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  ABSTRACT 

Background: The number of regional athletes reported with Anti-doping Rule Violations 

(ADRVs) is a cause for international concerns. Understanding the trends and drivers of ADRVs 

among athletes is important in developing strategies to curb it. Information on doping from 

secondary sources was retrieved from World Anti-doping Agency (WADA) for a period of 14 

years (2003 – 2016) for time series analysis and for 4 years (2013 – 2016) for Regional Anti-

doping Organization (RADO) Zone V spatial analysis. 

Data analysis: Exploratory data analysis was carried out to identify any time series features in the 

data then followed by analysis using Auto-regressive Integrated Moving Average (ARIMA) sets 

of models following Box-Jenkins procedure. Performance Enhancing Drugs (PEDs) were 

analyzed with their annual relative frequencies and consistency of use. Granger causality analysis 

of prize money on ADRVs was also performed. 

Findings: The ADRVs in Africa showed a decreasing trend. Anabolic steroids were the most 

frequently and consistently used PEDs in the study period. There was no Granger causality 

observed regarding prize money and ADRVs for Africa and six other regions globally. However 

ADRVs from Paris and Sydney WADA approved laboratories were Granger caused by prize 

money. In the RADO Zone V, the highest computed four year averages of ADRVs were from 

Kenya (11) and Egypt (21) with Ethiopia which produces many track athletes showing low 

numbers (3). The spatial distribution of doping data in the RADO Zone V was virtually random. 

Conclusion: Although the ADRVs for Africa and Kenya are on the decrease, the numbers in 

Kenya were considerably high. Ethiopia is comparable to Kenya in terms of athletic prowess yet 

ADRVs in Kenya were about 4 times those recorded for Ethiopia. This calls for intensified doping 

control measures in Kenya and benchmarking with Ethiopia. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Background 

The most important sports genre in the Eastern African region is track and road athletics. Kenya 

and Ethiopia are household names in global events currently and historically. Most Anti-doping 

rule violations (ADRVs) in the region come from this genre. Doping is the single biggest threat 

to the integrity and reputation of sports (Lenskyj, 2018). Sports provide revenue to many athletes 

and their associates (Cortsen, 2013) and has led to growth of many associated sectors (Amestica, 

2016; Satta, 2016; Sanctis, 2017). The money involved could have led to the increased cases of 

doping (Héas & Régnier, 2016). 

The International Olympics Committee (IOC) threatened to pull some countries out of Rio-2016, 

the latest event, due to lack of compliance in doping regulations (Lenskyj, 2018). The government 

of Kenya crafted laws to guide the anti-doping process through relevant institutions and was 

allowed to participate in the 2016 Olympics. Russia, on the other hand, was accused of state 

sponsored doping and wasn’t allowed to participate as a country. Individual athletes who passed 

doping tests participated independently. 

The use of performance enhancing drugs (PEDs) in sports is prohibited and regulations on anti-

doping are governed by World Anti-Doping Agency (WADA), which has subsidiaries 

distributed globally with accredited testing laboratories (Ritchie & Henne, 2018; Malcourant, 

Vas & Zintz, 2015). It is a meta-organization being formed by other organizations 

(Malcourant, Vas & Zintz, 2015). It is supported by national and international sporting 

http://www.emeraldinsight.com.vpn.jkuat.ac.ke/author/Malcourant%2C+Emilie
http://www.emeraldinsight.com.vpn.jkuat.ac.ke/author/Vas%2C+Alain
http://www.emeraldinsight.com.vpn.jkuat.ac.ke/author/Zintz%2C+Thierry


2 
 

organizations, national governments, and the United Nations (Chappelet &Luijk, 2018). 

Targeted athletes are required to give samples on a regular basis but sometimes they are required 

impromptu. Testing ensures athletes have no altered physiological capacities and compete 

equitably (Danylchuk, Stegink & Lebel, 2016). 

Three distinct periods can be identified in the war on doping in ascending order of intensity: pre-

1967, between 1967 and 1999 and post-1999 (Ritchie & Henne, 2018). WADA, which is 

supported by United Nations Educational, Scientific and Cultural Organization (UNESCO) anti-

doping convention, was formed with the support of the International Olympics Committee (IOC) 

in 1999 after public outrage over doping (Kayser & Broers, 2012). Several doping scandals have 

since then been busted in many sports disciplines (Danylchuk, Stegink & Lebel, 2016). The anti-

doping activities are comprehensive with a zero tolerance approach. 

The IOC which was responsible for the formation of WADA ensures that no athlete who is doping 

is allowed to participate in the Olympics and Paralympics (Snyder, Fay & DePerno, 2005). 

Athletes are either suspended before participation or their medals withdrawn if the discovery is 

made after the competition. The operation of IOC is controlled by member governments, but in 

return, the IOC also has an influence on the running of government affairs on sports (Lee, 2017). 

In 1983, the IOC created the Court of Arbitration for Sports (CAS). Whenever a sports person 

feels justice is not served at national or international level, they are given the CAS as an appeal 

mechanism (Lenskyj, 2018). The athletes are the key stakeholders of sports organizations and 

Bamford and Dehe (2016) argue that it is important to ensure fairness and equity. Adverse 

analytical findings (AAFs) which could translate to ADRVs form the greatest proportion of cases 

in CAS (Lenskyj, 2018). Forster (2006) observed that the structure of global sporting organizations 

pose a challenge to the running of the organizations as there are contradictions within. Lewnskyj 

https://www.emeraldinsight.com/author/Ritchie%2C+Ian
https://www.emeraldinsight.com/author/Henne%2C+Kathryn
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(2018) asked whether matters in CAS are civil or criminal, whether it were strictly arbitration or 

litigation is allowed and whether matters should be made public or conducted confidentially. This 

has led to controversy in doping as shall be discussed later in this document. Sanctis (2017) 

observes that due to the complex nature of global organizations involving national, regional and 

global aspects, they are vulnerable to abuses and organized crime. 

Doping is generally defined as the use of PEDs by athletes (Blumrodt & Kitchen, 2015). Kayser 

and Broers (2012) extend this further and define doping as the use or attempted use of a 

prohibited substance. This definition also includes possession of such substances. The strict 

liability rule states that an athlete is responsible for whatever is administered in their body such 

that the presence of a substance or its metabolite in urine or blood samples leads to a violation. 

Doping could thus be by design where the violation is intentional or by default where the athlete 

didn’t violate the doping code willingly (Mazanov et al, 2014). 

Another aspect is the availability of an athlete, whereby when required to give a sample for 

testing, must avail themselves within stipulated time failure to which it amounts to a violation. 

Certain target athletes must also inform relevant authorities of their whereabouts whenever 

required. This could lead to awkward ambiguity. Christian Ohuruogu, a 400m British athlete, 

was banned for a year in 2006 for failing to give a sample for testing three times for unannounced 

and unscheduled out-of-competition testing (Kayser & Broers, 2012). This was in spite of the 

fact that other agencies had tested her within the same period and found her clean. Yanina 

Wickmayer, after rising to top 50 on Women Tennis Association, failed to inform Flemish anti-

doping authorities of her where about three times and was banned by the authority (Kayser & 

Broers, 2012). 
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Claudia Pechstein was banned in 2009 for having unusually high number of oxygen carrying red 

blood cells (RBCs) even though no banned substance or their metabolites were found in the 

blood or urine samples (Kayser & Broers, 2012). Other physiological mechanisms other than 

doping could explain this. For instance, high altitude training and a number of metabolic 

conditions could also lead to high RBC levels. 

In 2015, WADA published the ten-point anti-doping code that was adopted by her subsidiaries 

globally. It listed the omissions and commissions constituting ADRV. The presence of a banned 

substance in urine or blood samples constitutes an ADRV, but the code is also violated if there 

is evidence of possession or use even without a positive sample. The whereabouts of an athlete 

must be known by authorities at all times and whenever they demand a sample refusal constitutes 

a violation. Possession and trafficking of banned substances is a violation. Administering the 

same, complicity with it and even being associated with an individual who is known to be 

involved in doping is also a violation. Lastly, tampering with any process of anti-doping is an 

offence (WADA, 2015). 

Testosterone is a natural hormone but is also used as a PED.  Caster Semenya is a South African 

athlete majoring on 800m who has led to controversy due to her gender ambiguity and 

hyperandrogenism which leads to better performance than females with normal levels of sex 

hormones. Lenskyj (2018) notes that in all sports, it is only in horse racing that males and females 

compete. Sex is binary and that assumption must be maintained and protected from pollution 

through appropriate sex testing policies (Erikainen, 2017). Each should compete with its own kind. 

Pape (2017), draws a separation between gender and sex in sports with regard to fairness. The 

question is whether a male or a hermaphrodite who carries themselves as a female should be 

allowed to compete against females. This introduces sociological and political undertones in sports 
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which is in line with what is happening with the rest of humanity (Burnett, 2016). The current 

president of the International Association of Athletics Federations (IAAF) developed testosterone 

rules to remove ambiguities and allow fairness in competition. 

Ultimately, there is a need for every country to be able to know its rates of doping so as to enhance 

prevention and control (Blank et al, 2015). Is doping on the increase or not? If it is on the increase, 

is it by default or by design? And if it is by default, what PED analogues are involved? And if it is 

by design, what PEDs are used? How do these rates compare regionally and globally? Does the 

rise in prize money in various sporting disciplines correlate with the doping rates? These are the 

questions this study seeks to answer. 

1.1 Statement of the problem 

The numbers of regional athletes reported with ADRVs in the recent past have been high. This is 

unlike a few years ago when there were hardly any news of regional athletes associated with 

doping. It has caused international concerns due to the athletic prowess of the Eastern African 

region to the extent that the IOC threatened a ban on Kenya from the 2016 Olympics in Brazil 

(Lenskyj, 2018). The situation was resolved by the establishment of Anti-doping Agency of Kenya 

(ADAK) via Anti-Doping Act of 2016. Formation of national anti-doping agencies in critical 

countries is an indicator of government commitment to fight the vice. To monitor athletes, samples 

are collected and analyzed by WADA accredited laboratories in association with national and 

regional anti-doping agencies, and the reports on ADRVs released by WADA on an annual basis. 

