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ABSTRACT 

    Nonparametric regression provides an intensive estimation of unknown finite population 

parameters and is frequently used to explore the association between covariates and responses. 

This estimation procedure is more flexible and robust than inference based on design 

probabilities in design based inference or on parametric regression models in model based 

inference. In this study, model based robust estimators of finite population total are constructed 

using the procedure of local linear regression. In particular, robustness properties of the derived 

estimators are investigated and a brief comparison between the performances of the derived 

estimators and some existing estimators is made in terms of the biases, variances, mean square 

errors, relative efficiencies, confidence intervals and average lengths of confidence intervals. 

The study explores the use of adaptive bandwidth to handle sparse data. The local linear 

procedure is extended to stratified random sampling and to two stage cluster sampling. The 

local linear procedure is important in the sense that it adapts well to bias problems at boundaries 

and in regions of high curvature and it does not require smoothness and regularity conditions 

required by other methods such as the boundary kernels. It has been observed that the local 

linear regression estimators are generally asymptotically unbiased, efficient and consistent. The 

results for the biases show that the local linear regression estimators are superior and dominate 

the Horvitz-Thompson estimator and the Linear regression estimator in all the relationships. 

The local linear regression estimators also dominate the Dorfman estimator in all the 

relationships except when the relationship is quadratic. The results for the mean square errors 

indicate that the local linear regression estimators are more efficient and perform better than 

the Horvitz-Thompson and Dorfman estimators, regardless of whether the underlying model is 

correctly specified or misspecified. The local linear regression estimators also outperform the 

linear regression estimator in all the relationships except when the relationship is linear. With 

respect to the relative efficiencies, results indicate that the local linear regression estimators are 

robust and are the most efficient estimators. The confidence intervals generated by the model 

based local linear method are much shorter than those generated by the design based Horvitz-

Thompson method. The results also indicate that the model based approach performs better 

than the design based approach at 95% coverage rate. Generally, the model based approach 

outperforms the design based approach regardless of whether the underlying model is correctly 

specified or not but that effect decreases as the model variance increases.  
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CHAPTER ONE 

INTRODUCTION 
 

1.1 Background information 

    In many survey problems, auxiliary information is available for all elements of the 

population of interest. Indeed, use of auxiliary information in estimating parameters of a finite 

population of study variables is a central problem in sample surveys. One approach to this 

problem is the super population approach, in which a working model 𝜉 describing the 

relationship between the auxiliary variable 𝑥 and the study variable 𝑦 is assumed. Estimators 

are sought which have good efficiency if the model is true, but maintain desirable properties 

like asymptotic design unbiasedness (unbiasedness over repeated sampling from the finite 

population) and design consistency if the model is false. Typically, the assumed models are 

linear models, leading to the familiar ratio and regression estimators (Cochran 1977), the Best 

linear and Unbiased Estimators (BLUE) (Brewer, 1963; Royall, 1970), the Generalized 

Regression Estimators (GREG) (Cassel et al., 1977). Royall and Herson (1973) suggested that 

efficiency and robustness could be combined by choosing the estimator of the population total 

to be optimal under a fairly realistic linear super population model, and choosing the selection 

procedure to ensure that this estimator was the best linear unbiased estimator under a more 

general family of polynomial models. 

    Nonparametric regression for estimating totals in finite populations has been applied by Kuo 

(1998), Dorfman and Hall (1993) and Kuk (1993). Such estimation is frequently more flexible 

and robust than inference tied to design probabilities in design based inference or to parametric 

regression models in model based inference.  
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    Sample survey theory is concerned with methods of sampling from a finite population of 𝑁 

units and then making inferences about finite population quantities on the basis of the sample 

data. There are two incompatible approaches for making inference from sample to population; 

the more traditional design based approach, in which the probability structure of the procedure 

by which the sample 𝑠 is selected serves as the basis for inference, and the model based or 

predictive approach, in which a regression model of the response 𝑌 on the predictor 𝑋 is used 

to predict the non sample 𝑌′𝑠 and by consequence, their total (Dorfman 1992). The design 

based estimator of total is the stratified expansion estimator given by 

�̅�𝑒𝑥𝑝 =∑𝜋ℎ
−1∑𝑌ℎ𝑖                                                                                                                                 

𝑠ℎℎ

 

where for ℎ = 1,2, … , 𝜋ℎ are inclusion probabilities of 𝑌ℎ𝑖 units in the sample 𝑆ℎ of the ℎ𝑡ℎ 

stratum. If 𝑌 is linear in 𝑥, that is, 𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜎𝑖𝑒𝑖 𝑖 = 1,2, … ,𝑁, with 𝑒𝑖  independent and 

identically distributed with mean 0, then an appropriate model based estimator is 

�̅�𝑙𝑖𝑛 =∑𝑦𝑖 +∑(�̅� + �̅�𝑥𝑖)

𝑃−𝑆𝑆

                                                                                                                     

where  �̅�  and  �̅� are  the appropriate  weighted  least  squares  estimators  of 𝛼 and 𝛽 

respectively. The presence of inclusion probabilities is the attribute of design based estimators 

while the model based estimator ignores the selection probabilities. The use of nonparametric 

regression for inference on finite populations is firmly within the model based approach. 

    However, it has a much greater degree of automaticity than is generally associated with 

model based inference based on standard parametric models (Dorfman 1992). Consider the 

regression model, 𝑌 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝑒  where 𝐸(𝑒) = 0, 𝑉𝑎𝑟(𝑒) = 1, 𝑋 and 𝑒 are 

independent. Researches done by Dorfman and Hall (1993) and Chambers and Dorfman (1993) 
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dealt on estimating 𝑚(𝑥), a smooth function. The amount of smoothing depends on the size of 

bandwidth. Therefore, proper choice of bandwidth is our major concern here. The problem is 

how close is �̅�(𝑥𝑗) to 𝑚(𝑥𝑗). The formula given by the above researchers does not allow us to 

determine the best bandwidth, because it depends on unknown quantities. The nonparametric 

calibration estimator that seems fairly immune to variations in bandwidth was applied but 

further work is required for some automatic way of selecting the bandwidth. The expression 

for the asymptotic bias of this version of a nonparametric regression estimator of total does not 

include division by the sampling density, and so the bias of a local linear regression based 

estimator should be less sensitive to sparse 𝑥 regions in the sample data. We make use of the 

local linear regression procedure to study the properties of the derived estimators and compare 

their performances with some estimators that exist in the literature. 

1.2 Basic concepts, definitions and terminologies 

    In local linear or local polynomial regression, a low order weighted least squares regression 

is fitted at each point of interest 𝑥, using data from some neighborhood around 𝑥. Letting 

(𝑋𝑖, 𝑌𝑖) be ordered pairs, consider the regression model of the form 

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝜀𝑖 where, 𝐸(𝑌𝑖|𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)  

𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑗|𝑋𝑖 = 𝑥𝑖 , 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗
0          ,         𝑖 ≠ 𝑗

             𝑖, 𝑗 = 1,2,3, … , 𝑛                                    

    The properties of the error are given by 𝐸(𝜀𝑖|𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)  

𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗|𝑋𝑖 = 𝑥𝑖, 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗
0          ,         𝑖 ≠ 𝑗

           𝑖, 𝑗 = 1,2,3, … , 𝑛                                      

where 𝑚(. ) and 𝜎2(. ) are assumed to be smooth functions of 𝑥𝑖′𝑠. 𝑒 and 𝑥 are independent. 

Fan and Gijbels (1996) estimate 𝑚(𝑥), using Taylor’s Expansion of the form:  

𝑚(𝑥) ≈ 𝑚(𝑥0) + (𝑥 − 𝑥0)𝑚
′(𝑥0) +

(𝑥 − 𝑥0)
2

2!
𝑚′′(𝑥0) + ⋯+

(𝑥 − 𝑥0)
𝑝

𝑝!
𝑚𝑝(𝑥0)             (∗) 
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1.2.1 Local linear regression 

    Local linear regression is a nonparametric technique used for smoothing scatter plots and 

modeling functions. Local linear regression eliminates design bias and alleviates boundary 

bias. More precisely, a function is locally linear at a point if and only if a tangent line exists at 

the said point. Thus, local linearity is the graphical manifestation of differentiability. Functions 

that are locally linear are called smooth. Functions are locally linear everywhere except where 

they have a discontinuity, that is, jumps, breaks, vertical asymptotes and sharp corners. 

1.2.2 Local polynomial regression 

    This is a nonparametric technique which is a generalization of kernel regression. In the 

approximation (∗) of section 1.2,  when 𝑝 = 0, we refer to this as local constant regression, 

when 𝑝 = 1, this is local linear regression and when 𝑝 ≥ 2, this is local polynomial regression 

where 𝑝 is the order of the local polynomial being fitted. 

1.2.3 Sample 

    In statistics, a sample is a finite part of a population whose properties are studied in order to 

gain information about the whole population. We assume that there exists a population frame 

or list denoted by 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑁) of 𝑁  identified units. Typically, the population is very 

large, making a census or a complete enumeration of all the values in the population is 

impractical or impossible. The sample represents a subset of manageable size𝑠 of 𝑈. Samples 

are collected and statistics are calculated from the samples so that one can make inferences or 

extrapolations from the sample to the population. This process of collecting information from 

a sample is referred to as sampling. The best way to avoid a biased or unrepresentative sample 

is to select a random sample, also known as a probability sample. A random sample is defined 

as a sample where the probability that any individual member from the population being 
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selected as part of the sample is exactly the same as any other individual member of the 

population. Several types of random samples are simple random sample, systematic sample, 

stratified random sample, and cluster random sample. A sample that is not random is called a 

non random sample or a nonprobability sample. Some examples of non random samples are 

convenience samples, judgement samples, purposive samples, quota samples, snowball 

samples, and quadrature no design quasi Monte Carlo methods. 

1.2.4 Population 

    The word population or statistical population is used for all the individuals or objects on 

which we have to make some study about the characteristic of interest. We may be interested 

to know the quality of bulbs produced in a factory. The entire product of the factory in a certain 

period is called a population. The entire lot of anything under study is called population. All 

the fruit trees in a garden, all the patients in a hospital and all the cattle in a cattle yard are 

examples of population in different studies. 

1.2.5 Finite population 

    A population is called finite if it is possible to account for its individuals. It may also be 

called an accountable population. The number of vehicles crossing a bridge every day, the 

number of births per year and the number of words in a book are finite populations. The number 

of units in a finite population is denoted by N. Thus N is the size of the population and 𝑁 < ∞. 

1.2.6 Infinite population 

    This is a population with a set of numbers which continue on and on forever. In this case, 

sampling is done with replacement from a finite population. This implies that the size of the 

population 𝑁 tends to infinity, that is 𝑁 → ∞. Sampling from an infinite population is handled 

by regarding the population as represented by a distribution. A random sample from an infinite 
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population is therefore considered as a random sample from a distribution. Let us suppose that 

we want to examine whether a coin is fair or not. We shall toss it a very large number of times 

to observe the number of heads. All the tosses will make an infinite population. The number of 

germs in the body of a malaria patient is perhaps something which is infinite. 

1.2.7 Target and sampled population 

    Suppose we have to make a study about the problems of the families living in rented houses 

in a certain big city. All the families living in rented houses are our target population. The entire 

target population may not be considered for the purpose of selecting a sample from the 

population. Some families may not be interested to be included in the sample. We may ignore 

some part of the target population to reduce the cost of study. The population out of which the 

sample is selected is called sampled population or studied population.   

1.2.8 Super populations and super population models 

    A Super population is a hypothetical infinite population from which the finite population is 

a sample, (Deming and Stephan, 1941). A super population model provides an alternative 

framework for inference in sampling. Such models are summarized by Cassel et al. (1977) and 

discussed by Bolfarine and Zacks (1991). 

1.2.9 Sampling 

  This is a statistical procedure concerned with the selection of individual observations intended 

to yield some knowledge about a population of concern for the purposes of statistical inference. 

1.2.10 Statistics 

   Statistics is a mathematical body of science that pertains to the collection, analysis, 

interpretation or explanation, and presentation of data. While many scientific investigations 
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make use of data, statistics is concerned with the use of data in the context of uncertainty and 

decision making in the face of uncertainty. In applying statistics to a problem, it is common 

practice to start with a population or process to be studied. For instance, populations can refer 

to all persons living in a country or every atom composing a crystal. 

    Ideally, statisticians compile data about the entire population (an operation called census). 

This may be organized by governmental statistical institutes. Descriptive statistics can be used 

to summarize the population data. Numerical descriptors include mean and standard 

deviation for continuous data types (like income), while frequencies and percentages are more 

useful in terms of describing categorical data (like race). 

    When a census is not feasible, a chosen subset of the population called a sample is studied. 

Once a sample that is representative of the population is determined, data is collected for the 

sample members in an observational or experimental setting. Again, descriptive statistics can 

be used to summarize the sample data. However, the drawing of the sample has been subject 

to an element of randomness, hence the established numerical descriptors from the sample are 

also due to uncertainty. To still draw meaningful conclusions about the entire population, 

inferential statistics is needed. It uses patterns in the sample data to draw inferences about the 

population represented, accounting for randomness.  

    These inferences may take the form of: answering yes/no questions about the data 

(hypothesis testing), estimating numerical characteristics of the data (estimation), describing 

associations within the data (correlation) and modelling relationships within the data (for 

example, using regression analysis). Inference can extend to forecasting, prediction and 

estimation of unobserved values either in or associated with the population being studied; it 

can include extrapolation and interpolation of time series or spatial data, and can also include 

data mining. 
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1.2.11 Simple random sampling 

    This is a sampling technique where every item in the population has an even chance and 

likelihood of being selected in the sample. Here the selection of items completely depends on 

chance or by probability and therefore this sampling technique is also sometimes known as a 

method of chances. 

1.2.12 Simple random sampling with replacement 

    This is a method of selection of n units out of the 𝑁 units one by one such that at each stage 

of selection each unit has equal chance of being selected, that is, 1/𝑁. In this sampling 

procedure, the selections are put back into the sampling frame such that repeat selections are 

possible. 

1.2.13 Simple random sampling without replacement 

    Simple random sampling without replacement of size 𝑛 is the probability sampling design 

for which a fixed number of 𝑛 units are selected from a population of 𝑁 units without 

replacement such that every possible sample of n units has equal probability of being selected. 

A resulting sample is called a simple random sample. In other words, this procedure does not 

allow the same random selection to be made more than once. 

1.2.14 Stratified random sampling 

    A stratum is a mutually exclusive sub population considered to be more homogeneous with 

respect to the characteristic investigated than the total population. Stratified sampling is a 

sampling procedure carried out in such a way that portions of the sample are drawn from the 

different strata and each stratum is sampled with at least one sampling unit. Stratified simple 

random sampling is simple random sampling from each stratum. 
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1.2.15 Two stage cluster sampling 

    Two stage cluster sampling is frequently used because an adequate frame of elements is not 

available or would be prohibitively expensive to construct, but a listing of clusters is available. 

In stage one, a sample of clusters is selected and in stage two, sub samples of elements within 

each selected cluster are obtained. 

1.2.16 Sampling frame 

    This is a list of units in the population from which we collect data for a particular measurable 

characteristic or units in the population for which we make statistical inference. In the case of 

a simple random sample, all units from the sampling frame have an equal chance to be drawn 

and to occur in the sample. In the ideal case, the sampling frame should coincide with the 

population of interest.  

1.2.17 Probability sampling 

    This is a scheme in which every unit in the population has a chance (greater than zero) of 

being selected in the sample, and this probability can be accurately determined. The 

combination of these traits makes it possible to produce unbiased estimates of population totals 

by weighting sampled units according to their probability of selection. Probability sampling 

includes: Simple Random Sampling, Systematic Sampling, Stratified Sampling, Probability 

Proportional to Size Sampling, and Cluster or Multistage Sampling. These various ways of 

probability sampling have two things in common; every element has a known non zero 

probability of being sampled and involves random selection at some point. 

 

  



10 

 

1.2.18 Nonprobability sampling 

    This is any sampling method where some elements of the population have no chance of 

selection (these are sometimes referred to as out of coverage or under covered), or where the 

probability of selection can't be accurately determined. It involves the selection of elements 

based on assumptions regarding the population of interest, which forms the criteria for 

selection. Hence, because the selection of elements is non random, nonprobability sampling 

does not allow the estimation of sampling errors. These conditions place limits on how much 

information a sample can provide about the population. Information about the relationship 

between the sample and the population is limited, making it difficult to extrapolate from the 

sample to the population.  

    Nonprobability sampling includes: Accidental sampling, Quota sampling and Purposive 

sampling. In addition, non response effects may turn any probability design into a 

nonprobability design if the characteristics of non response are not well understood, since non 

response effectively modifies each element's probability of being sampled. 

1.2.19 Bandwidth 

    This is the parameter that controls the amount of smoothing inherent in the estimation 

procedures. The bandwidth parameter denoted by 𝑏 which determines how large a 

neighbourhood of the target point is used to calculate the local average. A large bandwidth 

generates a smoother curve, while a small bandwidth generates a wigglier curve. To ensure that 

there are enough observations within the neighbourhood of a target point for parametric 

estimation we take a large sample size n. Hence in studying the theoretical properties of the 

estimator of the total we shall impose the conditions that as 𝑛 → ∞, 𝑏 → 0, such that 𝑛𝑏 → ∞. 
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1.2.20 Kernel function 

    This is a symmetric probability density function that uses a linear classifier to solve a 

nonlinear problem. It entails transforming linearly inseparable data to linearly separable ones. 

The kernel function is what is applied on each data instance to map the original nonlinear 

observations into a higher dimensional space in which they become separable. For instance, 

consider 𝐾(𝑥, 𝑦)  = < 𝑓(𝑥), 𝑓(𝑦) >. Here 𝐾 is the kernel function, 𝑥, 𝑦 are 𝑛 dimensional 

inputs. 𝑓 is a map from 𝑛 dimensional space to 𝑚 dimensional space. <  𝑥, 𝑦 > denotes the dot 

product. usually 𝑚 is much larger than 𝑛. 

1.2.21 Kernel smoother parameter 

    In producing a kernel curve, the smoothing parameter, which is related to bandwidth, 

controls the smoothness of the fit. Mean integrated square error (MISE) is the value of the 

smoothing parameter that minimizes the mean square error (MSE) using generalized cross 

validation. Smoothing refers to estimating a smooth trend, usually by means of weighted 

averages of observations.  A smoother is a device used for summarizing the trend of a response 

measurement 𝑌 as a function of one or more predictor variables 𝑋. The term smooth is used 

because such averages tend to reduce randomness by allowing positive and negative random 

effects to partially offset each other.  

1.2.22 Robustness 

    The degree to which an estimator can function correctly or efficiently in the presence of 

invalid inputs or stressful environmental conditions. For example, in examining the robustness 

properties of our results, we determine the ability of the estimators to withstand or overcome 

adverse conditions or rigorous testing. 
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1.2.23 Estimate and Estimator 

     An estimate is an approximate calculation or judgement of the value, number or quantity 

obtained from a sample. An estimator refers to a statistic that is used to generate an estimate 

once data are collected. So the estimator is the tool that can be used to estimate the population 

parameter of interest. An estimate is the product of one application of that tool. Like for 

instance, the sample total is an estimator of the population total, the sample mean is an estimator 

of the population mean, the sample variance is an estimator of the population variance and the 

sample proportion is an estimator of the population proportion. 

1.2.24 Accuracy and Precision 

    In measurement of a set, accuracy refers to closeness of the measurements to a specific value.  

Precision refers to the closeness of the measurements to each other, that is, how close are 

estimates from different samples to each other. For example, the standard error is a measure of 

precision. When the standard error is small, sample estimates are more precise and when the 

standard error is large, sample estimates are less precise. 

1.2.25 Bias 

    In statistics, the bias of an estimator is the difference between this estimator's expected value 

and the true value of the parameter being estimated. An estimator or decision rule with zero 

bias is called unbiased. A statistic is said to be an unbiased estimate of a given parameter when 

the mean of the sampling distribution of that statistic can be shown to be equal to the parameter 

being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the 

population from which the sample was drawn. 
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1.2.26 Consistent Estimator 

    Consistency of an estimator means that as the sample size gets large the estimate gets closer 

and closer to the true value of the parameter. In statistics, a consistent estimator or 

asymptotically consistent estimator is an estimator or a rule for computing estimates of a 

parameter 𝜃₀ having the property that as the number of data points used increases indefinitely, 

the resulting sequence of estimates converges in probability to 𝜃₀. 

1.2.27 Census 

    This is an official count or survey especially of a population. A census is the procedure of 

systematically acquiring and recording information about the members of a given population. 

The modern census is essential to international comparisons of any kind of statistics, and 

censuses collect data on many attributes of a population, not just how many people there are. 

Census is important because this process helps compile a numerical profile of a nation. A 

population census is a total count of the country's population, where demographic, social and 

economic information, as well as information about the housing conditions of the people who 

live in the country is gathered. 

1.2.28 Finite population parameter 

    The finite population is the population which can be counted. The objective of the statistics 

is to estimate the parameters of a finite population. The population parameter is the number 

that describes the population. Also, the population parameter takes up a numerical value that 

represents the population. Moreover, the population parameter is obtained from a statistic 

which is calculated from a randomly selected sample of the given population. A parameter is 

any summary number, like an average or percentage, that describes the entire population. The 

population mean 𝜇 and the population proportion 𝑃 are two different population parameters. 
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1.2.29 Descriptive inference and analytic inference 

    In many estimation problems, the sample is used to describe and analyse the target 

population from which it was selected by estimating population parameters and other 

descriptive and analytic inferences such as correlations. Some common parameters of interest 

for the finite population 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑁)
′ are the finite population total, the finite 

population mean, the finite population variance and the finite population proportion 

respectively defined by 𝑇 = ∑ 𝑦𝑖  
𝑁
𝑖=1 , �̅� =

1

𝑁
∑ 𝑦𝑖
𝑁
𝑖=1  , 𝑉(𝑥) =

1

𝑁
∑ (𝑦𝑖 − �̅�𝑖)

2 𝑁
𝑖=1  and 𝑃 =

𝐴

𝑁
   

    On the other hand, inferences may explore properties of the process that generate the 

population values (Montanari and Ranalli (2003)). We assume that the finite population has 

been generated by a super population model 𝜉 = 𝑓(𝑥, 𝑦, 𝜑) and we are interested in estimating 

the population parameters 𝜑 = (𝛼, 𝛽), where 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖. The super population model can 

be applied to predict the unobserved values 𝑦𝑖′𝑠 after obtaining estimates of 𝛼 and 𝛽 using the 

known auxiliary information 𝑥𝑖, 𝑖 = 1,2… ,𝑁. 

1.3 Statement of the problem 

    In many complex surveys, auxiliary information about the population of interest is available. 

One approach to using this auxiliary information in estimation is to assume a working model 𝜉 

describing the relationship between the study variable of interest and the auxiliary variables. 

