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1 Introduction

Riemannian geometry was first put forward in generality by Bernhard Riemann in the

nineteenth century. It deals with a broad range of geometries whose metric properties

vary from point to point, including the standard types of Non-Euclidean geometry.

Any smooth manifold admits a Riemannian metric, which o�en helps to solve problems

of di�erential topology. It also serves as an entry level for the more complicated structure

of pseudo-Riemannian manifolds, which (in four dimensions) are the main objects of the

theory of general relativity. Other generalizations of Riemannian geometry include

Finsler geometry.There exists a close analogy of di�erential geometry with the

mathematical structure of defects in regular crystals. Dislocations and Discrimination

produce torsion’s and curvature.

1.1 Definition

1.1.1 Di�erentiable manifold

The basic idea that leads to di�erentiable manifold is to try to select a family or sub collec-

tion of neighbourhood so that the change of cordinates is always given by di�erentiable

functions. As to definitions of di�erentiable manifold we first look at n-dimensional serial

space Rn
as product space of R. where R is set of real numbers. Rn

is obtained taking

n-copies of R

Example

Rn
= R× R×R×R.........×R;

R n-times where n is any integer greater than zero in Rn
each element can be repre-

sented by n− tuples so that for every XεRn

x = (x1,x2, ....,xn), where xiεR

and i=1,2,3.....n

let us take two arbitrary points in Rn
then for every such pair we can define metric

on Rn
by d(x,y)=( ∑

i=1

n
(xi− yi)

2)
1
2
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then Rn
becomes metric space with metric topology as defined above for future discussion

Rn
is been considered as topological space with M being open subset. The definition of

topological manifold M of dimensional n is a Hausdor� space with countable basis of

open sets and with further property that each point has a neighborhood homomorphic to

open subset of Rn
.

Di�erentiable manifold

Let vn be non empty para compact Hausdor� space.Then vn is said to be n-dimensional

topological manifold if every point xε vn has open neighborhood U in vn which is homo-

morphic to an open subspace of the n-dimensional euclidean space Rn

1.1.2 Di�erentiable structure

Concept of di�erentiable structure is studied in this section which form basis of di�er-

entiable manifold.First we look at element of di�erentiable structure namely chart and

atlases.

charts
For chart X we mean imbeddingΦ:U→ Rn

of open subspace U of X into Rn
such that Φ(U)

in open subspace of Rn
. where U domain of chart

let Pi: Rn→ R such that i = 1,2, .....n denote natural projection defined

Pi(t1, t2, ....tn) = ti for all t1, t2, t3.....tnεRn
. Then for every chart Φ:U → Rn

on X. The

Φ=pi0Φ:U→R is known as ith coordinate function in U with respect to the chart Φ and for

every xεU the real number t1 = Φi(x) is the ith cordinate of point x with respect to chart Φ.

The chart Φ:U→ Rn
is called local coordinate system u eor every xε U then real numbers

(t1, t2......tn)=(Φ1.......,Φn) = Φ(x)εRn
are said to be coordinates of point x with respect

to Φ.

Let f:W→R denotes function of non-empty space W of Rn
.Then f is said to be

1. (a) i. of class ck
,k=1,2,3.......... if and only if f has partial continous derivative of all

order r≤k
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ii. of all class c0
if and only if its continous

iii. of class c∞
or smooth if its of class ck

for every for every positive interger.

iv. of class cw
if it is analytic function.

A function f:w→ Rn
for an open subspace w of Rn

into Rn
is said to be of class ck

if and only if for every i=1,2,3..........n, the composed function fi = pi : w→ Rn
of

class Ck

Atlas

It is a collection α of charts of X satisfying following condition

i. The domain of the chart in α cover the n-manifold

ii. For any two chart Φ:U→ Rn
and ϕ :V→ Rn

in α with U n V 6= Φ the function

f(Φ,ϕ):U n V→ Rn

defined by f(Φ,ϕ)(t)=ϕ[Φ−1(t)], for every point tεΦ(UnV ) is of class ck
.

Function f(Φ,ϕ)is know as connecting function of 2 charts Φ and ϕ .for every

xεUnV we have

f(Φ,ϕ)[Φ(x)] = ϕ(x), hence f(Φ,ϕ) is ussually called the transformation for

change of local cordinate system from Φ

to ϕ .Thus, we have enough concept to define di�erentiable structure.

Definition 1

Let ck
be set of all atlases on X of class ck

.if K 6=0, this set maybe empty.The

relation of X defined by α β if and only if αUβ is an atlas in ck
(x) for any two

atlases α,βεck
(x). This is an equivalence relation in ck

(x)into disjoint equivalence

classes. Each of equivalence classes is called is called di�erentiable structure

of class ck
in the given n-manifold X. Two atlases α and β are known to be

compatible if their union is an atlas.

Definition 2
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A di�erentiable or c∞
(or smooth) structure on topological manifold M is a family

U = (Uα ,ϕα)

of coordinates neighborhood such that the following are satisfied

i. The uα cover U

ii. for any α,β the neighborhood ((Uα ,ϕα) and (Uβ ,ϕβ ) are c∞
compatible

iii. Any coordinate neighborhood (Uα ,ϕα) compatible with every conditions

(Uβ ,ϕβ )εU is itself U.

Di�erentiable n-manifold

An n-manifold X together with given di�erentiable structure A of class ck
on X is

called di�erentiable n manifold .

Di�eomorphism

Let X and Y be di�erentiable n-manifold of class ck
. Let also h≤k.if the function

f:X→Y is homeomorphism and both f and f−1(its inverse) are function of class

ch
then f is called di�eomorphism

1.1.3 Tangent vector and tangent spaces
Definition 1

Let p be an element of v−n and let c∞
(p) be set of real valued function that are

c∞
on some neighborhood U of P. A vector X at p is said to be a tangent vector at

p if it satisfy the following properties

i. xεvn fεC(p) then Xfε C(p)

ii. x(f+g)= xf + Xg :f,g εC(p)

iii. X(fg)=fXg + gXf
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iv. X(af) =axf aεR

The system consist of

i. The set Tp containing all tangent vectors at P

ii. The binary operation + satisfying (X+Y)f=Xf+Yf

iii. An operation scalar multiplication fXε Tp and (aX)f=aXf where aε R is a

vector space called Tangent space to vn at P. tp approximates to Vn at P and

is n dimensional.

Definition 2

let mn be n- dimensional c∞
manifold. if pε Mn and X be c∞

real valued function

of some neighborhood of P and satisfies

X(a1 f1 +a2 f2) = a1(X f1)+a2(X f2)

and

X( f1 f2) = (X f1)+ f1(X f2)

wherea1a2 εR and f1 f2 εc∞
are real valued function at P.Then x is called tangent

vector at point P.

The set of all tangent vector at point P with operation of addition (+) and multi-

plication (.) given

(X+Y) f1=X f1 +Y f1

and

( f1X) f2 = f1(X f2)

is a vector space and is called tangent space to Mn at P and is denoted by T(p)M
or t(p).

1.1.4 Vector field
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A vector field X on set B is a mapping that assign a to each p in B a vector xp in

the tangent space Tp.A vector field x on B is c∞
if

i. B is open

ii. function xf at P is c∞
on AnB , f is being a c∞

real valued function on A in vn

1.2 Tensor Analysis
1.2.1 Tensor Algebra
In this section tensors are defined as element of a vector space.The classical

notation in definition is used but on most of the work index free notation is used.

