

UNIVERSITY OF NAIROBI

PHYTOCHEMICAL INVESTIGATION OF TEPHROSIA RHODESICA AND TEPHROSIA POLYPHYLLA FOR ANTIPLASMODIAL PRINCIPLES

BY MACH PAUL ACHUOTH (156/89425/2016)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY AT THE UNIVERSITY OF NAIROBI

2019

DECLARATION

This thesis is composed of my original work and contains no material previously published or written by another person except where due reference has been made in the text. It has not been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. The research was carried out in the Department of Chemistry of the University of Nairobi.

.....

Mach Paul Achuoth (BSc) (156/89425/2016)

This thesis has been submitted for examination with our approval as University supervisors.

Prof. Abiy Yenesew Department of Chemistry University of Nairobi Prof. Jacques M. Kabaru School of BiologiacalSciences University of Nairobi

DEDICATION

In honor of my father Achuoth Mach Achuoth (Palek) and my late mother Apiu Jok Agwang (Ciir) for having taught me how to value the little I have. I thank my wives, Akweth Garang Golong (Koch) and Ajith Kuol Ngong (Gwala) for bearing all responsibilities of raising children in my absence. My children: Ajoh, Mabil, Thon, Apiu, Golong and Athou, you have sacrificed all the happiness and fatherly love to let me complete this project. My siblings: Lou, Kuot, Akur, Achol and Mathiang for supporting me when I was away during this study.

ACKNOWLEDGEMENTS

I am profoundly grateful to my supervisors, Prof. Abiy Yenesew and Prof. Jacques M. Kabaru for continues support during my MSc study and research. Prof. Abiy, this space is not enough to thank you. It is a long way from the day you introduced me to NMR spectroscopy, choosing the plant for phytochemistry during the initial stage of the project, guiding me through series of columns, inspiration and exposure.

My sincere thank goes to Prof. Mate Erdelyi, my host at Uppsala University, Sweden, along with his research group. The three months I spent in your lab with hands-on analytical machines and interpretation of various spectroscopic data was the propeller in this study. I can't find suitable adjectives to describe the generosity extended by Dr. Matthias Heydenreich and his lab co-workers for high resolution NMR analyses of my samples. I would like also to thank Dr. Hosea Akala of the Kenya Medical Research Institute (KEMRI) for conducting the antiplasmodial assay. Besides my supervisors, I would like to thank Dr. Albert Ndakala for teaching me the principles of organic synthesis and timely advice throughout my research, Dr. Solomon Derese for introducing me to the field of Natural Products Chemistry. I have benefited a lot from Dr. Yoseph Atilaw; you have been my "third" supervisor. I owe you a debt in ChemDraw, MestReNova and NMR data interpretation

I am grateful to the academic staff and technical staff of the Department of Chemistry, University of Nairobi for the assistance rendered to me during my study. The staff of the School of Physical Sciences and Graduate School, the University of Nairobi, you make this institution a regional university with a world class status; I have felt at home. I should not forget my colleagues in a research group, including undergraduate, MSc and PhD students' working in various laboratories in the department for stimulations, discussions and sharing of knowledge.

My study in the University of Nairobi would have been impossible without the financial support of the German Academic Exchange Service (DAAD) for my MSc scholarship which was awarded through In-country/In-region scheme. I thank Mr. Patrick Mutiso of

the School of Biological Sciences, University of Nairobi for helping in collection and identification of plants used in this research project.

A special group of people is not yet mentioned, you sincerely deserve some space here. My mentors: Prof. Robert M. K. Deng and Assoc. Prof. Majok Kelei Deng. You did not only inculcate the love of chemistry but also bring me closer to academia to fit your shoes, thank you for everything. The entire community of Dr. John Garang Memorial University of Science and Technology, VC, D/VCs, Deans, staff, students, cooks, cleaners, my fellow former or still teaching assistants (TAs), We are removing that TA "Jalabiya" thank you for supporting me in a way. I acknowledged, my special two friends who sacrificed their time and resources to make sure that I have an admission letter of the University of Nairobi, Mr. Mamer Thok Deng, my childhood friend and Mr. Deng Akau Wel, thank you bothers. Some brothers, you have been asking about my progress, thank you all. My other families: Clergy and congregation of St. Mark, Panapet Parish; St. Andrews Zimmerman; Board of Directors, staff and students of Alliance High School -Bor, thank you for your continued prayers. The family and friends in Diaspora, I thank relatives who hosted me at their residences under guidance of Nyandeng Awai Ajang. Palek Anyidi's crew in Nairobi: You know yourselves, your presence around me created the atmosphere of a home within Kenya.

I finish with Bor, the bottom of my energy pyramid: my family. I have an amazing family with unique structure; I love it, the way it is. You gave me invaluable support throughout my study; you gave up everything for this course to support me, thank you.

