. to deternine tie mount of concrete needen.
2. to doterwing tise ardount of acteriale nseced for conerote jobs.
3. to $\mathbf{~ L e t o r i n e ~ t h e ~ c o s t ~ o f ~ c o n c r e t e . ~}$

## Inctructione

 to covor the anzuers.

1. Plece the anck (ancirer shoet) over th: anciter in a way that ox-osor ore question (frailu) at a tine.
2. 'Irite your answer on the answer shect.
3. Kove the answer sanet doan to copose the next frame and answer to the previnus frativ.
4. Stould your answa bo wrongi, write tle corrict ancuer thove or aion's side - do not erase your incorrect mistive.


- Cut-


- -	1: It is amportant to knov horr to ostiarate the anounts and costs of matorials needed for a given concrete job.
amounts coste	2. Knoring the amounts of anterial: aceded makes it yossible to have the right anounts of anterials on hani for the job. Then we know what tite cest of a jurticular job will le we con coirpare it to the cost of iliternate methods of construction.   The abillty to estimate the $a$ $\qquad$ and 9 $\qquad$ of materiale needed for a job is infortant.
volume	3. The first step in estinating the amount of naterials noeded is to calculate the volunc of concrete necded for the job.   The $\qquad$ of concrate nuaded is the first step.
1,000	4. It ic eustomary to specify the voluze of concrete in cubic metres. One cubic petro oquals 1,000 cubic docinotros or 1,000,000 cubic cesitinetres.   There are $\qquad$ cubic decimetres in one cubic netre.
length width beijht	5. The voluna is estinated by multiplying tioc lengete $X$ uddth $X$ heicht of the jot. Tia rocult is expreseed in cuble netres.   Volure is colculated by rultiplyins the $\qquad$ x $\qquad$ X. $\qquad$ -
- -	6. Example 1: How much concruto it newded for the footincs and ralls of the building in figure 12 The builcing is 10 netres $X 6$ metres and tile footine is 20 centinotres thick (higit and 40 centinctres :Hite. The walle are 20 centinetres thiak (aide) and EO eortinctres bicit.


Fig: 1.	
- -	7. Firat enlculate the voluac of the footin;*.   Remeriber, tho lonjth is the total lanath of the footing; hero tho four wills ere 6 attres + 10 netres + 6 metres + 10 eetres for a totel lenuth of 32 netree. Aleo when multiplying, tho inasurinants aust be expressed in similer units so the 40 continotros wiath is chamod to .4 netrus sne tic 20 on. heint is ciringed to .2 netres.
width   helsth   length	8. Secondly colculate the volunc of the :anlls. $\begin{array}{llllc} \text { iilich } & X & \text { Huight } & X & \text { Length } \\ 20 \mathrm{cs} & X & 60 \mathrm{cr} & X & 32 \mathrm{n} \\ .2 \mathrm{n} & \mathrm{X} & .6 \mathrm{z} & \mathrm{X} & 32 \mathrm{~m}=3.84 \text { cubic netro } \end{array}$   Volume ic calculatod by aultinlying En:1 $\qquad$ - $\qquad$ , $\qquad$
6.40	9. Third; to celculato the tetal volume nesded for both the footinge and vells, is the prublian requesto, adid the volumen of cach one tocetior. $\begin{aligned} \text { voluge of footing } & =2.56 \text { cubic metres } \\ \text { volume of wall } & =3.84 \text { cuije netres } \\ \text { Total } & =6.75 \text { cubie matres } \end{aligned}$   The volume of concreto neched for the mells and footings in this probley is $\qquad$ cubic netres.
- -	10. Exarible 2: horl nuci conerete is needed for the floor of tise building in fi;ure 1 if it is 10 centinctres thilek? $\begin{array}{ccccc} \text { Pidth } & X & \text { Height } & X & \text { Lenicth } \\ 6 \mathrm{~m} & X & 10 \mathrm{ca} & X & 10 \mathrm{n} \\ 6 \mathrm{~m} . . & X & .1 \mathrm{~m} & X & 10 \mathrm{n}=6 \text { cubic motrog } \end{array}$
12.4 cubic netrcs	11.. The total voluse of cuncrite avedod for the footings, walls, ani floor of this tuildin:; is culculated by adding tocothur the individul voluse for vaci: of thez: $\begin{aligned} & \text { Footing }+ \text { "all F Floor }=\text { Total } \\ & 2.56 \mathrm{cun}+3.04 \mathrm{cun}+C \mathrm{cum}=\underline{\text { cu }} \mathrm{cm} \end{aligned}$

3

Fic. 2. Floor nlinn and crocc-section of foundation for $a$ building.



Table 1. quantiticg of Materials and suisested Trial Mixos.
Recomended jroportions of :iator to cement and susjosted trinl aixes.*

Kinds of iork	Litres of :ater to add to each bag latch if band is			Suegested zixturo for trial betch			Heterials per cubic Eitre of concreto		
	Very :t	ret	Damp	Cenent bags	Fine cu dm	$\begin{gathered} \text { Co:irse } \\ \text { cu d: } \end{gathered}$		Fine cu in	$\begin{gathered} \text { Coarse } \\ \text { cu da } \end{gathered}$
32 11tro aix for drive:ays, wallig, fatertight floors and malls	24	28	30	1	75	100	612	460	630
37 Iitro aix for Sounciation walls, footincs tass concrote, otc.	27	30	34	1	90	135	5	460	693

 nodiun condistencies-quentities will vary according to the Erading of asperte and the workability desired.
19. Nultipily the anount of eaci. neterial neoded for 1 cubie netre of cuncrete by the number of cubic metres required (which te have alroany calculated). Reaerber, thore are 1,000 cubic decinctres jer cubje aetre.


6


$\begin{aligned} & 64 \\ & 460 \\ & 630 \end{aligned}$	32. Uninc a 32 litre nix for the floor :1ewns that fur ono cubie metre of concrete we nicd: (from Table 1) $\qquad$ bac: cesunt $\qquad$ cubic ducinetrug fine aserrounto $\qquad$ cuble docinetres coarse negregate
$\begin{aligned} & 8.96 \times 64=56 \\ & 8.96 \times 460 \mathrm{cu} \mathrm{dan} \\ & =4.127 \mathrm{cu} \\ & 3.96 \times 630 \mathrm{cu} \mathrm{dr} \\ & =5.544 \mathrm{cum} \end{aligned}$	33. For tho floor of tiou buildin: in fizurc 2 it was estinnted tlat 8.96 cubic netrus of concrite.vere needed, tiarefore the total naterinde nevici ic: $\qquad$ X $\qquad$ = $\qquad$ bese conent $\qquad$ x _ $=$ $\qquad$ cubie netree fine aicrecinte $\qquad$ X $\qquad$ $=$ $\qquad$ cubic netres coarse acgregate
$\begin{aligned} & 118 \mathrm{becs} \\ & 9.025 \mathrm{cun} \\ & 14.200 \mathrm{cu} \mathrm{ma} \end{aligned}$	34. The tot:l nwount of actericis needed for the footin天, wall, ans floor of the buililitu ial figurc 2 is:
- -	35. It is ucairable to calculate the cuat of euncretio in order to compare its cost ith other alternativ. construction material.s i.A. For buaget iurposus.
-	30. Usin: thi builiine in fiuke one, doter:inne what the cost of the concreto :oul: je if:   ecnent $=$ Sis. 15.00 yer bag   fin aurcexte $=$ ghs. 20.00 cubic wotre coarse =:Greliato $=$ She 24.0 jer cuivic actro
	37. Tl:e total euct is deterikined by :ultiplying tiou cust por wit (bef, cutic notre) by thi numer of wites ruquired (rron fratice 28 for ficurb 1).   cement: shs. $15.00 \times 5 \%$ bats $=$ shin $1,042 * 59$ fint secresete: she. 20.00X $5.704 \mathrm{cu} \mathrm{m}=$ Shs. 164.10    Sha. rotal 1,303.30



The inforantion in tilis unit was tiven fron the University of fllisuls VAS unit 3007.


Kakinz and Usinc：Concrete on the Farn，Fart III
ORDERLME THE CORECT A：SJER
1．The correct orier of the stege for estinating the nateriale and coets of concrete construction is：
a．Leterainc the cost，cstimate the volune of concrete noeded，Letorninc the arount of $: 1$ terials n－eded
3 ．deteraine the a．ount of aterials neoden，estimete the voluac of concrete meeded，deterzine tive cost
c．detornine the alowi of n－terials nuedei，detorane tho cost，estincte
the volum of concrite nocded
d．ostint the volme of concrete ncaded，detraine the cost，deteraine tho enount of netonials nceded
e．estiazte the volure of cuncrete needed，leteraine the anount of aateriels nucdod，detomine the cost
2．That voluac of ennerete is neoded for the fluor of a buillina wheh is
6 metres uile and 1 ？metrea long，if tho floor io 10 centiactres thiche？
a． 2.4 cubic netres
b． 3.6 cublc avtres
c． 7.2 cubic nutres
． 36 acisic netres
c． 72 cubic actres
3．That volumo of conerete is nected for the fostine of this buileing wilich is 6 netres uille ant 12 netres lon；$i z$ the footinc is to he jo centinetros wide and 15 centinetres ifich？
e．． 0162 cubic netreo
b． .162 cuisic netres
c．1．5こ cubic aetros
d．16．2 cubic nctros
e． 162 cubic aetres
4．What volunc of concrete is ncedod for the \％all of a buileine wideh is 10 notres ride and 1 thetras lon：if tis wall is 20 cintizetres wido and 60 continetres远酸？
a． 1.58 zubic metrus
b．5．7C cubic betres
c． 8.4 cubic atres
d． 16.8 cubic thetres
e． 57.6 cuidic ：ietres
5．A certain buildinj is 5 witro mide a：d 8 aetres lone，ito foctins is to be 26 contimetres wide nal 12 cartinetres thicle en ：its rall is to be 14 cunti－ netres wide ind 63 contiontres high．Ho：t nuch concrete is noeded for the footing end tiall todetiner？
n． 0.32 cujic netres
b． 2.43 cubic metros
c． 3.29 cubie motres
d． 5.77 cubic natres
e． 0.25 cuinc netres
6．If：cencnt costs Sils． 15.00 jur bac
finc abgrecate corts sias． 20.00 joi cubic ．．tre
coarse astresate coste she． 24.00 per cuijic aetre
That 15 the total coct of the：naterials for $=$ jos which requires：
34 bates of cenent
2.09 cubic mutres fine agruegate
4.09 cubic metres coars abresite
a．514s．635．60
b．Si：E． 665.95
c．Hhs．706． 30
4． $51 \pm 5.335 .95$
o．She．971．95
7. Celculate the s:abunt of cemunt, fine ajgreanto, anil coarco agircgate neadod
 notros of concretu. lise a 32 litre $71 x_{1}$, hich for ono cuble netre of concrete requiras: $6 \%$ b=Gs cenent

450 cuble decinctres fine agerecato
630 cubic decinetres coarse adire;ate
(i) This jos. vill requiro $\qquad$ bres of coment.
a. 3.5
b. 13.4
c. 25.6
d. 53.2
c. 68.0
(ii) This job :12ll require $\qquad$ cuble getres of fine abrfegatc. a. 391 3. 3.91 c. 39.1
d. 391
o. 3910
(iii). This job rill require $\qquad$ cubic netres of coargu zofregate. 2. 2.720
๖. 5.355
c. 27.20
d. 53.55
0.. 63.00
8. Culculate the ariounc of coment, fine aurujate, anc coarse ascrefato noodod to construct the vell: an.. Evoting of a builinn- which require a tot-i volute of 4.2 cu:ic necres of concrete. Use $\therefore 37$ litre aix thich, for ono cu'sic netre of concrete rocuireo:

> 5 taco cement
> 450 cujic tecinetres fin tesreate
> 690 cubic decinetres coarso ajoreente
(1) This job trill require $\qquad$ bags of ecment.
a. 5
b. 21
c. $\quad 46$
e. 69
e. 105
(ii) This job will require $\qquad$ cubic netres of finc acraberte.
a. 1.554
b. 1.932
c. 2.300
d. 3.652
0. C. 322
(iji) Tliis job nill require $\qquad$ cubic Eutrus of coarge angremte.
a. 2.554
3. 2.898
c. 3.450
d. 5.321
e. 3.970

## appendix c

Posttest and Retention Test Dates

TABLE 23
The. Dates of Posttests and Retention Tests and The Time Interval Between Them for the Agricultural Units Taught at Tumaini Secondary School During First Term 1973

Unit number	Date of Posttest	Date of Retention Test	Weeks Between Posttest and Retention Test
1	1/23	3/6	6
2	1/26	3/6	$51 / 2$
3	1/31	3/6	$-5$
4	2/6	3/6.	4
5	2/9	3/23	6
6	2/14	3/23	$51 / 2$
7	2/19	3/23	$41 / 2$
8	2/22	3/23	4
9	2/26	3/30	$41 / 2$
10	3/1	3/30	4
11	3/5	4/13	$51 / 2$
12	3/9	4/13	5
13	3/13	4/13	$41 / 2$
14	3/16	4/13	4
15	$3 / 21$	4/27	$51 / 2$
16	3/27	4/27	$41 / 2$
17	3/30	4/27	4
18	4/12	5/16	5
19	4/18	5/16	4
20	4/27	5/31	5
21	5/3	5/31	4
22	5/7	6/6	$41 / 2$