The purpose of this study was to analyze temporal and spatial data for regional athletes thus 

generating a tailored regional statistical perspective. Forecasting of ADRVs for the near future is 

critical for effective and efficient planning. Information on the most common PEDs in ADRVs is 

also critical to identify the most important substances in use. Correlation of doping numbers with 
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financial incentives is an important issue to explore. Spatial autocorrelation for Regional Anti-

doping Organization (RADO) Zone V is also vital to identify patterns in the distribution of ADRVs 

within the region. Kenya is in RADO Zone V along Eastern African nations and Egypt. Kenya and 

Ethiopia are the biggest contributors of champions in long and middle distance races globally and 

it is therefore important to look at Kenya’s neighborhood to better understand domestic and 

international patterns of ADRVs. This allows for more focused local and regional doping control 

by WADA associated agencies. 

The international sports community is bent on ensuring fairness in sports and anti-doping activities 

aim at that. Several initiatives on doping control are in place and more should be encouraged. 

WADA is the overall custodian of doping data, but more refined and targeted doping information 

can be derived from it. This study aimed at contributing to the integrity of sports locally, regionally 

and globally with respect to doping. 

1.2 Significance of the study 

The most important sports genre in the Eastern African region is track and road athletics and most 

ADRVs in the region come from this genre. This has caused great embarrassment to the countries 

involved, and the sporting community more specifically. Elite athletes are, therefore, bound to be 

subjected to more rigorous monitoring as compared to other lower risk athletes. 

The government of Kenya, through ADAK, is therefore working towards control of doping. 

RADO Zone V is in charge of the greater Eastern African region and Egypt. There are other 

RADOs in Africa and the world doing similar work. However, more specific information is 

required to facilitate anti-doping. The most recent information worked out against the historical 

data in terms of time and space will enable the anti-doping programs to be more evidence based. 

Budgetary justification for higher levels of funding of anti-doping activities will be facilitated. 
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Kenya and Ethiopia are recognized globally as the cradle of current and retired champions in 

athletics. Any success in anti-doping activities in the region will therefore have global significance 

and will form gold standards in global anti-doping activities especially targeting athletes in middle 

and long distance racing. At the very least, this study will contribute to the discussion on the utility 

of WADA data and the various derivatives that could be obtained from it. The discussion on 

disaggregation of WADA data is also critical in that generalization may not be of benefit where 

specific policy changes in local and regional anti-doping approaches are required. 

1.3 General objective 

The general objective of this study was to obtain a temporal-spatial overview of regional doping 

statistics of athletes. 

1.3.1 Specific objectives 

1. To establish the regional doping trend for 14 years (2003-2016) and compare it with 

global trends. 

2. To establish the critical PEDs giving positive doping tests in the same period globally. 

3. To establish the relationship between the regional doping trends and corresponding prize 

money in the same period and compare it with global observations. 

4. To establish the current doping statistics in Kenya and compare them with the statistics 

in the RADO Zone V region exploring for spatial autocorrelation. 

1.4 Assumptions of the study 

It was assumed that the data obtained from this study was obtained under the same conditions. 

Analysis, therefore, did not control for moderating variables as it was assumed that the conditions 

in data collection and analysis were generally unbiased. 
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It was also assumed that the observations were in the ratio scale and a zero was actually a zero. 

The absence of ADRVs in any region was therefore taken to mean that tests were performed on 

athletes from the respective countries and all tests gave negative doping results. 

Lastly, it was assumed that data obtained from a region was representative of the region. For 

instance data obtained from Bloemfontein in South Africa and Tunis in Tunisia were assumed to 

represent Africa with negligible omissions or commissions. The data that could have originated 

from a region and was analyzed in laboratories outside the region was therefore not considered. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

WADA has classified doping agents as follows: anabolic steroids, masking agents, stimulants, beta 

blockers, beta agonists, cannabinoids, glucocorticoids, hormones and metabolic modulators, 

chemical and physical manipulation, narcotics, alcohol, enhancement of oxygen transfer and 

finally peptide hormones, growth factors and related substances. The techniques applied by 

WADA affiliates to detect the presence of PEDs are broad spectrum identifying several agents at 

a go (Deventer et al., 2002; Thörngren, Östervall & Garle, 2008). 

It has been known for a long time that hormonal changes affect energy metabolism (Hervey, 1974). 

Anabolic steroid PEDs such as stanozolol and nandrolone enable growth of muscles and 

development of typical male characteristics. They are analogues of the hormone testosterone. 

Muscle growth is desirable in some sports disciplines in that it improves strength of an individual. 

Theorell (2009), notes that the state of mind is positively correlated with anabolism and 

regeneration. Boxers, footballers and sprint athletes in general abuse this class of drugs. Medically, 

anabolic androgenic steroids are useful in hypo-androgenism. This class of drugs has side effects 

which are harmful to health, but users prefer not to focus on that despite their knowledge (Walker 

& Joubert, 2011). 

Masking agents, most commonly diuretics, are another category of PEDs. Diuretics such as 

furosemide are medically prescribed in hypertension and edema. Diuretics act by increasing the 

amount of urine produced thus reducing the amount of water in the body (Cadwallader et al, 2010). 

They, therefore, dilute urine making any prohibited substance or metabolite excreted in urine 

https://www.emeraldinsight.com/author/Hervey%2C+GR
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difficult to detect while also reducing the amount of the PED in blood rapidly (Delbeke & 

Debackere, 1988). 

Another category of doping agents is stimulants. They increase alertness and reduce fatigue and 

include drugs like ephedrine, amphetamine and cocaine (Docherty, 2008). The reason for testing 

positive according to Docherty (2008) are medicinal use, recreational use or purposefully for 

performance enhancement. Some food supplements may also contain high levels of stimulants that 

could yield a failed drug test (Baume et al., 2006). 

Erythropoietin (EPO) is another PED in use. It stimulates red blood cell production thus enhancing 

the oxygen carrying capacity of the blood (Souillard et al., 1996). Endurance sports like marathons 

are aerobic thus requiring oxygen and the more efficient blood is in oxygen transport the more the 

energy metabolism thus the better the performance of athletes. Athletes training in areas of low 

oxygen tension naturally increase erythropoiesis and perform better in respective endurance 

disciplines. EPO doping serves as a shortcut. An advanced form of doping with EPO is using its 

gene for doping purposes (Neuberger et al., 2012). This allows the body to produce more EPO 

thus achieving the same purpose as EPO doping. 

Clomifene, tamoxifen, meldonium and insulin are among drugs classified by WADA under 

hormones and metabolic modulators. Hormones are widely used doping agents, and insulin is of 

special mention as it is known to increase muscle mass for body builders and weight lifters 

(Sönksen, 2001; Barroso, Mazzoni & Rabin, 2008).  Metabolic modulators, on the other hand, 

modify the effects or side effects of hormones. Tamoxifen, for example, hides the negative effects 

of exogenous testosterone used in doping. Excess testosterone use leads to higher production of 

estrogen leading to gynecomastia. Tamoxifen blocks this effect.  
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Betamethasone, dexamethasone, cortisone and budesonide are classified as glucocorticoids. 

Medically, they are pain and inflammation relievers and athletes can use them out of competition. 

Sporting activities involve vigorous use of muscles and joints which lead to wear and tear causing 

pain and inflammation. The use of this class of drugs, therefore, allow for an athlete to keep going 

beyond what is naturally possible, thus the prohibition during competitions (Coll et al 2018). 

Beta 2 agonists, for example salbutamol, are prescribed for allergies and asthma but are in the 

WADA prohibited list. This is because they enhance athletic performance (Heuberger, van 

Dijkman and Cohen, 2018). They increase muscle performance by anabolic activity and also 

improve ventilation (Pluim et al 2011; Cairns & Borrani, 2015). They are not useful, however, in 

endurance sports. Inhaled salbutamol does not have this effect but systemically administered 

salbutamol is effective and therefore prohibited. Asthmatic athletes could use beta 2 agonists under 

therapeutic use exemptions (TUEs). 

Cannabinoids have been used in their natural state for long for recreation and for medicinal 

purposes (Adams & Martin, 1996). Recently the world is generally accepting products of cannabis 

for mainstream medicinal use (Borgelt et al, 2013). They reduce nausea, vomiting and anorexia. 

They also reduce pain and muscle spasms, and this is the effect that has led to their increased use 

and legalization globally. These pharmacological effects are desirable for athletes and have 

therefore led to their use as PEDs. 

2.1 Doping scandals in cycling 

Doping is common in cycling, maybe it has always been part of cycling, and cyclists know about 

it and approve of it (Lentillon‐Kaestner & Carstairs, 2010). Sponsors of cycling teams adopt 

preemptive and preventive strategies to doping as it has the potential to harm their businesses 

(Blumrodt & Kitchen, 2015). However, doping scandals have not affected profitability of sponsors 
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of teams involved so the general public seem less bothered by such vice (Danylchuk, Stegink 

& Lebel, 2016; Drivdal, Nordahl & Rønes, 2018). The doping culture in cycling has been passed 

down the generations at elite level. Although PEDs are associated with adverse effects, it was 

observed by Lentillon‐Kaestner, Hagger and Hardcastle (2012) this knowledge has little effect on 

the decision to dope in cycling.  

Lance Armstrong is the most high profile cyclist in recent times. His name became even bigger 

after he recovered from cancer and still went on to perform well (Bassham & Krall, 2010). In total, 

he won seven times at the most prestigious cycling event, Tour de France, in the course of his 

career (Kasdan, 2013). When confronted with doping evidence against him, he chose not to contest 

the charges and was therefore stripped of all his titles. The doping was well organized and executed 

by his team, the US Postal Service (de Bruijn, Groenleer & van Ruijven, 2016). In a televised 

interview, Armstrong confessed to having doped using EPO and human growth hormone. 

Another notable name is Michael Rasmussen (Savulescu & Foddy, 2014). He was the leader of 

the 2007 Tour de France and was destined to win but was caught doping. He confessed that he 

had doped for 12 years and had used EPO, growth hormone, testosterone, dehydroepiandrosterone, 

insulin, insulin-like growth factor 1, cortisone and blood transfusions. It was a huge embarrassment 

for the athlete and for the organizers of the tour. It raised the issue of zero tolerance to doping since 

as noted by Savulescu and Foddy (2014), only 10-15% of professional athletes are subjected to 

doping tests meaning there is as high as 90% chance of not being tested. 

As previously noted, the sport of cycling would not be where it is without doping. The historical 

greats could all have doped. The current great and multiple winner of the Tour de France, 

Christopher Froome, was investigated for doping using Salbutamol (UCI, 2017). The amounts 

found in his urine sample were not consistent with the 1000 ng ml−1 threshold allowed through 
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TUE and therefore there was a possibility of doping (Heuberger, van Dijkman & Cohen, 2018). 

