Patrick David Griffiths

Ph.D. University of Edinburgh 1976 $\therefore 1$

Declaration

I hereby declare that this thesis is my own original composition. The empirical child language material used in this thesis was collected in collaboration with my colleagues on a research project entitled lInguistic development of young children" between 1970 ana 1974. The project was directed by Professor John Lyons, in the Department of Jinguistics, University of Edinburgh S participated in and contributed to all stages of the planning and execution of the project, dicluaing the selection of children. In particular, I helped devise the questionnaires used, I conceived the idea of using a microphone mixer to record a running commentary on the non-ifnguistic background to the children' B conversations and I took a major part in the recording and transcription of tapes.

P. D. Griffith

York, $30 t h$ September, 1976.

Acknowledgements

ry mother's kindly and enlightened introductory course in English, which I had the pleasure of taking in early childhood, was the foundation of this thesis. More recently I have contracted intellectual debts to the people from whom I leamt linguistics: Martin totkinson, Michael Garman, John Lyons, Tony Traill and Roger Wales.. That what I learnt coincides only partly, and perhaps imperfectly, with their teachings is no fault of theirs. Discussions with many other people during the course of five years spent in Department of Linguistios, University of Edinburgh, were of great benefit to me too. I am further indebted to John Lyons for extremely tolerant and helpful supervision. The help came in the form of insightful edvice on drafta of this work and a general concern for my academic and personal welfare. His tolerance will reveal itself patently in the strongly pgychological glant of parts of the text. He elso allowed me to proceed at my own ill-organized pace. Had he shown less forbearance in this matter there would undoubtediy have been qualitative improvements in many parts of the text, but I should probably have given up the enterprise before completion.

I am grateful to the Social Science Research Council for supporting the research project (Grant No. HR 1019) which employed me and provided me with the means of gathering the empirical data reported here. This corpus of annotated child speech was assembled in collaboration with Martin Atkinson, Renira Hucley, Alison Macrae, Pauline Ford, Alwyn Cooper and Janet'Griffiths. I enjoyed their company as woll as the
fruits of their labour. The children whose speech was recorded and their parents, who facilitated the process and assisted in it, deserve my special gratitude.

I am thankful to Mrs. Cathy James for typing the bulk of the thesis. She did so with great speed and efficiency.

Tamsin and Jane generously granted me the time for the laat lap by accepting postponement of a promised attempt at the Pennine Way and by making other allowances for my preoccupation. My love and thanks go to Janet for typing most of the draft, the appendix, references and sundry afterthoughts, also for checking vocabulaxy tallies, but mainly for being constantly supportive and forgiving over the past month.
Abstract 1
1.0 Statomant of bias 2
1.1 Cutline of the problem 2
1.2 The theary of oriterial attributes 4
1.2.1 Componontial analyais 10
1.2 .2 Strustural samonties 15
$1.2 .3 \quad \begin{aligned} & \text { Preliminary oritique of the theory of criterial } \\ & \text { atitributes }\end{aligned}$ 19
1.2.3.1 Clark' B 'somantio feature hypothosis' and some grounds for disquiot 21
1.3 Tho theory of prototypes 36
1.3.1 Contral and poriphoral moaninge 36
1.3.2 The role of prototypes 51
1.4 Payohologioal peops for this theory of prototypes 60
1.4.1 Wholes va, parte 61
1.4.2 The siee and quality of human manocy 69
1.4 .3 Cóntants va. Iabels 95
1.4 .4 Image theories 107
1.4.5 A note on stabilised retinal images 131
1.5 A noto cegariting the philosophical baolgground 135
2.0 An ampirioal atudy of oarly vocabulary dovelopmant 142
2.1 Tho data 143
2.1.1 The larger projeot 145
12.1.2 Soloction of obilaron 145
2.1.3 Recording and transoription 148
2.1.4 Tho toys 152
2.2 Analyais of the date 155
2.2 .1 Aggregation into suocossivo vocabularios 261
2.3 Dlscussion of the data 166
2.3.1 Infrequancy of orrorz 167
2.3.2 Diversity within denotation olasses 171
2.3.3 Prototype rivaly 175
2.3.4 Vocabulary struoture 182
2.3.5 Fupotioni definitions and oontextial fectors 188
Roforencós 195
Appendix 204

Abstrant

A thoory is presented ocoorting to which language uegrs are hola to omploy dotailed vidootape-Iiko manory traces of prototypo objeats in assoolation rith their loxamss for the purposs of mediating the application of loxamos.

The theory ls eatranced by pointing to flaws in rival aonoepe tiono, 俊俭 are for this puppose amalgamatod under tho 1abel "thoory of aritarial attributes". In on axtenaite disouasion of payohologioal iamise the thoory of prototypos is ahom to bo plauniblo in torns of uhat id buosn of hwan mental struotures and oparations. A Iongitudinal atuady (up to the ago of $2 \frac{1}{2}$ yoara) of oonoreté nominals in the vocibularion of throe jouns ohilanen is alco offoced in aupport of this viery. The polloring proporities of the ohilaran' B woris and uage-aro-notedt cocureoy, diversity Within donotation olacses (inoluilng the dieponsability of ovon funotional and ooitectunl feotors whioh at other times appear to be cruotal in the applioation of the sams word), vaillation in the solection of a nam for an object and oaution in oxtanaing donotation alasios. Tho, ahilaren's Iexioal struotures are also oramined.

1.0 Statement of bies

In this thesis I aim to develop and defend an account of the intension - the besis for appropriate application - of nominals. In choosing between alternative theories or parts of theories the touchetone to whioh I shall most frequently have recourse will be 'psychological plausibility'. In those places where I feel that the most optimism is warranted the phrase will be apt to be supplanted by 'psychological reality'. This concern, that linguiatic theories should be compatible with what is known of the capabilities of the human organism, arises out of my assumption that no science can remain significant if it shirks ontological questions for too long; that is, if no attempt is made to find out whether or not the hypothetical entities and relationghips resorted to fn the explanation of gertain phenomena aro, in faot, instantiated as the 'real-life' underpinnings. of those phenomena, Metatheoretical essumptions are not open to proof but they can be argued for. This one is vigorovily adranced by Harré (1961) In a general work on the philosophy of science and is implicit in Fodor's (1968) analysis of explanation-in psyohology. I feel under no obligation, in the present work, to trespasa on the domatn of philoaophers of science by attempting to justify my bias, having declared it.

1.1 Outline of the pnoblem

Weinreich (1962, p.42) seys: "It is apparently a biological fact that human beings are capable of deriving fintensional definitions
from instances ("perceiving universals"): not only lexicographers, but all children do it, and they do it wall. n To the extent that one belieyes commnication to be, by and large, successful this conclusion is inescapable. One of the prerequisites for successful compunication is that the denotation class of any given lexeme - the set of entities to which tokens of the phonological type/s related to that lexeme, in utterances, may refer - should be approximately coincidental across usera of a language. And it is inconceivable, for the majority of lexemes in a language, that, in acquiring their language, people could be taught, separately, (by oatensive definition) the pairing between lexeme and entity for all the members of each lexeme's denotation class.

- Of course, it can be argued that many lexemes are of a kind whose use could not be taught through ostensive definition. I shall avoid this iasue by restricting म्युelf te a consideration of only those lexemes whose derfotation classes consiat of (relatively) concrete entities. That is to say, I ehall be concerned mainly with nuclear members of the olass of nominals CCf. Iyons (1966)..7. The empinicel basis of this study consists of observations on the uses to which throe young children put the nomingls in their vocabularies. Tracy (1893) tabulated the rocabularies of twenty-one children, up to the age of about two years, and found that 60% of the total number of worda could be classed as nouns and that fewer then 1% of these were abotract nouns. It would seem, therefore, that in spite of the restricted nature of the study I shall nonetheless be dealing with a signiffcant part of the ohildren'a vocabularies.

To retumn to Weinreich's cleim, what is the nature of the intensional definitions of lexemes which people derive from instances of their use? I am interested in the intensional definitions which people actually employ in making, probably unconscious, decisions about the application of words in the process of apeaking; not in definitions which they might be able to verbalize for, say, the purpose of philosophical anelysis or linguistio description one answer to this question is a group of widespread, old and popular notions which I ehall cell, collectively, "the theory, of criterial attributes A version of this theory will be described in $\$ 1.2$ and thereafter much of the thesis will be devoted to presenting argunents and evidence against it and in farour of an alternative (alao old), to be sketohed in E1. 3 , which I ahall call the "theory of prototypes". 81.4 offera some psychological data in support of my suggestiong,. The issue is related to the philosophical problem of universals and in S1. 5 I-propoese briefly, to try to show how the theories outinned in 81.2 and $8 t .3$ fit in with the philosophical frameworks, conceptualism, nominalism and realism; which heve arisen in connection with philosophical discuagions of universals. In 82 I present an account of the growth of the vocabularies of three young children as an empirical test of my hypotheses.

1.2 The theory of criterial attributee

This theory is fairly baldiy advanced by Bloomfield, $(1935,0.141)$:
\therefore it 18 clear that we must disciminate between non-
distinctive features of the gituation, such as the size,
shape, color, and so on of any one particular apple, and the distinctive, or Iinguistic meaning (the semantic features) which are cormon to all the situations that call forth the utterance of the linguistic form, such as the features which are common to all the objects of which English-speaking people use the word apple.

Bloomfield acknowledged that the internal state (disposition) of a given speaker, on a particular occasion, might be suoh that the external features which distinctively characterize an apple fail. to 'call forth' the word epple from him end that people taik of applee when none are present. However, I am not concerned with whatever it Is that evokes utterances; so this problem is irrelevant here. Bloomfield also believed (p.145) that " \because the Inguist cannot define meanings, but must appeal for this to students of other sciences or to common knowledse !, presumably for a list of the diatinctive features which are common to the members of the denotation class of each lexeme. The specification of the meanings of the majority of our words may well be an encyclopaedic task beyond the soope of theoretical linguistics but it is certainly 11nguistios which must provide on account of the nature of lexical entriea. Now, I know of no linguist who holds the view that lexical entries consist, for each lexeme, simply, of a list of the entities which (could possibly) fall into its denotation class. Everyone seems to belleve that some kind of generalization is necessary to describe the denotation classes. The theory of criterial attributes, and I take this to be Bloomfield's view, holds that the generalization which links the members of a denotation class is that they all possess each member of a determinate set of attributes and that the presence of these attributes is a oriterion for the applicability of the lexeme by which the class is denoted. That is,
the criterial ettributes are separately, necessary and jointly sufficient conditions governing the application of a lexeme.

Harrison (1972) in the course of a critique of the explanatory value of the notion of ostensive definition - definition by \& combination of naming and pointing - suggests what we may take es a necessary modification to the veraion of the theory of criterial attributes given above. One of the things ostensive definition hes been invoked to explain is (p.58) n... hou we learn to gpply names correctly to their proper objects. n He holds that proponents of ostenaive definition claim, in effect, that the learrer need use only the following rule: a given word W is to be applied to any object which resemblea the members of the series of paradigm objects by reference to which G is defined in all, and only, those respects in which they reaemble one another. In fact, Harrison states this sule for the case where H is any "basic word" - a word which cannot be defined in terms of other words. However, he proceeds to an examination of the possibility of employing it in the definition of "nonbasic general terms" like crocodile, table and book and it is an observation af his in this connection whioh is of interest to me here.

He points (p.61) out that strict application of the rule will result in the learner " ... taking as apecies-determining minor variations which merely happened to be constant in the specimens which figured in the paradigm series by reference to which the word was defined for him, n If the rule is relared ($\mathrm{p}, 62$) by requiring only "a rough general resemblance" the learner may end up applying
the word too widely. Hamrison proposes, as an alternative, that What the Iearrer is doing is building up taxonomic schemeta of the following kind (p,65):

In this scheme, a is a specimen, x and y are taxonomio characters end ஹ, ㅇ, ㅍ are epecies names. n... all that the user of it has to do is to decide whether or not a specimen possesses certein well-defined taxonomic characters: for any case of the possession or nonpossession of these characters the schema yields (determines) e neme.t (p,66). Provided he can recognize all, the relevant taxonomic characters no one need ever have provided him with an ostensive definition of any species name" $\left(p, 64 f_{0}\right)$.

He claims that we cannot ($p, 66$) simply trace a paith from left to right through a taxonomic schema to ". - detemine a complex property whose predication will; in effect, be a sufficient and necessary condition for the application of the name in question ... And devise in each case some paradigm series which will aingle out just this property." The reason we cannot is that some of the sub-properties are of the form not-x. Why should the leamer suppose that it is the absence of some element from the paradigm seriea - some property whioh all its members lack - which is critical for the application of $\Psi ?$ And if he is somehow or other aware of this, why should he fix on x
as the crucial lack, rather than on one of the infinitely many other properties which all members of the paradign series resemble each other in lacking? n ($p .67$). This certainly is a problem for the most elementary kind of ostensive definition in which pointing is not supplemented either throough verbal specification or by means of conventions more elaborate then the rule stated above. However, If we - ignore the process by which meanings are acquired - the process in which ostensive definition is supposed to figure - and focus on the question of what is acquired, then there Beems to be nothing preventing us from tracing paths from end to end through taxonomic schemata in order to detemine a conjunction of attributes which are criterial for the application of a lexeme. The only difference, according to this Wey of looking at them, between Harrison's proposals and, Bloomfield's Views is that Harcison is prepared to recognize as criterial the absence of particular attributes. Given the existence of words such as poll 'animal (of a limited set of species) without horns' it seems that the theoxy of criterial attributes should be allowed to specify either the presence or absence of particular attributes as the criteria goveming the application of lexemes.

I have taken the term critarial attributee from Brown (1958). The version of the theory which he propounds differs in certain respects from what I have thus far adumbrated as the theory of criterial attributes. Hia basic position is similar to Bloomfield's: (p, B) HAny sort of recurrence in the non-linguistic worla can become the referent of a name and all such recurrences will be categories because recurrences are never identical in every detail. Recurrence
always means the duplication of certain esaential features in \ddot{a} shifting context of non-essentials." However; he goes on to say (P.10) that "Aristotle's distinction between essential and acoidentel attributes is a kind of ideal logic of categories that is not very. We11 suited to the psychology of categorizing behavior." And that, therefore, (p.10f.) "It will be useful to replace that dichotomy with a cohtinuum owe shall speak of the felative criterialityt of an attribute for a category. When some value of an attribute is used as a basis for inferring the category membership of an object then that attribute ia to some degree criterlel for the oetegorization. To the degree that an attribute can change in value without affecting categorizing judgements, it is not criterial for the categories in question, ". Incidentally, although Brown defines an attribute. (p. 10) as 4.$)^{-1}$ any dimension on which objeots and events can differ" he. generally apeaks of attributes as if they were values elong dimensions, For-instance ($p .51$) he refers to n... such faniliar attxibutes as the color red, the form of the circle, the tactile experience of hardness. I have been treating attributes as values along dimeneions.

If Brown is prepared to consider assigning numenical weights to the criteriality of each of a list of attributes which define a lexeme and to believe that in each determination of the applicability of a given lexeme the ame weightings are resorted to, then his ideas are merely a sophisticated version of what I am califing the theory of criterial attributes, If, on the other hand, he means only that people take account of the attributes of objecte in deciding what they ahould be called his position 1 much harder to refute and the use of the
term criterial is, then, gratuitously misleading (insofar as it suggests the use of fixed standards). Jnfortunately, Brown does little to resolve this dilemma. It is worth noting though that he says ($p, 14$) Probably our favourite kind of category is that in which the members all have some attribute that is never found outaide the category. We prefer this kind of category because it puts least strain on the memory; from a single attribute one can infer category membership with penfect conficence, " L He is talking of human beings in general. 7. Brown recognizes categorles defined by a disjunction of attributes but 1 will defer discussion of these to 81. 5 where they will be considered in connection with Wittgenstein's notion of femily resemblance'. Functional attributes which Brown ($1.14 f$.) says n are uses that can be made of members of a category" will also not be discussed here. They are dealt with in E2; the empirical part of this thesis.

1.2.1 Componential Anelysis

Componential analysis is a method of describing semantic structures by factoring the meaninge of lexemes into semantic components (markers or distinctive features). For dealing mith individual lexemes, as distinct from the meanings of sentences, this is probably the predominant typo-of sementic analysia in linguistica today. Componential analysts usually address themselves primarily to trying to understand and describe the semantic etructuxe of the vocabulary, or parts of the vocabulary, of a language. For instance, Katz and Fodor (1963, p.187) state thats $\|$.o. the semantic markers
assigned to a lexical item in a dictionary entry are intended to reflect whatever systematic semantic relations hold between that item and the rest of the vocabulary of the language." The kind of meaning characterized in this way is the sense of lexemes. Lyons (1968, p. 427) defines $n . .$. the sense of e word ..." as "... its place in a syotem of relationships which it contracts with other words in the vocabulary." He then points out that $4 . .-$ since sense is to be defined in terms of relationohips which hold between vocabulary-items, it carries with it no presuppositions about the existence of objects and properties outside the vocabulary of the language in question. ${ }^{n}$. In-this section I shall review some componential analyses with a view to showing that their authors, despite concentrating their attention on vocabulary structure, seem to have assumed that they were describing not only the sense of lexical items but aloo the criteria according to which entities are classified by language users into the denotation/classes of different lexemes.

Some of classic componential analyses have been attempts by linguists and anthropologists to describe the semantic stricture of systems of kinship terme. One such ia Goodenough's (1956) atudy which presents both a theoretical discussion of the method and exemplification of its use in an analysis of Trukese kinahip terma, Goodenongh (p,215) describes componential analysia in general tema as: "A method based on determining the consistent difference between the possible denotata or other contextual espects of linguistic forms....." He says (p.208): The components of significgtion ... are the formal criteria by Which we differentiate one thing from another," For Goodenough these oriteria
are not just ones which may be used, they are necessary conditions (p .195): , H the significatum of a linguistic form is composed of those abstracted contextual elements with which it is in perfect association, without which it cannot properly occur." That he is anxious to deal with psychologically real criteria is shown by the following excerpt (p.195):

The problem of determining what a linguistic form signifies is very well illustrated by kinship terms. In essence it is this: what do I have to know about A and B in order to say that A is B 's cousin? Clearly, people have certain oritexia in mina by which they make the judgment that A is or is not $\mathrm{B}^{\prime} \mathrm{s}$ cousin. What the expression his cousin signifies is. the particular set of criteria by which this judgment is'made.

This is thus a theory of the kind I am calling a oriterial attributes theory. However, it should be stressed that the body of the paper comprises an account of the atructure of Trukese kinship vocabulary. Goodenough shows of the kinship lexemes n... that we can group them in verious ways according to their cenotata.". (p.201). Thus, although Lyons $[$ cited above $]$ notes that sense does not presuppose objects and properties existing outside the vocabulary, it seems that sense can be approached through a consideration of denotation classes.

Lounsbury (1956) presents an anelyais along similar lines, of Pawnee kinghip terme, He sayB $(p, 167)$: "IThere are two ways of defining a classa by naming the membere of the class, or by stating the defining features of the class, that is to sey, the necessary and sufficient conditions for membership in the cless.! And:

In the case of our Pamnee kin classes we have begun With definitions of the first variety. These reveal one aspect. of the structure of the syatem, namely
the specific segmentation of the semantic field. They do not show, however, the underiying principles of organization. These will be shown only if we can proceed from the definitions-by-naming in such a way as to erfive at definitions in terms of distinotive semantic features, and further, if we can formulate the sementic Atruoture of the whole set.

Again, the underlying principles being sought are the ones which Pawnee speakers might be supposed actuelly to have used. Thus Lounsbury says (p.173) of two lists of kin-types - a parportedly universal notation - used by anthropologiats to characterize members of the denotation classes of kinehip terms - which ar' denoted by tiwhtsirika, uncle': "If the Pawnee included these types in the same olass with the preceding types, we must assume that there was some feature of similarity whoh ell of these types shared."

Wellace and Atkins (1960) is a careful theoretical disoussion of the application of componential analyois to kinghip vocabularies. It is illustrated by an enalysis of the semantic structure of a subset of American English kin teme. They quote with approval (p. 75) Goodenough's pleaszfor psychologicelly real definitions of kin tems; in particuler, part of a passage $[$ quoted above 7 which claims that people mave certain criteria in mind by which they make the judgment that A is or Is not B's cousin. In general, Wallace and Atkins seem to subscribe to the theory of criterial attributes. One of their cautions though Buggests a slightly weaker version of the theory. They observe (1.68):

[^0]but they, conclude: "This fact does not diminish the value of Componential analysia as a method but suggests that the signification of a kinehip term be defined as those semantic features which are in fact used to distinguish the kin-type designatum of the term frow Whe kin-type designata of the other terms in a given set of terns." "The dependence of the senfevk lexeme on the size and nature of the vocabulaiy in which it occurs, either naturally or for purposes of analysis, is obvious. That Wallace and Atkins should comment on it is significant: their doing so seems to confirm that they believed that the tradition of componentiel enalysis of systems of kinship terme, on which their paper is a comnentary, was concerned both wdfir semantic structure and with (0.67) the "... statement of various necessary and sufficient conditions for a kin-type to belong to the olass of kin-types denoted by a term."

Homney and D'Andrade (1964), review the componential analyses discussed above apd present their own analysis of American Enslish kin texmis, They present evidence from a number of psychological studies to support their claim that their own analysis reflects "individual cognitive structures" more nearly than do various rival analyses. The psychological techniques used weres an examination of cluatering in free liating, the semantic differential, and the scaling of similarity in meaning' on the basis of people's judgments of the kin tem "most different in meaning" in each of a series of triads of terns presented to them. None of these methods was likely to directly reveal anything c. about the application of kin terns to objecte, and the clusterins and scaling studies are clearly ooncerned with structure. However, Romney

\checkmark

and D'Andrade conclude (p.168) that: "In the psychological lexicon, it would seem that the sememes $[=$ semantic components $]$ of kin terms function as discriminative stimuli for individuals." They then put foxward the hypothesis (p .168) that:
... a discriminative otimulus is most efficiently learned when a subject is repeatedly presented with events which differ or contrast in one particular feature and in which the subject's reaponses to the contrastive stimuli are differentially reinforced. What both the individuals who use the native systen and the analyst do is learn the set of contrasts which signal a difference Thus both the analyst and the native speaker leam that only femalea are aunte and only males are uncles.

It is not clear whether they believe that all the ' discriminetive stimuli' are necessary for the application of a lexeme (They suggest, for instance, $(p, 169)$ that both the analyst and the native speaker "... may face equivocal contrasts") but in general it appears that they subscribe to what I am calling the theory of criterial attributes.

1.2.2 Structural Semantice

The theory of criterial attributes is concerned with the basis for the application of lexemes and the demarcation of their denatation classes. And so too is the theory of prototypes with which I propose to confront it. Will it be reasonable to deem whichever of the two theories it is that emerges least scathed from the debate the best currently available approach to semantics? Are theré any extant theories which are likely to be immune from strictures which arise out of the debate? of course, these questions assume an acquaintance with
arguments ohich have not yet been presented. However, one might pernaps suspect that a purely etructural theory of semantics, such as the one described by Lyons (1968), would, in virtue of not being founded on denotation, remain unaffected. I propose therefore to anticipate the sequel to the extent of briefly considering this posesibility.

Wallace and Atkins (1960), in the paper referred to above, suggest that in the analysis of a given lexicon one will sometimes encounter? Iexemes which can be defined either es products of semantic components or (p.74) $\mathrm{n} . \ldots$ as relative products of the primitive terme of that lexicon." They also hold that, in at least some instances, definitions of the latter type will more nearly reflect the cognitive systems of native speakers. Bendix (1966) presents componential analyses of three sets of verbs, drawn from Euglish, Hindi and Japanese, which are purely struotural. That is, he was concerned solely with distinguishing each of the verbs under consideration from each- of the others, and not with conditions goverping their application. Weinreich (1966) argues that the semantic components which enter into the meaning of a lexeme are interrelated in the same ways as are the lexemes which comprise sentences. He points out that this would account for the ability of competent native speakers to provide verbal definitions for words. These studies seem to point to the possibility of providing adequate semantic descriptions of lexemes wholly in terms of the very language from which the lexemes under analysis themselves come. If this were possible then problems involving the intension of lexemes oould justifiably be ignored by semanticists and relegated to pragmatics or psychology.

There are groudds, however, for believing e priori that ouch an enterprise is impossible. Many philosophers have argued that it is necessary to recognize a olass of tbasic worde' which derive their semantic value from their relationship to extralinguiatic entities. For instance, Kotarbinaka (1960, p.1) puts the argument as follows: "Some names can be defined by eome other names, those other names in turn by still other oneg, but sooner or later we reach the primitive (elementary, basic) names such as "acid", "hard", "red", etc," These 'names' she says have to be defiñéd óatensively. Lyons (1968, p. 433f.) discusses this 1 soue in connection with the problem gaining entry to the semantic structure of a language other than one s owne He Buggeata that one enters a new eystem through the area, of cultural overlap. However, with regard to the analogous problem of securing a foothold in one's first language he is apparently (1.410) resigned to I .o. the inevitable circularity' of semantics... ${ }^{\prime}$ This is because of (p.409) ".. the difficulty of explaining the meaning of any word without using others to limit and make more explicit the 'scope? of ostension' (it suggesta that it may be impossible to detemine, and perheps also to know, the meaning of one word without aleo knowing the meaning of others to which it le 'related'...." The difficulty is real enough (See, for example, Lewis' (1963) account of the acquisition of the word mana) but everyone who acquires his first language in the normal fashion demonstrates the poseibility of geining a foothold in the systef without the help of words. Of course, the meaning(g) of one's firgt word (s) will be only the grossest approximations to adult meanings, even where correspondences between adult and child forms
can be found $[$ Of. Greenfield (1973) and Helliday (1975).]. I do not doubt that the meanings subsequently undergo refinements which depend upon access to a language, as other words are talen into the vocabulary:

Harrison (1972), whose proposed 'taxonomic schemata' were described above, says that provided the user of a texonomic schema can recognize all the relevant taxonomic characters he need never have had any of the species names which the schema determines defined for him by ostension. This may be true but it seems to me that the notion of ostensively defined ' basic words!, arose out of precisely the sort of problem glossed over in Harrison's proviso. I conclude that he had not demonstrated the dispensability of 'basic words'.

Nuch the eame can be said of structural theories of semantics Which though expressed as componential analyses clatm that the components are not words of the object language but are 'atomic concepts!, as in Katz and Fodor's' (1963) theory, or L Bierwisch (1970, p. 181) $7 \mathrm{n} \ldots$ psychological conditions according to which human beings process their phyaical and social environment. " Thus Anderson (1968, p. 397) says in his discussion of Katz and Fodor's semantic components:

[^1]Either we -understand the components in terms of the object language names given to them and then we ara still faced with the problem of explaining how ve entered the structure of the object language in the first place. Or we can stave off the reckoning one step by using a foreign natural language as the semantic metalanguage. Or, if it is insisted that the metalangiage is not a natural one, we face the even more perplexing problem of explaining how we came to an understanding of 'Semantio Markerese', as Lewis (1972) has dubbed systems of this kind. It seems that en account of the intension of at least some lexemes is a neceseary part of any complete semantic description of a vocabulary.

Another way of stating the problem facins a purely structural description is as follows $[$ De Mauro (1967, p.33) 7 ; "Iinguistic forms are defined according to the relationship which binds them....t But how can the relationships be defined without having defined the relata?". De Mauro also points out (p.34f.) that: "Even the amalleat - differences in the vocabularies of two people ... would force us to conclude that the two spoke different lansuages and that even the Woxus that they apparently had in common were in reality only homophonic, having different values because they occured in two different sets of relationships." and this would render the fact of communication mysterious.
1.2.3 Preliminary critique of the theory of oriterial attributes

Linguists have occasionally expressed doubts concerning the
plausibility of the theory of criterial attributes. For instance, Nida (1951, p. 9) eays that the difficulty with the "common denominator" approach to the specification of meaning $", .$, is that in a series of contexto a word may have practically no common denominator, and yet the series exhibits obvious relationships." He appears to favour, instead, defining a lexeme in terms of an aggregate of the features discernible in those situations in which its forms are appropriately usęd.

Burling (1964) casts doubt on the likelihood of detemining, for a given set of lexemes, those attributes which are actually the ones relevant to native speakers in making the necessary distinctions. He shows that for any given set of only four lexemes, even restricting oneself to binery components, there are a priori 124 theoretically possible discrete, non-redundant componential analyses. (A discrete' analysis is one which distinguishes each lexeme from all the others in the set. A 'non-redundant' analyais is one-from which no component can be eliminated without breaking down the distinction between at least one pair of lexemes in the set.) He also claims that there is no reason, other than economy, for disellowing redundant analyses. Lyons ($1968, \mathrm{p} .478$) is similarly pessimistic about the possibility of determining the cognitively real criterial attributes used by people in deoiding the applicability of a lexeme. And Bolinger (1965, p.573) summarizes Katz and Fodorts proposals as amounting tos 1 n .0 the celection of a few mackers out of a vest sea of intuitions. 1 He goea on to say: "Native speakers need no drastic reduction." Macnsmara (1971) is of the same opinion. He says (p.371f.):

- the problems of what information is stored tn
connection with a word, such as chair, are the
problems of what informetion is stored in connection
with the percept chair. mhis surely includea a
vast array of associated features which may indeed
be very like a list. Probably some of these features
are very abstract; representing functions and
purposes of chairs; these may even be the defining,
attributes. But no features are particularly favored
in performance; depending on the context, any feature
or set of features may be salient, while others,
including the defining ones, may play no pert.

Before proceeding to a presentation of the theory of prototypes, which I believe cincumvents some of these problems, I should Ifke to Indicate some of my own reasons for dissatisfaction with the theory of criterial attributes. Many of theae arise from the study of vocabulary development in children. I propose therefore to adumbrate clark's (1973; 1974) discussion of vocabulary growth - it is one of the most interesting and ambitious recent essays on this topic - with a view to establishing that it is founded squarely on the theory of criterial attributes and in order to show, with the aid of a few examples drawn -mainly fnom my own observations, the inadequacies of this theory in accounting for lexical development.

1.2.3.1 Clark's 'semantic feature hypothesis' and some grounds for disquiet

Tracy (1893) notea thet the daughter of Hippolyte Taine - a pioneer psychologist - who leant the fom bebe in connection with a picture of the infant Jesus subsequently used bebe to refer to piotures of all kinds (instead of to babies) and comments (p.115): tChilaren Who are able to uee a few words at this age \int second aix months of life7, show by their use of them how inadequately defined is their
meaning. " Clark (1973) hes collated a large number of such examples of 'inadequately defined' words drawn from 19th and 20th century diary studies of the early stages in the acquisition of a variety of languages. She found that many of the children's errors - in adult terms - of vord usage were cases of the child!s word having e wider denotation class than that of a corresponding adult form. . Such errors she celle overextension, one of her examples is of a child who used fly finst to refer to a fly and then afterwards to refer to specks of dirt, dust, smail insects, his own toes, crumbs of bread and a toad. She reports that the phenomenon of overextension is noticeable for up to a year in the development of any one child and that thie period
 remainder of this thesis ages are expressed es: number of years, semicolon, number of months. .7. She sumises that striking overextensions cease when the child has had sufficient negative feedback regarding the incorrect application of words to encourage caution, and has also leamt how to ask ' what's that' questions.

To account for the existence of the phenomenon of overextension Clark proposes the following hypothesis (1973, p.72):
-.... the child will begin by identifying the meaning of a word with only one or two features rather than with the whole combination of meaning components or features ... that are used criterially by the edult. The acquiaition of semantic knowledge, then, will consiat of adding more features of meaning to the lexical entry of the word until the child's combination of features in the entry for that word corresponds to the adult' E .

Overextensions are held to derive from these early incomplete semantic specifications because (1973, p.72): "MThe child will use those one or
two features criterially in deciding when to apply the word and when not."

On the question of what kinds of sementic components are used by young chiluren Clark says, firatly, (1973, p.75) that urhe Semantic Feature Hypothesis would predict it is the more general semantic features that will be acquired earllest." The import of "more general" is not elearly stated but it seems to mean rused in the semantic specification of a larger number of lexemest. Secondly, she assumes that the first semantic features fre likely to be based on djpeetly perceptible salient physical characteristics of the denotata. This second assumption is simply an appeal to reasons there must be (1974, P. 109) (. - some correspondence between the adult and chila perceptual features and... it is this correspondence that allows comminication in the first place when the child begins to use words with some consistency." It is justifled by showing that the examples of overextension uncorered in her survey of the diary studies are amenable to clessification under the headings "overextensions melated to movement/shape/size $<$ cf. the fly example quoted above $]$ /sound /taste/texture". In adaition clark quotes two instances of overextended' action verbs but those are of no concern here. Kirkpatriok (1891), who also compared the vocabularies of several children, came to a similar conclusion (p.175): "any word which can be associated with a distinct, sensible experience can readily be leamed, but abstract tems are not found in children's vocabularies."
a goat a 'dog' may lack in cleamess of conception of the characteristics of doge, of in his powers of discrimination, or only in experience." A part of Clark's 1974 paper tends to refute suggestions such as Kirkpatrick's second one: she reviews some studies of infant development $[\mathrm{e} . \mathrm{E} \cdot$, Bond (1972) $]$ to establish that (p.113) i... the child has elready developed a number of perceptual akills even before the age of 6 months..." It is perhaps worth remarking that Bond's (1972, p.225) conclusion was even stronger: ".... there seems to be no evidence to date which necessitates rejection of the prevailing view that the perception of the fnfant is qualitatively similar to that of the adult." The following observations of the psychologist Perez (1889, p. 180) provide further support for this view:

I knew a child of two months old who could clearly diatinguish a person from an animal, or from a piece of fumiture; but he used to amile indiscriminately at the first comer, and would seek the breast of any woman who took him in her arms. But at three months he could so well diatinguish his nurse from his mother that if, when his mother was holding him, his nurse took another child on har lap, or he saw her being embraced by anyone, he would at once show his jealousy by frowns and tears. At - this age he also clearly distinguished a cat from a dog, the former having scratched him more then once, whereas the latter overwhelmed him daily with caresses; the moment the dog appeared he always ahowed great delight. One month had thus sufficed to fix clearly in his mind a large number of individual conceptions.

I accept that $1 t$ is unlikely that by the age at which ohildren first begin to use words meaningfully - that is; at about one year old, taking McCarthy's (1954) stetistios as probably the most authoritative available - they have any difficulty in perceiving any relevant physical properties of objects. However, I believe that another way in which clark seeks to support her semantic feature hypothesis with a prop borrowed from the literature on perceptual development is more
dubious. This is the parallel which she claims (1973, p. 102f,) may. exist between time-course of object perception in infancy (as described in Gibson's (1969), partly speculative, account) and her own View that the meanings of young children's words are represented in tems of a limited number of criterial perceptual attributes.

- Gibson (1969, p.357) holds that \because... development of object perception begins with the discovery of distinctive features, progreasing to grasping of higher order structure in the object. It By "the discovery of distinctive features" ehe appears to mean no more than that studies of the direction of gaze reveal that ($p .368$): TThe newborm infant attends, visually, to high-contrast spots, edges, and corners within his view; but he does this in a way that has been referred to as obligatory or compulsory. 1 ' 1 Gibson's main evldence comes from investigations of infants' responses towards faces and facelike objects, which she summarizes as follows $(p, 368)$:

Differentiation of features of the face object begins with the eyea. Then the eyes in a given setting become important; and later the mouth, eepecially when it is moving. Mouth-widening movements are particularly attractive. 4 realistic head is discriminated from unrealistic dumies by five monthe or so.

Note, with regard to Clark's hypothesis, that this progression from -'attention-to-feetures' to interest, in what adults might regard as objeots takes place six months or more before the period to which the semantic feature hypothesis is applicable. Note also that Gibson does

1 See Sackett (1963) for a atraightforward explanation of this phenomenoi in terms of the specialization of peripheral sense receptors for certain kinds of stimulation.
not offer any evidence that eyes, mouth, etc, are diatinctive or criterial features mediating the recognition of objects as faces; the 'features' might, for the infant, be objects in their own right.

Clark (1973, p.77) Beyss that: "By considering the actual categories that result from an overextension, one should be able to infer which features the child has used criterially." I shall now describe an attempt I made to follow this suggestion. I believe that the results cast doubt on the validity of clank's hypothesis. one of the children whose linguistic developnent I observed $-I$ shall oall him P For details of the children observed and the mathod of datacollection see 82.7 - at $2 ; 5 \frac{2}{5}$, when ahown a roughly drawn circle with two radial lines from the centre to the perimeter, and asked TWhat's thatp" replied "That is a clock". glock was a word he had previously used often to name clocks and pictures of clocks. For instance, three months earlier at $2 ; 2 \frac{2}{3}$ he had said "clock" spontaneously on finding, In a book, a full-page, full-frontal, coloured pioture of an alarm olock. I guessed from P's response to the drawing that the presence of hands might be criterial to his identification of clocks. The ofrcular outline could be diamiased as non-criterial because he had several times called a circle which he had just drawn "circle", only a few minutes before he called the cifcle with hands fa clock. To test my guess I presented him one week later (age; 2;6) with a compassdrawn circle around the ingide of which I had written the numbers 1 to 12 as they appear on a clock face. In mesponse to this picture he said "tick tock tick tock", whioh I regarded as adequate identification of it as a clock. I then showed him a cirole of the same aize and he
responded "0 for ink". P's spelling is not at issue here, but this response, confirmed my belief that a circle alone would not evoke "clook" from him. Since the numbered but handless clock had a small dot in the centre and the hended but unnumbered one also had a dot there, I next showed P a circle of the same size as the 10 for ink' one but with a dot to mark the centre and he celled it torangell - a word which he also applied a few minutes later to a realistic coloured picture of two halves of an orange on a plate. What perceptual attribute or attributes enabled P to decide when to use the word clock? It wes not merely the presence of something more complicated than a dot within a circular outline because immediately after P had identified the dotted circle as an orange he showed that he recognized a rough circle with two eyes drawn inside it as a face by calling it "Iady".

Similar negative conclusions are suggested by Major's (1906) observations on his son's naming of 'divided pictures'. Major cut a picture of a kitten's head in two just above the eyes and cut a pioture of a shoe "... In two at the instep leaving the 'upper' in one plece and the foot and heel in the other....." $(0,266)$.. He then presented the halves separately to his son, \mathbb{g} and asked him to name them. Major began to use this procedure shortly after R was one and a half years old and continued, usins these and other 'divided pictures', until the end of the third year. He states (p.260);

It is perhaps unnecessary to tabulate the answers which the child gave since they were uniform throughout, and can be stated in a paragraph.
(1) The two parts of the picture of the kitten

พere always recognized and named as kë, tĕt, or kйittie. Once one piece was referred to as "bloke kiddie".
(broken kittie). (2) The two halves of the shoe were named as "ahoe" or "shoos" every time.

t

Major's demonatration seems to me to Iun counter to Clark's hypothesis because one might expect that if, for example, the perceptual ettributes of a sole were criterial to the recognition of a shoe only one of the helf pictures would have been recognized. A proponent of Clark's view could of course claim that recognition must have been based on a feature or features which spread across the ine along which the pictures were sectioned. Colour would be a good example of euch a perceptual feature, but clack (1973, p.83) says of her classificetion of overextensions found in diary studies: "Although the overextensions are clearly based on perceived features of different objects, there is one surprising omission among these features: the attribute of color doea not appear criterielly at all." Now, Goodman (1966, $p, 199$) has pointed out that there is an important difference between colour and some of the other visual properties which do enter Clark's classificatory scheme (size and shape):

And whereas a comprehensive concrete individual may still be uniform in color or place or time in that
\because all concrete phenomenal parts of it have the same color or place or time, no individual can be unifomly square or of a given size in that every concrete phenomenal part of it is square or of that size.

The "eurprising omisgion" of colour is perheps an indication therefore that children categorize according to overall configuration rather than in terms of criterial features.

There is a Speculation of clank's (1973, p.86) which might seen to offer an explanation of P's neming of clocks:

> Since overextensions are rarely reported once a domain has been restricted, one might propose that by this stage, the child has analysed and coded particuler configuretions of perceptual features, and it is now the configurations of features that are used criterially in deciding on eppropriate instances. However, the use of e configuration rather than isolated features does not
\checkmark necessarily mean that the lexical entry for a particular

- word is complete, but simply that the child has by now
odded what appear to be the relevant set of attributes used to identify a certain set of objects or events, These perceptually based configurations are often represented in a shorthand form of notation as somethins like +Canine or +Bovine in the adult lexicon.

Taking a configuration of perceptual features' to mean a wholistic 'picture' of a (generic) member of a category, clark appears here to be proposing something akin to the theory of prototypes, which I shall set forth in S1.3. Perhaps P had an internal 1picture' of a elook and applied the term clook to any percept which matched this 'picture' more closely than it did others in his mental gallexy. I believe this to be a roughly correct account. But clack says the configuration would be used "criterially". For criterial use of attributes to have the role she requires of it in explaining overextensions, it must be assumed that partial matches between perceptual inpat and intemal configurations - Would not be criterial. "Criterially" is therefore gratuitous and would prevent this speculation of clark's from being a basis for explaining P1s use of clock but, unwanted as this qualification is, it is central to Clari's thesis. Clarx's position here is of course trivially correot if it amounts to aaying that, a necessary and sufficient condition for being a clock is having the (configurational perceptual) property of being a clock [Cf. Putnam (1970, p.140). 7 .

The failure of 'cxiterially used configurations' to explain $P^{\mathbf{1}} \mathrm{B}$ behaviour is a fortiori evident if configuration is equated to set, as Clark appears to do above.

One might argue that P identified a circle as a clock if it contained efther numers or hands, and mutatia mutandis for Major's child. However, in her exposition of the semantic feature hypothesis Clerk makes no provision for disjunctive composition in the meanings of children's words. To admit disjuncts would rob her hypothesis of much of its elegance. I shall argue in 81.5 that the theory of prototypes offers a better account of cases which appear to call for a disjunction of semantlc componenta.