## APPENDIX D

## Comparison of Means for All Statistical Tests



$\varepsilon$ L			$\varepsilon$ L			$\varepsilon$ L			＋［270］
＋	$66^{\circ} \mathrm{E}$	98.7	＋	$\angle 6^{\circ} \mathrm{C}$	LL｀ $\mathcal{L}$	＋	$1 \nabla^{\circ} \mathrm{E}$	しでも	22
＋	$1 \varepsilon^{\circ} \mathrm{L}$	L6\％	＋	89.9	$9 \nabla^{\circ} 9$	＋	$1 \varepsilon \cdot 9$	O1．	12
－	七で 6	Lع•8	－	tL＇9	$0 \mathrm{G} \cdot \mathrm{G}$	－	$18^{\circ} \mathrm{L}$	19.9	02
$+$	$\varepsilon て \cdot G$	てG＇G	－	七9＊$\dagger$	Lで $\dagger$	－	$88^{\circ} \mathrm{t}$	$69^{\circ} \mathrm{t}$	61
－	$8 \downarrow^{\circ} 6$	で・01	－	09.6	L6．9	－	SG＇6	02•8	81
$+$	$16^{\circ} \mathrm{t}$	02.7	－	L8． 2	$89 \cdot 2$	－	$9 L^{\circ} \mathrm{E}$	て¢＇$\varepsilon$	L1
＋	七て＇G	LL＇G	－	L9＇\％	七¢ ${ }^{\circ}$	＋	06.7	L6．${ }^{\circ}$	91
＋	$6 \varepsilon^{\circ} \mathrm{G}$	$69^{\circ} 9$	＋	02.7	てE＊	＋	2L＇t	$88^{\circ} \mathrm{t}$	Gl
－	$82^{\circ} 01$	$81^{\circ} \mathrm{OL}$	＋	$60^{\circ} \mathrm{L}$	¢ $\overbrace{}^{\circ} \mathrm{L}$	$+$	ご・8	09.8	七L
＋	$06^{\circ} 6$	to 01	＋	81．	$92 \cdot 8$	＋	9 C 8	96.8	$\varepsilon 1$
－	18.9	$89^{\circ} 9$	$+$	$\varepsilon L^{\circ} \mathrm{b}$	$\angle 0^{\circ} \mathrm{G}$	$t$	9s＇G	29＊9	21
$+$	80．01	E8＊ LL	＋	02•8	ع0． 6	＋	¢6．8	七2．01	LI
＋	$9 \mathrm{G} \cdot 8$	6.16	＋	$9 L^{\circ} \mathrm{L}$	¢ $\varepsilon^{\circ} 8$	＋	El＇8	七ぐ8	01
＋	8て・9	$\angle 8^{\circ} \mathrm{L}$	＋	$\varepsilon \chi^{\circ} \mathrm{G}$	LE＇G	＋	$69 \cdot 9$	$66^{\circ} 9$	6
－	$8 \varepsilon^{\bullet} \varepsilon L$	£8＊ 1	＋	くがOL	L9＇01	－	08． L L	LL． L L	8
＋	$69 \cdot 6$	0L．6	$+$	てE．9	99．L	＋	$6 L^{\circ} \mathrm{L}$	カャ．8	$L$
－	18.6	16.8	－	てて・8	EL•8	－	96.8	$66^{\circ} 8$	9
$+$	$\varepsilon \varepsilon \cdot 9$	L6．9	－	$89 *$	$t G^{\circ} \mathrm{t}$	＋	LE＇G	99.9	G
－	$\varepsilon \varepsilon \cdot 9$	$8 L^{\circ} \mathrm{G}$	＋．	$\dagger 6 \cdot \varepsilon$	$10^{\circ} \mathrm{G}$	＋	00．9	$99^{\circ} 9$	$\dagger$
$+$	七I＊G	$2 L \cdot 9$	－	七し＇t	$89^{\circ} \mathrm{\varepsilon}$	－	L． • $^{\text {b }}$	$09^{\circ} \mathrm{b}$	$\varepsilon$
	11．	$88 \cdot 9$	－	ع0．9	$\varepsilon \angle \cdot \square$	－		¢8． 9.	2
－	t1．	1ع．9	$\pm$	18.6	$61 \cdot 9$	－	E6．g	$99^{\circ} 9$	1
u6！s	$\begin{aligned} & \text { poyzaw } \\ & \text { [017u0] } \\ & \hline \end{aligned}$	роч72W  	U6！ 5	$\begin{aligned} & \text { pouzəW } \\ & \text { [017uoj } \\ & \hline \end{aligned}$	роц子2W  	u6！s	$\begin{aligned} & \text { poyz } \mathrm{W} \\ & \text { Lorquo } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { poutəW } \\ \text { Lequәu! } \wedge \partial \mathrm{dx} \end{array}$	$7!40$
II Wios			I WıO」						

[^2]¢2 $378 \forall 1$

[^3]| $\varepsilon$ ¢ |  |  | 91 |  |  | 21 |  |  | $\pm[\mathrm{P} 701$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＋ | $\varepsilon 9^{\bullet} \varepsilon$ | $0 L^{\circ} 9$ | ＋ | $\dagger \stackrel{\text { ¢ }}{ }$ | $8{ }^{\circ} \mathrm{\varepsilon}$ | ＋ | $6{ }^{*} \varepsilon$ | $82^{\circ} \dagger$ | 22 |
| ＋ | 00.8 | Ol． 01 | ＋ | $26^{\circ} \mathrm{G}$ | Lع．8 | ＋ | 16.9 | $90 \cdot 6$ | 12 |
| － | くがい | $\mathrm{gl} \cdot \mathrm{OL}$ | － | $92^{\circ} \mathrm{L}$ | $91^{\circ} \mathrm{L}$ | － | 50.6 | 2s．8 | 02 |
| ＋ | ع9＇9 | $12 . L$ | － | $\mathrm{Gc} \cdot \mathrm{G}$ | $22 \cdot 9$ | － | $00 \cdot 9$ | 00.9 | 61 |
| － | $98^{\circ} \mathrm{ll}$ | 96.6 | － | $9{ }_{5} \cdot 0 \mathrm{OL}$ | $69^{\circ} \mathrm{L}$ | － | 18.01 | $1<8$ | 81 |
| － | $91 . L$ | $16^{\circ} 9$ | ＋ | $98 \cdot \varepsilon$ | $\varepsilon L^{\circ} \mathrm{D}$ | － | 61.9 | $70^{\circ} 9$ | $\angle 1$ |
| ＋ | $00 \cdot 9$ | 91.2 | － | ${ }^{70} \cdot 9$ | ع0＇G | ＋ | 19.9 | ¢6．${ }^{\circ}$ | 91 |
| － | $9 \varepsilon^{\circ} \mathrm{L}$ | $28^{\circ} \mathrm{G}$ | ＋ | $91 \cdot \mathrm{G}$ | $6 L^{\circ} \mathrm{G}$ | － | $\varepsilon L \cdot 9$ | $08^{\circ} \mathrm{G}$ | Gl |
| ＋ | 91.21 | $\varepsilon 9 \cdot \varepsilon L$ | ＋ | ぐ6 | L9． 6 | ＋ | 12．01 | Lて＇ll | カレ |
| － | 00.11 | 69.01 | ＋ | 80.8 | 01．6 | ＋ | $00^{\circ} 6$ | $\varepsilon L^{\circ} 6$ | $\varepsilon 1$ |
| ＋ | $1 \varepsilon .8$ | L9．8 | ＋ | $88^{\circ} \mathrm{G}$ | 98.9 | ＋ | ع6．9 | $\angle 2^{\circ} \mathrm{L}$ | 21 |
| ＋ | $96 . 力 \mathrm{~L}$ | 00.91 | ＋ | 12.01 | $26 \cdot 11$ | ＋ | 81.21 | $\angle 1.8 L$ | 11 |
| ＋ | 12．8 | 01.01 | ＋ | $82^{\circ} \mathrm{L}$ | 61.8 | ＋ | $\angle L^{\circ} \mathrm{L}$ | 20.6 | 01 |
| ＋ | 91•8 | 00.6 | ＋ | 09．9 | 9L＇9 | ＋ | $92^{\circ} \mathrm{L}$ | $88^{\circ} \mathrm{L}$ | 6 |
| － | $\angle \checkmark^{\circ} \mathrm{GL}$ | $\varepsilon 9 \cdot \varepsilon L$ | ＋ | $88^{\circ} \mathrm{HL}$ | $\varepsilon 9 \cdot 11$ | － | $91 \cdot \varepsilon L$ | $\varepsilon 9 \cdot 21$ | 8 |
| ＋ | $\angle\rangle .6$ | $\angle 9.6$ |  | $\varepsilon 1^{\circ} \cdot \square$ | 96.9 | － | S2．8 | 01.8 | $\stackrel{1}{4}$ |
| － | g2． 11 | $92 \cdot 01$ | ＋ | $82 \cdot 6$ | $1 \varepsilon \cdot 6$ | － | O1．01 | 08.6 | 9 |
| ＋ | 11．8 | 0＜8 | ＋ | カガ9 | $99^{\circ} \mathrm{L}$ | ＋ | $11^{\circ} \mathrm{L}$ | 41.8 | 9 |
| － | t9 ${ }^{\circ}$ | $\angle 9 . \angle$ | ＋ | G1．$\dagger$ | ع0．9 | ＋ | 08．9 | $89 \cdot 9$ | $\stackrel{\square}{+}$ |
| ＋ | 9L．＇9 | $18^{\circ} \mathrm{G}$ | － | $08 \cdot \varepsilon$ | 99．${ }^{\text {c }}$ | － | ts．${ }^{\circ}$ | $80^{\circ} \mathrm{b}$ | $\varepsilon$ |
| ＋ | $68 \cdot 9$ | 9L．9 | ＋ | 61.9 | $62 \cdot 9$ | ＋ | $9 L \cdot 9$ | $80 \cdot 9$ | 2 |
| － | 76.8 | 29.1 | $+$ | ¢1．9 | 加． 9 | － | 66.9 | $0 \varepsilon^{\prime} 9$ |  |
| u6！ 5 | $\begin{aligned} & \text { poyzoW } \\ & \text { Lo.l7uoj } \end{aligned}$ | $\begin{gathered} \text { pouzәW } \\ \text { [equәu! } 1 \text { dx] } \end{gathered}$ | us！ 5 | $\begin{aligned} & \text { pouzaW } \\ & \text { LO17u0) } \end{aligned}$ |  | u5！s | $\begin{aligned} & \text { pouzeW } \\ & \text { } 017 \text { uou } \end{aligned}$ | $\begin{gathered} \text { poчzәW } \\ \text { Lequaw! } \operatorname{ladx} \end{gathered}$ | $7!40$ |
| II muad |  |  | ，I Wnos |  |  | pəu！quoう II 8 I |  |  |  |
|  <br>  |  |  |  |  |  |  |  |  |  |
| 92 3า8＊1 |  |  |  |  |  |  |  |  |  |


E1：			91			7L			$+12701$
$\pm$	$60^{\circ} \mathrm{E}$	$06^{\circ} \mathrm{E}$	$+$	$18^{\circ}{ }^{\circ}$	$99^{\circ} \mathcal{L}$	＋	$96 \cdot 2$	$L L^{\circ} \varepsilon$	22
$+$	$06^{\circ} 9$	$9 t^{\circ} 6$	$+$	E8 ${ }^{\circ}$	8L＇9	$+$	ャて・9	L0．8	LZ
$+$	$21^{\circ} \mathrm{L}$	Lで	－	$1 L^{\circ} \mathrm{G}$	$L Z^{*} 9$	－	$88^{\circ} 9$	ع0：9	02
－	$06 \cdot 9$	01．9	$+$	$82^{\circ} 9$	$9 \varepsilon^{\circ} \mathrm{G}$	－	$00 \cdot 9$ ：	$29^{\circ} 9$	61
－	$00 \cdot 8$	$00 \cdot 8$	－	$69 \cdot 8$	ع8＊9	－	$6 \varepsilon^{*} 8$	91.4	81
－	$19^{\circ} \mathrm{D}$	$9 \varepsilon^{\circ} \mathrm{E}$	$t$	$\angle 0^{\circ} \mathrm{E}$	$02^{\circ} \mathrm{C}$	－	$18^{\circ} \mathrm{E}$	$92^{\circ} \mathrm{E}$	LL
$\cdots+$	$0 L^{\circ} \downarrow$	$26^{\circ} 9$	$+$	$09^{\circ} \varepsilon$	$26^{\circ} \downarrow$	$+$	$06^{\circ} \varepsilon$	$0 t^{\circ} \mathrm{G}$	9 L
4	$9 L^{\circ}$ D	$9 \%^{\circ} 9$	－	00．9	$69^{\circ} \varepsilon$	$+$	$06^{*} 7$	$96^{\circ} \downarrow$	GL
$+$	$18^{\circ} 9$	$\varepsilon \chi^{\circ} \mathrm{L}$	$t$	L2＊8	عE＊ 8	$+$	01\％	9力＊ 6	bL
－	$78^{\circ} 01$	$18^{\circ} 8$	$+$	$99^{\circ}$ L	2も＇8	－	$00 \cdot 6$	$09: 8$	$\varepsilon ⿺ 𠃊$
－	$92^{\circ} L$	$00^{\circ} 9$	$+$	$06^{\circ} \mathrm{b}$	して・9	$+$	8199	G2．9	21
$+$	－\＆9＊LL	OE＇ 21	$+$	$10^{\circ} 6$	Ot ${ }^{\circ} \mathrm{OL}$	$+$	$0 L^{\circ} \mathrm{OL}$	GL＊LL	L L
$+$	01．8	$19^{\circ} 6$	$+$	90.9	－8E 8	$+$	81．9	$00 \cdot 6$	01
$+$	G9．9	\＆\＆ 6	＋	$00 \cdot 9$	76＊9	$+$	Lて．9	$18^{\circ}$	6
－	$16^{\circ} \mathrm{Z}$	$06^{\circ} \mathrm{Z}$ L	－	$19^{\circ} 11$	$\rightarrow \square^{\circ} \mathrm{OL}$	－	ャて・てし	$2 \varepsilon^{\circ} \mathrm{L}$	8
－	91.8	$18^{\circ} 9$	$+$	$00^{\circ} 9$	LL．9	－	$90^{\circ} L$	$\angle L 9$	$L$
$t$	99.8	$18^{\circ} 6$	－	0ع．6	－ 28.8	$+$	$00 \cdot 6$	$02^{*} 6$	9
$+$	$00 \cdot 8$	$60 \cdot 6$	$+$	$\varepsilon \chi^{\circ} 9$	$88^{\circ} 9$	$+$	と力＊9	91＊	G
$+$	$9 \varepsilon^{\circ} \mathrm{G}$	89：9	$+$	$98 \cdot 2$	$91^{\circ} \mathrm{b}$	．+	$\varepsilon G^{\circ} \mathcal{L}$	$91^{\circ} \mathrm{C}$	D
－	GS＊${ }^{\circ}$	くで力	$\cdots$	$90^{\circ} \varepsilon$	乙L＇	－	$06^{\circ} \mathcal{L}$	$69^{\circ} \varepsilon$	$\varepsilon$
$+$	LL＇G	10＊	－	$80^{\circ} \downarrow$	L0＊$\downarrow$	$+$	$08^{\circ} \dagger$	$0 G^{\circ} \mathrm{G}$	2
$-$	G1．9	ع9＇9	$+$	$91^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{D}$	＋	こじ力	EL＇G	1
U6！S	$\begin{aligned} & \text { poufow } \\ & \text { Louquog } \end{aligned}$	pou7aW Lequәய！dədxヨ	Ub！S	$\begin{aligned} & \text { pouq } \mathrm{W} \\ & \text { Louquo } \end{aligned}$	poufaW Lequou！iadxヨ	U6！S	$\begin{aligned} & \text { pou72W } \\ & \text { 1047403 } \end{aligned}$	pou72W  	$7!40$
	II	10.		，I H			U！quos	8 I ய10才	