This further puts the sport to scrutiny. Heuberger, van Dijkman and Cohen (2018) have, however, 

shed light on this issue suggesting that the analysis used in pinning down Froome may not be 

robust enough to say with certainty that he doped. They demonstrated that random urine tests are 

not sufficient to predict the amount of salbutamol consumed. 

2.2 Individual athletes  

Ben Johnson won 100m gold in 1988 Olympics in Seoul, Korea, breaking the world record in the 

course. An in-competition test gave a positive test for anabolic steroid stanozolol. Marion Jones 

stands out in recent times (Pfister & Gems, 2015). She confessed to have doped using anabolic 

steroids. She was doping along with her husband C.J. Hunter who was competing in shot put. She 

was convicted and sentenced to 6 months in prison for lying to federal prosecutors in 2008. Tim 

Montgomery who held the world record in 100m sprint was banned for doping in 2005. Currently 

the controversy in sprints is around Justin Gatlin. After the retirement of Usain Bolt, Gatlin is the 

man to beat in sprints. However, he has been banned twice for doping offences. In 2001, he was 

found guilty of using amphetamine, which is a stimulant, but in defense he said it was a 

prescription drug he had used since childhood. His 2 year ban was reduced on appeal. He was 

caught again doping using anabolic steroids in 2006. In 2015, Justin Gatlin ran his personal best 

time in the 100m at the age of 33. It is unusual for athletes to run their personal best times at that 

age and this further fuels the speculation that something unusual is going on in an athlete who is 

known to have failed multiple doping tests. The question being asked by the athletics community 

is whether it is prudent for an athlete with multiple doping offences to be allowed back into active 

competition and whether that would encourage cheating in the general athlete population.  
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2.3 Doping in Russia 

Alfons Bukowski (1858–1921) is generally referred to as the father of anti-doping (Pokrywka et 

al, 2010). He is wrongly regarded as Russian, yet he was Polish. He developed ways of detecting 

doping in horses. Several years later, 2016 to be precise, Russia, the country he is identified with 

was banned from participating in the Olympics due to state sanctioned doping (Ruiz & Schwirtz, 

2015). The doping scandal was so well calculated it puzzled WADA (Duval, 2017). The entire 

system was designed not to give failed doping tests. In 2014, a German broadcaster aired a 

documentary shedding light to the extent of doping in Russia (Seppelt, 2015). This dossier was 

followed by a WADA investigation, The Pound, which confirmed the allegations (WADA, 2015). 

This was later followed by the McLaren Investigation sanctioned by WADA in 2016 which gave 

further details of the doping scheme (WADA, 2016). Another study by Wintermantel, Wachsmuth 

and Schmidt (2016) demonstrated that between year 2000 and 2013, Russia gave the highest 

proportion of failed doping tests at 10.4% followed by USA at 6.8%. This adds credence to other 

findings. 

One of the most high profile athletes banned around the same time is Maria Sharapova (Sumner, 

2017). She is a former world number one in tennis and is the only Russian to win all the four tennis 

majors. She was caught using meldonium which is a metabolic modulator. Other athletes recently 

caught doping, as recent as February 2018, from Russia are Nadezhda Sergeeva who was caught 

using trimetazidine classified by WADA as a stimulant and Alexander Krushelnitsky who was 

using meldonium. They were caught through an in-competition test. 

2.4 Doping in Eastern Africa 

The region is known globally for its athletic prowess, especially in middle and long distance races. 

Kenya and Ethiopia are the most important countries globally in these disciplines. Athletes such 
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as Kenenisa Bekele, Haile Gabreselasie and Eliud Kipchoge come from this region (Flaherty, 

O'Connor & Johnston, 2016). Athletes like Ben Jipcho, Kipchoge Keino and Daniel Rudisha put 

Kenya on the athletics map around the time of Kenya’s independence, and since then, Kenyans 

have done well globally and regionally (Kirui, Simotwo & Kipkoech, 2013). Haile and 

Andargachew (2018) note that doping is not a common topic in Ethiopian athletic community. 

Among the first doping cases involving high profile Kenyans was the case of John Ngugi 

(Manners, 1997). He was banned for four years for failing to provide a sample for analysis during 

an unplanned random visit by anti-doping officials. He argued that he didn’t recognize the 

individuals and they didn’t adequately identify themselves. It was a huge story since Ngugi was a 

multiple champion in global and regional events. He came back after the ban but his form was bad 

and he struggled to regain form. 

Since then, several athletes have been caught doping.  Among them are Asbel Kiprop. He provided 

a sample which yielded a positive test for EPO (Bloom, 2018). Lucy Kabuu was caught in 2018 

using narcotics which are prohibited by WADA. This was just before Africa Senior Athletics 

Championships in Nigeria. Another athlete caught around the same meeting was Boniface 

Mweresa who confessed to have been using a supplement called Yeah Buddy (Omulo, 2018). A 

Kenyan born athlete competing for Bahrain, Ruth Jebet, was also caught in 2018 using EPO. 

Matthew Kisorio was banned in 2012 for using steroids. He has the third-best time in the world in 

Half Marathon. Jemimah Sumgong, the 2016 London Marathon champion, was banned in 2017 

for 4 years for using EPO. Rita Jeptoo, a Boston Marathon winner, was also banned in 2014 for 

two years for using EPO. A Kenyan boxer, David Munyasia, was also banned from the 2004 

Athens Olympics for testing positive for cathine which is a stimulant (Gathura, 2018). 
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2.5 Prize money in sports 

Sports has grown to become a big business (Fox, 2009). Sports are used for marketing purposes, 

especially when they are organized in some form of consistent format with a schedule 

(Benijts, Lagae & Vanclooster, 2011). Soccer leagues like La Liga in Spain, English Premier 

League and Seria A in Italy are examples. The Diamond League in field and track athletics is 

another example. Sponsorship of sporting entities is one of the marketing tactics used by 

companies (Wilber, 1988). Individuals could also market themselves as brands and gain from 

sponsorships (Cortsen, 2013). Athletes like Cristiano Ronaldo, Lionel Messi, Tiger Woods and 

Usain Bolt are big brands.  

Participation in sports is motivated by monetary rewards (Wheatcroft, 2016), so it is important to 

know the extent to which money relates to ADRVs. Money is not the only incentive as there are 

other sources of motivation (Zhou et al, 2018). Frick (2003) sees sports events as not only an 

avenue to showcase athletic prowess but also a means to motivate athletes to perform better than 

others and do their personal best through compensation of their efforts. The effort put by athletes 

depends on how much they are going to get (Frick & Humpreys, 2011).This has been tested in 

team sports and individual sports and found to be true. In an attempt to cut on excessive spending, 

the European football governing body introduced financial fair play, which among other things, 

limits the amounts paid to players in Europe (Freestone & Manoli, 2017). Leaving wages and 

transfer fees purely to market forces is likely to raise pay to levels that damage clubs, and football 

in general. 

Monetary rewards for performance is one explanation given to the growth of vices in sports. These 

include match fixing associated with betting and doping. Match fixing has been shown to be linked 

to illegal betting, weak individuals who can be exploited as well as poor governance of the 

https://www.emeraldinsight.com/author/Benijts%2C+Tim
https://www.emeraldinsight.com/author/Lagae%2C+Wim
https://www.emeraldinsight.com/author/Vanclooster%2C+Benedict
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involved sports (Tak, Sam & Jackson, 2018). Jones (2010) argues that alcohol manufacturers’ 

sponsorship could lead to drug abuse. Corruption has also been observed in sports (de Sanctis, 

2017). 

2.6 Time series analysis 

A number of models have been developed that deal with data that change with respect to time 

(Wei, 2006). This class of data has time as an important component, and by definition is 

longitudinal. A time series is a set of data recorded in chronological order. Anderson (2011) points 

out that while many statistical analyses are based on independence of individual observations, this 

may not be the case in time series. Observations are dependent based on the time they occurred. 

When describing a time series plot, you describe it in terms of the trend, the seasonal and/or cyclic 

component, as well as the irregular component (Durbin & Koopman, 2012). The trend has to do 

with the general direction that the plot takes as to whether it is increasing, stagnating or decreasing. 

For instance the general trend of world population is an increase but individual countries on the 

globe may have different trends and this may be useful in standardizing of doping data. If within 

a year there is a repetitive pattern of the plot we call the data seasonal and when a pattern repeats 

itself in a frequency longer than a year we call that cyclic data. The number of athletes caught 

doping may pike during certain events such as the Olympics which comes after four years for 

example. 

One important property of a time series is stationarity. Rosca (2011) states that most time series 

analyses are based on stationary data, and in cases where the series is not stationary, it is 

transformed to become stationary before analysis. A stationary series is one whose properties, for 

instance, mean, variance and autocorrelation do not change over time. Another important binary 

term is domain, which could be time or frequency domain. Time domain shows how observations 
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change over time. Frequency-domain shows the number of observations at various represented 

rate of occurrence over time where each rate goes with the number of times it is reported 

(Shumway & Stoffer, 2017). 

Autoregressive Integrated Moving Average (ARIMA) models have found widespread application 

in many areas of health science (Sarpong, 2013; Ling & Mahadevan, 2012; Liu, et al., 2011). The 

models are popular linear models used in time series forecasting. They have used singly and also 

in combination with other models to construct higher accuracy hybrid models (Khashei & Bijari, 

2011; Christodoulos, C., Michalakelis, C., & Varoutas, D. (2010).). Lifting scheme and ARIMA 

models combine aspects in the spatial domain and time series domain, creating a hybrid that has 

enhanced forecasting accuracy (Lee & Ko, 2011). Other types of models could also be combined 

with ARIMA models for specific types of analyses. 

ARIMA models have three components p, d and q. The d refers to the number of times a process 

needs to be differenced to make it stationary. The p and q components refer to the autoregressive 

(AR) and moving average (MA) orders, respectively. Autocorrelation function (ACF) gives the 

values of auto-correlation of a series with its lagged values. By plotting these values with the 

confidence band you obtain an ACF plot. Partial autocorrelation function (PACF) examines for 

correlation of the residuals with the next lag value and could be plotted just like ACF. For an AR 

process, the ACF plot dies off, while PACF plot cuts off at the order ‘p’. For a MA process the 

PACF plot dies off while the ACF plot cuts off at order ‘q’. However modern analytical tools are 

available that perform these analyses automatically (Hyndman & Athanasopoulos, 2018). 