A

- It might be claimed that the case cited above is not really to the point because P wes not indulging in 'overextension' with his word clock any more than an adult would. Perhaps there is something apecial about overextensions. Perhaps Clark's hypothesis will hold only when a child is clearly willing to apply a lexeme to a wider denotation class than adults are for their corresponding form I would therefore like to present a case of this kind. Another child I studied, J, first used nose when he was $1,10 \frac{2}{3}$ according to a questionnaire completed by his mother at weekly intervals. He used it in connection with people's noses. At $2 ; 0$ ahe again noted this use. When he was $2 ; 0 \frac{1}{6}$ his mother reported that he used nose for paper tissues as well as his nose. At 2;0 $\frac{2}{5}$ he used nose of his own nose, in my presence, and at $2 ; 1 \frac{3}{6}$ his mother reported that he applied the term to a handkerchief. When J was $2 ; 2$ 异, I observed the following, travelling in a car driven by $J^{1} s$
mother: He requested of his mother a tissue from a box out of sight under the dashboard by stretching his hand in that direction and saying "nose". Immediately afterwards he replied nnose" to my questions, "What's this?" as I touched my om nose, touched his nose, held up another paper tissue and showëd him my hendkerchief, At $2 ; 1, \mathrm{~J}$ had pointed at his own postemion, saying there"; in response to my request "Show me your nose, there's your nose?" I submit that it would be perverse to seek to explain these uses of nose in terms of a small number of criterial perceptual attributes present in each member of $J^{\prime} s$ denotation cless for this word.

Further doubt is cast upon Clack's position by attested cases of what might be called underextension. A child using too fer oriterial featuree in deciding on the applicability of a lexeme will thereby encompass a denotation olass larger then the edult one. A child who denonstrably has too emall a denotation class for a lexeme may, in many cases, be assumed to be using too detailed an intensional definition for the lexeme; (in the phraseology of the theory of criterial. attributess) to be paing more features oriterially than adults do for thet lexeme. There are reports of this kind to be found in the child language literature. For inatance, Stross (1973), who investigated the aoquisition of botanical teminology by Tzeltal children, atates (p.124): "A two and a half year old girl was observed to correctly identify a pahxiak tree growing next to the house in Which she lived. Later it was found that she could correctly identify only this one specimen; she called others wamal or te?." L The latter two words are glossed es 'herb and tree', respectively. 7

Stross suggests that the location of this particular tree may have been (part of) the basis on which the child applied pahXiak!. It might therefore be argued that the child had a briefer-than-adult componential definition: NEXT TO HOME (x TREBS). But equally, it seems to me, one could claim that this child was using a very detailed specification of her tree. Also, it is by no means obvious that mexm TO HOME-is a simple peroeptual property.

Heich (1976) reports that his son, at the age of 8 months, would craw1 to his mother, the bed etc. when asked where's Nramy/the bed/...?" In response to "Where's the shoes? he would always crawl to his mother's cupboard and play with her shoes there. He would even crawl around a pair of his mother!s shoes placed near him in order to reach the ones in the cupboard. Placed near the open door of his father's adjacent cupboard, he would ignore the array of shoes which it contained and crawl along to play with the shoes in his mother's cupboard as before. After succesesive intervale of approxipately two weeks the following became additional goals towards which the child would crawl, upon being asked "Where's the shoesp": (1) bhoes in h. c, +her!s cupboard, (2) shoes lying on the floor, (3) shoes being worm by someone. These observations led Eeich (p.120) to whet seems to me to be a. Justified conclusions UIt appears that the very first word meanings are formed by associating a sequence of sounds with essentlaly everything that is perceptually and functionally salient about the objects or actions in the environment that co-occur with that word."

[^2]children sometimes involves a broadening of denotation classes rather than a Clarkian process of adding criterial features to lexical entries to narrow down to the adult denotation classes, In a syatematic study Saltz et al (1972) found support for the view that (p.1192): u... a child's early notions about a conoept tend to be restricted to the attributes characteristic of his first few exanples of the condept. Oniy with difficulty does the child learn to accept the fact that certain attributes, even though they were present in his first encounters with a given concept, are really irrelevant to the concept They tested 24 children in each of the age ranges $5-6$ years, $8-9$ years and $11-12$ years. Each child was required to work through a pack of coloured pictures of familiar objects, Indicating whether or not each picture represented an instance of a given 'concept'. Each child did this six times, once for each of the 'concepts': food, animals, transportation, clothes, toys, furniture CTransportation had to be defined for most of the younger children; as nomething that can-take you from one place to another". The school bus was cited as an example to help them underatand the definition. 7. ohildren in the youngest group consistently included significantly fewer items under each of these labels than did the older children. In an examination of those pictures which had been selected as instances of each label by 75\% or more of the entire sample of children, it was found that a significantly amaller proportion of the selection of instances for each 'concept' was drawn from this 'core' set by the younger ohildren than by the older children. For every category the $8-9$ year olds hed a higher proportion of 'core' reaponses than the $5-6$ year olds. In the case of five of the aix categories $11-12$ year olds drew a
higher proportion of their selections from the 'core' than dia the 8-9 year olds; these two groups were tied on this measure for transportation. The developmental pattern implied by the results of this cross-sectional study is thus a progression from namow idiosyncratic categories to broader socially-shared categories. I admit that equating the categories used in this experiment to denotation classes is not simply a matter of terminological substitution, salva veritate. However, it would be surprising if these results were not symptomatic of lexical development.

Given that many, perhaps most, perceptible properties of objects are gradable, the theory of criterial attributes leads naturally to a particular waf of employing ostensive definition pedagogically. I shall conclude this section by explaining that remark and appealing to the reader's intuition for a Judgement that the method involved is not a natural one for a parent to use. (LSee Farwellys (1973) review of studies of the characteristics of adult utterances addressed to young children for some evidence that ostensive definition is a central parental activity, 7 Kotarbinska (1960) offers the following analysis of ostensive definitiont Given a standard object, A, then $\forall x$ (x is N ㅍx is such as A in the respect B and in the degree D). other exemplars than A are shown in order to eatebliah the degree, D, to which variation is tolerated for instances of N.

[^3]Thus if one believed that what a child had to discover in leaming the application of a lexeme were the criterial limits of the various attributes of members of the denotation cless of that lexeme, it would be best to use, in ostensive definition, exemplers whioh fell just inside the fringes of the category. I do not believe that parente do this and the makers of children's picture books certainily seem to choose ceritral rather than peripheral members of categories for their illustrations - consider the differential likelinood of finding either an igloo or a suburban bungalow under. "H is for house".
"As far as negative examples (standards) are concerned, it is better to specify as such examples which are not designata of the term "N", but which, in the given respect, ere more similar to the standard. designata than those which are less similar to them" (Kotarbinska, 1960, p.15). This, in order to delimit the boundary accurately, the child should be exposed to negative examples which lie just outside of the denotation class. One might for instance display a bat in flight as an instance of something which is not a bird; a strategy bound to lead to confueion in chilaren, I submilt. A strategy, though, which works well in modele which instantiate the theory of oriterial attributes, such as Winston's (1973) compufer programme for naming toy block structures., As he says (1.3) "... one must show the machine not just examples of concepts, but ... something whioh is alose to being an example, but fails to be admissible by day of one or a few crucial deficiencies."

1.3 The theory of prototypes

In this section I shall expound a theory according to which the intension of a lexeme is a fairly detailed conceptual representation of a central member (or members) of its denotation class. First I need to justify the recognition of hierarchies within denotation classes.

1.3.1 Central and peripheral meanings

Bloomfield (1935, p.149) in a discussion of polysemous lexemes such as eye - oculus', eye of a needle, etc.- says; raThe remarkable thing about these variant meanings is our assurance and our agreement in viewing one of the meanings as normal (or central) and the others as marginal (metaphoric or transferred)." Dixon's (1971, 1972) studies of Dyirbal (an Australian language) provide a neat illustration of the differential centrality of the various meanings of lexemes. Until about 1930 each speaker of Dyirbal had two lexicons: one for use in everyday speech and another for use in the presence of certain taboo relatives ('mother-in-law language'). The correspondence between the 'mother-in-law' lexicon and the 'everyday! lexicon le one-to-many. Some older Dyirbalgan still remember their taboo lexicon and Dixon was able to establish many correspondences of the following kind, where items at the heads of the arrows are offered as equivalents of the items at the shaft ends.

The important point is that, although gurimal was given as the taboo equivalent of each of the words in the righthand column, only buyal was offered as an everyday equivalent of nurimal and informants had to be prompted to concede that the other words were also equivalent to it. Furthermore, when informants were asked for specific taboo translations of the set of everyday words - translations which would reveal their differences in meaning - they retained gurimal as the correspondant of bufal but modified it syntactically in various ways to render the other meanings. Dixon's primary interest in this data is that it allows him to distinguish a class of nuclear verbs (viz. bugal) from the others, in the everyday lexicon. However, focusing on the 'mother-in-lew? lexion, this type of comespondence makes Bloomfield's intuition patent. I should point out that Dixon says that his nuclear/nonnuclear diatinction is not in general appropriate to the nouns of Dyiribal, al though I do not understand the significance of this claim.

Bloomfield's examples and the verbs from the tmother-in-1aw' lexicon of Dyirbal are instances of what is usually taken to be polysemy - multiple but related meanings for single forms. However, a fair amount of evidence now pointe to there being a hierarchy even
anong the members of parts of denotation classes denoted by (in traditional terms) single senses of lexemes. Berlin \& Kay (1969) showed a 320-chip Munsell colour chart [in which the colours - all were maximally saturated - are arranged in a regular progression of wavelength - perceived as variation in hue - along one dimension and in order of increasing brightneas on the other orthogonal axis 7 to speakers of twenty different languages, They had previously elicited the set of 'basic colour texms' for each language [For a definition of basic colour term, see the original text. 7 and they asked each informant to do two things: (1) To mark the boundaries of the area of the chart to which each basic colour tem could be applied. (2) To indicate the best, or most typical, exemplar of each of their basic colour terms. The first task proved to be a difficult one and speakers of different languages varied widely in their estimates of where the boundaries should be drawn. Even speakers of the same language allocated the chips differently amons their basic colour terms. And, When people were re-tested after en interval of three weeks they often did not end up with the same denotation classes as they had the first time. However, informants found the second task easy and their judgemente were reliable (that is, they usually chose the same chips on the second testing). There was a high measure of agreement between speakers of the same language. And even speakers of different languages, if they had a basic colour term for a given area of the chart, tended to chose chips from the same smail subregion of that area as best instances.

So, although there is room for argument about which colours
may reasonably be, for example, called green, there is generai agreement on what is the best green for Figlish and it is the same as the best green for any languege having a term applicable to that general area of the colour chart. I shall call these best instances prototype colours in what follows Berlin \& Kay call them focal colourg. 7 Eleanor Heider/Hosch has subsequently extended and confinmed Berlin \& Key's finding in a number of ways. She hes shown (Heider, 1972); for 11 languages, that results equivalent to Berlin \& Kay's are obtained when variation along the dimension of satuxation is taken into account. In the same paper she demonstrated that, for speakers of 23 different languages, the prototype colours are more codable than colours elsewhere on the chart, in the sense that the names applied to them are shorter and in that they are named more quickiy. Heider (1971) also reports some experiments which show that the prototype colours have a special status even for children as young as three years old. She presented three-year olds with linear arrays varying in either brightness or saturation, each containing one of Berlin \& Kay's prototype colourg, and then, putting her hande over her eyes, invited the subjects to choose any colour they wanted "to show me". The children ohose prototype colours significantly more of ten than they would have been expected to to if chance alone had determined their choices. With four-year old children she found that they could select colours from linear arxays, varying in either brightness or hue, to match given aamples more accurately when the semples were prototype colours than when they were not. In eddition, errors made in matching colours which were close to prototypes significantly more of ten involved the choice of e colour even nearer to the prototype than they
did a colour on the other side of the sample, in abstract colour space. In a third experiment she presented three- and four-year old children with hue-varying arrays containing prototype colours and asked them Which is the X one?", where X was each of the eight basic ohromatic colour terms Berlin \& Kay hed elicited from English speakers. If a child 'knew' the colpur term involved then the colour pointed to Was significantly more likely to be a prototype than a non-prototype colour. ['Knowing' a given colour term was operationaliy defined as pointing to a colour which at least 50% of a group of adults, in a pilot test, had asreed "could be called" by that term. 7

Heider/Hosch has also shown that Berlin \& Kay's prototype colours are, psychologically salient for, speakers of a language which contains only two basic colour terms. The language is Dani, which is spoken in West Irien, and its two besic colour terms are mili, which may be. roughly translated as "dark", and mola, whioh is approximately equivalent-to "laght". In Heider (1972) she reports that monolingual speakers of Dani were significantly more accurate in choosing, from an array of Munsell chips, a colour which they had held in memory for 30 seconds if it wes a prototype colour than if it was not.

Bosch ($1973 \mathrm{a}, \mathrm{b}$) also investigated the learnability of different kinds of linguistically encoded colour categories by monolingual speakers of Dani. Eech category consisted of three chips, either of the same hue and of adjacent lhusell levels of brightness, or of the seme brightness and next-but-one neighbours in hue on the lunsell colour chart. Both 'natural' categories, in which a Berlin \& Kay
prototype was the central colour, and 'unnatural' categories were used. There were two kinds of 'unnatural' category: ones which did not contain a prototype colour at all and ones which contained a prototype colour as a peripheral member. Eight three-item categories were constructed for each of these six types $\mathcal{C}\{$ brightness varying, hue varying\} $\times\{$ natural, unnatural, umatural, 2$\}$. The experimental subjects were then taught to apply the same name to the three members of each category. Each subject learnt to do this for the eight categories of only one of the types. 63 of the 68 subjects completed the task successfully and demonstrated that they had learnt a categorization (and not merely a set of specific pairings of names and particular colours) by oorrectly naming new colours which were perceptually close to members of each of the categories they had learnt, Categories with prototype colours as their central members the 'natural' ones - were learnt with significantly fewer errors than any of the four types of 'unnatural' categories. The hue-varying categories which lacked prototype colours were the most difficult of all to learn; as ahown by the large number of errors made in learning them and by the fact that 3 of the 5 aubjects who failed in the task were trying to learn categories of this type. The inportance of the prototype colours is also manifested in the data on the learning of the names of individual colour chipse within the unnatural ostegories it was not the case that their central members were easier to learn to name but, within categories of the four types which contained prototype colours, either peripherally or centrally, significantly fewer errors were made in learning the names of the prototypes.

The fact that the same colours behave as prototypes for children who are still acquiring colour vocabulary and for people whose language has only two basic colour terms (as well as for speakers of many (ifferent languages) suggests that they are prototypes because of specific universal biological characteristics of human colour vision. This suggeation is reinforced by Heider \& Olivier's (1972) multidimensional scaling analyals of the abstract colour-naming and colourmemory spaces of a group of monolingual Dani speakers and a group of speakers of American English. They used a computer technique to translate degree of similarity between colours into relative distance. Similarity in memory was assessed by noting confusions which occurred When subjects were esked to point out on a colour chart e colour which they had been shown earlier. Similarity in naming wad measured by asking subjects to name each of the colours on a chart and recording the number of times each pair of colours was given the same name. It Was found that the anslogical distances between all the possible pairs could best be accommated in roughly cylindrical figures, which look like a colour chart wrapped around the brightness axis. The 'cylinder' representing Dani similarity between the colours in terms of the names given to them is very differently shaped from the one arrived at for American English. This is hardy surprising giten the considerable differences between the two colour vocabularies. However, in apite of the vocabulary differences, the cylinders representing confusability in memory are highly similar for the two groups of subjecte. EMcNeill (1972) argues for cultural and technological factors as the main - determinants of Berlin \& Kay's findings but I believe that her arguments are largely refuted by the Dani studies I have just summarized. 7

The human retina conteins cells specialized for the detection of particular colours. However, since the way in which signals from these cells are integrated and balanced to yield the full range of colours which we can discriminate is not yet clearly understood, the step of correlating Berlin \& Kay's prototypes with biologically salient colours cannot yet be taken [See, for example, cornsweet (1970) or milner (1971) for an account of the psychophysiology of colour viaion. 7 .

Are colour terms perhaps exceptional in having protatypes in their denotation classes? It seems not: when she investigated the relative ease of learning to name a variety of categories of geometrical shapes, Rosch (1973a,b) found results closely comparable to those in the colourlearning experffent. The materials she used were figures of a square, oircle and equilateral triangle, toge ther with related forms which varied systematically from these three assumed prototypes. She constracted seven-member categories of the figures. The one depicted below hes e square es its central member.

The square is central to this categoxy in that each of the perlpheral figures differs from the square by only one geometrical transformation but, ignoring the relationship between the lowest two figures, differs from each of the other figures by two transformations. The category
above is a 'natural' category because it has an assumed prototype at its centre. The following is one of the 'unnatural' categories used [I have reconstructed it from a description; it is not illustrated in either hosch (1973a) or Rosch (1973b).7.

Twenty-one categories were constructed in this way: 3 natural ones, With square, circle and equilateral triangle as central members, and 18 'unnatural' ones, each varying around one of the deformations of the three assumed prototypes.

Dani does not heve single lexemes corresponding to square, circle and triangle. And, in pilot tests involving free sorting, threemember odalty problems and two-person communication tasks, Rosch ascertained that Dani subjects did not treat the figures to be used in the experiment as falling into the shape classes 'four-sided?, 'roughly circular' and three-sided'. Ninety-four Dani, who had been In neither the pilot teste nor in the colour-learning experiments, participated in the main experiment. The 94 subjects were divided into seven groups roughly equal in size. one of the groups learnt a name for each of three Inatural' categories. Each of the other groups was assigned to learming names for three corresponding iunnatural! categoriee. As in the colour categorizing experiment, Rosch. found that the subjecta had learnt conceptual categories, rathex than specific pairings of the three names and each of the twenty-one figures
seen by any given subject. This was demonstrated by near-perfect performance in a transfer task requiring subjects to name figures related to the central members of the particular categories which they had learnt but which had not previously been seen.

Subjects were also asked to rank the members of each of the categories they had learnt, from most typical to least typical representative of the category. Regardiess of whether or not they were the ceatral members of categories, two of the presumed prototypes - square and circle - tended overwhelmingly to be chosen as the most representative member of categories in which they occurred. The equilateral triangle however, although usually ranked high on the scale of typicality was only merginally better than the other straight-line, threesided figures. The freehand and tone curyed line' three-sided figures ' Were very aeldom judged to be highly representative of categories in which they appeared.

In the learning of the names of individual members of the categories, the circle and square - regardless of whether or not they were central
to a category - were generally learnt with fewer errors than the other figures. The equilateral triangle did not prove to be significantly easier to learn than the other straight-line; three sided figures. The circle turned out to be an easier figure to learn to name than the square. Overall, the natural categories were learnt with significantly fewer errors than categories centred on the distorted forms.

Why are circle and aquare natural prototypes? I cannot, as with
colours, attribute their singular status to properties of human retinal cells [Although, see Dodwell (1970) for a survey of some of the highly functionally specific visual receptor cells whose existence has been established in manmals. 7. However, Garner (1970) offers a persuasive account, founded in information theory, of why some figures, such as equare and circle, are 'good' and others not. Gamer and hia coworkers have conducted experiments in which subjects are asked to rate patterns of dots for their 'goodness'. Their general finding is (p.39) i1 ... that poor patterns have many alternetives, good patterns heve few alternatives; and the very best patterns are unique." As an aid to intuiting the kind of explanation Garner offers, without going into the details of his analysis, compare the consequences of rotating the prototype square through steps of 90° bith doing the same to, sey, Rosch!s gapped square. The gapped square will be shown to be a member of a subset of four patterns whereas the prototype square is unaffected by orthogonal rotations. The circle, an even better prototype, is unchanged by any rotation within the plane; so it has even fewer altematives than the square. Having few alternatives entails the possibility of more economical description and this, I presume, is why Rosch's experiment yielded the results it did.

In a painstaking and original study of similarity in visually perceived forms, first published in 1936, Goldneter (1972) found many examples of whet he called sinsular [Ger., prdganan, i.e.; 'significant' or 'exceptional'. 7 . values of geometrical parameters. . struist line is rriking wherecica For instance, a small change in the curvature of a/curved line may in k_{e} chomp pass unnoticed. Other singular values found by Goldmeier were 90°
angles of which one leg is vertical, vertical axis symmetry, parallelity and regularity of design. I introduce these here as examples of visual properties which evidently make certain pattems relatively easy to store in the mind. The singularity of some of these properties, e.g. the importance of the vertical, may have a simple biological explanation of the kind I suggested for colour prototypes. The others might also but, in any case, they appear to be susceptible of an explanation in Gamer's information theoretic terms. Whatever the explanation, the singularity of these properties is well established. Given that certain visual forms are easy to store it would be natural for them to be prominent in categories they were involved in. Denotation classes with some singular members (or some members with singular properties) and some non-singular members will not be homogeneous classes.

It may be felt that simple geometrical figures and colours are an insufficient basis for generalizing about the denotation classes of natural language lexemes. Rosch (1973a), however, provides further experimental resulte which Indicate that the phenomenon of differential typicality in denotation classes may be found beyond the rather specialized categoriea considered so far. She gave subjects six instances of each of the following cetegories: fruit, soience, sport, bird, vehicle, crime, disease and Vegetable; and asked them to indicate on a seven-point scale the extent to which each instance was a "good example" of its categoy.

The first interesting result is that this proved to be a readily
comprehensible request; none of the 113 subjects questioned the task or protested at it. They also made their judgements quite rapidy. There was aloo a high level of agreement between the rubjects on the ranking of the instances in each category. As an example of the results consider the averages of the ranks assigned to the six given instances of science:

chemistry	1.0
botany	1.7
anatomy	1.7
geology	2.6
gociology	4.6
nistory	5.9

The fact that chemistry received the average rank 1.0 means that every one of the 113 subjects assigned it the highest rank possible on the seven-point scale, namely 1. The generally high level of agreement can be geuged from the spread of the average ranks. If subjects had, for each instance, randomly chosen between the seven ranks the average of the ranks would have approximated to 4.0 for each of the instances in the category. It is not possible to take the average ranks given above completely at face value because Rosch (1973a, p.132) says that a correction was used to compensate for subjects tendency not to use the lower end of the soale - unfortunately, without indicating the extent of the, correction applied. She does state though that the distribution of ranks accorded to all but two of the 48 instances departed significantly from a chance distribution. The spread of ranks across the instances seen in the science category, above, is virtually replicated in the categories fruit, bird and vehicle. Vegetable, disease and sport show a spread too, but not as wide. Chime did not yield the same olearcut results: murder was uniformly
allotted rank 1 and vegrancy wes regarded as e poor example of crime but stealing, assault, blackenail and embezzling were bunched together, closely following murder.

Despite ny cautions, above, I believe that Rosch has convincingly demonstrated hierarchies of typicality in categories, other than those for which stralghtforward explanations can be offered in terms of specificities of sensory cells or stimulus informational characteristics. [Rosch (1975, experiment 1) has repeated and extended the demonstration, using additional categories and $50-60$ hyponymous instances of each category. 7 I surmise that the reasons why apple was found to be the best example of fruit, chemistry of science, football of sport, robin of bird, car of vehicle, murder of crime, cancer of disease and carrot of vegetable, are socio-cultural. What I mean is that it seems a very reasonable guess that these instances are prime examples of their categories because of the interests and preoccupations of the culture, North American, To which the subjects in the experiment belonged L Cof. Brown (1958, 2.208).7.

Thomson \& Chapman (1975) have demonstrated differential typicality even within young children's 'overextended' denotetion classes. This finding is strong evidence asainst clark's (1973) developmental version of the theory of criterial attributes. Five children, aged between $1 ; 8$ and $2 ; 3$ participated in the study. Through interviews with their parents and testing of the children, using coloured photographs or pictures, four worde which were overextended - by adult standarde were identified for each child. This preliminary testing also enabled

Thomson \& Chapman to find at least five appropriate exemplars and at least ten examples of overextensions for each word. These pictures Were used to construct 64 test pairs of pictures for each child: 4 worde x 16 pairs per word. Ten of the pairs for each word consisted of a picture of something which an adult would consider to be a member of the denotation class of that word and a picture to which the child had applied the word in violation of adult norms. Five pairs pitted pictures of members of the toverextension' of the denotation class against pictures of members of some other denotation class of the chila's. The last pair for each word consisted of two such nonexemplars. It must be emphasized that, except for the seven nonexemplare, ell of the pictures relating to a given word in the test for each child were ones to which that child had applied that word.

For each pair of pictures the ohild for whom that particular teat had been designed was asked to "Point to X ", where X was the word being tested. Four of the five children refused to respond to the pairs which consisted of two non-exemplars. Overextensions were generally favoured over non-exemplars. The interesting question, however, was what would happen in the ten pairs for each word which contrasted an appropriate exemplar and an overextension. Thomson \& Chapman treated a ratio of 8 out of 10 , or better, in favour of appropraite exemplars as indicating no overextension in this comprehension task. In terms of this criterion, one child showed overextension on all four words and hence is no grist for ny mill. However, one child on all four words, two children on three words each, and the remaining child on two out of four words, went the other
way, choosing the appropriate exemplar in preference to an overextension 8 or-more times out of 10 .

It is worth remarking further that, having found between 16 and 56 exemplars for each of these words in the preliminary investigation, Thomson \& Chaprian examined the known denotation olass for each word in an attempt to discem necessary and eufficient conditions for the application of each word. By and lange they failed:

When individuel exemplars are examined in reletion to appropriate exemplarg, Clark's conclusions are supported that that relation is usualily one of perceptual similarity. But the dimension of similarity varies from one overextended instance to the next: The picture of productive overextension besed on one to few systematic dimensions of meaning which we have obtained from diary and anecdotes fades rapidly as the number of observed instances of the overextenstons is increased, as it was in this study. (p.66).

1.3.2 The role of prototypes

With regard to shapes and colours, Bosch (1973b) suggests (p.330) that When oategory names are learned, they tend to become attached first to the salient stimuli (only later generalizing to other instances), and by this means 'natural prototypes' become foci of organization for categories. " More generally (1973a, p.142) It is possible that chilaren initially define a category by means of its conorete 'clear cases' rather than in terms of abatract criterialattributes."

I agree with Hosch. What, however, does it mean to say that denotation classes are defined in terms of prototypes or that

prototypes are the foci of organization for denotation classes? I propose that the (phonological) form, or forms, associated with a lexeme serves as a retrieval cue for a fairly detailed mental representation of the prototype/s of its denotation class. As metaphors for this process, consider the form to be an index card which locates a drawer containing one or more video-tape recordings of prototype objects. Congtehending the meaning of a word will then consist in replaying the prototype recording/s retrieved by it. Deciding what to call a presented object. will be a process of comparing sensory input With the recordings in the drawers of one!s filing system and, after selecting the one which matches the input most closely, reading the label off the associated index card. Bluntly put, this may seem naive. However, I believe that many of the details can be filled in satisfactorily and that all of the objections which have occured to me are answerable.

An immediate objection is that a video-recording for the prototype of each lexeme would require an immense amount of storage space. The theory of criterial attributes calls for a minimum of information to be stored; only those features necessary to distinguish the denotation class of a lexeme from other denotation classes need be held in the head. I shall, however, present evidence in E1. 4 to establish that humans do not require such economy: our memory stores have immense capacity.

Another line of objection is that, in deciding on the applicability of a lexeme, either the search through the filing system for a matching tape will take too lons or referential chaos will result from there being too many similarities. In illuatration of the latter possibility
consider the following misidentification made by a little girl, Ja (Age: $2 ; 3 \frac{7}{4}$) [See $B 2$ for details of subjects.]. Her mother showed her a coloured picture of a rural scene. Nestling between two hills there was a farmhouse. There were cows erazing on one of the hills. The other hill, was ploughed and a flock of rooks was scattered over it. This hill partially obscured a red-roofed haybarn which stood beside the farmhouse. The roof of the barn was long, and rounded in cross-section. The bam was filled to the roof with orangey hay. Ja correctly identified the house in reaponse to a question from her mother. Then she pointed out the bam and said "That's a bus, Mumy". One way of looking at it, the mistake was reasonable: the roof of the bam was very like that of a bus. However, it would have required many more similarities, between what I saw and ny stored prototype of a bus, to persuade me, an adult, that what I saw was a bus in a farmyard. The reason is that buses do not belong on fanns.

This illustration suggests to me that one of the ways in which comparison between input and prototypes is rendered sufficiently finite to be feasible and by which confusion is aroided is through the organization of vocabulary into lexical fields [See Lyons (1963,1968) for an account of this notion. 7. By delving only, into, that part of the filing system which contains fields currently of relevance in a conversation or eituation the number of drawers to be scanned will be Greatly reduced. I shall try to show in the empirical part of this thesis, S2; that a major difference batween adult and child vocabuiaries is that the latter are not differentiated into numerous, intersecting, lexical fields.

Ja's response also illustrates in enother way the need to include e consideration of relationships between lexemes: 'overextensions' are a function of which other lexemes there are in the lexical field. Ja not only lacked bam but also did not have other candidate lexemes such as shed and haystack. As an example of the process of oomparing current input to stored prototypes consider the following from J, a boy aged 2 ; 停. He was handed e grey plastic elephant and as he handled it said. "a cow, sheep, another cow". Perhaps he was hunting about doubtfully in this way among his prototypes because after he had identified the same toy elephant as, a sheep, a month earlier, the adults present had gone on to talk about it as an elephent and he had on that occasion imitated the form elephant. The suggestion of this paragraph is in the epirit of Kirkpatrick (1891, p.175) who - to continue a passage quoted in 81.2 .3 .1 , above - says of a child who calls a goet dog: \quad... he classifies it with the group of animals it resembles more closely than any others with which he is acquainted."

Another line of attack on my proposal might be its dependance on internally stored relics of percepts. How could a system of this kind develop into one which is also able to store the meanings of abstract words? This is not a pressing concern for me beceuse, ae I have already suggested, youns children's nominals are hardly ever abstract. However, I do not regard the system which I adrocate as being applicable only at a certain early stage of linguiatic ontogenesis. I think it very likely that abstract lexemes are understood in terms of memory traces of our experiences of the concrete world. An experimental investigation by Bugelaki (1970) points clearly in this direction.

Bugelski re-examined a hoary technique in the psychologist's repetoire: free association to words. The psychologist presents a word and the subject is required to respond with the first word brought to mind by the stimulus word. Bugelaki points out that the association is not etrictly free because the subject is constrained to respond with another word. A typical result from word association tests is that 84% of people respond chair to the stimulus table. Bugelski says that, in psychological circles:

It is a widespread, implicit assumption that subjects who say CHATR thought of a chair when someone said TABLS, Such an assumption is manifestly absurd as no one in his rigit mind would [immediately, P.D.G.]
think of a chair when someone eaid TABLE under any other conditions than those of a verbal association teat. ($p .1005$).

Bugelaki devised a freer version of the test and, using 32 common Fords, applied it to 57 university students. They were instructed to write a deacription of their first reaction to each word he read out. My interest in the results is that although some of the test worde were abstract an overwhelming proportion of the responses (p. 1005) !... could, with some justice, be described as imagean. For instance, in response to communism (an abstract word) one subject wrote: "I saw a red velvet wall with a large yellow hammer and siokle". Bugelaki concludes (p. 1006):

[^4]operationg. Goverment by the people becomes an image of a crowd at a political rally.

Why, it nay be wondered, then, are people ever able to offer intensional definitions of a kind different from those which merely appeal to resemblances to one or more prototyper, which are mentioned or ostended? Fumbling, everyday explications of usage, dictionaries and linguista' componential analyses attest to such an ability. I sumise that we continually operate upon our gross otore of experiences; replaying, as it were, videotapes, constructing partial concordances and crose-references and noticing common properties of recordings filed under like labels. Some of this may be done in formal education, some of it in ida reverie. It may even take place unconsciously; perhaps it is the process which manifesta itself as dreams in our sleep. I see no reason for new ebstract (that is, not perceptually-grounded) prines either to arise out of or enter into this process of crosereferencing and olasaification. In this way, it seems to me, the theory of prototypen could allow for the possibility of humans devising a theory of criterial attributes, which offers coarse-grained accounts of the likely chameteristics of the internal prototypes stored by members of a given culture.

In 自2 I Bhall present empirical evidence, from the growth of children's vocabularies, in support of the theory of prototypes and in. B1.4 I shall offer some psychological props to buttress ita plausibility. Before doing so, however, some advantages of a general nature which acorue ta the theory of prototypes are worth remarking upon.

One virtue is its compatibility with the facts of semantic change. Ullmann (1962, p.211) in his ohapter on change of meaning says: "No matter what causes bring about the change, there must always be some connexion, some association, between the old meaning and the new." Informed by the theory of criterial attributes it would be reasonable to expect the connection to be shared (criterial) semantic components. I cannot prove that this is not the case but it seems to me extremely unlikely in view of the diverse catalogue of similaritios which Vilmann cites as having supported semantic changes. Consider, for instance, the presumed connection (via rosaries) between bede, a prayer, and bead, small clobular object. Surely it would be perverse to claim that there were so many ahared criterial attributes in the denotation classes \{beads\} and \{prayers\} that when one or two of them were discounted or wavered in the flux of time the transfer was a natural one to make. How much easier it is to imagine someone storing a memory trace of a person counting bedes and later using the labelled trace as a basis for calling the beads bedes. The same comments hold for the etymology of muscle (from Latin musculus, diminutive of mus 'mouse'). In terme of overall visual properties - the quick smooth movement of a small hunched rounded object - the eimilarity is straightforwardly intelligible. On the other hand, if the criterial attributes SMALL and QUICK MOVEMENP (to guess at some of them) are the relevant mediators why are the golf-balla' on some electric typewriters, cheeky sparrows and ahooting stars not called muscles or mice? I trust that these two examples - of metonymic and metaphoric change, respectively - will suffice although many more could be given.

Another phenomenon which can readily be explained in terms of the theory of prototypes is the use of the definite article in sentences such as:

I cannot use my bicycle this evening because the
tail light is out of order.
The label of any part of one's internal recording of a prototype nay be used in definite form if the prototype has atready been introduced into the conversation.. Of course, there should be a qualification to the effect that in the interests of commuication one should also believe that the item in question is a part of addressee's stored prototype. A possible counter to this argument is that tail lights are, at least in law, a criterial attribute of bicycles used at night and that "criterial attribute" could be substituted for "any part of one's in'ternal recording of a prototype" in my rough formulation of the rule. There are many cases where this will be inadequate, however. Consider the natural Danish translation of I got paint in my hair [A French example would have sexved equally well.]:

Jeg fik malefarve i haret.
Gäret, 'the hair', is the definite form of här, 'hair'. To make the possession of hair a criterial attribute of possible speakers ignores the existence of bald people. Perhaps this sort of case could still be covered by the theory of criterial ettributes if it were relaxed to permit diajunctive composition of componente: human $=\ldots \& \pm$ HATR. But I belleve that my next example, five lines from Bums' poem qam o' Shanter, renders this proposal ludicrous:

While we sit bousing at the nappy
'An' gettin' fou and unco happy, We think ne on the lang Scota miles, The mosses, water, slaps and stiles, That lie between us and our hame, .

The definite article before moseas, and tacitly before the other words In the penultimate line, is reasonable because mosses, boge etc. are part of the image evoked by "lang Scots miles", for anyone who understands the poems though they are quite unrelated to the fact that a Scottish mile was longer than an imperial mile. I an, as seens entirely reasonable to me, taking the penultinate line of this citation as being in apposition to the lang Scote miles and not merely as second, third, fourth and fifth conjuncto of a conjoined nown phrase.

Finaliy, a terminological point, if I am correct in believing that our mental intensions of lexical items are detailed prototypes to which input is compared in deciding on the applicability of a lexical Item, then denotation and reference are alnost coterninous. A lexeme denotes its denotation class. The denotation olass of a Iexeme is the set of entities in the world to which tokens of the phonological type(s) associated with that lexeme may reasonably be made to refer. Reference is a conversational process in which the utterance of an expression (thet is, the utterance of a token(B) of the phonological type (s) associated with a lexeme or a phrase cc. i of more than one lexeme 7 is used to pick out for the addresees a particular individual entity; the particuler individual entity which the speaker intends to pick out for the addressee. I am claiming that denotation classes are linguistic construota based on relative similarity to mental representations of encounters with particular individual entities, the prototypes. The qualifier relative is introduced as a reminder of the role of sense relations batween lexical Items. Heference therefore differs from denotation largely in a concern on the part of the epeaker that
the memory trace evoked in the addressee's mind by means of a referring expression should be a trace of en encounter with the same entity as the one reconded in the memory trace which is curcently indexed for the speaker by the expression used and not merely a similar one. This justifies my use of reference in the title of this thesis. I recognize that this account of Teference is oversimplified - one need not have encountered en entity to take a reference to it. However, I believe it to be the start of a correct account.

1.4 Paychological prope for the theory of prototypes

"It is characteristic of netural language that no word is ever limited to its enumerable senses, but oarries with it the qualification of 'something like'." (Bolinger, 1965, p.567). The proposal sketched in B1. 3 is that the benchmark reference items in this comparishn are internally stored prototypes. In the present section I shall try to buttress the proposal with experimental and clinical observations drawn from the field of psychology. In 81.4 .1 I offer some grounds for believing that we ordinarily recognize things by attending to wholes and not by checking for the presence of criterial attributes. In S1.4.2 I assemble evidence which points to human memorles having enough storage capacity and being able to record with sufficient fidelity to hold an enormous number of detailed prototypes. The videotape analogy of 81.3 .2 presumes a distinction between the contents of memory 'drawers' and the labels on those drawers; B1.4.3 is concermed with. establishing the oxistence of such a diatinction in human minds. Prototypes may appear to be indiatinguiahable from tmages; S1.4.4
examines the connection with image theories, some criticisms which have been levelled at the latter, and ways of escaping refutation-byassociation. 81.4 .5 is a note on stabilized retinal images, the nature of whose fluctuations might be thought by some to run counter to my thesis.

1.4.1 Wholes va, parts

Rook et. al (1972) report an interesting series of experiments in which they tested subjects' ability to recognize either the outline or the internal details of fairly complex figures which they were shown briefly. The following is one of the figures used, with its outline and internal configuration shown separately on the right.

The figures were displayed for 5 seconds during the course of an experiment which subjects were led to believe was an investigation of visual afterimages. At the end of the display they were unexpectedly given sheets containing 10 alternatives from which they were required to select a copy of what they had just seen, or some part of it. Subjects who had viewed only the outlines of figures or only the internal configurations were very well able to select correctly a copy of whet they had just seen; proportions of subjects showing correct recognition varied between 62% and 86%. Subjects who were exposed to the entire composite figures were not quite as good at choosing between 10 variations of the outer contour; proportions of subjects

Who marked the correct item were between 36% and 56%. However, subjects who saw the whole figures and then had to tiy to select the internal configuration which had been contained in the figure were essentially unable to do so, whether or not the configurations in the ten-choice recognition test were presented within copies of the original outline; proportions of subjects choosing the correct internal configuration varied between 0% and $11 \% \%$ on the basis of these and other similar experiments Rock et al conclude (p.655): \% ... those features of a figure which are immaterlal to ita over-all, Elobal shape are typically not recognized even immediately afterward; whereas those same features exposed in isolation under the same conditions and for the same period of time are recognized." This is nicely in harmony with an introspective opinion expressed by Pillsbury \& Meader (1928, p.176): y... if one will watch carefully the imagery as any object is recalled or remembered, it will be seen that everything is represented very schematically, Details are very largely lacking; rough outlines are made to do duty for much more than they reproduce."

It is a well-establiahed fact that paople recalling items from random lists which they have memorized tend to rearrange the contents of the lists into contiguous clusters of similar items $[$ see Bousfield (1953) for a pioneering atudy of this phonomenon. 7. Frost (1971) in a careful and ingenious experiment has demonetrated that an important dimension of similarity forming the basie for such reorganization of liats is the gross orientation of a subject's visual image of an object. In the description of her work which follows I am keeping what I regard as the most significant evidence for present purposes
until the end; it may well be contended that the first results recounted are merely curious artifacts of a particular experimental technique.

Frost used line drawings of 32 common objects as stimulus material. Each object was drawn so as to have either a predominantly vertical, horizontal, Ieft-slanted or right-blanted orientation. As an aid to visualizing these pictures the reader may find it useful to imagine e rolling pin, one of frost's etimulue objects, in each of these orientations. [In a partial replication of the experiment, which yielded essentially the same results, Frost reassigned half of the stimulus objects between the four orientations. Thus, if the rolling pin had been depicted in perspective slenting up to the left for the main group of subjects, the subjects in the replication might have been ehown a picture of a horizontal full broadside view of a rolling pin. 7 Bafore the test, subjectsiwere given eame practice trials designed to-lead some of them to believe accurate memory of the pictoriel information would be important and to enoourage others to beliove that visual specifics of the tokens they were shown would be irrelevant. The former were shown practice plotures and required, in a subsequent recognition test, to eelect replicas of the pictures they had seen from among sets of pictures containing different views of the same objeots (None of the practice piotures fitted the four ahape categories, vertical, horizontal, left- and right-alanted. 7. The subjecte who it was hoped would pay less attention to pictorial properties saw the same practice pictures but vere subsequently tested for their ability to pick out from sata of common nouns the names of
the objects which they had been shown. The subjects were told to expect the aame testing procedure in the experiment proper. This was either a 'white lie' or a piece of sophistry but in terms of expectations derived from the practice trials the two groups may now be distinguished as the PP (picture-picture) sroup and the PW (pictureWori) group. The experiment proper followed inmediately: each subject was shown each of the 32 pictures once, in fairly rapid succession 1.5 seconds per picture. A different random order of presentation was used for each subject in a given group, but the orders of presentation were replicated across the two groups. After a 15 minute interval, during which they were occupied with syllogism problems, subjects were asked to recall orally the names of the 32 objects they had seen. Next, each subject was ealed a number of questions about which I shall have more to say presently.