Let v′ be an n-dimensional space and let ei and

−
ei be two basis of v’ then each

vector of set [

−
ei] is linear combination of elements of the set [ei] i=1,2,3,4........,n

and vice versa.

let us take

i.

−
ei = P j

i e j: where p j
i ,q

j
i ε F

ii. ei = q j
i
−
e j: where f is scalar field

pu�ing 2 in 1 above we shall get the following equation

ei = pk
i q j

k
−
e j, since[

−
e j] is linear independent we have

p j
i qk

j
−
e j = δ k

i , consequently

((p))((q))= In

i.e ((p)) and ((q)) are inverse to each other for any vector X ε Vn.we have

X=

−
Xk −ek = X ie j,where

−
Xk and xi

are component of X respect to

−
e1 and ei

from i and ii we have

i.

−
Xk = qk

i

−
X i
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ii.

−
Xk = pk

i

−
X i

which are equation of laws of transformations of vector X.The vector x or any

vector in vn is called contravariant vector of order 1 or tensor type (1,0)

Tensors

A linear scalar function or form of V’ is linear mapping such that A(X), XεV’

is a scalar and A(fX+gY)=fA(X)+g(A,Y) ;f,g εF and X,Yε V’

Dual spaces

Consider V’ consisting of

i. a set V of all linear scalar function on V’

ii. a binary operation "+" satisfying

(A+B)(x)=A(x)+B(x)

A,BεV* ;XεV’ then V’ is vector space called dual of V’.

A bi-linear scalar function T over V×W is a mapping T:V×W→F. i.e T(X,A) are

Xε V and AεW is scalar such that

T(fX+gY,hA+kB)=fhT(X,A)+fkT(X,B)+ghT(X,A)+gkT(Y,B)

where A,BεW; X,YεV and f,g,h,k εF.Consider a system denoted by V’×V’ or

v2
consisting of

i. a set v∗2 of all bilinear scalar function of V1×V1.

ii. A binary operation say "+" satisfying

(T+S)(A,B)=T(A,B)+S(A,B) ;T,S ε V ∗2 ;A,Bε v1

iii. an operationof scalar multiplication satisfying

(fT)(A,B)=fT(A,B) ; fεF ;A,Bε v1 then v2
is vector space called the tensor

product of V’ with itself.
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Higher order tensors

We can define mixed tensor as At1t2....ts
q1q2........qp

This tensor is then called mixed tensor of contravariant order s and covariant

order p.If by interchanging two indices the sign of tensors remain same then we

say tensor is symmetric in those indices.

If sign changes then is skew-symmetric with respect to two indices.The properties

on symmetry and skew-symmetric are independent of the cordinate system. A

significant result from transformation laws of tensors is that "if component of a

tensor are zero in one coordinate system ,then they are zero in any coordinate

system".It is this property of tensor that is useful in physical application and

when tensor is defined at all points of a curve in space vn then we say consist of

a tensor field.

Properties of tensors

i. outer product
The outer product of two tensor is equal to tensor whose rank is sum of rank

of given tensor and it also involves multiplication of components of the tensor.

ii. Contraction
If we set one covariant index of tensor equal to one contravariant index then

the resulting tensor will be of rank two less than original tensor.This process

is contraction.

iii. Inner multiplication
The outer multiplication of two tensor followed by contraction will result to

a tensor known as inner product of given tensor

iv. Addition and subtraction of tensors of same rank and type result in tensor

of same rank and type.

NB: Two operation are defined only for tensor of same rank and type.

For us to verify whether functions would form components of tensor, we can use

transformation laws of which they can be cumbersome so instead we can use

the quotient law which is more convenient.
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�otient law

If an inner product of any quantity X with arbitrary tensor is also a tensor

then X is also a tensor.

A tensor Q of type (r,0) is said to be symmetric in hth
and kth

places if

Sh,k(Q) = Q
and skew symmetric if

Sh,k(Q) = −Q where 1 ≤ h < k ≤ r and Sh,k is a linear mapping which inter-

changes vector at hth
and kth

places

Note it is also applies to a tensor of type (0,1).

1.2.2 Connexion
A connexion ∆ is type preserving mapping assign to each pair of c∞

field (X,P),

a c∞
vector field ∆xP such that if X,Y,Z are c∞

vector field and f is a c∞
function

then

i. ∆x f = x f

ii. ∆x( fY ) = x fY + f ∆xY

iii. ∆x+yZ = ∆xZ +∆yZ

iv. ∆ f xZ = f ∆xZ

and also

∆x(Y +Z) = ∆xY +∆xZ.

1.2.3 A�ine connexion
an a�ine connexion ∆ on manifold m is map T(M)×T(M)........ > T(M),(X,Y).........>

∆xY such that for all xi,yiεT(M),i=1,2 we have

i. ∆x1+x2(Y ) = ∆x1Y +∆x2Y

ii. ∆x(Y1 +Y2) = ∆xY1 +∆xY2

iii. ∆x( fY ) = (x f )y+ f ∆xY
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iv. ∆ f x(Y ) = f ∆xY

where f is a c∞
real valued function on M.

Definition 1

A c∞
vector field X is said to be parallel along smooth curve γ : t....... > γ(t)

on M (with respect to ∆) if

∆T X = 0

along γ where T=d(γ(t))/dt so if

∆TY = 0 everywhere along γ then X is parallel along γ

Definition 2

A Riemannian structure on M is covariant tensor field of order 2(degree) called

Riemannian metric with the following properties

i. g(x,y)=g(y,x) for x,y εT(m)

ii. gx : Tx(m) × Tx(m).............>R:x εM

where gx is a non-degenerate bilinear form on Tx(m)×Tx i.e an inner product

on Tx(m),gx(y)

iii. gx(y,x) = 0; for all xεTx(m) if and only if y=0

iv. g(x,y)≥ 0 for all T(m):g(x,x)=0 which implies y=0

Definition 3

A connection ∆ is compatible with Riemannian metric g if a parallel transforma-

tion a long any smooth curve γ in m preserves the inner product. i.e whenever

x(t) and y(t) are parallel along γ then <x(t),y(t)> is independent to t.

1.2.4 Lie algebra
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Let M be the set of all e infinity vector field on A the brackets [] is defined by

mapping

[]:M ×M→M such that for x,y in M

and

[x,y] f = xy f − yx f

where f is smooth function for x,y,z in M we have

i. [X ,Y ] =−[Y,X ]

skew commutative(symmetric)

ii. [X +Y,Z] = [X ,Z]+ [Y,Z]

iii. [ f X ,gY ] = f g[X ,Y ]+ f (XgY )−g(Y f )X

iv. [[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = o

The last equation is known as Jacobs identity

Example

Let Mn(R) denote the algebra of n×n matrices over R with X,Y denoting the

usual matrix product of X and Y.Then

[X ,Y ] = XY −Y X
the "commuter" of X and Y defines a lie algebra structure on Mn(R) as easily

verified.If f is c∞
on any open set UcM then so is (XY-YZ)f and therefore Z is a c∞

vector field on M as said.