2.6.1 Granger causality 

Granger causality (G-causality) has gained popularity in health sciences in the past decade 

(Bressler & Seth, 2011; Friston, Moran & Seth, 2013; Seth, Barrett & Barnett, 2015). It is the 
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statistical equivalent of correlation and linear regression modeling when it comes to time series. If 

X1 Granger-causes X2 then values of X1 can be used to estimate values of X2. It applies to both 

time and frequency domains. Prediction is based on vector autoregressive (VAR) modelling 

(Barnett & Seth, 2014). 

Let’s take the set Ft as (xt , zt , xt−1, zt−1, ..., x1, z1) and xt and zt are vectors. We take that zt includes yt 

and zt might include other variables other than yt. Then xt is G-causes yt with respect to Ft if the 

variance of the optimal linear predictor of yt+h based on Ft has smaller variance than the optimal 

linear predictor of yt+h based on zt, zt−1, ... for any h. Therefore xt  G-causes yt if xt helps predict yt 

in the future. When xt G-causes yt often yt Granger causes xt. (Sørensen, 2005). 

Zaiontz (2019) cautions that correlation doesn’t necessarily mean causation. It was therefore 

appropriate to say x G-causes y as opposed to say x causes y. He states that G-causality test is 

based on the OLS regression model below: 

  𝐲𝐢 =  𝛂𝟎 +  ∑ 𝛂𝐣𝐲𝐢−𝐣 + ∑ 𝛃𝐣𝐱𝐢−𝐣 + 𝛆𝐢
𝐦
𝐣=𝟏

𝐦
𝐣=𝟏  

Where:  αj and βj ~ regression coefficients 

εi ~ error term.  

The test is based on: 

𝐇𝟎: 𝜷𝟏 = 𝜷𝟐 = ⋯ =  𝜷𝒎 = 𝟎  

When the null hypothesis is rejected then x Granger-causes y. 

2.7 Spatial autocorrelation 

The concept of spatial autocorrelation was fathered by Michael F. Dacey of University of 

Washington in the 1950s. It seeks to establish whether there is a relationship between measures of 

variables of adjacent sub-regions on the map of a region (Getis, 2010; Griffith, 2013). In East 

Africa for example you may want to know if the number of ADRV in Kenya has any relationship 
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with numbers in Uganda and Tanzania for example. Several authors have used this technique to 

analyse biological phenomena and therefore this technique could be used for doping analyses 

(Debarsy & Ertur, 2010; De Knegt et. al., 2010). 

Some of the commonly used measure is Moran’s I (Getis & Ord, 2010). Geary’s C is also used 

and is similar to Moran’s I. Moran’s I is a more universal and is sensitive to extreme values of x. 

Geary’s C is more appropriate in situations of differences in small neighborhoods. Generally 

Moran’s I and Geary’s C give similar conclusions. Moran’s I is preferred since it is more powerful.  

The equation for Moran’s I is given by: 

2

0

( )( )

( )

ij i j

i j

i

i

w x x x x
n

I
S x x

 







 

Where: 

n is the number of locations 

x̄ is the mean of x 

wij are the elements of the weight matrix 

𝑺𝟎 =  ∑ ∑ 𝒘𝒊𝒋𝒋𝒊   

Geary’s C which is similar to the Moran’s I is given by: 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter discusses how the secondary data was obtained and analyzed to give useful 

information. It details the study design, study area description, the population and sampling, the 

variables under study and data management. Ethical consideration is also discussed. 

3.1 Study design 

The study adopted an observational study design where data on cases of doping that have been 

recorded in the past were clustered by year of occurrence to form time series data. Records of all 

doping cases for the period of 2003 to 2016 were analyzed. For spatial analysis, data for RADO 

Zone V on ADRVs for the period of 2013 to 2016 was analyzed. 

3.2 Study area description  

This study focused on Africa and then gave attention to RADO Zone V. The study was therefore 

two-fold: time series analysis of Africa’s ADRVs analyzed along with data from other regions for 

comparison and then spatial analysis of RADO Zone V ADRVs. 

3.3 Study population 

The study population were regional elite athletes under the jurisdiction of WADA. These athletes 

therefore fell within the jurisdictions of the national and regional doping agencies. All active elite 

athletes in the senior category were included. Retired and juniors were excluded. The statistics 

only focused on adjudicated cases which had been given final verdict on appeal where applicable. 
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 3.4 Sample size determination 

Due to the nature of the study and the aggregation of data, analysis was determined by the 

availability of specific data. The laboratories that had been giving doping statistics consistently 

from 2003 were used. A census was conducted. For time series analysis, all the 14 year data (2003 

– 2016) was used for Africa. The WADA certified laboratories reporting doping statistics for the 

region were Bloemfontein and Tunis. Table 3.1 below shows the number of samples analyzed for 

Africa. 

Table 3. 1: Samples analyzed in Bloemfontein and Tunis 

Year Analyzed samples 

2003 4294 

2004 4652 

2005 5125 

2006 4657 

2007 4785 

2008 4672 

2009 5752 

2010 6313 

2011 5238 

2012 4245 

2013 4029 

2014 3658 

2015 4,132 

2016 1392 
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For comparison purposes, the corresponding data sets for 8 other regions were analyzed. These 

regions are USA (Los Angeles and Salt Lake laboratories), Canada (Montreal laboratory), South 

America (Rio laboratory), Australia (Sydney laboratory), Russia (Moscow and Sochi 

laboratories), China (Beijing laboratory), France (Paris laboratory) and UK (London and 

Cambridge laboratories). For spatial analysis, all the RADO Zone V data for 4 years (2013 – 

2016) was obtained for the 10 member countries. These are Kenya, Uganda, Tanzania, Burundi, 

Rwanda, Ethiopia, Eritrea, Sudan, Somalia and Egypt. 

3.5 Variables 

For descriptive time series analysis, the dependent variable was the ADRV count while the 

independent variable was time whose unit was years. Doping statistics were also paired with prize 

money for Granger causality analysis. The dependent variable was the ADRV count, while the 

prize money was the independent variable. Spatial autocorrelation analysis was carried out where 

the ADRV count was the dependent variable while the spatial distance was the independent 

variable. 

3.6 Data Sources 

The doping data is publicly available in WADA annual reports and these are Anti-Doping Testing 

Figures and ADRVs Report therefore secondary data was obtained via data mining. The data on 

prize money is also publicly available from the respective bodies responsible for Chicago, Boston 

and New York marathons. The choice of these prize monies was informed by the fact that the data 

from the three marathon majors was consistently available throughout the study period and the 

money is in USA dollars so no need for conversions across currencies. 
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3.7 Quality assurance procedures 

The data mining and analysis was guided by standard procedures and in conjunction with my 

supervisors. This is an academically acceptable way of ensuring the results of the study are valid 

and reliable. 

3.8 Ethical Consideration 

The data is publicly available from WADA website. The gathering of the data by WADA is based 

on World Anti-Doping Code’s International Standard for the Protection of Privacy and Personal 

Information (ISPPPI). The data is anonymized and collated to counts per year hence no athlete’s 

information is divulged in the data or during analysis. Therefore there was no risk of harming 

individuals through breaching confidentiality and anonymity. The study was ratified by the ethical 

review committee of the University of Nairobi and Kenyatta National Hospital. 

3.9 Data management  

The data was mined and recorded in excel sheets. The data was stored in multiple devices for 

security purposes. It was analyzed using R soft-ware. Box-Jenkins analysis, Granger-causality 

analysis of ADRVs and prize money, and ultimately spatial autocorrelation via Moran’s I and 

Geary’s C were conducted. The results were presented in tables and figures. 

3.10 Data analysis 

The plots of ADRVs obtained in the study period enabled the description of the data in terms of 

the trend, cyclic nature and the random component (Gerbing, 2016). The seasonal component is 

excluded since the data is collected annually. Multiplicative relationship was assumed as described 

below: 
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Yt = Tt . Ct . Et 

Where:  Yt  is the available data 

 Tt.Ct  are the predictable trend and cyclic component respectively 

 Et is the random component 

The Box-Jenkins procedure involves understanding these components within the data and 

appreciating the implicit patterns within the data to enable forecasting through an appropriate 

ARIMA model (Din, 2016). For ADRVs it would be important to know current and predicted 

future values, all factors held constant, to enable planning of control measures. 

The autoregressive (AR) component of the model is based on the dependent relationship between 

observations and lagged observations (Kang, 2017). 

𝑦𝑡 =  𝛿 + 𝜙1𝑦𝑡−1 +  𝜙2𝑦𝑡−2 +  … + 𝜙𝑝𝑦𝑡−𝑝 +  𝜀𝑡  

Where: 

yt-1, yt-2…yt-p are the past series values 

𝜀t is white noise 

δ is defined by the following equation  𝛿 = (1 −  ∑ ∅𝑖
𝑝
𝑖=1 )𝜇  

μ is the process mean 

The integrated component relates to transformation by differencing to make the data stationary. 

This is achieved by subtracting observations from the previous time steps. The equation below 

explains it: 

 𝑦𝑡
∗ =  𝑦𝑡

′ −  𝑦𝑡−1
′  

The moving average component uses the dependency between an observation and a residual error 

from a moving average model applied to lagged observations. The finite MA model is always 

stationary. The following equation describes it: 
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𝑦𝑡 =  𝜇 +  ∑ 𝜃𝑗𝜀𝑡−𝑗 +  𝜀𝑡
𝑞
𝑗=1   

Where: 

q is the order of the process 

 𝜃𝑗𝜀𝑡−𝑗 are past values 

The general forecasting equation therefore is given by: 

𝑦𝑡 =  𝜇 +  𝜙1𝑦𝑡−1+. . . + 𝜙𝑝𝑦𝑡−𝑝 −  𝜃1𝜀𝑡−1−. . . − 𝜃𝑞𝜀𝑡−𝑞 

The selection of an appropriate model in Box-Jenkins method is based on Akaike’s information 

criterion (AIC). The model with the lowest AIC is the most appropriate model. The AIC values 

for this study were generated using R software. 

AIC = -2(log-likelihood) + 2K 

Where: 

K is the number of model parameters  

Log-likelihood is a measure of model fit. 