[^4]| OL EL |  |  |  |  |  | 6 |  |  | ＋ 12701 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＋ | $00^{\circ} \mathrm{t}$ | LI＇G | ＋ | $61^{\circ} \varepsilon$ | $56^{\circ} \mathrm{E}$ | ＋ | $18 . \varepsilon$ | $8 \square^{\circ} \mathrm{O}$ | 22 |
| ＋ | Lع．8 | $\angle 1.6$ | ＋ | $80 \cdot 9$ | 0L＇9 | $+$ | $00^{\circ} \mathrm{L}$ | 99＊L | 12 |
| － | $28^{\circ} \mathrm{OL}$ | LE．OL | － | $00^{\circ} \mathrm{L}$ | OG＊9 | － | 8L＇8 | 01.8 | 02 |
| $+$ | $\mathfrak{G E}{ }^{\circ}$ | $99^{\circ} \mathrm{G}$ | － | 2L＇t | Gb＊ | － | L6＊${ }^{\circ}$ | $88 *$ | 61 |
| － | GL．OL | $\angle C^{\circ} \mathrm{OL}$ | － | 90．01 | 2L｀9 | － | 18.01 | 乙¢•8 | 81 |
| － |  | $\varepsilon L^{\circ} \mathrm{t}$ | $+$ | $\varepsilon 0^{\circ} \varepsilon$ | $80^{\circ} \mathrm{\varepsilon}$ | － | 81＂力 | $\varepsilon 8^{\circ} \mathrm{\varepsilon}$ | LI |
| － | $00 \cdot 9$ | $76 \cdot \mathrm{G}$ | － | $00 \cdot 9$ | $00^{\circ} \mathrm{t}$ | － | 生呂 | $\angle L^{\circ} \mathrm{G}$ | 91 |
| － | OL＇9 | $\angle L \cdot 9$ | ＋ | カ0＊$\dagger$ | て¢＊${ }^{\circ}$ | － | G6．t | ع6．${ }^{\circ}$ | GI |
| － | $\varepsilon L \cdot て L$ | 76．01 | － | Lع•8 | 18.2 | － | 00.01 | 90.6 | bl |
| ＋ | L9．01 | $\square 6^{\circ} \mathrm{OL}$ | $+$ | $22 \cdot 1$ | 切8 | ＋ | 8L＇8 | $9 \varepsilon^{\prime} 6$ | $\varepsilon 1$ |
| ＋ | ¢6．9 | $\varepsilon \varepsilon^{*} L$ | － | $92 \cdot 9$ | $\angle 1 \cdot 9$ | － | $00 \cdot 9$ | $06^{\circ} \mathrm{G}$ | 21 |
| ＋ | 89．01 | 90． 21 | ＋ | ع0＊8 | $02 \cdot 6$ | ＋ | 20.6 | LS．01 | LI |
| ＋ | $69 \cdot 8$ | ヤ6．8 | － | 2S＊8 | $02 \cdot 8$ | － | 99．8 | 29．8 | 01 |
| ＋ | 29．9 | 01．8 | ＋ | LS＇s | $\square 6^{\circ} \mathrm{G}$ | ＋ | 20.9 | $20 \%$ | 6 |
| － | ¢6．$\varepsilon$ L | くがで | ＋ | $\varepsilon 己 \cdot 01$ | ［9．01 | － | ¢8．11 | ¢9．11 | 8 |
| － | S6．6 | 06.6 | ＋ | 89.9 | $88^{\circ} \mathrm{L}$ | ＋ | とこ＇8 | LL｀8 | $L$ |
| － | $00^{\circ} \mathrm{OL}$ | 80.6 | － | $9{ }^{\prime} \cdot 8$ | $60 \cdot 8$ | － | $92 \cdot 6$ | $09 \cdot 8$ | 9 |
| ＋ | 99.9 | 01.1 | ＋ | $00^{\circ} \mathrm{O}$ | $00 \cdot 9$ | ＋ | $\checkmark G \cdot G$ | 90．9 | G |
| － | $\angle 9^{\circ} \mathrm{L}$ | 89＊9 | ＋ | 28.7 | 6L＇9 | ＋ | 90.9 | SL＇9 | $\dagger$ |
| ＋ | 9 C ¢ | $\varepsilon \varepsilon \cdot 9$ | － | くも゚ | $\varepsilon \chi^{\circ} \varepsilon$ | － | 七6＊ | $89^{\circ} \mathrm{t}$ | $\varepsilon$ |
| － | E8\％ | $92 . L$ | ＋ | $\angle 1 \cdot 9$ | $\mathrm{GZ} \cdot \mathrm{G}$ | ＋ | ๑¢．9 | $9 \varepsilon^{\circ} 9$ | 2 |
| － | 0L• 8 | $\varepsilon L^{\circ} \mathrm{L}$ | $+$ | ع8．${ }^{\circ}$ | $96^{\circ} \mathrm{D}$ | － | LL．9 | $6 L^{\circ} \mathrm{G}$ | 1 |
| U6！S | $\begin{aligned} & \text { poyqaw } \\ & \text { lo17uoj } \end{aligned}$ |  | U6！${ }^{\text {S }}$ | $\begin{aligned} & \text { poyzचW } \\ & \text { [017uoj } \end{aligned}$ | poч7aW ［еұиәш！$\mu ə \mathrm{dx}$ ］ | Uб！${ }^{\text {S }}$ | $\begin{aligned} & \text { po47 } \mathrm{WW} \\ & \text { Lo17uoj } \\ & \hline \end{aligned}$ | poyłつW ［equau！！adx］ | 7！un |
| II meaj |  |  | I wros |  |  | pau！quos II 8 I mio」 |  |  |  |



$t 1$			EL			GL			＋［270］
$+$	$00 \cdot \bar{\varepsilon}$	$0 \varepsilon \cdot{ }^{\circ}$	＋	29.3	$9 \square^{\circ} \mathrm{E}$	$+$	LL｀$冖$	ZL＇$¢$	2Z
$+$	0L＇g	$8 \varepsilon^{\prime} 9$	＋	$91^{\circ} \mathrm{G}$	00.9	＋	$\mathrm{s}^{\circ} \mathrm{G}$	$8 L^{\prime} 9$	12
－	$00{ }^{\circ}$	OL＇G	－	$\angle 9^{\circ} 9$	Lて＇t	－	$\varepsilon て \cdot 9$	$\angle G^{\circ}+$	02
＋	$00 \cdot \mathrm{G}$	$\varepsilon \varepsilon^{\cdot} \mathrm{G}$	－	OG＊${ }^{\circ}$	90．${ }^{\circ}$	－	$69^{\circ} \mathrm{*}$	$9 \dagger^{\circ} \mathrm{b}$	6L
＋	てZ＇L	00．01	－	$\varepsilon G \cdot 8$	1ع＇L	－	$00 \cdot 8$	G6．L	8L
－	$89^{\circ} \mathrm{\varepsilon}$	$9 t^{\circ} \mathrm{E}$	－	$\varepsilon \xi^{\prime}$ ？	$9{ }^{\circ} \mathrm{Z}$	－	$0 \cdot{ }^{\circ} \mathrm{\varepsilon}$	$89 \cdot 2$	LL
＋	$0{ }^{\circ} \mathrm{\varepsilon}$	$0 G^{\circ} \mathrm{G}$	－	てでカ	$96^{\circ} \mathrm{E}$	＋	LO＇力	切＊	91
＋	G2＇t	$\angle 2 \cdot G$	－	$\varepsilon \downarrow^{\circ} \mathrm{t}$	$\varepsilon \varepsilon^{\circ} \mathrm{t}$	＋	¢ $\underbrace{\prime}$＇$\dagger$	8L＇$\dagger$	Gl
＋	$09^{\circ} \mathrm{L}$	08.8	＋	$29^{\circ} \mathrm{G}$	ヶ¢＇9	＋	$\downarrow \varepsilon \cdot 9$	$19^{\circ} \mathrm{L}$	tL
－	$09 \cdot 8$	$0 \mathrm{O}^{\prime} 8$	＋	$21^{\circ} \mathrm{L}$	七8．L	＋	$69^{\circ} \mathrm{L}$	$\varepsilon 1 * 8$	$\varepsilon L$
－	Gs＇9	$\varepsilon \varepsilon^{\circ} \mathrm{G}$	＋	S0＇t	七8＊$\dagger$	＋	$88^{\circ} \dagger$	七0．9	己L
$+$	$01 \cdot 6$	$00^{\cdot 1 .}$	＋	$\varepsilon ¢^{\circ} 8$	ع8．8	$+$	8L＇8	SL＇6	1 L
＋	$09 \cdot 8$	$\varepsilon \varepsilon^{\cdot 6}$	＋	ャ6．9	19.8	＋	$09^{\circ} \mathrm{L}$	LO． 6	0 L
$+$	$99^{\circ} \mathrm{G}$	$0^{\circ} \mathrm{L}$	＋	L9＇\％	8L＇$\dagger$	＋	$00^{\circ} \mathrm{G}$	$\varepsilon 8^{\circ} \mathrm{G}$	6
－	しゃでて	$\varepsilon \varepsilon^{\circ} \mathrm{OL}$	－	$00 \cdot 11$	2 COL	－	0L＇L1	$69^{\circ} \mathrm{OL}$	8
－	9Z． 6	カL． 6	＋	$68^{\circ} \mathrm{G}$	$26^{\circ} 9$	＋	$6 L^{\circ} \mathrm{L}$	0 $L^{\circ} \mathrm{L}$	$L$
－	£8．8	09•8	＋	$16^{\circ} \mathrm{L}$	91．8	－	－$\angle \varepsilon^{\circ} 8$	$82 \cdot 8$	9
＋	$99^{\circ} \mathrm{G}$	2L．9	－	$19^{\circ} \mathrm{t}$	$00 \%$	＋	¢0．G	$\angle 0^{\circ} \mathrm{G}$	G
－	18.7	Gt＊	＋	G0＊$\varepsilon$	$69^{\circ} \mathrm{t}$	＋	G $4 \cdot \varepsilon$	89＊＊	b
＋	てでか	$08^{\circ} \mathrm{t}$	$+$	$\varepsilon \mathcal{G}^{\circ} \varepsilon$	$\varepsilon 6^{\circ} \mathrm{E}$	＋	$18 \cdot \varepsilon$	$92^{\prime} \dagger$	$\varepsilon$
＋	$99^{\circ} \mathrm{G}$	92.9	－	¢L＇も	－bl＇$\dagger$	－	万1．＇G	11.9	2
$+$	$16^{\circ} \mathrm{V}$	81．9	$+$	9 ${ }^{\prime}$＇$\dagger$	$99^{\circ} \mathrm{G}$	$+$	$78^{\circ} \mathrm{O}$	$\varepsilon t^{\circ} \mathrm{G}$	1
$\overline{\text { út }}$ S	pouzaw Louquoj	$\begin{gathered} \text { pou72W } \\ \text { [Bquau! } 1 \text { adx] } \end{gathered}$	U6！			U6！S	$\begin{aligned} & \text { poytow } \\ & \text { 1047uoj } \end{aligned}$	$\begin{gathered} \text { poчfoW } \\ \text { Lequәu!! } \end{gathered}$	7！${ }^{\text {a }}$
II mey			I meas			pou！quos II 8 I unoy			