We may define a product on T(m) using the fact ; namely ,define the prod-

uct of X and Y by [X ,Y ] = XY −Y X

Let us consider the following theorem;

Theorem 1.2.4.1

T(M) with the product [X ,Y ] is a lie algebra.

Proof



12

If α,βεR and X1,X2,Y are c∞
vector field then it is straight forward to ver-

ify that

[αX1 +βX2,Y ] f = α[X ,Y ] f +β [X2,Y ] f

Thus [X ,Y ] is linear in the first variable. Since the skew commutative [X ,Y ] =
−[Y,X ] is clear from definition.We see linearity in the first variable implies linear-

ity in the second variable.Therefore [X ,Y ] is bilinear and skew commutative.There

remain Jacobi identity which follows if we evaluate

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]]

apply to c∞
function f.we obtain

[X , [Y,Z]] f = X(([Y,Z]) f )− [Y,Z](X f )

= X(Y (Z f ))−X(Z(Y f ))−Y (Z(X f ))+Z(Y (X f ))

permu�ing cyclically and adding establishes the identity.

1.2.5 Lie bracket and covariant Derivatives
let X,Y,Z be c∞

vector field on mn.Then lie brackets is mapping

[ ] : Mn×Mn........ > Mn

such that

[XY ] f = X(Y f )−Y (X f ) f being c∞
function.

This satisfies the following properties

i. [X ,Y ]( f1 + f2) = [X ,Y ] f1 +[X ,Y ] f2

ii. [X ,Y ]( f1. f2) = f1[X ,Y ] f2 + f2[X ,Y ] f1

iii. [X ,Y ]+ [Y,X ] = 0

iv. [X +Y,Z] = [X ,Z]+ [Y,Z]
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v. [ f1X , f2Y ] = f1 f2[X ,Y ]+ f1(X f2)Y − f2(Y f1)X

and further it satisfy Jacobi identity

i.e

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

The covariant derivative ∆ is a mapping ∆ : T r
s .......... > T r

s+1 such that

∆p(a1, ..........ar,X1..........Xs+1)=(∆s+1 p)(a1, ......,ar,X1, .....,Xs)

where p εT r
s : a,a2, ..............arεT(p) and X1,X2.........XsεT ∗(p)

1.2.6 Lie bracket and Exterior Derivatives
let X be c∞

vector field on an open set A.lie derivative via X is a type preserving

mapping

Lx : T r
s ............ > T r

s such that

i. Lx f = x f , where f is c∞

ii. Lxa = 0, aε R

LxY = [X ,Y ],Y εT(p)

(LxA)(Y ) = X(A(Y ))−A([X ,Y )

where AεT ∗p and (Lx p)(A1.......Ar,X1............Xs)=X(p(A1,A2......,Xs), .......p(A1, ....., [X ,Xs])

where pεT r
s . Let vp be c∞

. p forms an open set A. Then the mapping

d : Vp............ >Vp+1 given by

(df)(x)=xf, where xεT(p) and f is c∞
function on A thus from above its clear now

we can define the following as

(dA)(X1, ............Xp+1) =

X1(A(X2, ...........,Xp+1))+X2(A(X1,X3, ...........Xp+1))+........................+.........
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+Xp+1(A(X1,X2......Xp))−A([X1,X2]X3........Xp+1)−A([X1,X3],X2,X4.............Xp+1)

−A([X2,X3],X1,X4..........X p+1)............

for all arbitrary c∞
fields XεV and Ain Vp is called exterior derivative

1.2.7 Torsion tensor of a connexion
The torsion tensor of a connexion D is defined as a vector valued bilinear function

T which assigns to each pair of c∞
vector X and Y with domain A, a c∞

vector

field T(X,Y) with domain A and is given by

T(X,Y)=DXY −DY X− [X ,Y ].

A connexion is said to be symmetric if torsion tensor vanishes and a connexion

D is said to be Riemannian if

i. T(X,Y)=0

and

ii. Dxg = 0

1.2.8 Curvature Tensor
Consider a connexion D then the operator KXY defined by

KXY = [DX ,DY ]−D[X ,Y ] is called the curvature operator.

Then curvature K of the connexion D is defined as

K(X,Y,Z)=KXY Z
which can be wri�en as

K(X,Y,Z)=[DX ,DY ]Z−DX ,Y Z

= DX DY Z−DY DX Z−DX ,Y Z

where k is vector valued function.The curvature tensor K sastisfy two identi-

ties

i. K(X,Y,Z)+K(Y,Z,X)+K(Z,X,Y)=0

and
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ii. (DX K)(Y,Z,W )+(DY K)(Z,X ,W )+(DzK)(X ,Y,W ) = 0

which are called Bianch first and second identities respectively.

Proof

Let D be a symmetric connexion then

K(X,Y,Z)+K(Y,Z,X)+K(Z,X,Y)

=DX DY Z−DY DX Z−D[X ,Y ]Z+DY DZX−DZDY X−D[Z,Y ]X +DZDXY −
DX DZY

−D[X ,Z]Y

=DX [Y,Z]−D[Y,Z]X +DY [X ,Z]−D[Z,X ]Y +DZ[X ,Y ]−D[X ,Y ]Z

=[[X ,Y ],Z]+ [[Y,X ],Z]+ [−[Z,X ],Y ]=0 by Jacobi identities.Thus we have

K(X,Y,Z)+K(Y,Z,X)+K(Z,X,Y)=0

Similarly we also get

(DX K)(Y,Z,W )+(DY K)(Z,X ,W )+(DZK)(X ,Y,W ) = 0
Let us put K’(X,Y,Z,W)=g(K(X,Y,Z),W).

It can be noted that K’ satisfy the following conditions

A. is skew symmetric in the first two slot as well as in the last two slot

B. satisfy first and the second banachi identity

C. symetric in two pair of slot

i.e (XY) and (Z,W)

Di�erence tensor of two connexion

Consider a smooth manifold M and let D and

−
D be two connexion on M for

two field X and Y on M .We define di�erence tensor by

B(X,Y)=

−
DX Y-DXY



16

Linearlity of B slot is trivial result from properties of connexion.let us consider

slot 2 and Let f be c∞
on domain X and Y then

B(X,fY)=(Xf)Y+fDXY − (X f )Y − f
−

DXY =fB(X,Y)

If we decomposed B(X,Y) into symmetric and skew symmetric pieces we have

Lets B(X,Y)=S(X,Y)+Z(X,Y)

where

S(X,Y)=1/2[B(X,Y)-B(Y,X)]

symmetric part

and

A(X,Y)=1/2[B(X,Y)-B(Y,X)]

skew symmetric part

Then we can express A in terms of torsion tensors T and

−
T of connexion D

and

−
D respectively as for

2A(X,Y)=B(X,Y)-B(Y,X)

=

−
DXY −DXY −

−
DY X−DY X

=

−
T (X ,Y )−T (X ,Y )+ [X ,Y ]− [X ,Y ]

=

−
T (X ,Y )−T (X ,Y )

Let the two connexion D and

−
D be related in Vn by

−
DXY = DXY +A(X)Y +A(Y )X

where A is a 1-form and X and Y are vector field in Vn then D and

−
D are said to

be projectively related.