Box-Ljung test is based on the null hypothesis that the chosen ARIMA model fits (Ljung & Box, 

1978). Rejecting the hypothesis means the model doesn’t fit. It is performed on residuals of the 

model and is based on the following equation: 

𝑄 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

 

 

Where:  rk is the estimated autocorrelation of the series at lag k 

m is the number of lags being tested. 
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Granger causality looks for correlation between sets of time series data and in this study it related 

ADRVs to prize money. You could check whether Yt Granger-causes Xt and also if Xt Granger-

causes Yt. The applied process was automated using R and is based on the following equations: 

𝑌𝑡 =  𝛼0 +  ∑ 𝛼𝑖𝑌𝑡−𝑖 +  ∑ 𝛽𝑖𝑋𝑡−𝑖 

𝑘2

𝑖=1

+  𝜀𝑡 

𝑘1

𝑖=1

 

𝑋𝑡 =  𝑥0 +  ∑ 𝑥𝑖𝑋𝑡−𝑖 + ∑ 𝛿𝑖𝑌𝑡−𝑖 

𝑘4

𝑖=1

+  𝑣𝑡  

𝑘3

𝑖=1

 

Where:  

 K is the number of lags 

 𝜀 and v are error terms  

𝛼, 𝛽, 𝜒 𝑎𝑛𝑑 𝛿 are coefficients 

The test in R is based on the null hypothesis that Xt does not Granger-cause Yt  and vice versa and 

therefore a p-value less than 0.05 leads to the rejection of the null hypothesis and the conclusion 

that Granger-causality does exist. 

Moran’s I and Geary’s C relating the ADRVs observed and their distribution within RADO Zone 

V are computed based on the equations shown below: 
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Where: 

n is the number of locations 

x̄ is the mean of x 
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wij are the elements of the weight matrix 

𝑆0 =  ∑ ∑ 𝑤𝑖𝑗𝑗𝑖   

Moran’s I values range from -1 to +1 where negative values indicate negative spatial 

autocorrelation and positive values indicate positive spatial autocorrelation. The values of Geary’s 

C range from zero to unspecified values greater than 1. Values close to zero indicate high positive 

spatial autocorrelation while values much greater than 1 indicate high negative spatial 

autocorrelation (Getis, 2010). 
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CHAPTER FOUR 

FINDINGS 

4.0 Introduction 

This chapter presents the findings from the analysis. It is arranged in the order of the specific 

objectives. The general objective of this study was to obtain a temporal-spatial overview of 

regional doping statistics of athletes. 

4.1 Regional and global doping trends 

The first specific objective was to establish the regional doping trend for 14 years (2003-2016) and 

compare it with global trends. Each plot is followed by Box-Jenkins procedure. This involves 

model identification and estimation where one model is selected for further analysis. This model 

is then validated using a residuals plot and Box-Ljung test. This is followed by forecasting of 

ADRV values of the next 5 years. 

4.1.1 Trend of Bloemfontein and Tunis ADRVs 

The data from Bloemfontein and Tunis laboratories indicated a decreasing trend. The cyclic aspect 

repeats after two years on three occasions, three years and four years on one occasion. This is 

illustrated in Figure 4.1 below. 
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Figure 4. 1: Plot of Bloemfontein and Tunis ADRVs 

 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.2 and Figure 4.3 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The output showed the possible ARIMA models and their respective AIC values. The model with 

the lowest AIC value was ARIMA(0,2,1) and was chosen as the most appropriate model. This is 

illustrated in Table 4.1 below. 

  



31 
 

Figure 4. 2: ACF Plot of Bloemfontein and Tunis ADRVs 

 

 

Figure 4. 3: PACF Plot of Bloemfontein and Tunis ADRVs 
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Table 4. 1: ARIMA models of Bloemfontein and Tunis ADRVs 

Model type AIC Inference 

 ARIMA(2,2,2)                     Infinite   

 ARIMA(0,2,0)                     31.56149  

 ARIMA(1,2,0)                     29.76763 Best Model 

 ARIMA(0,2,1)                    Infinite   

ARIMA(2,2,0)                  

31.76741 

 

 

Diagnostics and validation 

The chosen model ARIMA(0,2,1) was validated using a residuals plot as illustrated in Figure 4.4 

below. The plot vibrated around zero meaning the model was acceptable. This was further 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.2 below. The p-values 

were higher than 0.05 thus the chosen model was acceptable and could be used for forecasting. 

Figure 4. 4: Residuals Plot of Bloemfontein and Tunis ADRVs 
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Table 4. 2: Box-Ljung test of Bloemfontein and Tunis ADRVs 

Lags P-value Inference 

5 6379 

 

Not significant 

10 0.7633 Not significant 

 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.3. The data was also plotted as indicated in Figure 4.5. The predicted number of ADRVs fell 

gradually from 9 in 2017 to 1 ADRV in 2021. 

Table 4. 3: Five years forecasts of Bloemfontein and Tunis ADRVs 

Year Forecast value 

2017 9 

2018 5 

2019 3 

2020 2 

2021 1 
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Figure 4. 5: Forecasts of Bloemfontein and Tunis ADRVs 

 

 

4.1.2 Trend of London and Cambridge ADRVs 

The data from London and Cambridge laboratories indicated a decreasing trend. The cyclic 

component repeated after three years. The pattern was irregular as illustrated Figure 4.6 below. 
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Figure 4. 6: Plot of London and Cambridge ADRVs 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.7 and Figure 4.8 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(0,1,1) and was chosen as the most appropriate 

model. This is illustrated in Table 4.4 below. 
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Figure 4. 7: ACF Plot of London and Cambridge ADRVs 

 

Figure 4. 8: PACF Plot of London and Cambridge ADRVs 
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Table 4. 4: ARIMA models of London and Cambridge ADRVs 

Model type AIC Inference 

 ARIMA(1,1,1)  16.18169  

 ARIMA(0,1,1)                                         14.21715 Best Model 

 ARIMA(0,1,2)                     16.19265  

 ARIMA(1,1,2)                   18.01143  

ARIMA(2,1,0)                    16.56524  

Diagnostics and validation 

The chosen model ARIMA(0,1,1) was validated using a residuals plot as illustrated in Figure 4.9 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.5 below. The p-values 

were higher than 0.05 thus the chosen model was acceptable and could be used for forecasting. 

Figure 4. 9: Residuals Plot of London and Cambridge ADRVs 
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Table 4. 5: Box-Ljung test of London and Cambridge ADRVs 

Lags P-value Inference 

5 0.5283 

 

Not significant 

10 0.8301 Not significant 

   

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.6 below. The data was also plotted as indicated in Figure 4.10. The predicted number of ADRVs 

remained 52 throughout the 5 year period. 

Table 4. 6: Forecasting of London and Cambridge ADRVs 

Year Forecast value 

2017 52 

2018 52 

2019 52 

2020 52 

2021 52 
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Figure 4. 10: Forecast of London and Cambridge ADRVs 

 

 

4.1.3 Trend of Paris ADRVs 

The data from Paris laboratory indicated a decreasing trend. The cyclic component repeated after 

two years. This is illustrated in Figure 4.11 below. 
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Figure 4. 11: Plot of Paris ADRVs 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.12 and Figure 4.13 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(0,1,0) and was chosen as the most appropriate 

model. This is illustrated in Table 4.7 below. 
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Figure 4. 12: ACF Plot of Paris ADRVs 

 

Figure 4. 13: PACF Plot of Paris ADRVs 
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Table 4. 7: ARIMA models of Paris ADRVs 

Model type AIC Inference 

 ARIMA(2,1,2)                     Infinite   

 ARIMA(1,1,0)                     5.386184  

 ARIMA(0,1,1)                     5.326848  

 ARIMA(0,1,0)                     2.360534 Best model 

 ARIMA(1,1,1)                     Infinite   

Diagnostics and validation 

The chosen model ARIMA(0,1,0) was validated using a residuals plot as illustrated in Figure 4.14 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.8 below. The p-values 

were higher than 0.05 thus the chosen model was acceptable and could be used for forecasting. 

Figure 4. 14: Residuals Plot of Paris ADRVs 
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Table 4. 8: Box-Ljung test of Paris ADRVs 

Lags P-value Inference 

5 0.6898 Not significant 

10 0.8724 

 

Not significant 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.9. The data was also plotted as indicated in Figure 4.15. The predicted number of ADRVs 

remained 220 throughout the 5 year period. 

Table 4. 9: Forecasting of Paris ADRVs 

Year Forecast value 

2017 220 

2018 220 

2019 220 

2020 220 

2021 220 
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Figure 4. 15: Forecasts of Paris ADRVs 

 

 

 

4.1.4 Trend of Los Angeles and Salt Lake ADRVs 

The data from Los Angeles and Salt Lake laboratories indicated an increasing trend. The cyclic 

aspect repeated after two years. This is illustrated in Figure 4.1 below. 
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Figure 4. 16: Plot of Los Angeles and Salt Lake ADRVs 

 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.17 and Figure 4.18 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(1,2,0) and was chosen as the most appropriate 

model. This is illustrated in Table 4.10 below. 
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Figure 4. 17: ACF Plot of Los Angeles and Salt Lake ADRVs 

 

Figure 4. 18: PACF Plot of Los Angeles and Salt Lake ADRVs 
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Table 4. 10: ARIMA models of Los Angeles and Salt Lake ADRVs 

Model type AIC Inference 

 ARIMA(2,2,2)                     Infinite  

 ARIMA(0,2,0)                     31.56149  

 ARIMA(1,2,0)                     29.76763 Best model 

 ARIMA(0,2,1)                     Infinite  

 ARIMA(1,2,1)                     Infinite  

Diagnostics and validation 

The chosen model ARIMA(1,2,0) was validated using a residuals plot as illustrated in Figure 4.19 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.11 below. The p-

values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

Figure 4. 19: Residuals Plot of Los Angeles and Salt Lake ADRVs 
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Table 4. 11: Box-Ljung test of Los Angeles and Salt Lake ADRVs 

Lags P-value Inference 

5 0.9604 Not significant 

10 0.9539 

 

Not significant 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.3. The data was also plotted as indicated in Figure 4.5. The predicted number of ADRVs fell 

from 183 in 2017 to 4 ADRVs in 2021. 

Table 4. 12: Forecasting of Los Angeles and Salt Lake ADRVs 

Year Forecast value 

2017 183 

2018 48 

2019 27 

2020 9 

2021 4 
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Figure 4. 20: Forecasts of Los Angeles and Salt Lake ADRVs 

 

4.1.5 Trend of Montreal ADRVs 

The data from Montreal laboratory indicated a marginally increasing trend. The cyclic aspect 

repeats in a blend of two and three years. This is illustrated in Figure 4.21 below. 

Figure 4. 21: Plot of Montreal ADRVs 
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Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.22 and Figure 4.23 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(0,2,1) and was chosen as the most appropriate 

model. This is illustrated in Table 4.13 below. 