Estimators are then derived on the basis of this model. Estimators are sought which have good 

efficiency if the model is true, but maintain desirable properties like design consistency if the 

model is false. Often, a linear model is selected as the working model. In some situations, the 

linear model is not appropriate, and the resulting estimators do not achieve any efficiency gain 

over purely design based estimators. 
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    Wu and Sitter (2001) proposed a class of estimators for which the working models follow a 

nonlinear parametric shape. However, efficient use of any of these estimators requires a priori 

knowledge of the specific structure of the population. This is especially problematic if the 

working model is to be used for many variables of interest, a common occurrence in surveys.  

    Because of these concerns, some researchers have considered nonparametric models instead 

of parametric models. The nonparametric approach does not restrict the functional form of the 

distribution nor does it specify the various stochastic properties such as 𝐸𝜉(. ), 𝑉𝜉(. ) and 

𝑀𝑆𝐸𝜉(. ). Rather, it leaves them to cover broad classes of models, thus allowing for more robust 

inference than that obtained in parametric approach (Dorfman, 1992, Chambers et al.,1993 and 

Dorfman, 2002). Dorfman (1992), used nonparametric regression to estimate the unknown 

values of the survey variable using kernel regression. However, the use of local linear 

regression procedure in a purely model based framework is an open area that requires further 

study. 

    The local linear regression procedure has advantages over popular kernel based methods in 

the sense that it adapts well to bias problems at boundaries and in regions of high curvature, it 

can be tailored to work for many different distributional assumptions due to its simplicity, it 

does not require smoothness and regularity conditions required by other methods such as the 

boundary kernels and having a local model (rather than just a point estimate) enables derivation 

of response adaptive methods for bandwidth and polynomial order selection in a 

straightforward manner. It is also asymptotically efficient among all linear smoothers including 

those produced by the kernel, orthogonal series and penalized spline methods. 

    Because of the unexploited good properties of this estimation procedure, there is need to 

explore its other properties. This procedure can be adapted to suit the case when two stage 

cluster sampling is applied, depending on situations whether the auxiliary information is 
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available at the cluster level, element level for all elements, or element level for elements in 

the selected clusters only.  Moreover, the use of this procedure in stratified random sampling 

and in two stage cluster sampling in a purely model based framework remains an open field 

that needs further exploration.  

1.4 Objectives of the study 

    The general objective is to construct model based robust estimators of finite population total 

using the procedure of local linear regression. 

    The specific objectives are: 

 

i. To derive robust estimators of finite population total based on local linear 

regression. 

ii. To investigate properties of the derived local linear regression estimators. 

iii. To determine optimal bandwidth to be used in the derived estimators. 

iv. To extend local linear regression estimation procedure to stratified random 

sampling and to two stage cluster sampling. 

v. To compare the performances of the derived local linear regression estimators with 

some estimators that exist in the literature. 

1.5 Significance of the study 

    The study contributes towards development of mathematical and statistical knowledge in 

survey sampling. The developed estimation procedure is useful to policy makers since national 

development is dependent on the sampling strategy employed. In addition, business and 

industrial sectors stand to benefit from this study by using the developed estimation procedure 

for prediction and thereby improving the efficiency of their internal operations. 
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1.6 Outline of the thesis 

    The rest of this thesis is organized as follows: In chapter two, a critical review of the work 

done by other researchers in the nonparametric estimation of the finite population parameters 

is accomplished. In chapter three, some robust estimators of the finite population total using 

the procedure of local linear regression are derived in a model based framework and their 

properties investigated. The local linear regression estimation procedure is adapted and 

extended to stratified random sampling and to two stage cluster sampling. In chapter four, a 

study is carried out to compare the performances of the estimators derived in chapter three with 

some other estimators that exist in the literature. Finally, in chapter five, a summary of the 

study is outlined in terms of the conclusions and recommendations for further research. 
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CHAPTER TWO 

 LITERATURE REVIEW 

2.1 Introduction 

    In sample surveys, auxiliary information on a finite population is regularly used to increase 

the precision of estimators of the finite population parameters. We argue that under a general 

modeling process, complete auxiliary information is incorporated in the construction of 

estimators through fitted values. Once a modeling approach is undertaken, we then have a 

special feature in finite population estimation problems that the unknown quantities are realized 

values of random variables, so that the basic problem has the feature of being similar to a 

prediction problem. In this chapter, we review the work done on nonparametric estimation of 

finite population parameters in survey sampling. 

2.2 Nonparametric regression 

    The idea of nonparametric regression is introduced by Nadaraya (1964) and Watson (1964). 

Several types of nonparametric regression methods such as the kernels, penalized splines and 

orthogonal series are in existence. Let us consider the Nadaraya-Watson estimator. Let the 

regression model be given by 𝑌 = 𝑚(𝑋) + 𝜎(𝑋)𝑒  where 𝑚(𝑥) is a smooth function and 𝑒 is 

a random variable with mean zero and constant variance. Here the population generated by this 

model is finite and the objective is to estimate 𝑚(𝑥), a smooth function.  The following table 

summarizes the asymptotic behavior of the Nadaraya-Watson smoother, the Gasser-Muller 

smoother and the Local Linear smoother, where 𝑘 is a kernel and 𝑏𝑁 is a smoothing parameter. 
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Table 2.1: The point wise Bias and Variance of kernel regression smoothers 

 

 

Technique  Conditional Mean Error Variance 

Nadaraya-Watson 

smoother 

 

1

2
m′′(x) +

m′(x)fx
′(x)

fx(x)
∫ u2
∞

−∞

k(u)dubn
2 

 

σ2(x)

fx(x)nbN
∫ k2
∞

−∞

(u)du 

Gasser-Muller 

smoother 

1

2
m′′(x) ∫ u2

∞

−∞

k(u)dubn
2 

3σ2(x)

2fx(x)nbN
∫ k2
∞

−∞

(u)du 

Local Linear smoother 1

2
m′′(x) ∫ u2

∞

−∞

k(u)dubn
2 

σ2(x)

fx(x)nbN
∫ k2
∞

−∞

(u)du 

 

    The bias of the Nadaraya-Watson smoother depends on the intrinsic part m′′(x) interplaying 

with the artifact m′(x) {
fx
′ (x)

fx(x)
}  due to the local constant fit. Keeping m′′(x) fixed, we first 

remark that in the highly clustered design where |
𝑓𝑥
′(𝑥)

𝑓𝑥(𝑥)
|  is large; the bias of the Nadaraya-

Watson smoother is large. This implies that the estimator cannot adapt to highly clustered 

designs. We also remark that when |m′(𝑥)| is large, then the bias of that estimator is also large. 

This means that even in the case of linear regression m(𝑥) = 𝛼 + 𝛽(𝑥) with a large coefficient 

𝛽, the bias of the estimator is also large. In other words, the Nadaraya-Watson smoother is not 

good at testing linearity. Supposing that we wish to estimate 𝑚(𝑥) .  

    One possibility suggested by Nadaraya (1964) and Watson (1964) is that of averaging the 

nearby values of 𝑌𝑖 measured in terms of the distances │𝑥𝑖 − 𝑥│. Let 𝑘(𝑢) be a symmetric 

density function. For a chosen bandwidth 𝑏 define, 𝑘𝑏(𝑢) = 𝑏
−1𝑘 (

𝑢

𝑏
) and let the Kernel based 

weights be 𝑤𝑖(𝑥) =
𝑘𝑏(𝑥𝑖−𝑥)

∑ 𝑘𝑏(𝑥𝑖−𝑥)
𝑛
𝑖=1

  . The larger 𝑏 is, the flatter and broader the density function, 

and the more equal the weights and vice-versa. Thus, the Nadaraya-Watson estimator of 𝑚(𝑥) 
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is, �̅�(𝑥) = ∑ 𝑤𝑖(𝑥)𝑦𝑖
𝑛
𝑖=1  where �̅�(𝑥) will be consistent for 𝑚(𝑥), if 𝑏 → 0 as 𝑛 → ∞ in such 

a way that 𝑛𝑏 → ∞ under some reasonable conditions on 𝑚(𝑥) and the design points 𝑥𝑖. Letting 

𝑥𝑗 be any point in the non-sample and then estimating 𝑚(𝑥𝑗), Dorfman (1992) adopted this 

procedure in estimating the finite population total defined by �̅�𝑛𝑝 = ∑ 𝑌𝑖𝑆 + ∑ �̅�𝑃−𝑆 (𝑥𝑗)  =

∑ 𝑌𝑖𝑆 +∑ ∑ (𝑤𝑖𝑗𝑌𝑖) 𝑆𝑃−𝑆 = ∑ 𝑌𝑖 + ∑ 𝑊𝑖𝑌𝑖𝑆𝑆   = ∑ (1 +𝑊𝑖)𝑌𝑖𝑆   𝑤ℎ𝑒𝑟𝑒  𝑊𝑖 = ∑ (𝑤𝑖𝑗) 𝑗∈𝑃−𝑆 . If 

we let 𝑥𝑗 take values on a grid over the domain of interest, we generate a curve estimating 

𝑚( 𝑥𝑗) over the domain. Dorfman (1992) proved the asymptotic design unbiasedness and 

asymptotic MSE of the estimator. The estimator, however suffers from sparse sample problem, 

that is, lacks design adaptability and more work needs to be done to come up with a technique 

that can overcome this problem. This is where the local linear procedure comes in. 

Subsequently, we make use of this procedure to obtain estimators of finite population total. 

    In the parametric regression approach, a regression function is used to quantify the 

contribution of the covariate 𝑋 to the response 𝑌 per unit value 𝑥 to summarize the association 

between the two variables, to predict the mean response for a given value 𝑥 and to extrapolate 

the results beyond the range of the observed covariate values. When using the extrapolation 

technique for the scatter diagram, a plot of the points 𝑥𝑖′𝑠 against 𝑦𝑖′𝑠 is constructed. If the 

pattern is not linear then the parametric regression approach is not suitable for adequately 

estimating the unknown population parameters for this type of data set and all other sets that 

arise in practice of this nature. 

    An alternative approach for estimating the nonlinear regression ought to be investigated and 

determined. The nonparametric approach is therefore considered a better approach than the 

parametric approach as it provides a versatile method of exploring a general relationship 

between two variables and it gives predictions of observations yet to be made without reference 

to a fixed parametric model. Some work on the distribution function, has been done (Chambers, 
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Dorfman and Wehrly, 1992; Dorfman and Hall, 1992; Smith and Njenga, 1992 and Cheng, 

1993).  

    Consider the regression model of the form, 𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝜀𝑖 where, 𝐸(𝑦𝑖|𝑋𝑖 = 𝑥𝑖) =

𝑚(𝑥𝑖) and 𝐶𝑜𝑣(𝑦𝑖, 𝑦𝑗|𝑋𝑖 = 𝑥𝑖, 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖),         𝑖 = 𝑗
0          ,         𝑖 ≠ 𝑗

       𝑖, 𝑗 = 1,2,3… ,𝑁  . The 

properties of the error are given by 𝐸(𝜀𝑖|𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖) and 𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗|𝑋𝑖 = 𝑥𝑖 , 𝑋𝑗 = 𝑥𝑗) =

{
𝜎2(𝑥𝑖),         𝑖 = 𝑗
0          ,         𝑖 ≠ 𝑗

     𝑖, 𝑗 = 1,2,3, … ,𝑁, where 𝑚(. ) and 𝜎2(. ) are assumed to be smooth 

functions of 𝑥𝑖′𝑠. 

    The nonparametric approach does not restrict the functional form of the distribution nor does 

it specify the various stochastic properties such as 𝐸𝜉(. ), 𝑉𝜉(. ) and 𝑀𝑆𝐸𝜉(. ). Rather, it leaves 

them to cover broad classes of models, thus allowing for more robust inference than obtained 

in parametric approach. Using the model ξ, the nonparametric estimator of total, 𝑇 has been 

derived by Nadaraya (1964); Watson (1964); Priestly and Chao (1972); Gasser and Muller 

(1979); Dorfman (1992) and Otieno and Mwalili (2000).  

2.3 Comparative studies 

    Nadaraya (1964) and Watson (1964) introduced the idea of nonparametric estimation of a 

regression curve using the model 𝑌 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝑒 where 𝑚(𝑥) is a smooth function and 

𝑒 is a random variable with mean zero and constant variance. Their objective was to 

estimate 𝑚(𝑥), a smooth function. The Nadaraya-Watson estimator of 𝑚(𝑥) is, �̅�(𝑥) =

∑ 𝑊𝑖(𝑥)𝑌𝑖
𝑛
𝑖=1  and �̅�(𝑥) will be consistent for 𝑚(𝑥), if 𝑏 → 0 as 𝑛 → ∞ in such a way that 

𝑛𝑏 → ∞ under some reasonable conditions on 𝑚(𝑥) and the design points 𝑥𝑖. 
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    Royall (1976) employed predictive inference based on linear models. Generalized regression 

estimators (Cassel et al., 1977; Sandal, 1980; Robinson and Sandal, 1983), including ratio 

estimators and linear regression estimators (Cochran, 1977), best linear unbiased estimators 

(Brewer, 1963; Royall, 1970), and post stratification estimators (Holt and Smith, 1979), are all 

derived from assumed linear models. Royall and Cumberland (1978) applied this predictive 

inference approach in a study of the properties of the ratio estimator and its variance. They 

concentrated on making model based methods robust to departures from assumptions. 

    Following Godambe (1982), a sampling strategy is defined as robust if, and only if, it attains 

the minimum value of the Godambe-Joshi lower bound to the expected variance (Godambe 

and Joshi (1965)). In the literature on the design based approach to finite population sampling, 

the term robustness usually has the more restrictive meaning of asymptotic design 

unbiasedness; Brewer (1979), Sarndal (1980), and Wright (1983). Although asymptotic design 

unbiasedness is necessary, it is by no means sufficient for a sampling strategy to attain the 

minimum value of the Godambe-Joshi lower bound if the assumed model is incorrect. It is well 

known, for example, that under the model, 𝐸𝜉(𝑌𝑖) = 𝑥𝑖𝛽   𝑎𝑛𝑑  𝐸𝜉{(𝑌𝑖 − 𝑥𝑖𝛽)
2} = 𝑥𝑖

2𝜎2 

where 𝛽, 𝜎 are unknown and 𝐸𝜉(. ) denotes expectation under the model 𝜉, the best strategy 

for estimating the population total is the Horvitz-Thompson (1952) estimator together with a 

probability sampling design with first order inclusion probabilities 𝜋𝑖  proportional to 𝑥𝑖. When 

the true model contains an intercept term, however, Sarndal (1980) showed that, although 

design unbiased, the Horvitz-Thompson estimator does not attain the minimum value of the 

Godambe-Joshi lower bound to the expected variance.  

    Given this concern with robustness, it is natural to consider a nonparametric class of models 

for 𝜉, because they allow the models to be correctly specified for much larger classes of 

functions. Kuo (1988), Dorfman (1992), Dorfman and Hall (1993), Chambers et al., (1993) and 
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Chambers (1996) adopted this approach in constructing model based nonparametric estimators. 

Kuo (1988) applied nonparametric regression to sample data to estimate the finite population 

distribution function. 

    In his study, Dorfman (1992) proved the asymptotic unbiasedness and asymptotic MSE of 

an estimator. The estimator, however suffers from sparse sample problem, and more work 

needs to be done to come up with another technique that can overcome this problem. In order 

to overcome the sparse sample problem suffered by the estimator of finite population 

distribution function, we introduce the local linear procedure for estimating the finite 

population total. 

    Smith and Njenga (1992) applied nonparametric regression for purposes of data exploration 

in analytical surveys. Dorfman and Hall (1993) developed methods and theory for 

nonparametric regression for finite population distribution function. Chambers (1996) 

described using nonparametric regression calibration successfully on multivariate data in 

combination with ridge regression methods. Simwa (1997) applied nonparametric models on 

observed reported data for HIV/AIDS incidence to determine trend patterns of the expected 

HIV/AIDS epidemic in both Kenya and Uganda. 

    Chambers and Dorfman (2002) observed that the calibration estimator based on the 

columnar model does slightly better than the best linear unbiased estimator at high band width. 

The estimator generally appears robust to changes in bandwidth, and gives exact unbiasedness 

and minimal variance for a particular weighted balanced sample. However, application to finite 

populations of methods more sophisticated than kernel regression should be explored, for 

example the variable bandwidth local linear regression approach of Fan and Gijbels (1996). 

Zheng and Little (2003) proposed a model based estimator that uses penalized spline 

regression, and Zheng and Little (2004) extended this estimator to two stage sampling designs.  
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    A new type of model assisted nonparametric regression estimator for the finite population 

total, based on local polynomial smoothing which is a generalization of kernel regression has 

also been proposed. Stone (1977) introduced the theory of local linear regression using 

weighted least squares to fit a linear regression function to the data and evaluate this function 

at 𝑥. Consistent sequences of probability weight functions defined in terms of nearest neighbors 

are constructed and the results applied to verify the consistency of the estimators of the various 

quantities discussed. Cleveland (1979) and Cleveland and Devlin (1988) showed that these 

techniques are applicable to a wide range of problems. Theoretical work by Fan (1992, 1993), 

Ruppert and Wand (1994) and Ruppert et al. (1995) showed that they have many desirable 

theoretical properties, including adaptation to the design of the covariate(s), consistency and 

asymptotic unbiasedness. Wand and Jones (1995) provided a clear explanation of the 

asymptotic theory for kernel regression and local polynomial regression. The monograph by 

Fan and Gijbels (1992) and Fan and Gijbels (1996) explored a wide range of application areas 

of local polynomial regression techniques.  

    However, the application of these techniques to model-assisted survey sampling is new. 

Breidt and Opsomer (2000) used the traditional local polynomial regression estimator for the 

unknown regression function 𝑚(𝑥). They assumed that 𝑚(𝑥) is a smooth function of 𝑥 and 

obtained an asymptotically design unbiased and consistent estimator of the finite population 

total. The local polynomial regression estimator has the form of the generalized regression 

estimator, but is based on a nonparametric super population model applicable to a much larger 

class of functions. Kasungo (2002) employed a model based approach in estimating the finite 

population total based on local polynomial regression. Simulation experiments indicated that 

the local polynomial regression estimator was more efficient than regression estimators when 

the model regression function was incorrectly specified, while being approximately as efficient 

when the parametric specification was correct. 
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    Breidt et al. (2005) considered a related nonparametric model assisted regression estimator, 

replacing local polynomial smoothing with penalized splines. Chen et al. (2008) studied a 

weighted local linear regression smoother for longitudinal or clustered data. As a hybrid of the 

methods of Chen and Jin (2005) and Wang (2003), the proposed local linear smoother 

maintains the advantages of both methods in computational and theoretical simplicity, variance 

minimization and bias reduction. Ombui (2008) applied local polynomial regression in 

estimating parameters of the finite population. In his study, it was observed that the developed 

estimators were asymptotically unbiased, consistent and normally distributed when certain 

conditions were satisfied. 

    Kim et al. (2009) extended the local polynomial nonparametric regression estimation to two 

stage sampling, in which a probability sample of clusters is selected, and then subsamples of 

elements within each selected cluster are obtained. Two stage cluster sampling is frequently 

used because an adequate frame of elements is not available or would be prohibitively 

expensive to construct, but a listing of clusters is available. Sarndal et al. (1992) identified three 

cases of auxiliary information available for two stage sampling, depending on whether the 

information is available at the cluster level, element level for all elements, or element level for 

elements in selected clusters only.  

    Harms and Duchesne (2010) derived asymptotic properties of the model assisted local linear 

estimator under the combined inference approach. They showed that the bias of �̅�(. ) is the 

same as in the identically independent distribution (𝑖𝑖𝑑) case but the variance equaled that from 

the 𝑖𝑖𝑑 case multiplied by a correction factor derived from the sampling scheme. Su et al. 

(2012) outlined the idea of the extension of local polynomial fitting to a linear heteroscedastic 

regression model. They verified the asymptotic normality of the parameters based on numerical 

simulations applicable to a case of economics which indicated their method to be surely 
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effective in finite sample situations. Sanchez et al. (2014) estimated 𝑚(. ) using a modified 

local constant estimator for the mixed variable case. Rady and Ziedan (2014) estimated the 

finite population total in the presence of two auxiliary variables using the bootstrap method 

and jackknife method. A comparison between different methods was performed on the basis of 

mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error 

(MAPE). 

    Luc (2016) derived asymptotic properties of probability weighted nonparametric regression 

estimator under a combined inference framework for complex surveys. However, the 

nonparametric regression estimator considered here is the local constant estimator. Simulation 

studies showed that the bias of the modified nonparametric regression estimator had the same 

leading terms and order of probability as under the model based framework. He examined 

asymptotic properties under the combined inference approach and tested the performance of 

the estimator against the traditional model based local constant estimators.  Syengo (2018) 

studied local polynomial regression under stratified random sampling where simulation 

experiments showed that the resulting estimator exhibited good properties. 

    Mostafa and Shan (2019) estimated finite population total from complex sample surveys in 

the presence of auxiliary information in a model assisted framework. Results suggested that 

their proposed estimators performed well relative to the other model based and model assisted 

estimators as well as the customary Horvitz–Thompson estimator under different levels of 

misspecification in the working model. Parichha et.al. (2019) described the problem of 

estimation of finite population mean in two phase stratified random sampling. The efficacy of 

the proposed methodology had been justified through empirical investigations carried out using 

the data set of natural population as well as the data set of artificially generated population. 
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CHAPTER THREE 

THEORY AND METHODS 

3.1 Introduction 

    In this chapter, we derive model based robust estimators of finite population total using the 

procedure of local linear regression. In particular, properties of local linear regression 

estimators are investigated. Local linear regression is a design adaptive nonparametric 

regression approach that is based on the theory of weighted least squares regression. The 

estimators based on this approach solve the drawbacks of the two popular kernel estimators 

described in chapter two due to their nature of design adaptability.  

    In examining the properties of local linear regression estimators, the following assumptions 

considered by Fan (1993) and Ruppert and Wand (1994) are used: 

i. The 𝑥𝑗 variables lie in the interval (0, 1). 

ii. The function 𝑚′′(. ) is continuous on (0, 1). 

iii. The kernel 𝐾(. ) is symmetric and supported on (−1, 1). Also 𝐾(𝑡) is bounded and  

continuous and satisfying the following: ∫ 𝐾(𝑥)
∞

−∞
𝑑𝑥 = 1, ∫ 𝑥𝐾(𝑥)

∞

−∞
𝑑𝑥 = 0, 

∫ 𝑥2𝐾(𝑥)
∞

−∞
𝑑𝑥 ≠ 0, ∫ 𝐾2𝑟(𝑥)

∞

−∞
𝑑𝑥 < ∞  for 𝑟 = 1,2, …. 

iv. The bandwidth ℎ is a sequence of values which depend on the sample size 𝑛 and 

satisfying ℎ → 0 and 𝑛ℎ → ∞ as 𝑛 → ∞. 

v. The point 𝑥𝑗 at which the estimation is taking place satisfies ℎ < 𝑥𝑗 < 1 − ℎ. 