1.2.9 Ricci Tensor
The tensor defined by Ric(Y,Z)=(C’,K)(Y,Z) is called tensor of type(0,2), where C’

denote contraction.Its symmetric tensor
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Ric(X,Y)=Ric(Y,X), the ricci tensor of type (1,1) is defined by

g(R(X),Y)=Ric(X,Y), the scalar curvature r is defined by

C′1R = de f r

1.2.10 The weyl projective curvature tensor
This is defined by

W (X ,Y,Z) =

K(X ,Y,Z)+ 1
n+1 [L(X ,Y )−L(Y,X)]Z+ n

n2−1 [L(X ,Y )Y−L(Y,Z)Y ]+ 1
n2−1 [L(Z,X)Y−

L(Z,Y )X ]

It can be shown that symmetric connexion which are projectively related have

the same curvature tensor.

The weyl’s projective curvature tensor w satisfies the following properties:-

i. W(X,Y,Z)= -W(Y,X,Z)

ii. (trW )(X ,Y ) = (C′3W )(X ,Y ) = 0
iii. W(X,Y,Z)+W(Y,Z,X)+W(Z,X,Y)=0

1.3 Literature review
Set of new curvature tensors was defined on the line of Weyl tensor by Pokhariyal

and Mishra (1970), and Pokhariyal (1979); to study Relativistic signicance of cur-

vature tensors. The Weyl’s projective curvature tensor was defined on the basis of

geodesic correspondence due to a particular type of distribution of vector fields

contained in it.

These new tensors were not necessary due to its in variance in two spaces Vn and

−
vn , but showed that the "distribution" (order in which the vectors in question

are arranged before being acted upon by the tensor in question), of vector field

over the metric potentials and ma�er tensors plays an important role in shaping

the various physical and geometrical properties of a tensor, viz the formulation

of gravitational waves, reduction of electromagnetic field to a purely electric

field, vanishing of the contracted tensor in an Einstein space and the cyclic prop-

erty.The relativistic significance of Weyl’s projective curvature tensor has also

been explored by Singh(1965).
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The concept of curvature is very common in Di�erential Geometry. In this

article we try to show its evolution along history, as well as some of its applica-

tions. This survey is limited both in number of topics dealt with and the extent

with which they are treated. Some of them, like minimal submanifolds,Kahler

manifolds or Morse Theory are completely omi�ed. Though in an implicit way,

the curvature is already present in the Fi�h Euclid’s Postulate.

However it does not emerge explicitly in Mathematics until the appearance

of the theory of curves and surfaces in the euclidean space. Taking basically the

work of Gauss’s as a starting point, Riemann defines the curvature tensor in an

abstract and rigorous way.

The introduction of multilinear algebra in the second half of the XIX century

allowed a be�er analytic formulation and its further development. It is worth

stressing its fundamental role in the development of the Theory of Relativity.

Besides, the curvature is present, not only in riemannian manifolds, but also

in many other geometric structures, like homogeneous and symmetric spaces,

the theory of connections, characteristic classes, etc. Having in mind that the

physical world cannot be explained in a linear way,the curvature also arises in

the theories of Mathematical Physics. Likewise, it seems interesting to note its

presence in applied sciences, like Estereology.

The world we live in, and the mathematical models describing the geometrical

and physical objects, cannot be properly explained with only linear constructions.

In order to obtain an adequate description of Nature,it is necessary to introduce

models in which the relations between parameters go beyond the linear ones.That

is why the concept of curvature appears in a natural way.

According to Osserman, the notion of curvature is one of the main concepts

of di�erential geometry; it could be argued that it is indeed the central one,

by distinguishing the geometrical core of the subject from those aspects that

are analytic, algebraic or topological. According to Berger, the curvature is the

most important invariant of Riemann’s Geometry, and the most natural one. In

Gromov writes: “the curvature tensor of a Riemann manifold is a li�le monster

of multilinear algebra whose complete geometrical meaning remains obscure”.

Thus, for Riemannian manifolds without additional structures, the curvature is a

complicated magnitude. Its properties in the simplest manifolds were the first to

be studied. Later, the situation in a more general manifold could be compared to

that in the simplest ones.
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The la�er are o�en called “model spaces”.The curvature also plays a fundamental

role in Physics and other experimental sciences.

For example,the force required to move an object at a constant speed is, ac-

cording to Newton’s laws, a constant multiple of the curvature of its trajectory;

and the movement of a body in a gravitational field is determined, according to

Einstein, by the curvature of the space-time.
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2 Riemannian and Complex manifold

2.1 Riemannian manifold
2.1.1 Riemannian manifold
let T be tangent space as at point P of di�erentiable manifold Vn.Let us single

out in Vn a real valued bilinear symmetric and positive definite function g on the

ordered pair of tangent vectors at each point P on Vn.Then Vn is called Riemannian

manifold and g is called the metric tensor of Vn.

We thus have two vector X,Y of T at P

i. g(X,Y)εR

ii. g(X,Y)=g(Y,X); g is symmetric

iii. g(aX+bY,Z)=ag(X,Z)+bg(Y,Z)

iv. g(X,X)>0

v. if X,Y are c∞
fields with domain A then g(X,Y) at P is a c∞

function on A.Let

(G(X)(Y))=g(X,Y)then G is non singular and Let
−1G be the inverse map then

−1GOG = GO−1G = In

The angle θ between two vectors is defined by

||X ||||Y ||cosθ = g(X ,Y )

where

||X ||= g(X ,Y )

Thus two vectors X and Y are perpendicular if g(X,Y)=0

A connexion D is said to be Riemannian if it satisfies

i. D is symmetric
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DXY −DY X = [X ,X ]

ii. g is covariant constant with respect to D whicg gives

DX g = 0
and

g(DXY,Z)+g(Y,DX Z) = X(g(Y,Z))

An a�ine connexion D is said to be metric if DX g = 0.

The riemannian manifold is said to be Einsteinian manifold if

Ric(X ,Y ) = r
ng(X ,Y )

A Riemannian manifold is said to be flat if

K(X,Y,Z)=0

The torsion tensor Tor is vector valued linear dunction and is defined by

Tor(X ,Y ) = DXY −DY X− [X ,Y ]

if torsion vanishes then connexion is said to be torsion free or symmet-

ric

2.1.2 Riemannian curvature tensor
The curvature tensor with respect to the Riemannian connexion is called the

Riemannian curvature tensor.

Let K be Riemannian curvature tensor

K(X ,Y,Z) = (DX DY −DY DX −DX ,Y )Z

2.1.3 Riemannian connexion
Let X and W be vectors as P in Rn.Let Y and Zbe c∞

field about P and let f be a

c∞
real valued function about P.then we have
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i.

−
DX(Y +Z) =

−
DX Z +

−
DY Z

ii.

−
DX+W (Y ) =

−
DXY +

−
DWY

iii.

−
D f (p)XY = f

−
DXY

iv.

−
DX( fY ) = (X f )Yp + f(p)

−
DXY

(2.1.3.1)

Using

−
D we can define parallel vector field along a curve and geodesics.let r be

a c∞
curve on Rn with tangent T and let Y be an Rn vector field that is parallel

along r if

−
DrY =0 along r

The curve γ is geodesic if

−
DrT =0 i.e if its tangent T is parallel along γ .Thus

generalization of a definition of covariant di�erentiation or connexion on c∞

manifold is clear i.e We merely need the existence of operator D which satisfies

all four condition of above properties (2.1.3.1) listed for

−
D and assigns to c∞

vectors field X and Ywith domain A,a c∞
field DXY on A.