ABSTRACT

The increasing problem of drug resistance of malaria parasites, adverse side effects and the question of affordability to the inhabitants of developing countries, call for different interventions including search for new antiplasmodial lead compounds. In this regard, higher plants remain a reservoir of secondary metabolites with antiplasmodial properties. It is in this context that the present research was set up to investigate Tephrosia rhodesica Baker and Tephrosia polyphylla (Chiov.) Gillet for antiplasmodial agents against Plasmodium falciparum which is the major cause of malaria in humans. The roots and seed pods of Tephrosia rhodesica and stems of Tephrosia polyphylla were dried, ground and then extraction was done using dichloromethane to methanol in the ratio of 1:1 at 24 °C. The crude extracts were loaded to column and various methods of purification applied like preparative TLC, crystallization, HPLC and circular chromatography. From these two *Tephrosia* species ten compounds, including two new compounds were isolated. Six compounds from roots of T. rhodesica including one new compound, named rhodbenzofuran (86) were obtained. From the seedpods of T. rhodesica, a new compound, named rhodflavononol (87) was isolated together with a known compound and two known compounds were isolated from stems of T. polyphylla. A synthetic oxime, named candidone-oxime (94), was also prepared from candidone (91). Isolated compounds were characterized using various methods such as 1D-NMR (¹H-NMR and ¹³C-NMR), 2D-NMR (HH COSY, NOESY, TOCSY, HMBC and HSQC), X-ray Crystallography, UV, CD and mass spectrometry. The crude extracts and compounds isolated from them were tested for antiplasmodial activities against different strains of P. falciparum, namely chloroquine resistant clone (W2) and chloroquine sensitive clones (3D7 and D6). The tests showed that candidone (91) was the most active compound against chloroquine resistance clone W2 (IC₅₀ = $1.2\pm0.1\mu$ M) and chloroquine sensitive clone 3D7 (IC₅₀ = 3.5μ M). Over all, the study has showed that the two Tephrosia species elaborate flavonoid derivatives, some of which showing good antiplasmodial activities.

ACT	Artemisinin-based Combination Therapy
CD	Circular Dichroism
CI	Chemopreventive Index
COSY	Correlation spectroscopy
d	doublet
dd	doublet of doublet
D6	Chloroquine sensitive strain of Plasmodium falciparum
HMBC	Heteronuclear Multiple Bond Correlation
HSQC	Heteronuclear Single Quantum Coherence
Hz	Hertz
IC ₅₀	50% Inhibition Concentration
MS	Mass Spectrometry
m/z	Mass to charge ratio
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauster and Exchange Spectroscopy
PTLC	Preparative Thin Layer Chromatography
S	singlet
TLC	Thin Layer Chromatography
UV	Ultra Violet
WHO	World Health Organization
δ	Chemical shift

LIST OF ABBREVIATIONS

DECLARATION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	vi
LIST OF ABBREVIATIONS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF SCHEMES	XV
CHAPTER 1: INTRODUCTION	1
1.1 Background Information	1
1.2 Statement of the Problem	3
1.3 Objectives of the Study	4
1.3.1 General objective	4
1.3.2 Specific objectives	4
1.4 Justification and Significance of the Study	5
CHAPTER 2: LITERATURE REVIEW	6
2.1 Malaria	6
2.2 Malaria Interventions	6
2.3 Antimalarial Drugs	7
2.5 Phytochemicals with Antiplasmodial Activities	9
2.6 The Family Fabaceae	12
2.6.1 The Genus <i>Tephrosia</i>	13
2.6.1.1 Tephrosia rhodesica	13
2.6.1.2 Tephrosia polyphylla	14
2.7 Ethnobotanical Information of the Genus Tephrosia	15
2.8 Biological Activities of the Genus Tephrosia	17
2.9 Biosynthesis of Flavanoids	19
2.10 Phytochemistry of the Genus Tephrosia	21

TABLE OF CONTENTS

2.10.1 Flavonoids	21
2.10.1.1 Flavonols of the Genus Tephrosia	21
2.10.1.2 Flavanonols of the Genus Tephrosia	24
2.10.1.3 Flavones of the Genus Tephrosia	25
2.10.1.4 Flavanones of the Genus Tephrosia	27
2.10.1.5 Isoflavones of the Genus Tephrosia	
2.10.1.6 Rotenoids of the Genus Tephrosia	31
2.10.1.7 Pterocarpanoids of the Genus Tephrosia	
2.10.1.8 Chalconoids of the Genus Tephrosia	34
2.11 Biological Activities of Compounds from the Genus Tephrosia	
CHAPTER 3: MATERIALS AND METHODS	41
3.1 General Experimental Procedures	41
3.2 Plant Materials	42
3.3 Extraction and Isolations of Compounds	42
3.3.1 Extraction and Isolations of compounds from the roots of T. rhodesica	42
3.3.2 Extraction and Isolations of Compounds from the Seedpods of T. rhodesica	43
3.3.3 Extraction and Isolations of Compounds from the Stem of T. polyphylla	43
3.4 Structure Modification	44
3.4.1 Oxime Derivative of Candidone (91)	44
3.5 Plasmodium falciparum Growth Inhibition Assay	44
3.6 Properties of Isolated and Modified Compounds	44
CHAPTER 4: RESULTS AND DISCUSSIONS	47
4.1 Characterization of Isolated Compounds	47
4.1.1: Compounds from roots of <i>Tephrosia rhodesica</i>	47
4.1.1.1: Rhodbenzofuran (86)	47
4.1.1.2: 7-Methylglabranin (90)	50
4.1.1.3: Candidone (91)	55
4.1.1.4: Rhodimer (88)	58