A control group were not shown any pictures. Their practice consisted in reading a list of printed words and then trying to recognize the previously presented words from among sets of words containing distractor items. In line with the teminology employed above, they were a wH (word-word) group. For them the oxperiment proper consisted in viewing the nemes of the 32 objocts - in a different random order for each subject - then, as for the PP and PW subjects, solving syilogistic puzzles for 15 minutes before being asiced for oral recall of the 32 words and, finally, answering questions in the post-experimental interview. Each bubject's list of itemg recailed was quantified to indicate the extent to which it had beon reorganized so as to present the items from each of the four orientation categories in immediate
buccession. I shall omit here an account of the method of computing the amount of clustering (and also of certain other important statistical controls which were undertaken.) However, the highest figure would be obtainod by e subject who recalled the items from each orientation category en bloc before proceeding to list the items from the next category. The WH control group, who had not been exposed to the experimenter-imposed orientation categorization, showed no tendency to impose this categorization on the sequences of worde which they recalled. By comparison the PP Broup, as might have been expected, and the PW group showed highly significant tendencies to recall in imediate succession items which had been depicted in the same orientation; the difference between the PP and PH groupe being so slight as to be of no account atatistically. The post-experinental interviews With the PP and PN groups indicated that the subjects were able to. recall the shape/orientation of each picture much better than chance but (p.413) nNot only did ss report that they did no more than rocognize and name the drawings in the stimulus set, but none of the 45 Ss who saw the atimulus drawings indiaated any awareness of the shape categories." The experimenter's oategories thus seem to have exerciaed their influence at a subconscious level.

PP and PW subjects were also questioned about intrusions in their recall lists words which named objects which had not been presented in the experiment. There were few intruaions "... and, in the great majority of cases, \underline{S} described an object similar in shape to the object preceding the Intrusion. For example, one S reoalled the word "shoe", followed by "fish" (an intrusion). His dosoription of the fish was
very detailed and of a distinctly horizantal projection (as was the ahoe)." (p.413).

What I regard as of even greater interest is e result derived from reacoring the recall lists of the WW group. When they hed been used as a control, their protocols had been scored for a tendency to cluster into orientation-defined categories the names of objects which the other subjects had seen in vertical, horizontal, left- and rightslanted projections. They had shown no such tendency. However, information on their personal image orientations was available from the debriefing interviews (p.412): The WH Ss, 存hb often reported spontaneous visualization of the objecta during stimulus presentation, were asked to classify the ir images according to the four shape cateBories. When no image was recollected, \underline{S} was asked to select one of the four categories in which he would most oxpect to see the object drawn." Using these personal categorizations as the basis for deternining the extent of clustering by orientation it was found that there Wes a considerable amount present and the differences between the WW and the PP and PH groups almost disappeared \because... giving experimental support to the WH SB' rel , ited use of visual imageny." (p.413).

Two (linguiatic) investigations of numeral classifiers, Adema \& Conklin (1973) and Friedrich (1970) may be cited as immediate examples of the releyance of the type of investigation undertaken by Frost and Rock et al for linguistic studies. Many languages require the speaker. to specify the units in which items referred to by a common noun are measured, whenever the comon noun is qualified by a numeral; and in
certain other contexts $[$ See Lyons (1968, p.288) for a good brief description. 7. If English vere such a language we would have to say three head of cattie and would not have the option of saying three cattle, in the appropriate circumstances of course. Chinese is a language which has obligatory mumeral classifiers. For instance, the following noun phrases would be ungramatical if the classifiers, zhI, 'Iong slender object' and zhang, 'flat object' were omitted:

sänzhi three-long-slender-object 'three penis	pen
sanzhi	chuan
three-long-slender-object	boat
'three boata'	
sanzhang	di
three-flat-object	map
'three maps'	

Adams \& Conklin surveyed the numeral classifier usages of thirtyseven Asian languages. They found that ($p .8$) none of the most. fascinating facte of numoral classification ia its dependence on the visual faature of form. The shepes longleh, flattish and bulkily, rounded $11 .$. are by far the strongest metaphors which occur in the numeral classifier construction." (P.5). Friedrich gives a detailed account of numeral classifiers (and other shape-influenced grammatical categories) in Tarascan, an Amerindian language of Mexico. He also provides a less detailed survey of the same phenomens in other Anerindian languages, and a few languages from other parts of the world. He show, olearly that, in the clasaification of inanimatea, cetegories which (p.399) "... relate to physical experience - above all, visual experience." figure prominently in these languages and, as in the case
of the languages inveatigated by Adams \& Conklin, categories which emphasize one dimension (long objects), two dimensions (flat objects) and three dimensions (bulky round objects) appear to be very common. This sort of classiffection would be easy for humans who store perceptual icons of objects with the phonological representations of the names of those objects, which is what I have been contending. These gross outlines are characteristics which Rock et al have shown we can easily store faithfully and which Frost has shown to be tacitly employed even by speakers of English, a language in which shape is hardly grammaticalized at all.

To revert to Psychology, I should like to recount an experiment performed on human Lifants by Bower (1966). At the Iower end of the phylogenetic acale the responses released to a given stimulus configuration are approximately equal to the sum of the reaponses which are elicited by each of the componenta of the configuration when they are presented in isolation. This is known as heterogeneous summation. At the higher end of the phylogenetic scale, on the other hand, Geatalt perception prevailss the whole elicita more responding than the sum of its parts. Bower conditioned six infants at each of the ages 8, 12, 16 and 20 weoks to make a loftward head movement in response to a circular disc containing a orves and two dots, thus:

Whon this response was raliably established he teated the infants to see how many reaponses could be evoked, in the absence of reinforce-
ment, by the disc, the oross and the dots separately and by the whole ensemble. He obtained the results shown in the following table.

age in weeks	mean number of responses				
	diec	orose	dota	Eum of parted	whole
8 12 16 20	40. 67% 55 25	14.66 13 15 10	15 21 31 16	$\begin{aligned} & 69.66 \\ & 101 \\ & 101 \\ & 49 \end{aligned}$	$\begin{aligned} & 69 \\ & 100.5 \\ & 114.33 \\ & 106 \end{aligned}$

Firstly, it is clear that while 8 - and 12-week old infents followed the Law of heterogeneous summation, the Gestalt prediction is borme out by 20-week old infants. I take this to be an Indication that the theory of criterial ettributes would almost certainly be valid for the meenings of the words of infants up to the age of approximately three months, if they could speak. After that age the theory of prototypes seems more likely to be in harmony with the nature of human minds. Socondly, notice that, in keeping with the findings of Rock et al (1972), at each of the age levels; the outer contour of the conflguration - the diac - is the moat effective of the parts.

1.4.2 The size and quality of human memory

The theory of prototypes would be Infeasible if humans had only a rather limited amount of storage capacity for memoriess all of us use thousends of words and the theory of prototypos requires room for the filing of detailed memory traces of one or more exemplars for each content yord. The theory could be ruled out of court simply by
adducing evidence which showed that human memory is smell; that we need the economy of criterial attributes - bhort liste of simple cues the presence or absence of which reliably classify the external world. Accordingly, I aheil seek to demonstrate in this section that human memory is enormous, that we characteristically atore not only many memories but also that they may be very detalled and enduring. I begin with an eccount of some experimental studies of memory for recognition. Next, I recount some case studies of unusual individuels. The section conoludes with a discussion of some psychological and neuropsychological theorizing on the nature of memory.

Hock \& Engelatein (1959) used the shapes depicted below in an attempt to discover whether the memory trace of a visually-presented shape changes with the passase of time.

[Reproduced from Rock \& Engelstain (1959, p.223).]

[Reproduced from Rock \& Engelatein (1959, p.226), $]$
Each subject was shown either the rectilinear figure numbered 10 or curvilinear figure number 10 for a period of 20 seconds. Subjects who viewed the rectilinear figure were told that the experiment was an investigation of extrasensory perception. For the curvilinear figure the inspection was disguised as an experiment on visual after-imagery. The subjects were thus not encouraged to make any special effort to commit the shapes to memory. After the initial exposure subjects were dismissed and led tombelieve that the experiment was over. However, they were, summoned back after intervals of 15 seconds, 1 day, 2 days, 1 week, 2 weeks, 3 weeks or 4 weeks and asked to draw the figure they had been shown. There were striking degradations in the accuracy of $\%$ reproduction, even after 15 seconds and much more so after a week. 'Recall' memory was thus poor and decayed with the passage of time. LAn appropriate control demonstrated that the low scores were not attributable to poor draughtsmanship. 7 For present purposes, however, the results of a recognition test based on the drawings of these subjects is of greater interest.

Four judges selected the two sets of figures numbered 1 to 9 in the reproductions above from among the recall subjects' drawings. They attempted to select figures which were very similar to the originally presented shapes LThe onos they judged to be most similar to the originals are numbered 9.7 , drawinge which were similar to the originale only in being closed rectilinear or curvilinear figures [These are numbered 1.7 and a range spanning these two extremes [2 to 8]. These sets of figures were used to make the recognition teat blanks which I have reproduced above; the numbers indicating the judges ratings were not present on the versions used in the experiment. Other subjecte were shown one or other of the original figures - nos. 10 - under exactly the same conditions as the recall subjects and were then unexpectedly invited back at different time intervals ranging between 15 seconds and 4 weeks - different subjects for each of the retention periods, as before - and asked to indicate, from among the ten figures on the appropriate recognition test blank, the shape they had eaxlier been exposed to. Hock \& Engelstein present their reaults in terms of median scores but are somewhat negligent in not stating the ranges. However, from the results which they do present it is clear that for most of the aubjects recognition memory was at least as close to perfection as the difference between the figures numbered 9 and 10. The lack of detailed distributional evidence can perhaps be compensated for by stating what can be derived from the presented medians and some other hints to be gleaned from their paper. For the rectilinear fisure at least 50% of the subjects, at each of the time intervels, were able to identify the one they had been shown initially. That rather more then 50% of them did so is suggeated by the statement
(p.224) that after 3 weeks - the longest retention interval tested with the rectinlinear figure - only 3 of the 17 subjects tested for this particular interval falled to select the correct figure. The curvilinear figure proved to be elightly harder but even so 72 of the total of 102 aubjecta tested correctly identified the figure which they had seen before. HEven after four weeks, 9 Ss selected the correct figure and 6 Ss the one rated 9,4 (p.227) out of "n... approximately $20 \ldots$... (P.226) subjects tested after this interval. Again, it should be emphasized that these subjects had not been instructed to remember the shapes; in fact, some attempts had been made to mislead them into believing that they need not remamber what. they had seen.

Shepard (1967) attempted to assess the amount of information which people can store in memory for purposes of recognition and Whether printed words, printed sentences or pictures could be stored more effectively. Hia method was to diaplay to subjects a large number of items (either words, sentences or pictures) in succession and then present them with a test seriec of pairs of items, one item In each pair was old!, L.e, had been included in the orlginal serial display, and the other item In each teat pair was 'new', but drawn from the seme pool of items which had provided the original set of to-be-remembered Items. Seventeen university students eaph read a set of 540 different words, all between 5 and 7 letters in length, half of them Highafrequency words and the other half rame Immediately after Wards they took a 60 -item test in wich they had to indicate which member of each pair had been included in the original 540. The mean
proportion of worde correctly recognized as old' was 88. 4\%. To teat memory for sentences Shepard was able to find a collection of 1360 different sentences originally compiled for arifculation testing. Seventeen students each read a 612-item subset of these sentences. Two additional subjects read a double-length, 1224-item, selection of the sentences. on a subsequent 68 -item test the subjects who had seen the set of 612 sentences were able to correctly identify, on average, 89% of the 'old' sentences. The mean proportion of correct choices of 'old' sentences in the pairs test for the subjocts who had read the double-length set was 88.2%. These figures btrike me as impressive but the retention of pictuxes was even better, in terms of the proportion recognized correctly.

The illustrations chosen for presentation in the picture test were mostly culled from magazine advertisements. Shepard intended they. should be individually of high sellence and memorability and, colleotively, low in oimilarity and confusability. From a total of 748 such pictures he constructed a 612 -item memorization series. The remaining 136 pictures-wore used as the 'new' items in constructing two 68 -item recognition tests. In the recognition teats each 'new picture was paired with a different 'old' one, randomly eelected from the 612 presented for memorization. The aubjects were 34 technical and clerical employees in the laboratories of a telephone company. Each subject viewed the 612 pictures, projected in colour on to a scroen, at a personally chosen pace. The average time each person spent looking at each picture was 5.9 seconds. Imediataly eftervards they were ahown the first set of 68 recognition pairs and asked to Indicate the
previously seen 'old' pictures in each pair. Nine of the 34 subjects were able to do so with 100% accuracy. The mean score was 96.7%. Half of the subjects achieved a score of 98.5% or better. The interquartile range was 4.4%, which means that three-quarters of then achieved a score of no lower than (and probably higher than) 94.1\%.

Sixteen of these subjects vere retested, using the other 68 recognition pairs, after 2 hours, 3 days, 1 week or 4 months; four subjecta were tested for each of the retention intervals. The mean percentage of pictures correctly identified after each of these periods was, respectivelys $99.7 \%, 92 \%, 87 \%, 57.7 \%$. In a two-choice test 50% is the score one would expect if chance alone determined the responses. The results are, even more striking, it seems to me, when it is remembered that these feats were perforned as an aside from the ordinary lives of the subjects, merely to satiafy a paychologlat's acientific curiosity. In Shepard's worde ($p .160$) \& tIFvidently, after 20 or more yoars of absorbing visưal information, Ss are still able to take in as many as 612 further pictures without any particular effort and, then, diecriminate these from pictures not previously seen with (meaian) accuracy of over 98% n

A possible objeotion to the seneral validity of Shepard's zesults liea in his having used advextisements, with which subjects might have been familiar, and in his having selected pictures which were, subjectively, highly distinct from one another. This objection ls met in an investigation reported by standias et al (1970); an investigation which also used even larger ensembles of stimulus pictures.. In one
experiment four subjects who viewed a succession of 1100 reproduotions of photographs drawn haphazandy from magazines soored $99 \%, 95 \%, 96 \%$ and 96% on a 100 -1tem recognition test presented 30 minutes efter they had seen the lest of the memorization items. The recognition test, as in Shepard's (1967) work, consisted in pairs each containing one old' and one 'new' pioture from which subjects were to select the old' menber. In another of their experiments Standing et al used a large collection of 35 m- slides provided by amateur and professionar photographers. From these they randomly selected 2560 slides to be presented for memorization, Almost all of the alides were coloured and very fer contained letters of numbers. The slides could be appontioned as follows accordidg to subject matters 37% human, 5% animal, 13% vegetation, 7% mineral, 24% urban acenes, 13% mechanical objects, 1% miscellaneous.

Five subjects were shown the 2560 slides by means of an automatio projector, which displàyed each slide for 10 seconds, with a delay of half a second between suocessive slides. A ten-minute rest was allowed after each hour of viowing. Three of the subjects 8 aw 640 sildes a day for four days and the other two had 1280 slides a day over two days. One hour after the last slide in the learning series each subject took a recognition test, of the same kind as thoge described above, consisting of 280 pairs of piotures. The eubjecta whose initial exposure had been spread orer four deys were able to select the old' pictures correctly 95%, 93% and 85% of the time. The two subjects who had seen the original series in two days scored 89% and 90% We are told (p.74) that among the 2560 alides there were $4.0-300$ pictures of
single adult male figures and 200 single female adults." which allows the conclusion, given the high levels of accuracy which were nonetheless achieved, that the stored memory traces must have been quite detailed.

Entwisle \& Huggins (1973) have performed similar experiments with Houng children [ufirat brade", in the U.S.A. 7 using 40 pictures of "... unremarkable landscapes or oityscapes.... [which]were completely unfamilier to these chilaren, insofar as we knew." (p.392). In one experiment they were projected in black and white and the children were tested by means of a 40 -pair recognition teat approximately 2 z hours later. The mean number of correct recognitions for the 23 children tepted was 31. The lowest score was 23 and the highest 38. Thirty other children a日w the same, series of piotures in colour and after 2走 hours scored between 25 and 40 out of 40 in the recognition test; the mean was 34.2 . Lithird Broup (of 29 children) al oo saw the pictures in colour büt were tested one week after the initial display. They succepded in identifying the 'old' pioture 31.9 times out of 40 , on average; the scores ranged between 24 and 39. Soe Brown \& Scott (1971) for a roport of a Bimilar exporiment with comparable resulte.

At various times during its development psychology has ghown an interest in eldetic images. These are otrikingly clear and detailed revivals of previousiy-perceived viaual scenes which some, but by no means all. people report having experienced. Eidetic fmages are not to be confused with visual after-inages. . Visual after-images are produced by ataring fixedly at simple shapes under strong illumination
and they are colour-negative, e.g. staring at a yellow circular disc will yield an after-image of a disc coloured blue. By contrast eidetic lmages are reportedy of mach longer duration, usually colourpositive and can be evoked by pictures too complicated to yleld an after-image. They can be voluntarily recalled after a considerable lapse of time, Allport (1924), who provides a good sumary of early reaearch in this field, studed eidetic imagery in 11-year old children. He showed them a picture on a large sheet of dark grey paper for a period of 35 seconds. After removal of the picture he asked them to continue looking at the grey paper and report what they saw. Their reports often contained very detailed descriptions of the picture. For instance (p .109)

```
- I found that number of children whom \(I\) examined were able to spell comectly, or almoat correctly, from their image the Geman word Gartemwirthscheft, which was for them quite meaningless. The exposure of 35 seconds was not sufficient to pemit a 'leaming' of the word, especially aince the picture itself wes filled with inaident and detail of lively intereat which the child had likewise to describe. The essential features of the picture were described with more fluency, to be sure; but upon being pressed to 'observe! their image more closely each child was able, often to his own surprise to 'see' the small letters over the doar.
```


Allport (1924; p .101) claime of oldetic imagery: uthere is an

 observable retreat of the ability during adolescence... though among poets and artists a large number, perhaps the majority, are in reapect to their imagery grown-up children © © Stromeyer \& Psotka (1970) found a 23-year old artist with apparently very powerful eidectio ability. Theix report describes an Ingenious test of her capacity for atoring detailed traces of viasel input. They made use of Juleszrandom-dot stereograme. Each member of the stereo-pair is a pattern of dots created by randomly filling or leaving blank the cella in a lange square matrix (typically 100×100). The two patterns are fidentical except that in a chosen region of one of the pattems all of the dots are ahifted a few cells laterally. The resulting empty cells are randomly filled or left blank to patch up the overall appearance of a random scattering of black dots. Each of the patterns is thus completely random but the region which is decorrelated between the two pattems is seen as a figure in depth when the pair is viewed through a stereoscope.

Stromeyer \& Psotka allowed their subject to viaw one member of a random-dot stereo pair with one eye only. After a delay, whioh in one case was 24 hours, they presented the second member of the pair for viewing with her other eye. She was able to identify the shape of the decorrelated region, which ohe claimed she could see in depth as clearly as when she later viewed the pair through a stereoscope. This test allows e more impresalvely objective demonstration of the effect than Allport's technique. However, some caution fa warranted because (a) the figures were extremely gimple: a square and a In two different orientations and (b) the experiments were not double-blind, i.e., the experimenters had knowledge of the ahape of the decorrelated region. Stromeyer \& Pootka olaim, without giving detalls, to have eubsequently performed successful double-blind testa with the same anbjeot, with Intervals as long as 3 deys between the two presentations for 100 x 100, and 4 hours for 1000×1000 atereograms. wy reason for introducing Eidetikers, and the memoniats which follow, into the discussion
is that I do not believe human brains could possibly vary no greatly in their cyto-arohitecture and physiological functioning as to give sone people orders of magnitude more menory capacity then the rest of ue. In the conclusion of thia section I speculate thet the differences may be attributable to different waye of using a human brain.

Stratton (1917) reports anecdotes about three different Shass Pollaks' recounted to him by other people. tshass is the abbreviation for the Hebrew tems for the Talmud, and Pollak js a Pole; nearly all these memory experta came from Poland; a Shass Follak then is a Pole Who hes memorized the entire contents of the Talmud" (pp, 244-5). These people were said to be able to specify which word occupied a given position on any page of the Talmud. A pin would be pricked into a word on one page and, it is claimed, the memonists could apecify the word through which the pinprick passed on any other page. It ia worth noting too that two of the people who suppled Stratton with his information stated that the 'Shass Pollaks' they had met lacked a scholarly grasp of the contents of the Talmud, despite knowing the text by heert. These aocounts are not well substantiated, but informal enquiries whioh I have made among friende guggest to me that many aoademics have had the experience of hunting through a text for a quotation and lenowing, correotly, where on the page they would find the object of their search.

A bettor-documented case is the mnemonist, S, wo was studied by A. R. Luria, an eminent paychologiat, over a period of almoat thirty years. $S^{\prime} s$ memory was so faithful as to be an embarrasment to him;
for instance, he would fail to recosnize acquaintances whose appearance had ohanged in some smail deteil. He was, to pervert a trite saying, unable to remember the wood for all the minute features he recollected about the trees. The only occupation he succeeded in wes giving demonstrations to eudiences of hie phenomenal ability to remember lists, tables and texts. The following pasaage from Luria's account (1969, pp. 11-12) will give the reader an idea of the man:
... It appeared that there was no limit elther to the capacity of S's memory or to the durability of the traces he retained. Erperimenta indicated that he had no difficulty reproducing any lengithy series of words whatever, even though these had originally been presented to him a week, a month, a year, or even many years earlier. In fact, some of these experiments designed to test his retention were performed (without his being given any waming) fifteen or sixteen years after the gession in which he had originally recalled the words. Yet invariably they were auccessful. During these test Besgions S would sit with his eyes closed, pause, then coments TYes, yes... This was a geries you gave mo once when we were in your apartment ... You were sitting at the table and I in the rooking chair... You were wearing a gray suit and you looked at me like this Now, then, I can see you sayingt. And with that he would reel off the series precisely as I had given it to him at the earlier session. If one takes into account that he had by then become a well-known mnemonist, who had to remember hundreds and thousends of series, the feat seems even more remerkable.

Wilder Penfield [Penfield (1959), Penfleld \& Roberts (1959) $]$ evoked similar detailed reoollections from some patients by means of localized. electrical stimulation of the cortex. The patients were to undergo neurosurgery for the relief of opilepsy. Before performing the operations Penfield 'mapped parts of their brains in order to determine which parts should be preserved at all costs and which parts could relatively safely be interfered with. He did this by exposing parts of the brain and then
probing its surface with eleotrodes carrying small alternating electric currents. The operations were performed with only local anaesthesia so that the patients remained conscious throughout; the cortex itself is without sensation. The type of response with which I am concermed, and which Penfield calls experiential, was aroused only by stimulation of the temporal lobes; never by stimulation of other areas. The anterior and deep portions of the temporal lobes are also the parts of the cerebrum in which [of. Penfield (1959, p.1723).] Hughlings Jackson observed that epileptic discharge would produce 'dreamy states' and reminiscences. And, in the dominant hemisphere, the temporal lobe contains areas of central importance in the use of language.

One of Penfield's patients, M. Ma., [Cf. Fenfield \& Roberts (1959, p.59). 7 exclaimed when the current in a suitably placed electrode was switched on: Oh, a familiar memory - in an office somewhere. I could see the deaks. I was there and someone, was calling to me -a man leaning on a desk with a pencil in his hand." As another example, consider the following $[\text { Penfield (1959, p.1720), }]_{1}$

A-boy (H_{e} W.) heard his mother talking to somene on the telephone when an electrode was appliod to his right temporal cortex. When the stimulus was repeated without warning, he heard his mother again in the same conversation. When the stimulus was repeated after a lapse of time, he said, My mother le telling my brother he has got his coat on backwards. I oan just hear them."

The surgeon then asked the boy whether he remembered this happening. "Oh yes," he said, "just before I came: here. 1

The following case [Penfield (1959, p. 1720),] attesta to the veribimilitude of the recollections and also to their being recordings in
real time:
A women ($D_{0} F_{0}$) $\quad .$. heard an orchestra playing an air while the electrode was held in place. The music stopped when the electrode was removed. It came again when the electrode was reapplied. on request, she hummed the tune, while the electrode was held in place, accompanying the orchestra. It was a popular song. Over and over again, restimulation at the same spot produced the same song. The music seemed always to begin at the same place and to progress at the normally expected tempo. All efforts to mislead her failed. She believed that a gramaphone was being turned on in the operating room on each occasion, and she asserted her belief stoutly in a conversation some days after the operation.

The summary from Penfield's preamble ($1959, \mathrm{p} .1719$) will serve admirably for my purposes too:

There is an area of the surface of the human brain where local electrical stimuation can call back a bequence of pest experience. An epileptic irritation in this area may do the eame. It is as though a wire recorder, or a strip of cinematographic film with soundtrack, had been set in notion within the brain. The sights and sounds, and the thoughts, of a former dey pass through the man's mind again.:

The reference to thoughte in this quotation is moved by another kind of response which Penfield was sometimes able to evoke by temporal-lobe stimulation, and not from etimulation in any other part of the brain. These responses, which Penfield terme interpnetive, are feelings of fear, familiarity, Btrangeness, aloofness etc. Penfield suggesta that they are the manifestation of a mechanism which evaluates present experience against stored representations of aimilar past experiences and produces immediate reactions which guide one in deciding whether to flee or approach etc. Again there are parallels in fhe reporta of opileptic patients with disturbances focused in one or both temporal lobee. Since I shall have
more to say about cerebral anatomy later, I must point out that Penfield recognizes thet the recollections which he evoked were probably not atored in the temporal erea. "On the contrary, one might expect thet the local effect of electricity, within a considerable distance sumpurding the point of application, would prevent the activation of any elaborate and complicated local mechanism, " [Fenfiela \& $\operatorname{Hoberts}(1959, ~ p, 49)]$. One might instead expect thet [Penfiela \& Roberts (1959, p.42)] 7 . there is neuronal conduction away from the area in question. It is conducted by nexve fibres to a less disturbed zone of ganglionic connection. Thus the positive responses identify the function of the ganglionic zone with which the stimulated erea has normal, functional cortico-fugal connections, "

Eridence of the kind I have preaented in the preceding few pages may lead one to ask how the brain manages to atore so much detail - for purposes of recognition at least; it is not always readily available when we want to recall something. If this question goes unanswered the reader may be tempted to attack the evidence rather than accept the conclusion. To forestall such a reaction I propose to sumarize here a neurophyaiological hypothesis about the nature of the memory mechanism. The author of the hypothesis, Fong (1969), argues for his case on the basis of a number of facts of neuronal molecular chemistry which seem tailored to fit his proposal (but would otherwise have to be regarded as mere coincidences) and on his model explaining several psychological properties of memory.

Fons proposes that HKA macromolecules aro the ttapes' in mental tape
recorders. The only form in which information reaches our brains is as trains of, electricel, nerve impulses. The impulses in a train all have approximately the same intensity, 120 milli-volts, and the same duration, 1 millisecond. The atrength of stimuletion Impinging on a receptor cell, from which a train of impulses comes, is coded in terms of the spacing of the impulses: impulees in rapid succession represent atrong stimulation, a wider spacing of impulsee signals. a weaker input. It is these trains of Impulses which Fong belleves are reoorded on RNA molecules.,

The bases of an RNA molecule are attracted to one another so that they form somethins like a atack of colns held together with a rubber band. As with such a stack of coins, foree is required to dislodge a base from-the stack - to leave $1 t$ projecting from the side of the stack ('held there by the rubber band'). The amount of energy in a 1 millisecond 120 millivolt nerve fmpulse is equal to the quantity needed to displace a base from the RMA molecule. Fong (pp.34-5) points out that, whereas a smaller jmpulse would only rotate a base slightly and not push it far enough out of line for ita nelghbours to close up ranks, too large an impuise would provide enough onergy to jostle the whole stack and allow the displaced base to, resume its place; nerve impulsee are of just the right size. This provides an account of how a aingle nerve impulse might leave ite marx on e BNA molecule. To record a train of impulses the molecule would have to be moved linearly through an electrical field created by the arriving impulses. Now, RIX molecules - the stacks of coins - are synthesized by enzymes which extrude them at a rate of 0.5 microns per second. During 1 millisecond, the duration of a single nerve impulse, an RNA molecule in the process of being formed will, thorefore,
advance about 0.5 millimicrons. This matches the thickness of a single RNA base, 0.34 millimicrons, quite closely. Thus each impulse in a train could act on one base in an RNA helix. In the end the RNA macromolecule Hill have a base displaced from the stack for each impulse g and an undisplaced base wherever an impulse could have occured in the train but did not. In short, it will be an accurate recording of the train of impulses, preserving the frequency information of the original. RNA is known to be implicated in the process of memory and known to be produced during learning. Fong (pp.28-9) estimates that the amount of RNA required to store a reasonable representation (recordings of the light intensities of 10,000 points) of each frame in 52 two-hour cinema shows - a year's viewing at the rate of one a week - would be 2 thousand-milionthe of a gramme"... which IB well within the capacity of the brain."

There is apparently some likelihood that the anqyues which create RNA molecules ingest other RNA molecules as templates in the process. This provides Pong with e hypothesis about the source of the linear motion required for 'replaying' RNA molecules. When \propto base is displaced from its stack its electrical field is no longer cancelled by its neighbours and is of the game order of magnitude as a nerve impulse, about 150 millivolts at a range of 100 millimicrons, so it could be used as a replica of an original nerve impulse, without any amplification being required.

Pong (p.39) points out that random thermal fluctuations in the brain would soon result in some RNA molecules stretching enough to allow displaced bases to fall back in, line. This would account for the ephemeral nature of some memory traces. If, on the other hand (p.39), the RITA
nolecule were to bind with a protein molecule - and protein is known to be involved in memory - it would not, in ordinary circumstances, be possible to lengthen it to make place for displaced bases. This would explain the relative permanence of some of our memory traces.

Fong's model has enough capacity to explain a conclusion which Bugelski (1970, p.1008) reached after conducting'an experiment in which subjects were instructed not to learn the meterial presented to them: II argue that all that is required for learning is that the leamer attend to the stimulation for an adequate time.". DO we then store a representation of every noise nade within earshot and of every scene whose image atrikes our retinas? I feel nots I have failed to recognize streets I have been in before, people I have met, eto. The solution to this puzzle seems to lie in what is covered by Buselaki's term ettend. What is needed is a notion of conscious focal attontion. Human viaion is a sensory system which lends itself readily to a fairly concrete explication of this notion. About 95% of the striate celle in the occipital cortex, the cortical destination of visual input, are innervated from the foveal ragions of our retinas, The fovea is a mall region near the centre of the retina. It is densely packed with sensory cells and it is here that the optical image of anything visually firated upon falls. Karmel \& Naisel (1975) have assembled an impressive array of neurophysiological and psychological evidence to support the contention that visuel stimulation elsewhere on the retina serves almost exclusively the purpose of finding interesting things for the fovea to examine $[$ In the last phrase I am paraphrasing in commonaense psyohological tems, for the sake of olarity, a tight neuropsychological specification.7. Perhaps it is largely foveal
stimulation which is stored as the record of (visual) consciousness.

Finally, it should be noted with regard to Fong's model that he offers no account of hov coherent wholes might be organized in storage: a specification of the intensity of each of 10,000 spots of light is not a picture. I shall return to this issue later. However, his model is reassuring about the gross capacity for storing records of sensory input. Another question I shell return to is that of the fidelity of mental records. The experiments suramarized in earlier parts of this section suggeat that our internal representations are fairly accurate but \dot{a} similar experiment conducted by Goldstein \& Chance (1971) shows that memory traces are less than perfect. They exposed subjects to a series of. 14 pjotures of faces or 14 inkblots or 14 pictares of snow crystals. Forty-eight hours later the subjecte were able to correctly recognize, on average, 72% of the facas but only 43% and 30% of the inkblots and snow crystals, respectively, Evidently they were not storing sufficient detail to discriminate accurately anong the members of these relatively homogencous arrays. Another point raised by these results is that they might indicate that familiarity with a paxticular type of naterial enhances recognition; the subjects maj reasonably be expocted to have been more familier with faces than with the patterns of snow crystals. The relative homogeneity of the arrays was not quantified so this is not the only conclusion possible. The effect of familiarity is proved though by a result obtained by de Groot (1965) in his study of chess masters. He found that masters could reconstruct a chess position elmost pexfectly after studying it for about 5 seconde, whereas weaker players generally could not. That the masters did not possess a superior sort of short-
tem memory was shown by the fact that they and novices were equally inept at reconstructing random arrangements of chess pieces on a cheseboard. This offest betokens organization of the gross store of memory trases. In $\$ 1.3 .2$ I suggested that the fact that people are able to offer componential definitions for words could be explained by assuming that we engage in organizing and olassifying the contents of our memory stores whenever we can spare the time. I ghould like now to show that this assumption is compatible with a distinction which has of ten been drawn by psychologiste between two kinds of memory.

The terms whioh Tulving (1972) uses for the distinction are episodic memory and semantic memory.. I, shall not follow rulving in every detail but I shall adopt his terns as they are now widely ourrent. Essentially the same distinction is characterized by Katona (1940) as the difference between individual traoes and 日tructural traces, by Maccurdy (1928) as the difference between memories which derive their significance through their me-ness and those which are more objective, and by Reiff \& Scheerer (1959) as the difference between remembrances and memoria. Baxtlett (1932), a modern pioneer in the study of memory, devoted, most of his investigations, to the study of objective settings or sohemate, which are not very different from what Tulving calls semantio memory, and he would, I am. certain, have been in sympathy with Tulving's distination. The distinction is implicit in many other studies of memory. What I shall now present, using TuIving's labels, is a composite of these view.

Episodic memory traces are detailed recordings of specific items of personal past oxperiences. They are dated in relation to other items of
one's past experience. Meccurdy ($\mathrm{p}_{\mathrm{o}} 135$) says they are: "... useful, even essential, for the innumerable, trivial adaptations of daily life. For instance, 'Where did I leave my pan?! can be answered only by evoking the simple kind of isolated image memoxy." [Maccurdy's "only" resulit in an overstatement of the case. 7. Because episodic traces carry autobiographical. indices they are the basis for the kind of recognition required of subjects in the experiments summarized in this section. In the words of Reiff \& Scheerer (p.32): "hecognition carries With it the implication that this specific experience is the same as a specific experience 'in my past'." For Katona (p.195) episodic traces ". ... are characterized by a certain degree of fixation and rigidity, While structural traces [i.e., the contents of semantio memory $]$ are more readily gdaptable and flexible." Tulving (p.386) says exactly the opposite but I take Katona's view on this point. I follow Katona because it seems to me that the feats of memory I have described above fit the other epecifications for manifestations of episodic memory and the evidence appears to indicate that the traces involved are stable and durable. The occasional difficulties people have in recalling items from opisodic memory suggeste that these traces are not organized per se, other then in terms of spatial and temporal contiguity between events which gave rise to them.

Traces in semantle menory, on the other hand, are organized into systems. Tulving ($p .386$) calls semantic memory "e mental thesaurus". In general, the traces lack autobiographical indicess I know that Paris is the capital of France, that whales are mammels, that insecta have six legs, etc. without remembering the specific occasions on which I firat
discovered these facts. Items may enter semantic memory either through perception or as a result of cogitation. Systems of semantic memory traces are not encumbered with an excess of detail.

The fact that so many psychologists heve been led to the same distinction is encouraging to me although, of course, the mental reality of the diatinction is not thereby established. If the reality of episodic memory is accepted - and I hope that the bulk of this section will have persuaded the reader to accept $i t$ - then some superordinate organization is obviously necessary to explain how we avoid too time-consuming a search in retrieving atored information. Allport (1924) whose study of eidetic. imagery I recounted earlier, and whose work embodies the episodic/somantic distinction implicitly, says ($p .116$) that we connot rely on opisodio memory alone (to paraphrase hie words \rceil because then $n . .$. our mentel life would be an inextricable chaos of photographically accurate records. Such a state would not facilitate the organdzing, fusing, abridging, and interchanging which allow the individual to vary his reaction; an image too closely bound to a specific previous aituation would tend inevitably to stereotype his modes of response." A graphic account of this chaos was given by Luria's (1969) memoniet, S, in a description of the problems he encountered in trying to read ($p_{0} 116$) : MEven when I read about circumEtances that are entirely new to me, if there happens to be a description, aay, of a staircase, it tums out to be one in a house I once lived in. I start to follow it and lose the gist of what. Im reading. What heppens is that I juat can't read, can't study, for it takes up such an enormous amount of my time

When S became a profesalonal memonist he developed a shorthand syatem for using images to commit. Iista of worde to menory. Since his method seems to me to be a plausible account of how semantic memory might be merely a way of organizing and classifying the contents of episodic memory by means of cross-references, I shall quote another of S's autobiographical reports $[$ from Luria ($p .42$) $]$:

Formerly, in order to remember a thing. I would have to summon up an image of the whole scene. Now all I have to do is take some detail I've decided on In advance that will signify the whole image. Say I'm given the word hosseman. All it takes now is an image of a foot in a epur. Earlier, if I'd been given the word restaurant, I'd have seen the entrance to the reataurant, people sitting inside, a fumanian orchestra tuning up, and a lot else... Now if I'm given the word, I'd see something rather like a store and an entranceway with a bit of something white showing from inside - that!s all, and I'd remember the word. So my images have changed quite a bit. Earlier they were more cleaf-cut, more realistic. The ones I have now are not as well defined or as vivid as the earlier ones...I try Just to single out one detail I'd need in order to remember a word.

It seems to me that the difference between s and most other people is that S did not camy this process of indexing his eplsodic memories and extracting generalizations, such as that restaurants were usually diatinguished by having white tablecloths visible through a doorway; as far as others do. For instance, S's response to a request that he explain the meaning of a nonsense word, zhuk, which he hed coined in his childhood, shows that he had not sought a generalization or even to pare down the number of relevant images to a few prototypes. I. trust I may presume upon the reader's patience once more by presenting Luria's (0.84) account of $S^{\prime} \mathrm{s}$ responses

A ghuk - that's a dented piece in the potty
It's a piece of rye bread ... And in the evening when you turn on the light, that's also a zhuk, for the entire room isn't lit up, just a small area, while everything else remains dark - a zhuk. Werts are also a zhuk Now I see them sitting me beforo a mirror. There's noise, laughter. There are my eyea staring at me from the mirror - dark - they' re also a zhuk ... Now I'm lying in my crib ... I hear a shout, noise, threats. Then someone's boiling something in the enamel tea-kettle. It's my grandmother making coffee. First she drops something red into the kettle, then takes it out - a zhuk. A piece of coal - that's also a zhuk I see them lighting onndles on the sabbath. A candle is buming in the holder, but some of the tallow hasn't melted yet. The wick flickera and goes out. Then everything turns black. I'm scared, I cry - this is also a ghuk And when people are sloppy pouring tea, and the drops mise the pot and land on the plates, that's also a ghuk.

I belleve it is even possible to point to a neuroanatomical basis for the distinotion between episodio and semantio memory in the specialization of the two cerebral hemispheres. In most people, dgmage to certain parts of the left cerobral hemisphere interferes with their ability to use lenguage whereas damage to the corresponding parts of the right hemisphere does not do so [Cf. Geachwind (1970),]. It will simplify the following discussion if the minority of people whose right hemisphere controls language are ignored. Experiments conducted on people whose brains were surgically sectioned at the oorpus callosum, 7 for the relief of a severe foxm of epilepsy, and who consequently had two relatively independent hemispheres have confinmed the pre-eminence of the left hemisphere for language. They al 80 suggest that the right hemisphere is apecialized for visual-apatial tasks CCf. Gazzanige (1975, p.567).7. Levy (1969), who bays ($\mathbf{p} .615$) that the right hemisphere seems "... immediately to abstract the stinulus Gestalt that is as an integrated whole." and that the language hemisphere has
"... a strong analytic propensity ..."" has demonstrated this difference in a comparison of the scores of left-handed and righthanded people on different types of question in an intelligence test Lthe Wechsler Adult Intelligence Scale]. Penfield (1959, p. 1725) reports that viaual illusions, of the kind I described earlier in this section, and illusions of recognition were evoked by the application of electrodes to the temporal lobes on the non-dominant side only (i.e., usually, the right side of the brain).

I shall argue below for the primacy of vision among human perceptual syatems. Assuming this for the moment, it seems to me very likely that the right hemisphere contains, or is at any rate fundementally involved in the business of atoiing, opisodic memory traces. An observation which has been made in connection with the Wada test for hemispheric dominance $[01$. Penfield \& Roberts (1959; p. 06).] suggests this very strongly too. For the Wade test; sodium amytal is injected into the carotid artery on one bide to temporarily 'aneathetize' the corresponding cerebrel hemiaphere. The patient is instructed to count eloud and flex the fingers of both hands for the duration of the test. While the dominant hemisphere is affected the counting caases and the patient suffers a hemplegia of the contra-. lateral side of the body. Sodium amytal acting upon the non-dominant hemisphere does not disturb counting but does result in opposite hemiplegia. The interesting point - using the simplification of calling the dominant, language, hemisphere left and the non-dominant one right - is that after recovery, which takes about 5 minutes, from a sodium amytal injection in the right hemisphere the patient denies
the hemiplegia. After recovery from interference with the left, hemisphere, on the other hand, the patient usually admits to having suffered the hemiplegia. This is exactly what would be expected if the right hemisphere were responsible for autobiographical, episodic memory. The left hemisphere, I suggest, is the one which orders and indexes the contents of episodic memory.

In summary, I have argued the non-dominant hemisphere contains an imense data base of remembrances. It ia against these opisodic memory traces that fresh input $1 s$ matched. These memories also provide the subject matter for cogitation. I regard the language hemisphere as primarily responsible for the maintenance and use of this data base; for cross-referencing the entries in it, for selecting subsets of the Items stored under a given label as beat instances prototypes - of that category; and for sometimes noticing thet there are common properties possessed by most of the members of a category. Some of these statementa may appear to presume the existence of a homanculus in the left hemiaphere. I shell consider some ways of avoiding such a presupposition in 81.4 .4 but I turn now to some evidence for the exietonce of separate verbal and visual codes in human minds.

1.4.3 Contents vs. Labols

Most of the experiments discuased in the previous section related to memory for vigual input. I was concerned to show that we have a very large capacity for storing visual input because I believo viaion
to be our primary aensory modelity. Is this belief justified? Man may, after all, be defined as homb loquens and sound is generally agreed by linguists to be the principal medium for the transmiseion of 7 linguistic eignala. Bransford \& Franks (1972) have conducted experiments which give atrong support to the commonsense view that the natural Way to treat a linguistic utterance heard in the ordinary course of Iife is not to memorize it, but to extract the infometion it contains and then discard it. For instance they showed that subjects were strongly, but emoneously, convinced that they had read certain sentences earlier if those sentences sumarimed information which had been presented to them by means of other sentences. 'New' concise sumary sentences were often rated more familiar than previously exposed sentences which had carcied the same infoxmation piecemeal. The centrailty of langaage in human life then does not seem to be a good argument for the promotion of auditory over visual memory.