$$
62 \exists 78 \forall \perp
$$




$\varepsilon L$			21			ヤ1			$\pm 18701$
$+$	OL＇${ }^{\text {c }}$	$29^{\circ} \mathrm{E}$	＋	$89 \cdot 2$	$\mathcal{S} \mathcal{E} \varepsilon$	$+$	$68^{\circ} \mathrm{Z}$	$9 巾^{\circ} \varepsilon$	こて
－	で・9	00．9	＋	て ${ }^{\circ} \mathrm{G}$	L1．9	＋	$69^{\circ} \mathrm{G}$	LI＇9	Lて
－	こて・9	$26^{\circ} 9$	－	$\varepsilon 6^{\circ} \mathrm{G}$	$19^{\circ} \mathrm{b}$	－	E0＇9	カL＇G	02
$t$	$\varepsilon \varepsilon \cdot \square$	$16^{\circ} \mathrm{G}$	－	$89^{\circ} 7$	St＊	－	OG ${ }^{\circ} \mathrm{D}$	カ1＊	61
＋	$09^{\circ} \mathrm{L}$	88＊	－	S $\underbrace{\circ} 8$	01．9	－	$\varepsilon 6^{\circ} \mathrm{L}$	29．9	81
－	$0 \nabla^{\circ} \mathrm{E}$	$76 \cdot 2$	－	$\varepsilon L^{\prime}$＇	$8 \varepsilon^{\circ} \mathrm{Z}$	－	$00^{\circ} \mathrm{E}$	$\varepsilon 9^{\circ} \mathrm{Z}$	LL
＋	GL＇ $\mathcal{L}$	$18^{\circ} \mathrm{B}$	－	$00^{\circ} \mathrm{t}$	－ $99^{\circ} \mathrm{\varepsilon}$	－	$68^{\circ} \varepsilon$	$00^{\circ} \mathrm{E}$	91
＋	$\varepsilon \varepsilon^{*} \varepsilon$	$28^{\circ}$	＋	98＊8	$9 E^{\circ} \mathrm{b}$	$+$	$99^{\circ} \mathrm{E}$	$62^{\circ} \downarrow$	GIL
－	$83^{\circ} \mathrm{L}$	$99^{\circ} 9$	＋	$00 \cdot 9$	L2＊L	$+$	99＇9	00\％	七L
$+$	$06^{\circ} \mathrm{L}$	$90^{\circ} 8$	＋	$68^{\circ} 9$	L1．8	＋	00\％	21.8	$\varepsilon L$
－	$09^{\circ} \mathrm{S}$	$69^{\circ} \mathrm{b}$	$+$	$98^{\circ} \mathrm{E}$	$89^{\circ} \mathrm{\nabla}$	＋	Z ${ }^{\circ} \mathrm{b}$	ع9＊＊	ZL
$+$	$26^{\circ} 8$	00．01	＋	$66^{\circ} \mathrm{L}$	$1 \varepsilon \cdot 8$	$+$	$88^{\circ} 8$	$68^{*} 8$	11
$+$	$2 G^{\circ} \mathrm{L}$	$08 \cdot 8$	$+$	Ot＊	$\varepsilon \varepsilon \cdot 8$	＋	$90^{\circ} \mathrm{L}$	29＊8	OL
$+$	$\varepsilon \varepsilon^{\circ} \mathrm{G}$	07.9	＋	くも゙	0 ${ }^{\circ} \mathrm{\square}$	＋	$16^{\circ} \mathrm{b}$	$92^{\circ} 9$	6
－	$\varepsilon \varepsilon^{\prime}\lfloor L$	$00^{\circ} \mathrm{L}$	－	とが0L	SL．OL	－	$28^{\circ} \mathrm{OL}$	$80^{\circ} \mathrm{OL}$	8
－	0G＊ 8	$82^{\circ} \mathrm{L}$	＋	$\varepsilon 9^{\circ} \mathrm{G}$	$90^{\circ} \mathrm{L}$	＋	¢9＊9	$91^{\circ} \mathrm{L}$	$L$
$+$	$99^{\circ} \mathrm{L}$	GL＊ 8	－	$\varepsilon 1 \cdot 8$	$98^{\circ} \mathrm{L}$	＋	26\％	00.8	9
＋	$9 \varepsilon^{\circ} \mathrm{b}$	$06^{\circ} \mathrm{D}$	－	OG＊${ }^{\circ}$	くも＊	$+$	とが力	$\varepsilon 9^{\circ} \mathrm{\square}$	$G$
＋	$08^{\circ}$ Z	$89^{\circ} \mathrm{E}$	＋	$\varepsilon セ^{\circ} \varepsilon$	$62^{\circ} \mathrm{b}$	＋	6L＊${ }^{\text {c }}$	$00^{\circ} \mathrm{D}$	$\downarrow$
－	$89^{\circ} \mathrm{E}$	ヤ1．$L^{\prime}$	－	$0 L^{\circ} \mathrm{E}$	29＊ $\mathcal{L}$	－	¢9 $9^{\circ} \mathrm{E}$	$\angle *^{\circ} \mathrm{E}$	$\varepsilon$
－	$96^{\circ} \mathrm{G}$	$18^{\circ} \mathrm{b}$	－	$\varepsilon L \cdot \square$	$\varepsilon \varepsilon \cdot \varepsilon$	－	OL．9	ヤ0＇ゅ	2
$+$	08＊	ع6． 9	$+$	$8 \varepsilon^{\circ} \downarrow$	$L \varepsilon^{\circ} \mathrm{G}$	$t$	99＊＊	$79^{\circ} \mathrm{G}$	1
U6！S	$\begin{aligned} & \text { poyfow } \\ & \text { los7uoj } \end{aligned}$	pou7zW ［equəu！」วdxョ	U6！	$\begin{aligned} & \text { pou7? W } \\ & \text { 10.17403 } \end{aligned}$	poy7 WW Lequau！dadx3	U＇！	$\begin{aligned} & \text { pout } \mathrm{W} \\ & \text { Lou7u0 } \end{aligned}$	pou7zW   ［еұиәu！ләdx］	$7!40$
	II	$10 \pm$		I 4			วu！quos	8 I M1OJ	

[^5]| DL |  |  | Sl |  |  | G1 |  |  | LP701 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＋ | 29＊$\dagger$ | LG＇G | － | $79^{\circ} \varepsilon$ | 七G ${ }^{\text {c }}$ | $+$ | ご．6 | ガカ | 乙Z |
| ＋ | 92＊6 | $\angle 9^{\circ} \mathrm{OL}$ | ＋ | $\angle Z \cdot 9$ | 01.8 | ＋ | L9＇L | t1． 6 | 12 |
| － | 91．11 | $\varepsilon \varepsilon^{\circ} \cdot \mathrm{Ll}$ | ＋ | $90^{\circ} \mathrm{L}$ | $8 \varepsilon^{\circ} \mathrm{L}$ | ＋ | 七0．6 | $\angle 2.6$ | 02 |
| $+$ | $\mathrm{GL}^{\circ} \mathrm{L}$ | $19^{\circ} \mathrm{L}$ | － | $8 \mathrm{G} \cdot \mathrm{G}$ | カ6＊＊ | － | $97^{\circ} 9$ | $90 \cdot 9$ | 61 |
| － | $0 \mathrm{C} \cdot 2 \mathrm{~L}$ | 19.6 | － | カ9＊0L | $\varepsilon \dagger^{\circ}$ L | － | $97^{\circ} 11$ | 8s．8 | 8L |
| ＋ | LL•9 | $\varepsilon L^{\circ} \mathrm{L}$ | ＋ | $9 L \cdot \varepsilon$ | L＇t | ＋ | 90\％9 | $8 t^{\circ} \mathrm{G}$ | Ll |
| $+$ | 2L．9 | $1 \varepsilon^{\circ} \mathrm{L}$ | ＋ | L＇¢ ${ }^{\text {c }}$ | 71．9 | $+$ | ZS＊${ }^{\circ}$ | 01•9 | 91 |
| $+$ | 18.9 | $92^{\circ} \mathrm{L}$ | － | 01＊G | $96^{\circ} \dagger$ | － | $\varepsilon \varepsilon \cdot 9$ | $9 L \cdot 9$ | gl |
| $+$ | $\varepsilon L \cdot \varepsilon L$ | $98^{\circ} \mathrm{E}$ L | － | 0t＊ 11 | $8 t^{\circ} 6$ | － | $9 \underbrace{\circ} \mathrm{ZL}$ | 2E．L1 | カし |
| － | $60^{\circ} \mathrm{ZL}$ | $08^{\circ} 01$ | ＋ | 88.8 | 90.6 | － | $69^{\circ} 01$ | ¢9．6 | $\varepsilon L$ |
| $+$ | $9 \mathrm{G} \cdot 8$ | 08.8 | ＋ | $\varepsilon \varepsilon^{*} 9$ | 68.9 | － | 09．L | ¢ $9^{\circ} \mathrm{L}$ | 21 |
| － | 09．91 | 08＊か | ＋ | ES．01 | GL＇01 | ＋ | 99＊てL | G0． $\mathrm{c}_{\text {L }}$ | LI |
| ＋ | ¢ $\varepsilon^{\circ} 6$ | 22．01 | $+$ | 08＊ | $8 \mathrm{8} \cdot 8$ | ＋ | ¢9．8 | てて・6 | 01 |
| ＋ | $\varepsilon L \cdot 6$ | 18.01 | $+$ | 1L＇9 | $\varepsilon L^{\circ} L$ | ＋ | $9 L^{\circ} \mathrm{L}$ | L2•6 | 6 |
| $+$ | $89 \cdot 91$ | L0．91 | ＋ | bl ${ }^{\text {c }}$ L | LE゚てL | $+$ | $0 L^{\circ} \mathrm{E}$ L | $90 \cdot \mathrm{~L}$ | 8 |
| $+$ | 98.6 | to 01 | ＋ | $99^{\circ} \mathrm{L}$ | こし「で | ＋ | 68.8 | $00^{*}$ Ll | $L$ |
| － | t1． 11 | ع6．01 | ＋ | LS＇6 | t9＊6 | ＋ | 七て．01 | £ ${ }^{\circ} \mathrm{OL}$ | 9 |
| － | 00．01 | LL． 6 | ＋ | $0{ }^{\circ} 9$ | $9 \dagger^{\circ} 8$ | ＋ | LS．$\angle$ | 61．6 | G |
| ＋ | LL＇L | t1．8 | ＋ | $82^{\circ} \dagger$ | LO＇9 | $+$ | ¢2．9 | 08．9 | f |
| － | $8{ }^{\circ} 9$ | GG ${ }^{\text {G }}$ | － | $8 \dagger^{\circ} \mathrm{E}$ | $\square 1 \cdot \varepsilon$ | ＋ | $8 \nabla^{\circ} \mathrm{*}$ | Sc＇t | $\varepsilon$ |
| $+$ | EL．L | LG＇L | $+$ | 9 ${ }^{\circ} \mathrm{H}$ | $90^{\circ} \mathrm{G}$ | ＋ | ع9＇9 | 2G•9 | 2 |
| ， | 90．8 | てが | － | $8 \varepsilon^{\circ} \mathrm{G}$ | GL ＇G | － | $00^{\circ} \mathrm{L}$ | 96.9 | 1 |
| $\overline{\text { ū！}}$ | $\begin{aligned} & \text { pouzaW } \\ & \text { 1047uoj } \end{aligned}$ | $\begin{gathered} \text { pou7zW } \\ \text { Lequәu! } 1 \partial \mathrm{dx} \text { In } \end{gathered}$ | U6！s |  |  | U6！ | $\begin{aligned} & \text { poyṫW } \\ & \text { Los } 7400 \end{aligned}$ |  | $7!40$ |
| II $\mathrm{UlO}_{1}$ |  |  | I mesod |  |  | pru！qwos II 8 I wros |  |  |  |

七\＆$\exists 78 \forall 1$

LL			9 L			91			Le701
＋	GE．${ }^{\text {c }}$	$9 L^{\circ} \mathrm{E}$	$+$	$09^{\circ} \mathrm{Z}$	$06^{*}$ Z	$+$	$\varepsilon \nabla^{\circ}$ 亿	$\angle Z^{*} \varepsilon$	22
$+$	こて・9	$9 t^{\circ} 8$	$+$	$09^{\circ} \mathrm{G}$	$98^{\circ} \mathrm{L}$	$+$	$98^{\circ} \mathrm{S}$	$78^{\circ} \mathrm{L}$	LZ
＋	0 $L^{\circ} \mathrm{G}$	$18 \cdot 9$	－	$18^{\circ} 9$	$89^{\circ} \mathrm{S}$	$+$	9 ${ }^{\circ} \mathrm{G}$	01．9	02
＋	$0 L^{\circ} \mathrm{G}$	$2 L^{\circ} \mathrm{G}$	$+$	$91^{\circ} \mathrm{G}$	$9 \mathcal{S}^{*} 9$	$+$	$00^{\circ} \mathrm{G}$	$19^{\circ} \mathrm{G}$	61
＋	90.8	L1．6	－	09.8	70 $0^{\circ}$	－	عย＇8	29＊L	8L
－	0L＇$\dagger$	$09^{\circ} \mathrm{E}$	$+$	$\varepsilon \chi^{\circ} \varepsilon$	L＊＊	－	$98^{\circ} \mathrm{E}$	$09^{\circ} \mathrm{E}$	LL
$+$	$9 L^{\circ} \mathrm{G}$	$9 \varepsilon^{\circ} \mathrm{G}$	－	GL＇G	$69^{\circ} \mathrm{\nabla}$	－	GL＇G	$00^{\circ} 9$	91
－	$9 \varepsilon^{\circ} \mathrm{G}$	G0＇G	$+$	79＊＊	$09^{\circ} \mathrm{S}$	＋	98＊$\downarrow$	b2＊G	GL
$\div$	26．9	98．01	＋	$0 \chi^{\circ} \mathrm{L}$	Gt＇8	$+$	01＊L	$00^{*} 6$	bL
＋	$\varepsilon 9 * 8$	$\varepsilon \varepsilon^{\prime} 6$	$+$	21＊	\＆9•8	$+$	09＊	$96^{\circ} 8$	$\varepsilon L$
＋	98．9	\＆6．9	＋	91＊	02＊9	$+$	$\square Z^{\circ} \mathrm{G}$	60＇9	乙L
＋	てし・11	じで	$+$	で・8	$16^{\circ} \mathrm{OL}$	$+$	$98 \cdot 6$	Lカ＊	11
＋	$1 \varepsilon^{*} L$	Lて＇6	＋	$70^{\circ} 9$	00.8	$+$	$09 * 9$	$89^{\circ} 8$	OL
＋	S0．9	2L•9	＋	LG＇G	$62^{\circ} 9$	$+$	$00^{\circ} \mathrm{E}$	で・9	6
－	$L Z^{*}$ ZL	E9＊ 1	$+$	G1．01	LL．OL	－	2L＊LL	89．01	8
－	$06^{\circ} \mathrm{L}$	$09^{\circ} \mathrm{L}$	－	$26^{\circ} 9$	8L＇G	＋	25＊9	26.9	$L$
$+$	ع9＊8	27＊6	＋	$99^{\circ} 8$	$08^{\circ} 8$	$+$	99＊8	$90 \cdot 6$	9
＋	$00^{\circ} 9$	$00^{\circ} \mathrm{L}$	＋	$80^{\circ} 9$	$\varepsilon \mathcal{E} \cdot 9$	＋	L8．9	¢G．9	G
＋	$06^{\circ} \mathrm{\nabla}$	GL＇9	＋	$91^{\circ} \mathrm{C}$	G $L^{\circ} \mathrm{D}$	$+$	$97^{\circ} \mathrm{E}$	2 ${ }^{\circ} \mathrm{G}$	$\downarrow$
$+$	$60^{\circ} \mathrm{b}$	力じわ	－	$0 \varepsilon^{*} \mathrm{t}$	$89^{\circ}$ 乙	－	0でカ	$\angle 0^{\circ} \mathrm{E}$	$\varepsilon$
＋	$16^{\circ} 9$	06．9	－	$18^{\circ} \mathrm{\square}$	O゙＊$\dagger$	－	$\angle 1^{\circ} \mathrm{G}$	ع0＇G	2
－	$99^{\circ} 9$	$1 \varepsilon^{\circ} 9$	$+$	00\％	$\varepsilon \varepsilon^{\prime} \mathrm{G}$	＋	$88^{\circ} \mathrm{D}$	$68^{\circ} \mathrm{G}$	1
पธ！s	$\begin{aligned} & \text { poyzow } \\ & \text { L047u00 } \end{aligned}$	poyұәW Lequәu！sədxョ	ub！S	$\begin{aligned} & \text { poyz2゙ } \\ & \text { Los7u03 } \end{aligned}$	$\begin{gathered} \text { pouqəW } \\ \text { Lequәш!」ədx3 } \end{gathered}$	U6！	$\begin{aligned} & \text { poy70W } \\ & \text { L017400 } \end{aligned}$		7！un
II mioj			I Unvos			peutquoj II 8 I யNO』			