4.1.1.5: 4-Hydroxy-3-methoxybenzoic acid (89)	61
4.1.1.6: Flemichapparin-B (92)	62
4.1.2: Compounds from seedpods of <i>Tephrosia rhodesica</i>	64
4.1.2.1: Tephrowatsin B (93)	64
4.1.2.2: Rhodflavononol (87)	67
4.1.3. Compounds from the stem of <i>Tephrosia polyphylla</i>	70
4.1.3.1.4 - Demethyltoxicarolisoflavone (49)	70
4.1.3.2:5-Methyltoxicarolisoflavone (50)	73
4.2 Characterization of Structurally Modified Compounds	75
4.2.1 Oxime derivative	75
4.2.1.1: Candidone–oxime (94)	75
4.3 Biological Actvity	78
4.3.1: In-vitro Antiplasmodial Activity	78
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	79
5.1 Conclusions	79
5.2.1 Recommendations	79
5.2.2 Suggestion for further studies	80
REFERENCES	81
APPENDICES	
APPENDICES	92 92
APPENDICES	
APPENDICES	92 92 93 94
APPENDICES	

APPENDIX 2B: ¹³ C NMR Spectrum of 7-methylglabranin (90) (125 MHz; CDCl ₃)	101
APPENDIX 2C: HH-COSY Spectrum of 7-methylglabranin (90) (500 MHz; CDCl ₃)	102
APPENDIX 2D: HSQC Spectrum of 7-methylglabranin (90) (500 MHz; CDCl ₃)	103
APPENDIX 2E: HMBC Spectrum of 7-methylglabranin (90) (500 MHz; CDCl ₃)	104
APPENDIX 2F: LCMS Spectrum of 7-methylglabranin (90)	105
APPENDIX 2G: Predicted ¹ H NMR Spectrum of 7-methylglabranin (90)	106
APPENDIX 2H: Predicted ¹³ C NMR Spectrum of 7-methylglabranin (90)	107
APPENDIX 3A: ¹ H NMR Spectrum of Candidone(91) (500 MHz; CDCl ₃)	108
APPENDIX 3B: ¹³ C NMR Spectrum of Candidone(91) (125 MHz; CDCl ₃)	109
APPENDIX 3C: HH-COSY Spectrum of Candidone (91) (500 MHz; CDCl ₃)	110
APPENDIX 3D: HSQC Spectrum of Candidone(91) (500 MHz; CDCl ₃)	111
APPENDIX 3E: HMBC Spectrum of Candidone (91) (500 MHz; CDCl ₃)	112
APPENDIX 3F: LCMS Spectrum of Candidone(91)	113
APPENDIX 3G: Predicted ¹ H NMR Spectrum of Candidone (91)	114
APPENDIX 3H: Predicted ¹³ C NMR Spectrum of Candidone (91)	115
APPENDIX 4A: ¹ H NMR Spectrum of rhodimer (88) (500 MHz; CDCl ₃)	116
APPENDIX 4B: ¹³ C NMR Spectrum of rhodimer (88) (125 MHz; CDCl ₃)	117
APPENDIX 4C: HH-COSY Spectrum of rhodimer (88) (500 MHz; CDCl ₃)	118
APPENDIX 4D: HSQC Spectrum of rhodimer (88) (500 MHz; CDCl ₃)	119
APPENDIX 4E: HMBC Spectrum of rhodimer (88) (500 MHz; CDCl ₃)	120
APPENDIX 4F: LCMS Spectrum of rhodimer (88)	121
APPENDIX 4G: Predicted ¹ H NMR Spectrum of rhodimer (88)	122
APPENDIX 4H: Predicted ¹³ C NMR Spectrum of rhodimer (88)	123
APPENDIX 5A: ¹ H NMR Spectrum of compound (89) (400 MHz; CDCl ₃)	124
APPENDIX 5B: ¹³ C NMR Spectrum of compound (89) (100 MHz; CDCl ₃)	125
APPENDIX 5C: HH-COSY Spectrum of compound (89) (400 MHz; CDCl ₃)	126
APPENDIX 5D: HSQC Spectrum of compound (89) (400 MHz; CDCl ₃)	127
APPENDIX 5E: HMBC Spectrum of compound (89) (400 MHz; CDCl ₃)	128