It is often contended that-thought is intornalized gpeech. The manifest ability of the deaf to think adequately argues against this, for their comand of language ta often poor. Vemon (1967) reviewed thirty-one investigations of the intelligence of deaf paople, spanning the period 1930 to 1966 , and concluded that $(p .331)$: MThere 18 no functional relationship between verbal language and cognition or thought process." Ands. "Verbal language is not the mediating aymbol system of thought," Touch, fairly broadly Interpreted, is the only other sense with even a remote claim to the place which I hold is occupied by viaion. Berkeley and Condillac [Cf. Pastore (1971).] argued that we learn how to see shape, size and diatance by relating
visual input to the information gained from tactile exploration of the environment. Rock \& Herris (1967) report an ingenious aeries of experinents which show that when visual input and tactile input conflict, unbeknown to the aubject, vision triumphs over touch in judgements of size, shape and direction. They also showed that vision . fould teach' touch. For example, subjects practised drawing while looking through a prism which performed a Ieft-right inversion of their visual input. After four 15 -minute spells of such practice, spread over four days, they were blindfolded and asked to write 10 dictated letters and numbers. They were warned that their experience with the prism might result in their writing some of the letters and numbers backwards. They were instructed to report it if they felt that they had written an item backwards. Despite the fact that writtug is a highly-practiced skill these subjects wrote many of the letters and numbers backwards and often failed to report that they had done so. They also reported feeling that they had written backwards some of the iteme which they had, in fact, written comrectly.

There has recently been a strong revival of interest in mental imagery among experimental psychologists. several things have been clearly established. One is that the concrete nouns whioh name a series of unrelated pictures are better recalled when subjects have been show the serles of pictures than when they have been shom only the nouns (in printed fom). Another is that recall of lists of unrelated conorete nouns is better than lists of unrelated abstract nouns; this is apparently attributable to the greater ease with Which subjects can conjure up mental images for concrete nouns, Also,
if in committing lists of words or pictures to memory (eithex intentionaliy or under a pretext which leads mubjects to belleve that memorization is not required), subjects are instructed or otherwise persuaded to generate a mental image of each itam, recall is about twice as good as when subjects under comparable conditions are instructed or by other means led to store only the linguistic label of an item: a mental picture is worth two mental worde, The studies which justify these claims are legion. one of the most carefully controlled series of experimenta in the genre is reported by Paivio and Csapo (1973). This paper also presents some evidence for the independence of verbal [= phonological? and image codes in memory. Rather than go into the details, however, I would prefer to recount some experiments of a different kind perfomed by Jee Brooks, which point in the same direction.

Brooks (1968) required subjects to sumpon yp from memory either sentences or line diagrams, which had been previously presented, and then to signal cextain information about the gentences or Ine diagrams. The methodg by which the information was signaled were varied: the subject might, for Instance, be required to slgnal vocelly or to do so by polnting to symbols in a spatial array, In a series of eeven experimonts on seven different sets of subjecta, Brooks aought to detemine whether concument vocal output would interfere with the process of recaliling a sentence from memory more than a yisuo-spatially monitored outputg and whether the converse would be true for the necall of Iine diagrams. The resulta n... suggest that apatial and verbal information is recalled and processed in a modality-apeoific manner."
(p.349). Before I present a sumary of the experiments which justify this conclusion I should point out that yerbal is not here construed as widely as it might be by a linguist: the tverbal, tasks required literal recall of spoken sentencea and rather superficial deeisions ebout the categoxization of words in those sentences. They were nonsemantic tasks which I feel might be within the scope of mental mechanisms regponsible for phonological and (aurface) syntactio processing. That is to say, I believe that Brooks' investigations of 'verbal' recallare relevant to the labelling end of prototype storage, in my proposals, and not to the whole gamut of mental mechanisms deployed in nomal language use.

The sentences used in most of Brookst experiments were all ten Words long and exhibited a variety of syntactic structures. One of them Was: HA bird in the hand in not in the bushr. On a given trial in the main experiment, the sentence was read aloud once to the subject who then repeated it. Ther subject's next task was to signal by means of a sequence of yeases and noes whether or not each word was an article. Practice trials ensured thet the tasi, including the ways of giving responses, were clearly uqderatood. No sramatical sophistication wes required of the subjects, who In all the experiments were undergraduate students: they were given, 11 sts of the nouns and articles in each sentence, aince ability to perform the categorization per ae was not the focus of the experiment. The correct response from a subject asked to monitor the opecimen sentence above for nouns would bes no, yos, no, no, yes, no, no, no, no, yes. Three different forms of response were employed to signal the sequence of yesses and noes; the subject
either uttered the sequence or tapped with the left hand for yee and the right for no or used a pencil to point at \underline{I} (for yea) or N (for no) on each line of a chart of Ys and Ns. The ten-line chart exchibited a \underline{Y} and an \mathbb{N} on each line, for each of the ten decisions, but the $X a$ and Ns on successive lines did not form regular columns. The columns were stasgered and subjects were asked to actually touch each \underline{Y} or \underline{N} with the pencil point, not just indicate the generel vicinity, in order to make this a task which required close visual attention. After hearing the sentence and repeating it, on a given trial, the subject was told which form of output signal would be required, asked to repeat the sentence once more and only then told whether nouns or articles was the relevant class for the categorization. The type of categorization required was not presented until this stage to avoid the possibility of sübjects simply translating the sentences into sequences of yesses and noes on first hearing, and then relying on direct recall of that sequence. The emount of time elapsing between a subject being told "nouns" or "articleg" and completion of the response sequence was measured. After signaling the response in one of the three ways for a given sentence subjects were next required to do so in the other two ways. They repeated the sentence aloud again once more before each sequence of responses. The orders in which the three forms of output were required (and the orders in which the decision categories, "nouns" or "artioles" were used) were counterbalanced for each sentence.

The task involving line diagrame was closely analogous. The figures used were 10 -sided block diagrams of letters of the alphabet,
such as the F reproduced below.

The arrow indicates the order in which the corners were to be classified and the asterisk the point at which the classification was to start. On some trials subjects had to indicate whether or not each comer was vertically extremal (i.e., at the very top or bottom of the figure), in which case, proceeding clockwise from the asterisk, the correct response sequence for this figure would be: Yes, yes, yees, no, no, no, no, no, no, yes. on other trials left-right extremal position was the relevant category. Decision category and form of reaponse vocal, tapping or pointing - was varied in counterbalanced faghion for each figure, as for the sentences. on a given trial, the subject was shown the figure, then asked to draw it from memory (clockwise, starting at the asteriak), then told which form of response eignal would be celled for on that trial. Next the subject was asked to "mentally recall" the figure for approximately two seconds before being told the decision category, "top-bottom" or "outside". The time taken from this moment to the complation of the response sequence was recorded. After testing via the other two response modes, with two seconds of mental recall allowed before the test each time, subjects proceeded to the next figure.

Half of the aubjects were tested first on sentences then on figures and the remainder were tested on figures before sentences. "The subjects reported that they could sey the sentence to themselves' while tapping or pointing, but not while saying 'yes' and 'no'. The diagrame could be 'pictured' while subjects were tapping or saying 'yes' and 'no', but not while they were trying to point these conflicts reportedly had the effect of making it easier to lose track of where one was in the sentences or the diagrams," "Brooks (1968, p. 354) J. The table which I reproduce below, omitting information on standard deviations C which was relevant only in choosing which statistical test to use 7 , provides objective aupport for these reports.

	mean output time (seconds)		
	pointing	tapping	vocal
sentences	9.8	7.8	13.8
diagrams	28.2	14.1	11.3

Each figure in the table is an average of 24 data points (3 trials x 8 subjects). The resulte were highly consistent across subjects: only one subject ahowed a shorter time, in the case of only one sentence, for vocal output then for the other two types of output. With one of the diagrams, a single subject produced times which run counter to the average tendency. Statistically, the main burden of this table is highly significants vocal output takes more time than the other two modes when it relates to a mentally recalled sentence and visuospatial output takes a longer time than the tapping or vocal output
when a diagram is being recalled.

In his second experiment Brooks further substantiated the conflict between saying one set of words while recalling another set of words by showing that the strength of the effect was related to the articulatory complexity of the output and to the difference between the vocal output and the internally recalled words. This experiment differed from the previous one only in the form of output required: the output was always vocal and subjects spoke their responses normally to signify yes but shiapered to signify no. The words they whispered

- or spoke were either the words of the sentence being recalled, or the syllable la or the word januaxy. Thus, Indicating normal voice by means of capitals and whisper by means of lower case, the correct response from a subject monitoring a bird in the hand is not in the bush for nouns would be: a, BIPD, in, the, HAND... or $l_{a}, \mathrm{IA}, \mathrm{Ia}_{\mathrm{a}}$, Ia, LA ... or january, JANJARY, january, january, JANOARY.... It was obviously not possible to uee the first type response in connection with block diagrams of alphabetic letters but $1 a$ and january were used with diagrams. In order to get a baseline meagurement of response execution speed subjects were retested after the experiment, using the same material but not having to rely on memory for it; the figures or written versions of the sentence remained viaible throughout.

For sentences, the results showed that january took significantly longer than la which, in turn, took significantly longer than sinply modulating the words of the original sentencea (by whispering or not whispering them); due allowanoe having been made for beseline
differences in the speed of execution of the three types of response. As Brooks seys ($p .356$): uThese findings would suggest that word compatibility, not simply vocal activity, is important for producing the conflict between recall and output." And the articuletory complexity of the output, 1a ve. january, has an effect, over end above the baseline differences between Ia-responding and jamuaryrespondins when the sentences were there to be read directly. This effect was specific to verbal memory because el though january output tended to require nore time than la with dearrams also, it did not do so differentially more when subjects were working from menory as compared to the baseline measurement in which they had the diagrams before them.

Brook' third experiment was aimilar to the second one but the focus was on line diagrems. Subjects responded only in writing this time: a tick for yes and a crobs for no. The ticks and crossee were either made on top of each other or one below the other, without the subject looking at expetly where the signs were placed, or they had to be carefully placed in little boxes on the response sheet. No significant differences were found between the three types of response for sentences but for diagrams vigual monitoring of the output resulted in every subject taking longer for the condition in which the ticks and crosses had to be precisely positioned. Movement alone - having to move down the page in making the responses induced, on average, but not for every individual, a moderately elgnificant delay when subjects were signaling their classification of the comers of mentally recalled diagrams.

Brooks, reviewing experiments II and III, realized that it might be argued that the differentiel difficulty of january over la with sentences and of visualiy-monitored writing over writing without looking, in the case of diagrams, were not necessarily specifically verbal and visuel effecta, respectively. Pexhaps any Increase in complexity of response would lead to diaproportionately longer reaponse times provided that modality-specific oonflict had first been induced. IIn both cases, it might be that simply one more complication was being added to the lot of a subject who was al ready coping with a confliotful task. " [Brooks (1968, p.359) 7. In his fourth experiment Brooks reled out this possibility by ingeniously combining features of the second and third experiments. Subjects were required to respond both vocally (voiced va, whispered Ia or januarr) and in writing with tioks and crosses (either in a visually-unmonitoxed colym or placed in small boxes). For diagrams visually-unmonitored writing combined with le J elded the shortest avarage response times. Substituting jamuary for la did not increase the response times significantly. But (whether in combination with la or with jamuery) every subject took a longer average time to respond when the ticks and crosses had to be visually monitored. The results were not as clearcut for sentences, because for these particular aubjects january. regponding was not as Bignificantly more difficult than 1 n as 1t had been for the subjects in oxperiment II. There is a potential explanation of this embarrasament in terms of additional practice which was requixed to train subjects to make the conplex responses. However, for present purposes, it suffices to Bay that the results tend in a direction which supports Brooks' earliex interpretations with eentences, the slowness of reaponding attributable
to the difference between la and january is greater than the slight increase in time attributable to visual monitoring of the response.

In his fifth oxperiment Brooks contrasted auditory presentation of sentences with sentences which subjects saw in typed form. Sentences which hed been seen proved to be triflingly less susceptible to inforence from vocal output then sentences which had been heard but (p.363) ".... the recall of both waitten and spoken sentences clearly conflicts mainly with the articulatory responses." That the vocal interference effect was not attributable to auditory feedbeck was shown

- by a partial replication of the first experiment (experiment VI) in Which subjecte either said "yes" and "no" aloud or merely mouthed these responses. Silent mouthing output took a little longer but did so to approximately the same insignificant extent with both sentences and diagrams. In his seventh experiment Brooks showed that the difficulty induced by the monitoring of ticks and crosses during the recall of a diagram was spatial rather than specifically yisual. The outpute compared were: (a) making a rough column of ticks and crosses without looking and (b) feeling, with eyea olosed, for small holes in a piece of cardboard in which to make the marks. The tactually monitored output, b, took slightly longer than the other form of output when aentences were being recalled but very much longer when information about a mentally recalled diagram was being signaled.

I have recounted Brooks' experiments in detail because it appears to me to be strong evidence for a distinction in forms of memory traces between ones which are to some extent isomorphic with visuo-spatial.
perceptions and ones which are something like phonological representations. A commonsense term for the former would bo images. If my proposals amount to suggeating that the meanings of lexames are essentially mental images they fall into a long and vigorously disputed area of psychology. It is therefore neceseary to examine now the relationship between 'prototypes' and images and to consider Whether any of the arguments which have been advanced against the role of images scathes the theory of prototypes.

1.4.4 Image theories

"In large measure I think, that is, I mean and I understand, in visual pictures." [Titchener (1909, p.16)]. Titohener, one of the founding figures of American psychology, doubted whether meanings arose into consciousness on every occasion when words were understood CCF. Iitchener (1909, p. 178).]. However, he believed that, in his own case at least, conscious meanings were mainly carried by images. Bearing in mind his caution about verbal reports on introspections (p.28) i n ... language is discontinuous, and our descriptions must substitute a word-mosaic for the moving pictures of experience", consider the following personal description of a part of Titchener's mental life (pp.13-14):

> co. my mind, in its ordinary operations, is a fairly, complete picture gallery, - not of finished paintings, that of impressioniat notes. Whenever I read or hear or proudly, or humbly, orecourteously, I sea a visual hint of the modesty or gravity or pride or humility or courtesy. Th? stately heroine gives me a flash of a tall figure, the only clear part of which is a hand holding up a steciy groy akirt the humble suitor gives

> me a flash of a bent figure, the only clear part of which is the bowed back, though at times there are hands held deprecatingly before the absent face. A great many of these sketches are, irrelevant and accessory; but they often are, and they. always may, be, the vehicles of a logical meaning. The stately form that steps through the French window to the lawn may be clothed in all the colours of the rainbow; but its stateliness is the hand on the grey skirt.

There is a striking similarity betveen these vignettes and the shorthand memonic images which Luria's mnemonist, S, developed COf, the description in 81.4 .2 of an fmage of a spurred boot standing for a horgeman. 7. The fact that S, the memonist, had taken some halting steps towards mental economy In the same direction as Iitchener, a very successful professional person, reinforces my belief that the mnemonist's brain was not of a radicelly different sort; he merely exhibited one aspect of mental functioning in extreme form. mitchener's introspective report also conveys clearly the notion of conscious focel attention, as opposed to peripheral awareness, which I sugsested (in B1.4.2) might explain why we cannot remember everything set before our eyes, cf. his faceless humble suitor.

It may well be asked what the use of an image is, if what words retrieve are indeed mental images. One answer is that there are certain types of problem in the solution of which visual images are very useful. Baylor (1973) presents an interesting computer aimulation of the way humans characteristically solve problems from Guilford's Block Visualization Test, such as

Tro sides of a 2 inch cube that are next to each other are painted red and the remaining faces are painted green. The block is then cut into eight 1 inch cubes. How many cubes have one side painted red? How many cubes have no sides painted red? How many cubes have threo unpainted faces?

People usually report solving these problems by summoning up images from memory to construct a composite image which matches the specification in the statement of the problem, mentally slicing the image into pieces and then counting the pleces which have the requisite characteristics. Baylor's program stimulates this process and could. make erroris of a type which humans of ten do too, such as counting particular pieces twice because they appear in two faces of the cube which may be looked at' separately. I shall return below to the question of the objective validity of the claim that it is possible to manipulate images and to a consideration of the virtues of such an ability. At this point, however, I must face up to the possibility that problems which can, perhaps must, be solved by recourse to inages play a much mailer role in our lives than I think. I do not have the requisite data to rebut a charge that Guilford's Block Visualization Test is recherche. Instead I shall review an experiment which suggests that the normal treatment we give to statements is to use them to construct a mental 'picture'. - It may be recalled that I suggested earlier $[81.4 .3]$ that people do not normally memorize sentences: they extract the gist and then discard them. The experiment described below supporte this view and offers a hint es to the nature of what is left in the mind after e statement has been processed.

The experiment is the first one reported in a paper by pompi \& Lachman (1967). They used two passages each 79 words long and each containing 75 different words. I shall consider only the passage which produced the most patent results. It is reproduced below. $[$ The results achieved with the other passage support identical conclusions
and were statiatlcally significant too. 7
MAJOR SMIIH WATGHED HORRTFTED AS WITHERTNG FIRT CKOMPIFD AN TMMEDIATE SUPERTOR NOW HE MUST GUIDE THE SMALL GROUP

- ON THEIR TMPORTANT JOURNEY URGTNG HIS TEAIC TO KBHPP SIIENT HBEY MOVED THROUGH DENSE SNAKE INFESTHD FORESIS SUDDENLY OLATPEBRTM CATERPTLLAR TREADS SOUNDED NEARBY AFTIER RAPIDIY CRANKING IN ONE ROUND HE ESTMATBED DISTANCE AND EHEVATION HIS FINGER CAREFULIY, TIGHTENED AND IHE STEEL MONSTER WAS BLOWN APART FAST THINKITE SAVED THEM ALTHOUGH THIS HAD BEEN ONLY A NINOR TNCTDENT AMONG - ENDLESS DESTHRATE ENGOUNIMRS

Half of the subjects assigned to this passage, read the words in the Prder given above. The other half of the group read the same words in random order. The passage lacks punctuation in order to increase the similarity of these two tasks. Furthermore the words, both in the normal and in-the random presentation, appeared singly on oards and 1.5 seconds was allowed for reading each card. In a pretest with other subjects it had been found that presentation in this manner, in the normal order, made it possible for most subjects to apprehend the - theme of the passage, i.e., they reported. "It was an incident in a war" or words to that effect. The wording of the passege was chosen so that, individually and out of context, the worde were not strongly related to the theme of the passage. The reason for this will shortly become plain. The subjects in both experimental conditions, normal and random order, were instructed to "learn" the material during the ir single pass through the deck of cards.

Approximately two minutes after reading the original cards subjects were given another deck of 225 randomly ordered cards. There
was a single word on each of these cards: the 75 words which had appeared in the passage and 150 others. Among the latter aet, 75 words were highly associated to the martial theme of the passage LThe 15 most highly associated uords were: fighting, onemy, explosion, trigger, attack, battle, comman, ground, rifle, target, wax, weapon, aimed, bullet, gun. It may be that ground is a misprint; perhaps, of grenade. 7. The other 75 were only weakly associated to the theme [They were in fact words strongly assoojated to the theme of the other passage, which described a cancer operation, e.g.: hospital, nurse, suture, tissue, incurable. 7. I shall omit a description of the fashion in which these 150 words had been compiled and sated for level of thematic association. Let it suffice to say that it was carefully done and involved the labour of 45 people. The experimental subjects were asked to sort the 225 cards into words recognized, from the leaming phasec of the experiment, and words not recognized.

Subjecte who had read the words of the passage in normal order recognized slightly but not signifioantly more of its words on average than subjects who had read the words In random order (50.2 ve. 45.5). 'False-positive' recognitions, however, are the results of major interest. Subjecta who had read the normally-ordered passage identified, incorrectly, on average 21.67 of the thematically associated words as ones which had occured in the passage. The mean number of weakly associated ('medical') words which they incorrectly identified es having been seen in the earlier part of the experiment was by contrast only 3.87. Statistically this result is highly significant. Those subjects who had read the words of the passage in random order claimed,
incorrectly, to recognize on average 10.07 of the words which were associated with the theme of the pessage and 8.67 of the 'medical' words. The difference between the last two figures is not statistically $+$ significant. The authors interpret these results as demonstrating (p.144): "... that a unified theme in meaningful discourse initiates surrogate processes in that S storea some arrangement of words, visual images, and schemata that may reflect the 'essential ideas' of the passage," And (0.148) "... the surrogate processes produce lexical associations to themelves during retrieval." Notice that the high rate of thematically associated false-positive' recognitions cannot sbe attributed to associations to individual words in the passage because the subjects in the random presentation condition read exactly the same words. Subjects who read the passage in its normal form must have. translated it into some surrogate struature different from its superficial linguistic form for the purpose of storage and then used this surrogate as a basis for performance in the recognition task. What is the nature of the aurrogate structure? Pompi \& Lachman leave open the possibility that it might have contained other words. Such a translation, however, would be willfully wasteful exeept in cases where a phrase could be replaced by a vord, or a longer word by a shorter and/ or commoner word. Do we translaté linguistic input into something akin to Basic English? I suspect not much of the time. Something which, when conscious, is an image seems a more attractive surmise to me.
T. H. Huxley [Quoted in Titchener (1909, pp. 14-15).] claimed that:

> An anatomist who occupies himseaf intently with the examination of several specimens of some new kind of animal, in course of time acquires so vivid a conception of its form and structure, that the idea may take. visible shape and become a sort of waking areame, But the figure which thus presents itself is gereric, not specific. It is no copy of any one specimen, but, more or less, a mean of the series

Thet people do extract something generic - not necessarily an image from specific exemplars has been demonstrated objectively by Franks \& Bransford (1971). They used families of geometrical patterns. The families were created by performing transformations (permutation, substitution and deletion) upon prototype patterns. Subjects were shown subsets of the patterns in a family and then required, in a subsequent recognition test, to rate the degree of confidence with which they believed they had previously seen each of a set of patterns, some 'new' and some lold, Their confidence ratings proved to be Inversely related to transformetional distance from the prototype. Prototypes received the highest ratings even when they had not been included in the initially exposed subsets. A generic image might appear to be a contradiction in tems but it whin he an admirable prototype. I shall therefore parsue thia course a little further.

Sir Franois Galton's (1883) fascinating technique, of ycomposite protraiture" was an attempt to create (extemally) visible analogues. of ($\mathrm{pp} .353-4$) n... the generic images that arise before the mind!a eye, and the general impressions which are faint and faulty editions of them $\because . .{ }^{n}$ Galton assembled large mubers of photographic portraits of individuala who all fell into the same category, e.E., consumptives. The component pictures for a given composite had all to be taken from
the same viewpoint. He then superimposed negatives of these pictures to make a single composite print. Important features auch as the pupils of the eyes and a line passing between the lipe were always focused on to the same position on the printing paper. Component negatives in an n-component composite were each exposed for one-nth of the time required to make an adequate print. Galton's book contains some examples of composite portraits and they support his. statements that:

The effect of composite portralture is to bring into evidence all the traits in which there is agreement and to leave but a ghost of a trace of individual peculiarities. There are so many traits in common in all faces that the composite picture when made from many components is far from being a blur; it has altogether the look of an ideal composition. (p.10).

They are real generalizetions, because they include the whole of the material inder consideration. The blur of their outines, which is never great in truly generic composites, except in unimportant details, measures the tendency of individuals to deviate from the central type. (p.353).

It is, indeed, most notable how beautiful all composites are. Individual peculiarities are all irregularities, and the composite ia always reguler. (p.361)

Gomulicki (1953) dismisses the idea of Imental composite portraiture' in the following worde (p. 15):

Galton could standardize his portraits and provide almost uniform stimuli for the camera; there is no auch standardization with sensory atimuli. Strict point-form point correspondence between stimulus and: [memory 7 trace, which Galton presumably accepted, would produce a multitude of dissimilar traces unsuitable for 'mental composite portraiture'. The photographs for Galton's composites wore carefully aligned in advance; what mechanism similarly aligns memory traces?

Brown (1958, pp.87-8) raises the same objection. He further (p.88)
argues that urhe trouble with the notion of a portrait in which each noisy attribute assumes its modal value is that such a portrait does not represent the full range of variation in the membership of a category." This latter point may be met in two ways. Firstly, people sometimes fail to recognize members of a category precisely because they differ greatly from the prototypes of the category. Secondly, I grant the possibility of a category belng represented by more than one prototype; my prototypes for mammal are, at least, a cow and a whale.

To return to Gomulickl's question (1953, p.15), \%.... whet mechanism similarly aligns memory traces?" The context indicates that this was intended as an unanswerable rhetorioal question. However, I believe that there is now the outline of an answer to it. The answer lies in an experiment conducted by Shepard \& Metzler (1971); an experiment whose results are quite exceptionally clearcut, in comparison to the great majority of psychologioal studies directed towards nontrivial topics. They demonstrated that the amount of time required to make 'same/different' judgements on pairs of pictures was a linear function of the angular difference in orientation of the two objects portrayed.

The objects, depicted in perapective line drawings, were conotructed of 10 solid cubes attached face-to-face to form rigid anmlike structures with 3 right-angled elbows. Three examples of the pairs of drawings used are reproduced below.

From Shepard \& Metzler (1971). "Examples of pairs of perspective line drawings presented to the subjects. (A) A 'same' pair, which differs by an 80° rotation in the picture plane; (B) a same' pair, Which differs by an 80° rotation in depth; and (c) a 'different pair, which cannot be brought into congruence by any rotation.". (p.702)..7

In all, 800 pairs of pictures representing members of this family of

- objects were used. Two hundred pairs were -pictures of objects which could be rotated into 3 -dimensional congruence in the picture plane, Two hundred pairs were of objects which could be rotated in depth!, about e vertical axis, to achieve congruence. In the remaining 400 one member of each pair differed from the other in that one of its arms had been reflected, so that no rotation could bring the members of the pair into congruence. Therotational differences depicted ranged between 0° and 180°.

Eight adult subjects were tested individually on a 1600 -item test; each pair occurred twice in the random series of test items. Each trial consisted of a warming tone followed by an interval of half a second, presentation of a pair of line drawings and, then, the subject's response: Subjects responded by operating one lever to indicate that they judged the members of the pair to be the 'same and another lever for pairs illustrating 'different' objects. The time elapsing between the onset of the display and subject's response was
measured on each trial. Subjects were asked to respond as quickly as possible while keeping errors to a minimum. The 1600 trials for each subject were spread over between 8 and 10 one-hour test sessions. *

The average error rate was negligible: 3.2%. In post-experimental interviews:
> ... all subjects claimed (i) that to make the required comparison they first had to imagine one objects as rotated into the same orientation as the other and that they could carry out this "mental rotation" at no greater than a certain limiting rate; and (ii) that, since they perceived the two-dimensional pictures as objects in three-dimensional space, they could imagine the rotation around whichever axis was required with equal ease. [Shepand \& Ketzler (1971, pp.701-2)].

The reaction times for correctly judged 'same' pairs are entirely compatible with these reports. For each subject the graph relating response time to degree of angular difference between the members of the pairs was strikingly linear, that is to say, suggestive of smooth rotation. Subjects differed slightly in the rate at which they could perform the task: approximately 1 second was required for response for 0° rotation but between 4 and 6 seconds for 180° notation. But this İ 2 difference in slope not in linearity. The average rate of Imental rotation' for these particular objects was a little less than 60° per second. Separate sraphs drawn for picture plane and' 'in depth' rotations do not show marked differences, [The average length of time for a correct 'different' response was 3.8 seconds. The figures for 'different' judgements were not included in the results given above beoause the amount of rotation required to yield congruence is an undefined quantity for objects which opannot be rotated into congruence. 7

To further substantiate the claim that mental rotation of images takes place, Gooper \& Shepara (1973) performed an experiment in which subjects were asked to imagine a letter of the alphabet or a numeral Hotating, in the picture plene, within an externally visible blank circular field. The rate of rotation was externally paced. At random intervals during this process normal or backwand versions of the imagined character were flashed on to the field. The presented character was either in the orientation which the subject's imagined figure should then have been assuming or at some other randomly chosen orientation. It was found that subjects could decide whether the presented stimulus was normal or backward significantly more rapidly When its orientation coincided with that of their image. The possibility of such template-like matching suggests that the internal representation of the character was in some sense isomorphio with the external character and that during the course of mental rotation it continued to have a one-fox-one correspondence with its rotating objective counterpart.

[^5]Allport (1924) in his study of eidetic imagery, which I refexced to earlier, noted that people report that their eidetic images are to some extent under voluntary control. Thus (\mathbf{p}. 110): a ... a carriage was made to drive away, turn a comer in the roed; and so to disappear entirely from the image, People could be made to enter and leave, and to perform normel actions. The range of flexibility is very great indeed but it does not extend to include the ridiculous or unnatural." Allport's observation on the naturalness of the transfigurations of the imeges suggests that they may be another product of memory. Perhaps to perfom mentally a geometricel rotation, translation, dilatation etc. of an object one has to retrleve a memory record of a similar object which has previously been perceived going through such a transformation, superimpose or substitute, the desired object and then run the record to ascerta in the outoome. I realise that I have not satisfactorily answered Gomulicki's request for a specification of the-mental mechanism which performs such operations. I believe I have show, however, that the question is, worth posing because there evidently is such a mechanism.

Another general objection to image theories of meaning is that: "The ideas of relation ere, all agree, not represented in consciousness by diatinct fimages. ... The same may be said of the notions of spatial and quantitative relations such as greeter or equal to, above and below, before and after, and the active relation of cause and effect." [CPillabury \& Meader (1928, p.156). Roughly the same view in put forward by Stern (1932, p.48).7 In $\$ 1.3 .2$ I oited Bugelski (1970) in support of the concreteness of even our fmagery for abstract nouns.

Here I should like to mention some experimental results of Handel et al (1968) which suggest that the 'general agceement' which Pillsbury \& Meader bense in connection with relational terms may be, at least partly, an exroneous consensus. Hendel et al determined the relative difficulty of syllogistic probleme tuch as Tom is better than Bill, Mike is worse than Bill, Is Mom worse than Mike? for eight different combinations of premises and four different types of question. other relational terms used were: father/son, มore/less, eairlier/later, $[$ be the $]$ cause/effect $[$ of $]$, fastex/slower, farther/nearex, [have] lighter hair/darker hair $[$ than $]$. The resulto were in large measure predictable on the basis of an assumption that these problems are solved by constructing mental spatial analogues such as

and further atraightforward assumptions suoh as that, in the culture of thess particular subjects, construction and assessment of these analogues proceeds more easily from top to bottom and right to left. Handel ot al also asked their subjects to indicate, after the main test, the directions in which each of these relations seemed to them to be most appropriately portrayed. This was not regarded as a puzzling request by the subjeots and there were positive correlations between the pattern of essigments of directions and the pattern of relative difficulty displayed by the set of relational terms.

Fodor (1971) [Cf, also Brown (1958, p.88)] raises a further problem which can be illustrated by means of a quotation from Titchener (1909, pp.17-18), describing his image of a Lockean generic triangle:

> meand triangle to me, is usually a fairly definite outline of the little triangular figure that stande for the word 'triangle' in the geometries, But I can quite well get Locke's picture, the triangle that is no triangle and all triangles at one and the same time. It is a flashy thing, come and gone from moment to moments it hints two or three red angles, with the red lines deepening into black, seen on a dark green ground. It is not there long enough for me to say whether the angles join to form the comple'te figure, or even whether all three of the necessary angles are given. Nevertheless, it means triangle; it is Looke's general idea of triangle; it is Hamilton's palpable absurdity made real.

Fodor and Brown argue that imges such as this would have to be supplemented by rules.

> The rules yould have to distinguish such relevant features as having three sides, being a closed figure,
> etc., from such irrelevant features as the length of the sides and the size of the angles. But, to supply rules adequate to specify the set of features that an image must possess if it is to represent abstract triangularity is equivalent to providing a general definition of 'triangularity'. And it is very unclear that a speaker who had associated such a definition with the word triangle would also need an image in order to use the word correctly to refer to triangles. Fresumably, the word refers to all and only those things that aatisfy the definition, so that, given the definition, appeals to the image would be redundant. [Fodor (1971, pp.348-9).].

But the definition is framed in words. What is the basis of applicafion of these worde? Other verbal definitions? How are their words, in turn, defined? Somewhere one hes to attach significance to the elements by giving them content. In any oase, mitchener's littile triangular
figure from the geometries! should suffice for most ordinary purposes;
it would surely be more similar to most presented triangles than would
the prototypes for square, circle and other candidate lexemes.

An objection which I believe is more telling is simply that not A everyone, or not everyone all of the time, feels aware of images zocompanyins speech and thought LCf. Brown (1958, pp.89-91), Stern (1932, pp. 47 f.$)$, Woodworth (1906).7. In the face of this, pure inage theorists are forced to resort to presumptuous claims such as that the doubter' s images, though present, must have been too fleeting to be noticed. I would prefer not to have to adopt this sort of stance. I shail therefore regard jmages, when present, merely as further evidence for the fidelity of the memory traces upon which they are based; a being who stored only verbal definitions or taxonomic sohematal [Cf. Hamison (1972). 7 or lists of criterial attributes would be incapable of having images.

Pylyshyn (1973) ridicules image theories of, for example, recognition by pointing out that they seem to require that the inind s brain' should compare what is in the ${ }^{\prime}$ mind's eye' with what is on the retina and decide whether or not there is enough similarity to warrant recognition; and this simply pushes the explanatory problem furcher into the dark, In his critique of mental imagery Pylyshyñ raiges other issues (for example, the question of whether the brain has enough storage capacity) which I believe I have already dealt with. It seems important though to attempt to offer some proposals conceming the way in which. similarity between perceptual inpat and prototypes stored in memory might be assessed, without the aid of a brain within the brain. The suggestions which T shall review, only in broadest outline, are
that the human brain performs a Fourier analyeia on sensory input and that holographic storage is implemented in the brain. What I assume 1s that components yielded by Fourier analysis, to some degree of delicacy, are stored holographically. I have no clear opinion about the relative roles of the two processes, that is, about where the second takes over from the first. The hypotheses embodied in these suggestions relate to a grosser level then the moleculer biochemical one at the focus of Fong's (1969) speculations, which I sketched in 81.4 .2 . Having argued in 81.4 .3 that vision is the primary human sensory modality, what follows is explained in terms of the processing and storage of visual input but the processes are not incompatible with the other senses.

Fourier andalysis is the decomposition of a wave into component waves which vary sinusoidally. It has been demonstrated mathematically that any complex wave can be analyzed into simple sinusoidal components varying in amplitude, frequency, and phase. Superimposition of the components will yield the complex wave. As a simple example of this process consider the square wave, a, below. It cen be decomposed into, or created out of a sine wave, b, of the same frequency, superimposed on all of the odd harmonics (3 ra, 5 th, 7 thetc.) of b. The third harmonic of b , that ls, a wave with three times the frequency, is shown below b as c, in the diagram overleaf. To yield a perfect square-wave an infinite number of odd hamonics would have to be added to the fundamental component, b. However, short of infinity, any desired level of approximation to a squere wave can be achieved by using a larger or smaller number of odd harmonics. Any other wave shape could
be produced from, or decomposed into, different suitably selected sets of component waves.

Now, a black-and-white visual scene may be regarded as a twodifnensional distribution of brightnesses. If a long, narrow rectangular slit is placed over the scene whate is revealed through the slit may be regarded as a complex wave whose amplitude [brightness] varies in space. If the variation in brightness along the length of the slit is regalar we may speak of it as having a certain spatial frequency; a fixed number of cycles (of brightness variation) per degree (of visual angle - the angle subtended at the viewer's eye). A fence uniformly illuminated from behind will provide a simple illustration. Imagine that the fence has a Iarge post every twenty yards and e thinner post every five yards (eccept where there is a large one) and that it has strands of wire uniformly apaced six inches apart. Viewed through a horizontal slit the fence may be described as a complex periodic wave
composed basicelly of two different spatial frequencies: a lov frequency which represents the recurring large posts and another four times as fast for the thin posts. Viewed through a vertical slit the $+$ fence is another periodic wave of much higher epatial frequency, since the strande of wire are much closer together. If the fence is oxisply silhouetted the wayes I have described will be rectangular; that is, the cutoff between light and dark at each post will be sharp, as with a square wave, but, unlike a square wave, the dark parts [posts $]$ will not be as wide as the light parts [8paces between posts]. These complex rectangular waves could be analyzed Into sinusoidal components without loss of information. The same could be done even if the wave were not rectangular - fence with round posts illuminated from the front - or if it were to be aperiodic - fence seen obliquely and hence subject to foreshortening, or a fence with missing posts.

Gampbell \& Robson (1968) investigated the viaibility of gratings (patterns made up of regularly, alternating light and dark strips in a single direction) of various spatial frequencles and wave-shapes. One of their studies concerned the point at which the contrast in a faint grating was just sufficient for it to be visible. At this level of contrast a square-wave grating is indistinguiahable from a comparable sine-wave grating of the same spatial frequency. The difference becomes detectable at the same level of lilumination as that at which the third sinusoidal harmonic of the square wave is first visible when it is presented separately. This, and other resulte of Campbell \& Robson, relating to reotangular and saw-tooth waves and their sinugoidal components, can be neatly explained if it ls assumed that our visual
apparatus independently detecti the various spatial frequency components in brightness distributions on our retines.

T To analyze the sorts of scenes which we commonly look at into simusoidal components whose amplitudes, frequencies ana phase relationships will represent those scenes in the degree of detail to which we are accustomed would require (probably parallel) analysis along several different axes. In several species of mammal, cells have been found in the visual cortex whose responses [Pollen et al (1971, p.76). Cr. also Robson (1975, p. 110) 7 " ... to a given slit width are independent of the position of the slit, so long as it is oriented in the preferred direction and is within the overall receptive field of the cell." Slit here means a trigit line of light. These cells are sensitive to the width of the lines they detect and they alao require parallel adjacent strips of retina to be relatively unstimulated if they are to respond maximally, They occur in a variety of sizes. In short, they are sensitive to spatial frequencies in particular orientations and are likely to be the physiological hardware of neural Fourier analysis. Pollen et al (1971, p.76) also note that a timing mechenism for the registration of phase relationships is available in the form of periodic brain rhythms such as the alpha-wave.

Fourier analysis of spatial frequencies has several important vietues [Cf. Leibowitz \& Hervey (1973) and Pollen et al (1971).]. Firatly, they allow a mechanical comparison of patterns, say, a, perceptual input and a stored prototype. Each pattern, after Fourler analysis, will be a set of spectra. The speatra can simply be lined
up' and degree of overlap between them will be a measure of eimilarity; no homunculus is needed in the brain to ponder over such issues as Whether inooming stimulation from Bessie is more aimilar, in some weighted average of a large number of dimensions, to the prototype cow, horse or guitar. Furthermore, Fourier spectra possess important invariance relationships with the objects which produce images on human retines. The relative Fourier spactrum for a given view of an object remaine invariant with changes in size of the object; and we can recogaize objects equally easily over a, wide range of viewing distences. The apectrum is also substantially unaltered by translational motion or changes in brightness.

Hobson (1975), in a very conservative assesement, concludes that (p.112) "... If the visual cortex is a spatial frequency analyzer, it is certainly an analyzer of very modest capabilities, able to do no More than analyze patches of the visual image into their first three hamonic componente. n This conclusion follows from studies (on monkeys) which suggest that the orientation selectivity of the cells in the visual cortex, which I mentioned above, is coarse; the orientations which the cortex seems to sample proceed in jumps of about 15°. And from the fact that these cells seem"never to have more than three parallel excitatory strips of reting in their domain. I heve no way of estimating whether this smodest cepability' is adequate or not. However, Robson appears to ignore the possibility of coupling insensitive elementary mechanisms to yield a vernier-like mechanism of greater sensitivity. Blekemore (1975, p.259) says, in a different context: "This concept of collaboration between coding neurons to provide a
signal more precise than any single coding element is faminiar in the consideration of color recognition based on only three different absorption pigments."

In ordinary photography, the film records spatial variation in the amplitude of a wavefront of light coming from an object. Some of the information contained in the wavefront is lost in this time-averaged recording process, namely, phase relationshipg. The absence of this information from the photograph is one of the reasons why it looks flat and may usually be distinguished from the actual object it portrays. Our eyes can evidently see, for example, that a part of the wavefront which emanated from an indentation recessed a non-integral number of wavelengths below the surface errives on the retina with its crests out of phase with the crests of waves from the surface of the object; the camera cannot. In 1946 Gabor invented a process called optical holography by means of which all of the information in the wavefront may be recorded on a photographic film [See his Nobel Prize addrese, Gabor, (1972), for an intereating account of the discovery and of subsequent developments. 7 .

In order to make a hologram a photographic plate is exposed to two Wavefronts simultaneously. One of them might be light from an object and the other a reference beam. An interference pattern is set up between the two wavefronts: Where a pair of crests (or troughs), one from each wavefront, arrive at the same time they reinforce each other and where a trough from one coincides with a crest from the other they cancel out, etc. Both wavefronts have to be monochromatic and ooherent
for this interference pattern to be stable. A stable interference pattern recorded in this way has the interesting property that if it is illuminated with one of the oxiginal incident wavefronts and viewed from the correct angle the other orlginal wavefront, slightly attenuated, will be seen. Thus if the reference beam is shone through the hologram, the object will be seen in a way which is visually indistinguishable from the original, becauge both phase and amplitude information has been recovered. Alternatively, a replica of the reference beam may be created by illumineting the hologram with a wavefront from the original object; using the aame light, and optical geometry, as was used in making the hologram. In this way three processes analogous to memory are possible with holography: (a) associative hologranhy, in which wavefronts coming from two objects, A and B, compose the interference pattern and a replica of A is created by subsequent presentation of B, and vice versa, (b) identification holography, in which the original wavefronts come from an object and a 'label' for the object - subsequent presentation of the object yielda the' label' $[$ or, given the 'label', a copy of the object may be produced 7, and (c) recognition holography, in which a reference wave and an object enter into making the hologram and subsequent detection of a replica of the reference wave is a sign thet what is illuminating the hologram nust be e replice of the wavefront from the original object.