The Experimental and Control Posttest Means and Difference Sign for Each Unit of Agriculture

$$
\begin{aligned}
& \text { Tumaini Secondary School Students Ranking in the Lower Half of } \\
& \text { Their Form at the End of First Term } 1973
\end{aligned}
$$

01			$\varepsilon 1$			8 －＋			Le701
＋	18.7	$\varepsilon L^{\circ} \mathrm{G}$	＋	$\angle \square^{\circ} \varepsilon$	$00 *$	＋	て1＊	$9 L^{\circ} \mathrm{t}$	22
＋	$02 \cdot 8$	19.8	$+$	8¢＇9	SL＇9	＋	$12^{\circ} \mathrm{L}$	$\checkmark 9^{\circ} \mathrm{L}$	12
－	00\％ 01	08.6	－	L1．	£8．9	－	$9 \mathrm{P} \cdot 8$	81．8	02
＋	くも＇G	01•9	－	$26^{\circ} \mathrm{O}$	カガカ	－	カ1．9	$\varepsilon 0^{\circ} \mathrm{G}$	61
－	$t G^{\circ} \mathrm{ZL}$	$90^{\circ} \mathrm{LL}$	－	¢9＊01	9 P 8	－	L1．11	18.6	81
－	$\angle \dagger^{\circ} \mathrm{G}$	¢ $\varepsilon^{\circ} \mathrm{G}$	＋	¢0＇$\varepsilon$	$50 \cdot \varepsilon$	－	$80^{\circ} \mathrm{t}$	$90^{\circ} \mathrm{t}$	LL
－	$09 \cdot 9$	96.9	－	$22 \cdot 9$	加 $\dagger$	－	¢8． 9	01.9	91
＋	$61 \cdot 9$	OG•9	＋	S0＊${ }^{\text {¢ }}$	6 G ＊	－	てE＇G	tて＇G	GL
－	$8 z^{\circ} \mathrm{ZL}$	LG． 11	＋	$88^{\cdot} 9$	$1 L^{\circ} \mathrm{L}$	－	切＊ 6	$\angle 2 \cdot 6$	カ1
＋	00＊ 11	てがい	＋	$29^{\circ}$	LL＇8	－	OS＊ 6	$\varepsilon \chi^{\circ} 6$	$\varepsilon 1$
＋	OG ${ }^{\circ} \mathrm{L}$	てか・8	－	¢9．9	$96^{\circ} \mathrm{t}$	－	$09 \cdot 9$	11＊9	21
＋	L＇し1	と9＇z！	＋	LL＇8	$9 \dagger^{\circ} 6$	＋	8L＇6	とでしl	11
－	とて＇0L	89.6	－	¢6．8	$88^{\prime} 8$	－	\＆G．6	L6．8	0 L
＋	GE．L	$6 \mathrm{G} \cdot 8$	＋	$82^{\circ} \mathrm{G}$	$\varepsilon L \cdot \mathrm{G}$	＋	$\angle 6^{\circ} \mathrm{G}$	$\varepsilon t^{\circ} \mathrm{L}$	6
－	くガもし	$8 \underbrace{\circ}$ カレ	－	81．11	$\varepsilon L \cdot 0 \mathrm{l}$	－	29＊21	牲でで	8
＋	．$\angle 9.01$	$00 \cdot 21$	＋	Ot＇L	$96^{\circ} \mathrm{L}$	＋	¢2＊6	LE＊ 6	$L$
－	LL＇OL	$90^{\circ} \mathrm{OL}$	＋	$\varepsilon \varepsilon \cdot 8$	LO\％ 6	＋	LE． 6	$09^{\circ} 6$	9
＋	$9 L^{\circ} \mathrm{L}$	98．	＋	$9 L^{\circ} \mathrm{b}$	$\varepsilon L^{\circ} \mathrm{G}$	＋	$91^{\circ} \mathrm{G}$	2L＇9	9
－	$9 L^{\circ} \mathrm{L}$	$99^{\circ}$	＋	¢8＊	$78{ }^{\circ} \mathrm{G}$	－	ct． 9	とけ＇9	†
－	OG•9	$08^{\circ} \mathrm{G}$	－	$0 \mathrm{~S}^{\circ} \mathrm{*}$	8L＇$¢$	－	9L＇G	L6．${ }^{\circ}$	$\varepsilon$
－	9 $4 \cdot 8$	$82^{\circ}$	＋	2¢＇G	$9 \dagger^{\circ} \mathrm{G}$	＋	OG•9	29．9	2
－	$06^{\circ} \mathrm{L}$	$16 \cdot 9$	－	00．9	$t t^{\prime} \mathrm{G}$	－	SL＇L	S $L^{\circ} \mathrm{G}$	1
U6！	$\begin{aligned} & \text { poutaW } \\ & \text { [047uoj } \end{aligned}$	poyłəW ［еұиəш！	U6！ 5	$\begin{aligned} & \text { payzaW } \\ & \text { Louquoj } \end{aligned}$		U6！ 5	$\begin{aligned} & \text { pouqचW } \\ & \text { [017403] } \end{aligned}$	роч7əW ［еquәய！．sədx］	$7!$
II Wlof			I WNO才 7			pru！quoj II 8 I miod			

[^6]$9 \varepsilon 378 \mathrm{BI}$

$\square L$			$\varepsilon L$			GL			＋［2701
，	LL＇${ }^{\circ}$	$92 \cdot \mathrm{C}$	$+$	OG＊2	$00^{\circ} \mathrm{E}$	$t$	8 $L^{\circ}$ 2	$88^{\circ} \mathrm{Z}$	22
$+$	$60^{\circ} 9$	加＊9	$+$	EL＇G	G $L^{\circ} \mathrm{G}$	＋	加 $\square^{\text {c }}$	七0．9	L 2
－	$92^{\circ} \mathrm{L}$	Lて・9	－	OG ${ }^{\circ} \mathrm{G}$	Ot＊	－	LZ．9	E0＇9	02
$+$	LS＇＊	$00^{\circ} \mathrm{G}$	$+$	$06^{\circ} \mathrm{E}$	$\varepsilon \mathrm{L}$＇力	$+$	91＊${ }^{\text {b }}$	じ＊	6 L
$+$	L0＇L	$82^{\circ} 8$	－	OG＇L	$18^{\circ} \mathrm{G}$	－	$82^{\circ} \mathrm{L}$	LV．9	8 L
－	$29^{\circ} \mathrm{E}$	8L｀$¢$	－	$9 t^{\circ} \mathrm{Z}$	$6 \varepsilon^{\circ} \mathrm{Z}$	－	$76{ }^{\circ} \mathrm{Z}$	$1 L^{\circ} \mathrm{C}$	LL
$t$	8 $L^{\circ}$＇	$\varepsilon \varepsilon^{\prime} \cdot \underline{\square}$	－	G2＊	$60^{\circ} \mathrm{b}$	$+$	L0＇b	$99^{\circ} \mathrm{D}$	9 L
$+$	0 ${ }^{\circ} \mathrm{E}$	$\varepsilon L^{\circ}$＇$\dagger$	－	$0{ }^{\circ} \mathrm{\square}$	$09^{\circ} \mathrm{E}$	$+$	てL＂	$82^{\circ} \mathrm{\square}$	GI
－	2L＇L	こでし	－	$99^{\circ} \mathrm{L}$	0L＇9	－	89＊	七6．9	もL
$+$	切＊	$\varepsilon G * 8$	$+$	96＊9	$9 t^{\circ} 8$	$+$	OL＊L	OG ${ }^{\circ} 8$	$\varepsilon L$
－	氻＇G	$0{ }^{*}$ カ	$+$	$96^{\circ} \mathrm{E}$	$82^{\circ} \mathrm{G}$	$+$	LE＊$\downarrow$	$9 L^{\prime} \dagger$	ZL
$+$	91．8	$0 \varepsilon^{*} 01$	$+$	$00^{\circ} \mathrm{L}$	$89 \cdot 8$	$+$	$99^{\circ} \mathrm{L}$	8L＇6	LL
$+$	$26^{*}$	00.8	$+$	G6．9	2L＊ 8	$+$	L1＇L	GL＊8	OL
$+$	カt＊G	LL．9	$+$	$80^{\circ} \mathrm{G}$	$\varepsilon L^{\circ} \mathrm{G}$	$+$	$0 \mathrm{E}^{*} \mathrm{G}$	しがG	6
－	$L C^{*} \cdot 1$	89．6	$+$	2L＇8	OE＊ 01	$+$	00． OL	$90^{\circ} \mathrm{OL}$	8
－	$00 \cdot 8$	E2＇L	$+$	$79^{\circ} 9$	$99^{\circ} 9$	$+$	$9 \varepsilon^{\circ} 9$	96．9	$L$
－	$60 \cdot 8$	$88^{\circ} \mathrm{L}$	－	$06^{\circ} \mathrm{L}$	09＊	－	$00 \cdot 8$	21＇L	9
＋	$00 \cdot 9$	OL＇G	－	Gt＇力	カ0＊	－	9 ${ }^{\circ} \mathrm{b}$	$8 E^{\circ} \mathrm{t}$	G
＋	$06^{\circ} \mathrm{\varepsilon}$	$9 \chi^{\circ} \mathrm{b}$	＋	$1 \varepsilon^{\prime} \varepsilon$	OS＊${ }^{\circ}$	＋	$19^{\circ} \mathrm{E}$	$\varepsilon L^{\prime} \varepsilon$	b
＋	OG ${ }^{\circ} \mathrm{\varepsilon}$	$00^{\circ} \mathrm{G}$	$+$		OG ${ }^{\circ} \mathrm{E}$	$+$	$5 \nabla^{*} \varepsilon$	L6．${ }^{\circ}$	$\varepsilon$
$+$	$\angle G^{\circ} \mathrm{G}$	$60 \cdot 9$	－	$0{ }^{\circ}{ }^{\circ} \mathrm{\nabla}$	8 $L^{\circ}$ ع	－	¢0．${ }^{\circ}$	08＊	2
$+$	加 ${ }^{\circ}$	12．9	$+$	$88^{\circ} \mathrm{E}$	89＊	＋	です。	29．9	L
U6！	$\begin{aligned} & \text { pou7aw } \\ & \text { Losquos } \end{aligned}$	pou7るW   ［еұиәu！」ədx］	U6！S	$\begin{aligned} & \text { poyizW } \\ & \text { Louquoj } \end{aligned}$	роч7әW  	u6！S	$\begin{aligned} & \text { pou70W } \\ & \text { LOی7403 } \end{aligned}$	poy72W   ［еquәแ！ 12 dx ］	$7!4\}$
II W1O」			I			pau！quos II 8 I mios			