APPENDIX 5F: LCMS Spectrum of compound (89)	129
APPENDIX 6A: ¹ H NMR Spectrum of flemichapparin (92) (500 MHz; CDCl ₃)	130
APPENDIX 6B: ¹³ C NMR Spectrum of flemichapparin (92) (125 MHz; CDCl ₃)	131
APPENDIX 6C: HH-COSY Spectrum of flemichapparin (92) (500 MHz; CDCl ₃)	132
APPENDIX 6D: HSQC Spectrum of flemichapparin (92) (500 MHz; CDCl ₃)	133
APPENDIX 6E: HMBC Spectrum of flemichapparin (92) (500 MHz; CDCl ₃)	134
APPENDIX 6F: LCMS Spectrum of flemichapparin (92)	135
APPENDIX 6G: Predicted ¹ H NMR Spectrum of flemichapparin (92)	136
APPENDIX 7A: ¹ H NMR Spectrum of Tephrowatsin B (93) (500 MHz; CDCl ₃)	137
APPENDIX 7B: ¹³ C NMR Spectrum of Tephrowatsin B (93) (125 MHz; CDCl ₃)	138
APPENDIX 7C: HH-COSY Spectrum of Tephrowatsin B (93) (500 MHz; CDCl ₃)	139
APPENDIX 7D: HSQC Spectrum of Tephrowatsin B (93) (500 MHz; CDCl ₃)	140
APPENDIX 7E: HMBC Spectrum of Tephrowatsin B (93) (500 MHz; CDCl ₃)	141
APPENDIX 7F: LCMS Spectrum of Tephrowatsin B (93)	142
APPENDIX 7G: ¹ H NMR Predicted Spectrum of Tephrowatsin B (93)	143
APPENDIX 7H: Predicted ¹³ C NMR Spectrum of Tephrowatsin B (93)	144
APPENDIX 8A: ¹ H NMR Spectrum of Rhodflavononol (87) (500 MHz; CDCl ₃)	145
APPENDIX 8B: ¹³ C NMR Spectrum of Rhodflavononol (87) (125 MHz; CDCl ₃)	146
APPENDIX 8C: HH-COSY Spectrum of Rhodflavononol (87) (500 MHz; CDCl ₃)	147
APPENDIX 8D: HSQC Spectrum of Rhodflavononol (87) (500 MHz; CDCl ₃)	148
APPENDIX 8E: HMBC Spectrum of Rhodflavononol (87) (500 MHz; CDCl ₃)	149
APPENDIX 8F: HRMS Spectrum of Rhodflavononol (87)	150
APPENDIX 8G: Predicted ¹ H NMR Spectrum of Rhodflavononol (87)	151
APPENDIX 8H: Predicted ¹³ C NMR Spectrum of Rhodflavononol (87)	152
APPENDIX 9A: ¹ H NMR Spectrum of compound (49) (500 MHz; CDCl ₃)	153
APPENDIX 9B: ¹³ C NMR Spectrum of compound (49) (125 MHz; CDCl ₃)	154
APPENDIX 9C: HH-COSY Spectrum of compound (49) (500 MHz; CDCl ₃)	155
APPENDIX 9D: HSQC Spectrum of compound (49) (500 MHz; CDCl ₃)	156

APPENDIX 9E: HMBC Spectrum of compound (49) (500 MHz; CDCl ₃)	157
APPENDIX 9F: HRMS Spectrum of compound (49)	158
APPENDIX 9G: Predicted ¹ H NMR Spectrum of compound (49)	159
APPENDIX 9H: Predicted ¹³ C NMR Spectrum of compound (49)	160
APPENDIX 10A: ¹ H NMR Spectrum of compound (50) (500 MHz; CDCl ₃)	161
APPENDIX 10B: ¹³ C NMR Spectrum of compound (50) (125 MHz; CDCl ₃)	162
APPENDIX 10C: HH-COSY Spectrum of compound (50) (500 MHz; CDCl ₃)	163
APPENDIX 10D: HSQC Spectrum of compound (50) (500 MHz; CDCl ₃)	164
APPENDIX 10E: HMBC Spectrum of compound (50) (500 MHz; CDCl ₃)	165
APPENDIX 10F: LCMS Spectrum of compound (50)	166
APPENDIX 11A: ¹ H NMR Spectrum of candidone-oxime (94) (500 MHz; CDCl ₃)	167
APPENDIX 11B: ¹³ C NMR Spectrum of candidone-oxime (94) (125 MHz; CDCl ₃)	168
APPENDIX 11C: HH-COSY Spectrum of candidone-oxime (94) (500 MHz; CDCl ₃)	169
APPENDIX 11D: HSQC Spectrum of candidone-oxime (94) (500 MHz; CDCl ₃)	170
APPENDIX 11E: HMBC Spectrum of candidone-oxime (94) (500 MHz; CDCl ₃)	171
APPENDIX 11F: HRMS Spectrum of candidone-oxime (94)	172
APPENDIX 11G: Predicted ¹ H NMR Spectrum of candidone-oxime (94)	173
APPENDIX 11H: Predicted ¹³ C NMR Spectrum of candidone-oxime (94)	174
APPENDIX 12: CIF Report of Compound (90)	175
APPENDIX 13: Originality Report of this Thesis	176