    Consider the local polynomial regression. Then the estimate of 𝑚(𝑥) at any value of 𝑥 is 

obtained by the minimization problem 

min
𝛽
∑(𝑦𝑖 − 𝛽0 − 𝛽1(𝑥𝑖 − 𝑥) − 𝛽2(𝑥𝑖 − 𝑥)

2 −⋯− 𝛽𝑝(𝑥𝑖 − 𝑥)
𝑝)
2
𝐾𝑏(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

              (3.1) 

with respect to 𝛽0, 𝛽1, … , 𝛽𝑝, where 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)
′
. The result is therefore a weighted 

least squares estimator with weights 𝐾𝑏(𝑥 − 𝑥𝑖). Using the notations 
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𝑋 = [

 1        𝑥 − 𝑥1   …   (𝑥 − 𝑥1)
𝑝   

1       𝑥 − 𝑥2 ⋯ (𝑥 − 𝑥2)
𝑝

⋮ ⋱ ⋮
1     𝑥 − 𝑥𝑛 ⋯ (𝑥 − 𝑥𝑛)

𝑝

],                𝑌 = (

𝑌1
𝑌2
⋮
𝑌𝑛

)                                                                 

and 

𝑊 = [

𝐾𝑏(𝑥 − 𝑥1)              0        …            0           

  0             𝐾𝑏(𝑥 − 𝑥2) ⋯ 0
⋮ ⋱ ⋮

0             0               0 ⋯ 𝐾𝑏(𝑥 − 𝑥𝑛)

]   ,                                                                           

we can compute �̅� which minimizes (3.1) by usual formula for a weighted least squares 

estimator 

�̅�(𝑥) = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑌                                                                                                                (3.2) 

Then, the local polynomial estimator of the regression function 𝑚(𝑥) is 

�̅�(𝑥) = �̅�0(𝑥) = 𝑒1
′(𝑋′𝑊𝑋)−1𝑋′𝑊𝑌                                                                                         (3.3) 

where 𝑒1 is the 𝑛 × 1 vector having 1 in the first entry and 0 elsewhere. 

3.2 Sample survey strategies 

    The theory of sample surveys involves principles and methods of collecting and analysing 

data from a finite population of 𝑁 units and then making inferences about finite population 

parameters on the basis of information obtained from the sample. Unified frameworks for 

survey designs and estimation methods to finite population inference have been considered by 

researchers in the past and classified as design based approach, model assisted approach, 

combined inference approach and model based approach. Comparing and contrasting them in 

terms of their concepts of efficiency and robustness to assumptions about the characteristics of 

the population, it has been concluded that although none of these approaches delivers both 

efficiency and robustness, the model based approach seems to achieve the best compromise 

among the other approaches. This study considers a model based approach to finite population 
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total estimation using local linear regression procedure. A brief discussion on these survey 

strategies is given below as described in Chambers (2003).  

3.2.1 Design based approach 

    This is also called classical approach or randomisation approach. This approach is based on 

the assumption that the population values of the survey measurements are fixed constants so 

that there is no model generating the population values. It follows that the only probabilistic 

information resides in the sample selection probabilities under the prevailing random design. 

In this approach, each population unit 𝑈1, 𝑈2, … , 𝑈𝑁 is associated with a fixed but unknown 

real number which is the value of the variable under study. Inference is based on the values of 

the survey variable 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑁)
′ picked through the design 𝑝(𝑠). The approach 

assumes that the population units are labelled and the researcher has access to the fixed value 

𝑦𝑖 of 𝑈𝑖 population units. This becomes involving and cannot be justified.  

    An estimator �̅�(𝑦) based on the design 𝑝(𝑠) is said to be unbiased for 𝑇(𝑦) if  

𝐸𝑝(�̅�(𝑦)|𝑠) =∑�̅�(𝑦)𝑝(𝑠) = 𝑇(𝑦)                                                                                          (3.4)

𝑠∈𝑆

 

where 𝐸𝑝(�̅�(𝑦)|𝑠) is the conditional expectation of �̅�(𝑦), given that the sample 𝑠 is chosen 

through some design 𝑝(𝑠). Consider the theorem; 

    An estimator �̅�(𝑦) = ∑ 𝑙𝑠𝑖𝑌𝑖𝑠∈𝑆  for the population total is unbiased for 𝑇(𝑦) where 

∑ 𝑙𝑠𝑖𝑝(𝑠)𝑠∈𝑆 = 1, 𝑖 is the 𝑖𝑡ℎ unit and 1 ≤ 𝑖 ≤ 𝑁.  

Proof; 

𝐸𝑝(�̅�(𝑦)|𝑠) =∑�̅�(𝑦)𝑝(𝑠)                                                                                                                   

𝑠∈𝑆
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=∑𝑝(𝑠)

𝑠∈𝑆

∑𝑙𝑠𝑖𝑦𝑖                                                                                                      

𝑠∈𝑆

 

=∑𝑌𝑖
𝑠∈𝑆

∑𝑙𝑠𝑖𝑝(𝑠)                                                                                                      

𝑠∈𝑆

 

          = ∑𝑌𝑖,

𝑁

𝑖=1

 𝑠𝑖𝑛𝑐𝑒 ∑ 𝑙𝑠𝑖𝑝(𝑠)

𝑖∈𝑆

= 1                                                                                           

                = 𝑇(𝑦)                                                                                                                                  (3.5) 

    On the other hand, the variance of �̅�(𝑦) is 

𝑉𝑎𝑟(�̅�(𝑦|𝑠)) = 𝐸𝑝 (�̅�(𝑦|𝑠) − 𝐸𝑝(�̅�(𝑦|𝑠)))
2

                                                                             (3.6) 

    However, if the estimator is biased, then its MSE is 

𝑀𝑆𝐸𝑝{�̅�(𝑦)|𝑠} = 𝐸𝑝(�̅�(𝑦)|𝑠 − 𝑇(𝑦))
2
                                                                                                    

          = 𝐸𝑝 ((�̅�(𝑦)|𝑠) − 𝐸𝑝(�̂�(𝑦)|𝑠) + 𝐸𝑝(�̅�(𝑦)|𝑠) − 𝑇(𝑦))
2

                       

         = 𝐸𝑝(�̅�(𝑦)|𝑠 − 𝐸𝑝�̅�(𝑦)|𝑠)
2
+ 𝐸𝑝 (𝐸𝑝�̅�(𝑦)|𝑠 − 𝑇(𝑦))

2

                       

                            = 𝑉𝑎𝑟𝑝(�̅�(𝑦)|𝑠) + (𝐵𝑝𝑇(𝑦))
2

                                                                            (3.7) 

If we minimize (3.7), then we can deduce the performance of any sampling strategy. However, 

in minimization criterion, problems can arise when selecting a sampling strategy between an 

unbiased estimator with a small variance and the biased estimator with a small MSE. 

3.2.2 Model assisted approach 

 

    In this approach, randomization based theory is treated as the only true approach to inference 

and models are only used to help choose between valid randomization based alternatives. This 

means that one chooses among randomization consistent estimation strategies by hypothesizing 

a reasonable and practical model, restricting attention to model unbiased estimators and 

selecting that strategy with minimum model expected randomization mean square error. The 

inference for model assisted approach is a form of randomization inference that employs 
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models to help determine the point estimators. The purely design based approach does not take 

into account the auxiliary information in its estimation of the finite population total while the 

purely model based approach ignores the inclusion probabilities which are based on the design 

used to select the sample. The model assisted approach assumes a working model 𝜉 describing 

the relationship between the study variable and the auxiliary variable. Estimators are then 

derived on the basis of this model. These estimators have good efficiency if the model is true, 

but maintain desirable properties like asymptotic design unbiasedness and design consistency 

if the model is false.  

3.2.3 Combined inference approach 

 

    It is assumed that a finite population is generated based on a selected model, where the 

predictor variables and outcome variable are assumed to follow a joint probability distribution. 

Then a sample is drawn from this population based on a probability sampling design 

(Pfefferman 1993). This type of estimation can be thought of having two stages; a model stage 

and a design stage. In the model stage, a model is selected based on the belief that it has 

generated the population. Nonparametric regression models are attractive in this case as they 

are consistent under minimal restrictions on the underlying function. The relationship between 

the outcome and predictor variables is estimated in the design stage, where a sample is drawn 

according to a specified sampling plan and the corresponding weights are included in the 

model. 

3.2.4 Model based approach 

 

    This is a predictive approach or a super population approach. In this approach, a super 

population model provides an alternative framework for inference in finite population. Such 

models do not require the units in the super population to be identifiable. However, if the super 

population arises as a random permutation of identifiable units in a population, the units in the 
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super population are potentially identifiable. We assume that the units in the population are 

identifiable, and that the super population depends on this population definition. The model 

employed characterise the actual values, both the observed and the unobserved which are 

considered as a realization of a random variable 𝑌. We employ a sampling scheme consistent 

with the selected model, taking into account practical considerations such as costs to draw a 

sample 𝑠. We let the probability be of the form 𝑝(𝑠|𝑦). We then use the model, the sample and 

the information in the sampling scheme to make an inference about the unobserved random 

variables 𝑌𝑖′𝑠. The super population model is 

𝐸(𝑌𝑖) = 𝛽𝑥𝑖 ,   𝑖 = 1,2, … ,𝑁                                                                                                             (3.8) 

𝑉𝑎𝑟(𝑌𝑖) = 𝜎
2(𝑥𝑖), 𝑖 = 1,2, … ,𝑁                                                                                            (3.9) 

𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 0, 𝑖 ≠ 𝑗;   𝑖, 𝑗 = 𝑛 + 1, … , 𝑁                                                                          (3.10) 

We let �̅�(𝑦)  be an unbiased estimator of 𝑇(𝑦). Therefore, the estimator �̅�(𝑦) is said to be 

unbiased for 𝑇(𝑦) if 𝐸𝑚 (�̅�(𝑦)|(𝑆, 𝑌)) = 𝐸𝑚(�̅�(𝑦)) where 𝐸𝑚 (�̅�(𝑦)|(𝑆, 𝑌))  denotes the 

conditional expectation of �̅�(𝑦)  given the sample (𝑆, 𝑌) with respect to a given model 𝜉. 

3.3 The proposed estimator 

    Consider a finite population of size 𝑁 labeled 𝑈1, 𝑈2, …… , 𝑈𝑁. We have (𝑥𝑖, 𝑌𝑖), 𝑖 =

1,2, …… ,𝑁 associated with each unit. The values 𝑥1, 𝑥2, …… , 𝑥𝑁 are known and can be used 

in the sample design, or in the estimator, or in both. The selection variable set 𝑆 denotes sample 

of size 𝑛 from 𝑇, for which 𝑦 values are unknown. 𝑆 is an ignorable set, meaning, given 

information on 𝑥, knowledge of how the sample was taken provides no additional information 

about 𝑦 (Dorfman 1992). Let 𝑇 be the finite population total defined by 

𝑇 =∑𝑌𝑖

𝑁

𝑖=1

=∑𝑦𝑖
𝑖∈𝑆

+∑𝑦𝑖
𝑖∈𝑅

                                                                                                          (3.11) 
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where ∑ 𝑦𝑖𝑖∈𝑆  is known while ∑ 𝑦𝑖𝑖∈𝑅   is unknown such that 𝑅 is an indexing set for the 𝑦 values 

which are unknown to the investigator. The estimator of the finite population total, the bias and 

the error variance can be determined using the super population model of the form 

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝜀𝑖                                                                                                                     (3.12) 

    In particular, the following assumptions hold for the model considered in the nonparametric 

regression estimation of 𝑚(𝑥𝑖) , thus 

𝐸(𝑌𝑖|𝑋𝑖) = 𝑚(𝑥𝑖)                                                                                                                            (3.13) 

𝑉𝑎𝑟(𝑌𝑖|𝑋𝑖) = 𝜎
2(𝑥𝑖)                                                                                                                      (3.14) 

𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑗|𝑋𝑖 = 𝑥𝑖, 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗
 0         ,         𝑖 ≠ 𝑗  

  𝑖, 𝑗 = 1, 2, 3, … ,𝑁                              (3.15) 

    The properties of the error are given by 

𝐸(𝜀𝑖|𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)                                                                                                                 (3.16) 

𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗|𝑋𝑖 = 𝑥𝑖, 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗
 0         ,         𝑖 ≠ 𝑗  

  𝑖, 𝑗 = 1, 2, 3, … .𝑁                              (3.17) 

The functions 𝑚(𝑥𝑖)  and 𝜎2(𝑥𝑖)  are assumed to be smooth and strictly positive. 

    The proposed estimators are derived by modeling the finite population of 𝑦𝑖′𝑠, conditioned 

on the auxiliary variable 𝑥𝑖, as a realization from an infinite super population model 𝜉 in which 

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝜀𝑖 where 𝜀𝑖 are independent random variables, with mean zero and 

variance 𝑣(𝑥𝑖), 𝑚(𝑥𝑖) is a smooth function of 𝑥𝑖, and 𝑣(𝑥𝑖)  is smooth and strictly positive. 

𝐸𝜉(𝑌𝑖|𝑋𝑖) = 𝑚(𝑥𝑖) is called the regression function, while 𝑣(𝑥𝑖) = 𝑣𝑎𝑟𝜉(𝑌𝑖) is called the 

variance function. The estimators of 𝑇 are derived by noting that 

�̅� = ∑𝑦𝑖 + {𝐸 (∑�̅�𝑖
𝑖∈𝑅

)}

𝑖∈𝑆
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    = ∑𝑦𝑖 +∑�̅�(𝑥𝑖)

𝑖∈𝑅𝑖∈𝑆

                                                                                                                  (3.18) 

Here it is observed that, ∑ 𝑦𝑖𝑖∈𝑆  is known while ∑ 𝑦𝑖𝑖∈𝑅   is unknown. The optimal predictor of 

this unknown quantity is 

𝐸 (∑𝑦𝑖
𝑖∈𝑅

) =∑𝑚(𝑥𝑖)                                                                                                                  (3.19)

𝑖∈𝑅

 

    However 𝑚(𝑥𝑖) is unknown. An estimate of 𝑚(𝑥𝑖) is computed using the local linear 

procedure and then substituted in 𝑇 in order to get local linear regression estimators of finite 

population totals defined as 

�̅�𝐿𝐿 =∑𝑦𝑖 +∑�̅�𝐿𝐿(𝑥𝑖)                                                                                                            (3.20)

𝑖∈𝑅𝑖∈𝑆

 

where �̅�𝐿𝐿(𝑥𝑖) is a local linear estimator of 𝑚(𝑥𝑖) at point 𝑥𝑖 

    Letting jx  be any point in the non sample, and as in Dorfman (1992), we propose 

�̅�𝐿𝐿 =∑𝑌𝑖
𝑖∈𝑆

+∑�̅�𝐿𝐿
𝑗∈𝑅

(𝑥𝑗)                                                                                                            (3.21) 

as estimators of finite population total, where �̅�𝐿𝐿(𝑥𝑗) is a local linear regression estimator of 

𝑚(𝑥𝑗)  at point  𝑥𝑗. 

3.4 Construction of the local constant regression estimator of  𝑻  

    Local constant regression is a nonparametric conditional quantile estimation method where 

the order of the local polynomial being fit is equal to zero. The super population model 

considered for estimating the finite population total is given by (3.12). The assumptions stated 

in equations (3.13) (3.14) and (3.15) hold for the super population model considered in the 

nonparametric regression estimation of 𝑚(𝑥𝑖). The properties of the error are defined by 

equations (3.16) and (3.17). The functions 𝑚(𝑥𝑖)  and 𝜎2(𝑥𝑖)  are assumed to be smooth and 

strictly positive. 

    Consider the Taylor series expansion of 𝑚(𝑥𝑖) about 𝑥𝑗, which is 
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𝑚(𝑥𝑖) = 𝑚(𝑥𝑗) + (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗)….                   

with 𝑥𝑖 = 𝑥𝑗 + ℎ𝑡, so that 

𝑚(𝑥𝑖) = 𝑚(𝑥𝑗) + ℎ𝑡𝑚
′(𝑥𝑗) +

ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) +

ℎ3𝑡3

3!
𝑚′′′(𝑥𝑗) +

ℎ4𝑡4

4!
𝑚′′′′(𝑥𝑗) + ⋯ (3.22) 

    The general form of the Taylor series expansion is expressed as 

𝑦𝑖 = 𝛼 + (𝑥𝑖 − 𝑥𝑗)𝛽 + 𝜀𝑖                                                                                                               (3.23) 

where 𝑥𝑖 lies in the interval [𝑥𝑗 − ℎ, 𝑥𝑗 + ℎ] and 

 𝜀𝑖 =
(𝑥𝑖 − 𝑥𝑗)

2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
4

4!
𝑚′′′′(𝑥𝑗) + ⋯                               

    The constants 𝛼 and 𝛽 are computed using the least squares procedure by making 𝜀𝑖 the 

subject of the formulae, squaring both sides, summing and applying the weights to obtain a 

solution to the weighted least squares problem of the form 

∑𝜀𝑖
2

𝑖∈𝑆

=∑(𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))
2

𝑖∈𝑆

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                   (3.24) 

Noting that 𝑥𝑖 = 𝑥𝑗 + ℎ𝑡, implies that 𝑡 =
𝑥𝑖−𝑥𝑗

ℎ
 and therefore 𝐾(𝑡) = 𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
) 

    Letting, 

𝜑 =∑(𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))
2

𝑖∈𝑆

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                           (3.25) 

and differentiating 𝜑 with respect to 𝛼 and equating to zero, gives 

𝜕𝜑

𝜕𝛼
=∑−2(𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))

𝑖∈𝑆

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
){{∑𝐾(

𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

}

−1

} = 0 ,                (3.26) 

implying that 

∑𝐾(
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

+ 𝛽∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
).                                (3.27)

𝑖∈𝑆
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    Letting 

𝑆𝑟(𝑥𝑗; ℎ) =∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)

𝑟

𝑖∈𝑆

            𝑟 = 0,1,2                                                         (3.28) 

so that 

𝑆0(𝑥𝑗; ℎ) =∑𝐾(
𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                                                                       

𝑖∈𝑆

 

𝑆1(𝑥𝑗; ℎ) =∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)                                                                                                      

𝑖∈𝑆

 

𝑆0(𝑥𝑗; ℎ) =∑𝐾(
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)

2
                                                                                                    

𝑖∈𝑆

 

Then it follows from equation (3.27) that 

∑𝐾(
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼𝑆0(𝑥𝑗; ℎ) + 𝛽𝑆1(𝑥𝑗; ℎ).                                                                          (3.29) 

    In a similar way, differentiating 𝜑 with respect to 𝛽 and equating to zero, gives 

𝜕𝜑

𝜕 𝛽 
=∑−2(𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗)) (𝑥𝑖 − 𝑥𝑗)

𝑖∈𝑆

𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

){{∑𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

)

𝑖∈𝑆

}

−1

} = 0,     (3.30) 

Implying that 

∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

)

𝑖∈𝑆

𝑦𝑖 = 𝛼∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

)

𝑖∈𝑆

+ 𝛽∑(𝑥𝑖 − 𝑥𝑗)
2
𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

).     (3.31)

𝑖∈𝑆

 

and thus 

∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼𝑆1(𝑥𝑗; ℎ) + 𝛽𝑆2(𝑥𝑗; ℎ).                                                          (3.32) 

    Equation (3.29) is multiplied by 𝑆2(𝑥𝑗; ℎ) and equation (3.32) by 𝑆1(𝑥𝑗; ℎ) to obtain 

𝑆2(𝑥𝑗; ℎ)∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) + 𝛽𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)                        (3.33) 

𝑆1(𝑥𝑗; ℎ)∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼 (𝑆1(𝑥𝑗; ℎ))
2

+ 𝛽𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)                 (3.34) 

Equation (3.34) is subtracted from equation (3.33) to obtain 
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𝑆2(𝑥𝑗; ℎ)∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 − 𝑆1(𝑥𝑗; ℎ)∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖

= 𝛼𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − 𝛼 (𝑆1(𝑥𝑗; ℎ))
2

                                                         (3.35) 

Making 𝛼 the subject of the formulae, gives 

�̅� = ∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖}                                                (3.36)

𝑖∈𝑆

 

    In a similar manner, equation (3.29) is multiplied by 𝑆1(𝑥𝑗; ℎ) and equation (3.32) by 

𝑆0(𝑥𝑗; ℎ) to obtain 

𝑆1(𝑥𝑗; ℎ)∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ) + 𝛽 (𝑆1(𝑥𝑗; ℎ))
2

                                 (3.37) 

𝑆0(𝑥𝑗; ℎ)∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 = 𝛼𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ) + 𝛽𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)        (3.38) 

Subtracting equation (3.38) from equation (3.37), gives 

𝑆1(𝑥𝑗; ℎ)∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖 − 𝑆0(𝑥𝑗; ℎ)∑(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

𝑦𝑖

= 𝛽 (𝑆1(𝑥𝑗; ℎ))
2

− 𝛽𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)                                                          (3.39) 

Making 𝛽 the subject of the formulae, gives 

�̅� =∑{
(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗) − 𝑆1(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝑦𝑖}                                                (3.40)

𝑖∈𝑆

 

Now it follows from equation (3.23) that 

�̅�𝑖 = �̅� + (𝑥𝑖 − 𝑥𝑗)�̅�                                                                                                                        (3.41) 

If the value assigned is zero, assuming that �̅� is a pre-assigned constant, then 

�̅�𝑗 = �̅�                                                                                                                                                 (3.42) 

Therefore 

�̅�(𝑥𝑗) =∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖}                                                    

𝑖∈𝑆
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            = ∑𝑤𝑖(𝑥𝑗)𝑦𝑖
𝑖∈𝑆

                                                                                                                      (3.43) 

where 

𝑤𝑖(𝑥𝑗) =
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖                                                                

implying that the local constant regression estimator of finite population total can be estimated 

using  

�̅� = ∑𝑦𝑖
𝑖∈𝑆

+∑�̅�(𝑥𝑗)                                                                                                                               

𝑗∈𝑅

 

    = ∑𝑦𝑖
𝑖∈𝑆

+∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖} 

𝑖∈𝑆

}

𝑗∈𝑅

                   (3.44) 

3.5 Properties of the local constant regression estimator of 𝑻 

    In examining the properties of local constant regression estimators, the assumptions outlined 

respectively in section (3.1)and section (3.3) are considered. Fan (1993) imposed conditions 

on 𝐾(. ) and are only used for convenience in terms of technical arguments and thus can be 

relaxed.  