If the hologram is made through a diffuser, such as a groundglass screen, then $[$ Gabor $(1972, ~ p .304)]$ n \ldots any small part of it, lage enough to contain the diffraction pattern, contains information
on the whole object, and this can be reconstructed from the frasment, only with more noise." Further ($p .310$): "A binary store, in the form of a checkerboard pattern on microfilm, can be spoiled by a single Grain of dust, by a hair, or by a scratci, while a diffused hologram is almost insensitive to such defects." This dispersal of storage into many independent wholes allows many different interference patterns to be stored on the aeme photographic plate. Provided they are not so similar es to interact, only a deterioration in clarity will result because it is unlikely that a given bit of pictorial information will be obscured by superposition of another when it is reproduced in so meny places on the film.

Julesz \& Pennington (1965) drew attention to the parallel between the robustness of human memory and the resistance to insult of diffused holograms. Longuet-Higgins (1968) provides a mathematical account of a dynamic version of holography, called holophony, which could respond With the termination of a sequence given its onset, and which might be instantiated in the brain. The idea of holography in the brain, with the durability and economy which such distributed storage would entail, has since attracted many theorists [Cf., e.g., Pribram (1969).]. For my purposes recognition holography and what I called Identification holography, above, are the most interesting possibilities. If humans can use such processes that would explain the enornous oapacity demonstrated in recognition experiments (Cf. Standing ot al (1972); summarized in 51.4 .2 .7 and how prototypes for lexemes could be looked up, and how a lexeme could be found for sensory input which matohed a stored prototypo. Most importantly, the re-creation process in
in holography does not require a clever homunoulus to make decisions about similarity. In the recognition process the reference wavefront is either recreated with sufficient clarity to throw the switch' or the input is not recognized and mutails mutandis for labelling.

Of couxse, we do not noxmally see the world lit in coherent monochrome. If mentel holography exists it must be besed on interference between waves of nerve impulses, perhaps after Fourier analysis: Cavanagh (1975) presents a. detailed mathematical demonstration of the possibility of neural holography which is compatible with known neurophysiology and some psychological results. In his nodel the coherence and stability, which optical holography derives from laser beams, is provided by the structure of fixed fnterconnections between neurons.

I have sought In this section to perauade the reader that an apparent obstacle to traditional inage theories of meaning - Haw are images manipulated (rotated, expanded, contracted etc.)? - is in practice not an obatacle to the brain; these processes are perfomed by our brains and the means of their doing ao may be some combination of Fourier analysis and holography. Both of these latter processes also make it reasonable to speculate that similarity may be evaluated without recourge to a sentient being in the brain doing the job.

1.4 .5 A note on etabilized retinal imagea

If an (optical) Image remains at rest upon the reting for more
than a few seconds it ceases to be perceived. Thus the intricate tracery of blood veasels which lies in front of the retina, in a fired position, is not nomally seen; although it may be seen if one eye at at time is carefully opened for only a brief interval after a night's sleep. Stabilized retinal images may be artificially produced by securing a picture to a properly fitting contact lens and in various other ways. Grans ($1965, \mathrm{p} .123$) report's thet when this is done:
Experienced subjects, within seconds of settling down in
the aparatus, will notice changes in the stimulus
material. These changes vary from time to time, but the
general trend is for there to bs an almost immediate
reduction of contrast between the target and ita back-
ground. This is followed, again within seconds, by a

- distinct, and at first surprising, disappearance. This
diaappearance is occasionally of the complete figure,
but is most often of some part or parts of it.
Reappearances either of the jmage as a whole, or of parts
of the image, occur at intervals of from 1 to 5 sec.

Speaking speculatively and teleologically, one might suggeat that once something has been perceived it can be ignored for so long as it neither moves nor changes. Altornatively, aince parts of a stabilized image of ten diaappear separately, one might surmise that this is a way of eliminating noisel, to sharpen the objects of our perception during fixation. There is some aupport for the latter hypothesis in Evans" (1965) finding that jagged angular figures vanioh more readily than rounded ones and that an ellipse will dieappear sooner than a circle [The work of Garner (1970), mentioned in 81.3 .1 , showed that informl ationally simple figures such as a circle ere rather special perceptual objects. 7: Using either of these guesses as a guiding hypothesis one might hope to discover what kinds of things are unitarily perceived by deternining what disappears, reappears or remains visible as a unit.

The theory of criterial ettributes would gain some credence if it could be shown that sub-parts which migint count as distinctive features oscillate between visibility and absence in unitary fashion. Evens (1965) addressed himself to a question of roughly this kind.

He asked his aubjects to report for each fragnentation of a stabilized imege whethor or not it was atructured' the figure being viewed was a circle crossed by a vertical and a horizontal diameter Iine, i, e.s a circle divided into four equal quadrants. A structured fragmentation was defined as one which involved one or more entire Ings or arcs between the intersection points on the figure. Thus disappearance of an entire arm of the cross, the whole circle, any arc of the circle between points where the arms of the cross touched the circle, an entire quadrant, bar of the cross, etc, counted as a stauctuped fragmentation. Changes involving only parts of the lines between intersection points formed the complementary cetegory. "Before the experiment subjects were shown a number of drawinge of possible fragmentations of patterned targets. They were told to meport a structured configuration only when one of these clearly delineated figures occurred and persisted. If odd, random parts of the figure remained, even in association with some obviously non-randon shape, they were not to report a stinctured configuration." [Ftans (1965, p.128) 7. Under these conditions, approximately 15% of the fragmentations were 'structured!.

Cornsweet (1970), one of the originators of the study of stabilized retinal images, has regervations about the significance of
even mall effects such as this. His critique is directed primarily at studies of the reappearance of parts of stabilized retinal images but the burden carries over to studies of disappearance. He notes that reappearance is more comon with loosely-fitting contact lenses than with ones which are very secure but (p. 408):

Several authors have suggested that reappearance is not a consequence of uncontrolled retinal image motion. They say, instead that some internal process causes the reappearance, and that by studying the appearance of the restored inage, they can study the nature of this process When stabilized images reappear, they are often fragmented and these fragments frequently are described as simple or meaningful units, rather than simply as a random selection of elements from the original figure. Such reporta have been. interpreted as providing support for the contention that reappearance is not a consequence of contact-lens slippage.

Howevex, both the simplicity and the meaningfulness of these forms would be expected even if the reappearance were entirely due to uncontrolled retinal image motion. When a contact lens slips, it does so in some particular direction. Those components of the target that are lines or edges perpendicular to the direction of slippage will be most strongly affected by the slippage, and thus are more likely to reappear. This introduces "simplicity" or "systematization" into the appearance of the regenerated picture. Furthermore, when a sübject is presented with a series of random and nonrandom shapes under ordinary viewing conditions and is later asked to describe them, his report is very likely to contain more meaningful than nonmeaningful shapes, and more simple than complex ones. [Cornsweet (1970, p. 408)].

I should like to sum up this section and the others under B1. 4 by quoting a part of the preface of a recent book on form detection
[0ttal (1975)]:
a.. the cestalt descriptions of visual processes still ring true, despite the fact that their theories have been supplanted. These descriptions suggest that the hum n perceiver operates on slobal factors of stimuli rather than on the details of their component features.

Yet much recent research, it seems, hes been focused on the analysis of figures into parts rather than on considerations of overall organization, in spite of the fact that people seem to do juat the opposite.

Finally, can the research work in these sections be ignored by linguists because, to a large extent, they are general psychological Studies of memory, recognition etc. and do not always have a specifically verbal focus? I think not. To do so would be to fail to wield occam's razor, Without good cause. Recently I found my scissors, amongst the confusion which litters my desk, by the very tips of the blades alone, which were projecting from beneath a book. there was no need to see the pivot or the handles or the manner in which they were used; the pointed ends matahed something I had stored in my mind well enough for identifigation. Surely an organism with this kind of capability has no need of an independent strategy for deciding the applicability of known lexemes? As soon as I knew they were scissors I knew they were scissors.

1.5 A note segaraing the philosophical bockgnoma

I mako no protonce to philosophionl exportibe and in writing this sootion I havo relied solely on secondary sources buah an Staniland (1973) and tho introdivation of Eberlo (1970). In the hope of not blaroning tuy ignorance and leak of sophistioation as a philocopher, I sholl bo briof. Hf reasom for trospassing is that tho iocues which pormato tho reat of this thosis havo been of interest to philoaphers for conturion, unfor the heading "The

Problem of Univoroals". Whan I remarked on p. 4, above, that the theory of prototypes was "bla" I had in mind oimilamities botweon it and the Platonia 'theory of formi', and cortain proposald of Iocice and Borkeley. Tharafore I foal obliged to try to point to the tiny pigeonhole which my muggeaticne occupy in the vant cdifice of Testern Phillocophy.

The linguiatio aspeet of the problem of mivaraals in the question of that is the basie on thioh entities in the worla are grouped unior 'genaral names' (1,0 . oormon nopms ouoh as pargen and adjoctives 14 ke grean). Doos a genaral name' rofor to an ontity of Bome hind - a ymivareal - the ray that a proper noms refors or is this parhaps a urong-beaded way of looking at the matter? Answers to, theso quastions have fallen into two broad بategorieg: 工anlism, on the ons hand, and nominalicm/oonooptualiem on the othor.

Plato, a roalist, posited the oxistonco of transcecifontol forms, idoal objeots in rhioh the imperfect ontition of orr porcoption emohof partioipated. Ocianary thinge oould bo olassifled togothor and given tho sam 'genoral nano' if they vore rolated to the san form. Lf ouggantions aro in harmory with this to the extont that I olain that the menere of individual donotation classen are united by all bearing relationahips to sonething outside of thamselves: a (cet of) prototype(s). However, I eccept the main oritioisme Fhioh Aristotle, the fathor of anothor brand of reallem, levolled at plato's dootrino. Hamsly that $[$ Krakio $(1976$, p.127)]
"It is uneconomioal to postulate a whole realm of aupersensible entities. No ocherent account oan be givon of hom thoy are knom or of how the knowledge of tham contributes to ovr ondinary knowledge of thinge that are paroeived by the use of the vanses." Ariatotile located his universala in the rorla of things. Fithout the common objeots of our perception there vould be no univarsal B. Liy prototypes too, milice Plato's forms, are not in heaven. Aristotio's realizm Iay in a beliof that there was a singlo natural odtegorieation inhorent in things in the worla. The readiness vith which I find ryself ablo to agree with elains auch as: MThare is no Ifmit to the number of poseiblo olassifications of objects." [Bambrough $(1960, \mathrm{p}, 203)]$ Ieads me to the conclusion that I Ioan more towards nominaliem.

In its strongest form nedioval nominalism asserts that the ontities in the oompase of a general name are bound togethar only in that they are oach called by that namo. Thia is in blatant confliot with intuition and nominaltem is usually ratared dom by granting that a given olassification, out of tho many potential ones, may bo more or loss juntifiablo eoconting to the oxtont to whioh there are rosemblonies within ocoh clesa, betweon its mambors. Concoptialiats clatm that olassifioations are inposed by human minds and thet the miversals to whioh 'general names' have refereno are obatrect idaas; oxternal objects are usually held by them to bo ordored in toms of thoir ralative aimilarity to difforent abatract ideas. Ly thoory also appoals to a notion of sinilarity; and it is concoptunliot in its roliance on mental representations of things.

It is nominolist insofar as I grant the posaibility of more than one prototype being atored in absooiation tith a given lozene.

I find nyaelf greatly in sympathy with the ideas of Looke, a conooptualist, exoopt in the matter of abstreotion. Iooke argued thet 'genoral jieas' - to bo the reforents of 'gonoral names' arose through comparing partioular idean, thioh come to us via tho parception of indiviaual objects in our surroinaings, and, for each class of particular idean, suppreasing their diffarancos and abstracting what was oommon to therio. Aithough I allow that we do this and although I argued in \$1.4.4 that we are oapable of something aldn to montal oomposite portraiture, I do not bollove that our prototypes are in general abstrections whioh presorve only the proparties thioh are invariant through a olass. The thoory of oriterial attributes is a blond of Lookoan abstraction and Ariatotio's views on oategories.

- Berkeley atteokod the poseibility of abstract Ldoas on the grounds that no ides (and he appears to have thought of ideas as images) can aroid having apooifio values for ite attributos. Specifioation of detaile thioh mag vary coross a speoies to inimioal to an deea boing truly abatraot. This was tho beginning of the usual ling of atteck on jmago thoorias, whioh I reported in © 0.04.4. What I take from Borkeloy, though, is the notion that generallty comos about through the way in which wo use our Cfor him, almost unaltarably 7 partioular ideas. 4 prototype oan bo the foous of a donotetion class hy boing used to ropresent things
rinioh are macely asmilar to ito

I should Ifise naxt to gas a Par gonds about Vittgenatoin's notion of family rosemblapese. This is a moponal whioh Bambough (1960) maintains solves the problem of wiversala but is neither realiat nor nominaliet, The olase of games uns one of ths oxamios Vilttgenstoin reed in putting formand his Jaeas. Acooraing to Bambrough (1960, p.199):
\therefore Fittgenstoin eaya that gamss have nothing in ooumon exeept that they are games.

Fittgenstein thu denies at one and the asmo the the nominailiat's alaim that games havo nothing in coimon - oxoopt that they are oelhed gomes and the roalist's olnin that gamss have somsthing in ocmson other than that they are games. He assorto at ons and the sams time the raaliat's olaim that there is an objeotive justipioation for the application of the word "gamst to ganse and tho nominalist' 3 , olaim that thiere is no-olemont that is comion to all games.

The objeotive justifloation for sorting gamos, or the manara of aly other denotaticn class, into the same pile is that ocoh of them oxhibits sono but not neoessamily. ali of the foatores whioh oharacteriee that 'family'. Since ary momber may lack any of the femilal atlgmata ono camot, in general, hope to find olassdefinfing foatures viatoh are prosent in every one of the mambers of tho olass. Homover, members of the olasi mill be recogninable as such In ristus of having same of the features of the class. A given mamber, A, of the olass might have no foatrores in comm with another, B, but thero is 1fkely to be somo other member, usy C, whoh abscer Poatwres wh both A and B. Henoe thore will be a fand ly ceramblance vuming through the group.

In a series of paychologioal oxperimants, Roseh \& Nyorvis (1975) have shown that degree of judged centrality in a oatogory is strongly correlatod with extent of family resemblance, whan this Iattós it quantified. In 8 G 2.3 .2 and 2.3 .5 I oite some examples of ohildren's denotation classes within vhioh no faature oan uniformy be found in every member. [unless it is of such ubiquity as to bo forma in the members of many other olasses as vell 7. Femily. resemblanese is thus an attractive notion for ino. Furthermore, the theory of prototypes may be atralghtforwardly regaried as a special case of the theory of family resemblancea; a theory in which, to ocontinue the 'family' motaphor, such resemblances as there are dopend on the members being aimllar to the same progenitors - the prototypes. To Hु mind this interpretation rendera Eittgenstejn's insistonce that whit X_{s} have in oommon is that they are X_{s} leas gnomioaily obsoure.

If acooptance of pittganatein's solution is in no vay to be understood as conced "uat the theory of oriterial attributes could be mado viablo if it edmitted diefunotive dofinitions. If definitions mas be ocajumetions or aisjunotions of attributes and are not furthor constrained thore is no reason why sono of the arbitrary olasses it would then be possible to conativest ahould be learnsblo, in the sense that one who has been introduced to somo manbers will be ablo to recognise now instances of the olasss and the application of locemas is loarnablo. Tharo mast ba a family bond between the menbers of any given denotation olass: rolationahip to the sam ancestor or redded couples of ancestora. Sec Donnis ot al
(1973) for an cxperimental damonstration that humans are almost incapablo of discerning the basis of classtrication in clenses Whiah are formally life Tittiganstein' s but which bring together arbitracy colleotions of foatures rathor than ones defining findred ontitios.

2.0 An empirical study of early vocabulary development

In this part of the thesis I present an account of a longitudinal study of the nominals used by three youne children up to the age of two and a half years. The investigation is restricted to nominals Whose denotation classes comprised relatively concrete entities. Nominals is used as a cover-term to encompass all nouns, common and proper, regardless of whether they filled sentential roles analogous to those of adult English noun phrases or were constituents of nown phrases. The term also includes isolated forms judged to denote entities; rather than actions, processes, qualities, affects etc. Since my concern is with the intensions of leremes - with what it is that unites the diverse members of denotation classes - I shall have next to nothing to say abopt syntactic structure. In fact the buik of my data consista of isolated forms. Such syntactic clues as there were nave, been used without specifis acknowledgement. Three clues, in the main, when they first appeared in the children's records, served to corroborate the earlier designation of many ancestor lexemes as nominals. They were noun phrases marked by either articles or attributive adjectives, or both, and possessive structures such as Aladdair's bike and my muiny's pens. Obviously, noun phrases of the latter kind offer suggestive evidence of a nascent common ve: proper distinction but I do not treat this iasue here. I have likewise, largely ignored distinctions in the uses of the children's nominals: vocative, predicative; Bentence subject etc. Most of my examples were cases in which the children were respondins to a 'what's that' question, asked with respect to an ostended object, or instances of children spontan-
eously naming an object which they had moments earlier discovered or noticed.

2.1 The pdate

The data were derived almost exclusively from two sources: questionneires completed at weekly intervals by the childrents mothers and transcripts of tape-recordings-of weekly play-sessions with the children, individually. For each ohild, deta-collection by questionneire began some time before the first tape-recorded session was undertaken. For each child, the collection of data ceased at the age of approximately three years. For present purposes I have used questiomaire and taped data spanning the period, in the case of each child, from his finst questionnaire to the point at which he had reached the age of at least two and a half years and we had records of taped seissions coveruge at least six months. Questionnaires were posted or otherwise delivered to the mothers of children once a week. Each questionnaire Was received back by post, or fetched, after it had been filled in, one Week later. Use of the post resulted in these records being very nearly uninterrupted week-by-week accounts of the children's linguistic development. Sickness, holidays and other disruptions occasionally led to the omission of taped sessions.

The questionnaire item of greatest use to me was one which asked the mother to uplease list all new words used by ... this week" and to state, for eaoh word, thow the new word was used". other questionnaire items which yielded some relevant data were ones which asked for any

$\overline{74}$

examples observed that week of the child "joining words togethert, "saying anything that scunded like a question" end "trying to count". Information regarding specific lexical items - pronouns, prepositions, negators, attention-drawers and comments on absence and repetition was also solicited. However, these tables produced little of relevance to the present. study.

The children who are the focus of this investigation were three Iittie-boys (G, I and K). The table below presents the salient ages and quantities in the body of their data which I have used. Ages, here and elsewhere [as noted earlier], are expressed in the fom, number

child	age at			total taped utterences	total nominal lexemes
	1st. q'naire	7at. taping	thind of ${ }^{\text {ofudy }}$		
G	$1115 / 6$	$1 ; 81 / 5$	2;61/6	3833	159
	1;9	1;10 4/5	2;6 1/6	2786	219
K	1;91/2	2;01/2	2;61/2	2649	113

of years, semi-colon, number of months, followed by fractions of a month, if any. The smellest fraction which I have employed is onesixth, i.e. five days, The upper age-limit of two and a half years keeps the amount of data manageable but includes the age-range within which Clark (1973), in her review of diary studies, found 'overextensions' to be a common occurrence. Note that the total number of nominal lexemes given in the table are based on a count of types, not tokens. Reference to the appendix at the end of this theais will show that the number of tokens involved was far greater.

445

A11 three children were guowing up in suburban English-speaking homes in Edinburgh. G'a mother was a housewife and his father a printer. He had a sister two and a half years older than himself, J's mother was an archaeologist rorking in a psyoholinguistic mesearch unit. His father was a civil engineer studying for a higher degree in linguistics. J had a brother slightly older than himself and a sister who was a Iittle older than both of them. K's mother was a housewife and his father a civil servant. K's only sibling was a brother two and threequartes years older.

2.1.1 The larger project

The collection of data by questionnaire and tape-recorder was done in collaboration with cify colleagues on a Social Science Research Council project, "The linguistic development of young children", under the direction of Professor John Jyons, in the Depertment of Iinguistics, University of Edinburgh. The aims of the project were Iongitudinal studies, confined to the first three years of life, of the acquisition of prepositions, tenae and aspect, model verbs, questions, certain. selectional restrictions, pronouns, deixis, reference and definiteness. Griffiths et al (1974) is a ahort general description of this project.

2.1.2 Selection of children

Through approaches to the mothers of ohildren attending a research mursery associated with the Department of Psychology, University of Edinburgh, contant was established with a number of families who had
young children who had either just begun to use language meaningfully, in the judgement of their parents, or who had not yet started. These families were visited and the nature of the project was explained to them. Information such as the child's date of birth, number of siblings and parental occupations was recorded during these visits. A questionnaire was left with each set of parents and they were asked to return it as soon as it proved possible to make the first entry. Following receipt of the first questionnaire, subsequent ones were dispatched and collected weekIy. After, the initial visit we paid a. second call on each family speciffcally to assess the likelihood of our being able to enter info cooperative relationships with the children. No attempt was made to compose a sample which would reflect a balanced cross-section of society. We were concerned only with the children's ages, their willingness to interact with us and domestic factors such as street noise and the presence of other children; factors which would haveriade it difficult to obtain clear tape-recordings. Two gets of twins were not taped because of the difficulty which recording them would have presented.

Taped play sessions were commenced immediately with two of the children because they appeared to have started using words meaningfully at around the time of our initial visit. One of them was a little girl, Ja, from whose record I cited an example in 1 B.3.2. She was an only child whose father and mother were, respectively, a plumber and a typist working at home. We visited the other children whom we felt were potentially suitable at approximately monthly intervala to assess their progress and to accustom them to our presence. Arter the
return of the initial guestionnaires we continued to collect data in this manner from the children's parents, including most of those whose children were not included in the tape-recorded subset. Together with a few children added to the sample through personal contacts, questionnaire data was collected on the linguiatic development of twenty-four children in all.
J, one of the children who is inclupded in the table of S 2.1 , above, and a-little, girl, R, were contacted through acquaintances shortly. after we had begun to tape-record the first two children. They hed clearly started to use language and they were added to the taperecorded sample immediately. J soon proved to be more advanced, linguistically, than we had realized; so it is fair to say that some important early phases of $)$ his development were lost to us. The addition of three other children to the tape-recorded eample brought it to the final total of seven. Two of the last three children came from the original sample. The other was P, a friend's child, from whose record I drew some examples used in 31.2 .3 .1. P had no siblinga. His father was a college of education lecturer and his mother a former secretary.

I have chosen to concentrate on the vocabularies of G, J and K because they were the three children whom I knew best in the taperecorded sample. It was the policy of the research team that one member should be a fairly constant figure in the life of each of the children. This person ahould attempt to be present at every recording session with that particular child and should be the child!a principal playmate during recordings. The assignment of children to research
staff in this way was partly organized to suit our convenience and partly dictated by the preferences shown by the children. G, J and K were the children in whom I took e special interest; we became friends. In writing this thesis I have been influenced by the data we gathered from the other children but' I have confined detailed analysis to the material gathered from G, J and K.

In serious studies of child language a great deal hange on intuitive interpretations of children's utterances. It is therefore of paremount importance that one's intuitions be founded on familiarity with the particuler child involved. The dubious validity of the glosses assigned to children's utterances by adult strangers also makes longitudinal methods more likely to yield tmuth than cross-sectional studies.

2.1.3- Becording and transcription

With the exception of J, who was often recorded in the project offices because his mother worked nearby, the weekly recorded play sessions took place in each child's home. Usually, three members of the research team rould be present: the child's 'playmate', a phonetician and a commentator. One or both of the child's parents usually chose to attend es well. We took with us a box of toys, the contents Of which will be described below. After a short 'warm-up' period, during which we set the child at ease and deployed our equipment, recording was begun. The unrecorded preliminaries generally occupied up to half an houx, and the recording approximately twenty minutes.

A portable 0her ' 40001' tape-recorder was used with 'standard-play' tape at $3 \frac{3}{4}$ i.p.s. Two Sennheiser umni-directional microphones were led into it through a mixer with an independent gain control for each of them.

One of the microphones was placed on the floor near the child. The other was held by the commentator who sat in the beckground. The commentator gave a quiet runaing description of the child's non-verbal activitiesj trying to identify any object or event to which the child reacted, pointed or otherwise showed signs of attention and to specify the nature of the interaction. In the role of commentator, we soon developed acronyms and other abbreviated foms to refer to the adults present and the toys. This was done to try to ensure that the commentary would influence the child's conversations as little as possible. The children appeared largely to jgnore the comentator. If, however, the-child showed an interest in the commentator, he or she would exchange roles with the playmate and allow the interaction to proceed smoothly. If the child chose to play with its parent/s or the phonetician the playmate would likewise withdraw temporarily from the centre of activity. The phonetician's task was to attempt to make as detailed a transcription of each of the child's utterances as time would allow.

During the recording sessions our main concern was that the ohild should talk. Secondarily, we were interested in probing the child's mastery of the foms, structures and types of speech act which it was the aim of the project to investigate. We also often wished to follow mainly by sustaining the child's interest through varying the type of play as much as possible and allowing the child free rein in guiding the direction of conversation. However, we frequently conducted ad hoc elicitation experiments to try to coax a child into attempting types of utterance of special interest to us. If a child showed boredom with any of the toys or appeared to be overwhelmed by the number of them we would leave some of them at the project offices for the fext few visits and reintroduce them again later.

Even with the aid of a detailed accompanying comentery it is easy to forget contextual details which are important clues to the meanings of children's utterances, before they have been committed to paper. As a rule, therefore, we transcribed tape-recordings on the day that they were made. The transcription of child language tapes is a lengthy ard arduous process; so we found it necessary to conduct the play sessions in mid-morning in order to have the rest of the day free for transcription. Only one child was viaited on any given day and it was usually the same day of the week for a partioular child. For present purposes the uniformity of timing of the play sessions was a disadvantage. It would have been preferable to have recorded samples of the child's speech in the course of other activities in addition to mid-morning play. The number of words in the appendix which are attested only in questionnaire entries will be seen to be particularly high in the fleld of temm for food, clothing, items connected with washing, and the nanes of people. Preaumably this is because the relatively stereotyped nature of our recording sessions seldom gave the
children cause to use these words.

A11 the members of the research team who had been present when a tape was recorded generally participated in its transcription. Transcriptions took the form of numbered temporally-ordered liats of child utterances interleaved with edult utterances addressed to the child (and any others to which the child had responded) and a description of the contemporaneous non-verbal activities of the child and his interlocutor. The children's speech was divided into separate utterances on the basis of pauses and intervening speech by others. Each child utterance was represented both phonetically and, whenever possible, by means of a gloss which represented the research teams agreed best guess as to what the child hed been intending to say. Items over which there was disagreement were usually left unglossed, if argument and repeated playing of the relevant part of the tape failed to lead to a consensus. Question-marks were prefixed to glosses which either were, by general agreement, dubious or which represented a particularly strongly-held judgement of leas than the full number of team members present. When two firm opinions were in contest both glosses were noted down. The glosses were written in ordinary English orthography. They were either presumed adult target forms, commonly-used nursery forms or idiosyncratic forms which we had come to know through acquaintance with the particular child. Forms which we judged, usually on the strength of 4 intonational similarity and sometimes with the additional cue of lack of relation to the non-verbal situation, to be uncomprehending imitations of immediately preceding adult utterances were annotated as 'echoes'. All tapes were preserved for later reference.

Nost of the toys used in the play sessions may be seen in the illustation or the next page. Many of them could be taken apart, which helped to make them interesting playthings. The illustration on the next-but-one page shows some of the relief outline figures embossed on the bases of the plastic stacking beakers. Theser stark figures are important in my study because the influence of contextual and functional factore in the mediation of their recognition and naming can usually be ruled out. Three of the project's picture books had the same edvantage: they presented realistic coloured photographs of everyday objects, toys and animals, sharply-isolated, against austere backsrounds. They were:

Dean Hay (1966) I see a lot of things.
Thomas Matthiesen (1967) ABC: an alphabet book.
Thomas Matthiesen (1967) First things.
All three were pablished by Collins (London and Glasgow). We also used five Topsy and Tim books, by Jean and Garath Adamson (London and Glasgow: Blackie, various datea). This series presents stories about the doings of a little gixl and a little boy. The text takes up only a small part of each page, most of which is a coloured illustration. These pictures are fairly realiatic al though they are not photographs. They differed from the pictures in the firat three books mentioned in that most of them portrayed scenes filled with action and background detajl, instead of isolated objects. My first book by Valerie Hodge and Roger Hall (Iondon and Glasgow: Collins, no date) was intermediate between the two previous types of picture book. Most of its coloured illustrations -non-photographic - were very realistic. Some depicted arrays of

Projeat tory

Loft, to right, above: plastio animals and toy jeep on and around anfrial tin, plastio stealing bealcors, plastic elophant, be11, toy Iondon bus, three plastic sookeopers, plastic akittlos.

Inft to right, bolor: 'chairoplane' uring with remoreablo figures in seats, large finger-ball, toy briokes, steaking doll with sombraro, toy train, 'fumery men', doll, ping pong ball, yellow bail with holes, elophant jigsam pussla, cardboand oglindors, toy tolophone.

Hot shom here: 'tinkartoy' rooden oonntrustion kit, pleture books, draring ped, orayons, Russian 'babuahka' nesting doll sot, dog glore-puppot, blue toy VV oar and diplieates of some of the other toys.

Plastic stacking beakers with relief outline figures
related objects, others, single objects against plain backgrounds and others complex integrated scenes. This was the only other ploture book which we regulanly took to the play sessions.

2. 2 Analysis of the data

One way of characterizing that I extracted from the questionnaires and tape-transcripte in the quest for nominals is to indicate the kinds of utterances which were passed over. Pronouns, being worthy of study in their own right, heve been neglected here. Temporal tems such as morning were left out because of their relative abstractness. For the sane reason the very few precursors of relational nouns, such as edge, were not included; al though top, neaning lid, plug or covert, was, Door was a problem case all three children first applied it to dooms and then used it for a while to request help in opening, separating and, laters closing and joining thinge. Griffiths \& Atkinson (in press) argue thet door - which was used in similar ways by other. children observed by the project-was a proto-verb. One of the grounds for this claim is that at times it alternated with stuck and off; another is that the form was subsequently supplanted, in this role, by open and ghut. Below, I heve noted only those caseácolidoor in which it was clearly applied to things and have overlooked the large number of instances of its being used to sumon assistance. Other action-words, much as go and fal1, were ignored with fewer qualms; as were forms with locative adverbial/verbial status, e.g., off, on, In and down, and request and donation forms, e. E, here, thanic you, please, want. Question forms, predominantly where's x? and what's
that?, were also bypassed. There were vexy few qualifiers, e. E. nice and they are generally left out of account. However, J used hot in ways which suggested, very inconclusively, that it might have meant 'electrical appliance' for him; so the word will be found in the appendix. Interjections, yea, no and oh, were not considered, non was the 'completive', there!. Finally, I excluded comments on disappearance and absence, can't-see-it, away, (a11) gone, remarks related to taking notice of and drawing attention to things, see, look, and ritual, phirges, oops a daisy etc.

Apparently-uncomprehending techoes of immediately antecendent adult utterances had been marked as such at the time of transcription and I ignore them. Cases in which a child repeated a 'name' for an object after it had been uttered by gan adult, in correction of the child or in response to a 'whet's that' question from the child, and cases of a child usjer a nominal which an adult had used less than half a dozen utterances earliex, were more problematic. Should such an item be presumed to have entered the child's vocabulary? I decided to be cautions in this matter and left such forms out of account. Usually the form reappeared spontaneously at later points in the child's record and was noted there. There were rare cases of children uttering forms cognate with adult Engliah nouns but bearing no discernible relationship to the child's surroundings at the time. I omitted these unless the word was already an attested meaningful item of the child's vocabulary; in which cese I entered "p" in the list of denotata for that lexame.

I have relled heavily on the glosses provided for the ohildren's utterances at the time of transcription. The glosses have sometimes been my guide in grouping diverse phonological forms together and sometimes in plassing very similar forms as related to different Iexemes. The variation is suppressed in the appendix and in the discussion below, except in a few extreme cases which are represented in phonetic script. Phonetic transcription is also employed in a few cases Where no related adult or generally-accepted nurgëry form could ba identified. The conventional orthographic forms use should be taken as an indication, but only a rough one, of the children's most frequent pronunciations of the words. I found no grounds for believing that G, J and K deployed plural markers meaningfully and systematically in the age range dealt with here, up to 2;6. Thus no weight should be given to the presence or absence of pluralizing suffixes in the representations of the children's forms.

One of the very few cases in which I decided to depart from theglosses in the tape-transcripts occurred in conneotion with K's use of house. According to my records LThis caveat applies tacitly throughout the remainder of the thesis. $7, \mathrm{~K}$ firat used house at the age of $2 ; 1,5 / 6$. His mother indicated in the questionaire that he applied the word to a picture of a house which regularly appeared in a television programe called Play School. It is very seldom clear from the questionnaire entries whether a child's use of a word was spontaneous (and to what extent it was spontaneous) or whether it was an imitation of a recent utterance by someone else. We did not record anything glossable as house, from K, until four months later $\left(2 ; 5 \frac{1}{3}\right)$, although we showed him.
the picture of a house embossed on the base of one of the project's plastic stacking beakers. At $2 ; 4$ he responded "door" when asked "What's that?" of this outline of a house. When he wes $2 ; 4 \frac{1}{2}$ said $[\mathrm{f3n}]$ when he was again asked what the relief on the base of the beaker was. This particular phonetic form was not encountered again and I have left it out of eccount.

Our first three recorded examples ($2 ; 5 \frac{1}{3}$) of K^{\prime} s use of a form Which we glossed es house - twice preceded by a question mark to indicate doubt in the matter - were perplexing K was trying unsuccessfully to screw the lid on to the cardboard drum which held our 'tinkertoy' construction set. These tokens are entered in the appendix, in the denotation class of K 's house, as "?". A week later K's mother noted on the questionnaire that he had said "car in house". This was offered as an example of "joining words together" and was not accompanied by explanation. Durins the ensuing month house was attested many times. K said "house" as I refitted an arm to our plastic chimpanzee, he said it while he wes trying to extract something from his pocket, as he pointed at the head-socket of one of the plastic zookeepers he had recently decapitated. Pointing at the water in the kitchen bink, in a dish-washing scene, he said "house tap", etc. In all there were 49 tokens of this word, which we glossed as house, being used in such outlandiah Waye. He rere puzzled at the time and, with hindsight, it occurred to me that out would perhaps have been a more appropriate gloss. of course, phonetic similarity makes this plausible. The revision is strongly supported by the fact that although K 's mother marked out as a form which had been used "over 10 times" every week from $2 ; 25 / 6$ onwards
[The questionnaires gave the options "not yet"," $2-10$ times" and "over 10 times", for a rough indication of weekly proto-prepositional usage. 7 , we never glossed any of K's utterances, or parts of his utterances, as out during the period dealt with here - up to $2 ; 6 \frac{1}{2}$. I conclude that the original glosses for these 49 tokens were in error.

Were, there perhaps other major errors in the glosses? Could it be that K's house, because it belonged to a system vexy different from adult Faglish, was neither a noun nor a preposition nor an adverb but something so general as to be applicable to all of the notional fields covered by the nuclear members of these form classes: things; relations and (modes of), action? These are questions that will probably never be answered. However, I believe that reliance on the interpretations of adults who know a child well is both necessary and innocuous. It is harmless because totally private intentions and conception which a child never succeeds in communicating to others are no part of language. In essence, language is not a solitary game; it requires at least two players.

All the examples In the appendix are instances of the children's productions; that is to say, I have not systematically listed the evidence to be gleaned from cases of comprehension of the speech of others nor the negative evidence suggested by a child's failure to 'riame' something. Failure to answer a 'what's that' question might indicate no more than disinclination. Only if repeated questioning of an apparently willing child did not yield an answer have I given any weight to the spisode - and even then, only in the discussion, not in
the vocabulary lists. Failure to 'name' a presented object in the absence of a prompting question shows only thet humans are not robots. I have omitted the comprehension evidence from the vocabularies because these were only'a few cases in which it was possible to be fairly certain that, for instance, a response to a request containing a nominal had any bearing on the intensions of any of the child's nominals. Without rigorous testing procedures contextual clues as to what the speaker wanted were usually available to guide the response. CleanitInformative examples of comprehension were, however, noted and some of them enter the discussion below. I have included nominals drawn from utterances with desiderative force. This is a practice of dubious validity when a desired object was out of sight and the child's request for it was not consumated, but appropriate annotations prevent such. examples from being misleading when they appear in the appendix.

Having oleared the sround it is now possible to give a statement of the anelyals of the data. For each child, I scrutinized the questionnaires and tape-transcripts, one week at a time, end listed all the nominels there were, bearing in mind the excoptions and cautions which I have attempted to spell out above. Beaide each nom al I noted each of the entities to which its tokens had been applled. To suit my personal wibh to see some ordex in this undifferentiated mass, and I hope to the benefit of anyone who reads the results of the exerciae, the nominals were classified under five headings according to their denotata: ARTEFACIS, PEOFLE, FOOD, ANIMALS and BODY PARTS. This is by no means a rigorous classification and it certainly was not forced upon me by eny properties of the data. Some may find the presence of
water, trees and flowers under ARTHPACTS displeasing. However, nothins reported below depends upon this classificatory system. Within the children's own denotation classes, I appended an asterisk to the description of any entity which, by fairly lax adult standards, seemed to represent an aberrant usage. These departures from ddult norms-of-a-sort are interesting because they are likely to reflect the child's own generalizations instead of what he has learnt directly from people in his environment. At the end of this process I had week-by-week listg of nominals and descriptions of the entities in their attested denotation classes.

2.2.1 Aggregation into successive vocabularies

The weekly lists repregented usages which just happened to have been noted by the children's mothers or to have occurred in twenty minutes of tape-recorded conversation with the child. It was obviously necessary to conflate weeks in order to increase the size of the sample of the members of each denotation class. Amalgamation was alao called for to give a fuller picture of each child's overall vocabulary; a week could easily go by without the need to use a particular word arising at all. There are several arbitrary bases on which the longitudinal record could have been partitioned into periods longer than a week, e.g. larger Intervals of time or numbers of reconded utterances. I'thought it better to try to identify spurts in vocabulary growth and to section the longitudinal record just ahead of rapid increases.

[^6]nominals month-by-month and plotting the results cumuletively. This was a count of types, not of tokens. The graphs are reproduced overleaf. Cumulative addition means that once a lexeme had been attested, even if only through one token, it was from that point onwards added to the total for each succeeding month. Since we had begun to receive questionnaires from $K^{\prime} s$ mother when he was $1 ; 9$ his graph is not, plotted for the monthly anniversaries of his birthdey but at $1 ; 9 \frac{1}{2}, 1 ; 10 \frac{1}{2}, 1,11 \frac{1}{2}$ etc. The latest points on the graph for G and are at $2 ; 61 / 6$ instead of $2 ; 6$ in order to include their last dataweeks considered here; as it tumed out, neither of them was recorded at exactly the age 2;6. J's record atarts with a questionnaire at $1 ; 9$. Then, for reasons which I can no longer remember, we did not receive another questionnaire from his mother until he was $1 ; 102 / 5$, a fortnight before the first taped play session. Accordingly, the second poin't on his graph is at $1 ; 102 / 5$. Lexemes entered under more than one of the Categories, ARTHFACHS, PEOPJB etc., were counted as if they had appeared in a single category only.

Points on graphs at which the curves bend upwards are points after which there was an increase in the rate of accretion of nominals. The ones which were chosen to demarcate stretches of each child's records, for aggregation are signified by vertical bars: It will be seen that five points of acceleration on G's sraph and one on K^{\prime} 's were not selected as the boundaries of periods of vocabulary. This is because doing so would in each case have led to the recognition of periods which were not very diatinct from their precursors, in terms of new nominals added.

The curves thus provided a modicum of motivation for sectioning G's vocabulary into five successive periods and J's and K's into four periods each. It is in no way intended that these periods should be taken to represent natural stages in vocabulary development. They are a convenience dictated by a desire to understand the structural effect, on denotation, of other evailable lexemes and to reduce long 1 ists to manageable proportions. The appendix to this thesis presents the resulting asgregates. All the attestations of each lexene in a given period have been brought together in approximately chronological order of occurrence. "Approximately" beceuse order of occurrence of denotata Within a given week was largely ignored and because temporaliyseparated instances which could be covered by a single description were lumped together, with e multiplier added to specify the number of tokens. Multipliers are also-suffixed to atteistions derived from questionnaire entries QQuestionnaire-based evidence is marked in the appendix by ya:". 7 . It should be remembered, hovever, that mothers were asked to list new words. It naturally proved easy to forget which words had been entered on previously-returned questionnaires. This of ten had the desirable consequence, from my point of view, of a lexeme beine repeatedly attested in the parental returns for a given child. The important point though is that small numbers of tokens cited as comins from questionnaire entries bear no straightforward relationship to frequency of tokens: a word might have been filled in more than once because it was used frequently, as easily as it might have been noted again because its previous use in utterance was so far back as to have been forgotten.

Since the absence of recorded tokens of a previously-attested lexeme within even the longish periods of aggregation used here cennot De taken es a sign that that child had lost that word from his vocabulary; lexemes have been carried over into succeeding periods even when forms related to them were not again encountered. This should not cause any confusion because such items stand out clearly in virtue of not being accompanied by descriptions of members of their denotation classes. Where one form replaced another, as for instance. When J J began to call nusical boxes muaic box instead of wikik box and when this form replaced his earlier keekit, the new form is entered in the place where the old one would have appeared. The approximate order of first attestation is carried forward from each period to the next. The order does not reflect the temporal sequence of attestation exactly, because I paid little attention to this matter Within any given week and because in about half a dozen cases I moved lexemes closein to related ones. With an eye to functional and contextual issues I have tried to reflect in the descriptions of pictures what the background to the named object was. Where no background is mentioned in the description of a picture it may be safely assumed that the object was-portrayed in-isolation on a pgee. With regand to 'real' objects and parts of them I have included contextual information only when it seemed to be of interest; there appeared to be little point in stating that a ohild was playing with a toy in the way intended by its manufacturer, or to noting that the child had aimply eeen the object and named it or had used the word in response to an adult introducing the object and eaying "What's that?".