LIST OF TABLES

Table 2.1: Antiplasmodial flavonoids from <i>Tephrosia</i> species and related taxa	9
Table 2.2: Some traditional uses of selected Tephrosia species	15
Table 2.3: Some Tephrosia species and their biological activities	18
Table 2.4: Flavonol of the Genus Tephrosia	22
Table 2.5: Flavanonols of the Genus Tephrosia	24
Table 2.6: Flavones of the Genus Tephrosia	25
Table 2.7: Flavanones of the Genus Tephrosia	27
Table 2.8: Isoflavones of the Genus Tephrosia	29
Table 2.9: Rotenoids of the Genus Tephrosia	31
Table 2.10: Pterocarpanoids of the Genus Tephrosia	33
Table 2.11: Chalconoids of the Genus Tephrosia	35
Table 2.12: Biological activities of some compounds isolated from <i>Tephrosia</i> species	38
Table 3.1: Instrumentation involved	41
Table 4.1: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (86), CDCl ₃	49
Table 4.2: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (90), CDCl ₃	54
Table 4.3: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (91), CDCl ₃	57
Table 4.4: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (88), CDCl ₃	60
Table 4.5: ¹ H (400 MHz) and ¹³ C (100 MHz) NMR data for compound (89), CDCl ₃	61
Table 4.6: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (92), CDCl ₃	63
Table 4.7: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (93), CDCl ₃	66
Table 4.8: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (87), CDCl ₃	69
Table 4.9: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound (49), CDCl ₃	72
Table 4.10: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (50), CDCl ₃	74
Table 4.11: ¹ H (500 MHz) and 13 C (125 MHz) NMR data for compound (94), CDCl ₃	77
Table 4.12: In-vitro antiplasmodial activities of the named compounds	78

LIST OF FIGURES

Figure 2.1: Tephrosia rhodesica	13
Figure 2.2: Tephrosia polyphylla.	14
Figure 4.1: X-ray single crystal structure of compound (90)	52
Figure 4.2: ECD spectrum of compound (90)	53
Figure 4.3: ECD spectrum of compound (91)	56
Figure 4.4: X-ray single crystal structure of compound (88)	59
Figure 4.5: ECD spectrum of compound (93)	65
Figure 4.6: ECD spectrum of compound (87)	68
Figure 4.7: X-ray single crystal structure of compound (49)	71

LIST OFSCHEMES

CHAPTER 1: INTRODUCTION

1.1 Background Information

Traditional medicine is defined, in general terms, as distinct health practice and knowledge in a particular community involving the use of plants, animals or minerals. This practice is done for the purpose of achieving wellbeing and health of the society by treatment, diagnosis or prevention (Bodeker & Ong, 2005). Statistics showed that 40% and 80% of the populations in China and Africa, repectively, use traditional medicine. The use of traditional medicine is deeply rooted in Africa where accessing modern drugs is a challenge (Chang et al., 1997). The challenge come as a result of poverty and marginalization of some communities, the categories of people affected here are left with little hope on synthetic drugs but to shift to traditional medicine to satisfy their health wellbeing (Cunningham et al., 2008). The rural inhabitants in Kenya are not exceptional to this, even the urban population believe in the potency of traditional medicines, especially in the condition of chronic illness such as HIV/AIDS, hypertension, cancer, peptic ulcers and haemoroids (Kigen et al., 2013). Ethnobotanical studies in Kenya have revealed wide uses of plants in families such as Asteraceae, Euphobiaceae, Lamiaceae, Fabaceae, Caesalphiniaceae, Rubiaceae and Rutaceae. They are used to manage and treat a number of diseases including gastrointestinal, parasitic, metabolic, microbial, reproductive, helminthosis, snake bites, protozoa, cuts, scald, wounds and dental. Parts of the plants used include roots, leaves, flowers, seeds, pods and whole plant extracts (Gakuya et al., 2013).

The herbal medicine is prepared in the form of an infusion or decoctions, and administered through chewing, inhalations, smearing at the surface of swollen part. The above families and other families have been studied and several drugs derived. Some prominent examples are quinine isolated from the bark of *Cinchona* species, a good antimalarial drug which is still in use today; artemisin isolated from aerial parts of *Artemisia annua*, a potent antimalarial drug against the parasite *Plasmodium falciparum*; convallatoxin isolated from flower and leaves of *Convallaria majal* is used as cardiotonic drug; morphine isolated from the latex of immature seedpods of *Papaver somniferum*, used as analgesic; and pyrethrin isolated from flowers of *Chrysanthenum cinnerarifolium* is a widely used insecticide (Rungsung *et al.*, 2015). Over 60 % of the drugs in the market especially the anticancer and antihypertensive were derived directly or indirectly from plants (Wheate *et al.*, 2010). It is in this line that the searches for lead compounds have been intensified including this study.