3.5.1 The expectation of the local constant regression estimator of 𝑻  

 

    The expectation of �̅� is  

𝐸(�̅�) =∑𝐸(𝑦𝑖) +∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝑘 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝐸(𝑦𝑖)}

𝑖∈𝑆

}             

𝑗∈𝑅𝑖∈𝑆

 

           = ∑𝑚(𝑥𝑖)

𝒊∈𝑺

+∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝑘 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝑚(𝑥𝑖)}

𝑖∈𝑆

}    (3.45) 

𝑗∈𝑅

 

    Using the Taylor series expansion of the form (3.22), theorem 3 in Fan and Gijbels (1996) 

is such that under the conditions (𝑖) to (𝑣) given in section (3.1), allows 
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𝐸(�̅�)  = ∑𝑚(𝑥𝑖)

𝒊∈𝑺

+∑{∑{
𝑆2(𝑥𝑗; ℎ)𝑘 (

𝑥𝑖 − 𝑥𝑗
ℎ

)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 (𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅

+
ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) +⋯)}} 

 

−∑{∑{
𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝑘 (

𝑥𝑖 − 𝑥𝑗

ℎ
)(𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅

+
ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) + ⋯)}}                

=∑𝑚(𝑥𝑖)

𝑖∈𝑆

+∑{(
𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))

2

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)𝑚(𝑥𝑗)}

𝑗∈𝑅

+∑{(
𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 )𝑚′(𝑥𝑗)}                                  

𝑗∈𝑅

 

+∑{(
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)
𝑚′′(𝑥𝑗)

2!
}                                                                       

𝑗∈𝑅

 

=∑𝑚(𝑥𝑖)

𝑖∈𝑆

+∑𝑚(𝑥𝑗)

𝑗∈𝑅

+∑{(
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)
𝑚′′(𝑥𝑗)

2!
} .      (3.46) 

𝑗∈𝑅

 

3.5.2 The bias of the local constant regression estimator of 𝑻 

 

    The bias of the local constant regression estimator, �̅� is  

𝐵𝑖𝑎𝑠(�̅�) =∑{(
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)
𝑚′′(𝑥𝑗)

2!
}.                                      (3.47) 

𝑗∈𝑅

 

Therefore the asymptotic expression of the bias of the local constant regression estimator �̅� is 
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𝐵𝑖𝑎𝑠𝑎𝑠𝑦(�̅�) =∑{
(𝑛2ℎ6𝑘2

2 + 𝑜(𝑛2ℎ8))𝑚′′(𝑥𝑗)

2(𝑛2ℎ4𝑘2 + 𝑜(𝑛2ℎ6))
}  

𝑗∈𝑅

                                                                         

                       = ∑{
1

2
ℎ2𝑘2𝑚

′′(𝑥𝑗)}                                                                                            (3.48)

𝐽∈𝑅

 

3.5.3 The variance of the local constant regression estimator of 𝑻 

    The variance of the local constant regression estimator �̅� is estimated using the variance of 

the error, thus 𝑉𝑎𝑟(�̅� − 𝑇) is  

𝑉𝑎𝑟(�̅�) = 𝑉𝑎𝑟 {∑𝑦𝑖 +∑�̅�(𝑥𝑗) −∑𝑦𝑖
𝑖∈𝑆

−∑𝑦𝑗
𝑗∈𝑅𝑗∈𝑅𝑖∈𝑆

}                                                                       

                = 𝑉𝑎𝑟 {∑∑𝑤𝑖(𝑥𝑗)𝑦𝑖 −∑𝑦𝑗
𝑗∈𝑅𝑗∈𝑅𝑖∈𝑆

}                                                                                           

                = ∑∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

+∑𝜎2(𝑥𝑗)

𝑗∈𝑅

                                                                       (3.49) 

where, 

𝑤𝑖(𝑥𝑗) =
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
).                                                                    

     Incorporating the results of �̅�(𝑥𝑗) so far derived, the asymptotic expression of the variance 

of �̅� is expressed as 

𝑉𝑎𝑟𝑎𝑠𝑦(�̅�) =
1

𝑛ℎ
∑∑{𝐾2 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝜎2(𝑥𝑖) (

𝑥𝑖 − 𝑥𝑖−1
ℎ

)}                                                              

𝑖∈𝑆𝑗∈𝑅

 

                    = ∑
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗).

𝑗∈𝑅

                                                                                                          (3.50) 
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3.5.4 The MSE of the local constant regression estimator of 𝑻 
 

    Theorem I in Fan (1993) allows that under condition (ii) gives 

𝑀𝑆𝐸(�̅�) = (𝐵𝑖𝑎𝑠(�̅�))
2
+ 𝑉𝑎𝑟(�̅�)                                                                                                            

= {∑{(
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)
𝑚′′(𝑥𝑗)

2
}

𝑗∈𝑅

}

2

+∑∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

+∑𝜎2(𝑥𝑗)                                                                                                           (3.51)

𝑗∈𝑅

 

    The asymptotic expression of the MSE of the local constant regression estimator �̅� is 

𝑀𝑆𝐸𝑎𝑠𝑦(�̅�) = {∑{
1

2
 ℎ2𝑘2𝑚

′′(𝑥𝑗)}

𝑗∈𝑅

}

2

                                                                                    (3.52) 

3.6 Construction of the local linear regression estimator of 𝑻 

    In this section, consider again the super population model for estimating the population total 

of the form (3.12). The assumptions stated in equations (3.13) (3.14) and (3.15) hold for the 

super population model considered in the nonparametric regression estimation of 𝑚(𝑥𝑖). The 

properties of the error are defined by equations (3.16) and (3.17). The functions 𝑚(𝑥𝑖)  and 

𝜎2(𝑥𝑖)  are assumed to be smooth and strictly positive.  

    Using the Taylor series expansion, the expression of 𝑚(𝑥𝑖) is defined by (3.22) which is  

𝑚(𝑥𝑖) = 𝑚(𝑥𝑗) + (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗)….                        

with 𝑥𝑖 = 𝑥𝑗 + ℎ𝑡, so that 

𝑚(𝑥𝑖) = 𝑚(𝑥𝑗) + ℎ𝑡𝑚
′(𝑥𝑗) +

ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) +

ℎ3𝑡3

3!
𝑚′′′(𝑥𝑗) +

ℎ4𝑡4

4!
𝑚′′′(𝑥𝑗) + ⋯                        
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 and the general form of the Taylor series expansion is defined by (3.23) which is 

𝑦𝑖 = 𝛼 + (𝑥𝑖 − 𝑥𝑗)𝛽 + 𝜀𝑖                                                                                                                            

where 𝑥𝑖 lies in the interval [𝑥𝑗 − ℎ, 𝑥𝑗 + ℎ] and 

 𝜀𝑖 =
(𝑥𝑖 − 𝑥𝑗)

2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
4

4!
𝑚′′′(𝑥𝑗) + ⋯                                    

    Therefore, the task of estimating 𝑚(𝑥) is equivalent to the local linear regression task of 

estimating the intercept α. Now 𝛼 and 𝛽 are established in order to minimize 

∑(𝑦𝑗 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))
2

𝑖∈𝑆

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                                   (3.53) 

to obtain least squares estimators of 𝛼 and 𝛽 

    Let �̅� and �̅� be the solution to the weighted least square problem (3.53). Deriving yields  

�̅� =
∑ 𝑤𝑗𝑦𝑗
𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

                                                                                                                                  (3.54) 

 where 𝑤𝑗 is defined in equation (3.56). Therefore, the local linear regression estimator is  

�̅�𝐿𝐿(𝑥) = �̅� =
∑ 𝑤𝑗𝑦𝑗
𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

                                                                                                             (3.55) 

where 

𝑤𝑗 = 𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑆2(𝑥𝑗; ℎ) − (𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ))                                                                (3.56) 

and 

𝑆𝑟(𝑥𝑗; ℎ) =∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)

𝑟
𝑛

𝑗=1

,     𝑟 = 1,2                                                                   (3.57) 

    We compute (3.55) and (3.56) as follows; by letting 

 

𝑄 =∑(𝑦𝑗 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))
2

𝑛

𝑗=1

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                           (3.58) 
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Differentiating (3.58) with respect to α, we get 

 

𝜕𝑄

𝜕𝛼
=∑−2(𝑦𝑗 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))

𝑛

𝑗=1

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                    (3.59) 

 

       

For the least value of 𝑄, we have 

 

∑(𝑦𝑗 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))

𝑛

𝑗=1

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) = 0                                                                               (3.60) 

 

    

 

Implying that 

 

∑𝐾(
𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑗 = 𝛼∑𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) +

𝑛

𝑗=1

𝛽∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑛

𝑗=1

𝑛

𝑗=1

(𝑥𝑖 − 𝑥𝑗)                                 

 

                                     = 𝛼𝑆0(𝑥𝑗; ℎ) + 𝛽𝑆1(𝑥𝑗; ℎ)                                                                                

which is the same as (3.29).                           

 

Differentiating (3.58) with respect to β, we get 

 

𝜕𝑄

𝜕𝛽
=∑−2(𝑦𝑗 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))

𝑛

𝑗=1

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)                                                   (3.61) 

 

For the least value of 𝑄, we have 

 

∑(𝑦𝑗 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))

𝑛

𝑗=1

𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗) = 0                                                             (3.62) 

 

 

Implying that 

 

∑𝐾(
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)𝑦𝑗 = 𝛼∑𝐾(

𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗) +

𝑛

𝑗=1

𝛽∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)

2

        

𝑛

𝑗=1

𝑛

𝑗=1

 

  

 

                                                 = 𝛼𝑆1(𝑥𝑗; ℎ) + 𝛽𝑆2(𝑥𝑗; ℎ)                                                                      

                                        

 

which is the same as (3.32). 
 



44 

 

Solving (3.29) and (3.32) simultaneously by the elimination method, yields respectively 

(3.33) and (3.34) thus 

 

𝑆2(𝑥𝑗; ℎ)∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑗

𝑛

𝑗=1

= 𝛼𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) + 𝛽𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)                                     

 

𝑆1(𝑥𝑗; ℎ)∑𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑥𝑖 − 𝑥𝑗)𝑦𝑗

𝑛

𝑗=1

= 𝛼 (𝑆1(𝑥𝑗; ℎ))
2

+ 𝛽𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)                              

 

    Now, eliminating β from (3.33) and (3.34), gives (3.36) thus 

 

 

�̅� =
𝑆2(𝑥𝑗; ℎ) ∑ 𝐾 (

𝑥𝑖 − 𝑥𝑗
ℎ

) 𝑦𝑗 − 𝑆𝑛,1∑ 𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

) (𝑥𝑖 − 𝑥𝑗)𝑦𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2                                            

 

 =
∑ (𝑆2(𝑥𝑗; ℎ)𝐾 (

𝑥𝑖 − 𝑥𝑗
ℎ

) 𝑦𝑗 − 𝑆1(𝑥𝑗; ℎ)𝐾 (
𝑥𝑖 − 𝑥𝑗
ℎ

) (𝑥𝑖 − 𝑥𝑗)𝑦𝑗)
𝑛
𝑗=1

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2                                     

 

     =
∑ (𝑆2(𝑥𝑗; ℎ) − (𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ))𝐾 (

𝑥𝑖 − 𝑥𝑗
ℎ

) 𝑦𝑗
𝑛
𝑗=1

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2                                                                  

 

     = ∑
(𝑆2(𝑥𝑗; ℎ) − (𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝑦𝑗

𝑛

𝑗=1

                                                                 

 

which is the analogue of equation (3.55). 
 

    In a similar way, eliminating α from (3.33) and (3.34), we get 

 

�̅� =∑
(𝑆0(𝑥𝑗; ℎ) − (𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑗

𝑛

𝑗=1

                                                     (3.63) 

 

where 𝑆𝑟(𝑥𝑗; ℎ) = ∑ (𝑥𝑖 − 𝑥𝑗)
𝑟
𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
)       𝑟 = 0,1,2𝑛

𝑖=1  

    Using the set of data provided, the estimator �̅�  is determined. Therefore from equation 

(3.23), we have 

�̅�𝑖 = �̅� + (𝑥𝑖 − 𝑥𝑗)�̅�                                                                                                                        (3.64) 
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such that 

�̅�𝐿𝐿(𝑥𝑗) = {∑
(𝑆2(𝑥𝑗; ℎ) − (𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝑦𝑗

𝑛

𝑗=1

}                                                 

+(𝑥𝑖 − 𝑥𝑗)∑{
(𝑆0(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑗}

𝑛

𝑗=1

                                             

            = ∑𝑤𝑖(𝑥𝑗)

𝑖∈𝑆

𝑦𝑗 + (𝑥𝑖 − 𝑥𝑗)∑𝑤𝑖
′(𝑥𝑗)

𝑖∈𝑠

𝑦𝑗                                                                   (3.65) 

where 

𝑤𝑖(𝑥𝑗) =
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)                                                     (3.66) 

and 

𝑤𝑖
′(𝑥𝑗) =

(𝑆0(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)                                                     (3.67) 

3.7 Properties of the local linear regression estimator of 𝐦(𝒙) 

    In examining the properties of the derived local linear regression estimators of m(𝑥), the 

assumptions outlined respectively in section 3.1 and section 3.2 are considered. Fan (1993) 

imposed conditions on 𝐾(. ) and are only used for convenience in terms of the technical 

arguments and thus can be relaxed.  

3.7.1 The expectation of the local linear regression estimator of  𝐦(𝒙) 
 

    The expectation of the local linear regression estimator 𝑚(𝑥) is  

𝐸 (�̅�𝐿𝐿(𝑥𝑗)) =∑𝑤𝑖(𝑥𝑗)

𝑖∈𝑆

𝐸(𝑦𝑗) + (𝑥𝑖 − 𝑥𝑗)∑𝑤𝑖
′(𝑥𝑗)

𝑖∈𝑆

𝐸(𝑦𝑗)                                                       
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              = ∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝐸(𝑦𝑗)}

𝑖∈𝑆

                          

                         +(𝑥𝑖 − 𝑥𝑗)∑{
(𝑆0(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝐸(𝑦𝑗)}

𝑖∈𝑆

   (3.68) 

    Consider the Taylor series expansion (3.22) of the form 

𝑚(𝑥𝑖) = 𝑚(𝑥𝑗) + (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗) +⋯               

so that with 𝑥𝑖 = 𝑥𝑗 + ℎ𝑡 

𝐸 (�̅�𝐿𝐿(𝑥𝑗)) =∑{𝑤𝑖(𝑥𝑗) (𝑚(𝑥𝑗) + ℎ𝑡𝑚
′(𝑥𝑗) +

ℎ2𝑡2

2
𝑚′′(𝑥𝑗) + ⋯)}

𝑖∈𝑆

                                     

+(𝑥𝑖 − 𝑥𝑗)∑{𝑤𝑖
′(𝑥𝑗) (𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗) +
ℎ2𝑡2

2
𝑚′′(𝑥𝑗) +⋯)}

𝑖∈𝑆

 

     = {
𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2} {𝑆0(𝑥𝑗; ℎ)𝑚(𝑥𝑗) + 𝑆1(𝑥𝑗; ℎ)𝑚

′(𝑥𝑗)

+
𝑆2(𝑥𝑗; ℎ)

2
𝑚′′(𝑥𝑗) + ⋯} 

     − {
𝑆1(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2} {𝑆1(𝑥𝑗; ℎ)𝑚(𝑥𝑗) + 𝑆2(𝑥𝑗; ℎ)𝑚

′(𝑥𝑗)

+
𝑆3(𝑥𝑗; ℎ)

2
𝑚′′(𝑥𝑗) +⋯} 

                     + {
(𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2} {𝑆1(𝑥𝑗; ℎ)𝑚(𝑥𝑗) + 𝑆2(𝑥𝑗; ℎ)𝑚

′(𝑥𝑗)

+
𝑆3(𝑥𝑗; ℎ)

2
𝑚′′(𝑥𝑗) + ⋯} 
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                     − {
(𝑥𝑖 − 𝑥𝑗)𝑆1(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2} {𝑆0(𝑥𝑗; ℎ)𝑚(𝑥𝑗) + 𝑆1(𝑥𝑗; ℎ)𝑚

′(𝑥𝑗)

+
𝑆2(𝑥𝑗; ℎ)

2
𝑚′′(𝑥𝑗) + ⋯} 

                

= {
(𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))

2

) + (𝑥𝑖 − 𝑥𝑗) (𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ) − 𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 }𝑚(𝑥𝑗) 

+{
(𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)) + (𝑥𝑖 − 𝑥𝑗) (𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))

2

)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 }𝑚′(𝑥𝑗) 

     +{
(𝑆2(𝑥𝑗; ℎ)

2
− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)) + (𝑥𝑖 − 𝑥𝑗) (𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 }

𝑚′′(𝑥𝑗)

2
 

  

= 𝑚(𝑥𝑗) + (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)

+ {
(𝑆2(𝑥𝑗; ℎ)

2
− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)) + (𝑥𝑖 − 𝑥𝑗) (𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 }

𝑚′′(𝑥𝑗)

2
 

       (3.69) 

3.7.2 The bias of the local linear regression estimator of 𝐦(𝒙) 
 

    The bias of the local linear regression estimator �̅�𝐿𝐿(𝑥𝑗) is 

𝐵𝑖𝑎𝑠 (�̅�𝐿𝐿(𝑥𝑗)) = (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)                                                                                                         

+{
(𝑆2(𝑥𝑗; ℎ)

2
− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)) + (𝑥𝑖 − 𝑥𝑗) (𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 }

𝑚′′(𝑥𝑗)

2
 

       (3.70) 
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    Assuming that, 𝑥𝑖′𝑠 are fixed uniform design points in the interval (0, 1), then the asymptotic 

expression of the bias of local linear regression estimator �̅�𝐿𝐿(𝑥𝑗) can be obtained. According 

to Eubank and Speckman (1993) and Masry (1996), we have 

∑(𝑥𝑖 − 𝑥𝑗)
𝑙
𝑘 (
𝑥𝑖 − 𝑥𝑗

ℎ
)

𝑖∈𝑆

= 𝑛ℎ𝑙+1𝑘𝑙 + 𝑜(𝑛ℎ
𝑙+3)                                                                   (3.71) 

is uniform for 𝑥 ∈ (0, 1)  and  ℎ ∈ 𝐻𝑛, where  𝐻𝑛 = [𝐶1𝑛
−𝐸1 , 𝐶2𝑛

−𝐸2],   0 <  𝐸2 < 𝐸1 < 1,  

and  𝐶1, 𝐶2 > 0. 

    This implies that 

𝑆0(𝑥𝑗; ℎ) = 𝑛ℎ + 𝑜(𝑛ℎ
3),            𝑆1(𝑥𝑗; ℎ) = 𝑜(𝑛ℎ

4),            𝑆2(𝑥𝑗; ℎ) = 𝑛ℎ
3𝑘2 + 𝑜(𝑛ℎ

5),        

𝑆3(𝑥𝑗; ℎ) = 𝑛ℎ
4𝑘3 + 𝑜(𝑛ℎ

6)        𝑎𝑛𝑑            𝑆4(𝑥𝑗; ℎ) = 𝑛ℎ
5𝑘4 + 𝑜(𝑛ℎ

7)                                    

such that 

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2

= (𝑛ℎ + 𝑜(𝑛ℎ3))(𝑛ℎ3𝑘2 + 𝑜(𝑛ℎ
5))(𝑜(𝑛ℎ4))

2
                    

                                                          = 𝑛2ℎ4𝑘2 + 𝑜(𝑛
2ℎ6)                                                           (3.72) 

𝑆2(𝑥𝑗; ℎ)
2
− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) = (𝑛ℎ

3𝑘2 + 𝑜(𝑛ℎ
5))

2
− (𝑜(𝑛ℎ4))(𝑛ℎ4𝑘3 + 𝑜(𝑛ℎ

6))             

                                                          = 𝑛2ℎ6𝑘2
2 + 𝑜(𝑛2ℎ8)                                                         (3.73) 

𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

= (𝑛ℎ + 𝑜(𝑛ℎ3))(𝑛ℎ4𝑘3 + 𝑜(𝑛ℎ
6)) − (𝑜(𝑛ℎ4))(𝑛ℎ3𝑘2 + 𝑜(𝑛ℎ

5)) 

                                    = 𝑛2ℎ5𝑘3 + 𝑜(𝑛
2ℎ7)                                                                                 (3.74) 

𝐵𝑖𝑎𝑠𝑎𝑠𝑦 (�̅�𝐿𝐿(𝑥𝑗)) = (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)                                                                                                   

                       +
(𝑛2ℎ6𝑘2

2 + 𝑜(𝑛2ℎ8) + (𝑥𝑖 − 𝑥𝑗)(𝑛
2ℎ5𝑘3 + 𝑜(𝑛

2ℎ7)))𝑚′′(𝑥𝑗)

2(𝑛2ℎ4𝑘2 + 𝑜(𝑛2ℎ6))
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                                   = (𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗) +

ℎ(ℎ𝑘2
2 + (𝑥𝑖 − 𝑥𝑗)𝑘3)𝑚

′′(𝑥𝑗) 

2𝑘2
                    (3.75) 

3.7.3 The variance of the local linear regression estimator of 𝐦(𝒙) 

    The variance of the local linear regression estimator �̅�𝐿𝐿(𝑥𝑗) is  

𝑉𝑎𝑟 (�̅�𝐿𝐿(𝑥𝑗)) = 𝑉𝑎𝑟 {∑𝑤𝑖(𝑥𝑗)𝑦𝑖 + (𝑥𝑖 − 𝑥𝑗)∑𝑤𝑖
′(𝑥𝑗)

𝑖∈𝑆𝑖∈𝑆

𝑦𝑖}                                                      

                           = ∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖) + (𝑥𝑖 − 𝑥𝑗)
2
∑𝑤𝑖

′2(𝑥𝑗)𝜎
2(𝑥𝑖)                              (3.76)

𝑖∈𝑆

 

where 

𝑤𝑖
2(𝑥𝑗) = {

(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝑘 (

𝑥𝑖 − 𝑥𝑗

ℎ
)}

2

 ,                                           (3.77) 

and 

𝑤𝑖
′2(𝑥𝑗) = {

(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗) − 𝑆1(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝑘 (

𝑥𝑖 − 𝑥𝑗

ℎ
)}

2

                                             (3.78) 

    The asymptotic expression of the variance of �̅�𝐿𝐿(𝑥𝑗) is obtained as 

𝑤𝑖
2(𝑥𝑗) = {(𝑆2(𝑥𝑗; ℎ)𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)

− 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)) (𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))

2

)
−1

}

2
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≈ {
1

𝑛ℎ
𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)
(𝑛2ℎ4𝑘2 + 𝑜(𝑛

2ℎ6))

(𝑛2ℎ4𝑘2 + 𝑜(𝑛2ℎ6))
}

2

                                                     

                    ≈
1

𝑛2ℎ2
𝐾2 (

𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                                                   (3.79) 

𝑤𝑖
′2(𝑥𝑗)

= {
(𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ) − 𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ))

(𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2

) (𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ) − 𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ))
(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖

− 𝑥𝑗)𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
) − 𝑆1(𝑥𝑗; ℎ)𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
))}

2

 

≈ {
1

𝑛ℎ
𝑘 (
𝑥𝑖 − 𝑥𝑗

ℎ
)
(𝑜(𝑛2ℎ5) + 𝑜(𝑛2ℎ7) − 𝑜(𝑛2ℎ5) − 𝑜(𝑛2ℎ7))

(𝑛2ℎ4𝑘2 + 𝑜(𝑛2ℎ6))
}

2

                        

            ≈ 0                                                                                                                                       (3.80) 

Then 

𝑉𝑎𝑟𝑎𝑠𝑦 (�̅�𝐿𝐿(𝑥𝑗)) =
1

𝑛ℎ
∑𝐾2

𝑖∈𝑆

(
𝑥𝑖 − 𝑥𝑗

ℎ
) 𝜎2(𝑥𝑖) (

𝑥𝑖 − 𝑥𝑖−1
ℎ

) + (𝑥𝑖 − 𝑥𝑗)
2
∑0.