[^7]
## $\angle \varepsilon \exists 78 \forall \perp$

LL			$\square 1$			6			$+12701$
－	$00 \cdot 9$	$\varepsilon 9^{\circ} 9$	$+$	$[\varepsilon \cdot \varepsilon$	$\varepsilon \varepsilon^{*} \varepsilon$	＋	06＊	$27^{*} \downarrow$	22
＋	$00^{\circ} \mathrm{OL}$	OL＊LL	＋	S0．9	$00 \cdot 8$	$+$	09\％	七を．6	12
$+$	$\angle V^{\circ} \mathrm{LL}$	8G＊L L	－	EG ${ }^{\circ} \mathrm{L}$	$90^{\circ} \mathrm{L}$	－	$02 \cdot 6$	GL．8	02
＋	$\angle Z^{\circ} L$	$00^{\circ} 8$	－	$69^{\circ} \mathrm{G}$	$50^{\circ} \mathrm{G}$	－	ゅ¢＇9	GL．9	61
－	$06^{\circ} \mathrm{L}$	00．01	－	$98 \cdot 01$	00.8	－	عL＊LL	16.8	81
－	$60^{\circ} \mathrm{L}$	26＊9	－	$00^{*} \varepsilon$	G $L^{\circ} \mathrm{E}$	－	$\angle L^{\circ} \mathrm{G}$	$00^{\circ} \mathrm{G}$	LL
$+$	$8 \varepsilon^{\cdot} 9$	$82^{\circ} \mathrm{L}$	$+$	$00^{\circ} \mathrm{G}$	LI＇G	＋	$\downarrow G \cdot G$	80.9	91
$+$	$99 \cdot 9$	$91^{\circ} \mathrm{L}$	－	－ $89^{\circ} \mathrm{G}$	$9 L^{\circ} \mathrm{G}$	－	LL． 9	$18^{\circ} \mathrm{G}$	GI
$+$	$9 b^{*} \mathrm{EL}$	$08^{\circ} \mathrm{E} L$	－	90．LL	$69^{\circ} 6$	－	ع0＊ 2 L	$\varepsilon 9^{\circ} 11$	もL
－	G6． 1	06＊L L	$+$	2L．8	\＆＇ 6	－	$97^{\circ} 0 \mathrm{~L}$	$20^{\circ} \mathrm{OL}$	$\varepsilon L$
$+$	96.8	$00^{*} 6$	＋	0t＇9	LS． 9	－	L9＊	カ¢ ${ }^{\circ}$	21
－	しが9L	$0 E^{\circ} \mathrm{GL}$	＋	$19^{\circ} \mathrm{OL}$	$00^{11}$	$+$	カャ＊てし	$0 \chi^{\circ} \varepsilon L$	LI
$+$	8L．6	$82^{\circ} \mathrm{OL}$	$+$	$99^{\circ} \mathrm{L}$	$88^{\circ} 8$	＋	bて．8	25．6	0 L
$+$	OG＇6	2S ${ }^{\circ} \mathrm{OL}$	＋	E0＇L	$62^{\circ} \mathrm{L}$	＋	$18^{\circ} \mathrm{L}$	L0．6	6
－	$60^{\circ} 9 \mathrm{~L}$	$19^{\circ} \mathrm{GL}$	－	91．2l	91＊てl	－	$16^{\circ} \mathrm{E}$ L	$19 \cdot \varepsilon 1$	8
－	$82^{\circ} 01$	$16^{\circ} 6$	$+$	で ${ }^{\circ}$	$89^{\circ} \mathrm{L}$	－	L8．8	$98^{\circ} 8$	$L$
－	$0 \varepsilon^{\circ} \mathrm{L}$	ع8．01	＋	$97^{\circ} 6$	$\angle t^{\circ} 6$	－	$92^{\circ} \mathrm{OL}$	ع0． OL	9
$+$	$06^{\circ} 6$	． 01.0 L	＋	78．9	$76^{\circ} \mathrm{L}$	＋	$1 L^{\circ} \mathrm{L}$	OL． 6	G
$+$	$88^{\circ} \mathrm{L}$	$07 \cdot 8$	$t$	$90^{\circ} \mathrm{b}$	92．9	＋	$\angle 6^{\circ} \mathrm{G}$	$88^{\circ} 9$	†
－	21．9	59.9	－	$\angle L^{\circ} \mathrm{D}$	$90^{\circ} \mathrm{E}$	－	$00^{\circ} \mathrm{G}$	OG ${ }^{\circ} \mathrm{i}$	$\varepsilon$
－	9L•8	$58^{\circ} \mathrm{L}$	－	$L \varepsilon^{\circ} \mathrm{G}$	$\varepsilon 6^{\circ}$ 力	＋	OE．9	GS．9	2
－	98．8	E8＊	$\pm$	E6＊	LE＇G	－	88.9	6L．9	L
U6！S	pou70W couquoj	poц7วW ［еұиәш！	U6！${ }^{\text {S }}$	$\begin{aligned} & \text { poyzaw } \\ & \text { 1017u0 } \end{aligned}$	poyfaW Lequau！dədxョ	U6！	$\begin{aligned} & \text { poy? } 2 \mathrm{~W} \\ & 1047400 \end{aligned}$	pou7 ${ }^{2}$ ［Equәu！d	7！
II แ⿺辶ŋ			I meras			pru！quog II 8 I unoy			


$\varepsilon L$		\％	LL			8L			＋ 12701
＋	$08^{\circ} \mathrm{L}$	$29^{\circ} \varepsilon$	$+$	$2 L^{\circ} \mathrm{Z}$	$8 \varepsilon^{\circ} \varepsilon$	＋	$\varepsilon \chi^{\bullet}$ Z	$\angle 0^{*} \varepsilon$	22
$+$	61＇9	$9 L^{\circ} \mathrm{L}$	$+$	$\varepsilon L \cdot G$	79＊	$+$	96．9	89＊	12
＋	91．L	$\angle 9^{\circ} \angle$	＋	$L L^{\circ} \mathrm{G}$	2L＇G	＋	LL＊9	$89^{\circ} 9$	02
－	$16^{\circ} 9$	0G＇9	＋	$90^{\circ} 9$	29．9	＋	カ＊＊G	$19^{\circ} 9$	61
－	99．8	09 ${ }^{\circ} 8$	－	$\varepsilon \varepsilon \cdot 6$	29＊9	－	ヤ6．8	91＊	81
－	$\angle Z^{*}$－	＋0＇b	4	$88^{\circ} \mathrm{Z}$	$89^{\circ} \mathrm{E}$	$+$	Lヤ＇$¢$	$98^{\circ} \mathrm{E}$	LL
$+$	カl＇G	8G ${ }^{\circ} 9$	＋	G $L^{\circ} \mathrm{E}$	$08^{\circ} \mathrm{\nabla}$	$+$	$00^{\circ} \mathrm{b}$	DL＇G	91
－	GL．G	$00^{\circ} \mathrm{G}$	＋	$09^{\circ} \mathrm{b}$	LL＇G	$+$	$00^{\circ} \mathrm{G}$	$82^{\circ} 9$	$G L$
$+$	LL．8	Sto ${ }^{\circ} \mathrm{L}$	$+$	$92^{\circ} \mathrm{L}$	LL． 6	－	$60^{\circ} \mathrm{OL}$	七0＊0L	カL
－	91＊6	70．6	$+$	$\angle 1 . L$	$8 \varepsilon^{\cdot 8}$	＋	98＊	GL＊ 8	$\varepsilon L$
$+$	$00 \cdot 9$	$01^{\circ} \mathrm{L}$	＋	89＊${ }^{\circ}$	$76{ }^{\circ} \mathrm{G}$	＋	$20^{\circ} \mathrm{G}$	bG．9	ZL
－	$0 \mathrm{~L} \cdot \mathrm{ZL}$	78＊ 1 L	$+$	$99^{\circ} 8$	L $L^{\circ} \mathrm{OL}$	$+$	$87^{\circ} \mathrm{OL}$	七L＊L	11
＋	$89^{\circ} \mathrm{L}$	$92 \cdot 6$	$+$	$06^{\circ} 9$	カL＇L	$+$	L8．9	L L＊8	01
－	LL＇9	$99^{*} 9$	$+$	$8 L^{\circ} \mathrm{G}$	OG ${ }^{\prime} 9$	＋	G0．9	96.9	6
$+$	$\varepsilon 8^{\circ} \mathrm{L}$ L	$68^{\circ} \mathrm{LL}$	－	$00^{\circ} \mathrm{OL}$	$60^{\circ} \mathrm{OL}$	－	E0＇LL	96.01	8
$+$	$\varepsilon \varepsilon^{*} L$	$90 \cdot 8$	－	¢0．9	$18^{\circ} \mathrm{G}$	＋	$80^{\prime} 9$	96＊9	$L$
＋	$8{ }^{\circ} 8$	$\varepsilon L^{\circ} 6$	－	$00 \cdot 6$	18.8	＋	08＊8	8て＇6	9
－	$90^{\circ} \mathrm{L}$	$\succ C \cdot 9$	$+$	05＊	$\angle 9^{\circ} 9$	$+$	$\varepsilon 6^{\circ} \mathrm{G}$	9G•9	9
$+$	$00^{\circ} \mathrm{S}$	01．9	$+$	21．	カ9＊	$+$	$89^{\circ} \cdot \varepsilon$	$0{ }^{\circ} \mathrm{G}$	b
－	して＊	$98^{\circ} \mathrm{E}$	－	$\varepsilon L \cdot \varepsilon$	0 $L^{\circ}$ 亿	－	G9 ${ }^{\circ} \mathrm{E}$	¢0 $0^{\circ} \varepsilon$	$\varepsilon$
$+$	90．9	$8 \mathrm{G}^{\circ} \mathrm{S}$	＋	$69 \cdot \varepsilon$	OG ${ }^{\circ} \mathrm{b}$	$+$	$19^{\circ} \mathrm{b}$	$00^{\circ} \mathrm{G}$	2
$+$	$00 \cdot 9$	9L＇9	$+$	$92^{\circ} \mathrm{t}$	$26^{\circ} \mathrm{b}$	$+$	$88^{\circ} \mathrm{b}$	$92^{\circ} \mathrm{G}$	L
U6！S	$\begin{aligned} & \text { pouzow } \\ & \text { Louquoj } \end{aligned}$	pou72W ［Equәu！ $12 d \times 3$	U6！S	$\begin{aligned} & \text { pou70W } \\ & \text { Lonquos } \end{aligned}$	poyz $W$   ［equautazdx］	U6！S	$\begin{aligned} & \text { pou70W } \\ & \text { Lou7u03 } \end{aligned}$	poy7əW ［еұuәu！ 12 dx$]$	$7!40$
II Unos			I $410 \pm$			peutquos II 8 I ய上o」			
วun7	！uby ${ }^{\circ}$	！un yoeg lof	ub！s	Uวルว¢f！	pue sueəw 7 Sə	$7 \mathrm{SO}_{\text {d }}$	Los7u03 p	e Lequeu！sıd	¢ 3 241

## $6 \varepsilon \exists 78 \forall 1$

LL			$t L$			11			＋Le701
－	$19^{\circ} 9$	$\angle 9^{\circ} \mathrm{S}$	＋	OL＇$\varepsilon$	$\varepsilon \varepsilon^{\circ} \dagger$	$+$	21＇7	$26^{\circ} \downarrow$	22
$+$	¢G．8	$08^{\circ} 8$	＋	S0＇9	$8 t^{*} 9$	$+$	ع6．9	L9：L	12
$+$	$92^{\circ} \mathrm{OL}$	21．01	－	$00^{\circ} \mathrm{L}$	G9＊9	－	ع9＇8	60：8	02
$+$	カ9 ${ }^{\circ} \mathrm{S}^{\prime}$	09＊9	－	$08^{\circ} \mathrm{\square}$	$09^{\circ} \mathrm{t}$	＋	カ1＇G	\＆${ }^{\circ} \mathrm{G}$	6L
－	カャ＊てL	$98^{\circ} \mathrm{OL}$	－	$08^{\circ} 6$	$00^{\circ} 8$	－	OG．01	0¢＊ 6	81．
－	S0＊9	$00^{\circ} \mathrm{S}$	＋	$26^{\circ} \mathrm{Z}$	$\mathcal{G} L^{\circ} \varepsilon$	－	$L て * ~ D ~$	¢8＊$¢$	LI
－	$89^{*} 9$	$00 \cdot 9$	－	$90^{\circ} \mathrm{G}$	て ${ }^{\circ} \mathrm{\square}$	－	29＊G	$70^{\circ} \mathrm{G}$	91
＋	$98^{\circ} 9$	7G•9	$+$	$90^{\circ} \mathrm{b}$	しゃ＊	－	$12^{*} 9$	$80^{\circ} \mathrm{G}$	GI
－	OL＇ $\mathcal{L}$ L	$\varepsilon 9^{\circ} \mathrm{L}$	－	LZ•8	08.1	－	g2＊OL	$9 \square^{*} 6$	bl
$+$	OL＇LL	OL＇ZL	$+$	$29^{\circ}$	91．8	－	$1 ⿻ 上 丨^{\circ} 6$	$82^{*} 6$	$\varepsilon L$
$+$	26．L	01．6	＋	$26^{\circ} 9$	79 ${ }^{\circ} \mathrm{G}$	－	b¢．9	29＊9	2L
$+$	08＊L	$2 \chi^{*} \mathrm{~L}$	＋	80＊6	カヤ＊6	$\pm$	$98 \cdot 6$	$\varepsilon \varepsilon \cdot 1 \mathrm{~L}$	LL
$+$	2L＇6	$98 \cdot 6$	$+$		七8＊8	＋	E6．8	$0 \mathcal{O}^{\cdot} 6$	OL
＋	じ＊	96.8	－	ع0．9	$00^{\circ} 9$	$+$	L゙・9	$\varepsilon 9^{\circ} \mathrm{L}$	6
－	OS＊$\dagger$ L	91＊カL	＋	9 $L^{\circ} 0 \mathrm{~L}$	$88^{\circ} \mathrm{OL}$	－	ごも゙てし	七でてし	8
$+$	G $L^{\circ} 01$	06 ${ }^{\circ} \mathrm{L}$	＋	$\varepsilon \chi^{\circ} \mathrm{L}$	$79^{\circ} \mathrm{L}$	－	$\varepsilon ⿺ 𠃊 ⿳ 亠 口 冋$	ع9＊8	$L$
－	96＊01	91．0L	－	88.8	$79 * 8$	－	$08 \cdot 6$	LZ•6	9
$+$	$09^{\circ} \mathrm{L}$	02＊8	＋	$16^{\circ} \mathrm{b}$	G0．9	＋	L9．9	GL．9	G
－	$00 \cdot 8$	$\varepsilon \varepsilon^{\circ} L$	$+$	$29^{\circ} \mathrm{b}$	．$+0^{\circ} 9$	＋	$92 \cdot 9$	Ot．9	¢
－	$88^{\circ} 9$	GL＇9	－	$\angle 2^{*} \mathrm{~b}$	$\angle 8^{\circ} \mathrm{E}$	$+$	E0．9	$\varepsilon L^{\circ} \mathrm{G}$	$\varepsilon$
－	09 ${ }^{\circ} 8$	Ot＊	＋	Lて・G	$92^{\circ} \mathrm{G}$	＋	Lて．9	切•9	2
U6IS	90．8	O2＇L	$+$	ES G	$99^{\circ} 9$	－	L6．9	90．9	1
U6！	poy7 W Louquos	$\begin{gathered} \text { poy7 } \\ \text { Lequәw! sedx. } \end{gathered}$	U6！	pou72W lou7u02		U6！	pou7aw 1047u03	poy72W   ［Rquəய！	$7!40$