Figure 4. 22: ACF Plot of Montreal ADRVs 
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Figure 4. 23: PACF Plot of Montreal ADRVs 

 

Table 4. 13: ARIMA models of Montreal ADRVs 

Model type AIC Inference 

 ARIMA(2,2,2)                     Infinite   

 ARIMA(2,2,0)                     26.51135  

 ARIMA(0,2,1)                    20.1272 Best model 

 ARIMA(1,2,1)                     20.96767  

 ARIMA(0,2,2)                     20.45785  

 ARIMA(1,2,2)                     Infinite   
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Diagnostics and validation 

The chosen model ARIMA(0,2,1) was validated using a residuals plot as illustrated in Figure 4.24 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.14 below. The p-

values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

 

Figure 4. 24: Residuals Plot of Montreal ADRVs 
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Table 4. 14: Box-Ljung test of Montreal ADRVs 

Lags P-value Inference 

5 0.7196 Not significant 

10 0.2419 

 

Not significant 

 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.15. The data was also plotted as indicated in Figure 4.25. The predicted number of ADRVs fell 

slightly from 142 in 2017 to 126 ADRVs in 2021. 

Table 4. 15: Forecasting of Montreal ADRVs 

Year Forecast value 

2017 142 

2018 138 

2019 133 

2020 129 

2021 126 
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Figure 4. 25: Forecasts of Montreal ADRVs

 

4.1.6 Trend of Rio ADRVs 

The data from Rio laboratory indicated an increasing trend. The cyclic aspect repeated in a blend 

of two and three years. This is illustrated in Figure 4.26 below. 

Figure 4. 26: Plot of Rio ADRVs 
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Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.27 and Figure 4.28 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(1,2,0) and was chosen as the most appropriate 

model. This is illustrated in Table 4.16 below.  

 

Figure 4. 27: ACF Plot of Rio ADRVs 
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Figure 4. 28: PACF Plot of Rio ADRVs 

 

Table 4. 16: ARIMA models of Rio ADRVs 

Model type AIC Inference 

 ARIMA(2,2,2)                     Infinite   

 ARIMA(0,2,0)                     29.99868  

 ARIMA(1,2,0)                     26.12929 Best model 

 ARIMA(0,2,1)                     Infinite   

 ARIMA(2,2,0)                     27.10327  

 ARIMA(1,2,1)                     Infinite  

 

Diagnostics and validation 

The chosen model ARIMA(1,2,0) was validated using a residuals plot as illustrated in Figure 4.29 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 
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confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.17 below. The p-

values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

Figure 4. 29: Residuals Plot of Rio ADRVs 

 

Table 4. 17: Box-Ljung test of Rio ADRVs 

Lags P-value Inference 

5 0.8279 Not significant 

10 0.8414 Not significant 

 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.18. The data was also plotted as indicated in Figure 4.30. The predicted number of ADRVs rose 

gradually from 127 in 2017 to 310 ADRVs in 2021. 
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Table 4. 18: Forecasting of Rio ADRVs 

Year Forecast value 

2017 127 

2018 181 

2019 220 

2020 268 

2021 310 

 

Figure 4. 30: Forecasts of Plot Rio ADRVs 
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4.1.7 Trend of Beijing ADRVs 

The data from Beijing laboratory indicated an increasing trend. The cyclic aspect repeated after 

three years. This is illustrated in Figure 4.1 below. 

 

Figure 4. 31: Plot of Beijing ADRVs 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.32 and Figure 4.33 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(1,2,0) and was chosen as the most appropriate 

model. This is illustrated in Table 4.19 below.  
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Figure 4. 32: ACF Plot of Beijing ADRVs 

 

Figure 4. 33: PACF Plot of Beijing ADRVs 
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Table 4. 19: ARIMA models of Beijing ADRVs 

Model type AIC Inference 

 ARIMA(0,2,0)                     27.5886  

 ARIMA(1,2,0)                     21.45768 Best model 

 ARIMA(2,2,0)                     22.27818  

 ARIMA(1,2,1)                     Infinite   

 ARIMA(2,2,2)                     Infinite  

Diagnostics and validation 

The chosen model ARIMA(1,2,0) was validated using a residuals plot as illustrated in Figure 4.34 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.20 below. The p-

values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

Figure 4. 34: Residuals Plot of Beijing ADRVs 
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Table 4. 20: Box-Ljung test of Beijing ADRVs 

Lags P-value Inference 

5 0.2424 Not significant 

10 0.5575 

 

Not significant 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.21. The data was also plotted as indicated in Figure 4.35. The predicted number of ADRVs rose 

gradually from 98 in 2017 to 173 ADRVs in 2021. 

Table 4. 21: Forecasting of Beijing ADRVs 

Year Forecast value 

2017 98 

2018 125 

2019 137 

2020 159 

2021 173 
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Figure 4. 35: Forecasts of Beijing ADRVs 

 

 

4.1.8 Trend of Sydney ADRVs 

The data from Sydney laboratory indicated a marginally increasing trend. The cyclic aspect 

repeated after three years twice then after two years three times. This is illustrated in Figure 4.1 

below. 
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Figure 4. 36: Plot of Sydney ADRVs 

 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.37 and Figure 4.38 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(1,2,0) and was chosen as the most appropriate 

model. This is illustrated in Table 4.22 below.  
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Figure 4. 37: ACF Plot of Sydney ADRVs 

 

Figure 4. 38: PACF Plot of Sydney ADRVs 
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Table 4. 22: ARIMA models of Sydney ADRVs 

Model type AIC Inference 

 ARIMA(0,2,0)                     25.68856  

 ARIMA(1,2,0)                     24.07155 Best model 

 ARIMA(2,2,0)                     26.06661  

 ARIMA(1,2,1)                     26.01954  

Diagnostics and validation 

The chosen model ARIMA(1,2,0) was validated using a residuals plot as illustrated in Figure 4.39 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.23 below. The p-

values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

Figure 4. 39: Residuals Plot of Sydney ADRVs 
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Table 4. 23: Box-Ljung test of Sydney ADRVs 

Lags P-value Inference 

5 0.2996 Not significant 

10 0.5394 Not significant 

 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.24. The data was also plotted as indicated in Figure 4.40. The predicted number of ADRVs rose 

gradually from 103 in 2017 to 216 ADRVs in 2021. 

Table 4. 24: Forecasting of Sydney ADRVs 

Year Forecast value 

2017 103 

2018 137 

2019 160 

2020 190 

2021 216 
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Figure 4. 40: Forecasts of Sydney ADRVs

 

 

4.1.9 Trend of Moscow and Sochi ADRVs 

The data from Moscow and Sochi laboratories indicated an increasing trend. The cyclic aspect 

repeated after two years on three occasions then four years on one occasion. This is illustrated in 

Figure 4.41 below. 
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Figure 4. 41: Plot of Moscow and Sochi ADRVs 

 

 

Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.42 and Figure 4.43 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(0,2,2) and was chosen as the most appropriate 

model. This is illustrated in Table 4.25 below.  
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Figure 4. 42: ACF Plot of Moscow and Sochi ADRVs 

 

Figure 4. 43: PACF Plot of Moscow and Sochi ADRVs 
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Table 4. 25: ARIMA models of Moscow and Sochi ADRVs 

Model type AIC Inference 

 ARIMA(2,2,2)                     Infinite   

 ARIMA(0,2,0)                     20.52705  

 ARIMA(1,2,0)                     16.60393  

 ARIMA(0,2,1)                     Infinite  

 ARIMA(0,2,2)                     15.88393 Best model 

 ARIMA(2,2,1)                    17.82284  

Diagnostics and validation 

The chosen model ARIMA(0,2,2) was validated using a residuals plot as illustrated in Figure 4.44 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.26 below. The p-

values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

Figure 4. 44: Residuals Plot of Moscow and Sochi ADRVs 
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Table 4. 26: Box-Ljung test of Moscow and Sochi ADRVs 

Lags P-value Inference 

5 0.9139 Not significant 

10 0.7341 

 

Not significant 

 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in Table 

4.27. The data was also plotted as indicated in Figure 4.45. The predicted number of ADRVs rose 

gradually from 205 in 2017 to 243 ADRVs in 2021. 

Table 4. 27: Forecasting of Moscow and Sochi ADRVs 

Year Forecast value 

2017 205 

2018 214 

2019 223 

2020 233 

2021 243 
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Figure 4. 45: Forecasts of Moscow and Sochi ADRVs 

 

 

4.2 PEDs associated with ADRVs 

The second specific objective was to establish the PEDs giving positive doping tests in the 14 year 

period globally. The classification of PEDs is as given by WADA. The results showed that the 

most commonly used PEDs were anabolic steroids followed by stimulants and cannabinoids. This 

is illustrated in Figure 4.46, Figure 4.47 and Table 4.28 below. 
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Figure 4. 46: Doping Agents in ADRVs 
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Figure 4. 47: Olympics Years Doping Agents in ADRVs 

 

Table 4. 28: Yearly Top-three ranked PEDs during study period 

Class of agents Frequency 

Ana 14 

Stim 10 

Can 9 

Beta 4 

Glu 4 

Diu 3 

Hor 1 

 

Where: 

 Ana - Anabolic Steroids 

 Hor - Hormone and Metabolic Modulators 

 Stim - Stimulants 
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 Diu - Diuretics and Other Masking Agents 

Glu - Glucocorticosteroids 

Beta - Beta‐2 Agonists 

Can – Cannabinoids 

Pep - Peptide Hormones, Growth Factors and Related Substances 

4.3 Granger-causality analysis 

The third specific objective was to establish whether prize money Granger caused the 

corresponding ADRVs in the 14 year period. Analysis was preceded by Box-Jenkins procedure 

on the prize money data. 

4.3.1 Trend of Prize Money 

The data for prize money indicated an increasing trend. The cyclic aspect repeated after two years 

on three occasions then after four years once. This is illustrated in Figure 4.49 below. 

Figure 4. 48: Plot of Prize Money 
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Identification and estimation 

Plots of ACF and PACF were generated from the data as illustrated in Figure 4.50 and Figure 4.51 

below. The plots were not providing clear cut solutions to the types of models to be used hence an 

automated model search based on AIC implemented in R using ‘auto.arima’ function was used. 

The model with the lowest AIC value was ARIMA(0,2,1) and was chosen as the most appropriate 

model. This is illustrated in Table 4.29 below.  