𝑖∈𝑆

𝜎2(𝑥𝑖)           

                                 = ∑
𝑑𝑘

𝑛ℎ
𝜎2(𝑥𝑗)

𝑗∈𝑅

                                                                                               (3.81)  

 𝑤ℎ𝑒𝑟𝑒    𝑑𝑘 = ∫𝐾
2 (𝑡)𝑑𝑡                                                                                                                          

3.7.4 The MSE of the local linear regression estimator of 𝐦(𝒙) 

    The MSE of the local linear regression estimator �̅�𝐿𝐿(𝑥𝑗) is 
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𝑀𝑆𝐸 (�̅�𝐿𝐿(𝑥𝑗)) = {𝐵𝑖𝑎𝑠 (�̅�𝐿𝐿(𝑥𝑗))}
2

+ 𝑉𝑎𝑟 (�̅�𝐿𝐿(𝑥𝑗))                                                                 

    

= {(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)

+ (
(𝑆2(𝑥𝑗; ℎ)

2
− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)) + (𝑥𝑖 − 𝑥𝑗) (𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 )

𝑚′′(𝑥𝑗)

2
}

2

+∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖) + (𝑥𝑖 − 𝑥𝑗)
2
∑𝑤𝑖

′2(𝑥𝑗)𝜎
2(𝑥𝑖)                                                           (3.82)

𝑖∈𝑆

  

 

    The asymptotic expression of the mean square error is also obtained using the asymptotic 

bias and asymptotic variance expressions of �̅�𝐿𝐿(𝑥𝑗) such that 

 

𝑀𝑆𝐸𝑎𝑠𝑦 (�̅�𝐿𝐿(𝑥𝑗)) = {(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗) +

ℎ(ℎ𝑘2
2 + (𝑥𝑖 − 𝑥𝑗)𝑘3)𝑚

′′(𝑥𝑗) 

2𝐾2
}

2

+
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)    

    (3.83) 

3.7.5 The unbiasedness and efficiency of the local linear regression estimator of  𝐦(𝒙) 

    The efficiency of an estimator refers to how much information it extracts about the parameter 

of interest from the sample. A more efficient estimator extracts more information, in some 

sense, from a sample of a given size. Efficiency measures information extracted by the variance 

of an unbiased estimator, that is, smaller variance means greater efficiency. 

3.7.5.1 Introduction 

    An estimator is efficient if it is the minimum variance unbiased estimator. Let 𝑋1, . . , 𝑋𝑛 be 

a random sample from some distribution which depends on a parameter 𝑚(𝑥) and let �̅�(𝑥)  =
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 �̅�(𝑥)(𝑋1, . . , 𝑋𝑛) be an estimator of 𝑚(𝑥). Then �̅�(𝑥) is an unbiased estimator of 𝑚(𝑥) if 

𝐸(�̅�(𝑥)) = 𝑚(𝑥). Thus �̅�(𝑥) is an asymptotically unbiased estimator of 𝑚(𝑥) if 

lim
𝑛→∞

𝐸(�̅�(𝑥)) = 𝑚(𝑥). Further, �̅�(𝑥) is an efficient estimator of 𝑚(𝑥) if it is unbiased and its 

variance achieves the Cramer-Rao Lower Bound, that is if 

 𝑉𝑎𝑟(�̅�(𝑥) ) =
1

𝑛𝐼(𝑚(𝑥))
 ,                                                                                                           (3.84) 

    The efficiency of an unbiased estimator �̅�(𝑥) of 𝑚(𝑥) is the ratio of the Cramer-Rao 

Lower Bound to the variance of the estimator; that is 

𝐸𝑓𝑓(�̅�(𝑥)) =
1/𝑛𝐼(𝑚(𝑥))

𝑉𝑎𝑟(�̅�(𝑥))
 .                                                                                                        (3.85) 

We remark that it must be true that 𝐸𝑓𝑓(�̅�(𝑥)) ≤ 1. The smaller the value of the efficiency, 

the less efficient the estimator. Also �̅�(𝑥) is an asymptotically efficient estimator of 𝑚(𝑥) if 

it is unbiased or asymptotically unbiased such that 

lim
𝑛→∞

𝐸𝑓𝑓(�̅�(𝑥)) = 1.                                                                                                                     (3.86) 

    In what follows, we make variance comparisons between the Nadaraya-Watson regression 

estimator and the proposed local linear regression estimator in terms of their asymptotic relative 

efficiency. 

3.7.5.2 The asymptotic relative efficiency of the estimators of 𝒎(𝒙) 

    The relative efficiency of two procedures is the ratio of their efficiencies, although often this 

concept is used where the comparison is made between a given procedure and a notional best 

possible procedure. The efficiencies and the relative efficiency of two procedures theoretically 

depend on the sample size available for the given procedure, but it is often possible to use 

the asymptotic relative efficiency, defined as the limit of the relative efficiencies as the sample 

size grows, as the principal comparison measure. If �̅�1 and �̅�2 are both unbiased estimators 

of 𝑚, then the relative efficiency of �̅�1 to �̅�2 is 
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𝑅𝐸(�̅�1, �̅�2) =
𝑉𝑎𝑟(�̅�2)

𝑉𝑎𝑟(�̅�1)
 .                                                                                                           (3.87) 

If 𝑅𝐸(�̅�1, �̅�2) < 1, then �̅�2 has a smaller variance than �̅�1 and �̅�1 is less efficient than �̅�2. 

If �̅�1 and �̅�2 are both unbiased or asymptotically unbiased estimators of 𝑚, then the 

asymptotic relative efficiency of �̅�1 to �̅�2 is 

𝐴𝑅𝐸(�̅�1, �̅�2) = lim
𝑛→∞

𝑅𝐸(�̅�1, �̅�2) = lim
𝑛→∞

𝑉𝑎𝑟(�̅�2)

𝑉𝑎𝑟(�̅�1)
 .                                                           (3.88) 

    Therefore, the mean regression functions, 𝑚(𝑥) for the Nadaraya-Watson regression 

estimator, the Dorfman regression estimator and the proposed local linear regression estimator 

are respectively given by 

�̅�𝑁𝑊(𝑥𝑗) =∑𝑤𝑖(𝑥)𝑦𝑖

𝑛

𝑖=1

 .                                                                                                              (3.89) 

�̅�𝐷𝑜𝑟𝑓(𝑥𝑗) =∑𝑤𝑖(𝑥𝑗)𝑦𝑖

𝑛

𝑖=1

 .                                                                                                           (3.90) 

�̅�𝐿𝐿(𝑥𝑗) =∑𝑤𝑖(𝑥𝑗)

𝑖∈𝑆

𝑦𝑗 + (𝑥𝑖 − 𝑥𝑗)∑𝑤𝑖
′(𝑥𝑗)

𝑖∈𝑆

𝑦𝑗 .                                                                (3.91) 

    The variance of the Nadaraya-Watson regression estimator �̅�(𝑥𝑗)  is  

𝑉𝑎𝑟 (�̅�𝑁𝑊(𝑥𝑗))      = 𝑑𝑘𝜎
2(𝑥𝑗) +∑{𝑤𝑖

2(𝑥𝑗) (ℎ𝑡𝜎
2′(𝑥𝑗) +

ℎ2𝑡2

2
𝜎2′′(𝑥𝑗) + ⋯  )} (3.92)

𝑖∈𝑠

 

The asymptotic expression for the variance of the Nadaraya-Watson regression estimator 

�̅�𝑁𝑊(𝑥𝑗) is  

𝑉𝑎𝑟𝑎𝑠𝑦 (�̅�𝑁𝑊(𝑥𝑗)) ≈
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗) .                                                                                                (3.93) 

    The variance of the local linear regression estimator �̅�𝐿𝐿(𝑥𝑗)  is 
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𝑉𝑎𝑟 (�̅�𝐿𝐿(𝑥𝑗))  = ∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖) + (𝑥𝑖 − 𝑥𝑗)
2
∑𝑤𝑖

′2(𝑥𝑗)𝜎
2(𝑥𝑖).                             (3.94)

𝑖∈𝑆

 

The asymptotic expression for the variance of the local linear regression estimator �̅�𝐿𝐿(𝑥𝑗) is 

𝑉𝑎𝑟𝑎𝑠𝑦 (�̅�𝐿𝐿(𝑥𝑗)) =
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗) .                                                                                                 (3.95)  

    Thus the asymptotic relative efficiency of the Nadaraya–Watson regression estimator to the 

proposed local linear regression estimator is 

𝐴𝑅𝐸 (�̅�𝑁𝑊(𝑥𝑗), �̅�𝐿𝐿(𝑥𝑗)) =
𝑉𝑎𝑟𝑎𝑠𝑦 (�̅�𝐿𝐿(𝑥𝑗))

𝑉𝑎𝑟𝑎𝑠𝑦 (�̅�𝑁𝑊(𝑥𝑗))
=

𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)

𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)

= 1 .                                 (3.96) 

    The main objective was to obtain a consistent robust estimator using the procedure of local 

linear regression in model based surveys. The procedure is based on locally fitting a line rather 

than a constant. Unlike kernel regression, locally linear estimation would have no bias if the 

true model were linear. The resulting local linear estimator has minimal asymptotic variance 

in comparison with the Nadaraya-Watson estimator. 

3.8 Properties of the local linear regression estimator of 𝑻 

    In investigating the properties of the derived local linear regression estimators of finite 

population total 𝑇, the assumptions outlined respectively in section (3.1)and section (3.3) are 

considered. Fan (1993) imposed conditions on 𝐾(. ) and can only be used for convenience in 

terms of the technical arguments and thus can be relaxed.  

Therefore, using equation (3.21), the local linear regression estimator of finite population total 

𝑇 can be estimated as 

�̅�𝐿𝐿 =∑𝑦𝑖 +∑�̅�𝐿𝐿(𝑥𝑗)                                                                                                                       

𝑗∈𝑅𝑖∈𝑆
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=∑𝑦𝑖 +∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖}

𝑖∈𝑆

}                                     

𝑗∈𝑅𝑖∈𝑆

 

     +∑{(
𝑥𝑖 − 𝑥𝑗

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)∑{(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅

− 𝑆1(𝑥𝑗; ℎ)) 𝑘 (
𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖}}                                                                            (3.97) 

3.8.1 The expectation of the local linear regression estimator of 𝑻 

    The expectation of the local linear regression estimator �̅�𝐿𝐿 is 

𝐸(�̅�𝐿𝐿) =∑𝐸(𝑦𝑖) +∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝐸(𝑦𝑖)}

𝑖∈𝑆

}         

𝑗∈𝑅𝑖∈𝑆

 

+∑{(
𝑥𝑖 − 𝑥𝑗

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)∑{(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝒊∈𝑺𝒋∈𝑹

− 𝑆1(𝑥𝑗; ℎ))𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)𝐸(𝑦𝑖)}}                                                                                                 (3.98) 

Using Taylor series expansion (3.22) which is 

𝑚(𝑥𝑖) = 𝑚(𝑥𝑗) + ℎ𝑡𝑚
′(𝑥𝑗) +

ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) +

ℎ3𝑡3

3!
𝑚′′′(𝑥𝑗) + ⋯,                                               

𝐸(�̅�𝐿𝐿) =∑𝑚(𝑥𝑖) +∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)𝑚(𝑥𝑖)}

𝑖∈𝑆

}       

𝑗∈𝑅𝒊∈𝑺
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+∑{(
𝑥𝑖 − 𝑥𝑗

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)∑{(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝒊∈𝑺𝒋∈𝑹

− 𝑆1(𝑥𝑗; ℎ))𝐾 (
𝑥𝑖 − 𝑥𝑗

ℎ
)𝑚(𝑥𝑖)}}  

    = ∑𝑚(𝑥𝑖) +∑{∑{
𝑆2(𝑥𝑗; ℎ) (

𝑥𝑖 − 𝑥𝑗
ℎ

)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 (𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅𝒊∈𝑺

+
ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) + ⋯)}}  

−∑{∑{
𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) (𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅

+
ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) + ⋯)}}         

+∑{
(𝑥𝑖 − 𝑥𝑗)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)− (𝑆1(𝑥𝑗; ℎ))
2
∑{𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)(𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅

+
ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) + ⋯)}} 

−∑{
(𝑥𝑖 − 𝑥𝑗)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2∑{𝑆1(𝑥𝑗; ℎ)𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)(𝑚(𝑥𝑗) + ℎ𝑡𝑚

′(𝑥𝑗)

𝑖∈𝑆𝑗∈𝑅

+
ℎ2𝑡2

2!
𝑚′′(𝑥𝑗) + ⋯)}}       
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=∑𝑚(𝑥𝑖)

𝑖∈𝑆

+∑{(
𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)− (𝑆1(𝑥𝑗; ℎ))

2

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)− (𝑆1(𝑥𝑗; ℎ))
2
)𝑚(𝑥𝑗)}

𝑗∈𝑅

+∑{(
𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ) − 𝑆0(𝑥𝑗; ℎ)𝑆1(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)− (𝑆1(𝑥𝑗; ℎ))
2

)(𝑥𝑖 − 𝑥𝑗)𝑚(𝑥𝑗)}

𝑗∈𝑅

                    

+∑{(
𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 )𝑚′(𝑥𝑗)}

𝑗∈𝑅

+∑{(
𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))

2

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)(𝑥𝑖 − 𝑥𝑗)𝑚

′(𝑥𝑗)}

𝑗∈𝑅

                          

+∑{(
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)
𝑚′′(𝑥𝑗)

2
}

𝑗∈𝑅

+∑{(
𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 )(𝑥𝑖 − 𝑥𝑗)

𝑚′′(𝑥𝑗)

2
}

𝑗∈𝑅

                  

=∑𝑚(𝑥𝑖)

𝑖∈𝑆

+∑𝑚(𝑥𝑗)

𝑗∈𝑅

+∑{(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)}

𝑗∈𝑅

                                                                                             

+∑{

(

 (
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)

𝑗∈𝑅

+ (𝑥𝑖 − 𝑥𝑗) (
𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 )

)

 
𝑚′′(𝑥𝑗)

2
}                                   (3.99)  

3.8.2 The bias of the local linear regression estimator of 𝑻 

 

    The bias of the local linear regression estimator �̅�𝐿𝐿 is 

𝐵𝑖𝑎𝑠(�̅�𝐿𝐿) =∑{(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)}

𝑗∈𝑅
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+∑{

(

 (
(𝑆2(𝑥𝑗; ℎ))

2

− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)

𝑗∈𝑅

+ (𝑥𝑖 − 𝑥𝑗) (
𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 )

)

 
𝑚′′(𝑥𝑗)

2
}                                (3.100)  

𝐵𝑖𝑎𝑠𝑎𝑠𝑦(�̅�𝐿𝐿) =∑{(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)}

𝑗∈𝑅

                                                                                                     

            +∑{
{𝑛2ℎ5𝑘2

2 + 𝑜(𝑛2ℎ7) + (𝑥𝑖 − 𝑥𝑗)(𝑛
2ℎ4𝑘3 + 𝑜(𝑛

2ℎ6))}𝑚′′(𝑥𝑗)

2(𝑛2ℎ3𝑘2 + 𝑜(𝑛2ℎ5))
}

𝑗∈𝑅

 

                        = {∑(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)

𝑗∈𝑅

} +∑{
ℎ(ℎ𝑘2

2 + (𝑥𝑖 − 𝑥𝑗)𝑘3)𝑚
′′(𝑥𝑗) 

2𝑘2
}

𝑗∈𝑅

        (3.101) 

3.8.3 The variance of the local linear regression estimator of 𝑻 

    The variance of the local linear regression estimator �̅�𝐿𝐿 is 

𝑉𝑎𝑟(�̅�𝐿𝐿 ) = 𝑉𝑎𝑟 {∑𝑦𝑖 +∑�̅�𝐿𝐿(𝑥𝑗) −∑𝑦𝑖
𝑖∈𝑆

−∑𝑦𝑗
𝑗∈𝑅𝑗∈𝑅𝑖∈𝑆

}                                                               

             = 𝑉𝑎𝑟 {∑∑𝑤𝑖(𝑥𝑗)𝑦𝑖 +∑(𝑥𝑖 − 𝑥𝑗)∑𝑤𝑖
′(𝑥𝑗)𝑦𝑗

𝑖∈𝑆

−∑𝑦𝑗
𝑗∈𝑅𝑗∈𝑅𝑗∈𝑅𝑖∈𝑆

}                            

= ∑∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

+∑(𝑥𝑖 − 𝑥𝑗)
2

𝑗∈𝑅

∑𝑤𝑖
′2(𝑥𝑗)𝜎

2(𝑥𝑖) +∑𝜎2(𝑥𝑗)

𝑗∈𝑅

                  (3.102)

𝑖∈𝑆

 

where, 

𝑤𝑖(𝑥𝑗) =
𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                     
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𝑤𝑖
′(𝑥𝑗) =

𝑆0(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)                                                                    

    Applying the results of �̅�𝐿𝐿(𝑥𝑗) so far derived, the asymptotic expression of the variance of 

�̅�𝐿𝐿 is  

𝑉𝑎𝑟𝑎𝑠𝑦(�̅�𝐿𝐿) =
1

𝑛ℎ
∑∑𝑘2

𝑖∈𝑆

(
𝑥𝑖 − 𝑥𝑗

ℎ
) 𝜎2(𝑥𝑖) (

𝑥𝑖 − 𝑥𝑖−1
ℎ

)

𝑗∈𝑅

+∑(𝑥𝑖 − 𝑥𝑗)
2
∑0.

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

          

                       = ∑
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)

𝑗∈𝑅

                                                                                                     (3.103)  

3.8.4 The MSE of the local linear regression estimator of 𝑻 

    The MSE of the local linear regression estimator �̅�𝐿𝐿 is 

𝑀𝑆𝐸(�̅�𝐿𝐿) = {𝐵𝑖𝑎𝑠(�̅�𝐿𝐿)}
2 + 𝑉𝑎𝑟(�̅�𝐿𝐿)                                                                                                  

= {∑(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)

𝑗∈𝑅

+∑{(
(𝑆2(𝑥𝑗; ℎ))

2
− 𝑆1(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)− (𝑆1(𝑥𝑗; ℎ))
2
)

𝑗∈𝑅

+ (𝑥𝑖 − 𝑥𝑗)(
𝑆0(𝑥𝑗; ℎ)𝑆3(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ)− (𝑆1(𝑥𝑗; ℎ))
2

)}
𝑚′′(𝑥𝑗)

2
 }

2

 

= ∑∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

+∑(𝑥𝑖 − 𝑥𝑗)
2

𝑗∈𝑅

∑𝑤𝑖
′2(𝑥𝑗)𝜎

2(𝑥𝑖) +∑𝜎2(𝑥𝑗)

𝑗∈𝑅

                  (3.104)

𝑖∈𝑆

 

    The asymptotic expression for the MSE of the local linear regression estimator �̅�𝐿𝐿 is given 

by 
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𝑀𝑆𝐸𝑎𝑠𝑦(�̅�𝐿𝐿) = {∑(𝑥𝑖 − 𝑥𝑗)𝑚
′(𝑥𝑗)

𝑗∈𝑅

+∑{
ℎ(ℎ𝑘2

2 + (𝑥𝑖 − 𝑥𝑗)𝑘3)𝑚
′′(𝑥𝑗) 

2𝑘2
}

𝑗∈𝑅

}

2

                      

+∑
𝑑𝑘
𝑛ℎ

𝑗∈𝑅

𝜎2(𝑥𝑗)                                                                                                                               (3.105) 

3.8.5 The asymptotic relative efficiency of the estimators of 𝑻 

    The relative efficiency of two procedures is the ratio of their efficiencies, but it is often 

possible to use the asymptotic relative efficiency, defined as the limit of the relative efficiencies 

as the sample size grows, as the principal measure of comparison. Let �̅�0 be the local constant 

regression estimator of finite population total and �̅�1 be the local linear regression estimator of 

finite population total. 

If �̅�0 and �̅�1 are both unbiased estimators of 𝑇, then the relative efficiency of �̅�0 to �̅�1 is 

𝑅𝐸(�̅�0, �̅�1) =
𝐸𝑓𝑓(�̅�1)

𝐸𝑓𝑓(�̅�0)
=
𝑉𝑎𝑟(�̅�1)

𝑉𝑎𝑟(�̅�0)
 .                                                                                          (3.106) 

If �̅�0 and �̅�1 are both asymptotically unbiased estimators of 𝑇, then the asymptotic relative 

efficiency of  �̅�0 to �̅�1 is given by 

𝐴𝑅𝐸(�̅�0, �̅�1) = lim
𝑛→∞

𝑅𝐸(�̅�0, �̅�1) = lim
𝑛→∞

𝑉𝑎𝑟(�̅�1)

𝑉𝑎𝑟(�̅�0)
 .                                                                   (3.107) 

    Therefore, the finite population total functions for the local constant regression estimator �̅�0 

and for the local linear regression estimator  �̅�1 are respectively given by 

�̅�0 =∑𝑦𝑖
𝑖∈𝑆

+∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖} 

𝑖∈𝑆

}

𝑗∈𝑅

.              (3.108) 

�̅�1 =∑Y𝑖 +∑{∑{
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝑘 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖}

𝑖∈𝑆

}                                

𝑗∈𝑅𝑖∈𝑆
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+∑{(
𝑥𝑖 − 𝑥𝑗

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2)∑{(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗)

𝒊∈𝑺𝒋∈𝑹

− 𝑆1(𝑥𝑗; ℎ)) 𝑘 (
𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑖}}.                                                                         (3.109) 

    The variance of the local constant regression estimator �̅�0   is  

𝑉𝑎𝑟(�̅�0)      = ∑∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

+∑𝜎2(𝑥𝑗)                                                                (3.110)

𝑗∈𝑅

 

    The asymptotic expression for the variance of the local constant regression estimator �̅�0  is 

𝑉𝑎𝑟𝑎𝑠𝑦(�̅�0) =∑
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)

𝑗∈𝑅

                                                                                                       (3.111) 

    The variance of the local linear regression estimator �̅�1 is  

𝑉𝑎𝑟(�̅�1)  =∑∑𝑤𝑖
2(𝑥𝑗)

𝑖∈𝑆

𝜎2(𝑥𝑖)

𝑗∈𝑅

+∑(𝑥𝑖 − 𝑥𝑗)
2

𝑗∈𝑅

∑𝑤𝑖
′2(𝑥𝑗)𝜎

2(𝑥𝑖) +∑𝜎2(𝑥𝑗)

𝑗∈𝑅

 (3.112)

𝑖∈𝑆

 

    The asymptotic expression for the variance of the local linear regression estimator �̅�1 is 

𝑉𝑎𝑟𝑎𝑠𝑦(�̅�1) =∑
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)

𝑗∈𝑅

 .                                                                                                     (3.113) 

    Thus the asymptotic relative efficiency of the local constant regression estimator �̅�0 to the 

local linear regression estimator �̅�1 is  

𝐴𝑅𝐸(�̅�0, �̅�1) = lim
𝑛→∞

𝑅𝐸(�̅�0, �̅�1) = lim
𝑛→∞

{
𝑉𝑎𝑟𝑎𝑠𝑦(�̅�1)

𝑉𝑎𝑟𝑎𝑠𝑦(�̅�0)
} = lim

𝑛→∞
{
∑

𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)𝑗∈𝑅

∑
𝑑𝑘
𝑛ℎ
𝜎2(𝑥𝑗)𝑗∈𝑅

} = 1 (3.114) 

3.9 Extension to stratified random sampling 

3.9.1 Introduction 

    In stratified sampling, the population of 𝑁 units is first divided into 𝐻 sub populations of  

𝑁1 + 𝑁2 + 𝑁3 + 𝑁𝐻 = 𝑁                                                                                                             (3.115) 

such that 
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∑𝑁ℎ = 𝑁                                                                                                                                     (3.116) 

𝐻

ℎ=1

 

    The sub populations are called strata. In order to obtain the full benefits from stratification, 

the values of  𝑁ℎ must be known. When the strata have been determined, a random sample is 

drawn from each stratum, the drawings being made independently in different strata. The 

sample sizes within the strata are denoted by 𝑛1, 𝑛2, 𝑛3, … . , 𝑛𝐻, respectively. 