NB: connexion can be more than one on a given manifold.

Let us denote dot or inner product of X and Y tangent to Rn by

< X ,Y >=
n

∑i=1XiYi

if X and Y are c∞
field then < X ,Y > is also c∞

field and if A is the domain

of X,Y and X Y are c∞
fields then one easily check that

−
DY Z−

−
DZY = [Y,Z] on A

(2.1.3.2)

and

Xp < Y,Z >=<
−

DXY,Z > P+< Y,
−

DX Z > P
(2.1.3.3)

for every X at p in A. From above we can generalize and fix some terms.
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A Riemannian manifold is a c∞
manifold M on which one has singled out a

c∞
real valued ,bilinear ,symmetric and positive define function<,> on ordered

pair of tangent vector at each point.Thus if X,Y and Z are in MP then X,Y is real

number and <,> satisfies the following properties

i. < X ,Y >=< Y,X > symmetric

ii. < X +Y,Z >=< X ,Z >+< Y,Z > bilinear

< aX ,Y >= a < X ,Y > for all aεr

iii. < X ,X > >0 for all X6= 0

iv. If X and Y are c∞
fields with domain A then < X ,Y > p =< Xp,Yp > is ac∞

function on A when (3) is placed by (3*) (non singular)< X ,Y >= 0 for all X

implies Y=0 then M is semi-Riemannian (or pseudo Riemannian) manifold.In

either case the function is inner product,metric tensor,the Riemannian metric

or infinite semi metric on M not the topological metric function.

If D is c∞
connexion in semi-Riemannian manifold M then D is Rieman-

nian connexion if it satisfies (2.1.3.2) and (2.1.3.3)

2.1.4 Properties of Riemannian curvature tensor
The Riemannian curvature tensors is linear over the ring of smooth function are

coe�icient on the right hand side and satisfy the following properties

i. K(X,Y,Z)= -K(Y,X,Z)

and if f is smooth function then

ii. K(fX,Y,Z)= -fK(Y,X,Z) where D is Riemannian connexion.

Let us define

’K(X,Y,Z,W)=g(K(X,Y,Z),W)

then ’K is skew symmetric in the first two slots and the last two slots.The Rie-

mannian curvature tensor K satisfies Binanchi’s first identity and Bianchi’s

second identity.
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Curvature Tensors

In a Riemannian manifold the weyl projective tensor reduces to

W (X ,Y,Z) = K(X ,Y,Z)+ 1
n−1 [Ric(X ,Z)Y −Ric(Y,Z)X ]

Conformal curvature tensor

The tensor V defined by

V (X ,Y,Z) =

K(X ,Y,Z)+ 1
n−2 [Ric(Y,Z)X−Ric(X ,Z)Y −g(X ,Z)RY +g(Y,Z)RX ]+

r
(n−1)(n−2) [g(Y,Z)X−g(X ,Z)Y ]

is same for manifolds in conformal correspondence.This tensor is called the

conformal curvature tensor.

A manifold whose conformal curvature tensor vanishes at every point is said to

be conformaly flat.A conformal curvature V satisfies Bianchi’s first identity

V (X ,Y,Z)+V (Y,Z,X)+V (Z,X ,Y ) = 0

Concircular curvature tensor

The concircular curvature tensor is defined by

C(X ,Y,Z) = K(X ,Y,Z)− r
n(n−1) [g(Y,Z)X−g(X ,Z)Y ]

Conharmonic curvature tensor

The conharmonic curvature tensor is defined by

L(X ,Y,Z) = K(X ,Y,Z)− 1
n−2 [Ric(Y,Z)X−Ric(X ,Z)Y +g(Y,Z)RX−g(X ,Z)RY ]

Riemannian curvature

Let X and Y be unit tangent vector at a point P of Riemannian manifold Vn

,these vectors determine a pensil of direction at P if the unit vectors along that
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direction are U then

U=fX+gY,where f,gεF

and

f 2 +g2 = 1

the geodesic of Vn whose unit tangent vector are U,generate a two dimensional

sub manifold of the tangent manifold T at P.

The gaussian curvature K(X,Y) at P of this two dimensional sub manifold was

defined by Riemannian as sectional curvature at P of Vn in direction of X and

Y.Thus

K =−K(X ,Y,X ,Y )/||X ||2||Y ||2[1− cos2θ ];where θ is angle between X and Y.

A necessary and su�icient condition on Vn to be locally flat in the neighbourhood

U of a point P is that Riemannian curvature of Vn at P vanishes.

If the Riemannian curvature K of V −n at P of the direction X and Y then

K(X,Y,Z)=K[g(Y,Z)X-g(X,z)Y]............(*)

contracting we get

i. Ric=K(n-1)g

ii. R=[K(n-1)]n................(**)

contracting (ii) we get

R=Kn(n-1)

hence a Riemannian manifold of constant curvature is an Einstein manifold.

Shur’s theorem

If a Riemannian curvature K of Vn at every point of neighborhood U of Vn is

independent of the direction choosen then K is constant throughout the neigh-

borhood U provided n>2 pu�ing (*) and (**) together we get W=0
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Conversely, if W=0

K(X,Y,Z)=
1

n−1 [g(Y,Z)RX−g(X ,Z)RY ]

contracting equation we get

Ric(Y,Z) = r
ng(Y,Z)

which sometimes expressed as RX=
r
nX and pu�ing the two equation into the first

one we get

K(X ,Y,Z) = r
n(n−1) [g(Y,Z)X−g(X ,Z)Y ]

which shows that a manifold is constant Riemaniian curvature.Hence a nec-

essary and su�icient condition for the manifold Vn to be of constant Riemannian

curvature is not the weyl projective curvature tensor vanishes identically through-

out Vn.

Similarly the conformal curvature tensor vanishes from manifold with constant

Riemannian curvature.

2.1.5 Di�erence tensor of two connexions

Consider a smooth manifold M and let D and

−
D be two connexion on M for two

field X and Y on M .we define di�erence tensor by

B(X,Y)=

−
DX Y-DXY

Linearlity of B slot is trivial result from properties of connexion and let us consider

slot 2.

Let f be c∞
on domain X and Y then

B(X,fY)=(Xf)Y+fDXY − (X f )Y − f
−

DXY =fB(X,Y)

Lf we decomposed B(X,Y) into symmetric and skew symmetric pieces we have;

Lets B(X,Y)=S(X,Y)+Z(X,Y)

where S(X,Y)=1/2[B(X,Y)-B(Y,X)] (symmetric part)

and

A(X,Y)=1/2[B(X,Y)-B(Y,X)](skew symmetric part)
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Then we can express A in terms of torsion tensors T and

−
T of connexion D and

−
D

respectively as for

2A(X,Y)=B(X,Y)-B(Y,X)

=

−
DXY −DXY −

−
DY X−DY X

=

−
T (X ,Y )−T (X ,Y )+ [X ,Y ]− [X ,Y ]

=

−
T (X ,Y )−T (X ,Y )

Theorem

The following statements are equivalent

i. The connexion D and

−
D have same geodesic

ii. B(X,X)=0 for all vector X

iii. S=0

iv. B=A

proof omi�ed

Theorem

The connexion D and

−
D are equal if they have the same geodesic and the

same torsion tensors.