The vast phytochemical reports in literature have shown that plants act as "Biosynthetic laboratory". Several chemical compounds known as "Secondary metabolites" have been isolated from plants over the years; these compounds give plants their therapeutic properties and physiological behaviors. Secondary metabolites may not play prominent role in day to day life of a plant, instead they represent a major adaptation of plants to their environment and are part of the plant defense mechanisms against pathogens and herbivore attack (Rungsung et al., 2015). They also aid in identification of plants characteristics such as odours, taste and colours, enabling pollination and dispersal (Samanta et al., 2011). The interesting feature of plant secondary metabolites lies in their diverse chemical structures that falls in to three major classes of organic compounds, namely: phenolics, terpenoids and alkaloids (Veberic et al., 2010). *Tephrosia* species are largely known for production of phenolic compounds, especially the flavonoids that are known to be active against a number of illnesses including malaria. A flavonoid isolated from T. purpurea showed a good activity when antiplasmodial biological assays was done on D6. It is in this regard that Tephrosia rhodesica and Tephrosia polyphylla were selected for investigations of active compounds against the malaria parasite, *Plasmodium falciparum*. The impact of malaria is worrying in the world.

In the year 2015, 214 million cases of malaria were registered of which 438 000 resulted in death mostly (90 %) in Africa (World Health Organization, 2015). Malaria is a parasitic disease caused by infection of *Plasmodia* species. Among the five *Plasmodia* species which cause malaria, the most deadly is *P. falciparum* which is transmitted by the bites of female anopheles mosquito (Trampuz *et al.*, 2003)

1.2 Statement of the Problem

Malaria still kills over 438,000 people annually, most of the victims are pregnant women and children under five years old (World Health Organization, 2015). In South Sudan, complicated cases of malaria represented 62% of inpatient admission in 2018 (World Health Organisation, 2018). As a result of widespread occurrence of the malaria parasites failure to response to the available drugs as observed with the first line drugs including amodiaquine, quinine, sulphadoxine–pyrimethazine are not more effective in the treatment of malaria. (Willcox *et al.*, 2011). Artemisinin-based Combination Therapy (ACT) is the only drug recommended for use to treat uncomplicated malaria (Mutabingwa, 2005); however it is alarming to note that in Cambodia, Thailand and some parts of Africa, resistance has been observed to this combination as well (Dundorp & Nosten, 2009). Besides, the search for vaccines has not been fruitful (Bojang *et al.*, 2001). It is therefore imperative that alternative malaria drug is explored.

1.3 Objectives of the Study

1.3.1 General objective

The main objective of this research was to identify antiplasmodial principles from *Tephrosia rhodesica* and *Tephrosia polyphylla*.

1.3.2 Specific objectives

The specific objectives of this study were:

- i. To establish the antiplasmodial activities of the crude extracts from *T. rhodesica* and *T. polyphylla*.
- ii. To isolate and characterize secondary metabolites from roots and seedpods of *T*. *rhodesica* and stem of *T. polyphylla*.
- iii. To establish the antiplasmodial activities of the isolated compounds from the two *Tephrosia* species.
- iv. To improve the antiplasmodial activity of some of the compounds through derivatization.

1.4 Justification and Significance of the Study

Most of drugs that have dominated the market for years for treatment of malaria were obtained from plants; morphine and quinine are typical examples. Artemesinin, the lead antimalaria drug today was also obtained from a plant, *Artemesia annua*. Different classes of natural products have been tested for antiplasmodial activites. Prenylated flavonoids, including chalconoids and flavanones have shown good activities. The Genus *Tephrosia*, along with other genera found in family Fabaceae have provided a unique class of compounds, flavonoids, some of which showed antiplasmodial activites. (Atilaw *et al.*, 2017; Muiva-Mutisya *et al.*, 2014). In a preliminary assay, the crude extracts from *Tephrosia rhodesica* and *Tephrosia polyphylla* showed good to moderate antiplasmodial activities; thus in this study, phytochemical investigation of these two plants were carried out in order to identify group of compounds that lead to antiplasmodial activites of the crude extracts.

CHAPTER 2: LITERATURE REVIEW

2.1 Malaria

The protozoan *Plasmodia* species that include *Plasmodium malariae*, *Plasmodium ovale*, *Plasmodium knowlessi*, *Plasmodium vivax* and *Plasmodium falciparum* are agents that caused malaria. Among these, the most deadly malaria is caused by *P. falciparum*, especially in Afica. The parasite is transmitted by two hosts, an infected female anopheles mosquito and human being that it bites .The severance of malaria is greater in the ageset 0-5 years and the pregnant women who have weak immunity (Duffy and Avery, 2012). Malaria trends remain high in the world, with 216 million cases of malaria registered in 2016, of which 90% of cases were in the African region. It resulted in 445,000 deaths, 91% of these were in African countries (World Health Organization, 2017).The symptoms that are common to malaria patients include high fever with chils and rigor, hyperpyrexia, acute respiratory tract infection, brain disorder, reduced cognition, gastrointestinal disorder, muscle scram, anaemia, premature delivery, still birth, miscarriages, infant low birth weight, some irreversible disabilities like blindness and may even put the patient in comma (Flannery *et al.*, 2013).