If a simple random sample is taken in each stratum, the whole procedure is described as 

stratified random sampling. Stratification may produce a gain in precision in the estimates of 

characteristics of the whole population. It may be possible to divide a heterogeneous population 

into subpopulations, each of which is internally homogeneous. This is suggested by the name 

strata, with its implication of a division into layers. If each stratum is homogeneous, in the 

sense that the measurements vary little from one unit to another, a precise estimate of any 

stratum mean can be obtained from a small sample in that stratum. These estimates can then be 

combined into a precise estimate for the whole population. In what follows, we extend the use 

of the local linear regression to stratified random sampling. 

3.9.2 The proposed estimator 

    In this section, the local linear regression estimators of finite population total under stratified 

random sampling are derived. Suppose this population consisting of 𝑁 units is divided into 𝐻 

different strata of size 𝑁ℎ, ℎ = 1,2, … , 𝐻. Let 𝑦ℎ𝑗, 𝑗 = 1,2, … ,𝑁ℎ be the survey measurement 

for the 𝑗𝑡ℎ unit in the ℎ𝑡ℎ stratum. Further, let 𝑥ℎ𝑗 , 𝑗 = 1,2, … , 𝑁ℎ be the auxiliary 

measurement. A simple random sample of size 𝑛ℎ is selected without replacement, where 𝑛ℎ 

is sufficiently large with respect to 𝑁ℎ. Let also 𝑠ℎ be the sample values in the ℎ𝑡ℎ stratum and 

𝑟ℎ be the non sample values in the ℎ𝑡ℎ stratum. Consider the super population model below 

𝐸(𝑌ℎ𝑗) = 𝑚(𝑥ℎ𝑗)                                                                                                                           (3.117) 
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𝑉𝑎𝑟(𝑌ℎ𝑗) = 𝜎
2(𝑥ℎ𝑗)                                                                                                                     (3.118) 

𝐶𝑜𝑣(𝑌ℎ𝑗 , 𝑌ℎ′𝑗′) = {
𝜎2(𝑥ℎ𝑗), ℎ = ℎ′, 𝑗 = 𝑗′

0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                           (3.119) 

    The functions 𝑚(𝑥ℎ𝑗) and 𝜎2(𝑥ℎ𝑗) are assumed to be smooth and strictly positive. 

This model implies that 

 𝑌ℎ𝑗 = 𝑚(𝑥ℎ𝑗)  + 𝜀ℎ𝑗                                                                                                                    (3.120)  

where properties of the error terms are 

𝐸(𝜀ℎ𝑗) = 0                                                                                                                                      (3.121) 

𝐶𝑜𝑣(𝜀ℎ𝑗 , 𝜀ℎ′𝑗′) = {
𝜎2(𝑥ℎ𝑗), ℎ = ℎ′, 𝑗 = 𝑗′

0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                            (3.122) 

We now use the local linear regression procedure to estimate 𝑚(𝑥ℎ𝑗) using (3.91). We denote 

our local linear regression estimator by �̅�𝐿𝐿(𝑥ℎ𝑗). We assume that the auxiliary (prior) 

information is available for the entire finite population. We let 𝑘 denote the kernel which is a 

continuous, bounded real function that integrates to one, that is, ∫𝑘(𝑢)𝑑𝑢 = 1. Further, let the 

kernel weight in the ℎ𝑡ℎ stratum be 

𝑤ℎ𝑗(𝑥ℎ𝑖) =
𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)𝑠

   𝑖, 𝑗 = 1,2, … ,𝑁ℎ,   ℎ = 1,2, … , 𝐿                                      (3.123) 

where ∑ (. )𝑠  implies summation over all the sampled units and  𝑤ℎ𝑗(. ) is a symmetric density 

function while 𝑏 is the bandwidth that determines how large a neighborhood of the target point 

is used to calculate the local average. This form of weight is suggested by Nadaraya (1964) and 

Watson (1964) and it is such that ∑ 𝑤ℎ𝑗(𝑥ℎ) = 1𝑠 . 

    Using this idea, we suggest a local linear polynomial regression estimator of the non sampled 

𝑦ℎ𝑗′𝑠 in the ℎ𝑡ℎ stratum which is 

�̅�𝐿𝐿(𝑥ℎ𝑗) =  𝑒1
′(𝑋ℎ𝑗

′ 𝑊ℎ𝑗𝑋ℎ𝑗)
−1
𝑋ℎ𝑗
′ 𝑊ℎ𝑗𝑋ℎ𝑗 = �̅�ℎ𝑗                                                                 (3.124) 
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where 𝑒1 = (1,0,0, … ,0)
′ is a column vector of length 𝑝 + 1, 𝑊ℎ𝑗 = 𝑑𝑖𝑎𝑔 (𝑘(𝑥ℎ𝑗 − 𝑥ℎ𝑖)) and 

𝑋ℎ𝑗 = (1, (𝑥ℎ𝑗 − 𝑥ℎ𝑖), … , (𝑥ℎ𝑗 − 𝑥ℎ𝑖)
𝑝
)     

    In order to estimate the population total of the non sampled units in the ℎ𝑡ℎ stratum, we let 

𝑥 = 𝑥ℎ𝑖 be any point in the non sampled units. Then it follows from (3.124) that 

�̅�𝐿𝐿(𝑥ℎ𝑗) =∑{
𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)𝑠

} �̅�ℎ𝑗                                                                                   (3.125)

𝑠

 

We denote the local linear regression estimator of finite population total, 𝑇 as �̅�𝐿𝐿 and hence 

the local linear regression estimators of finite population total within stratum h are denoted by 

�̅�𝐿𝐿ℎ. In stratum ℎ, the population total can be partitioned into observed and unobserved 

components, assuming that the sample from the ℎ𝑡ℎ stratum is rearranged so that 𝑁ℎ − 𝑛ℎ  are 

non-sample values, then 

𝑇𝐿𝐿ℎ =∑𝑦ℎ𝑗 +

𝑛ℎ

𝑗=1

∑ 𝑦ℎ𝑗

𝑁ℎ

𝑗=𝑛ℎ+1

                                                                                                                        

          = 𝑦ℎ𝑠 + 𝑦ℎ𝑟                                                                                                                           (3.126) 

𝑤ℎ𝑒𝑟𝑒  𝑦ℎ𝑠 =∑𝑦ℎ𝑗

𝑛ℎ

𝑗=1

       𝑎𝑛𝑑   𝑦ℎ𝑟 = ∑ 𝑦ℎ𝑗

𝑁ℎ

𝑗=𝑛ℎ+1

                                                                (3.127) 

therefore the local linear estimator of finite population total within stratum ℎ is  

�̅�𝐿𝐿ℎ = 𝑦ℎ𝑠 + ∑ 𝐸(𝑦ℎ𝑗 )                                                                                                                     

𝑁ℎ

𝑗=𝑛ℎ+1

 

     = 𝑦ℎ𝑠 + ∑ �̅�𝐿𝐿(𝑥ℎ𝑗)                                                                                               

𝑁ℎ

𝑗=𝑛ℎ+1

               

         = 𝑦ℎ𝑠 + �̅�𝐿𝐿(𝑥ℎ𝑟)                                                                                                                (3.128) 

𝑤ℎ𝑒𝑟𝑒, �̅�𝐿𝐿(𝑥ℎ𝑟) = ∑ �̅�𝐿𝐿(𝑥ℎ𝑗)                                                                             (3.129) 

𝑁ℎ

𝑗=𝑛ℎ+1
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    The local linear regression estimator of finite population total under stratified sampling is 

�̅�𝐿𝐿 =∑�̅�𝐿𝐿ℎ                                                                                                                                               

𝐻

h=1

 

=∑𝑦ℎ𝑠

𝐻

h=1

+∑ ∑ �̅�𝐿𝐿(𝑥ℎ𝑗) 

𝑁ℎ

𝑗=𝑛ℎ+1

𝐻

h=1

                                                                                             

        = ∑∑𝑦ℎ𝑗

𝑛ℎ

𝑗=1

𝐻

h=1

+∑ ∑ �̅�𝐿𝐿(𝑥ℎ𝑗) 

𝑁ℎ

𝑗=𝑛ℎ+1

𝐻

h=1

                                                                             (3.130) 

3.9.3 Properties of the local linear regression estimator under stratified sampling 

    In this section we explore properties of the estimator of finite population total derived using 

the local linear procedure. The necessary and sufficient conditions outlined by Fan (1993) and 

Ruppert and Wand (1994) to investigate the properties of the estimator are considered. 

Specifically, these assumptions are stated in section (3.1)and section (3.3). 

The function for the finite population total is given as  

𝑇 =∑𝑦ℎ                                                                                                                                       (3.131)

𝐿

ℎ=1

 

where 𝑦ℎ is the sum of all the units in stratum ℎ, that is 

𝑦ℎ =∑𝑦ℎ𝑗                                                                                                                                     (3.132)

𝑁ℎ

𝑗=1

 

    Therefore, we define the prediction error for estimating the finite population total within 

stratum ℎ by 

�̅�𝐿𝐿ℎ − 𝑇 =∑(𝑦ℎ𝑠 + �̅�ℎ𝑟) −∑𝑦ℎ                                                                                 

𝐿

ℎ=1

𝐿

ℎ=1

                       

=∑(𝑦ℎ𝑠 + �̅�ℎ𝑟 − (𝑦ℎ𝑠 + 𝑦ℎ𝑟))

𝐿

ℎ=1
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=∑(�̅�ℎ𝑟 − 𝑦ℎ𝑟)

𝐿

ℎ=1

                                                                                                                                          

=∑{∑𝑤ℎ𝑗(𝑥ℎ𝑖)𝑦ℎ𝑗 −

𝑠

𝑦ℎ𝑟}

𝐿

ℎ=1

                                                                                                  (3.133) 

where 𝑦𝐻 = 𝑦ℎ𝑠 + 𝑦ℎ𝑟, and 𝑦ℎ𝑠 is the sum of all the sampled units whereas 𝑦ℎ𝑟 is the sum of 

all the non sampled units in the ℎ𝑡ℎ stratum. 

But noting that 

∑ 𝑤ℎ𝑗(𝑥ℎ𝑖)𝑦ℎ𝑗 =
𝑘(
𝑥ℎ1−𝑥ℎ𝑖

𝑏
)

∑ 𝑘(
𝑥ℎ1−𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ1 +𝑠

𝑘(
𝑥ℎ2−𝑥ℎ𝑖

𝑏
)

∑ 𝑘(
𝑥ℎ2−𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ2+. . +
𝑘(
𝑥ℎ𝑛ℎ

−𝑥ℎ𝑖

𝑏
)

∑ 𝑘(
𝑥ℎ𝑛ℎ

−𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ𝑛ℎ               (3.134)                                                                                                                                            

we have 

�̅�𝐿𝐿ℎ − 𝑇 =∑(�̅�ℎ𝑟 − 𝑦ℎ𝑟)

𝐿

ℎ=1

                                                                                                                         

=∑{
𝑘 (
𝑥ℎ1 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ1 − 𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ1 +
𝑘 (
𝑥ℎ2 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ2 − 𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ2 +⋯+
𝑘 (
𝑥ℎ𝑛ℎ − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ𝑛ℎ − 𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ𝑛ℎ−𝑦ℎ𝑟} 

𝐿

ℎ=1

 

     (3.135)                                                                                                                             
which is simply 

�̅�𝐿𝐿ℎ − 𝑇 =∑{∑
𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)𝑠

𝑦ℎ𝑗 − yhr
𝑠

}

𝐿

ℎ=1

                                                               (3.136)  

 

Since 𝑌ℎ𝑗 = 𝑚(𝑥ℎ𝑗) + 𝜀ℎ𝑗, and given that 𝐸(𝑌ℎ𝑗) = 𝑚(𝑥ℎ𝑗), then it follows that 

𝐸(�̅�𝐿𝐿ℎ − 𝑇)                                                                                                                                                    

=∑{
𝑘 (
𝑥ℎ1 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ1 − 𝑥ℎ𝑖

𝑏
)𝑠

𝑚ℎ1 +
𝑘 (
𝑥ℎ2 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ2 − 𝑥ℎ𝑖

𝑏
)𝑠

𝑚ℎ2 +⋯+
𝑘 (
𝑥ℎ𝑛ℎ − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ𝑛ℎ − 𝑥ℎ𝑖

𝑏
)𝑠

}

𝐿

ℎ=1

𝑚(𝑥hj)

− 𝑚(𝑥hr) 
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=∑{∑
𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)

∑ 𝑘 (
𝑥ℎ𝑗 − 𝑥ℎ𝑖

𝑏
)𝑠

𝑚(𝑥hj) − 𝑚(𝑥hr)

𝑠

}

𝐿

ℎ=1

                                                                (3.137) 

Equation (3.137) is the prediction bias associated with �̅�𝐿𝐿ℎ. In order to approximate this bias, 

we apply a Taylor series expansion about a point 𝑥ℎ and assume that 𝑚(𝑥ℎ𝑗) is smooth, 𝑛ℎ →

∞ and 𝑏 → 0. Then it is observed that 

�̅�𝐿𝐿(𝑥ℎ𝑗) ≈ 𝑚(𝑥h) + 𝑚
′(𝑥ℎ)(𝑥ℎ𝑗 − 𝑥ℎ) +

1

2
𝑚′′(𝑥ℎ)(𝑥ℎ𝑗 − 𝑥ℎ)

2
                                  (3.138) 

Letting 𝑢 =
𝑥ℎ𝑗−𝑥ℎ

𝑏
 so that 𝑏𝑢 = 𝑥ℎ𝑗 − 𝑥ℎ, then it implies that 

�̅�𝐿𝐿(𝑥ℎ𝑗) ≈ 𝑚(𝑥h) + 𝑚
′(𝑥ℎ)𝑏𝑢 +

1

2
𝑚′′(𝑥ℎ)b

2𝑢2                                                              (3.139) 

    Therefore equation (3.137) becomes 

𝐸(�̅�𝐿𝐿ℎ − 𝑇) ≈ ∑{∑
𝑘(𝑢)

∑ 𝑘(𝑢)𝑠
(𝑚(𝑥h) + 𝑚

′(𝑥ℎ)𝑏𝑢 +
1

2
𝑚′′(𝑥ℎ)b

2𝑢2) − 𝑚(𝑥hr)

𝑠

}

𝐿

ℎ=1

                 

≈∑{𝑚(𝑥h)∑
𝑘(𝑢)

∑ 𝑘(𝑢)𝑠
+ 𝑏𝑚′(𝑥ℎ)∑

𝑢𝑘(𝑢)

∑ 𝑘(𝑢)𝑠
s

+
b2𝑚′′(𝑥ℎ)

2
∑

𝑢2𝑘(𝑢)

∑ 𝑘(𝑢)𝑠
s

−𝑚(𝑥hr)

𝑠

}

𝐿

ℎ=1

          

     (3.140)                                                                                                                                         
    Equation (3.140) can be expressed as 

𝐸(�̅�𝐿𝐿ℎ − 𝑇)                                                                                                                                                    

=∑{𝑚(𝑥h) + 𝑚
′(𝑥ℎ) (

𝑛ℎ𝑏
2𝜙1 + 𝛰(𝑛ℎ𝑏

4)

𝑛ℎ𝑏𝜙0 + 𝛰(𝑛ℎ𝑏3)
) +

1

2
𝑚′′(𝑥ℎ) (

𝑛ℎ𝑏
3𝜙2 + 𝛰(𝑛ℎ𝑏

5)

𝑛ℎ𝑏𝜙0 + 𝛰(𝑛ℎ𝑏3)
)

𝐿

ℎ=1

−𝑚(𝑥hr)} 

=∑{𝑚(𝑥h) + 𝑚
′(𝑥ℎ) (𝑏

𝜙1
𝜙0
+ 𝛰(𝑏3)) +

1

2
𝑚′′(𝑥ℎ) (𝑏

2
𝜙2
𝜙0
+ 𝛰(𝑏4)) − 𝑚(𝑥hr)}     

𝐿

ℎ=1

 

=∑{𝑚(𝑥h) + 𝑚
′(𝑥ℎ) (𝑏

𝜙1
𝜙0
+ 𝛰(𝑏3)) +

1

2
𝑚′′(𝑥ℎ) (𝑏

2
𝜙2
𝜙0
+ 𝛰(𝑏4) − 𝑚(𝑥hr))}

𝐿

ℎ=1

 

                 (3.141) 
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    Noting that, 𝜙0 = ∫ 𝑘(𝑢)𝑑𝑢 = 1,
1

0
 𝜙1 = ∫ 𝑢𝑘(𝑢)𝑑𝑢 = 0  

1

0
and 𝜙2 = ∫ 𝑢2𝑘(𝑢)𝑑𝑢 > 0

1

0
, 

then the bias for estimating the finite population total within stratum h is given by 

𝐸(�̅�𝐿𝐿ℎ − 𝑇) =∑{𝑚(𝑥ℎ) + 𝑚
′(𝑥ℎ)𝛰(𝑏

3) +
1

2
𝑚′′(𝑥ℎ)(𝑏

2𝜙2 + 𝛰(𝑏
4)) − 𝑚(𝑥hr)}              

𝐿

ℎ=1

 

=∑{𝑚(𝑥ℎ) + 𝑚
′(𝑥ℎ)𝛰(𝑏

3) +
1

2
𝑚′′(𝑥ℎ)(𝑏

2∫𝑢2𝑘(𝑢)𝑑𝑢

1

0

+ 𝛰(𝑏4)) −𝑚(𝑥hr)} 

𝐿

ℎ=1

 

                 (3.142) 

    We deduce from equation (3.142), that the bias is given by 

𝑏2

2
{
1

𝑁
∑𝑚′′(𝑥ℎ)

𝐿

h=1

∫𝑢2𝑘(𝑢)𝑑𝑢

1

0

} + 𝛰(𝑏4)                                                                             (3.143) 

Thus as 𝑏 → 0 , 𝐸(�̅�𝐿𝐿ℎ − 𝑇) → 0. Therefore the bias of �̅�𝐿𝐿ℎ is asymptotically design unbiased 

estimator of the finite population total, 𝑇. 

The asymptotic mean square error of the estimator for finite population total �̅�𝐿𝐿ℎ is defined by 

𝑀𝑆𝐸(�̅�𝐿𝐿ℎ) = 𝑉𝑎𝑟(�̅�𝐿𝐿ℎ) + (𝐵𝑚(�̅�𝐿𝐿ℎ))
2
                                                                                (3.144) 

    Considering theorem 1 of Fan (1993) and the assumptions therein stated, we have 

𝑀𝑆𝐸(�̅�𝐿𝐿ℎ) ≈
1

𝑏

1

𝑁2
{∑

1

𝑛ℎ

𝐿

ℎ=1

𝜎2(𝑥ℎ𝑖)𝐶𝑘} + {
𝑏2

2
(
1

𝑁
∑𝑚′′

𝐿𝐿(𝑥ℎ𝑖)∫𝑢
2𝑘(𝑢)𝑑𝑢

1

0

𝐿

ℎ=1

)}

2

                   

                        ≈
1

𝑏

1

𝑁2
{∑

1

𝑛ℎ

𝐿

ℎ=1

𝜎2(𝑥ℎ𝑖)𝐶𝑘} +
𝑏4

4
{
1

𝑁
∑𝑚′′

𝐿𝐿(𝑥ℎ𝑖)𝑑𝑘

𝐿

ℎ=1

}

2

                            (3.145) 

where  𝑑𝑘 = ∫ 𝑢2𝑘(𝑢)𝑑𝑢 ,
1

0
 𝐶𝑘 = ∫ 𝑘𝑏

2(𝑢)𝑑𝑢     

Clearly it is seen that equation (3.145) approaches zero in such a way that if 𝑏 → 0 and 𝑛𝑏 →

∞, then 𝑀𝑆𝐸(�̅�𝐿𝐿ℎ) → 0 
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3.10 Extension to two stage cluster sampling 

3.10.1 Introduction 

 

    Let 𝑌1, 𝑌2, … , 𝑌𝑀 denote the finite population elements and 𝑋1, 𝑋2, … , 𝑋𝑀 denote the 

associated covariates. Consider this finite population (𝑇) of size 𝑁 primary units or clusters 

labeled 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑁). Let 𝑀𝑖  , 𝑖 = 1,2, … , 𝑁 be the number of secondary units in the 𝑖𝑡ℎ 

primary unit. In this case, 𝑁 is assumed to be known, but the 𝑀𝑖′𝑠 are unknown before 

sampling. Let 𝑦𝑖𝑗, 𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, … ,𝑀𝑖 be the value of the interest variable for the 𝑗𝑡ℎ 

secondary unit belonging to the 𝑖𝑡ℎ primary unit. The relationship between the study variable 

and the auxiliary variable is described by the two stage nonparametric super population model 

which is 

𝑦𝑖𝑗 = 𝑚(𝑥𝑖𝑗) + 𝜀𝑖𝑗 ,    𝑖 = 1,2, … , 𝑛;     𝑗 = 1,2, … ,𝑀𝑖                                                             (3.146)            

The following assumptions hold for the model considered in the nonparametric regression 

estimation of finite population total 

𝐸𝑚(𝑦𝑖𝑗) = 𝑚(𝑥𝑖𝑗),   𝑉𝑎𝑟𝑚(𝑦𝑖𝑗) = 𝜎𝜇
2 + 𝜎𝜀

2, 𝐶𝑜𝑣𝑚(𝑦𝑖𝑗) = 0,                                     (3.147) 

where 𝐸𝑚, 𝑣𝑎𝑟𝑚  and 𝐶𝑜𝑣𝑚 denote the expectation, the variance and the covariance under the 

model distribution. 

3.10.2 The proposed estimator 

    The main purpose is to estimate the finite population total under two stage cluster sampling 

design which is 

𝑇 =∑∑𝑦𝑖𝑗                                                                                                                                 (3.148)

𝑀𝑖

𝑗=1

𝑁

𝑖=1

 

where 𝑁 is the number of primary sampling units (clusters), 𝑀𝑖′𝑠 are unknown before sampling 

and 𝑦𝑖𝑗 is the value of the survey variable of interest for the 𝑗𝑡ℎ secondary unit of the 𝑖𝑡ℎ cluster. 