2.3 Discussion of the data

I believe that the vocabularies in the appendix contain the evidence for a strong case against the theory of criterial attributes and in favour of intensions being detailed prototypes. It is my intention, here, to try to persuade the reader that this is so by giving an account of my interpretations of the eignificance of the date. Selected examples rather than every possible relevant instancé a are used but I have tried to be scrupulously fair in selecting items for discussion. The eppendix is there to be used by those who may feel that a different selection from this evidence would warrant a different conclusion.

In this discussion it is sometimes necessary to make guesses about which aspects of a set of objects mediated a child's tacit judgement of similarity pr difference. I am aware of the well-known indeterminacy of such guesses CCf. quine (1960,87) and, in the realm of pattern recognition studies, Dodwell (1970, pp.73-4).7. However, I see no way of evoiding such subjective judgements. of course, the hazards could have been-minimized by carefully controlled experimentation but, especially in work with young children, formal experiments run the risk, of becoming games in their own right and unrepresentative of normal language use. Also, it is just not feasible to devise, try out and applys rigorous experiments to sizeable portions of a child's vocabulary before the child has progressed to a different lexicon; children's vocabularies are added to and, hence, changed from moment to moment.

Three abbreviations are used extensively below and in the appendix. They are:

> Q) to identify evidence derived from mothers' questionnaire entries
> $\mathbf{P}=$ "picture of", grammatical articles are neglected $^{\text {after }}$,
> pis $=$ project

Objects which belonged to the project have been marked because I was extremely familiar with them and therefore feel more confident in talking about their properties and how they might have been perceived by the children. The reader is invited to refer back to the illustrations of the pr toys in evaluating discussions in which these items figure.

2.3.1. Infrequency of exrors

- Clark!s (1973, 1974) developmental version of the theory of criterial attributes explains 'overextensions' by the hypothesis that children initially have only a few criterial features for each of their lexical items. Fewer criteria to meet entails the likelihood of the criteria being ast by more items. But, there is a rub here: if children worked in this manner 'overextensions' ahould be numerous and often far-fotched. Inspection of the appendix reveals that for many of G, J and K's words overextensions were never attested. I grant that some instances of my use of an asteriak or fallure to use one are contestable but the broad picture is one of it being relatively care for a word to be pushed beyond the conventional limits. Notice too that, within denotation classes, cases which seemed to deserve an asterisk are often heavily outnumbered by examples of (fairly) standard
usage. For instence, only one of the nineteen tokens of car ettested for K was inappropriately used: as a name' for the pr parked motor scooter in a street scene, in the last period. Among the total of thirty tokens of shoe from him, only one, the pr doll1's socks, was deviantly applied.

Also; the degree of aberration was often so slight as to make the asterisks seem the product of pedantry, as in the second example above or when K called the pr dog glove-puppet bag; it is, after all, a bag with head and ams attached. G's referring to the pr P yellow plastic duck as teddy seems entirely excusable too; the view ehown was such that the duck's bill was foreshortened and the tail hidden behind the duck's body. J's calling the $p r P$ zebra and an outline drawing of a donkey horsies is likewise easily excused. mwo more exculpable instances, and there are many others, are: K's bus for a P pullman railway carriage and J's book for pr P children's paintinge hung on a wall in a nursery school scene - actually, the paintings were stuck on the wall and, but for my knowledge of conventions about what to do with books and the fact that, in the ofory which this illustrated, the paintinge had been done earliex, they might have been books. I do not deny that the appendix contains interesting 'overextensions', Some of them are discussed below. I merely claim that many putative instances are venial.

B
There are also cases which are perheps best regarded as genuine emrorg. One such case was one of the five (out of 240) in which G misapplied car. In the play session we had with him when he was $2 ; 22 / 5$,

I asked G for the engine of the pr toy train he was playing with. He indicated his unwillingness to give it to me by taking it further away. Momente later, while his attention lapsed briefly, I whisked the train away from him. He noticed and grabbed it back saying "my" then "my my car". I submit that he was under stress at the time? fourteen utterances later he called the pr toy train train and he used car appropriately five times in the same session. or consider the following case from G's record $\left(2 ; 4 \frac{1}{2}\right)$: he was paging through a $p r$ picture book. Seeing a P bright beach ball he said "see ball". Then his father asked "What's that?" as G turned to a P red apple on a plate, G said "bail" to which his father responded "Non. G then said "eh?" and his father said "What's that?" again. G replied "eh?", then "apple". The following, from J ($2 ; 2$), is a similar case. M stande for Jes mother.

M: What are these? nee pr P marbles

```
Ms No, those are.... m...
J. apple
```

M: What are they?
Ma marble
J: $?$ marble
J: Alasdair marble
Alasdair was his brother. Incidentally, these two tokens of marble,
 one of them dubious, are not the two liated in the eppendix; those came later in the session.

The generally high standards of correctness suggest that the children must have been relying on detailed specifications in determining the application of their words. Notice too that there are lexemes of high related-token frequency in which we never detected an error. For example: G's ghoes, bus and spoon and J^{\prime} s bye bye and
telephone. Bye bye was J's first word for a telephone. One of the reasons justifying its inclusion in the catalogue of nominals is that at $2 ; 1 \frac{1}{3} \mathrm{~J}$ twice said "yours bye bye" as he pushed a toy telephone towards me. $K(2 ; 6)$ gave evidence of the detailed nature of the memory trace to which he was comparing a picture when he said "eyes" as he pointed to P little boy on which the artist had neglected to add eyes. I have no record of which picture this was but I recall that the boy was small in relation to the rest of the picture and in the background. As a further example, K's use of flower is interesting. The word was attested only three times in his record: Q, as applied to a flower, and twice used for the pr P flower embossed on the base of a plaatic beaker. However, when my colleague Martin Atkinson fitted pr 'tinkertoy' wheels to one end of each of a number of 'tinkertoy' rods and held them out to K as a bunch, K replied firmly "Noll, twice, When Martin asked "Are they flowers?"; K was not to be fooled by stark simple perceptual features.

J's misapplications of people's names, in particular, those of his sister, Pippa, and his brother, Alasdaix, might appear to contradict what I have clained above. He knew IPlppa! and Alasdair as-well as anyone knew them. Why did he use their names of so many P little girls and little boys during the last two periods of his vocabulary presented in the eppendix? Could it be that his memory tracea of even his siblings were so parsimonious as to make them indistinguishable from pictures of other children? The sex-appropriacy of his uses of the names argues atrongly against this suggestion. Also, $J^{\prime} s$ mother once told me [Alas, the date of this communication was not recorded.]
that J called all midale-aged women Andis; recorded in the appendix as applying to a person called Aunt Dilys. I asked her to be on the lookout for any grounds for believing that J could tell the difference between the real, Aunt Dilys and the otherg. A week later his mother offered the following observation. Aunt Dilys was a generous provider of sweets. J would demand sweets from her whenever he sawher, other Iadies whom he called Aunt Dilys were immone from this importunity. Alasdaix ond pippe were probably not common nouns equivalent to boy and girl because J had these lexemes as well. I think J was either playing a game of assigning roles to children in pictures - as G probably was $(2 ; 53 / 5)$ when he called one pr chairoplane' figure Muminy and another Daddy - or else J was somehow commenting on the likeness between the children in the pictures and his brother and siater, but lecked the wordo and syntax to make it olear that he wes doing so. With regard to errors in naming members of the research team I can do, no more than point out that even adults forget personel names. In passing, it may be of interest to note that the high frequency item Mumy was almost always vocative for all three children. Among the rare referential cases there were these $G(2 ; 13, Q)$ said Mumy G pens": J $(2 ; 5-2 / 3)$ replied tMumy drawingt when Renira Huxley, IIy colleague, aaked him tWho's drawing, J?t \subset His mother was drawing a house . 7 and I spontaneously said "Munny bath" when he heard his mother running water in the kitchen (The recording was being made in the lounge and K repeated his atatement when I asked What? What's Mumy doing?" 7.

2.3.2 Diversity within denotation classes

The previous section was an argument against a developmental version of the theory of criterial attributes; a version which limits the number of attributes employed rather severely. I turn now to an examination of whether increasiag the number of conjoined necessany and sufficient criteria for membership in a denotation class could rescue the criterial attributes view. After all, with many features one can achieve detailed specification. The argument is simple: some denotation classes have no plausible attributes common to certain extreme members.

Firstly, there are some instances of children 'naming' sounds. At one of the recording sessions $(1 ; 85 / 6)$ G'pricked up hise ears' and said Usee birdie" when he heard the noise of an aircraft flying overhead. The recording was being mede Indoors and the aircraft was not seen. Birdie was not attegted egain until G applied it to a pr P parrot, six months later. I would like to be able to say that the denotation ckass of $G^{\prime} \mathrm{B}$ birdie was a P parrot and the noise of an aircraft and then proceed to pointing out that these items share no interesting properties in comon; that is, properties which are not also shared with countless different things. However, this would surely stretch the reader's credulity too far: the-intension of the lexeme might have changed greatly over six months; perhapg aomeone in G'a family had jokingly taught G to say birdie when aircraft noises were heard. The example might be cogent or it might not. The case of K $(2 ; 41 / 5)$ referring to his mother when he heard her running water in the kitchen $[$ cited in $\{2.3 .1$, above $]$ is slightly more convincing, but there are better examples.

At 1 ;91 G said "door" when he heard a knock at the front door in the hall nearby. The word had been noted (Q) in the previous vocabulary period as applying to a door. His mother's note said that G used door when ohe opened and closed doors. It beems safe to assume that knocking at the door was seldom part of these actions. Phone was added to G's vocabulary at $2 ; 1 \frac{1}{\mathrm{G}}$, Q. At $2 ; 1 \frac{1}{2} \mathrm{G}$ said "phone" when it Was heard to ring in the next room. During the same vocabulary period he also applied phone to the pr white toy teIephone and to a pr p Iight blue telephone. The toy telephone could sometimes be made to 'ting' feebly; the picture incontestably never rang. There is a straightforward account in teams of the theory of prototypes: G had stored a record of a ringing telephone and so the noise, which matched its ring, was called phone and the picture, which resembled the prototype in visual appearance, was also phone. Two Q accounts in the final period of J's vocabulary allow the same Interpretation: he said "dog" When he heard an unseen dog bark and "boys" when he heard the voices of some boys he could not see. See the appendix for other,. soundless, denotata of these two words.

There are other examples which do not hinge crucially on the fact that sound can go around corners, whereas the propagation of light is rectilinear. During the $2 ; 01 / 6$ to $2 ; 2$ period of his vocabulary J called a toy crane boat (Q) and his mother surmised, very reasonably, that this was because there had been derricks on the boat which had taken him to Shetland. But during this period he also applied boat to a pr P toy ocean liner. It was a P very simple painted wooden toy Without any derricka, or anything else, on the deck. The use of boat
in connection with the crane would be quite understandeble if J's 'image' for boat had been a boet with derricks. Provided he was not using either the derricks on the rest of the boat criterially both the crane and the foy liner would have had strong similarities with his prototype. Another case in point is $G^{\prime} s$ use of baby to cover both 'babies' and prans. 0 , there is J!'s application of soap not only to a pr P pink bar of soap but also to salt. The likely prototype would be a white bar to match the salt in colour and the pink bar in shape, or perhaps in surcoundings, since it was portrayed in the company of other toilet articles.

Further examples could be cited and the number could be increased still further by introducing a little more speculation. I shall restrict myself to describing-two cases of the latter type. In the vocabulary period $2 ; 31 / 6$ to $2 ; 61 / 6 \mathrm{G}$ called one pr P man Daddy but a pr P milkane he cailed man. The milknan wore a peaked cap just like those of the pr plastic zookeepers and, since man was fourteen times applied to these zookeepers during this period it seems likely that the caps were the important similarity which elicited man, but not Daddy, for the milkman; the Daddy man was very similar in appearance to the milkman but he was bare-headed. But the presence of a cap could not have been criterial for man since this lexeme's denotation class included the pr 'chairoplane' figures, which simply had heir painted on their round heads. In the last of J's four vocabulary periods, there were fourteen tokens of car, Two of them are aster. iskeds (Q) child's scooter in a tree and pr P younger child's tricyole. I know nothing of the charaoteriatios of the scooter buc the tricycle
had a substantial front mudguard and small fattish wheels; both a little car-like. Furthemore, during this period, six appropriatelyused tokens of bike were attested for J. With one of them he named a pr P older child's tricycle. This trioycle had large wheels with thin spokes and tyres and slim bicycle-type mudguards. If I an right in my guess about what made one of the tricycles a bike and the other a cars nemely the shape of the mudguards and wheels, these would fail es criterial attributes for car because a pr P child's very rough painting of a car was also, called cer, three times. This painting was e side view of a box-shaped car with windows and two blobs for wheels. However, if J is granted a prototype car and the use of some of its features on one otcasion and a distinct set of features on others there would be no myetery to solve.

In the next section some evidence is adduced to show the plausibility of assuming that the children indulged In real-time processes of comparison between perceptual inputs and rival prototypes.

2.3.3 Prototype rivaly

Under good conditions, when an object can be clearIy seen, it should either meet or fail the criteria of application for a lexeme according to the theory of criterial attributes. If an object passes the criteria of a given lexeme, whthin this partioular theoretical framework, no other lexemes, except for exact synonyms and superordinate tems ought to be eligible for application to that object. The view which I heve been defending, on the other hand, is that
perceptual input is compared to stored prototypes to discover whioh it matches most closely. Rigid one-answer criteria are no part of this conception, therefore it is quite likely that ties will occur, in which the input is equally similar to two or more lexemes. If the children can be shown to apply tokens of aifferent lexemes to the same object the theory of prototypes will gain in credibility thereby. I do not say "be conclusively established" because there are obvious special pleas which could be introduced by a criterial attributes theorist. The child might have made an honest error, as I myself suggested [in $\$ 2.3 .1]$ was the case when G switohed to apple after his 'label', ball, for the pr P apple had been queried. or, to remain With this example, it might be claimed that this shows epple to have been a hyponym of ball in G's lexicon. Alternatively, the problems of performing in a real world might be blamed; perhaps the object has failed, to meet the full set of criteria for any lexeme but it satisfies an equal number of (equally important) criteria for two (or more) lexemes; obliged to offer a name, the child tries both. There are relevant instances, some of which I shall now describe. Although the theory of prototypes has no need for the special pleas just mentioned, its proponent has to explain why cases of uncertainty are not much more common than they, in fact, are. I address this problem at the end of the section.

Consider the following episode from $\mathrm{G}^{\prime} \mathrm{s}$ record $\left(1 ; 10 \frac{3}{4}\right)$. MA abbreviates "Martin Atkinson" and HH "Renira Huxley". MA: That's a boat. re pr P toy ocean liner G: $?$ what's that? G: eh?

MA: Boat
MA: Boet
RH: Boet

G's Imitation of boat wae, in acordance with the procedure stated in S2.2, not entered in the appendix. Examination of the table of G 's lexemes for tartefacts', in the relevant period $(1 ; 91 / 6$ to $2 ; 1$), shows 58 tokens for choo choo, only three being inappropriately used, and 130, including four asterisked ones, for car. The only other likely candidate llabels' for an ocean liner in this period were bus, Which was used-60 times for the pr toy London bus and twice (Q) for a toy minibus and a [real 7 bus, and train, applied, 11 times to the pr toy train and once (Q) to a train, not, further, specified. Perhaps the operative similarities between the P liner and the prototypes for car and choo choo included these latter somehow matching pictures more readily than did the prototypes of bus and train. The essence of the example, though, is-that in two successive breaths G called a single entity by two aifferent Inames'.

In 81.3 .2 I discussed the episode in which $J(2 ; 13 / 5)$ vacilleted between cow and sheep as a tem for the pr plastic elephant. Cow had entered his vocabulary at $2 ; 1$. What would he call a cow before then? At $2 ; 02 / 5$ he set himself the task. He had played with the pr plastic cows before but had not attempted to name them, al though he had on one occasion (1;11) used horse of a pr plastic bull; the bulls were nearer in size to the plastic horses than were the cows. Towards the close of the second period into which. I have divided J 's vocabulary $(1 ; 102 / 3$ to $2 ; 0$) gheep was attested in a Q entry. In the play session taped at
$2 ; 02 / 5 \mathrm{~J}$ spontaneously and comectly named a pr plastic sheep ás he picked it up and, still holding the sheep, he replied "sheep" when his mother asked "What's that?". J then played briefly with the pr plastic animals until his mother picked up a cow and said Mhat's this? What 's this thing, Jo". "Sheep" he answered and then immediately "horge". There followed an argument in which his mother told him five times that it was a cow and he insisted another four times that it was e horse, giving up with "oh dear after his mother had had the last word.

In the same week $(2 ; 02 / 5) \mathrm{J}$ first used orange (Q). However, the following erchange took place in connection with a pr P two halves of an orange on a plate during the recorded session that week. M stands for J's mother.
J pages to P orange. $\quad J$ biscuit
M: That's not a biscuit.
What is it?
Ms Itis an orange.

> J: apple

J: yes
In the next ression $(2 ; 03 / 5)$ J's mother held up a pr p red apple on a plate to J and said uThere, what's that?", to which he replied "orange, apple" $[$ The comme marks the end of a tone group. $]$

These examples have the advantage of the two words being in Immediate Juxteposition and thus one need not be much concemed about the alternative explanation, that the intensions of one or other or both of the words changed during the time-span of the example. However, the likelihood that these are errors in terms of the child's
own syatem is increased. Intuitively-speaking, the utterance quoted inmediately above sounds like a spontaneous self-correction. Inspection of the appendix will reveal a number of cases in which the same object was 'named' differently and most of these cover longer intervals of time than the ones cited above. One such example concerned the loaded meatstick held by one of the pr plastic zookeepers. J ($2 ; 51 / 6$) found the zookeeper in the pr animal tin and drew it to his mother's attention, saying yman Mumny". She replied yYes. There's, a man". When J said as he continued to hold the zookeeper, who in tum held the Heatstick, "got lolly", Sixty-three utterances later, during which J had been engrossed in a variety of activities, he said "that's a flower" immediately after succeeding in fitting the meatstick back into the zookeeper's grasp, from which it had been removed in the interim.

We first fecorded soldier from K at $2 ; 4$. K had been playing with the pr plastic elephant when Martin Atkinson pointed out a pr plastic zookeeper to him and asked "What's this?". I replied "cow" to which Martin said "No! What is it?". K then enswered "soldier". Martin, having not heard the word from him before, said "A what?" and he reiterated "soldier". In the next recording session K three times applied soldier to pr zookeepers. Then, during the taping at $2 ; 4 \frac{1}{2}$, he called one of them soldier seven times in a row as he handled it, decapitated it and tried to refit its head. Here is the last of the seven and its sequel. MA stands for Martin Atkinson.

MA: Where are you putting it? [i.e. zookeeper's head] : MA: There?

K: soldier, there
K: [unintelilgible syllable_]
K replaces the head but it falle of .
K: aw
K: baby's ?head off, ?now
MA: Baby's what?
K: baby
K continues trying to refit the heed.
K: soldier
MA: Is he alright now?

$$
\begin{array}{ll}
\text { K still holds zookeeper. } & \text { K: oh, } . \text {. }{ }^{\text {b b baby }}
\end{array}
$$

Soldier was not used again during the rest of this session, nor in the remander of this third vocabulary period, nor in the last vocabulary period dealt with here $\left(2 ; 53 / 5\right.$ to $\left.2 ; 6 \frac{1}{2}\right)$. Had the intension of baby changed in order to allow zookeepers into its denotation class? Evidently not, for in the remainder of the time up to when K was $2 ; 6 \frac{1}{2}$ baby was not applied to the zookeepers again. Instead, a new word, man, denotationally synonymous with soldier, entered k 's vocabulary at 2;5 $1 / 6$. It seems as if the form soldier was replaced by the form man and as if the brief dalliance with baby, for the zookeeper, was a case of prototype rivalry. J's wavering between watoh and clock mignt be a: case of rival prototypes or it might exemplify rival forms for the same (set of) prototype(s).

If, $2 s$ I have been trying to suggest, different similarities come to the fore at different times and none of the properties of members of a denotation class is essential [i.e. necessary; of. 82.3.2] how do children avoid endless confusion? G, J and K, but especially G and K, kept out of chaos most of the time by operating with high lowerbound limits for sufficiency of similarity. In the vast majority of
cases they simply did not try to 'name' 'new' things. What I mean is that they were cautious and, in general, appeared to require a lot of similarity before venturing to apply a word. This generally manifested itself as a simple unwillingness to answer 'what's that' questions + about objects which were not cloge to central members of the denotation classes already lexicalized.

The following example of non-responses to questions seems to me to go beyond disinclination to cooperate, which was the reason I gave in 32.2 for not noting all euch cases. The background to the example is that there were two Q records of J calling playground swings see-saw, 2;21 and 2;21. There was also at $2 ; 2 \frac{1}{2}$ a single case of a seesaw having been called steadygo, a form which had been applied at 2;21 to a pr P nursery chute being used by children and which I grant might not have been a nominar.

Three days after the recording session at $2 ; 2 \frac{1}{2}$, J's mother asked me to look after him while she went shopping. We-played amicably, spending most of the time drawing. I arew a picture of a see-saw with two children using it. I still have the picture in my notes and it is not a bad representation of a see-sak. Then I tried to get J to 'name' the object in my picture by asking: What's this? Tell me What this is. What's the name of this thing? This is e boy and this is a girl. It goes up and down. What's this? ${ }^{17}$. J seemed quite interested and he imitated "up and down" but answered none of the questions. I then said "ghow me the see-saw" and he pointed it out immediately and unambiguously. The correct comprehension, I surmise,
was a result of J lowering his standards for what would count as close enough to a swing - his prototype see-saw - to warrant application of seeesaw. Presumably he reduced the level of similarity required because my request showed that I presumed my picture to contain a see-saw.

Andersen (1975) found that when $3 \frac{1}{2}$ year olds were asked to sort 25 varied drinking vessels into cups at one end of a table and glasses at the other they did so, whereas older children eegregated mugs as a thind class, neither cups nor glasses. She interprets this as evidence that children have to leam that "boundaries are vague". It seems to me more likely that they were lowering their nomel standards under the sway of an experimenter-imposed suggestion that the 25 objects could be partitioned into cups and glasses without remainder.

2.3.4 Vocabulary structure

My overall impression of the three vocabulariesris that they lack depth of structure; that they are an array of lexemes, all at the same level, and mutually related by a relationship close to the one wich Lyons (1968) calle incompatibility. The cases of prototype reralry discussed above show that the relationship is not striot incompatibility. In seeking to offer grounds for this general feeling I can point to the paucity of superordinate terms. one oandidate for the status of a superordinate is tea in the second period of G's $^{\prime}$ socabulary $(1 ; 61 / 5$ to $1 ; 85 / 6)$, since it was said (Q) to cover food and drinks and G had a separate word, juice for drinks. In the ontire period.
toys was twice noted (Q) from G and once (Q) from J. In a single : recording eession ($2 ; 51$) K uttered eight tokens of toys but the word was only applied to parts of the pr tinkertoy' wooden construction kit and, on a single occasion to the pr chairoplanel which, dismantled in its box; must have looked very similar. It is even possible that in unpacking for the play session one of us might have named the tinkertoy' in K's hearing. K said (Q) "clothes" while he Was gotting dressed but not much can be learnt from this one token. In the last period into which J's vocabulary has been divided there are three tokens of food and the composite denotation class appears to include denotata (or, in some cases similar denotata) of cake, lunch, nana and, perhaps, biscuit and bread; so they might have been its hyponyms.

The following episode from Tls transcripts $(2 ; 22 / 3)$ involves hen, which he three nonthe later applied to a 9 rooster, and nuggests that it might hate been a pyponym of bird. M stands for J 's mother.
J and M looking through pr picture book.
M: It's not a hen. parrot J : hen
It's a parrot.
J: parrot - ECHO
J: bird

The following three examples were the only ones of their kind and may be an indication of lexical structural relationships but, equally, they might merely reflect habitual collocations which J had observed. Firstly, at $2 ; 02 / 5, \mathrm{~J}$ identified the creatures in a rather vague pr P two fish in muriky water as birds. He was corrected and imitated the
correction, fish, twice before saying "fish, water" [The token of:, fish listed in the appendix dates from a later session, 2;13/5.]. . Secondly, at 2; $2 \frac{1}{2}, \mathrm{~J}$ was asked of a pr P little girl telephoning: What's the little girl doing?". He 'echoed' "girl doing" and then said "boy girl". Thirdly, and even more obscurely, J pointed at a bottle being held by a woman in a pr P woman with a spoon in the other hand and said "there's, that's a, a, foris". Then, in response to Martin Atkinson's "A what? A fork?", he said "this/there's a fork". Perhaps he was simply misled by the picture but it is remotely possible ${ }^{\circ}$ that he might-have recpgnized the spoon, for which he had our word, and then got to fork via a lexical association, though I think it more likely that the apoon merely provided contextual backing for the recognition of something in the woman's other hand as a fork. Lastly, a plece of negative evidence is that in the Q of $2 ; 52 / 3$ J's mother noted his first use of Who's that? and added that he had always previously used what's that? in asking about people, as well as, of course, things. In the $2 ; 61 / 6 Q$ she recorded that he had reverted to using what for who in questions. These observations suggest that even terms and names for people were not a separate lexical field for J.

The appendix offers many examples of denotata deserting an 'overextended' denotation class as soon as a separate lexeme hed entered the child!s vocabulary to cover them. For instance, no tokens of girl were attested from G in the period $2 ; 1 \frac{1}{4}$ to $2 ; 25 / 6$ and during this time G called a pr P top third of a little girl looking through a large window baby. During the next period girl, as it were, reasserted
itself and was applied to this particular picture (and other girls), whereas baby was restricted to his sister's doll, a pr P baby in a crib and a pr 'chairoplane' figure. This, sort of structural effect is to be expected in comection with the incompatibility relationship and it is entirely in keeping with the theory of prototypes.

It seems probable that the foundations for some later lexical fields may be laid at the stage considered in this thesis, through the process of denotation classes splitting. However, because of the , conservatism with which the children accepted items into the denotation classea of words, the resulting fields are small and the lack of superordinates makes their very existence somewhat conjectural. The original cement for these 'fields' seems usually to be provided by the - exigencies of the environment rather than within language. G's 'labelling' of the pr plastic cows, horses and bulls will provide an illustration. Except for two Q attestatious for cow, all the animals involved were pr plastic ones so I shal \int omit this specification in the descriptions below. These animals Were referentially united in that we always kept them in the pr animal tin and part of the play at most recording sessions was the business of getting the tin open and pouring or pulling the animals out.

In the third period of G's vocabulary $(1 ; 91 / 6$ to $2 ; 1$) cow was applied 16 times to cows $[+2 Q$ tokens $\overline{]}$ and five times to horses. \%, In another way too G ahowed that he regarded these animala as similar. he made lateral clicks when he played with horses and cows (and a bull in the preceding period). The sheep, which also came from the animal
tin, were kept apart as sheep, perhaps because they were smaller and white, although there was a white honse too; or it might be that relatively shorter legs or fatter bodies or distinctive heads made the sheep different. The chimpenzee was three times called teddy and then not named again until the final period when monkey entexed Gfa vocabulary. In the transcript of a recording made at $1,112 / 5$, during this third period, there is some slender evidence relating to $G^{2} s$ comprehension of horse, a word he had not yet used spontaneously.

A horse and a cow were standing side by side on the floor and G !s mother asked him There's the horsern. She repeated the question when he said "eh?", thereupon he pointed at the horse saying "see". I said "that's right" and then directed his attention, by calling him by name, to a larger group of animals in front of me. As he looked at them I said to him "Show me the horse. Where's the horse?". G said "see" and gestured at the entire array of animals. His correct response had presumably been correct by chance. If it had represented a lexical distinction for him, it ought to have helped him choose the second time he was aaked.

In the fourth period $\left(2 ; 1 \frac{1}{4}\right.$ to $\left.2 ; 25 / 6\right)$ a added horse to his stock of words and five times applied it to horses and once to a cow. cow was used nine times for cows, twice for bulls and twice for horses. Lateral clicks were used indiscriminately to accompany the 'walking' of animala. In terms of relative frequencies of denotata cow and horse were growing apart.

In the fifth period $(2 ; 31 / 6$ to $2 ; 61 / 6)$ calves were named for: the first time, They were about sheep-sized but not sheep-shaped; rather emaciated, in fact. He called them calf fifteen times but once called a calf cow. At $2 ; 4$ he indicated good comprehension of calf. He had proprietorially stacked most of the animals on a chair behind himself. Calf was not mentioned by anyone during the process of getting the animals behind him, but he had used calf correctly a few times much earlier in the session. When he turned round to look at his hoard and said "my", I asked him to "Show me the calf". This did not lead to a response; so I said, again "Show me the calf, G. The calf." He then picked it out for me promptly and correctly. A sheep and two horses had been the last animals to be added to the chair so the calf was not distinguished by recency. In this last period, cow and horse had wholly distinct denotation classes - cattle and horses, respectively. However, perhaps their intertwined history would be the basis, later, for a lexical field of large farm animals.

Finally, although I have sumised that the children's lexicons were largely mono-stratal, this level is not always, from an adult point of view, flat. Consider G^{1} e teddy, which was applied as follows during the four periods starting with its arrival in the second period.

2nd: pr P yellow teddy bear, *pr P toy panda $x 2$, *pr P yellow plastic duck $x 6$

3rdy pr P teddy bear in relief outline on plastic beaker x, pr P yellow teddy bear $x 4$, looking through the book for this P teddy bear, *pr P toy panda, *pr P floppy ras doll, \#pr P baby dolliin a pram, * pr plastic chimpanzee x3.

4th: pr P teddy bear in relief outline on plestic beaker, * pr : dog glove-puppet

5th: pr Pillow teddy bear, *pr P toy panda xp, *pr P yellow plastic duck, pr P teddy bear in relief outline on plastic beaker $\times 5, \mathrm{pr}$ P teddy bear in a bedroom scene

The items stigmatized with asterisks received their marks in terms of my conception of the species teddy bear. However, if teddy was for G more of a genus tern', equivalent to something like 'non-human but humanoid toys', perhaps all of the asterisks could be erased. The duck which enters the lists above was photographed downwards and from the front, making its head hide most of its body and reducing the apparent length of its bill; in short, giving it a teddy-bearish face. The narrowing dow towards the more conventional denotation class of teddy bear appears to be the result of dolls being taken over by baby and, later, dollies and Runty, the name of his aider's favourite doll. There is no reason why a yellow teddy bear should not have been G's internal prototype for the lexeme teddy; to match the duck in colour and face, the panda in general shape, and facial features, the dolls in shape alone, although the one pictured in a pram had short red curly hair, etc. \qquad

2.3.5 Functional definitions and contextual factors

Nelson (1973) performed a content analysis on the general nominal' among the first fifty words to be acquired by eight children. In summary her principal finding was (p. 31):

It is apparent that children learn the names of things they can act on, whether they are toys, shoes, scissors, money, keys, blankets, or bottles as well as things that act themselves such as doge and cars. They do not learn the names of things in the house or outside that are simply 'there' whether these are tables, plates, towels,

> grass, or stores. With few exceptions all the words listed are tems applying to manipulable or movable objects.

I have no quarrel with this characterization; scanning through the appendix, especially the first three periods for $G \& K$ and J's first two periods, appeans to bear it out. Pexhaps this is simply a consequence of motion being attention-demanding for young children (or perhaps more so for them than for adults) [Cf. Clark (1974, p.114) for a similar opinion and Carpenter \& Stechler (1967) for an experimental demonstration of the early attractiveness of motion. 7 .

Nelson (1974) has put forward some suggestions about the acquisition of word meaning in which she assumes thet categories of objects to be given the same lexical label cannot validly be based on static appearances alone: category members would have to be grouped together first on account of their participation in similar dynamic relationships with the members of other categories. She takes her (1973) finding that motion and change are common in the denotata of early nominals as an indication of the forming of these functional core concepts'. Attention to the salient invariant properties of members of the functional core enables the child to form a hierarchy of ettributes to use in ddentifying new instances of the concept. Later a 'name' may be attached to the concept.

I do not doubt that children can have unlexicalized knowledge. For instance, K, although he had no word for a questionneire (or even paper or book), when he once found a questionnaire we had collected from someone else and negligently left in the toy box, took it
straight to his mother; not to show her, just to give it to her matter-of-factly before continuing to play with the toys, because he knew questionnaires were her business. We never heard G say knife or sharpen but when he had failed to sharpen a crayon with his teeth he got up silently and fetched a carving knife from the sideboard drawer. At $1 ; 8$, when we first showed G the pr P balloons he blew in and out and puffed up his cheeks, six months before the word loons was first recorded from him.

If Nelson's (1974) proposals include the inplication that function is more important than other characteristics of objects in determining the application of words, I dispute it LI have read Nelson's article thrice and I am yet not certain that the implication is there. 7 . Bowerman (1975) detected such an idea in Nelson's paper and offered examples from her ow daughterse Itnguistic development to substantiate a counter-claim that: Punctional similarities alone very rarely led to overextensions, pexceptual similarities frequently did, even when this involved the child's overlooking known functional differences".

In my data there are examples of both kinds. Pictures, particularly of isolated objects, are unlikely to have been identiffed by other than their imediately perceptible static visual properties and the appendix Bhows these cases to be numerous. I shall shortly cite some cases in Which function appeared to be important. Both aspects of objects should be potentially available to a child in deciding the application of lexemes if, as I argued in $\{1.3,2$, we store videotape-like records of our prototypes.

At $1: 91 / 6 \mathrm{G}$ and his mother and I were building towers with the pr toy bricks. G stopped and briefly pushed the hus. Then, perhaps noticing some bricks in a line, he said "Tummy, choo choo" and began to build a line of bricks. On completing it he said "choo choo" twice and then "see" and began to push the bricks along the carpet. Previous attestations of choo choo were for his toy train (Q) and for a pr P bright toy train. Perhaps the perceptual similarity between a toy train and a line of bricks is too great for this to be e convincing example of the function of an object mediating its 'naming'. Gerage, for G, may contain better demonstrations but they are all flawed in various ways, e.E. through an adult having suggested the word or because the contextual annotations have crucial shortcomings.

Jeremy provided several good examples. In our first recording session $(1 ; 104 / 5)$ he held the pr microphone to his face like an electric shaver and then said photl!; see other electrical devices mentioned in the appendix in connection with which hot wes deployed. More interestingly, he said "bye bye", his word for a telephone when his father took it from him and, holding it in front of his ow mouth, said "You talk into it like this.". I regard the following as an even better case in point. It took place when J was 2;11. The words involved, keys, bye bye, watch and clock had all been attested previously in appropriate use; bye bye for telephones. After a spell of playing with the pr toy telephones and naming them and looking at a pr P toy telephone, which he also named, this conversetion occurred The pr red toy telephone had a clockwork mechanism and a socket for a winding key but we had never drawn this to $J^{\prime} s$ attention or attempted
to use it in his presence, beceuse the key was lost and the mechanism was broken.7:

The first example of clock in the interchange above was an lecho' of a speculation I was making ahout what J'B actions meant; it will have been noticed that we failed to understand the drift of his thought at first. Notice, and this is important, that during this period watch was also applied to illustrations of two different alam clocks, both being front views, and to the clock face in selief outline on the base of a pr plastic beaker. For pictures of clocks the winding operation could not have been any part of what led to their identification. The similarity between a telephone diel and a clock also could not be the link, because the white toy telephone was never called clock or watch by J and the red toy telephone was bye bye or telephone when it was not being wound.

At $2 ; 52 / 3 \mathrm{~J}$ said "lady" when he saw a P little girl holoing a baby. He was corrected and "echoed! "little girl" before saying "lady" asain as he looked at the picture, Door for all three children was so
tied to action as to be perhaps a proto-verb, as I have remarked. earlier, but there is at least one case of it being applied to a door which could not be opened: J's $\left(2 ; 1 \frac{1}{3}\right)$ nomination of the driver's door of the pr toy London bus as door. Thus while functional considerations were certainly important in the use of this word, they were not essential.

K $(2 ; 41 / 5)$ tried to push a pr 'tinkertoy' rod into the slot of the pr white toy telephone and said "penny" twice as he did so. He had often pished plastic pennies into this slot and he called them penny too but not only while he was pushing them into the slot. A prototype penny goins into a coin slot could explain this: the 'tinkertoy' rod would have the same motion and pennies in isolation Would have a similar appearance to the coin involved in the operation. K's puzzling word wheel, in the period $2 ; 22 / 3$ to $2 ; 5 \frac{1}{3}$, might have had a denotation class partiy articulated via rotational motion', but if that was the Justification for the presence of a screwdriver there, it Was merely a visiting card and not de riguer dress because the screwdriver was wheel when it was used for priaing. Having got across the threshold on one pretext screwdriver may have become one of the prototypes and an image of it in use on screws might account for the small silver screw being wheel too. Maybe this is too fanciful. K's box and J 's too might have had partly functional definitions.

Not only functions but also context sometimes affected 'naming' of objects. For instance, in the seesion at 255 J 's mother pointed at a pink lettex being waved by a postman in a pr picture book and said
"What's this?". J replied "um - money". Seven utterances later hé called the same letter in a different picture - now floating down from the letter alit inside a front door - letter. In the same week J called one of the pr toy bricks, a flat slab: top when it was resting on three crayon rollers to make a nonce car, nool when he put it on to a house he was building and later gete as he set it beside the house. This sort of performance must rely on prototype scenes in which the labelled object is in clear focus and the rest is background. That the children did store a great deal of surrounding detail for the things they nemed was' often borne out by cases which have entered the appendix as "wanting". G many times said car as soon as he saw the book which condained the pr P two-tone drophead coupe or when he noticed the beakers; and then began to hunt through them for the desired page or embossing. This useful peripheral material must have been stored with the rest of the information on these words. There were similar cases in the records of J and K too.

Detailed memory traces, the existence of which-the review of E. - was intended to establish, are the keys to the explanation of the observations presented in sections 2.3.1 to 2.3.5.

Baforancer

Adams, K. L. \& Conklin, N.F. (1973) Tomaris a theory of natural olabsifioation. Papors from tho IInth Regional Lsoting, Chioano Eninnuistio socioty, 9: 1-10.

Aillport, G.E. (2924) Eidotio imagery. Britioh Jomanal of Pgycholox, 15: 99-120.

Andercon, F. S. (1975) Cups and glasses: 1oarning that boundarios are vagus. Jownal of Ohild Langrage, 2: 79-103.

Andecison, T.R. (1968) On the teansparonos of begin: come uses of acmantio theory. Fomdations of Ianguage, 4 : $394-421$.
Bambuough, B_{0} (1960) Univaraala and Pently roserblanaas. In G. Pltahor (cd) (1968). Wittgenstoin: tho Philogeophicol

Bartlott, F.O. (1932) Remembering. Iondon: Cambriago University Pross.

Baylor, G.. . (1973) Hodaliing the mind's eqo. In A. Elitharn \& Do Jonas (cia) Artifioinl and hman thinking. Anstortam:

Berlin, B. \& Ray, P. (2969) Banio color tormas thoir molverranity and ovolution. Bericoloy: Univaraity of Caiffornta Proas.

Biorwisah, M. (1970) Somantios. In J. IGons (ed.) Ner horizono in Iinguiatiog. Harmonicrocrth: Penguin, 166-184.
Blakemore, O. (2975) Continal viounl procosaing. In Hos, Garenniga \& O. Blahomaro (cals.) Handiooot of pgyohoblology. Hor York: Acadenic Pross, ah 8, $241-268$.

Blocmfleld, I. (1935) Lanquage. Lonion: Goorge Allen \& Umin [First pubiinhed, In U.S.A., in 1933.7.
Bollnger; D. (1965) Tho atomication of moaning, Ingruge, 41 :
555 573.
Bond, E.K.. (1972) Peroeption of form by the himan infant. Paychologioal Bullotin, 77: 225-245.

Bousfield, D.A. (1953) The ocourronoe of olvatoring in the recall 0f randenly orranged associates. Journal of General Pavchology,

Borer, T.G.R. (1966) Hoterogengous aumation in humon intants.Animal Behavigar, 14 : $395-398$.

Borecman, M. (1975) The coquiaition of word moanings on inveatigation of aoms ourrent confliats. CAbatreot and conferopae hamdout of a paper preconted at the Thisd Intornational Child Ineriugge Sympoaium, School of Oriental, and Afrioan Stuilen, Iondom, 3-5 Soptamer.7.

Brannford, J.D. \& Frankes, J. J. (1972) The abstreotion of Iinguistio idoas: e revioro Cognition, 1: 211-249.

Brooks, L.R. (1968) Spatial and verbal exppoments of the aot of reoall. Ganciinn Joumal of Pgychology, 22: 349-368.

Brom, A.I. \& Soott, M. S. (1971) Recognition mamory for pioturos in presohool ohildren. Journal of Experimantal Child Parohology. 11. 401-412.

Brown, R. (1958) Yonis and things. GIancoo, Ill.: Tho Free Press.
Bugelski, B,R. (1970) Honds and thinge and ymeges. Amorioan
Peychologist, 25: $1002-1012$.
Burling, R. (1964) Cognition and componential analyaia: God'a truth or hooug-poous? Amirican Anthropologint, 66:

Canpbel1, F.W. \& Robson, J.G. (3568) Application of Fourior analyais to the viaibility of gratings. Tho Joumal of Physiology, 197: 551-566.

Carpontor, G. Of \&toohlor, Go. (1967) Soloctivo attontion to wother' a Paco From waek 1 through weolr 8. Proc., 75 th amual oonvention, Amorioan Payohologion Acsoaiation, 153-154.
Cavanaigh, J.P. (1975) Two olassos of holographio prooosees roalisablo in the noural ren7m. In T. Storar \& D. Vintor (ods.) Formal aspents of oognitivo Epocesson. Berlin: SpringerVerias, $14-40$.