U10」	I ${ }^{\text {I }}$	poutquoj II 8 I UnO」

[^8]| $\varepsilon L$ |  |  | $\varepsilon$ L |  |  | $\varepsilon[$ |  |  | ＋Le701 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＋ | 98.2 | $2 L^{\circ} \mathrm{E}$ | － | LL＇Z | $69^{\circ} 2$ | ＋ | $18^{*}$ 2 | 98.2 | 22 |
| － | 0t＊ 9 | $0 \mathcal{L}^{\circ} 9$ | $+$ | $\varepsilon \varepsilon^{\circ} \mathrm{G}$ | とが9 | ＋ | 76＊ | $88^{\prime} 9$ | L2 |
| － | $0 \mathcal{O}^{\circ} \mathrm{L}$ | $\varepsilon \mathcal{E}^{\prime} 9$ | － | $\angle G^{\circ} \mathrm{G}$ | $9 \varepsilon^{\circ} \mathrm{\nabla}$ | － | $6 \chi^{\prime} 9$ | $82^{\circ} 9$ | 02 |
| ＋． | カヤ＊ | $\varepsilon 9^{\circ} \mathrm{\nabla}$ | － | GE＊${ }^{\circ}$ | G6＊ $6^{\circ}$ | － | $6 \varepsilon^{\circ} \mathrm{\nabla}$ | 81＊${ }^{\text {¢ }}$ | 6 L |
| $+$ | 18＊ | $00^{\circ} 6$ | － | $62 \cdot 6$ | G0．9． | － | LG＇8 | $68 \cdot 9$ | 8L |
| $+$ | $06^{\circ} 2$ | $99^{\circ} \mathrm{E}$ | － | 8 ${ }^{\circ}$＇ | $\varepsilon \chi^{\prime}$ 乙 | $+$ | $\varepsilon 8^{\circ} \mathrm{Z}$ | $68^{\circ}$ Z | LL |
| ＋ | $6 Z^{\circ} \mathrm{\square}$ | $9 \varepsilon^{\circ} \mathrm{G}$ | ＋ | LE＊$\dagger$ | $8 \underbrace{\circ}$ カ | ＋ | $0 \varepsilon^{\circ} \mathrm{\square}$ | 88： 7 | 9 L ． |
| ＋ | $\varepsilon 8^{\circ} \mathrm{\varepsilon}$ | $00 \%$ 9 | － | $\varepsilon \varepsilon \cdot \square$ | GL＇$\dagger$ | $+$ | GL＇b | 79＊$\downarrow$ | GL |
| － | 0t＊ 8 | L ${ }^{\circ} \mathrm{L}$ | ＋ | St＊ 9 | 91．9 | － | $82^{\circ} \mathrm{L}$ | $06^{\circ} 9$ | ヤL |
| ＋ | $09^{\circ} \mathrm{L}$ | 28.8 | ＋ | $00^{\circ} \mathrm{L}$ | $10^{\cdot 8}$ | $+$ | $02^{*} L$ | $19^{\circ} 8$ | $\varepsilon L$ |
| － | 00＊9 | 82＇t | $+$ | 00＊ | とでわ | $+$ | OE＇$\dagger$ | $8 t^{\circ} \mathrm{b}$ | ZL |
| $t$ | $00 \cdot 6$ | ¢G＊ 6 | ＋ | $\varepsilon L \cdot 9$ | LG． 8 | $+$ | 06＊ | $\varepsilon 6^{\circ} 8$ | LL |
| － | $96^{\circ} \mathrm{L}$ | $08^{\circ} \mathrm{L}$ | $+$ | OL＇L | $\varepsilon \varepsilon^{\circ} L$ | － | GG＇L |  | 01 |
| － | $09^{\circ} \mathrm{G}$ | $09^{\circ} \mathrm{G}$ | $+$ | $1 L^{\circ} \mathrm{E}$ | G8＊ | $+$ | $28^{\circ} \mathrm{t}$ | OL＇G | 6 |
| － | OG＊L | $\angle 2.01$ | $+$ | $26^{\circ} 6$ | bL．OL | － | $89^{\circ} \mathrm{OL}$ | O2． OL | 8 |
| $+$ | $16^{\circ} \mathrm{L}$ | L8．8 | $+$ | $09^{\circ} \mathrm{S}$ | $88^{\circ} \mathrm{L}$ | ＋ | Ot＇9 | $02^{\circ} 8$ | $L$ |
| $+$ | $16^{\circ} \mathrm{L}$ | 22．8 | ＋ | ع8＊9 | $2 L^{\circ} L$ | $\pm$ | $\angle \varepsilon^{\circ} \mathrm{L}$ | $\angle 6^{\circ} \mathrm{L}$ | 9 |
| － | ¢9 $9^{\circ}$ | ごっ | － | $\varepsilon \chi^{\circ} \mathrm{\square}$ | $00^{\circ} \mathrm{b}$ | － | E0＇G | 92＊$\dagger$ | G |
| $+$ | $0{ }^{\circ} \mathrm{E}$ | $00^{\circ} \mathrm{S}$ | $+$ | $\angle \varepsilon^{\bullet} \varepsilon$ | $G \varepsilon^{\circ} \mathrm{b}$ | ＋ | ても＊ | LL＇力 | 7 |
| $+$ | $26^{\circ} \mathrm{E}$ | $00^{\circ} \mathrm{b}$ | － | $26^{\circ} \mathrm{E}$ | $\angle \varepsilon^{\circ} \varepsilon$ | － | $26^{\circ} \mathrm{E}$ | 2S＇${ }^{\circ}$ | $\varepsilon$ |
| － | $62^{*} 9$ | 00．9 | － | $99^{\circ} \mathrm{\square}$ | $26^{\circ} \mathrm{E}$ | － | 29＊G | 26＊$\dagger$ | 2 |
| $+$ | LL＇G | GL＇G | $t$ | $90^{\circ} \mathrm{D}$ | E $9^{\circ}$－ | $t$ | St＊ | $02^{\circ} \mathrm{G}$ | 1 |
| U6！S |  |  | U6！${ }^{\text {S }}$ | $\begin{aligned} & \text { pou7 } 2 \mathrm{~W} \\ & \text { [0.17u0) } \end{aligned}$ |  | U6！S | $\begin{aligned} & \text { pouzow } \\ & \text { [017u0) } \end{aligned}$ |  | 7！un |
| II M⿺辶寸 |  |  | I $410 y$ |  |  | prutquos II 8 I யлO」 |  |  |  |

[^9]

OL		$\square 1$				2L			＋12701
$+$	$90^{\circ} \mathrm{\square}$	$\varepsilon \varepsilon^{\circ} \mathrm{G}$	$+$	$\varepsilon \chi^{\prime} \varepsilon$	$87^{\circ} \varepsilon$	＋	$\angle G^{\circ} \varepsilon$	$0{ }^{\circ}{ }^{\circ}$	22
＋	$9 \varepsilon^{\circ} 8$	$09^{\circ} \mathrm{OL}$	$+$	$\varepsilon 8^{\circ} \mathrm{G}$	ご・8	$\therefore+$	$08 * 9$	カカ・6	12
－	$00 \cdot 11$	GG＊6	－	ع8＊9	$96^{\circ} \mathrm{G}$	－	18.8	LE＊	02
－	06.9	しヤ・9	－	79 ${ }^{\circ}$	$17^{\circ} \mathrm{G}$	－	$\varepsilon \chi^{\circ} 9$	$8 L^{\circ} \mathrm{G}$	6 L
－	$1 t^{\circ} \mathrm{L}$.		－	0L． 6	SL．9	－	$9 \varepsilon^{\circ} \mathrm{OL}$	$86^{\circ} \mathrm{L}$	． 81
－	2G•9	$98^{\circ} \mathrm{G}$	－	2G＇E	$09^{\circ} \mathrm{E}$	－	20．9	こて＊	LL
$+$	76 ${ }^{\circ} \mathrm{G}$	$00^{\circ} \mathrm{L}$	＋	$9 \underbrace{*} \downarrow$	t0．G	＋	$88^{\circ} \mathrm{b}$	20．9	91.
－	GL＇9	$00 \cdot 9$	－	Ot＇s	$\varepsilon L^{\circ} \mathrm{\dagger}$	－	$00 \cdot 9$	$92^{\circ} \mathrm{G}$	Gl
＋	8L＇01	$\varepsilon L^{\circ} \varepsilon L$	$+$	01．6	89＊6	＋	SL．6	－ $29^{\circ} \mathrm{LL}$	七L
－	EE• L L	$\angle ヤ^{\circ} 6$	$+$	EG．L	$\angle \chi^{\prime} 8$	－	で・6	28.8	$\varepsilon L$
－	LL＇8	$88^{\circ} \mathrm{L}$	$+$	LE＇G	$99^{\circ} 9$	$+$	2L＇9	EL＇L	ZL
$+$	$8 \underbrace{\circ} \mathrm{tL}$	$96^{\circ} \mathrm{\square}$	$+$	$86^{*} 6$	$96^{\circ} \mathrm{OL}$	＋	カガいL	LL＇ZL	L1
＋	85＇8	カ0．0L	$+$	ご・9	G2•8	＋	カでし	カl． 6	OL
$+$	Lt． 8	St＊ 6	＋	2L＇9	SL．9	$+$	てがL	$86^{\circ} \mathrm{L}$	6
－	$00^{\circ} \mathrm{GL}$	GE＊${ }^{\text {col }}$	－	09＊L L	79．0L	－	$0 \varepsilon^{*} \mathcal{L}$ L	60． 2 L	8
$+$	21．6	－\＆¢ 6	$+$	$89 \cdot 9$	GL．9	＋	6L＇L	$28^{\circ} \mathrm{L}$	$L$
－	81．01	$12 \cdot 01$	－	02•6	96.8	－	$16^{\circ} 6$	$96^{\circ} 6$	9
$+$	1ع．8	LL． 8	$+$	$98^{\circ} \mathrm{G}$	$91^{\circ} \mathrm{L}$	＋	L8．9	$16^{\circ} \mathrm{L}$	9
－	$00^{\circ} \mathrm{L}$	$50^{\circ} \mathrm{L}$	$+$	70 ${ }^{\circ} \varepsilon$	$65^{\circ} \mathrm{G}$	$+$	L6＊${ }^{\circ}$	ع2＇9	$t$
－	EL＇G	ご・G	－	$0 L^{\circ} \mathrm{E}$	$00^{\circ} \mathrm{E}$	－	$86^{\circ} \mathrm{b}$	$90^{\circ}$ カ	$\varepsilon$
$+$	81\％	$97^{\circ}$ L	$+$	$\varepsilon L \cdot \square$	$29^{\circ} \mathrm{\square}$	$+$	$2 t^{\circ} \mathrm{G}$	L6．9．	2
$\frac{-}{\square}$	7L．8	$11^{\circ} \mathrm{L}$	$+$	$\angle Z^{\circ} \mathrm{D}$	8 ${ }^{\circ} \mathrm{\square}$	－	9L＇9	LL＇G	L
U6！S	poy72W losquoj	poutaw ［equวu！ 12 dxa	U6！${ }^{\text {a }}$	pou72w Lou7uos		U6！ 5	$\begin{aligned} & \text { po472W } \\ & 1017400 \end{aligned}$	poy72W Lequəu！ 12 dxz	$7!40$


The Experimental and Control Posttest Means and Difference Sign for Each Unit of Agriculture

## $\varepsilon \succ 378 \forall 1$

91			21			91			＋［270］
＋	$10^{\circ} \mathrm{b}$	$\varepsilon \varepsilon^{*} \cdot \square$	＋	$8 l^{\circ} \mathrm{\varepsilon}$	$90^{\circ} \mathrm{O}$	＋	$89^{*} \varepsilon$	$\varepsilon 9^{\circ} \cdot \square$	22
＋	$88^{\circ} \mathrm{G}$	98．9		$99^{\circ} \mathrm{G}$	$85 \cdot 9$	＋	$9 L^{\circ} \mathrm{G}$	$96^{\circ} \mathrm{G}$	12
－	$\varepsilon \varepsilon \cdot L$	$11 . L$	－	$9 ¢ \cdot 9$	91.9	－	$06 \cdot 9$	L9．9	02
＋	$98 . 力$	98.9	－	$29^{\circ} \mathrm{t}$	91.6	＋	$69^{\circ} \mathrm{t}$	8L＇t	61
＋	$9 \varepsilon^{\circ}\llcorner$	$9 L^{\circ} \angle$	－	90.01	$60^{\circ} \mathrm{L}$	－	$96 \cdot 8$	$92^{\circ} L$	81
＋	$00 \cdot \varepsilon$	91.6	＋	$\varepsilon l^{\circ} \mathrm{\varepsilon}$	$00 \cdot \varepsilon$	＋	$60^{\circ} \mathrm{E}$	$89^{\circ} \varepsilon$	$\angle 1$
	18.6	$\angle 9^{\circ} \mathrm{D}$		GL＇t	09.6		$8 \iota^{\circ} \mathrm{\circ}$	$69^{\circ} \mathrm{b}$	91
＋	09．${ }^{\text {b }}$	$80^{\circ} \mathrm{G}$	＋	$80^{\circ} \mathrm{t}$	$9 \varepsilon^{\circ} \mathrm{b}$	＋	¢2＇も	69 ＇t	Gl
－	98.6	カ1．8	－	$29 \cdot 8$	0 C 8	－	$02 \cdot 6$	92＊8	tl
＋	$2 \overbrace{}^{\circ} \mathrm{L}$	01.01	＋	$09 \cdot L$	$00 \cdot 8$	＋	$25^{\circ} \mathrm{L}$	78.8	$\varepsilon 1$
＋	L9．9	$9 L^{\circ} \mathrm{G}$	＋	98.6	$\varepsilon L^{\circ} \mathrm{G}$	＋	$\varepsilon 8^{\circ} \cdot{ }^{\circ}$	ャ¢ ${ }^{\text {c }}$	21
＋	$99 \cdot 8$	$82^{\circ} 01$	＋	$98^{\circ} \mathrm{L}$	$02 \cdot 01$	＋	91．8	E2．01	11
＋	$09^{\circ} \mathrm{L}$	$\angle 9.6$	＋	$18^{\circ} \mathrm{L}$	$90 \cdot 8$	＋．	$69^{\circ} \mathrm{L}$	力9．8	0 L
＋	08．9	で・8	＋	$4 \cdot 9$	$00^{\circ} \mathrm{g}$	＋	$96^{\circ} \mathrm{G}$	¢9．9	6
－	$00 \cdot 21$	$69^{\circ} 01$	＋	12.01	$0 \varepsilon^{\circ} \mathrm{LL}$	－	L2． 11	96.01	8
－	$00 \cdot 6$	06.8	＋	$98 . \%$	$09^{\circ} \mathrm{L}$	＋	01.8	91.8	$\stackrel{1}{4}$
＋	Li＇L	$\varepsilon 1 \cdot 6$	＋	$00 \cdot 8$	00.6	＋	16.4	$\angle 0.6$	9
＋	$9 \square^{\text {c }}$ g	9s．${ }^{\text {c }}$	＋	98.0	$\varepsilon 9 \cdot 9$	＋	21.9	06.9	G
＋	21• $\varepsilon$	$99 \cdot 9$	＋	11.0	$92^{\circ} \mathrm{G}$	＋	$\varepsilon \chi^{\circ} \cdot \square$	で・G	$\dagger$
＋	$00 \cdot 9$	ti．9	－	12．0	$\angle L \cdot \varepsilon$	－	28.0	18.6	$\varepsilon$
－	${ }^{78.9}$	00.9	－	$\varepsilon L^{\circ} \cdot \underline{G}$	$0 \mathrm{O} \cdot \mathrm{g}$	－	92.9	$08^{\circ} \mathrm{G}$	2
	$21 \cdot 9$	79．9		¢9．9	$00^{\circ} \mathrm{g}$	＋	$\underline{9} \cdot 9$	$88^{\circ} \mathrm{G}$	
पб！${ }^{\text {a }}$	$\begin{aligned} & \text { poytow } \\ & \text { polzuoj } \end{aligned}$	$\begin{gathered} \text { роप7әW } \\ \text { Lequau! } \end{gathered}$	u6！ 5	$\begin{aligned} & \text { poutan } \\ & \text { 1017uoj } \end{aligned}$	poyłaW Lequau！ 4 adx］	U6！ 5	pou7aW	poq7əW Lequәutıadx	$7!40$
	II			I		рәu！	－0，II 8		