Proof

That the first part implies the second is trival.conversely ,if the geodesic are

the same then S=0 and if the torsion tensors are equal then A=0;hence B=0

and D=

−
D

2.1.6 Riemannian curvature tensor
The curvature tensor of connexion D is a linear transformation valued tensor R

that assigns to each pair of vector X and Y at linear transformation R(X,Y) of Mn

into itself.we define R(X,Y)Z by imbedding X,Y and Z in c∞
field about M and

se�ing R(X,Y)Z=(DX DY Z−DY DX Z−D[X ,Y ]Z)m

(2.1.5.1)
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Hence we notice that R(X,Y)= -R(Y,X) and if f is c∞
then

R( f X ,Y )Z = f DX DY Z− (Y f )DX Z− f DY DX Z +(Y f )DX Z− f DX ,Y Z =

= f R(X ,Y )Z

(2.1.5.2)

also

R(X,Y)(fZ)=DX(Y f )X + f DY Z−DY ((X f )Z− f DX Z)− ([X ,Y ] f )Z− f D[X ,Y ]Z

=(XY )( f Z)+(Y f )DX Z+(X f )DY Z+ f DX DY Z−(Y X)( f Z)−(X f )DY Z−(Y f )DX Z

− f DY DX Z− ([X ,Y ] f )Z− f D[X ,Y ]Z

= f R(X ,Y )Z

(2.1.5.3)

The linearlity of R(X,Y)Z with respect to addition (in each slot)is trivial to check.The

curvature of symmetric linear connexion on M satisfies Bianchi identities

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0

(2.1.5.4)

for all vector X,Y,Z in M for which the le� hand side is defined to prove this,we

recall that for symmetric connexion

DAB−DBA = [a,b]

R(X ,Y )Z +R(Y,Z)X +R(Z,X)Y =

DX [Y,Z]+DY [Z,X ]+DZ[X ,Y ]−D[Y,Z]X−D[Z,X ]Y −D[X ,Y ]Z

= [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

By Jacobi identity.

if we define
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Z < X ,Y >=< DZX ,Y >+< X ,DZY >

(2.1.5.5)

for all vector X,Y,Z with common domain,then using about definition we can

define a 4 rank covariant tensor called Rimann-Christo�el curvature tensor as

K(X ,Y,Z,W ) =< X ,R(Z,W )Y >

(2.1.5.6)

for all X,Y,Z and W is same domain.

Thus from the above definition the following result arises

i. K(X,Y,Z,W)= -K(Y,X,Z,W)

ii. K(X,Y,Z,W)= -K(X,Y,W,Z)

iii. K(X,Y,Z,W)= K(Z,W,X,Y)

(2.1.5.7)

Theorem

Let M be di�erential i.e Riemannian n-maniford.then there is unique torsion free

connexion D such that D on M satisfies

i. D is symmetric

ii. DX g = 0 for all X εT(M).

parallel translation preserves inner products,this connexion is called the

Riemannian or Levi-civita connexion.
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Proof

Uniqueness from proposition (2.1.5.3) we obtain

Xg(Y,Z)−g(DXY,Z)−g(Y,DX Z) = 0

using D is torsion free this yields

i. Xg(Y,Z) = g(DXY,Z)

= g([X ,Y ],Z)+g(Y,DX Z)

cyclically permuting X,Y and Z we get

ii. Y g(Z,X) = g(DXY,X)+g([Y,Z],X)+g(Z,DY X)

iii. Zg(X ,Y ) = g(DX Z,Y )+g([Z,X ],Y )+g(X ,DZY )

substituting (i) from (ii)+(iii) we get

2g(DZY,X) =−X < Y,Z >+Y < Z,X >+Z < X ,Y >−< [Z,X ],Y >−<

[Y,Z],X >

+< [X ,Y ],Z >

the right hand of this last expression does not involve D,so we have a formula for

g(DZY ) on X.As <,> is non singular i.e

The map T (M)........T ∗(m) induced by g being an isomorphism and X is

arbitrary, DZY is uniquely determined so D is unique.

If we define DZY by using the expression 2g above then D is a connexion and we

find condition (i) and (ii) of the theorem satisfied.

Q.E.D

2.2 Complex Manifold
2.2.1 Complex Manifold
An even dimensional di�erentiable manifold Vn;n=2m which can be endowed

by a system of complex coordinate neighborhood (U,α) in such a way that in
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the intersection UnU ′ of two complex cordinate patches (U,α),(U ′,α ′),α ′ are

complex analytic function of α is called a complex manifold.

2.2.2 Almost complex manifold
If on an even dimensional di�erentiable manifold Vn;n=2m of di�erentiability

class Cr+1
there exist a vector valued real linear function f of di�erentiability

class Cr
satisfying

i. F2 + In = 0

which implies

ii.

−
X +X = 0 where

−
X = FX

then Vn is said toi be an almost complex manifold and f is said to be an almost

complex structure Vn.We shall apply the following notation

i. The operation of premultiplying a vector by F will be known as barring the

vector.

ii. we shall denote T(Vn) the set of c∞
vector field of Vn.

iii. in this and what follows the equation containing X,Y,Z......hold for arbitrary

vectors fields X,Y,Z.......εT (Vn) unless explicitly stated otherwise.
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3 Sasakian manifold

3.1 The w6 curvature tensor
Weyl’s projective curvature tensoris given by

W (X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(X ,Z)Ric(Y,U)−g(X ,U)Ric(Y,Z)

The other tensors have defined by (Pokhariyal and mishra)(1970,1982) are given

by

W1(X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(X ,U)Ric(Y,Z)−g(Y,U)Ric(X ,Z)]

W2(X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(X ,Z)Ric(Y,U)−g(Y,Z)Ric(X ,U)]

W3(X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(Y,Z)Ric(X ,U)−g(Y,U)Ric(X ,Z)]

W4(X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(X ,Z)Ric(Y,U)−g(X ,Y )Ric(Z,U)]

W5(X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(X ,Z)Ric(Y,U)−g(Y,U)Ric(X ,Z)]

For W6 which is studied in this project is given by

W6(X ,Y )Z = R(X ,Y )Z + 1
n−1 [g(X ,Z)Y −XRic(Y,Z)]

W6(X ,Y,Z,U) = R(X ,Y,Z,U)+ 1
n−1 [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)]

Which is from the following definition

Definition

In a (2n+1) dimensional Riemannian manifold M the τ-curvature tensor is given

by Tripathi and Gupta(2011)

T (X ,Y )Z =

a0R(X ,Y )Z +a1S(Y,Z)X +a2S(X ,Z)Y +a3S(X ,Y )Z +a4g(Y,Z)QX +

a5g(X ,Z)QY +a6g(X ,Y )QZ +a7r(g(Y,Z)X−g(X ,Z)Y ).....................(**)

where R is curvature tensor,S is ricci tensor,Q is Ricci operator and r is scalar

curvature

The W6 curvature tensor if in the equation (**)

a0 = 1,a1 =−a6 =
−1
2n ,a2 = a3 = a5 = a5 = a7 = 0

thus W6(X ,Y )Z = R(X ,Y )Z− 1
2nRic(Y,Z)X + 1

2ng(X ,Y )QZ

W6(X ,Y )Z = R(X ,Y )Z + 1
2n [g(X ,Y )QZ−XRic(Y,Z)]

g(W6(X ,Y,Z),U) = g(R(X ,Y,Z),U)+ 1
2n [g(X ,Y )g(QZ,U)−g(X ,U)Ric(Y,Z)]

′W6(X ,Y,Z,U) =′ R(X ,Y,Z,U)+ 1
2n [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)]

′W6(X ,Y,Z,U) =′ R(X ,Y,Z,U)+ 1
n−1 [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)].