 

Figure 4. 49: ACF Plot of Prize Money 
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Figure 4. 50: PACF Plot of Prize Money 

 

 

Table 4. 29: ARIMA models of Prize Money 

Model type AIC Inference 

ARIMA(2,2,2) Infinite  

ARIMA(0,2,0) -28.6106  

ARIMA(1,2,0) -30.5641  

ARIMA(0,2,1) -32.06682 Best model 

ARIMA(1,2,2) infinite  

Diagnostics and validation 

The chosen model ARIMA(0,2,1) was validated using a residuals plot as illustrated in Figure 4.52 

below. The plot vibrated around zero meaning the model was acceptable. This was farther 

confirmed by the Box-Ljung test at lag 5 and lag 10 as illustrated in Table 4.30 below. The p-
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values were higher than 0.05 thus the chosen model was acceptable and could be used for 

forecasting. 

Figure 4. 51: Residuals Plot of Prize Money 

 

Table 4. 30: Box-Ljung test of Prize Money 

Lags P-value Inference 

5 0.567 

 

Not significant 

10 0.8755 Not significant 

Forecasting 

The validated model was used to forecast values of the next five years. They are tabulated in 

Table 4.31. The data was also plotted as indicated in Figure 4.53. The predicted prize money fell 

marginally from USD 116, 301 in 2017 to USD 114, 851 in 2021. 
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Table 4. 31: Forecasting of Prize Money 

Year Forecast value in USD 

2017 116, 301 

2018 115, 937 

2019 115, 574 

2020 115,212 

2021 114, 851 

 

Figure 4. 52: Forecasts of Prize Money in Dollars 
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4.3.2 Findings on Granger-causality 

The data on prize money was compared with the ADRVs from the nine regions analyzed. Granger 

causality was examined and results tabulated in Table 4.32. ADRVs data from Paris and Sydney 

laboratories were Granger caused by prize money. Data from the other seven regions did not 

indicated Granger causality. 

Table 4. 32: Granger causality test results 

Accredited testing Centre P-Value (order = 2) Inference 

Bloemfontein and Tunis 0.5649 Not significant 

London and Cambridge  0.07536 Not significant 

Paris  0.00353 Significant 

Los Angeles and Salt Lake  0.8679 Not significant 

Montreal 0.1655 Not significant 

Rio 0.734 Not significant 

Beijing 0.1568 Not significant 

Sydney 0.01272 Significant 

Moscow 0.4323 Not significant 

4.4 RADO Zone V doping statistics 

The fourth specific objective was to establish the current doping statistics in Kenya and compare 

them with the statistics in the RADO Zone V region checking for spatial correlation. The results 

from 2013 to 2016 were plotted as shown in Figure 4.54. Moran’s I and Geary’s C based on the 

mean of countries’ ADRVs were used together as tabulated in Table 4.33 showing the spatial 
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distribution as random. The individual countries’ ADRVs was used to generate Figure 4.55 

showing color coded spatial distribution. The pattern was similar throughout the period. 

Figure 4. 53: Plot of ADRVs in the RADO Zone V 
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Table 4. 33: Auto-spatial Correlation results 

Test Done Result 

 

Expectation  Variance 

Moran’s I -0.1096        0.1111     0.0216 

Geary’s C 0.8116         1 0.0666 

 

Figure 4. 54: Spatial distribution of ADRVs in the RADO Zone V 
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CHAPTER FIVE 

DISCUSSION AND CONCLUSION 

5.0 Introduction 

This chapter discusses the findings detailed in the previous chapter. It shows the limitations 

encountered in the process, the conclusion, the recommendations and finally areas for future 

research. 

5.1 Discussion 

The first specific objective was to establish the regional doping trend for 14 years (2003-2016) and 

compare it with global trends. The data is annual so it has no seasonal component. The plots had 

trend, cyclic and random components. Bloemfontein and Tunis for Africa, London and Cambridge 

for UK, Paris for France, and Sydney for Australia had a downward trend indicating a fall in the 

number of ADRVs. Montreal Canada had a visually flat trend. Los Angeles and Salt Lake in the 

USA, Rio in Brazil for South America, Beijing for China and Moscow and Sochi in Russia had an 

upward trend showing an increase in ADRVs. All the ARIMA models were validated using 

residuals plots and Box-Ljung test and forecasts made for the next 5 years. The data for 

Bloemfontein and Tunis corresponded to ARIMA (0,2,1). Forecasts indicated that for the next five 

years, ADRVs in the African region would fall from 9 in 2017 to 1 in 2021. The other sets of data 

showing a predicted drop in ADRVs are Los Angeles and Salt Lake as well as Montreal. London 

and Cambridge as well as Paris data forecasted a virtually constant number of ADRVs in the five-

year period. Data from Rio, Beijing, Sydney as well as Moscow and Sochi predicted a rising 
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number of ADRVs from 2017 to 2021. The data for prize money corresponded to ARIMA (0,2,1) 

and forecasts fell slightly from USD 116,667 to 114, 851. 

The second-specific objective was to establish the critical PEDs giving positive doping tests in the 

same period globally. WADA classifies the substances as anabolic steroids, hormones and 

metabolic modulators, stimulants, diuretics and other masking agents, glucocorticosteroids, beta‐

2 agonists, cannabinoids and peptide hormones, growth factors and related substances. In the 14 

year period, the categories with the highest frequency in the yearly top three agents are as follows 

in descending order: anabolic steroids, stimulants, cannabinoids, beta‐2 agonists, 

glucocorticosteroids, diuretics and other masking agents, and hormones and metabolic modulators. 

The class of peptide hormones, growth factors and related substances did not appear in the top 

three during the period. 

The third-specific objective was to establish the relationship between the global doping trends and 

corresponding prize money in the same period. Granger causality was used for the analysis. The 

data from Bloemfontein and Tunis for Africa, London and Cambridge for UK, Montreal Canada, 

Los Angeles and Salt Lake in the USA, Rio in Brazil for South America, Beijing for China and 

Moscow and Sochi in Russia gave P-values higher than 0.05 indicating no Granger causality was 

observed from the data. The data from the laboratory in Paris for France and Sydney for Australia 

gave P-value less than 0.05 meaning the prize money Granger caused ADRVs. 

The fourth-specific objective was to establish the current doping statistics in Kenya and compare 

them with the statistics from the RADO Zone V, checking for spatial autocorrelation. The zone 

has the following countries: Kenya, Uganda, Tanzania, Burundi, Rwanda, Ethiopia, Eritrea, Sudan, 

Somalia and Egypt. The data analyzed was from 2013 to 2016. Eritrea, Sudan and Somalia did not 

have any ADRVs in the period. Kenya and Egypt showed the highest number of ADRVs. The 
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population of Kenya, Ethiopia and Egypt respectively are estimated as 52, 112 and 100 million, 

respectively. The population of Egypt is nearly twice that of Kenya while the average ADRVs for 

the period for Egypt is 21 while Kenya is 11 therefore the doping numbers in Kenya per capita are 

about the same as Egypt. The average for Ethiopia is 3. The other countries have a mean of less 

than one ADRV. The Moran’s I value for the RADO zone V was -0.1096 while the Geary’s C 

value was 0.8116. For Moran’s I values around zero indicate random distribution of observations 

in space. For Geary’s C values around one indicate the same distribution. 

5.2 Limitations 

This study was based on data obtained from WADA reports. The data was therefore limited to the 

genres and tiers of sports WADA had compiled and not necessarily what was actually going on 

the ground in terms overall doping. This was further compounded by the fact that the effectiveness 

and efficiency of WADA had been changing over the study period. 

WADA data was based on testing of priority countries and priority athletes. The fact that some 

countries report zero doping may not necessarily mean zero doping. It could actually be an 

indicator of reduced government funding of anti-doping activities. 

Lastly, this study was done under time and financial constraints. The data covers a vast region 

and thus would require vast resources to collect and verify some data not explicitly available from 

WADA reports. This was not possible. 

5.3 Conclusion 

This study showed that generally ADRVs in Africa were on a decline which was the same case 

as Kenya. Anabolic steroids were the most critical PEDs in terms of consistency throughout the 

period and relative frequency each year. Spatial autocorrelation was not observed in the data for 
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RADO Zone V. This indicates that countries in the region with high doping numbers such as 

Kenya and Egypt have not influenced their neighboring countries either to dope or to avoid 

doping. Prize money was not shown to influence numbers of ADRVs in Africa and six other 

regions studied with the exception of Australia and France. 

5.4 Recommendations 

The data from Rio, Beijing, Sydney as well as Moscow and Sochi predicted a rising number of 

ADRVs from 2017 to 2021, and WADA needs to take specific actions in these regions so that the 

vice does not spread to other regions globally. The numbers in Africa have been falling. Kenya’s 

ADRVs have been falling since 2014, but still, the country is at the top of the list in the region 

along with Egypt. Kenya is juxtaposed with Ethiopia that has about a quarter the number of 

ADRVs in Kenya while its population is more than twice that of Kenya. This indicates that 

Ethiopia could be doing something right as far as anti-doping is concerned. The class of doping 

agents requiring urgent attention is anabolic steroids, and individual countries as well as WADA 

should address it. 