## 力 $379 \forall 1$

6			21			ZL			＋L2701
＋	$78{ }^{\circ} \varepsilon$	$00^{\circ} 9$	＋	$78^{\circ} \mathrm{Z}$	$70^{\circ} \varepsilon$	＋	$97^{*} \varepsilon$	$20^{\circ} \mathrm{t}$	22
$+$	G0．8	$0{ }^{\circ} 8$	$+$	$89^{\circ} \mathrm{G}$	80\％	＋	9G＊9	89＊	LZ
－	$\varepsilon L \cdot 6$	$6^{\circ} 8$	－	$\varepsilon L \cdot 9$	L ${ }^{\circ} \mathrm{G}$	－	とて・8	$29^{\circ} 9$	02
－	$9 \underbrace{\circ} \mathrm{G}$	9 $\varepsilon^{\circ} 9$	－	99＊	$1 \varepsilon^{\circ} \downarrow$	－	L6＊	$99^{\circ} 7$	6 L
－	カL． 1.	$\varepsilon L^{\circ} \mathrm{OL}$	－	$0{ }^{*} 6$	26＊9	－	96＊ 6	0G＊ 8	81
－	$\angle \nabla^{\circ} \mathrm{G}$	てごャ	－	0 $L^{\circ}$ Z	99．2	－	$90^{\circ} \mathrm{b}$	$6 L^{\circ} \mathrm{E}$	LL
$+$	$0 \mathrm{G}^{\circ} \mathrm{G}$	\＆L＊9	－	89＊${ }^{\circ}$	L＇＊	$+$	$96^{\circ} \mathrm{b}$	GL．G	91
$+$	$69^{\circ} \mathrm{G}$	76 ${ }^{\circ}$	$+$	$92^{*}$－	$0 \mathrm{C}^{*} \downarrow$	＋	$06^{\circ} \mathrm{b}$	$00^{\circ} \mathrm{S}$	GL
$\div$	カャ＊OL	$98^{\circ} \mathrm{OL}$	$+$	$\varepsilon L \cdot 9$	$00 \%$	7	G2＊8	9 4.8	bL
－	$89^{\circ} \mathrm{OL}$	00＊ OL	$+$	L $L^{\circ} \mathrm{L}$	0t ${ }^{\circ}$	$+$	LL＇8	20＊6	$\varepsilon$ L．
－	92＊L	$00^{\circ} \mathrm{L}$	＋	$6 L^{\circ} \mathrm{b}$	$\varepsilon 0^{\circ} \mathrm{G}$	－	$6 L^{\circ} 9$	$9 L^{\circ} \mathrm{G}$	ZL
$+$	$28^{\circ} 01$	LE＇ひし	$+$	$0 \square^{\circ} 8$	GS ${ }^{8}$	$+$	$8 \varepsilon^{\circ} 6$	bて＇0L	L．
－	しや＊6	$80 \cdot 6$	$+$	$\varepsilon L^{\circ} L$	七G ${ }^{\circ} 8$	$+$	$6 \varepsilon^{*} 8$	28＊8	0 L
$+$	0L＇9	OL＇L	＋	92＇G	$\angle \varepsilon^{\prime} \mathrm{G}$	$+$	$\angle 8^{\circ} \mathrm{G}$	$\angle \downarrow^{*} 9$	6
－	$16^{\circ} \mathrm{E} L$	OL＇ZL	－	$\varepsilon \varepsilon^{\circ} \mathrm{OL}$	$\angle L^{\circ} \mathrm{OL}$	－	$80^{\circ} \mathrm{ZL}$		8
$+$	96＊ 6	$\mathrm{GL} \cdot \mathrm{OL}$	＋	$68^{\circ} \mathrm{G}$	29．L	＋	$69^{\circ} \mathrm{L}$	¢9＊8	$L$
－	$09^{\circ} \mathrm{OL}$	EL．8	－	¢ $\varepsilon^{\circ} 8$	82\％	－	じ＊ 6	LL． 8	9
－	ع6＊9	2L＇9	－	$99^{\circ} \mathrm{b}$	$00 \cdot 6$	－	EG ${ }^{\circ} \mathrm{G}$	$\angle 2 \cdot 9$	G
－	G1．L	$98^{\circ} \mathrm{G}$	＋	L6．${ }^{\circ}$	$29^{\circ} 9$	$+$	b $\mathcal{C} \cdot \underline{G}$	$99^{\circ} \mathrm{G}$	b
$+$	$\varepsilon \chi^{\circ} \mathrm{G}$	$99^{\circ} \mathrm{g}$	－	$L L \cdot \varepsilon$	$8 t^{\circ}$ Z	－	$18 \cdot \square$	$99^{\circ} \mathrm{E}$	$\varepsilon$
－	$9 \varepsilon^{\circ} \mathrm{L}$	$1 Z^{\circ} \mathrm{L}$	－	OG＇$\dagger$	をガ力	$+$	$\angle 9^{\circ} \mathrm{G}$	28．g	2
－	$06^{\circ} \mathrm{L}$	EL＇9	$+$	$\angle D^{\circ} \mathrm{D}$	¢0＊ 5	－	61．9	$09^{\circ} 9$	L
u6！S	pou7 ${ }^{\text {a }}$［017403		Ub！S	$\begin{aligned} & \text { poyzow } \\ & \text { 10ı7uo } \end{aligned}$	$\begin{gathered} \text { pouqचW } \\ \text { Lequəu!sadx3 } \end{gathered}$	U6！S	$\begin{aligned} & \text { poy7ew } \\ & \text { Los } 7403 \end{aligned}$	poufow ［equәu！dedx］	$7!40$
	II			I		peu！	103 II 8	W10才	

[^10]

## APPENDIX E

End of Term Agriculture Class Questionnaire

$\qquad$
Mangril Y：Kilino
Gakati wn tern kid sanded yo unsono ya kilino yncetolewan in ifr．＊imerson
 yaneonyestua na tirs．iniorgon leacnyo Rood 6 akituri．＂progranasa instruction＂． Tafadhali jubu desmali y．．fuativo juu ya anaono ynilotajwa juu．
1．i：jia cani unaiponcelon zaidis（chagua noja）
a．＂Progrvaca instruction：kwenye Roon $G$
b．lanfundiaho ya ke：roida lavenye dininc hall＿＿
2．Kvenye njia fori uliojifunza zeicli？（chacua zoja）
a．ktronyo nasono ytiofuncishve kvenyc dinina holl
b．livenyo masono yaliofundishto kwe：yy Roon 6

$\qquad$
 （chegua noja）
a．Mityo
b．Hnyana
 ппیsono ya kilino？（chagu：no ja）
c．Roon 6 kthonyo＂，rogramed instructionil
b．Dininc hall kucrye masomo ya kavaida $\qquad$
5．Kwenye rithani ipi uliopata marles nyingi？（charur moja）
 kuilusu nasomo $y=k-\ldots \%$ i！la
 ＂prosranizel instruction＂

6．Fanga nascao yifuatayo kntita mpancilio 1 zpala 10．Uuianzi＝sono

$\square$
$\square$
$\square$
$\square$

Eliau ya sissa Elinu ya Viwabe
Fizikic：
Geografia
Hesabu
IEstoria
Teciia
Kiincercze
に11n
Kiswahils
7．itjia gani ai nouri kujifunza leflinot（ciajua noje）
a．kvenye Room 6 utitunie ：arogrewod learnime：
b．kiteny dining lagil ulcitwain aasorso y：kavaida $\qquad$
6．Kuna nambo awnai yonayoranyota na vanafunei va wechoncari．Pangan manbo
hapa kia ifuatano 1 arekn 10．Difanzia nat uaslulipende zaidi kive ner：so


——
$=$
$\square$Kazi ya chamba Kufanya usafi Prop Kujifunza caracanz Social kana zilcu ya Jusariosi jioni

Kula Sporte，cunce，a athletics

Kulala Tanu youth Letaしひ
$\qquad$

[^11]During this term, some of your agriculture classes were taught by Mr. Anderson in the dining hall in the usual manner. Others were taught by Mrs. Anderson in Room 6 using "programmed instruction." Please answer the following questions about this instruction.

1. Which type of instruction do you like the most? (choose one) a. "programmed instruction" in Room 6
b. the usual instruction in the dining hall $\qquad$
2. From which type of instruction did you learn the most? (choose one)
a. from the lessons taught in the dining hall
b. from the lessons taught in Room 6 $\qquad$
3. Do you want to continue to study agriculture next term? (choose one)
a. yes
b. no
4. If you are given a choice next term, in which room would you like to study agriculture? (choose one)
a. Room 6 with programmed instruction $\qquad$
b. Dining hall with regular classes $\qquad$
5. On which test did you receive the most marks? (choose one)
a. tests on the units which were taught in the dining hall with regular instruction $\qquad$
b. tests on the units which were taught in Room 6 with programmed instruction $\qquad$
6. Arrange the following subjects in the order you like them from 1 to 10. Begin with the subject you like the most as number 1 and continue through number 10.
$\qquad$ Political education
History
Biology
Chemistry
Physics
Geography
Mathematics
7. Which is the best way to learn agriculture? (choose one) a. in Room 6 by using programmed instruction $\qquad$ b. in the dining hall by using regular instruction
8. There are many activities for secondary school students. Arrange the following activities in the order you like them from 1 to 10 . Begin with the one you like the most as number 1 and finish with number 10.
garden work
cleaning up

classroom study $\quad$| evening preparation |
| :--- |
| eating |
| social activities |
| sleeping |

TITLE OF THESIS An_Experimental_Eyaluation_of_Programmed_Agriculture

$\qquad$Instruction in a Private Tanzanian Secondary School
$\qquad$
Full Name Eugene Lawrence AndersonPlace and Date of Birth _._Kines omar,_- May_ 6, 1939Elementary and Secondary Education _ Rush City Public School, Rush City,
$\qquad$ _Minnesota, graduated_ in 1957 $\qquad$
$\qquad$
$\qquad$

Colleges and Universities: Years attended and degrees
University of Minnesota, 1957-1962 B.S. and 1965-1966 M.A.
_-University:of_Wisconsing,1970-1973 Ph .D. $\qquad$
$\qquad$
$\qquad$
Membership in Learned or Honorary Societies Society for International Development
$\qquad$
$\qquad$
Publications "Extension by Institution Farm", New Hope fox Rural Africa, East African Publishing House, 1969. $\qquad$
$\qquad$
Major Department _Currjculum_and_Instruction
Minor (s) distributed (International Development)





[^0]:    ${ }^{1}$ The Tanganyika and Zanzibar portions of Tanzania have separate educational systems. In this dissertation "Tanzania" refers only to the Tanganyika section of the country.
    ${ }^{2}$ Internal footnotes are used throughout this dissertation. Complete bibltographical data are located in the bibliography.

[^1]:    a. 10 jarts naize
    b. 70 jerts raizo.
    c. 10 parts seyabern neay
    d. 70 parte seyabesan acal

[^2]:    241
    
    

[^3]:    92 ヨาロ＊1

[^4]:    әan7โno！aby to 7 ！
    $\stackrel{3}{3}$

[^5]:    
    
    

[^6]:    EL6L แxวl 7su！j fo pug alt 7e meja d！ayl to fle laddn
    Agriculture Instruction for the Tumaini Secondary School Students Ranking in the The Experimental and Ctonrol Retention Test Means and Difference Sign for Each Unit of

[^7]:    Agriculture Instruction for the Tumaini Secondary School Students Ranking in the
    The Experimental and Control Retention Test Means and Difference Sign for Each Unit of

[^8]:    

    әप1
    

[^9]:    
    The Experimental and Control Retention Test Means and Difference Sign for Each Unit of

[^10]:     ヨ 241

[^11]:    