3.2 Lp-sasakian manifold
1.Introduction
Matsumoto and Mihai have introduced the notion of Lorentzian para sasakian

and studied certain transformation.later Sasaki introduced certain structure

which are closely related to almost contact and later studied almost contact

manifold.

An n-dimensional di�erentiable manifold M is said to be lorentzian para

sasakian manifold if it admits a (1,1) tensor field F,a covariant (C∞) vector field

T,a C∞
1 form A and a lorentzian metric g which satisfies

(1.1)A(T ) =−1

(1.2)
−
X = X +A(X)T where

−
X = f (X)

(1.3)g(
−
X ,
−
Y ) = g(X ,Y )+A(X)A(Y )

(1.4)g(X ,T ) = A(X)

(1.5)(∆xF)(Y ) = g(X ,Y )+A(X)A(Y )T +X +A(X)T A(Y ) where ∆xT =
−
X

∆ denote operator covariant di�erentiation with respect to the lorentzian metric

g

In LP-Sasakian manifold M with structure (F,T,A,g) then

(1.6)
−
T = φ .A(

−
X = φ

(1.7)rank(F) = n−1

Further more if we put

(1.8)′F(X ,Y ) = g(
−
X ,Y )

then sensor field ’F(X,Y) is symmetric in X and Y.

In an n-dimensional LP-Sasakian manifold with structure (F,T,A,g) we have

(1.9)′R(X ,Y,Z,T ) = g(Y,Z)A(X)−g(X ,Z)A(Y )

(1.10)Ric(X ,T ) = (n−1)A(X)

(1.11)′R(X ,Y,
−
Z,
−
U) =′ R(X ,Y,Z,U)+2A(Z)[g(X ,u)A(Y )−g(Y,U)A(X)]+

2A(U)[A(Y )g(X ,Z)−A(X)g(Y,Z)]+′F(Y,U)′F(X ,Z)−′F(X ,U)′F(Y,Z)+

g(Y,Z)g(X ,U)−g(X ,Z)g(Y,U)

where R(X,Y,Z) denote curvature and Ric(X,Y) denote Ricci tensor.

3.3 A study of W6-Lp sasakian manifold
In our equation
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(1.12)
′W6(X ,Y,Z,U)=′ R(X ,Y,Z,U)+ 1

n−1 [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)].

we thus break the equation into symmetric P and skew symmetric Q parts

in X and Y.

We start with symmetric part P

′P(X ,Y,Z,U) = 1
2 [
′W6(X ,Y,Z,U)+′W6(Y,X ,Z,U)]

= 1
2 [
′R(X ,Y,Z,U)+ 1

n−1 [g(X ,Y )Ric(Z,U)− g(X ,U)Ric(Y,Z)]+′ R(Y,X ,Z,U)+
1

n−1 [g(Y,X)Ric(Z,U)

−g(Y,U)Ric(X ,Z)]]

= 1
2
′
R(X ,Y,Z,U)+ 1

2
′
R(Y,X ,Z,U)+ 1

2(n−1) [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)+
g(Y,X)Ric(Z,U)

−g(Y,U)Ric(X ,Z)]

= 1
2(n−1) [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)+g(Y,X)Ric(Z,U)−g(Y,U)Ric(X ,Z)].

or

(1.13)
′P(X ,Y,Z,U)= 1

2(n−1) [2g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)−g(Y,U)Ric(X ,Z)].

now we take a look at skew-symmetric part Q

′Q(X ,Y,Z,U) = 1
2 [
′W6(X ,Y,Z,U)−′W6(Y,X ,Z,U)]

= 1
2 [
′R(X ,Y,Z,U)+ 1

n−1 [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)]−′R(Y,X ,Z,U)−
1

n−1 [g(Y,X)Ric(Z,U)

−g(Y,U)Ric(X ,Z)]]

= 1
2
′
R(X ,Y,Z,U)− 1

2
′
R(Y,X ,Z,U)+ 1

2(n−1) [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)−
g(Y,X)Ric(Z,U)

+g(Y,U)Ric(X ,Z)]

=′ R(X ,Y,Z,U)+ 1
2(n−1) [g(X ,Y )Ric(Z,U)−g(X ,U)Ric(Y,Z)]−g(Y,X)Ric(Z,U)+

g(Y,U)Ric(X ,Z)]
OR

(1.14)
′Q(X ,Y,Z,U)=′ R(X ,Y,Z,U)− 1

2(n−1) [+g(X ,U)Ric(Y,Z)]−g(Y,U)Ric(X ,Z)]
.

2.LP-Sasakian manifold
In this section we study properties of W6,P,q curvature tensors in LP-sasakian
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manifold.

Theorem 2.1
In an n-dimensional LP-Sasakian manifold we have

i.
′W6(T,Y,Z,T ) =−g(Y,Z)+ 1

n−1Ric(Y,Z)

ii. W6(X ,Y,T ) = YA(X)2−n
n−1

iii. W6(T,Y,T ) = Y n−2
n−1

Proof (2.1)i
Pu�ing U=T in (1.12) we get

′W6(X ,Y,Z,T ) =′ R(X ,Y,Z,T )+ 1
n−1 [g(X ,Y )Ric(Z,T )−g(X ,T )Ric(Y,Z)]

Using (1.4) we get

′W6(X ,Y,Z,T ) =′ R(X ,Y,Z,T )+ 1
n−1 [g(X ,Y )Ric(Z,T )−A(X))Ric(Y,Z)]

Using (1.9) we get

′W6(X ,Y,Z,T )= g(Y,Z)A(X)−g(X ,Z)A(Y ))+ 1
n−1 [g(X ,Y )Ric(Z,T )−A(X))Ric(Y,Z)]

Using (1.10) we get

′W6(X ,Y,Z,T )= g(Y,Z)A(X)−g(X ,Z)A(Y ))+ 1
n−1 [g(X ,Y )(n−1)A(Z)−A(X))Ric(Y,Z)]

= g(Y,Z)A(X)−g(X ,Z)A(Y ))+g(X ,Y )A(Z)−A(X) 1
n−1Ric(Y,Z).........(2.2)

Pu�ing X=T in(2.2) we get

′W6(T,Y,Z,T ) = g(Y,Z)A(T )−g(T,Z)A(Y ))+g(T,Y )A(Z)−A(T ) 1
n−1Ric(Y,Z)

Using (1.1),we get

′W6(T,Y,Z,T ) =−g(Y,Z)−g(T,Z)A(Y ))+g(T,Y )A(Z)+ 1
n−1Ric(Y,Z)

Again using (1.4),we get
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′W6(T,Y,Z,T ) =−g(Y,Z)−A(Z)A(Y ))+A(Y )A(Z)+ 1
n−1Ric(Y,Z)