Suppose that the selected primary units are 𝑛 and the selected secondary units are 𝑚𝑖, 𝑚 =
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∑ 𝑚𝑖
𝑛
𝑖=1 . Assuming the two stage nonparametric regression model (3.146) and using local 

linear regression procedure, we suggest an estimator of the finite population total of the form 

�̅�𝐿𝐿 =∑∑𝑦𝑖𝑗  

𝑚𝑖

𝑗=1

𝑛

𝑖=1

+∑ ∑ 𝑦𝑖𝑗 

𝑀𝑖

𝑗=𝑚𝑖+1

𝑛

𝑖=1

+ ∑ ∑𝑦𝑖𝑗

𝑀𝑖

𝑗=1

𝑁

𝑖=𝑛+1

                                                               (3.149) 

    The first component of the finite population total �̅�𝐿𝐿 represents the population total for the 

observed items, the second component represents the population total for the unobserved items 

in sample clusters and the third component represents the population total for the unobserved 

items in non sample clusters. 

 

The second and third components of finite population total �̅�𝐿𝐿 are estimated respectively  using  

∑ ∑ �̅�𝑖𝑗 =∑ ∑ �̅�𝑖(𝑥𝑖𝑗)                                                                                         (3.150)

𝑀𝑖

𝑗=𝑚𝑖+1

𝑛

𝑖=1

 

𝑀𝑖

𝑗=𝑚𝑖+1

𝑛

𝑖=1

 

and  

∑ ∑�̅�𝑖𝑗 = ∑ ∑�̅�𝑖(𝑥𝑖𝑗)                                                                                              (3.151)

𝑀𝑖

𝑗=1

𝑁

𝑖=𝑛+1

 

𝑀𝑖

𝑗=1

𝑁

𝑖=𝑛+1

 

    Therefore estimation of the mean regression function 𝑚(𝑥) for each of the selected 𝑖𝑡ℎ 

cluster is obtained using the procedure of local linear regression. Now under local linear 

regression, and for each of the selected 𝑖𝑡ℎ cluster, we have 

𝑋 = (

1 𝑥 − 𝑥1
1 𝑥 − 𝑥2

⋮
1     𝑥 − 𝑥𝑛

)                𝑌 = (

𝑌1
𝑌2
⋮
𝑌𝑛

)                                                                                                   

and 

𝑊 = [

𝐾𝑏(𝑥 − 𝑋1)             0        …                0           

     0             𝐾𝑏(𝑥 − 𝑋2) ⋯ 0
⋮ ⋱ ⋮

0                            0 ⋯ 𝐾𝑏(𝑥 − 𝑋𝑛)

]   ,                                                                           

Thus, the estimation of 𝛽(𝑥) for each of the  selected 𝑖𝑡ℎ cluster is 
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�̅�𝑖(𝑥) = (𝑋𝑖
′𝑊𝑖𝑋𝑖)

−1𝑋𝑖
′𝑊𝑖𝑌𝑖                                                                                                      (3.152) 

and the local linear regression estimator of 𝑚(𝑥) for each of the 𝑖𝑡ℎ selected cluster  is 

�̅�𝑖(𝑥) = �̅�𝑖0 = 𝑒1
′(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1𝑋𝑖

′𝑊𝑖𝑌𝑖                                                                                    (3.153) 

3.10.3 Properties of the local linear regression estimator of 𝒎(𝒙) 
 

    In order to examine the properties of the estimator (3.153), we need assumptions outlined 

in section (3.10.1) and the sample size 𝑛 to be sufficiently large. It therefore follows from the 

definition of the estimator that the expectation of this estimator is given by 

𝐸(�̅�𝑖(𝑥)) = 𝑒1
′(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1𝑋𝑖

′𝑊𝑖𝑀                                                                                           (3.154) 

where the vector 𝑀 = (𝑚(𝑥1),𝑚(𝑥2), … ,𝑚(𝑥𝑛))
′
 contains the true regression function values 

at each of the 𝑥𝑖′𝑠. We denote the point at which 𝑚 is being estimated simply by 𝑥𝑗. Therefore, 

for the local linear regression, we have 

𝑋𝑖 =

(

 
 

1 (𝑥1 − 𝑥𝑗)

1 (𝑥2 − 𝑥𝑗)

⋮
1    ( 𝑥𝑛 − 𝑥𝑗))

 
 
                                                                                                                (3.155) 

Now, by Taylor’s theorem, for any 𝑥𝑗 ∈ (0, 1), we can write 

𝑚𝑖(𝑥𝑖) = 𝑚𝑖(𝑥𝑗) + (𝑥𝑖 − 𝑥𝑗)𝑚𝑖
′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
2

2!
𝑚𝑖
′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚𝑖
′′′(𝑥𝑗) +.                  

                                                                                                                                         (3.156) 

so that 

𝑀 = 𝑋𝑖 (
𝑚𝑖(𝑥𝑗)

𝑚𝑖
′(𝑥𝑗)

) +
1

2!
𝑚𝑖
′′(𝑥𝑗)

(

 
 

1 (𝑥1 − 𝑥𝑗)
2

1 (𝑥2 − 𝑥𝑗)
2

⋮

1    ( 𝑥𝑛 − 𝑥𝑗)
2
)

 
 
+
1

3!
𝑚𝑖
′′′(𝑥𝑗)

(

 
 

1 (𝑥1 − 𝑥𝑗)
3

1 (𝑥2 − 𝑥𝑗)
3

⋮

1    ( 𝑥𝑛 − 𝑥𝑗)
3
)

 
 
+⋯         



72 

 

                                                                                                                                         (3.157) 

The first term in the expansion of �̅�𝑖(𝑥𝑗) which is the true regression function is 

𝑒1
′(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1(𝑋𝑖

′𝑊𝑖𝑋𝑖) (
𝑚𝑖(𝑥𝑗)

𝑚𝑖
′(𝑥𝑗)

) = 𝑒1
′ (
𝑚𝑖(𝑥𝑗)

𝑚𝑖
′(𝑥𝑗)

) = 𝑚𝑖(𝑥𝑗)                                             (3.158) 

The bias of the estimator �̅�𝑖(𝑥𝑗) is 

𝐸[�̅�𝑖(𝑥𝑗)] − 𝑚𝑖(𝑥𝑗) = 𝑒1
′(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1(𝑋𝑖

′𝑊𝑖)
1

2!
𝑚𝑖
′′(𝑥𝑗)

(

 
 

1 (𝑥1 − 𝑥𝑗)
2

1 (𝑥2 − 𝑥𝑗)
2

⋮

1    ( 𝑥𝑛 − 𝑥𝑗)
2
)

 
 
+⋯                     

                    = 𝑒1
′(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1(𝑛−1)(𝑋𝑖

′𝑊𝑖)
1

2!
𝑚𝑖
′′(𝑥𝑗)

(

 
 

1 (𝑥1 − 𝑥𝑗)
2

1 (𝑥2 − 𝑥𝑗)
2

⋮

1    ( 𝑥𝑛 − 𝑥𝑗)
2
)

 
 
+⋯            (3.159) 

    We note that if 𝑚𝑖 is a linear function, then 𝑚𝑖
(𝑟)(𝑥𝑗) = 0   ∀ 𝑟 ≥ 2 so that the local linear 

estimator is exactly unbiased when 𝑚𝑖 is a linear function. In order to find the leading bias term 

for the general functions 𝑚𝑖, we note that 

(𝑛−1)(𝑋𝑖
′𝑊𝑖𝑋𝑖) = (

�̂�0(𝑥𝑗; ℎ) �̂�1(𝑥𝑗; ℎ)

�̂�1(𝑥𝑗; ℎ) �̂�2(𝑥𝑗; ℎ)
)                                                                             (3.160) 

and 
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(𝑛−1)(𝑋𝑖
′𝑊𝑖) =

(

 
 
 
 
 (𝑥1 − 𝑥𝑗)

2

(𝑥2 − 𝑥𝑗)
2

.

.

( 𝑥𝑛 − 𝑥𝑗)
2
)

 
 
 
 
 

= (
�̂�2(𝑥𝑗; ℎ)

�̂�3(𝑥𝑗; ℎ)
)                                                                     (3.161) 

where �̂�𝑟(𝑥𝑗; ℎ) = 𝑛
−1∑ (𝑥𝑖 − 𝑥𝑗)

𝑟
𝐾 ((𝑥𝑖 − 𝑥𝑗)/ℎ)

𝑛
𝑖=1  for 𝑟 = 0,1,2,3. 

    Since the first derivative 𝐾(1) of the kernel is assumed to be bounded, we can approximate 

the functions �̂�𝑟(𝑥𝑗; ℎ) by integrals. In order to perform this, we need the following conditions 

and the sample size 𝑛 to be sufficiently large: 

i. The function 𝑚′′(. ) is continuous on (0, 1). 

ii. The kernel 𝐾 is symmetric and supported on (−1, 1). Also 𝐾 has a bounded first 

derivative. 

iii. The bandwidth ℎ is a sequence of values which depend on the sample size 𝑛 and 

satisfying ℎ → 0 and 𝑛ℎ → ∞ as 𝑛 → ∞. 

iv. The point 𝑥𝑗 at which the estimation is taking place satisfies ℎ < 𝑥𝑗 < 1 − ℎ   ∀𝑛≥ 𝑛0  

where 𝑛0 is fixed. 

Thus, we have 

�̂�𝑟(𝑥𝑗; ℎ) = ∫(𝑦 − 𝑥𝑗)
𝑟
𝐾 ((𝑦 − 𝑥𝑗)/ℎ)𝑑𝑦 + 𝑂(𝑛

−1)                                                                        

1

0

 

= ℎ𝑟+1 ∫ 𝑢𝑟𝐾(𝑢)𝑑𝑢 + 𝑂(𝑛−1)                                                                   

(1−𝑥𝑗)/ℎ

−𝑥𝑗/ℎ
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                 = ℎ𝑟+1∫𝑢𝑟𝐾(𝑢)𝑑𝑢 + 𝑂(𝑛−1)                                                                       

1

0

        (3.162) 

By the symmetry and compact support of 𝐾, the odd moments of 𝐾 are all zero and so we have 

𝑛−1𝑋𝑖
′𝑊𝑖𝑋𝑖 = (

�̂�0(𝑥𝑗; ℎ) �̂�1(𝑥𝑗; ℎ)

�̂�1(𝑥𝑗; ℎ) �̂�2(𝑥𝑗; ℎ)
)                                                                                                    

                       = (
ℎ + 𝑂(𝑛−1) 𝑂(𝑛−1)

𝑂(𝑛−1) ℎ3𝜎𝐾
2 + 𝑂(𝑛−1)

)                                                                   (3.163) 

where 𝜎𝐾
2 = ∫ 𝑢2𝐾(𝑢)𝑑𝑢

1

−1
 and 

(𝑛−1)(𝑋𝑖
′𝑊𝑖) =

(

 
 
 
 
 (𝑥1 − 𝑥𝑗)

2

(𝑥2 − 𝑥𝑗)
2

.

.

( 𝑥𝑛 − 𝑥𝑗)
2
)

 
 
 
 
 

= (
�̂�2(𝑥𝑗; ℎ)

�̂�3(𝑥𝑗; ℎ)
)                                                                                    

                          = (
ℎ3𝜎𝐾

2 + 𝑂(𝑛−1)

𝑂(𝑛−1)
)                                                                                          (3.164) 

    The following expression for the leading bias term is obtained using some straight forward 

matrix algebra 

𝐸[�̅�𝑖(𝑥𝑗)] − 𝑚𝑖(𝑥𝑗) =
1

2
ℎ2𝜎𝐾

2𝑚𝑖
2(𝑥𝑗) + 𝑜(ℎ

2) + 𝑂(𝑛−1)                                                 (3.165) 

    Examining the asymptotic variance of �̅�𝑖(𝑥𝑗), we have 

𝑉𝑎𝑟 (�̅�𝑖(𝑥𝑗)) = 𝑒1
′(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1(𝑋𝑖

′𝑊𝑖𝑉𝑊𝑖𝑋𝑖)(𝑋𝑖
′𝑊𝑖𝑋𝑖)

−1𝑒1                                                              

                       = (𝑛−1)𝑒1
′𝑛(𝑋𝑖

′𝑊𝑖𝑋𝑖)
−1(𝑛−1)(𝑋𝑖

′𝑊𝑖𝑉𝑊𝑖𝑋𝑖)𝑛(𝑋𝑖
′𝑊𝑖𝑋𝑖)

−1𝑒1                     (3.166) 

where 𝑉 = 𝑑𝑖𝑎𝑔(𝜎𝑒
2, … , 𝜎𝑒

2). And using approximations analogous to those used above, we 

have 

𝑛−1(𝑋𝑖
′𝑊𝑖𝑉𝑊𝑖𝑋𝑖) = 𝑛

−1∑𝐾((𝑥𝑖 − 𝑥𝑗)/ℎ)
2

𝜎𝐾
2

𝑛

𝑖=1

(
1 (𝑥𝑖 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗) (𝑥𝑖 − 𝑥𝑗)
2)                                



75 

 

                                  = (
ℎ𝜎𝐾

2𝑅(𝐾) + 𝑜(𝑛−1) 𝑂(𝑛−1)

𝑂(𝑛−1) ℎ3𝜎𝐾
2∫𝑢2𝐾(𝑢)2𝑑𝑢 + 𝑂(𝑛−1)

)             (3.167) 

where 𝑅(𝐾) = ∫𝐾(𝑢)2𝑑𝑢. We can combine these expressions to obtain 

𝑉𝑎𝑟 (�̅�𝑖(𝑥𝑗)) =
1

𝑛ℎ
𝜎𝐾
2𝑅(𝐾) + 𝑜{(𝑛ℎ)−1}                                                                              (3.168) 

3.11 Chapter Summary 

    So far we have studied the properties of the local linear regression estimators of finite 

population total in a model based framework. We have also extended the local linear regression 

procedure to stratified random sampling and to two stage cluster sampling. Analytical 

comparisons show that the local linear regression estimators are consistent and have minimal 

asymptotic variance in comparison with the Nadaraya-Watson regression estimator. In the next 

chapter, we carry out a study to compare the performances of the proposed local linear 

regression estimators of finite population total with some other estimators that exist in the 

literature.  
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CHAPTER FOUR 

EMPIRICAL STUDY 
 

4.1 Introduction 

    We have indicated that the local linear regression estimators are not only asymptotically 

design unbiased but are also consistent estimators. In this chapter, a study is carried out to 

compare the performances of the derived local linear regression estimators with some other 

estimators that exist in the literature. In particular, the estimator that is more efficient than the 

other one under different circumstances is determined. The design based estimators, the 

parametric model based estimators and the nonparametric model based estimators are 

considered in our simulation experiments. 

4.2 Population description 

    In this section, four data sets are considered, which are again generated from the super 

population model (3.12) having different mean functions: Linear (L), Quadratic (Q), Bump 

(B) and Jump (J). The assumptions stated in equations (3.13) (3.14) and (3.15) still hold for 

the super population model considered in the nonparametric regression estimation of 𝑚(𝑥𝑖). 

The properties of the error are defined by equations (3.16) and (3.17). The idea is to estimate 

the finite population total 𝑇 using the super population model (3.12) having different mean 

functions 𝑚(𝑥𝑖): 𝐿, 𝑄, 𝐵 and 𝐽. 

    The four sets of observations are generated as independent and identically distributed (iid) 

random variables from a uniform distribution over (0, 1). The observations 𝑥𝑖 ′𝑠 are generated 

from the model (3.12) with respect to the mean functions 𝑚𝑗(𝑥𝑖): 𝐿, 𝑄, 𝐵, 𝐽 with 1 ≤ 𝑖 ≤ 200, 

𝑗 = 1,2,3,4 

𝑚1(𝑥𝑖): 𝐿 = 1 + 2(𝑥𝑖 − 0.5)                                                                                                                      
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𝑚2(𝑥𝑖): 𝑄 = 1 + 2(𝑥𝑖 − 0.5)
2                                                                                                                   

𝑚3(𝑥𝑖): 𝐵 = 1 + 2(𝑥𝑖 − 0.5) + exp(−200(𝑥𝑖 − 0.5)
2)                                                                     

𝑚4(𝑥𝑖): 𝐽 = 1 + 2(𝑥𝑖 − 0.5)𝐼(𝑥≤0.65) + 0.65𝐼(𝑥>0.65)                                                                           

where in 𝑚4(𝑥𝑖), the indicator functions 𝐼(𝑥≤0.65) and 𝐼(𝑥>0.65) equal 1 if the event occurs and 

0 otherwise. 

    The above mean functions represent the model specifications for the parametric and 

nonparametric estimators in consideration for cases where the model is correctly specified or 

incorrectly specified. The linear regression estimator is expected to be the best under the linear 

relationship as the model is correctly specified. The remaining mean functions; 𝑚2(𝑥𝑖), 𝑚3(𝑥𝑖) 

and 𝑚4(𝑥𝑖) represent different deviations from the linear model. The errors are assumed to be 

independent and identically distributed (iid) random variables with mean 0 and constant 

variance. 
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Figure 4.1: A scatter diagram for the linear relationship 
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Figure 4.2: A scatter diagram for the quadratic relationship 
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Figure 4.3: A scatter diagram for the bump relationship 
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Figure 4.4: A scatter diagram for the jump relationship 
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Table 4.1: Notation for estimators used for comparison in the simulation study 

 

�̅�𝐻𝑇                      𝐻𝑜𝑟𝑣𝑖𝑡𝑧 − 𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛                𝐻𝑜𝑟𝑣𝑖𝑡𝑧 𝑎𝑛𝑑 𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛 (1952) 

 

�̅�𝑅𝐸𝐺                    𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛                                                  𝐶𝑜𝑐ℎ𝑟𝑎𝑛 (1977) 

 

�̅�𝐷𝑂𝑅𝐹                           𝐷𝑜𝑟𝑓𝑚𝑎𝑛                                                           𝐷𝑜𝑟𝑓𝑚𝑎𝑛 (1992) 

 

�̅�𝐿𝐿                   𝐿𝑜𝑐𝑎𝑙 𝑙𝑖𝑛𝑒𝑎𝑟                        𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟                                    
 

 

Table 4.2: Formulae for computing estimator of finite population total 
 

        Estimator                             Formula 

     �̅�𝐻𝑇                                                                         �̅�𝐻𝑇 =∑
𝑦𝑖
𝜋𝑖

𝑛

𝑖=1

                                 

      �̅�𝑅𝐸𝐺                                                                        �̅�𝑅𝐸𝐺 =∑𝑦𝑖 +∑(�̅� + �̅�𝑥𝑖)

𝑖∈𝑅𝑖∈𝑆

 

    �̅�𝐷𝑂𝑅𝐹                                                                    �̅�𝐷𝑂𝑅𝐹 =∑𝑦𝑖
𝑆

+∑�̅�

𝑃−𝑠

(𝑥𝑗) 

    �̅�𝐿𝐿                                                                         �̅�𝐿𝐿 =∑𝑦𝑖
𝑖∈𝑆

+∑�̅�𝐿𝐿
𝑗∈𝑅

(𝑥𝑗) 
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4.3 The choice of the kernel function 

    We have several available kernel functions but the selected kernel should be theoretically 

good and be practical. According to Silverman (1986), we choose a function that satisfies the 

following conditions: 

i. Small values should be minimized as they may cause numerical underflow in the 

computer. 

ii. The kernel function should be user friendly, practical and theoretically fit in both 

simulated and raw data.  

iii.  The kernel function should be easy and simple to construct. 

iv.  The function should have its range well defined and not open as the Gaussian. 

    A comparison of the various kernels has been done by determining the efficiency of every 

kernel and the results are as shown in table (4.3) below: 

Table 4.3: The kernel functions with respective efficiency 

 

 

 

 

 

 

 

 

  Kernel                                         k(t)                                   Efficiency 

Epanechnikov                      
3

4√5
(1 −

1

5
𝑡2)     𝗅t𝗅 < √5              1.0000 

                                               0                      otherwise 

Biweight                              
15

16
(1 − 𝑡2)2        𝗅t𝗅<1                     0.9939 

                                               0                     otherwise               

Triangular                            1 − 𝗅t𝗅                 𝗅t𝗅<1                     0.9859 

Gaussian                               
1

√2𝜋
𝑒−

1

2
𝑡2

            −∞ < 𝑡 < ∞      0.9512 

Rectangular                           
1

2
                            𝗅t𝗅 < 1                0.9295                     

                                              0                         otherwise 
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4.4 The choice of the bandwidth  

    Application of the selected kernel function, requires the specification and establishment of 

the bandwidth, ℎ. The bandwidth is the standard deviation of the kernel and several bandwidths 

are available in practice. The proper selection of the bandwidth is always affected by the role 

for which the total estimate is to be applied. If the objective of population total estimation is to 

explore the data in order to suggest possible models and hypotheses, then it will probably be 

sufficient to select the bandwidth subjectively. When using population total estimation for 

presenting inferences, there is a case for under smoothing. Somehow, the user can do further 

smoothing by visual method but cannot easily unsmooth. However, many applications require 

an automatic choice of bandwidth. The automatic choice can nonetheless be used as a starting 

point for subsequent subjective adjustment. Scientists comparing their results will want to make 

reference to a standardized procedure. If the population total estimation is to be used on large 

data sets, then a user friendly and automatic method is necessary. 

4.4.1 The subjective method 

    This is a natural procedure for selecting the bandwidth by plotting out several curves and 

choosing the estimate that fits the values of the data well in conjunction with the nature of the 

data. Accordingly, the process of investigating several plots of data, all smoothed by different 

amount of bandwidths, may give more insight into the data than merely considering a single 

automatically produced curve. In this procedure, several bandwidths are suggested and the 

optimal bandwidth is selected by visual inspection to pick that bandwidth that constructs the 

best curve. 

4.4.2 The least squares cross validation method 

    This is an automatic procedure that totally depends on the data for selecting the bandwidth. 

We let the quantity Ф(ℎ) be given by the relation 
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Ф(ℎ) = ∑∑{(�̂�ℎ𝑗(𝑥𝑗) − 𝑦𝑗)
2
𝑤𝑖(𝑥𝑗)}

𝑗∈𝑟

𝐿

𝑘=1

                   𝐿 = 1,000                                            (4.1) 

The method is based on minimizing the quantity Ф(ℎ) over the quantity ℎ in 𝐿 randomly 

selected samples from the target population. This method was initially suggested by (Rademo, 

1982; Bowman, 1984; Hall, 1983 and Stone, 1984) for the density estimation. 