2.2 Malaria Interventions

Effective malaria management systems are necessary especially children between 0 to five years and women under antenatal care. Few precautions taken toward malaria control include: prompt treatment with effective drugs. This is done in case the prevention did not work and the patient is infected with the *plasmodium* parasite. One of these measures is through intermittent preventive treatment (IPTp) by giving antimalarial drugs to pregnant women during the monthly visits during pregnancy (Gamble *et al.*, 2006). On top of using sulphadoxine-pyrimethathine, a combination of azithromycin and chloroquine and mefloquine has been assessed for IPTp in pregnancy,

however they are poorly tolerated. The other starategy is vector control program; it works toward reducing the population of the mosquito vector, or by the use of mosquito repellents. Thus the two complimentary vector control methods are the use mosquito nets that are treated with insecticides also known as (ITNs) and spaying around the residential compounds a method called (IRS). The data from the previous studies have shown that ITNs and IRS had reduced malaria prevalence in areas where these were adequately applied. In addition, there has also been reduction in the number of low birth weight children and other inimical pregnancy abnormalities (Gamble *et al.*, 2006). The other part of vector control is the use of repellents; the procedure had been used to minimize vector borne diseases due to the bites of arthropod. Some of the common repellents are: (i) DEET (N,N-Dimethyl-3-methylbenzamide) (1) and icaridin (2) (Tavares *et al.*, 2018).

2.3 Antimalarial Drugs

In the treatment of malaria infections, information about the area in which malaria was contracted, patient's medical history, whether this malaria is severe or not, national guidelines and availability of antimalarial drugs are important factors to consider. A combination of artimisinin (3) derivatives with long acting antimalarial drugs such as dihydroartemisinin (4a) plus piperaquine phosphate under trade name P-ALAXIN reduces the time of treatment to only three days. Furthermore, early detection and timely treatment of malaria is necessary inorder to avoid the progress of *Plasmodium falciparum* infection that may cause death. The leading Artemisinin-based combination therapies (ACTs) are artemether (4b) plus lumefantrine, Artesunate (5a) plus mefloquine

or amodiaquine (**5b**). For severe malaria, intramuscular administration of quinine (**6**) is still recommended. These drugs are safe and well tolerated, particularly in children (Stauffer and Fischer, 2003).

2.4 Antimalarial Drug Resistance

The efforts to reduce incidences of malaria have been confronted by the parasites resistance to available drugs. The mosquito vector has also developed resistance to insecticides in use (Fong, 2013). Way back in 1910, it was noticed that quinine (**6**) was becoming ineffective to *plasmodium* parasite in areas of Southern America and some parts of Asia (Farooq & Mahajan, 2004). Ever since, resistance has been reported for all antiplasmodial drugs; the reliable drug artemisinin (**3**) and its derivatives artemether (**4b**) and artesunate (**5a**) are not exception to resistance of *P. falciparum*. There is a failure of parasite to response to these drugs in, Thailand, Cambodia, Vietnam, Lao people's Democratic Republic and Myanmar (Dundorp and Nosten, 2009). In related development, the common type of *Plasmodium* parasite in Africa, *P. falciparum* has it

artemisinin–resistance strain reported in Equatorial Guinea. It is therefore suggested that Equatorial Guinea and other counties in Africa with comparable malaria prevalence should remain vigilant (Lu *et al.*, 2017).

2.5 Phytochemicals with Antiplasmodial Activities

A number of new anti-plasmodial natural products have been reported. They belong to the major classes of flavonoids, alkaloids, terpenoids, anthraquinones and quinones. The flavone numbered as compound (7) isolated from *Tephrosia* species was strongly active against chloroquine sensitive strain of *Plasmodium falciparum* (D6) with IC₅₀ value of $1.7 \pm 0.1 \mu$ M. Refer to the Table 2.1 in the text.

Table 2.1: Antiplasmodia	l flavonoids reported	from Tephrosia species	and related taxa
--------------------------	-----------------------	------------------------	------------------

Compound	Antiplasmodial	Plant	Reference
	activity		
	IC ₅₀ (µM)		
(Trans)-5-Hydroxy-	D6=1.7 ±0.1	Tephrosia purpurea	Atilaw <i>et al.</i> ,
8-(3-hydroxy-3-		subsp. Leptostachya	2017
methylbut-1-en-1-		(ST)	
yl)-7-methoxy-2-			
phenyl-4H-			
chromen-4-one (7)			
8-(5,5-Dimethyl-4-	D6=14.8 ±3.2	Tephrosia purpurea	Atilaw <i>et al.</i> ,
oxotetrahydrofuran-		subsp. Leptostachya	2017
3-yl)-5-methoxy-4-		(ST)	
oxo-2-phenyl-4H-			
chromen-7-yl			
acetate (8)			