Gark, B.V. (2973) That's in a wora? on tho ohild'a ecquiadtion of emantios in his firat langungo. In ToE. Hoore (ca.) Cognitivo dovolopmant and the aooulisititon of language. Mesy Yerl: Loedemio Fross, 65-110.
(1974) Som aspects of the aoncoptinal basie for firet languago ecquisition. In R.I. Sohiofolbusoh \& I. I. Iloyid (ods.) Innguge pecegpootives - sequialtion rotariation and intorrontion. Iondon: Heonlilian, 105-128.

Coopor, I.A. \& Bhopard, R.H. (2973) Chromomotrio atuilios of tho rotation of mantal imagos. In V.G. Chaso (ca,) Vioual information procosaing. How Torici Acadamio Prosy; 75-176.

Comerreet, T.N. (1970) Vigual parooption, Nor Tork: soedomio do Eroot, A. (1965) Thought and choioe In ohass. The Hagua:
Eouton.
 mont or gemantiog. Dorireoht: RolacI.
Donnil, I., Hampton, J.A. \& Ises, S.E.G. (1973) Nou problem in concept formation. Hature, 243: 101-102.
Dixon, Rourg. (1971) A mathod of gemantio docoription. In D.D. Stoinberg a L.A. Jobobovite (odis.) Semantioi: An intardibaiplinary reedor in philosophy linguistion anतi papohology. London: Cambridgo Jniveroity Froas, $436-471$.
Dixon, R. M.tri. (1972) The Dyiribal Ionguage of Horth Qusenaland. London:- Oambriabo Univoralty Proac.
Dodwoll, P.C. (1970) T1.0n1 pattorn rooognítion. Now Tork: Holt, Rinohart \& Eininston.

Fborlo, B.A. (1970) Hominaliatio ayatome. Dorireoht: D. Roidol.
Entuialo, D.R. \& Huggins, H.H., (1973) Ioonio mamory in obildren. Chila Dovolormant, 44: 392-394.

Bvans, C.B. (1965) Soms strailog of pattorn parooption uning a Btabilized rotinal image- Britiah Journal of Egyohology,
56 : $121-133$.

Farvall, C.B. (1973) The langunge opoken to ohildran. Papore And Roporta on Chili Lnanguago Dovalopront [Stanforapore

(1971) The ontogonasis of tho problen of coforenco: a revier of cane thoorien of linguintio eymbole. In C.B. Heod (ed.) Tho learning of language. Hear Ioris: Applotoon-Century-
Fons, P. (1969), Brain memory and forrooleotrio rooording moohanicn. Phyadological Chamistry \& Phraion, I: $24-41$.
Franks, J.J. \& Branaford, J.D. (1971) Abstraotion of viruni pattorno. Joumal of Experimental Payoholoixy, 90: 65-74.
Fricirioth, P. (1970) shapo in grawar, Languago, 461 379-407.
Frost, H. (1971) olustoring by vidual shapo in the freo reoall of piotorial ntimuli. Journal of Exparimantal Peychology, 88:

Gabor, D. (1972) Holography, 1948-1971. Soionoe, 177: 299-313.
Galton, F.. (1883) Inquixies into human feoulty and its devolopnont. Iondion: Kamillon.

Garnar, D.R. (1970) Good patterns have Les altornatives. Ararican Solontist, 58(1): $\quad 34-\frac{1}{2} 2$.

Gascaniga, M.S. (1975) Brain meahanikane and behavior. In M8. Gassoniga \& C. Blekereoro (eia.) Handbook of payobobiology; Henr York: Aocdomio Proas, oh. 19, 565-590.

Gecohriind, H. (1970) The organination of langunge and the brain. Solenog, 170: 940-944.

Gibscn, F.J. (1969) Erinciplon of penooptunl, Iëanning and dovelopmant. Her Yock: Apploton-Contury-6rotto.

Goldmoler, Fo- (1972), Similarity in viaually porceived forms. Payohological Issive, VIII(1) Monogr. 29. CFrglish tranglation of Golamoler, F. (193) fber Ähnlichleait boi gesohenon Figuren. Psyahologicoho Forcohung, 21: 146-208.

Goldateln, A.G. \& Chance, J.E. (1971) Visual recogatition memory for complor oomfigurations. Parception \& Paychonhyaiog, 9: 237-241.

Gomuliokd, B. R. (1953) The dovelopanent and presont etatus of tho treco thoory of momory.-Byitish Journal of Payahologr:. Monograph Supplomant, XXIX: 1-94.

Goodonough, F.H:- (1956) Componantial analyais and the study of maning. Tanguage, 32 195-216.

Goodmian, H. (1966), The atevoturo of appararanoo. Indianapolis: Bobo-xarrill [at edition, 1951.].

Groonflold, P.M. (1973) Tho is Medinf: come arpoota of tho semantic and phecologioal dovolopment of a ohild'a firat roads. Ingrguago and Epooch, 16: 34 m 3.

Griffiths, P.D. \& Athineon, M, (in prose) A 'door' to verbb. In H. Daterepn \& C. Snow (ods.) Dorplopmant of ocmmaioation boolol and mparantio fentors in longuage eqquiaition. Iomdon:

- of Attineon, $4 . \&$ Huriloy, R_{1} (1974) Rnojeot report. Jommal of Child Langeage, 1: 157-158.

Haividay, I, 4,1 . (1975) Laaraing her to marn: exploratiomoin the dovelopmant of language. Iopion: Espard Annald.

Handol, So, Do Soto, C.B, \& London, H_{0} (158) Reasoning and spatial reprosentations. Jomrnal of Varbal Ioaraing and Verbal Behervicr, 7: 351-357. Jotrmal

Harro, R. (1951) Thoorieg and thirge Irondons Shood \& Hard.-
Haxrison, B. (1972) Yoaning and atrunture: an oosegy in the phyiosophy of languge. Her Yome: Haxper a RON.

Hoider, B.R. (1971) wooal" color arean and the dovolopnint of color nams. Devoloperntal Peyohology, 4: 447年55. (1972) Universala in oolor naning and menory. Journal of Exparimental Payohology, 93: 10-20.

- \& O Olivior, D.C. (1972) Tho atwuature of the color opese 3: 357-354. For tro Ianguagen. Cognitivo Payohology,

Juloar, B_{0} \& Ponnington, E.S. (1965) Equidiatributed information mapping: an annlogy to holograms and memory. Jounnal of the Opticol sooioty of Amgrici, 55: 604.
 Infont vienal parooption. In Io B_{0}. Oohen \& P. Salapatak (ods.) Infant parcoptions from eongation to oopnition. Vol. If Banio Fimul pocosisen. Not Yocks Acedenio Prosi, oh, 2, 77-131.
Hectona, Go (1940) Osgantaing and manomising. New Yoris: Oolumbla Univeraity Proes.

Katr, J.J. \& Fodor, J.A. (1963) The atruoture of a semantic thoary. Langonge, 39: 170-210.
Kirlpatriak, B.A. (1891) How ohildran learn to talk - A atuty in tho dovolopment of 1anguage - Childran's vocabrierion. Boionso,
18(451): $775-176$. 18(451): $275-176$.
Kotaribinika, J. (1960) On ostongivo dofinitions. Philonophy of
Soionog, 27: I-22.
Leiboritt, H.F. \& Harvey, I, O. J工_ (2973) Percoption. Annual Revice of Bayohology, 24: 207-240.

Levs, J. (1969) Poasiblo basis for the evolution of latoral apecialisation in the human brain. Matwe, 224: 614-615.
Lerris, D. (1972) Genoral eemantion. In G. Harman a D. Davideon (edi.) Semontios of natiral langungo. Doraroohts Roidel.
Lerics, L, M, (1563) Langungo, thonght and personality in infanoy
ind ohildhood. London: Harrap.
Ioroust-Higgins (1968) Holographic nodel of ternporal reaall.
Natwe, 217 (104.
Iounabury, F.G. (1956) A acmantio onalysis or the Parnoe kinahtp
usego. Lapguafo, 32: $158-194$.

Inria, A. I. (1\%69) The mind of a panmonist. Iondon: Johnathan Cape.

Iyous, J. (1963) Etruatural semantiona an analysis of part of the vocabulary of Piato. Oxford: The Philologicel Sooioty.
(1866) Toraxdo a "notional thacry of the "parts of apeeoh". Journal of Lingulation, 2. 209-236.

- (1968) Intnodiotion to thooratical Iinguintico. London: Cemirraga Univeraity Press.

Hecarthy, D. (1954) Language developanant in chilaron. In L. Cormichnol (od.) Manual of ahila perohology (2na edition). Hon Yorik: Viloy, 492-630.

Lecourdy, J.T. (1928) Common prinoiplan in peyohology and phyriology. London: Cambriage Univeraity Preas.
Hackie, J.I. (1976) Problens from Lrooleo. OIford: Clarendon Prass, oh. 4, 107-139.

Keonamara, J. (1971) Paraimony and the Joxiocn. Langrage, 47 :
359-374.
HoNoill, N.B. (1972) Colour and colour tormmology. Jougnal of Einguistios, 8: 21-33.

Uajor, D.i. (1906) Firatiatops in montal eroith. Hou Yock: Kemillon.

Hilner, P. H_{0} (1971) Fhydologiaal pyphology. London: Holt, Rinohart \% Minaton.

Nelson, K. (1973) Structure and strategy in loarning to talk. Lonographs of the Sociaty for Hosearch in Chila-Developmont, 38, 100. 1-2 (Som 101 110. 149). (1974) Conoopit, vord, and sontonio: intaxrelations in acquiaition and devolopment. Payohologioal Roviar; 81: 267-284.

Nida, B.A. (2951) A aystan for the doovription of vomantio olemants. Gord, 7: 1-14.

Paivio, A. \& Csapo, K. (1973) Ploture supariopity in froo reoall: imagery or dual codinge Cognttive Payohology, 5: 176-206.

Pestore, 1.. (1971) Solcotivo hietory of thoorian of viauni pozcopticn: $1650=1950$. Ver Yark: Offord Univeraity Proas.
Panflela, Y. (1959) Tho intorpretive oortox. Saionon, 129: 2719-1725.

Penfiold, \#. A Robarta, I. (1959) Spoeah and brain-inoohoniams. Prinsoton, Hew Jersey: Princation Univorsity Prose.

Peras, B_{0}. (1889) The first three vears of ohildhood. [BA, and trans. by A. y, Christio. London: Stan Somencohoin.

Pillabury, Q.B. \& Laader, C.I. (1928) The paychology of Ianguage. Fiew York: D. Appleton \& Co.

Pollen, D.A., Lee, J.E. \& Taylor, J.H. (1971) Hera does the itriate cortox bogin the reconstruction of the viaual vorida Soianco, 173: 74-77.

PompI, K.F. \& Leolman, R. (1967) Surrogate processes in the ahort-torm rotontion of connooted disocurse. Journal of Experimantal Paychology, 75: 143-250.

Pribear, K.H. (1969) The nourophyatology of romanbering. Soientipio Anerionn, 220: 73-86.

Putnam, H. (1970) Is camantion poantblo? In H. Putrian (ed.) Kind, language and roality: phillosophioal papari, vol. 2 , Tondion: Oematridgo Univorisity Erese, 1975, 139-152.
Pydyatyn, z.V.. (1973) What the mindis ofo tolls the man'a brain: a aritique of mantal imsigery. Pgychologiaal Bullatin, 80: 1-2 2

Quino, प.7.0. (1960) पond and ob, eot. Oembordage, Mass:: LIT RTeBB.
Heioh, R.A. (1976) The earily ecquisition of wont maning. Journal of Child Lianguge, 3: 117-123.

Roiff, R. \& Soheoiror, 2, (1959) Lamory and hypnotio ege rogreanion. Irei York: Intornational Univoralthen Proos.

Robsen, J.G. (1975) Receptive fioldas noural reproientation of the spatial and intonoive attributos of the vieual imago. In R.O. Cartoratto \& M.P. Friedman (ods.) Hanibook of percoption. Vol: 5. Soeing. Mev York: Acedemio Yroes, oh, 4, B1-176.
Rook, I. \& Kingelstoin, P. (1959) A otudy of mamory foir vioual form. Amerionn Jcumini of Papoholoky, 72: 221-229.

Halpar, F. \& Olayton, T. (1972) The percoption and reoognition of oorplox figures. Cognitivo Psyohology, 3: 655-673.
\& Harris, C.S. (1967) Viaton and tonah. Sotiontifie Ampicion, 216: 95-104.
 Rngliah kin toms. In A.K. Rommor \& R.G. D'Anaredo (eds.) Traneonltural studies in cognition. Amerioan Anthropologist, 66 , Part 2, Ho. 3 : $146-170$.

Rocoh, E.H. (1973e) On the intermal atruotare of porcoptrual and gemantio oategoriep. In T.F. Hocre (ea.) Oognitivo dovoloprant and the coquilatition of Ianguage. Ner York: Acodamio Prees, $171-\mathrm{I}_{44}$.
(1973b) Natural oategorias. Cognitive Peychology, 4: 328-350.
(1975) Cogaitivo reprosontations of corantio oategorios. Journel of Experimental Payohology, 104: 192-233.

- \& Kouvid, C.B. (1975) Famdly resemblances: studies in the intornal atructuro of oategories, Cognitive Paychology, 7:

Seokott, G.P. (1963) A neural moohanism undoriying unloanned, oritical poriod, and devolopmontal aspeots of Visun 71% oontrolled behavior. Egyohologionl Reviery, 70: 40-50.

Saltr, Eo, Sollar, E. \& Sige1, I, E. (1972) The dovelopenent of natural Janguage conoepta. Chila Dovolopmont, 43: 1191-1202.
Shopard, H.N. (1967), Reoognition mamory far rords, contenoon, and piotures. Joumal of Vorbal Lonraing and Verbal Behaylar; 6: 156-163:
\& Feng, O. (2972) A chronometrio study of mental paper folding. Cognitivo Eorohology, 3: 228-243.
\& Motelor (1971) Hontal rotation of threo-almonsional objeats. Soicunc: 171: 701-703.

Standing, Lo, Conoeio, J, \& Habor, H.N. (1970) Porcoption and memory för piotariest aligiontrial loarning of 2500 visual stimuli. Payohonomio Soienae, 19: 73-74.
Stoniland, H. (1973) Tniveraalo. Lonion: Lacnilon.
Stern, G. (193) Kcaning and chango of maxning. Gftoborga Hegnicoins Araabrift, 38: oh. IV

Stratton, G. (1917) Ingmonio foat of the 'Shass Pollalr'. Paychological Rovicrg, $24: \quad 244-247$.

Stromgyar, C.P. III \& Pbotlea, J. (1970) Tho dotailed toxture of oidotic inagos. Hature, 225: 346-349.

Btiong, B. (1973) Acquiaition of botanical tocminology by Troltal ohilaren. In K.B. Edmonison (oa.) Kaning in Hayan Iangunges. The Hague: Horton, $107-141$.

Thomson, J. \& Chmoman, R.S. (1975) tho is 'Daddy'? (Revisited): The etatus of tro-year-oldo ovarextonsions in produotion and cociprohenaion. Pepers and reports on chill langungo dovalopmant, 10: 59-68.

Titchanar, B.B. (1909) Lecturos on the onperifantal payohology of the thought-procseseg. New York: Lecmillon.
Treay, Fo (3893) The Jangusge of childhood. Amartas Journal of Pcychology; 6: 107-138.

Tulving, T. (1972) Eplrodio and ecinntio menory. In E. Tulving \& G. Donaldeon (ede.) Organlmation of momory. Nóv York: Acadomic Probs, ch. 10, 381-403.

V11mann, B. (1g62) Somantios: An introauction to the goience of maning. Oxford: Basill Blackwoll \& Lott.
Uttal, W. . (1975) An autoocrerelation thaory of form dotection. Hillcdalo, Hew Jersey: Lavrence Eribaum Assooiatas.

Vernon, 15. (1967) Relationship of language to the thinking process. Arohives of Ganaral Payohiatry, 16: $325-333$.
Dalleoe, A.F.O. \& Atkints, J. (1960) The msaning of kinohip tarms. Amamioan Anthropologist, 62: 58-80.

Weinreioh, J. (1962) Ierdoographle desoription in descriptith semontios. In,F.V. Householder \& S. Saporta (eds.) Problems

\rightarrow (1966) Explorations in aemantio thoory, In T. A, Bebook Youton.

Einaton, P. (1973), Ioarning to identify toy blook atervetrios, In B. I. Solzo (ed.) Contermporary issues in cognitive paraholosy: the Inviola. Bymposium Eashington, D.C.: V.E. Finston \& Soni, $3-15$.

Voodsorth, B.g. (1906) Ingeless thought. Tha Jourtial of Philonophy, Payoholosy and Sciontiflo Mo thod, III: 701-708.

Appandix: vooabularioe of nominals used by three ohilaren (G, J) and K) In gucocossivo poriods

The age range spanned in eaoh period is shown in the subherainga. Eithin eaoh poriod, itens ars dividod into five adultorianted clasBos: ABIEIPACIS, PROPLL, FOCD, ANIMATS and BODI PARTS. This sasurta in a for violationo of oategorios, o.g., flogerin is Iisted under ABIUEFACHS. Lamomes are Identified by a representation of the most ocanon form of their tokens. These are uaunily relatod adult fome or muracy forme with vido ourrency. Phonetio roprosontations, alatinguiabod by aquaro braoksts, are usad uhan no Pamiliar relatod fom ocula be found. Somotimes spallings offered by the ohildran's parente have been resorted to. Doscriptions of manhors of the donotation olass of a given loxerse, attested in a given poriod, appoar to the right of the ropresentation of that Ioxems. These deacolptions are PIgorounly toparated by conmas, and ocumas have boen avoided within descriptions. Where more takens then one (of the formal tope/o associated with a given Lexamo) vera, in a given period, applied to an entity covared by a decoription, the mmbar of tokons, $n, 10$ indiaatoi-by m-aftar the desoription. Desoriptions of ontities whioh seem, by fairly lax edult standards, not to belong in a givan danotation olass are prooeded by an astariak. A quastion maris is used bofore doscriptions of ontities about whoso 14 Idantity there is coes doubt. Attostations taloen fron questionnaires camplotiod by the mothar's of the ohildren aro proceded by QE. P is an abbroviation for pioture ors. Ioys and othar artiolos bolonging to the rosaaroh projeot are apecifiod by tho abbreviation pr. Thus
 moane that, during the perical conoerned, the ohtla three tines applied takens associated with the lemene Ldentifica by the mursory fori nann to e piofure, bolonging to tho rosoaran projest, of a partly-peelod banana on a plato; that the ohild's mother noted, in a qusstiomaire entry, the applioation of nana to a oarrot and that I have a dubious recond of a picture of an applo being oallod nana by the ohila. Furtherwore, the notation Indioates that the latter tro uses Beam doviant to ms.

Hepresontations of the loxemos for any partioutar perion are Iisted in approximatoly the order in which their ralated tokens were errat atteated. Tho onseat ie required bocause I havo not disting ulahad order within any given weale and because I have, very oooaalonally, moved celated ittam into adjaconoy. Ieosengs aro oarried cver into euggeasive poriods nogandleas of whother on not assooiated takons have again been obsarved. Tho absonce of donotation-alasa decariptions indicates that there were 20 zolovant attostations in that period. Desoriptions of denotation olasd members of a loxerne

In a givon period appoar in roughly the ordor in uhioh applioation of tokens of tho fow was, attantod In that pariod. Hene tho quilification arises becance arder of attestation mithin a given woek was Ignored and because temporally separated cases have been amalganated through the uso of the "m' notation.
G: $1 ; 15 / 6-1: 6$, inclualipo
AFURPACIS: nil
PEOPIB:
Loe at his sistor
Santal Q: Santa Claus
Granded Q: his granifether
FOOD:
Lutioe e: said whon he trants a drink
AKIMALS: nil
BODY PARTE: III L
G $\quad 1: 61 / 5-1: 85 / 6$, inoluaivo
ARNEFACHS:
choo ohoo Q: his toj train, pr P toy train
ahoos. Q: ahoer, Pr P ohild's red laco-up shoes $x 5$
oar Q: cars x3, pr toy blus VI oar x5, pr P trontons drophoadooup反, wanting to soo P car in $p r$ pioture book $x F_{1}$; prophad
Iondon bus
bus Qs bus
door. Qt door
floworn Q: flowors, Q: treos
[Ji, ingiesaivo \rceil pr miorophono
bindio airecaft hoand ovorhed
PROPIR:
Ioo 0 : his aistor
G. $1 ; 61 / 5-1 ; 8.5 / 6$. inolugive (cont.)

PENDLD (cont.):

Santo

Grandai

Pary Q: a friend of his
Jean Q: Jean
Andrer Q: Andrew
Yumury Q: his nothar 26, hia mothor $x 52$
Iealey ©: his ooualn
Holooln q: his umole:
Daddy a: his fathor $x 3$
baby Q: sald mhen he seose a ywam x2
gixl Q: girls genemaily

FOO்:
jinoe Q: pointing to bottlos
ohaene Qt oherge 22
tee Q: © arinks and rood

AHITUATS:

Susio Qt a Iriond's dog
teddy pr P yolion toddy bear, p pr toy panda 22 , p p P Jelion plastic duck w6
[lataral oliaks] pr plastio horso, * pr plastio bull

BODY PABIS:
toos Qi his own toes $^{\text {on }}$

G． $1: 21 / 6-2: 1$, inalunive

ARTREPACIS：

choo ohoo pr toy brioko pushed along in a lins x5，per toy train T24，branting to eeo pr toy train 22, pr P toy train $x 24$ ， ＂pr toy jeep $x 2$, tpr P toy occan Iiner．After 1；11 2／5 G hod a distinot noise to cocompony play with toy trains．
train Os train，pr toy train $x 11$
ahoes Q：ahoes in ahopo z2，pr P ohild＇a red atrap and button aboas $\mathbf{2 3}$ ，Llartin Atkinaon＇s boot 23 ，hiv aister＇a nev ahoos 27，$p r$ dollis ahoes $23, Q:$ his father＇s ahoes
oar Q：his toy oar，Q：a friond＇s toy oar，Qs his grandfathor＇ 8 car，6：oar x2，pr toy joop 27，pr toy blue VU car $工$ lll， rurregiging through pr toys wanting a oar，pr P oar in roilof outline on plastio boaker xi9，mmting through pr plactic beakern for one with P oar 218 ，pr P tro－tone drophsed coupé ri3， $\operatorname{pr} P$ red anloon in atreat boano TK，midontified P oars， leafing through pr pioture booiks in soarch of P oar 工 $工 43,2$ ＊Pr P：youngor ohildia trioyelo，＂pr P toy ocoan linar，
－pr P yollow $10^{6} \mathrm{y}$ y xe

10icx Q： 10 x y

bilag pr P bioyole שith rider in otreet ecens $x 5$ ，pr P older childt B triogolo
bus pr toy Lemion bas 560 ，Q：bus，toy minibue
door ovoked by，hoaring lnook on the front door
flower pr P florice in rolior outinno on plastic bealcar，pr P
．．cohematio floworhads on oaves of a toy house，pr P yollov
［［f，ingressiva 7 pr minorophono

bindio

troog 9：treos，pr P troes in parle
treotor Qi treotor，pr P largo toy traotor boing drivan by a Iittio boy 26
bath os 8objoot or ovent $x 2$
toa $p r P$ tosoup and concor in rolior outiino on plastic boakor $x 3$ ， it it．Of．POOD．
G. $1: 91 / 6-2: 1$ ingluaivo (oont.)

ARTEFACIS (comt.):
gpoon 8: opoon, pr P top olet of toacpoon $\times 3$, pr P alpost aido Vict of toacpoon 25 , roal teaspoon 77 , manting ant recolving teampoon to prise open pr antwal tin 425
bib of bib
oup 0: oup
 bod a: hie aistoc' 0 bumk bed, q: his orm bomk bod
oot pr P cot 23
bal1 m P bright becoh ball, another pr P bsight becoh ball, pr yollow ball with holes

Jug 9: Jus
dag 0: cofling lighta
bribhle e: hot zoapy vater in a buoket
book Q:-book, pr phonotiolan' notobook, pr pioturo books 0
pillos Q: pillor
drems Q: drossर
ouper Q: his pereonal ocafortar blankot
ciganotto Qs eigarotto
gun of toy gun
cook pr doll' a zook 25
garago Q: hic nev toy earvice etation
tor tops of pr aldittios $x 5$
gponge Q: bathrocu opengo
tomol at torvol
coap Q: soap
atiol pr plastio sookooper' a manatstick
G. $1: 91 / 6-2: 1$, inoluoive (cont.)

ARTICPACIS (oont.):
bobblogs Q: his aiotor's elastiolsed hair-ratainer

PROPIS:
Les his sistar 27, Q: his aigter 22
Santa
Grandad Q: his grandiather
Tamy

Joan

Andror

Huty his mothar ci66, Q: his mother x_{4}

tapley

Yoleoln his unole
Drady Q: hio fathor 22, ${ }^{\text {pr }} \mathrm{P}$ man, $?$
Baby pr P little girl loohing at a book, minute and blurred pr P baby in pram in beokgroum of a otroat scono, 8: baby $x 3$, pr P littlle girl, predoll 25
genc Q: bis boye anh girls, Q: girl
Holon Q: Holon
Loma Q: a friond of hio
E171a Q: hic grandmothar, orojamation of ploasure 3
Trans Q: Irtno
Danek Patiilak Grifflths, a frlend of his callod Daroik
Ge Q: hio omm namo x2
Ralotan o: a frions of his
man preplantio sooboopor 212

G． $1: 91 / 6-2 ; 1$ ，ineluaite（cont．）

FOOD：
Suice pr P red liquid boing drunk through streass from glasses by tro ohildren 12 ， pr P bater jars being used to dip brushes by ohilaron painting 22, \＃p orange coloured plastic beaker， \＃yortin atkingon＇s mug of coffee x3
$+$
cheese Q：ohsess
tea＊pr P red onamol mug of milk 25, pr P white mog containing tea－colourcd liquid $53, Q$ ：tea．Cf，ARTLEFACIS．
tatoes Q：potatoes boing prepared for oooking
nana pr partly－psoled banana on a plate
croam Q：Ice oream
agg pr P ogg in ogg－oup on plate x 10
Boup Q1 soup
oako o：oako
Cryatioa Q：Erreota
gypip Q1 wanting gyrup on his bread
Jam ©：vantins Jam on his bread

ANCIMATS：

\qquad
Surio
todiy pr P teddy bear in rolief outiino on plastio beaker $x 2$ ， pr P yellow teddy bear $工 4$ ，looking through the book for this
 baby doll in a pram，＊pr plastic ohimpaneeo $x 3$
［Lataral olioks 7 tro pr plastio horses 25，mp plastio cow 3
dog Q：dog，pr P uhite Soottish terrior，pr plastia horso $工$ ， ＊pr plastio bull x3，wr plastic ahoop x2，${ }^{2}$ pr plastic oor 18 ， －pr P tor panda，pr P front hale of a cat，pr P beagie＇s head
Gog Q：\％ow 20, pr plastic con x16，pr plastio horses $\alpha 5$
pusay pr P oat in relief outline on plastio beaker 25
ghoop pr plastio aheop $工 76$
G. $1: 91 / 6-2 ; I_{\text {Inginaive (oont.) }}$

ANHALS (cont:):
duole pr P yollen plastio duck $x 7$

BODI PARTS:

toos
toeth Q: tcoth
ton bolly of plastio horso
G. $2: 11-2: 25 / 6$, inaluaive

ARPREACIS:
ohoo ohoo stationary lino of pr toy briales, pr toy traino
train Pr toy trains, $x 7$
ahoos pr P: ahoo in relifet outiline on plastio baskers 44 , 8: his fatior s ahoon, Pr dol1' A aboes x^{3}, pr P ohild's red lecoup shoes
oar Pr toy joeg x19, pr P car in reliof outline on plaotio boaker 219; homting through pr beakers for one vith P oar $工 6, P$ car dram by liartin Athineon 23, his orn toy 1imounino 28 , mother of fhis own toy cars, ar toy train

Iorys

bilfo
bus P bus dramn by Hartin Atkinson, pr toy Lonidon bus 工 $_{4}$, Jooking through tory for this bus
door 0: door
flatora * p P tree in rolior outiino on plastio beakar, pr P daiatos
$\left[\int:\right.$, ingreacivo. $]$
bindio: OF. AETHATS.

treos

treotor

G. $2 ; 13-2825 / 6$, inoluaivo (oont.)

ARTCSPACHS (cont.):
bath $0:$ bath
toa CP. FOOD.
040
gpoon gr P top vicy of toaspoon
bib Q: bib
olook, pr P olook in relief outiline on plastio beaker, P, P alam clook, "his fathar's vatoh
bed al bed
oot
ball e: ball
Iu
1ight. Q: 1ight, Q: ILghte on Onristanas tree
bubblo
book
gilion
aresa

oover Q: hia porsonal comforter blanket
cigaretto

gum

Book Pr doll's sook t2
garage pr tin on its side used as garage for toy oars .3, "pr plastio boaker with P oar uced to hide plastio eookeeper, gerago built of proy briaks for toy oaris cil2, manting a garega built of pr toy briaks xt, *pr P houso in reliof outilino on plantio boaker \mathbf{T}, as he runs pr tos Joop 4 porbaps vanting argarego $7: 3$

top

Epongs
G. $2 ; 11-2 ; 25 / 6$, inoIuaive (cont.)

ARTVRPACHS (oont.):

tomel
cong
Btiak

bobblos

phono Q: his parantal tolophono $\mathbf{2 2}$, pr whito toy tolophono 26 , pr P light blus tolephone, telophone heard ringing in adjacent room
oost Q: oont
pomion Q: ponnies, ooin used to pxiso open pr onimal tin, Pr plastio pantes x2
gene Q2 pram, Q: his sietor'a toy pram-
bruah pr plastior sookeeper' o broon t2
Beootar Q: hióalator' a toy ecootes
deng dy his motber's pens
cooker, Qt cooker in the kitahon.
taps Q: taps on tho kdtehon aink
howes pr P houso in rolial outiline on plastic beakor, pr P atotely Amarican colonial chemferboard houso
box Q: bac
Pridge 0: eridge
fira Q: lounge fire
Leyg pr P brmoh of leyg
boat Ir P tor ocean IIner
loong pr.P eoveral tnflated balloons
Btaing: PrP flight of ateps loading to a donostio frent door

Ge: 231-2:2 5/6, inaluaivo (cont.)

PBOPLE:

Lea Q: his bister $x 2$
ganta
Gramind
Tanxy
Joan

Andrer

24] Q: his mother $工 3$, hio mothor 218

Logley

Halcolm o: his unolo

Deddy Q: his father 28 , his father $x 2$
babre Q: baby, cmaliloat of a family of Russian 'babuahica' noating dol1s, Q: his aiater's dol1, \#pr P top third of a littlo gixl looking through a large windon
g적교
Helon
Iomen

Sile
Irane
Darele
G. his own nems Ih, Qi hie own name

Rnlaton

orenm man a: iov orean seller
man pr plantic soobeoper x_{4}, pe 'ohatropzono' figuro $x 2$
Anno Q: Anne

```
G. 2;11-2,2 5/6, inolunive (oont.)
TOOD2
fuice
Cherse
tam 0: tea
tatoes e: potatoos
nonn
oream
egge pointing at one in pr P three egge
goup Q: soup
oako
geetios
cyzup
Aam
Ohipe Qs potato ohips
[draa] [oonoldagablo voollo variation] blooutt rll
grange 0: crange
plappioce Qs onack peched for his elistor to take to nursery achool
ohtaken Q: cooked ohicken
```

applo pr P large red applo

ATMATS:

Suario

teday pre P teday bear in rollor outline on plastic beaker, opr dog
glovo-ivupot
[Latoral olioks 7 as ho ralke varions pr plastio animano dogeg - pr P elophont in rolliof outitine on plastio basicer

Go，2；12－2；25／6，incluairo（cont．）
Arimats（oont．）：
cor pr plantio oovs $x 9$, pr plastic bull x2，\quad pr plastic horse $x 2$ pusi pr Pflufy mito rabbit soen from the front and above
aheep pr plostic shoen $x 5$

duok

hazeo pr plastio horeo x5，＂pr plastio oor
hippo O：P hippopotamug
biratio pr P parrot

BODI PAFAS：
\pm
toos．
toeth Q：tooth
tum
Lnoe QI knee
noes pr plastio elephant＇s trumk

G． $2: 31 / 6-2 ; 61 / 6$ ，Inelurivo

ARAHEPACIS：

ohoo ohoo pr－P toy train $工 2$
train Tine of pr brioks 工2，pr P toy troin $=3$
Ghoos Q_{2} his orn ahooi x2，pr P ahoo in reliat outiine on plastio beateer，Pr P child＇s rod $1000-4 \mathrm{p}$ nboon $x 3$ ，pr P ohila＇s red atrap and button aboos $x 2$
oar mp P car in reliof outline on plastie bealoor 工ll，sorting through beakors to find one with oar xit，pr toy jaop 36 ，pr P thio－tono drophoad oounc，pr P oir in Atroot oceme
lomy pr P－rough painting－toy Iorry on oupboand ahole in a maraexy ochool sceno
bilpe pr P ohild riding a trioyole $\times 3, p r \operatorname{man}$ on bioyole in atreot econs，＂pr P parked motor sootor，pr P older ohild＇s trioyele i2
G. $2: 31 / 6-2 ; 61 / 6$ inoluaive (oont.)
ARIURPACIS (cont.):
bun pr toy Londom bus $x 18$
door
flomers pr P daibies
[J:, ingressive]
birate

treon

trecter pr P large toy trector boing driven by a Iittle boy x 3 bath
tea.
Gup pr P teacup ant alavor in reliof outling an plastio boakor spoon. $p P$ almost aide viev of toaspoon $\times 3$
bib
Olook 9: Wis fathor' s vatoh, pr P rall olook in mursary sohool ccine, pr P olock in roliof cutiline on plastio beaker ry, 파 P. alarm olook 52
bed Q: bea
buonk os bumle bed
cot pm Poot
bal1 ए P bright besoh ball ru; pr Prod apple on a plato, pr yellor ball with holea

548
1iphts Qs coiling Lights 工力
bubblo
bóct

drass

G. 2:3 $I / 6-2: 61 / 6$, inolunive (cont.)

ABCTPACRS (cont.):

ocver Q: his porconal comfortor blankot
oigaratite
gam
cook
gargge garage built of pr toy briaks $x 19$, torroxe built utth pr toy briokn $x 13$, panting a garage to be built of pr toy briaks x7

top

Bpongo
torrel
BOAD
athok
bobblos
phone pr red toy tolophono, pr P light blue tolophone, me white tor tolephono 14
coat. Q: his org ooat
penix pr plastio pemioe x24, ranting and recelving ooins to price opan antmal tin and base of pir toy tolopkone 3
pean 9: pran $\mathbf{x} 2$
brush Pr plaatic roobeaper! I brocm 273 , pr P broad-paintbruah beside paint tin
ecootor
pans
oooker
hove Ir P house in reliof outline on plastio beaker 25 , pr P statoly Amerionn colonial chamforboand houmo
box pr P woodon boc opntaining a rabbit, pr cariboard box for pr tor briake In
G. $2: 31 / 6-2: 62 / 6$, inclusive (oont.)
ABTHEACFSS (oont.):
fridgo
fira Ol loungo fire
key, pr P bumah of keyy, roal bunch of kega
boat
Ioong pr P severel inflated balloons
ataing
diahas Q: diahos
anorak Q: his alatar' a onorak
tollet Q: lavatory borl $x 2$
toyg Q: his own togs $x 2$
tin pr animal tin 23
Eood 0: road
pants Q: pants $\mathbf{x} 2$
ambulaniog o: ambulance $x 2$
papar Q: papar
brioks $\mathrm{pr} P$ ataok of toy plastio brioks emboesed with, lettors
vindore rindow holes in pr toy Iondon bue
vashing mohing Q: walatig moohino
party Q: childron's party
taxi Q: tadorapo roughly painted pr P toy crans on cupboand sholf in muresecy

hat Mentra Hucrioy's hat I2, pr pleatio nookooper's cap
can11o a: candlos used during powor outs 23
G. 2:3 $1 / 6-2,61 / 6$, nnoluaite (cont.)

ARTEFACIS (cont.):
Oace ©: ?suitcaso
glove pr P pair of rod mittons x 2
gol gsong pr P ahoars hanging on rall in workshop scone
brolla pr P open umbrolla
gpado pr P boeoh apade lying in sand boside a ohila's buakot
atone Q: atono
ahint ©: ahint

Prapipis:
Lee Q: his aistor x10
Santa

Grandad

Tensy

Jonn
Andror
Huxmy $8:$ his mothor x6, his mother x80, apr 'ohairoplans' figuro onicy

Hatoolim

baby his alstor's doll, pr P bahy in a orlb, of 'ohatroplans!
giry pr P Iittlo girl oitting on a nurgory echool ohato, pr P of 2 girls and a boy playing, $Q:$ girl, pre P top third of a little
giri looking through a la girl jooking through a large window

Hoing

Iorna

G. $233 / 6=261 / 6$ inoluaive (cont.)

FBPIR (oont.):
표11a
Irenio
Denale
G. Q: his onn nams ril4, his om nams z12

Ealaton

Crean man

ㅍan pr plastic cookeeper 274 , pr 'ohairoplans' figure $x 3$, pr P

Anno

dollios his sistor' a do17n, roughly painted pr P dol1s on oupboard sholf in a mersety sohool coene, pr doll $x 2$
unolo g: Thin unolo Molcolm
Yonno a: a friond of his
Pautino Renira Hucley. Paulino Ford was the pr phonotiolan
Alan or a friond of his 22
Alon'e Lumy Qi: $42 \ln ^{1}$ a mothar

Martin Martin Athinion

Buntry his aintar's doll xy

FOOD:
fulco, pr P liquid boing drunk through strews from glasjes br tro <
choore
ton
tatoea
nana pr P partiypeelod banana on a plate
orama
G. $2: 31 / 6-2 ; 61 / 6$ inoluaivo (oont.)
POOD (oont.):
agg. Q: ogg, pr P' egs in egg-oup on plate 23
Boup Q: EOup
calse
groetios

1am
ohips
bibauit
cange pr P partip-aliced orange on a plate
playpieag
ohiokson :
appla pr Pred applo an a plato, θ : apple
coffoo Q: coffeo $=$
dimanr Qs plates of food at table x2
modioing Q: misaioino 43
toast Qt toast 13
bread 8: bread
briaio $Q:$ Comish pasty
mapmalede Q: marmaledio
yator 16 rater
AzILIEATS:
Susio
teddy $\mathrm{F} P$ yollow toddy boar, $* \mathrm{pr} P$ toy panda $x 2$, pr P Jollonplaotic duak, pre P toddy boar in rollof cutiino on plastioboaloar $\mathbf{x 5}$. gr P teddy boar in a bodroom coovio

Ge $2: 3$ 1/6-2:6 I/6, incIuairo (cont.)

AFTIRALS (cont.):

[lateral oliokn] as he valito pe plastio oor and shaep and horse
and oalf

dogsy

007 pr plastio ansinals, pr plastio coris $n 18$, pr plastic bull, ${ }^{*}$ pr plestio calp
puss pr P red apotted upsido-down oat dramn by ohila in mursary cohool cocme, pre oat in roliof outline on plastio bealsbr $x 4$, *pr P rabbit in roliof outilios on plantio bealones $x 3, *$ pr P fiurfy whito rabbit bean from front and above $x 2$, twi P top half of moniy oryl, pr P oat in domastio poene, P cat
pang oat pr' P cat in relióf outiline on plastio beakar
oat Pr P oat in reller outiins an plastio boakar
gheap pr plustio ahoop I 7
duok pr P yollor plaatio duak nt, Q: duok x2
harco varloun pr plastio horsee $工 9$
hipeo
birite
monkey pr plastio chinpanizoo 117
cale pr plastie cale xl5

tich Q: Ptah

BCDI PARPS:
tooa
t
moo

noce

hats of hys om
Ge $2: 31 / 6-2: 61 / 6_{\text {r }}$ inoluaive (oont.)
BODI PARTS (cont.)
head pr plartio zookeapor' B head z_{4}
tonguo Vi $_{2}$ tonguo
J. 1:9-1:10 2/5, inolugivo
ARTIEPACIS:
oar Q: car
book Q: book
kreyz $Q:$ kegysshoos $Q:$ ahoos
door Q: door
hot Q: uced of oven and food oto.
bya byo 01 his toy telophono
PECDT표:

Armty Q: Aunt Dilifo
baby Q: baby
Deddy Q: his father 2 ?
Pippar Q: his aistor
boy Q: boy $x 3$
FOOD1
marmito Q: 'marnito', $Q:$ poanut buttor
Ewestes Q2, Exeots

J. $119-1,102 / 5$, inoluaivo (ecnt.)
 Arments:

0112 ©: nans of funty ont, Q2 $\$$ dogo, Q: ochcep, Q: b birds miegr 日: P oat
poof C: battory-powerea palking and moofing tog dog, A: doga BODY PARTS: nil
J. 1:10 2/3-2:0, ino1unive

ARTIFPACgS:
oar 9: aara $工$, pr P tro-tone drophoed ooupé
book propioture books x11, pr arauring pad, Qs boole $x 2^{\text {2 }}$
kere
abooe choojs on boy in P boy 27 , "fitton' s - feet in P kitten x_{4}, Ir P ohild's rod atrep and buttion ahoos 74 , Qs doll' A ahoos
docr
door Q: dreming pins
bin Q: drewing pin
hot pr miorophone after holding it to his faco liko an oleotric shaver x2, "buag in base of pr toy tolophone, "pr miorophono
bro byo pr miorophono aftor boing ahown that it is for talking
into $x 3$, po toy tolophono x 12
borx Q: Iarge cardboard box
boat QI_{2} hat be is protonding largo cardboand box to bo
bed 8: bed
Exreotios pillo of matohos whioh he has droppod from a entohbox
7., pr orayons atrewn on Ploor, P Pe bright multi-coloured
bolity a: Enaloal box

```
    Jo \(2 ; 102 / 3-2 ; 0\) indintive (oont.)
    \(\triangle\) ARHFICFIB (ocnt.) :
    "jga Q: mose on his highohair aftar lumoh
    money Q: monay, pr plastle pennion 8
    boll at docrboln button
    spogn O: spogn
    paper Q: riting paper ani lottars
    matoh Q: uriotwatah
gate 0: gato 22
ooat a' ooat \(J_{4}\)
```

oup pr P whito ohins mug with oartoon P auake containing brown
chair Pr areohair mums aoat and back oushiono 24 , q: chair
Frator Q_{1} Entor
olonk Q: olook
Ilaint ©s the moon
FEOPI:
$\rightarrow<$
Huxyy Q\% his mothore 6
Ansis. Qe Aunt Dilys
baby es P baby on taloun porder oontainor, qs baby
Daddy a: his fathor
Plops Qt his sister ot
boy qz boy 23, P littlo bos x_{4}, ghimeole 23
Alandais $Q:$ hla brothar $\times 3$
Btaphen Q: Stophon
Hicheol o: a colleasu of his mothar's
Ein IF plactio zooberpor

J. $1: 202 / 3-210$, inpluaino (cont.)

FOOD:
manito q: manito

toant $Q:$ toast
oake Q: ealko I2
mite Q: milk, Q: 4any drink, Q: sugar

Juino Q; Jutioe x2
becer Q_{i} coffoo
tea d: toa
bieouit Q: bicoult

ATHALS:
071

nition

boof. dog drcini by Kartin Atbinson, Q2 dogo (11vo and P dogs),

boar ot koala bear, Qa pbinda otc.
pusiles P oats
dog $P \operatorname{dog}, ~ Q 2 \quad \log$
blin Q: bin, oartoon P dwoics co pr P mas 3
hopeo vhat ho dadras to bo drewing 25 , pr plantio horso 213 , epr plastio ball, looking for horeo in pr andmal tin $x 3$
ank dueks on Dutaingston Looh
bull *pr plantio horse
cat Q: ont
shsop Q: cheep
J. $1 ; 102 / 3-2 ; 0$, Ino1ugivo (oont.)