    The basic principle of least squares cross validation procedure is to construct the data 

themselves and then minimize the estimator over, ℎ to give the choice of the bandwidth for the 

estimator of the finite population total, �̅� given by 

�̅� = ∑𝑦𝑖 +∑�̅�(𝑥𝑗)                                                                                                                     (4.2)

𝑗∈𝑅𝑖∈𝑆

 

    The concern of picking the bandwidth from the interval arises. The Epanechnicov kernel is 

used for kernel smoothing because of its efficiency using well designed computer programs 

which is 

𝐾(𝑡) =
3

4√5
(1 −

1

5
𝑡2) , 𝘭𝑡𝘭 < √5                                                                                          (4.3) 

In Silverman (1986), the search for optimal bandwidth is done within the interval,  
𝜎

4𝑛
1
5⁄
≤ ℎ ≤

3𝜎

2𝑛
1
5⁄
 where 𝜎 is the standard deviation of the 𝑥𝑖′𝑠. In this study, the bandwidths are data driven 

and are determined by the least squares cross validation method. 

    We perform data simulations and computations using 𝑅 computer software. We picked on a 

smaller population of size 𝑁 = 200 because the nonparametric local linear regression method 

is slower and takes more computer time to compute the estimates. The simulation has however 

been made exhaustive by performing 𝑟 = 500 replications and thus the confidence in our 
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conclusions. For each of the four data sets of size 𝑁 = 200, samples are generated by simple 

random sampling without replacement using sample size 𝑛 = 60. For each combination of 

mean function, standard deviation and bandwidth, 500 replicate samples are selected and the 

estimators calculated. Now for each of the four data sets and for each sample, we compute the 

finite population total given by 

𝑇 =∑𝑦𝑖

𝑁

𝑖=1

                                                                                                                                            (4.4) 

    The prediction errors for each of the estimators of finite population total are computed as 

𝐸𝐻𝑇 = (�̅�𝐻𝑇 − 𝑇)                                                                                                                                (4.5) 

𝐸𝑅𝐸𝐺 = (�̅�𝑅𝐸𝐺 − 𝑇)                                                                                                                             (4.6) 

𝐸𝐷𝑂𝑅𝐹 = (�̅�𝐷𝑂𝑅𝐹 − 𝑇)                                                                                                                        (4.7) 

𝐸𝐿𝐿 = (�̅�𝐿𝐿 − 𝑇)                                                                                                                                  (4.8) 

    The biases for each of the estimators of finite population total are computed as 

𝐵(�̅�𝐻𝑇) =∑{
�̅�𝐻𝑇 − 𝑇

500
}                                                                                                                 (4.9) 

500

𝑖=1

 

𝐵(�̅�𝑅𝐸𝐺) =∑{
�̅�𝑅𝐸𝐺 − 𝑇

500
}                                                                                                          (4.10) 

500

𝑖=1

 

𝐵(�̅�𝐷𝑂𝑅𝐹) =∑{
�̅�𝐷𝑂𝑅𝐹 − 𝑇

500
}                                                                                                     (4.11)  

500

𝑖=1

 

𝐵(�̅�𝐿𝐿) =∑{
�̅�𝐿𝐿 − 𝑇

500
}                                                                                                                (4.12) 

500

𝑖=1
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    The mean square errors for each of the estimators of finite population total are computed as 

𝑀𝑆𝐸(�̅�𝐻𝑇) =∑{
(�̅�𝐻𝑇 − 𝑇)

2

500
}                                                                                                  (4.13) 

500

𝐼=1

 

𝑀𝑆𝐸(�̅�𝑅𝐸𝐺) =∑{
(�̅�𝑅𝐸𝐺 − 𝑇)

2

500
}                                                                                              (4.14) 

500

𝐼=1

 

𝑀𝑆𝐸(�̅�𝐷𝑂𝑅𝐹) =∑{
(�̅�𝐷𝑂𝑅𝐹 − 𝑇)

2

500
}                                                                                          (4.15) 

500

𝐼=1

 

𝑀𝑆𝐸(�̅�𝐿𝐿) =∑{
(�̅�𝐿𝐿 − 𝑇)

2

500
}                                                                                                    (4.16) 

500

𝐼=1

 

For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE 

has the same units of measurement as the square of the quantity being estimated. Note also that 

𝑀𝑆𝐸(�̅�) = 𝑉𝑎𝑟�̅�(�̅�) + 𝐵𝑖𝑎𝑠(𝜃,̅  𝜃)
2                                                                                            (4.17) 

    The variances for the estimators of finite population total are computed as 

𝑉𝐴𝑅(�̅�𝐻𝑇) =∑{
(�̅�𝐻𝑇 − 𝐸(�̅�))

2

500
}                                                                                             (4.18) 

500

𝐼=1

 

𝑉𝐴𝑅(�̅�𝑅𝐸𝐺) =∑{
(�̅�𝑅𝐸𝐺 − 𝐸(�̅�))

2

500
}                                                                                         (4.19) 

500

𝐼=1

 

𝑉𝐴𝑅(�̅�𝐷𝑂𝑅𝐹) =∑{
(�̅�𝐷𝑂𝑅𝐹 − 𝐸(�̅�))

2

500
}                                                                                    (4.20) 

500

𝐼=1

 

𝑉𝐴𝑅(�̅�𝐿𝐿) =∑{
(�̅�𝐿𝐿 − 𝐸(�̅�))

2

500
}                                                                                              (4.21) 

500

𝐼=1

 

https://en.wikipedia.org/wiki/Unbiased_estimator
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    We compute the absolute bias (AB) in order to analyse the performance of the proposed 

estimator versus some specified estimators using 

𝐴𝐵(�̅�𝐻𝑇) =∑|
(�̅�𝐻𝑇 − 𝑇)

500
|                                                                                                          (4.22)

500

𝑖=1

 

𝐴𝐵(�̅�𝑅𝐸𝐺) =∑|
(�̅�𝑅𝐸𝐺 − 𝑇)

500
|                                                                                                      (4.23)

500

𝑖=1

 

𝐴𝐵(�̅�𝐷𝑂𝑅𝐹) =∑|
(�̅�𝐷𝑂𝑅𝐹 − 𝑇)

500
|                                                                                                 (4.24)

500

𝑖=1

 

𝐴𝐵(�̅�𝐿𝐿) =∑|
(�̅�𝐿𝐿 − 𝑇)

500
|                                                                                                            (4.25)

500

𝑖=1

 

    The relative efficiency (RE) which examines the robustness of various estimators, that is, 

the Horvitz-Thompson estimator, the REG estimator and the Dorfman estimator versus the 

proposed local linear estimator is computed as 

𝑅𝐸(�̅�𝐻𝑇 , �̅�𝐿𝐿) =
∑ (�̅�𝐿𝐿 − 𝑇)

2500
𝑖=1

∑ (�̅�𝐻𝑇 − 𝑇)2
500
𝑖=1

                                                                                                 (4.26) 

𝑅𝐸(�̅�𝑅𝐸𝐺 , �̅�𝐿𝐿) =
∑ (�̅�𝐿𝐿 − 𝑇)

2500
𝑖=1

∑ (�̅�𝑅𝐸𝐺 − 𝑇)2
500
𝑖=1

                                                                                              (4.27) 

𝑅𝐸(�̅�𝐷𝑂𝑅𝐹, �̅�𝐿𝐿) =
∑ (�̅�𝐿𝐿 − 𝑇)

2500
𝑖=1

∑ (�̅�𝐷𝑂𝑅𝐹 − 𝑇)2
500
𝑖=1

                                                                                         (4.28) 

where �̅� is the finite population total estimator in consideration,  𝑇 is the true population total 

and 𝑟 = 500 is the number of replications. 

    The confidence intervals (𝐶𝐼) and the average lengths (𝐴𝐿) of the confidence intervals of 

various estimators are computed as 
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𝐶𝐼(�̅�𝐻𝑇) =∑(�̅�𝐻𝑇 ± 1.96√𝑉𝑎𝑟(�̅�𝐻𝑇))                                                                                  (4.29)

500

𝑖=1

 

𝐶𝐼(�̅�𝑅𝐸𝐺) =∑(�̅�𝑅𝐸𝐺 ± 1.96√𝑉𝑎𝑟(�̅�𝑅𝐸𝐺))                                                                            (4.30)

500

𝑖=1

 

𝐶𝐼(�̅�𝐷𝑂𝑅𝐹) =∑(�̅�𝐷𝑂𝑅𝐹 ± 1.96√𝑉𝑎𝑟(�̅�𝐷𝑂𝑅𝐹))                                                                     (4.31)

500

𝑖=1

 

𝐶𝐼(�̅�𝐿𝐿) =∑(�̅�𝐿𝐿 ± 1.96√𝑉𝑎𝑟(�̅�𝐿𝐿))                                                                                   (4.32)

500

𝑖=1

 

𝐴𝐿(�̅�𝐻𝑇) =
1

500
∑(𝐶𝐼𝑈(�̅�𝐻𝑇) − 𝐶𝐼𝐿(�̅�𝐻𝑇))                                                                              (4.33)

500

𝑖=1

 

𝐴𝐿(�̅�𝑅𝐸𝐺) =
1

500
∑(𝐶𝐼𝑈(�̅�𝑅𝐸𝐺) − 𝐶𝐼𝐿(�̅�𝑅𝐸𝐺))                                                                        (4.34)

500

𝑖=1

 

𝐴𝐿(�̅�𝐷𝑂𝑅𝐹) =
1

500
∑(𝐶𝐼𝑈(�̅�𝐷𝑂𝑅𝐹) − 𝐶𝐼𝐿(�̅�𝐷𝑂𝑅𝐹))                                                                 (4.35)

500

𝑖=1

 

𝐴𝐿(�̅�𝐿𝐿) =
1

500
∑(𝐶𝐼𝑈(�̅�𝐿𝐿) − 𝐶𝐼𝐿(�̅�𝐿𝐿))                                                                                 (4.36)

500

𝑖=1

 

where 𝐶𝐼𝐿 and 𝐶𝐼𝑈 are respectively the lower and upper confidence intervals within which we 

expect our true population total to lie with 95% confidence. 

4.5 Results 

    The results for the absolute biases, mean square errors, relative efficiencies, confidence 

intervals and average lengths of confidence intervals for the various estimators are provided in 

tables 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 respectively. 
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Table 4.4: The AB of the estimators with respect to the four mean functions 

 

 

Table 4.5: The MSE of the estimators with respect to the four mean functions 

 

 

 

 

 

THE ABSOLUTE BIAS (AB) 

 HORVITZ-

THOMPSON

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

Linear 139.1395 3.650095 3.628214 3.626798 

Quadratic 163.4725 1.226636 0.403125 0.4323062 

Bump 157.7427 2.018801 0.4777851 0.4087753 

Jump 1219.668 21.785 9.760465 9.485367 

 

THE MEAN SQUARE ERROR (MSE) 

 HORVITZ-

THOMPSON 

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

Linear 514.9775 15.36639 15.74559 15.47903 

Quadratic 453.5207 1.521063 0.1713249 0.160443 

Bump 548.131 4.551133 0.2942485 0.1894413 

Jump 35691.94 512.8734 110.7915 97.02299 
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Table 4.6: The RE of the estimators to the proposed estimator 

 

 

 

Table 4.7: The CI of the estimators with respect to the four mean functions 

 

 

 

 

THE RELATIVE EFFICIENCY (RE) 

 HORVITZ-

THOMPSON (HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

 Relative Efficiency Relative Efficiency Relative Efficiency 

Linear 0.09467563 0.8093 0.95664 

Quadratic 0.000464731 0.9954403 0.962707 

Bump 0.0002038478 0.02743355 0.9433107 

Jump 0.003577862 0.1901854 0.9706123 

 

THE 95% CONFIDENCE INTERVALS (CI) 

 HORVITZ-

THOMPSON 

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

 Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Linear 65.4358 78.3565 62.9204 63.2486 62.7598 63.0129 62.6295 63.0638 

Quadratic 61.7471 62.4128 60.2974 60.3065 60.2583 60.2785 60.4442 60.4762 

Bump 88.4308 92.8534 93.0109 93.1452 92.0642 93.3488 91.9164 93.1867 

Jump 503.684 565.581 479.946 495.731 460.767 479.153 465.117 483.178 
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Table 4.8: The ALCI of the estimators with respect to the four mean functions 

 

 

Table 4.9: The Bias and MSE for �̅�𝟎 and �̅�𝟏 in the three selected mean functions 

                                 Linear                              Quadratic                              Bump 

                           �̅�𝟎                �̅�𝟏                    �̅�𝟎                 �̅�𝟏                    �̅�𝟎                 �̅�𝟏                   

BIAS                 5.507608    3.777348            4.7372          0.45116            5.293896      0.4187236 

MSE                  100.8874    15.40735            18.40769      0.1601695        43.9272        0.1896261 

 

4.6 Discussions 

    In this section, results for the bias (B), the mean square error (MSE), the relative efficiency 

(RE), the confidence intervals (CI) and the average length of confidence intervals (ALCI) are 

discussed. The bias of an estimator �̅�  of a parameter 𝜃 is the difference between the expected 

value of �̅� and 𝜃; that is, 𝐵𝑖𝑎𝑠(�̅�) = 𝐸(�̅�) − 𝜃. An estimator whose bias is identically equal to 

 

THE AVERAGE LENGTH OF CONFIDENCE INTERVALS 

 HORVITZ-

THOMPSON 

(HT) 

LINEAR 

REGRESSION 

(REG) 

DORFMAN 

(DORF) 

LOCAL LINEAR 

(LL) 

 

Linear 

 

12.92073 

 

0.3282467 

 

0.2532001 

 

0.4342478 

 

Quadratic 

 

0.6656047 

 

0.009090092 

 

0.02025908 

 

0.03197243 

 

Bump 

 

4.422574 

 

0.1342954 

 

1.284649 

 

1.270295 

 

Jump 

 

61.8971 

 

15.78477 

 

18.38621 

 

18.06073 
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0 is called an unbiased estimator and satisfies 𝐸(�̅�) = 𝜃 for all 𝜃. The larger the bias, the poorer 

the estimators. The mean square error (MSE) measures the average squared difference between 

the estimator �̅� and the parameter 𝜃, which is a somewhat reasonable measure of performance 

for estimators. The MSE of an estimator �̅� of a parameter 𝜃 is the function of 𝜃 defined by 

𝐸( �̅�  −  𝜃) 2 and this is denoted as 𝑀𝑆𝐸�̅� . Thus, MSE has two components, one that measures 

the variability of the estimator (precision) and the other one that measures its bias (accuracy). 

An estimator that has good MSE properties has small combined variance and bias. 

     The relative efficiency of two estimators is the ratio of their efficiencies. If �̅�1 and �̅�2 are 

both unbiased estimators of 𝜃, then the efficiency of �̅�1 relative to �̅�2 is 𝐸𝑓𝑓(�̅�1, �̅�2  ) =

𝑉𝑎𝑟(�̅�2 ) 𝑉𝑎𝑟(�̅�1 )⁄ . If this is less than 1, then it implies that 𝑉𝑎𝑟(�̅�2 ) < 𝑉𝑎𝑟(�̅�1 ) and 

therefore �̅�2 has a smaller variance than �̅�1 and so �̅�2 is preferred. Finally, confidence intervals 

consist of a range of values (interval) that act as good estimates of the unknown population 

parameter. The best performing confidence interval is the one whose coverage rate is close to 

the true population and with the shortest length.   

4.6.1 The absolute bias  

 

    The biases for different estimators are summarised in table 4.4. In all the relationships 

considered, the Horvitz-Thompson estimator was the poorest resulting in large biases as 

compared to the other three finite population total estimators. The bias for the local linear 

regression estimators are much lower than those of the other three estimators. For all the biases 

computed, the local linear regression estimators are superior and dominate the Horvitz-

Thompson estimator and the Linear regression estimator in all the relationships. The local 

linear regression estimators also dominate the Dorfman estimator in all the relationships except 

when the relationship is quadratic. The biases under the model based approach are also much 

lower than those under the design based approach under different relationships. 
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4.6.2 The mean square error  

 

    The MSE for different estimators are summarised in table 4.5. Generally, the estimator with 

a smaller MSE is regarded as the most efficient one. The local linear regression estimators are 

more efficient and performing better than the Horvitz-Thompson and Dorfman estimators, 

regardless of whether the model is specified or misspecified. The local linear regression 

estimators also outperform the linear regression estimator in all the relationships except when 

the relationship is linear. In general, local linear regression estimation removes a bias term 

from the kernel estimator, that makes it have better behavior near the boundary of the 𝑥′𝑠 and 

smaller MSE everywhere.   

4.6.3 The relative efficiency  

 

    Table 4.6 examines the robustness of various estimators, that is, the Horvitz-Thompson 

estimator, the REG estimator and the Dorfman estimator versus the proposed local linear 

regression estimators. The results in the table show that relative efficiency of the Horvitz-

Thompson estimator, the REG estimator and the Dorfman estimator to the proposed local linear 

regression estimators is less than 1. This implies that the proposed local linear regression 

estimators have a smaller variance than the three estimators and thus the three estimators are 

less efficient than the local linear regression estimators. Generally, the local linear regression 

estimators outperform the HT estimator, the REG estimator and the DORF estimator in all the 

relationships. The local linear regression estimators are therefore robust and are the most 

efficient estimators.  

4.6.4 The confidence intervals and their average lengths  

 

    In table 4.7 and table 4.8, the confidence intervals and the average lengths of the confidence 

intervals are also measured for each case. A smaller length is better because it implies that the 

true population total is captured within a smaller range and therefore results are more precise. 
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The confidence intervals generated by the model based local linear method are much shorter 

than those generated by the design based Horvitz-Thompson method, regardless of whether the 

underlying model is specified or misspecified. The confidence intervals also indicate that the 

local linear regression method dominates the REG and Dorfman methods when the model is 

incorrectly specified. Generally, the model based estimators are much far better than the 

traditional design based estimators. The results show that the model based approach 

outperforms the design based approach at 95% coverage rate.  

4.6.5 Comparison of estimators with respect to the bias and MSE in selected functions                                

 

    In estimating �̅�(𝑥𝑗) for the local constant regression estimator �̅�0, �̅� has been assumed to be 

a pre assigned constant and in particular the value assigned is zero.  It has therefore been shown 

in chapter three that the estimator �̅�(𝑥𝑗) is biased leading to a biased estimation of the finite 

population total. On the other hand, when estimating �̅�(𝑥𝑗) for the local linear regression 

estimator �̅�1, the value of 𝛽 is not pre-assigned but rather determined by the set of data provided 

and thus minimizing the bias. Analytically, variance comparisons are explored using the local 

constant regression estimator �̅�0 and the local linear regression estimator �̅�1 in which results 

indicate that the estimators are asymptotically equivalently efficient. It is observed that the 

biases and MSEs computed in table (4.9) for the local linear regression estimator �̅�1 are small 

in all the three selected mean functions. The results therefore indicate that the local linear 

regression estimator �̅�1 is superior and dominates the local constant regression estimator �̅�0 for 

the linear, quadratic and bump relationships. Simulation experiments show that �̅�1 is the most 

efficient estimator.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

    In this study, a model based approach for estimating the finite population total using the 

procedure of local linear regression has been considered. The local linear regression procedure 

has much strength and in particular, it is important in the following sense: 

i. Adapts well to bias problems at boundaries and in regions of high curvature. 

ii. Easy to understand and interpret. 

iii. Methods have been developed that provide fast computation for one or more 

independent variables. 

iv. Because of its simplicity, can be tailored to work for many different distributional 

assumptions. 

v. Having a local model (rather than just a point estimate) enables derivation of response 

adaptive methods for bandwidth and polynomial order selection in a straightforward 

manner. 

vi. Does not require smoothness and regularity conditions required by other methods such 

as boundary kernels. 

vii. The estimate is linear in the response provided the fitting criterion is least squares and 

model selection does not depend on the response. 

    In chapter one, the background information and review of the basic concepts, definitions and 

terminologies applicable in the theory of sample surveys have been accomplished. The problem 

statement has been outlined and in addition, the objectives of the study and significance of the 

study have been stated. In chapter two, a critical review of the literature has been presented. 

Various approaches for estimating the finite population total have been discussed and in 
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particular, a detailed review of the nonparametric regression procedure for estimating the finite 

population parameters in different frameworks has been accomplished. In chapter three, we 

considered a design adaptive nonparametric approach based on weighted local linear regression 

estimators for estimating the finite population total. In particular, the local linear regression 

estimators have been derived in a model based framework. Likewise, asymptotic properties of 

the derived local linear regression estimators have been examined. The local linear procedure 

has been extended to stratified random sampling and to two stage cluster sampling. 

    Chapter four is on empirical study where simulation experiments have been conducted to 

compare the performances of the derived local linear regression estimators with some 

estimators described in chapter one and chapter two. 

5.2 Conclusions 

    The results for the biases, the mean square errors, the relative efficiencies, the confidence 

intervals and the average length of confidence intervals with respect to the various estimators 

have been presented. The bias results show that the local linear regression estimators dominate 

the Horvitz-Thompson estimator for the linear, quadratic, bump and jump relationships. The 

MSE results show that the local linear regression estimators perform better than the Horvitz-

Thompson estimator and Dorfman estimator, irrespective of the model specification or 

misspecification. Results also show that the local linear regression estimators are robust and 

are most efficient. 

    The results further indicate that the confidence intervals generated by the model based local 

linear regression procedure are much shorter than those generated by the design based Horvitz-

Thompson method, regardless of whether the model is specified or misspecified. It has been 

observed that the model based approach outperforms the design based approach at 95% 

coverage rate.  
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    Generally, the local linear regression estimators are not only superior to the popular kernel 

regression estimators, but are also the best among all linear smoothers including those produced 

by orthogonal series and penalized spline methods. The estimators adapt well to bias problems 

at boundaries and in regions of high curvature and do not require smoothness and regularity 

conditions required by other methods such as the boundary kernels.  

    Furthermore, the local constant and local linear regression estimators �̅�0 and �̅�1  of finite 

population total have been studied and compared. Analytically, variance comparisons have 

been explored using the local constant regression estimator �̅�0 and the local linear regression 

estimator �̅�1 in which results indicate that the estimators are asymptotically equivalently 

efficient. Simulation experiments carried out in terms of the biases and MSEs show that the 

local linear regression estimator �̅�1 outperforms the local constant regression estimator �̅�0 in 

all the three selected mean functions and therefore, �̅�1 is the most efficient estimator.  

5.3 Recommendations for further research 

i. In this study, the local linear regression procedure has been extended to stratified 

random sampling and to two stage cluster sampling. But its contribution in the 

context of performance of estimators is lacking. Further research is needed as far as 

comparison in performances of the estimators are concerned with respect to 

stratified random sampling and two stage cluster sampling. Again, apart from a 

population being stratified into a fixed number of homogeneous strata, most surveys 

are multi level in nature and therefore more work is required. For example, 

individuals within households, households within locations, locations within 

divisions, divisions within counties and so on. In particular, introducing extra error 

terms so that one has mixed effects regression models within the local linear 

regression model will be of interest. 
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ii.  After the simulations, real practical application is lacking. However, there are many 

data sets available to demonstrate the use of the local linear procedure to real data. 

For example, the Kenya demographic and health survey data which is readily 

available upon request. Again, there are many dependent variables to use in this 

data sets with many independent variables. Therefore, more work is required and 

recommended as far as real practical applications are concerned with respect to the 

simple random sampling, the stratified random sampling and the two stage cluster 

sampling techniques. 
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