5.5 Further Research 

Some countries observed an increase in ADRVs while others observed a decline. Studies should 

be conducted that standardize the absolute numbers against the population of respective countries 

and the general uptake of anti-doping activities in the regions. This takes care of the possibility 

that increase in ADRVs could be as a result of more vigilance with modern equipment as opposed 

to higher rates of doping. Lower numbers could be caused by lower participation in sports as well 

as lower vigilance of athletes in some regions, among other reasons and therefore, studies should 

be conducted that control for such variables. There is need to address the reasons behind anabolic 
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steroids being the leading class of PEDs in ADRVs consistently in the study period and studies 

should also be conducted in this area. Finally, there is also need for studies to be conducted on 

the global spatial autocorrelation of doping numbers. 
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Appendix C: R-Codes 

#Loading the required packages 

library(tseries) 

library(forecast) 

library(spatial) 

library(sp) 

library(rgdal) 

library(rgeos) 

library(raster) 

library(ggmap) 

library (spatstat) 

library(gstat) 

library(lmtest) 

library(sf) 

library(rgdal) 

library(tmap) 

library(maps) 

library(spdep) 

 

#The First Objective Analyses 

#Box-Jenkings Procedure 

#Bloem 

bloem<-read.csv(file.choose(), header = T) 
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bloem<-ts(bloem, start = c(2003), end = c(2016)) 

plot(bloem, main="Bloemfontein and Tunis ADRVs", ylab="ADRVs", type="o") 

abloem<-auto.arima(bloem, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2bloem<- diff(bloem, differences = 2) 

acf(d2bloem, main="Bloemfontein and Tunis ADRVs") 

pacf(d2bloem, main="Bloemfontein and Tunis ADRVs") 

plot(abloem$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(abloem$residuals, lag=5, type ="Ljung") 

Box.test(abloem$residuals, lag=10, type ="Ljung") 

fbloem<-forecast(abloem, h=5) 

fbloem 

plot(fbloem, ylab="ADRVs") 

####### 

#London 

lon<-read.csv(file.choose(), header = T) 

lon<-ts(lon, start = c(2003), end = c(2016)) 

plot(lon, main="London and Cambridge", ylab="ADRVs", type="o") 

alon<-auto.arima(lon, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2lon<- diff(lon, differences = 2) 

acf(d2lon, main="London and Cambridge ADRVs") 

pacf(d2lon, main="London and Cambridge ADRVs") 

plot(alon$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(alon$residuals, lag=5, type ="Ljung") 
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Box.test(alon$residuals, lag=10, type ="Ljung") 

flon<-forecast(alon, h=5) 

flon 

plot(flon, ylab="ADRVs") 

##### 

#Paris 

paris<-read.csv(file.choose(), header = T) 

paris<-ts(paris, start = c(2003), end = c(2016)) 

plot(paris, main="Paris", ylab="ADRVs", type="o") 

aparis<-auto.arima(paris, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2paris<- diff(paris, differences = 2) 

acf(d2lon, main="Paris ADRVs") 

pacf(d2paris, main="Paris ADRVs") 

plot(aparis$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(aparis$residuals, lag=5, type ="Ljung") 

Box.test(aparis$residuals, lag=10, type ="Ljung") 

fparis<-forecast(aparis, h=5) 

fparis 

plot(fparis, ylab="ADRVs") 

###### 

#Los Angels and Salt Lake 

los<-read.csv(file.choose(), header = T) 

los<-ts(los, start = c(2003), end = c(2016)) 



107 
 

plot(los, main="Los Angeles and Salt Lake ", ylab="ADRVs", type="o") 

alos<-auto.arima(los, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2los<- diff(los, differences = 2) 

acf(d2los, main="Los Angeles and Salt Lake  ADRVs") 

pacf(d2los, main="Los Angeles and Salt Lake  ADRVs") 

plot(alos$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(alos$residuals, lag=5, type ="Ljung") 

Box.test(alos$residuals, lag=10, type ="Ljung") 

flos<-forecast(alos, h=5) 

flos 

plot(flos, ylab="ADRVs") 

#### 

#Montreal 

mont<-read.csv(file.choose(), header = T) 

mont<-ts(mont, start = c(2003), end = c(2016)) 

plot(mont, main="Montreal ", ylab="ADRVs", type="o") 

amont<-auto.arima(mont, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2mont<- diff(mont, differences = 2) 

acf(d2mont, main="Montreal  ADRVs") 

pacf(d2mont, main="Montreal ADRVs") 

plot(amont$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(amont$residuals, lag=5, type ="Ljung") 

Box.test(amont$residuals, lag=10, type ="Ljung") 
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fmont<-forecast(amont, h=5) 

fmont 

plot(fmont, ylab="ADRVs") 

#### 

#Rio 

rio<-read.csv(file.choose(), header = T) 

rio<-ts(rio, start = c(2003), end = c(2016)) 

plot(rio, main="Rio ", ylab="ADRVs", type="o") 

ario<-auto.arima(rio, ic="aic", test = "adf", trace = TRUE) 

d2rio<- diff(rio, differences = 2) 

acf(d2rio, main="Rio  ADRVs") 

pacf(d2rio, main="Rio ADRVs") 

plot(ario$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(ario$residuals, lag=5, type ="Ljung") 

Box.test(ario$residuals, lag=10, type ="Ljung") 

frio<-forecast(ario, h=5) 

frio 

plot(frio, ylab="ADRVs") 

##### 

#Beijing 

bei<-read.csv(file.choose(), header = T) 

bei<-ts(bei, start = c(2003), end = c(2016)) 

plot(bei, main="Beijing ", ylab="ADRVs", type="o") 
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abei<-auto.arima(bei, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2bei<- diff(bei, differences = 2) 

acf(d2bei, main="Beijing  ADRVs") 

pacf(d2bei, main="Beijing ADRVs") 

plot(abei$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(abei$residuals, lag=5, type ="Ljung") 

Box.test(abei$residuals, lag=10, type ="Ljung") 

fbei<-forecast(abei, h=5) 

fbei 

plot(fbei, ylab="ADRVs") 

##### 

#Sydney 

syd<-read.csv(file.choose(), header = T) 

syd<-ts(syd, start = c(2003), end = c(2016)) 

plot(syd, main="Sydney ", ylab="ADRVs", type="o") 

asyd<-auto.arima(syd, ic="aic", test = "adf", trace = TRUE) 

d2syd<- diff(syd, differences = 2) 

acf(d2syd, main="Sydney  ADRVs") 

pacf(d2syd, main="Sydney ADRVs") 

plot(asyd$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(asyd$residuals, lag=5, type ="Ljung") 

Box.test(asyd$residuals, lag=10, type ="Ljung") 

fsyd<-forecast(asyd, h=5) 
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fsyd 

plot(fsyd, ylab="ADRVs") 

##### 

#Moscow and Sochi 

mos<-read.csv(file.choose(), header = T) 

mos<-ts(mos, start = c(2003), end = c(2016)) 

plot(mos, main="Moscow and Sochi", ylab="ADRVs", type="o") 

amos<-auto.arima(mos, ic="aic", test = "adf", trace = TRUE, lambda = 0) 

d2mos<- diff(mos, differences = 2) 

acf(d2mos, main="Moscow and Sochi  ADRVs") 

pacf(d2mos, main="Moscow and Sochi ADRVs") 

plot(amos$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(amos$residuals, lag=5, type ="Ljung") 

Box.test(amos$residuals, lag=10, type ="Ljung") 

fmos<-forecast(amos, h=5) 

fmos 

plot(fmos, ylab="ADRVs") 

#### 

#Prize Money 

pay<-read.csv(file.choose(), header = T) 

pay<-ts(pay, start = c(2003), end = c(2016)) 

plot(pay, main="Prize Money in Dollars", ylab="ADRVs", type="o") 

apay<-auto.arima(pay, ic="aic", trace = TRUE, lambda = 0) 
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d1pay<- diff(pay, differences = 1) 

acf(d1pay, main="Prize Money in Dollars") 

pacf(d1pay, main="Prize Money in Dollars") 

plot(apay$residuals,main="Residuals Plot", ylab="Residuals") 

Box.test(apay$residuals, lag=5, type ="Ljung") 

Box.test(apay$residuals, lag=10, type ="Ljung") 

fpay<-forecast(apay, h=5) 

fpay 

plot(fpay, ylab="ADRVs")  

#Objective Two Analysis 

top<-read.csv(file.choose(), header = T) 

summary(top) 

#Objective Three Analyses 

#Granger Causality #Order 2 

library(lmtest) 

payb<-read.csv(file.choose(), header = T) 

attach(payb) 

grangertest(bloem~pay, order=2, data = payb) 

paylon<-read.csv(file.choose(), header = T) 

attach(paylon) 

grangertest(lon~pay, order=2, data = paylon) 

paypar<-read.csv(file.choose(), header = T) 

attach(paypar) 
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grangertest(paris~pay, order=2, data = paypar) 

paylos<-read.csv(file.choose(), header = T) 

attach(paylos) 

grangertest(los~pay, order=2, data = paylos) 

paymont<-read.csv(file.choose(), header = T) 

attach(paymont) 

grangertest(mont~pay, order=2, data = paymont) 

payrio<-read.csv(file.choose(), header = T) 

attach(payrio) 

grangertest(rio~pay, order=2, data = payrio) 

paybei<-read.csv(file.choose(), header = T) 

attach(paybei) 

grangertest(bei~pay, order=2, data = paybei) 

paysyd<-read.csv(file.choose(), header = T) 

attach(paysyd) 

grangertest(syd~pay, order=2, data = paysyd) 

paymos<-read.csv(file.choose(), header = T) 

attach(paymos) 

grangertest(mos~pay, order=2, data = paymos) 

#Objective Four Analyses 

map1<- readOGR("C:/Users/user/Desktop/Data for Doping/E.Africabyyear", 

"EasternAfrica_2013") 

plot(map1, col="lightgrey") 
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map2013<-spplot(map1, "Mean", main="2013 Rado Zone V ADRVs") 

map2013 

map2<- readOGR("C:/Users/user/Desktop/Data for Doping/E.Africabyyear", 

"EasternAfrica_2014") 

map2014<-spplot(map2, "Mean", main="2014 Rado Zone V ADRVs") 

map2014 

map3<- readOGR("C:/Users/user/Desktop/Data for Doping/E.Africabyyear", 

"EasternAfrica_2015") 

map2015<-spplot(map3, "Mean", main="2015 Rado Zone V ADRVs") 

map2015 

map4<- readOGR("C:/Users/user/Desktop/Data for Doping/E.Africabyyear", 

"EasternAfrica_2016") 

map2016<-spplot(map4, "Mean", main="2016 Rado Zone V ADRVs") 

map2016 

require(gridExtra) 

library(gridExtra) 

grid.arrange(spplot(map1, "Mean", main="2013 Rado Zone V ADRVs"), spplot(map2, "Mean", 

main="2014 Rado Zone V ADRVs"), spplot(map3, "Mean", main="2015 Rado Zone V 

ADRVs"), spplot(map4, "Mean", main="2016 Rado Zone V ADRVs")) 

####### 

queen.nb<-poly2nb(map, row.names = map$Mean) 

rook.nb<-poly2nb(map, queen = FALSE) 

queen.listw<-nb2listw(queen.nb, style = "B") 



114 
 

rook.listw<-nb2listw(rook.nb) 

listwl<-queen.listw 

names(map) 

summary(queen.nb) 

#wasnt working coz ZERO was replaced by NA in the map$Mean 

moran(map$Mean,listwl, length(map$Mean), Szero(listwl)) 

moran.test(map$Mean, listwl) 

map$Mean 

#this changed NA to ZERO 

map$Mean[which(is.na(map$Mean))]<-0 

# Geary C 

queenz.listw<-nb2listw(queen.nb, style = "W") 

qz<-queenz.listw 

geary.test(map$Mean, qz) 