′W6(T,Y,Z,T ) =−g(Y,Z)+ 1
n−1Ric(Y,Z).....Hence proved

Proof (2.1)ii
′W6(X ,Y,Z,U) = g(W6(X ,Y,Z),U) and (1.12) we have

W6(X ,Y,Z) = R(X ,Y,Z)+ 1
n−1 [g(X ,Z)Y −XRic(Y,Z)]

Pu�ing T=Z

W6(X ,Y,T ) = R(X ,Y,T )+ 1
n−1 [g(X ,T )Y −XRic(Y,T )]

Using XA(Y)-YA(X) and (1.4)(1.10) we get

W6(X ,Y,T ) = XA(Y )−YA(X)+ 1
n−1 [A(X)Y −X(n−1)A(Y )]

W6(X ,Y,T ) = XA(Y )−YA(X)+ 1
n−1A(X)Y −XA(Y )

W6(X ,Y,T ) =−YA(X)+ 1
n−1A(X)Y )

W6(X ,Y,T ) = YA(X)2−n
n−1 ..............................Hence proved

Proof (2.1)iii
Pu�ing X=T in (2.1)ii we get

W6(T,Y,T ) = YA(T )2−n
n−1

Using (1.1) we get

W6(T,Y,T ) =−Y 2−n
n−1

W6(T,Y,T ) = Y n−2
n−1 ...............................Hence proved

Theorem 2.2
In an n-dimensional LP-Sasakian manifold P tensor field satisfies

i.
′P(X ,Y,Z,T ) = g(X ,Y )A(Z)− 1

2(n−1) [A(X)Ric(Y,Z)+A(Y )Ric(X ,Z)]
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ii.
′P(T,Y,Z,U) =−1

2g(Y,U)A(Z)+ 1
2(n−1) [2A(Y )Ric(Z,U)−A(U)Ric(Y,Z)]

iii.
′P(T,Y,Z,T ) = 1

2 [A(Y )A(Z)+
1

n−1Ric(Y,Z)]

Proof (2.2)i
Using (1.13) and pu�ing T=U we have

′P(X ,Y,Z,T ) = 1
2(n−1) [g(X ,Y )Ric(Z,T )−g(X ,T )Ric(Y,Z)]+g(Y,X)Ric(Z,T )−

g(Y,T )Ric(X ,Z)]

Using (1.4) and (1.10) we get

= 1
2(n−1) [g(X ,Y )(n−1)A(Z)−A(X)Ric(Y,Z)]+g(Y,X)(n−1)A(Z)−A(Y )Ric(X ,Z)]

= 1
2 [g(Y,X)A(Z)+g(X ,Y )A(Z)]− 1

2(n−1) [A(X)Ric(Y,Z)]−A(Y )Ric(X ,Z)]

= g(X ,Y )A(Z)− 1
2(n−1) [A(X)Ric(Y,Z)+A(Y )Ric(X ,Z)]......Hence proved

Proof (2.2)ii
Using (1.13) and pu�ing T=X we have

′P(T,Y,Z,U) = 1
2(n−1) [2g(T,Y )Ric(Z,U)−g(T,U)Ric(Y,Z)−g(Y,U)Ric(T,Z)]

Using (1.4) and (1.10) we have

′P(T,Y,Z,U) = 1
2(n−1) [2A(Y )Ric(Z,U)−A(U)Ric(Y,Z)−g(Y,U)(n−1)A(Z)]

′P(T,Y,Z,U)=−1
2g(Y,U)A(Z)+ 1

2(n−1) [2A(Y )Ric(Z,U)−A(U)Ric(Y,Z)]..Hence

proved

Proof (2.2)iii
Pu�ing X=T in (2.2)i we get

′P(T,Y,Z,T ) = g(T,Y )A(Z)− 1
2(n−1) [A(T )Ric(Y,Z)+A(Y )Ric(T,Z)]

Using (1.1),(1.4) and (1.10) we have

′P(T,Y,Z,T ) = A(Y )A(Z)− 1
2(n−1) [−Ric(Y,Z)−A(Y )(n−1)A(Z)]

′P(T,Y,Z,T ) = A(Y )A(Z)− 1
2A(Y )A(Z)+ 1

2(n−1)Ric(Y,Z)
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′P(T,Y,Z,T ) = 1
2 [A(Y )A(Z)+

1
n−1Ric(Y,Z)].........Hence proved

Theorem 2.3
In an n-dimensional LP-Sasakian manifold Q tensor field satisfies

i.
′Q(X ,Y,Z,T )=A(X)[g(Y,Z)− 1

2(n−1)Ric(Y,Z)]−A(Y )[g(X ,Z)− 1
2(n−1)Ric(X ,Z)]

ii.
′Q(T,Y,Z,U) = A(U)[g(Y,Z)− 1

2(n−1)Ric(Y,Z)]− 1
2g(Y,U)A(Z)

iii.
′Q(T,Y,Z,T ) =−g(Y,Z)+ 1

2 [
1

n−1Ric(Y,Z)−A(Y )A(Z)]

Proof (2.3)i
Using (1.14) and pu�ing T=U we have

′Q(X ,Y,Z,T ) =′ R(X ,Y,Z,T )− 1
2(n−1) [+g(X ,T )Ric(Y,Z)]−g(Y,T )Ric(X ,Z)]

Using (1.4),(1.9) we have

′Q(X ,Y,Z,T )= g(Y,Z)A(X)−g(X ,Z)A(Y )− 1
2(n−1) [+A(X)Ric(Y,Z)]−A(Y )Ric(X ,Z)]

′Q(X ,Y,Z,T )=A(X)[g(Y,Z)− 1
2(n−1)Ric(Y,Z)]−A(Y )[g(X ,Z)− 1

2(n−1)Ric(X ,Z)]....Hence

proved

Proof (2.3)ii
Using (1.14) and pu�ing T=X we have

′Q(T,Y,Z,U) =′ R(T,Y,Z,U)− 1
2(n−1) [g(T,U)Ric(Y,Z)]−g(Y,U)Ric(T,Z)]

Using (1.4),(1.9),(1.10) we have

′Q(T,Y,Z,U)= g(Y,Z)A(U)−g(Y,U)A(Z)− 1
2(n−1) [A(U)Ric(Y,Z)]−g(Y,U)(n−

1)A(Z)]

′Q(T,Y,Z,U) = A(U)[g(Y,Z)− 1
2(n−1)Ric(Y,Z)]− 1

2g(Y,U)A(Z)....Hence proved

Proof (2.3)iii
Let X=T in (2.3)i
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′Q(T,Y,Z,T )=A(T )[g(Y,Z)− 1
2(n−1)Ric(Y,Z)]−A(Y )[g(T,Z)− 1

2(n−1)Ric(T,Z)]

Using (1.1),(1.9),(1.10) we have

′Q(T,Y,Z,T ) =−[g(Y,Z)− 1
2(n−1)Ric(Y,Z)]−A(Y )[A(Z)− 1

2(n−1)(n−1)A(Z)]

′Q(T,Y,Z,T ) =−g(Y,Z)+ 1
2(n−1)Ric(Y,Z)−A(Y )[A(Z)+ 1

2A(Y )A(Z)

′Q(T,Y,Z,T ) =−g(Y,Z)+ 1
2 [

1
n−1Ric(Y,Z)−A(Y )A(Z)]........Hence proved
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