BODY:PARTS:
5080 : : pose 2
hoad. Q: heed, response to pr P ohild's brush and corb set, reaponse to ahothar pr P ohild's brush and ocasb set It_{4}
mouth Q: mouth
gyos Q: वyos
frine 8 : vanting to sit on his mothor' B lnee
J. $2 ; 0,1 / 6-2 ; 2$, incluaive

ARTIIRACIS:

cas Qs toy cars 22, pre blue toy VI car x3, pr P ohila's very rough paintint of cars in a murbory cohool ccone 12 , pr P oar in relifer outiing on plastio beaker
book various pr pioture books x31, pr draving pad I2
hegre vanting a षinaing key for pr toy tolophome x_{4}, bumoh of door koys cooopted for vinding pr toy tolophona $工$
nhoos his orm shoo 16, pr P ohila's red strsap and button shoos 27 , rㅓ doll'g thoos xil, Q : his own shoo 52 , rod shoos on $p P$ cut-out papar inan in a murasy eshool veono
door Ir P opon door of nursery sehool with ohtlaron loaking out 22, Q: doors in his hoas x3, drivar' a door on pr tor Iomion

door/bin

hit PF P ilt eandlo x3, \& pr merophono x3. For the lattor he says
bye byo pr red toy tolophome $x 17$, pr phito toy tolophone z11,

- pre P: light hlue tolophone x_{1}, Ir P red teleqhono 2
talephone pr P red telephone $23, \mathrm{pr}$ Whito toy tolephone
box opr onimal tin, 14d of cardboand box for gr toy bricks
bont Q: boat, Q : toy crano $[$ Ho assr dorricka on a boat trip to Shotland. $7, P$ toy ocear Itnor 25
aly pr P toy oocen linor $x 3$
J. $2 ; 01 / 6-2 ; 2$, inoluniva (oont.)

ARTEFACPS (cont.):

sheotios Q: *set of ${ }^{f}$ oounting beeds
마ㄴㅏㅏ box Q : mastalal box x^{2}
moss
mongy wanting and recoiving coin to open pr animal tin cilo, pr plantio pemiles x10, Q: 5onay $x 2$
ball
gpoon LeP alrost aide flev toaspoon $x 5$

papor: ?, shoot of araning papor 28
Hatch A: miatratoh" x2, "pr red toy tolophone as ho trion to uind
 olook $x 2$, apr P oloak in reliof outiline on plastio beaker
gate
ooat

OLIM

ohatr me yoilou wooden upright ohatr oith raffia seat
mator respanse aroused by his sooing and noming pre P fish
olook *pr red toy tolophono as ho tries to uina it pith door keges

IIght

houno q: his homs m3, Q: draving of a house, faint and emall pr P ohild' D painting of a house in a nureory eohool zeens x3, pr P houso in roliof outiino on plastio boakar
tanpot Q: toapot
garaga Q: garage
nose q: papor tiesu9s, Qt handkorchiof. Of. BCDIY PARIS.
Peos O: Pacomoloth. Of. BOXIY PART8.
bage 8: bas $x 3$
I. $2 ; 01 / 6-2: 2$ ingIusize (cont.)

ARCIIFACTS (contr):
aproplane Q: meroplane
tory Q: toys
beticks pr P wooden top brioks 22
garden Q: Barion
ancreat Ot anorak
zoge 0: seap $\times 3$. CP. FOOD.
brugh pr P ohl 1 ' a hairbrush 23, pr P toothbruah 25, pr $P, 00 \mathrm{mb}$ train $0: P$ railuay engine, por toy train
पindoar Q: 『indor
paint os *pons and penoils
chog Is shop
coplo pr P bright malti-coloured beaoh ball, $\%$ pr P balloons,
¢pr P mariles. $C P$. FOOD.
top as Itia
sock pr वol7! a sooke 16 .
haviar 9: barmerer 22
Figion © P TV cot, It $_{2}$ TK eot
toilot Q: bathroon - turniture for a doll' o houes
penoil Q: ponoils, Q: pons
I213 O: blanice't
dorngtaire pr P Plight of stops loading to a front door 5 , Q2 otop ci which he is standing
botuen bali ol boumar boll
gamara Qs omara
orresin 9: mediotinal urcan
EOighta \% p P 'tory rooden byicks. Thare is a toy grocor's balanoo FIth reightg in a mursery anool he often pigits.

```
I. 2s0 I/6-2:2, imlugive (aont.)
    ARIURPAGMS (oont.):
    Iomex pr P yollor Iorxy
    bus pr toy Lon\ion bu; 20
    dratinge pr P orayons and coribbles
    bin Q: mastobin
    dress A: his mothar's droas
    thing q: pine for hair-aurlory
    ohmpah Q: charah boildingo
marblog po P marbles +2
```


PECPDR:

```
Mumary at his mother \(\times 3\), his mother \(\times 39\)
Andis Qs Aunt \(D 11_{y O}\), face of littlo girl in pr \(P\) nursory eohool
```

baby pr P Ifttio gin Iooling at a plature book, pr doll x2,

Plppa pr P littlo girl pooring frcm a doorvey, Gs his aistor 3 ,
 Iittla giri in bet, apr P Itttio girl looking at a pioturo book
boy ©: boy 13
 boy in rursory achool coeno 22

Stonahem

Thaheol Enrtin Attingon x8, \& Pathick Griffiths 211

man pr 'chairoplans' Figures 25, pr plastio zookeoper 20, pr plastio coobecpor' a diememered hoed, pre P out-out paper ren in a mureery wohool socio, prestachiag doll uith scombraro
Potriak a: Patriok Grifit the, Patoiek Gripit the to

J. $2 ; 01 / 6-2 ; 2$, inoluatro (cont.)

PRGPIS:

Bruce Q: yunnamo of muresey nurso at a mureory sohool he ofton
Darek Q: Dorek
Davia Q: David
Ento Q: a colleague of his mother'a
Krn Imos Q: Lra Imes 22
doll pr doll
Domald Q: Donala
Lany Hoptans Q: Hary Hopkens
FOOD:

manite

ETYOOTIOD Cr. ABTIKFACIS.
toant Q: toast
ocheo
M1 Pk S: milk, pr P red mug containing milk 52
applo pp P two halres of an orange on a plate, pr P red applo on beegr

tos

biccuit bicouit cr0, ranting a bisouit 53 , \% pr P tro halvos of an
50137 C: Jonny
mingtio Q_{2} potato orives
ocanga Q2 corango, $\overline{2} P$ crango and a alico out from it co a plato on a plato 17

```
    J. 2;0 1/6-2;2, Enolunivo (oont.)
    FOOD (oont.):
    nong ब: banana
    egg pr Pogg in ogg-oup ry
beoon a: becon
soup Q: corm
Bamanga 0: zausage <2
coap c: manlt. Of. ARTEPACTS.
ohips Q: obips
aiok a! Taisins
Iumgh Q: *amy moal
honery Q: honoy
proding Q: pudding
breed Q: bread
marmalede Q2 maranisio
ANIMALS:
    N2
017%
micore
```


Hoof

bars

pungy ir P front half of cat
dog pr P beailo' a hoed $工 2, Q:$ roal dog, $\operatorname{pr} P$ aide viow of ion,
bicis P parrot 22, pr P two kiah in murioy mater, lanting through the boot in whioh he aexr P paryot and P flah the week before 23, otylieed 8 an pr miorophone
homaias pr plastlo horso 17, ppr plastio oon 35 , rosponso 工o empty Pr entmal tin 23 , rooponse 70 pr animi tin rhioh he wants
Opened 24
J. 2:0 1/6-2:2 incluaivo (cont.)

AFTMALS (cont.):
dant pr P Jollos plastio duet x x_{4}
ball praplantio bnil
Cat pr Pront holf of oat 219, pr P oat in raliof outlino on
bheop pr plastio shoop 217 , pr plaotio oor, wanting pr plantio akeop. x2, P choop, tps plantic olophant, m pr P alophant in
roliaf outilino on plastio boater roliaf outline on plastilo bealior
thger Qs tigar

aore pr plantio 000×3, pr plastio bull, Ppr plastio olophant 22
figh wr P two flah in murhy water
zabbit, pr P fluffy uhite cabbit ioon fran front and above x2, Bealoar 23 movi, pr P rabbit in rolier outitin on plactio
moker pr plastio ohirpanice $x 3$
pig. 9: pig

BCOI PAFTS:

noce Q: his orn noss, his om noso, cr. ARPRPAGIS:

haed

mouth ha orn Eouth
Oyon oyos co oat drcin by his mothor
fooo of vanting to ait an his mothor's lonoo

homi Qi his oin hand x,
boap pr doll's navol
hatr c: hair
Feat Q: his okn foot

J. $2 i 21-2 ; 6$ 1/6, IncInaivo

ARTITPACIB:

Car. Q: toy oar, Q: real car 23, mer P ohild's vory sough painting of car in a nuruory sahool toens $x 3$, ppr P youmer ohila' a tricyole, y P P gecon sporte-car in street soone, what ho ranta to have puilt Eith pr toy briokes x_{2} g; thilides soooter in a tree, pr P car in reliof outline on plantio baatcor 22
bools Q : book $22, * p r P$ children's paintingo hung on unil in a murcoxy eshool boeno, pr picture books 33

Eegys bunok of leogn $\mathbf{2 1 0}$

choo his orin sandal x, pr P ohtld's red leco-up aboos, pr P shoo in roliof outline on plagtic boaker $x 2$
door (Is doors in hils howe, pre Ppen ohuroh doors noen freen inside with ohilidren entering, pr P ingide vien of houso front door with lotter falling through lottaribox $工$, door on house drun by Kartin Atikinson, door on houso drewn by his nother -2, P door with a woen beaide it

doom bin

hot gi. 'Hoover' vacum oloaner

bye bye :pr P 1ight blue tolophono 29 , pr toy tolophono n5, pr P red tolephons boing used by a Ititle girl a3
tolophons es ho plates up pr pioture book vitoh containa a P tolophone, pr white toy tolophone, pre red toy tolephone 210 , pr Pred tolophone boing used by a little girl, ${ }^{-\theta:}$ real tolophons
bor a: box for a tortoiso, Fpulpitt containing a vioar in pr P ohuroh intoricr, pr animal. tin x2, pe tom-box; tro pr plactic beakare hold menth-tomoith to ocmacol i manlar ono, "pr P open envolope in a Iittlo girl's hand. The anvolopo looks rathor 1116e a rrapped parcol
boat pe P toy cooan linor If, Q: ronl boat
ehip P bod in vitioh a boy is alooping

EFaotion CF. FOOD
munto box Q: musical box

J, 2:24-2;6 y/6, inoluaitre. (oont.)
AETERACRS (oont.):

폄

monoy - Q: mozoy F2, pr P pink lottar hold by a postman, vanting a coln to openpr animal tin x_{2}
hale one Q: coins
bell
geonn pr P top viet of toaspoon

Eatoh *ranting to noo the P glock in a pr ploture book xh, apr P olook on nantolpicee >2, pr P alamm olook 13
gate pr. P opan mrought-iron double gato, $\%$ pr P opan ohmroh doors acen froc inasdo with ohildren ontoring re, flat pre toy briols beside house of pr toy brioke, i: sato

oup O: his aistor's oup, pr P tonoup and eavoor in roliof outitno on plastio bealcar
ahair 9: chaje x2, *pr P becklons foummegged otools in front of a tablo in an aripty nursery cohool roon, pr P ohila' © 100 feeding ohair tith atteohod treaj $\overline{J r}$, seats in pr toy London bus rator Q: watar in bath 22, Q: P wator in P soasido, burf in pr P voastido x3, what surroumis duak pr P matlard the Of. FOOD.
oloak pr P faint outlino of olook on mantolpieso in a Ifringroon asone 20, Q: *Wristratoh, P grampather clook with a proso running up it 25 , pr P olook in roliof outilino on

light Q: light

house faint and call pre P ohild' a painting of a house in a zurecary eahool pano, Q: his own hons x5, Q3 a bouso pascod on the stroot, $\bar{p} P$ suburban bragajon, what ho vents to boild with pr tog briotes x2, houso dramn by kartin Attieninon 33 , howso dresm ty Renife Huriloy 23 , houes drem by his zothor 23 , pr P top tro-thirds of Largo house projeoting above troos
tegrot what bs aays ho wants to seo in a pry ploture book

```
J. 2;21 - 2;6 1/6, ino1ngivo (oont.)
ARTEDACIS (oont.):
```


garage

noce \$papar tiesus 22, b hadicarchiof. These obsorvations rare bacci on mritton botor, not on tope-reconilingse Of. BODY PARTS.
face
bag
aproplane
$\operatorname{tg} 18$
byioke pr toy brioke 22
gacring Q: garden at his how
anorat
soan faint pr P pink bar of soap घith nailbzush and other tollatries
bruah PF P nailhrush with soap and other tollotries, pr P ohild's hairiruah
train pe to train $x 2, p x P$ bright malti-acoloured tor train. He also says "ohoo choo on asoing this picture.
windoz pr P uindor of auburban bungaiow with ohilaran looking out of its windor on house dramm by his nother tic
paint
shop at ang shop 22
applo OP. FOOD.
top lids of pr animal tins 23, Q: "pluga for baths and basins, Flat pre tos briok whioh has boon put on to throe parallol pr orajous to rake a vabiolo; $\%$ pr P trafflo lights at red in a atroet voens Ho might havo bean asying "etop".7, aaye "top all gonot in roeponse to headloas pr plastio rookeoper
book Qi. ${ }^{*}$ hid mothar' e tighto $x 2$
hamener wi P hawnar boing used by a man
tolooiaion Q: TV cot, P IV sot boing watohod by a cartoon pis

```
I. \(2321 / 2 ; 6\) I/6, Inoluaive (cont.)
ABCHIPACIR ( oant.):
toilat
```

persil 中 P P crapors and seribbles x 3 , * pr orayon

mag

 foot of donastio ataircaco oith ohilaren ooming down it $x 3$,
stairis in pr toy Lonion bus $x 3$
ball pr P Iorge opotted ball on flocif in a mareory sohool seone; pre bright becoh ball, pr ping pong ball 25
oamara.

areem

toiphte

100cxy

bas Qs cani bno, pr toy Iondon bus $x 3$, qs his own toy bus cis
drexuing orreopor off pr orayon
bin
droes Qs hise mo thor' 8 dress
things
ohmoh Pr P Horman-atyle ohuroh windor neen froen ingide in ohwoh

marblog

cholt Q: shols

calesorg Q: calecors, pr P eolesors hela by a littlo boy in a nureary pohool coeno, FF P coiscors with twisted carap of paper $x 2$, pr P shoars on rall in a werkshop sceno $工 2,{ }^{\circ}$ MP P tinsmips on wall in a vorkehop asons, "pr P pliors on wall in a Yortshop aceno

Imitting ohine Q: serring mahino
Pötor Rabbit $Q:$ Potor Rabbit book

J. $2: 2 \frac{1}{x}-26.2 / 6$, inolugive (oont.)

ABTEPACRS (oont.):

ateady go pr P marcory ohute being used by ohilaren, ©: coo-sert, Pr P ccoesom being ridien by two ohildren
naper 8: hia napiy, q: nappy pin
botillo pre gluopot in a murbery sohool esans, pr P vator jaro being used for dipping of brushos by ohilaran painting, Q: bottlo
crbulanoo Q: embalanoo
calendar Qs calondar
Classen Q: opeoteolos. 工h
samalo Q: his sandolo, bis sandal
tin erpy pranimgl tin 25
nut threcded nut for pr 'chairoplons' 22
gand pr P tog brobot and apedo in boach band x2
Eming pr P playercuna curings sio
minting manufacturer!' a labol on pr 'ohatricplang'
tree pre troos in a parly, Qi real troo, pr P troo in rollar outlino on plactio boakor
[pinion $]$ pr P toothbrach rith eosp and other toilotwion
plantioine Q: plostioino
pillory 9: Looze plllowaeo
tropenara Qz troucara
nurcory Q: erooho ho attonded for a vhillo 25
 He rocognifos it as "Alacdatr'a bito" even whem soczoms bolo is riding it. 7 , pre P oldor ahild's trioyolo, P blajolo boing raden by a oartoce pls
flogeren Q: \#bita of hay on flocer inioora, " pr P lood of gardon rafuse - no 11 cwers obvious - in barror boing puabod by a man, o enothar pre Peam load of yofuso in barrow, opr plastio sookeopar' a matatioh with 'mant' on it, 파 P flowor in roliof outline ca plestio beakers
J. $2 ; 2 \frac{1}{8}-2 ; 61 / 6$, inolvatio (oont.)

ARTBEACIS (cont.):
rom An rocn
fiute q: penuy uhiotios and rocoricors
pram a: prem
Slogr et floor
뜸이a os vebrolla
Borneo Qs whare his father in vorking
lottor pr P pink lottor seon flonting dom from lottor-allt inaide front door of a houas, po P pink lottor hold by a postimn, pr Paink lottor boins foed by a trexan
fork * pr P battlo boing hold by a voem 12 . She has a apoon in tho othar hand.
bottlo pr P otocing kottlo on oookar in a litahon coono.
toa PVP Oloctrio kottlo. CP. FOOD
noof slat pre toy briolt boing put on to a 'houge' he is butlaing
thoal e: stool at dining-roon tablo at hoce $x 2$
oupboand Q: Witahen oupboand at howe
table P tablo
aramoer vharo ho aqya misaing pr 'ohairoplans' figure is
beaker various pr pleatio beabors
aloote Q: aloovo of his mothar's dross
potrol pr plastio boakor doubling as a potrol punp in gane with Pr pleotio bus
ring cill brass ring on pr plastic olophant's trunk
PEETI: :
Lhexy Q: his mothor 134 , hie nother $X 29$
Anfla Q: Lumt Dilys

I-_2;21-2;61/6, inolusivo (oont.)
HEPEIE (ount.):
baby. Ppr P doll in a prem or little girl orying in the onms piotwore xt, Q: rosil baby, P baby

Daddy Q: $4 P$ man bathing in the con, Q: smalo otrrangar, $Q:$ talking obout his father who is rorting abroad $x 3$, $\%$ pr P man Fuahing a barroy, "anothar $\mathrm{m} P$ of the somo man and barror x 2 ,

 btanting in a oot Jth, apr P obilai's head looking out of a Windor, t pr P Ittillo girl, Q: his viater

bey alye bey aftar yhitating girl in comnoction oith a pr P littio gir2, Q: voicés of boja out of oight, Q: a prodieate appriea to his brothar, Q: \#Susan - a girl

Alasdair * pr P hega and ahouldors or a Panda boalde a oot $x 3$, Q: his brothar x10, "pr P chila's head looking out of a uindor, *pr'P little boy, pr P little boy malking dom a streat dressed as a matohbox x^{2}

Stenhan

2fichaneI

Star Trak man
man 5 [r 'ohatroplnne' f1guran 28 , wr P dim figure of a man with only lege oloarly Flaible orimening froce otharwico dovertod bocoh 22, Q: pr 'funny man' x2, pr plastio zookeoperce x3, P boy jupiting over a candlostiok, pr P postian

babding man P bakor with chof' B hat

Patriok Patrick Griffitha $\times 5$

Bruep

Derek

David

Kato Renira Hurcioy 22
Ifri Innos Q: Lipa Imas
dall
J_{1} 2i21-2:6 $1 / 6$, inoluaive (cont.)
FISCLIS (cont.):
Doanld.
Hary Hophing
J. \&: his om name $x 2$, his om name $x 3$

Grany 8: hie grandrothor
Aunty Haila Q: Amt toila $x 3$
coldiora Q: colaiers
Ruth Q: Buth
Lila Q: Tila
Paul Q: Paul
Buoket Q: Achit
Juny Q: Judy
Pator 9: Potar
giry Qs girl, * $p r P$ toman oporating reoort playor at ohilaren's party, pr P Isttie-girl tugeing at a mon'I hama
Ingy P Ittile girl holaing a baby $x 2$
Sugan Q: Susan

FOODz
manito
$\frac{\text { cmootio Q: a swoot, "pr } P \text { ornate green jolly an table ot ohilaren'o }}{\text { party }}$
toant σ : toast
oake preparty faso en table at ohyldien'e party, P oake, pr P

applo Iooking through a pre piotiro book for P appio, pr P red applo on plato, pr P xomiod brick-red thinge in a sanoopan on cooker in a liltahan scone 23 , Persanal ocummioation from his nother: potatces

```
J. \(2 ; 2 \frac{1}{1}-2 ; 61 / 6\), inoluativo (cont.)
IOOD (cont.):
```


juice $p z P$ red liquid being drumk through otrean from glassea by 670 ohildren, Q : bottile of matioine, Q : jufice be is drinking, Q: wanting, iutioe from the oupboard whore it is kept
 beogy

tor as ovening maol. OP. ARTEFAOIS.
bicouit $\mathrm{mr} P$ bisonito in a bovi, Q, bicouit, pr P assortod blacuite on and noar a plate $i 2$, bitoult foma on the floor Senle Q: Joliy

mingla

crango looting through a pr piotare book for P orrange $Z 3, p r P$ three oranger in pogetablo rack in kitahen coene, Iooking through anothor prepioture book for P arange $x 7$. In the lattor case ho rojecte P banana oven though Vartin Athinaon tolls hiri it is an orango.
nana pr'P partiy-pooled banana on a ploto $x 3$, pe P three bananas in vegotahle reck in hittohen scemo, " Pr P carrot with pant of its greon top on a tray
egs - pe P top half of buritig oandlo uith triaklas of yax down its aidg, pr P ogg in oggecup on plato. $x 2$
Bacon

8040

sansays

E00g Of. ARTUKFACHIS.
chipg

raiain Q: raisin

Inoch oi midday mal, what oartoon pig is oating off a plato in

honory:

gutding
broed e: ematrioh

```
J, 2:24-2:6 1/6, ingIuaivo (oonto)
FOOD (oont.):
Marmaledo
boy+11/ 8: tboval1:
mat O: mont
Eggax 0: sugar
gator Qe drink or vater. OP. ARIEPACIS.
ohioolato umoed 0: ohocolate urceed
bronkfast q: breakfast
food IF P lottive and darrot being oaton off a plato by a rabbit, pre \(P\) laaven and oakes in a belcert \(a\) window, \(p\) P Viemal lonf in a balcer' \(\Delta\) tindors
```

buttor o: butter in butter-aioh
1017\% opr P plastio scokeeper's moátstick with 'mont' on it

Antians:
0137
Taccis

Hoot
boar
pusey cat pr P cat in roltof ontine on plastio baaker s?
dog pr P mongrel in suburban ganien, Q: meeon dog barifing dogsation Qs Alsation dog
bind MP parrot, $\mathrm{m} P$ bird in seliof outline on plastic beakar
 cuthino draping of a donkey in a ohildrem's party econe, pr"plaatio horso
 cases ho aotunily calls them "baky duak". 7 , droased cartoon duak on atdo of tyaz in pre P eurs
dnckinges ©8 dnokilngo
I. $2 ; 24-2 ; 61 / 6$, ingiuaivo (conto)
ariwars (cont.):

oat pr P frout half of oat 22 , g: cat-shaped bedge, pr P oat in entranso holl of a houso, P oat in e gifl's axme $\bar{z} 2$
ehoep pe plastio ahoep x 4, P sheop in ccupany of a Vietorion girl

tiper

드몸

ocs pir plastio coms 26, pr plastio antmale in prenimal tin
rabbit three apall orovahod coramic rabbits - red, green and broin on nantelpioce in pr P nursery coono, front holf of coranic olephant on mantelpicee in samo pr P nureory soone, pripront half of black: and vhito rabbit xd, another pre front half of same black and white rebbit 25, Pr P rabbit in reliaf outions on plastio boaker

monker pr plastio chimpaneee 27

pig. P cartoon pla 22
Qlephant peplastio elophant w, pr jlgsen paesle olephant
hen pr P porrot, $* P$ roonter
tontoiso Q2 tortoino $x 2$
ETaff Q: wasp 22

teddy bear pr P today boar in coliof outiine on plastio beaker in

BCDI PA EAS:
noes Patriok Griffitha' nono, his omn noso CThoce observaticns pare based on rifitten notos, not on tapo-secordings. $]$, trunk OP IF plastic olophant. Cf. ARTEFACRS.
head Q: hoed on a coin
math
J. 2:24-2;6 $1 / 6$, inoInoivo (cont.)

BODI PARTS (conto):

kneo Q: vanting to ait on his mothor'o knee 32 , panting to ait on his mothor's kree xh, wanting to sit on Patriok Grifis ths' knee 52

feoo

hand Q: hid om hand, his om hand, dircorberod pr doll's orm. Ho rags [ansy] a blend of hinde and arys - onco me pr plaistio ohirpansee's arms.
beap:

hinir Q: "hatr and boed, Q: hatr 23
feat
oar pr plantio olophant's oar 52
any . pr plastio chirppanzee's anme x9. . Onoe ho colled thove [ans] a blema of hania and arma.
teoth part of on opinination of the uce of toothbrashos
tuyuy al aedd 20 a cealo atrangor ulthout a ahirt, Qs his oun
Legs Q: loga
ghouliders os ranting to bo oarrited on ecanone's abouldors
Pinger ©: Pingor

Ko 1:91-1;11, fnolusipe
ARTHFACIS:
bal1 a: ball
aup Q: oup
bus Q: toy bus, Q: reel bus
ghoe Q: shoes

PRCOLIS:
Mungy) Q: bis mother $x 2$
Daddy Q: his father x2
Alan Q: his brothar
Gondon Q: a friend of his
boy Q: Pboy

FOOD:
ton Q: wanting a dalink $x 2$
ajnner $Q:$ said at a moal
fuico $Q:$ vanting a drink

ARTMAIS:
Sooty Q: a chareoter in a comio book

BCDI PAETS: nil.
F. $1: 112 / 3-2,21 / 3$. Inelunive

ARIETFACHS:
boll pr P bright beach ball, opr P three oggs $\times 3$
oup
bug pr P aldor ohild's trioyolo $工 2$, pr toy Landan bus $\times 3, * \mathrm{pr}$
toy jeop

```
I. \(1 ; 112 / 3-2 ; 21 / 3\), inclugive (oonto)
ABTHEACHS (cont.):
shoe pr P ohild's red button and strap shoes 22 , pr doll's ahoe sl3,
        Q: his own shoes
alippar \(p\) P ahoo in reliof outline on plagtio boaker i2
cook Q2 ranting rooks on
bath Q: 2objoct or event
trousorn Q: wanting trousers on, "pr doll'a briofs:
pants Q: putting on rubber pants, pr dol1's triefs \(\times 3\)
brugh prPghila' a blue bxuah and comb sot
car Qi hls toy car, pe toy jeop \(x_{4}\), pr \(P\) tro-tono drophead coupó.
    He also makes 'oar nolsos' at the aight of the coups.
fino Q: Iounge gas fire
purge Q: piorse
olook. pre alarm cloak re, FRenira Huxlec' \(a\) yatoh 52
hones Q: house wioh always appoars on TV programps - PLsy Sohool
potty Q: toilot
프묻 Q: flowar
```


FROPIS:

Huwny Q: hls mothar, his mothor x 12
Dedey his father $25, Q:$ his fathor
Alon Q: his brother
Gonion
boy
Santa Q: Advent oalondar in shape of Fathor Christmas
Larty Q: Kartin Atleinson, Kartin Attinson
boby pr doll, pr doll's hoad x_{4}

```
IN.1:112/3-2:2 1/3, inolusivo (oont.)
FOOD:
tan
dinner
gutog
apple pr P large roa applo, Q: applo
bicouit Q: bisouit
Orango Q: orango
Armats: \(\quad \lambda \lll \lll<\)
duak Q: P duak
pande Q: toy panila
teddr Q: teddy bear
harco ppr plastic bull cz
dog i: dog
BODI PABEBI nil
```

K. $222 / 3-2.51 / 3$, inolunsto

ARTHRFACRS:

ball pr yollow ball urth holes $x 3$, pr P bright beach ball Oup pr P toccup and sauoor in raliof outlins on plastio beabor ab bua pr toy Lowion bua 工12, * P prilman zailuray onrriage x2
ahoos pr P choo in roliof cutilino on plantio boakor $x 4, Q$: shoos x2,* pr doll's sooks. The doll was wearing sooke but not shoos.日lipper
andsls Q: his om pandals 22
teock Er dol11's soolcs $x 2$

Tr. $2: 22 / 3-2: 51 / 3$, ingiugipe (cont.)
ARITEFACIS (cont.):
bnth. uned to oxplain oplashing nol ses emanating from the kitohon: "Kumxy bath" $x 2$
trousorz
pants

brugh

car pr tory jeep 23 , pr blus toy W oar $22, \mathrm{pr} P$ oar in roliof outline on plastio boaker $13, \mathrm{pFP}$ tro-tone dropheed ooupé, Q: roar

oloak pr P oloak roliof outiline on plastio boaker 23
house 303

Heotor' a Hovies a: nam of a IV programes

door Q: a nhut door, ${ }^{*} P$ P house in roliof outino on plastic boalcor, flat pr toy briok in front of platiara 工h, cafs "ahut door' as ho oloses Rusaian 'babushica! Desting doll and as ho oloses pr animal tin, roply when asked of a bunoh of keys ho has just hamed "thood boyna"

potity

toillot
flonar pre flowar in roliof outlino on plastio boater $x 2$
To11 O: vall at tho baok of drying greon-bohind his hoce
bilop a pr 'tinkartog' atructure with vheols x2
800. EET
FXguros are boing mado to alido on which 'chatropzans'

Exing yr 'ahairoplang' 3
porder ©: taloum poridor
abogtr Qx sald as ho gots into bod
bod pr miarophono bex boing ueed as a bed for Runoian 'babushica! doll x^{2}

$\mathrm{K}_{\mathrm{E}} \quad 2 ; 2 / 3-2 ; 51 / 3$, Inolugivo (oont.)

ARTEPRCIS (cont.):
olothos 0: said as ho gots drassed
panaion pr ploatio porruy cin, vanting a ooin to insort in glot of.

inisort it in alot of pr toy tolophons $z ?$
ohoo choo P bteam raillony engins
goggion Q: pieco of an 0 g box used as goggloa by hie brothere
glanboa Q: spootcolos
comg 83?
attolér contropol10 of pr 'ohairoplana', pr 'tincortoy' rodu I2
box oariboand box for pr toy briokn, ocmall olosed pe tin containing
 tolophons 工脌, cardboand box for pr 'ohairoplano', ? pr toy Iomdon bus or yr tape recorder cabo or pr antmal tin, ? $x 3$, cardboand darum for pre'tinicortoy' 26
brialea pretoy briake $x 3$
garage what ho eayo he vants to have built with pre toy brioks to

 a etivioturo of pr brioks zj , viesels on pr toj Lesica bris;
 morophane mixor oaco
[tataur] gr P light blue tolophono
bubblos Q: putting waibing up liquid into rator

winion Joumgo windor

strenp Q_{i} vatabstrap
ocat or coat
pionio Q: gevinay cohool pionic
notieg Q: noive tran squeaking waching mehto
ganden Qt the drying groon bohind hle houso
hutton Q: as he buttons up his cardigen
K. $2 ; 22 / 3-2.51 / 3$, inolusive (cont.)

ARMSRACIS (cont.):
cardigan o: his orn oaraigan
koy bunoh of koyrs
Inghtg Iounge chandelièr $x 2$
toyn pre 'ohairoplane' in its box, Ioolring at illustrated instruction sheet for pr 'tinlertoy' 16, " pr 'tinkortoy' flat candboand vans

PBCPLLS:

Uureny his mother 26, Q: his mother $x 3$
Dedoy his father $\dot{x} 3$, Q: hio father
Alan his brothor, ? 3

Gordon

bor
Santa
Martin Martin Ati-inson 216, *Patriok Griffiths 25
baby midalomized menber of Russion 'babushka' family of nosting dolls 123 , emallest nember of Russian 'babushken ${ }^{2}$ fandly of nociting dolus if, looking for these tro 33 In gensial baby soems to denote the smallest doll of and tro present. 7 , pr P floppy rag doll, anothar pe P rag doll, "priplaatio zookeopar 22

Pat a: his aunt
Anne a: girl who lives in the flat abovo
soldior pr pleatio sookeoper x13, what ho is trying to make with PV 'tinkortoy' $x 2$. Ho has a whoel on the oind of a rod.
man pr plastlo sookeopor y

FOOD:
tan
dinnor
tung

blopult

crange tpr P large red apple $\pi 3, p r P$ tro halves of an orange on a plato ${ }^{2}$

ㅂetor Q: banting to fil1 oup with vater
nnna *pr P large red apple, pr P partly-poeled banana on a plato

ANDIATS:

Sooty

alook

panda

\square
Eoddy P P teddy bear in reliof outiline on plastio beaker x3
honge various pr plastio hornos z13, hores' made of two pr 'funuy mon' and malked to 'horse nolces"' by Patrilal Grifflths x2, \#pr plastio 000
dog
COM *arious pr plúntio horses x7, "' horeo' mado of tro pr 'fump man' and ralked to 'horse noises' by Patrick Griffiths, ${ }^{\text {a }}$ pr plastic elephant, pr P olophant in roliof outline on plastio baakar x2, \#Rusaion "babushika' nasting doll, opr plastio zookeepor 工2, pr plastio cog i6
monso P Hiolosy Houms
monlogy Q: P moaliey on a $0 u p$
cats pr plactio shoop, pr P cat in coliof outino on plantio beaker 25, Q: cat, pr P rabbit in roliof outlino on plastic baakor
[gadi $7 \sim[\mathrm{gala} 7 \sim \sim 281 \mathrm{a}] \mathrm{pr} \mathrm{P}$ alophant in roliar outlino on
rabbit pr P rabibit in reliof outlino oniplantic beakar $x 3$
bind pr P bird in raliof outione on plantio booloor

K. $2 ; 22 / 3-2: 51 / 3$ inoluniva (oonto)

BODY PARTS:
hair. Os as he tovehes his head
noca Lartin Atifnson's noed emphasised by his vearing a pr
feoo feose of Ruasian 'babusblea' nosting doll family $x 3$

ㅍ. $2: 53 / 5-2 ; 6 \frac{1}{2}$ inoluaive

AEIDEPACIS:

ball, pr ping pong ball.x?

oup

bus what ho wanta mado with pr 'tinkertoy'
ghoog choes roon by man in P man, gi his om ahoos, at his beothar s ahoes, pr doll's ahoos being put on to pr plastio
elophant 23
cubbere Q: hiv wolliggton boots $x 2$
alipper
Eandaln >3
soory
bath

trousora

panta

bruah

 Hpo
pwred
clolk
E. 2:5 3/5-2:64, inolunive (oont.).
ABTESACTS (cont.):
houeg a: ho gatd "car in houso", = out 249 [phonotio identity/siminarity/confusion? 7, asys "in EDuse as ho puts a pr'tinkertoy' 工od into $\overline{\text { Ir mingophoso caso, alys pgo in houson }}$as. ho trien to got Lartin Atkinson to do the name, a suggeateduso for Ronira Huxloy' n loajs which he has just namen
home Q: his howe
Hootore' i House
docrs
potty
toilat2
flowar
trall\bullet
bitio
motorbike ©: motorayole
800 885
Exing pr 'chairopiano' $x 3$
日heotg
bed
olothes
pemy pr plastio penn, real ooin 23
choo choo
goggios
8labees
gong
a
"ntick pr 'trinkeretoy' rods 25
bax oarxying box for pr toyn 22; "pr animal t1n $x 2$, veaponse to"there do you beep yow manoy?" $x 2$, wr miorophons oase $I 2$,cardboond drum for pr 'tinkertoy', unidentifica box $x 2$

```
E}\quad2:5 3/5-2;61, inoluave (conto)
ARTIPACPS (cont:):
byfolno pr toy bricks x3
```


gange

```
wheal pr 'tinkertoy' theel
```

wheal pr 'tinkertoy' theel
tolephone
bubb3es

```
Findore
\(a t r a p\)
coat
pionjo
Baaside Q: wanting to go to the beaoh, reminisoing after the
noise Q: moiso 22 , maid when the docrbell rang, said when a car started up outside
bell, oaid whon the dooxbell rang
ganden
back grean tho dryizg green behind his houso

\section*{button}

\section*{oandigan}

Leregy as his own jorseg
borys a bumoh of boya \(x\) ?

\section*{Ifyhts}

\section*{toris}

팓esy Q: going to fotah his byother fram mursory sobool
eareplane Q: a real aeroplane in the ary
uhistio Q: Robjoot or eotion
penoil (q: penoil

\section*{I. \(2: 53 / 5-2,6 \frac{1}{3}\) Iminativo (cont.)}

ARGPFACTB (cont.):
pociket his shirt pooket
Fater me family mahing dishos \(x\), recounting what he say at the reaside
bag unidentifled pr P bag, tp dog glove-puppet
teeth pr P toothinrushes
Qigger lozex Q: toy digger lorry
pag Q: olathes pegs
recond © grampphone recona - 2
haprery me tinkertog rod fitted transvergely into a rod-connector to make a hamner \(x 7\)

FROPI?:
1unyy ©: his mother
Datiy his guess as to who rang the doccioil in
Alsin ha brother It
Gorton

bory

\section*{Banta}

\section*{Marinin Martin Atkingon}
babr pr chairoplans foguos
Ampy Mrimeen's babry at Aunty Maureen'a baby
Pat
Anno
solisicn
man proadoss sookeoper, por zoakoeper \(x 5\)
F. \(Q:\) his own name, his own nam
```

\mp@subsup{Z}{\sigma}{} 255 3/5-2;6\frac{1}{2N}\mathrm{ inoluoivo (cont.)}
FOOD:
ton
atmar
juge0
ample
blopuit
Orange
EMter Of. ARTIEPACIS.
\#ana
oako Q: manting cako
ANIMAIS:
S00ty
duok
jancia
tedidy
,
horee as ho plolco up aninol tin, pr plaptic (con >4, pr plastio
dog 4: dog x2
OON
m0nues
Emkery pr plastio ohiripanzeo 22
cat - pr plastio sheop $x 2$
Rhoop * Pr plastio ocis 22
al7y pr plastio olephant $工 2$
cabbit

```
I. \(2153 / 5-2: 6 \frac{1}{2}\). inolusivo (oont.)
andruars (cont.):
bixa

BCDI RARIS:
hatr pr P Iittle boy. The littlo boy, of cosmec, hed hair.
nope now of pr dog glove puppet
feon

oxes P Mittie boy on vich the \(\frac{4}{4}\) tat nogloctod to add oyee

, \& ? ? ? ?

1
가```


[^0]:    .. the definition of the universe of denotata and the choice of dimensions must be determinad in part by the task of discrimination imposed by the list of terms originally selected. Thus the meaning of $a$ term will be in part dependent on the dize and composition of the particular list of tems being defined.

[^1]:    -. : a primitive like Human is not as primitive as it may seem to be. We must talk about the primitives of semantics using words, and the words we use have parts of spaech attached to them. Given the fact that human is an adjective and the range of occurrence which adjectives have in the phrase atructure, a speaker of Engliah extracts exactly the same information from 'Human' that he would extract from 'I is human'.

[^2]:    There is some evidence too that lexioal devolopment in older

[^3]:    ... from the point of view of the principle of effectiveness it is, of course, better to demonstrate as positive exemplars (standards) those of the designata of the given term which are, in the given respect, less aimilar to each other than those which are more similar to each other. (p.15)

[^4]:    ... Bo-called abatract words are only 'so-cealled'. The responses brought out are concrete. If you say FLOWER, a categorical term, the subjects think of delsies or roses, and highly specific daisies or roses. If you say ANIMAL, another categorical tom, they report dogs and horses and, again, highly specific animals at that: their own, their neigebors - they spocify breede, colors, actions. If you say DENOCRACY, they roport a variety of imagery, practically none of which refers to governmental

[^5]:    Shepard \& Feng (1972) have shown that rotation is not the only geometrical transformation for which a measurable mental analogue geems to exist. subjecte were Bhown pictures of six connected squares which could have been cut out and folded into cubes. They were required to decide whether or not two arrows, each drawn on the edge of a different equare, would meet if the pattern was folded into a cube. The time taken for such deciaions (between 2 and 15 seconds) proved to be a linear function of the complexity of folding which would be required to detemine the enswer by actually folding paper.

[^6]:    Vocabulary growth curves were derived by summing each child's