Terpurinflavone (9)	D6=3.1±0.3;	Tephrosia	purpurea	Juma <i>et al.</i> ,
	W2=6.3±2.7	(ST)		2011; Muiva-
				Mutisya <i>et al.</i> ,
				2014.
Lanceolatin A (10)	D6=11.4±2.9;	Tephrosia	purpurea	Juma <i>et al.</i> ,
	W2=14.9±3.1	(ST)		2011; Muiva-
				Mutisya <i>et al.</i> ,
				2014.
Semiglabrin (11)	D6=25.77±6.08;	Tephrosia	purpurea	Juma <i>et al.</i> ,
	W2=35.58±5.41,	(ST)		2011; Muiva-
				Mutisya <i>et al.</i> ,
				2014.
Lanceolatin B (12)	D6=27.02±2.65;	Tephrosia	purpurea	Juma et al., 2011;
	W2=35.99±4.24	(ST)		Muiva-Mutisya
				et al., 2014.
Abyssinone (13)	D6=4.9±0.8	Erythrina	abyssinica	Yenesew et al.,
	W2=6.1±1.3	(RT)		2003
Sigmoidin A (14)	D6=5.8 ±0.6	Erythrina	abyssinica	Yenesew et al.,
	W2=5.9±1.1	(RT)		2003
Abyssinin III (15)	D6=5.8 ±1.1	Erythrina	abyssinica	Yenesew et al.,
	W2=5.2±1.7	(RT)		2003
Abyssinone IV (16)	D6=5.4 ±1.5	Erythrina	abyssinica	Yenesew et al.,
	W2=5.9±1.8	(RT)		2003
Erythrabssin-II (17)	D6=8.1±1.4;	Erythrina	abyssinica	Yenesew et al.,
	W2=6.5±0.6	(RT)		2003
L		1		

ST= Stems; RT= Roots

The alkaloids protopine (**18**) and chelanthifoline (**19**) isolated from *Corydalis calliantha* showed good antiplasmodial activities with IC₅₀ values of $4.25 \pm 0.69 \,\mu\text{M}$ for compound (**18**) and $2.78 \pm 0.39 \,\mu\text{M}$ for compound (**19**) and $4.21 \pm 1.24 \,\mu\text{M}$ for compound (**18**) and $3.76 \pm 1.00 \,\mu\text{M}$ for comound(**19**) against the TM4 and K1 strains of *P. falciparum* parasite respectively.

2.6 The Family Fabaceae

The genus *Tephrosia* is a member of the family Fabaceae. This family is having other name as Leguminosae, it has over 650 genera and 20,000 species. This family of shrubs, herbs and trees is distributed in tropics and subtropical region of the world (Tarus *et al.*, 2002). The family is characterized by producing seed pods and isoflavonoids. For centuries, the family has provided man with timbers, food, and fodder for animals, medicine and fragrances. The family is subdivided into four subfamilies, namely:

Papilionoideae, Caesalpinioideae, Mimosoideae and Dialioideae. The genus *Tephrosia* is found within the subfamily Papilionoideae, uniquely identify by papilionoid flowers (Polhill, 1981).

2.6.1 The Genus Tephrosia

The genus *Tephrosia* consists of over 350 species of soft and hard wood shrubs that are widely distributed in the temperate region of the world (Zhi & Pedley, 2010). Up to 30 *Tephrosia* species are known to occur in Kenya (Tarus *et al.*, 2002). The genus is characterized by odd-pinnate leaves with no stipples, a white flower with flattened pod and fruit of 10 to 15 by 1.6 cm (Sikolia *et al.*, 1994). Among them are *T. aequilata*, *T. villosa*, *T. elata*, *T. hildebrandtii*, *T. purpurea*, *T. pumila*, *T. rhodesica*, *T. polypphylla*, *T. holstii*, *T. interupta*, *T.linearis*, and *T. pentaphylla*.

2.6.1.1 Tephrosia rhodesica

The description of morphology: Much-branched small shrub which grow upto 2 m tall. A short-leaved annual plant; leaflets 11-19, 25×9 mm; dense pink flowers that are on the upper axils; standard long hairy, about 11 mm long; a pale hairy pod with pale margins parts (Beentje *et al.*, 1994)

Figure 2.1: Tephrosia rhodesica

Distribution: Kitui district Kalunka; Kisumu; Nguruman hills in Kenya, Somalia, Ethiopia, South Sudan, Sudan and Zimbabwe.

2.6.1.2 Tephrosia Polyphylla

The description of morphology: Annual villose herb up to 1 m tall. Leaf-rachis of upto 5-11 mm long, leaflets 7-17 mm and not more than 20 mm, long by 7 mm wide. Purple flowers located at upper axils only. Calyx densely is villose with lobes of 9 mm long. It has Standard villose with short hairs that are brown in colour and 10–13 mm long. Pods ovate, sessile or almost so, measuring 11 x 6 mm (Beentje *et al.*, 1994).

Figure 2.2: Tephrosia polyphylla.

Distribution: Turkana province; central province and coastal province of Kenya, Somalia, Ethiopia, Northern Uganda, Northern Tanzania.

2.7 Ethnobotanical Information of the Genus Tephrosia

The genus *Tephrosia* is traditionally used by different communities to depend on when affected by diseases like respiratory disorders, inflammation, pain, syphilis, diarrhea, diuretic, stomachache (Dzenda *et al*; 2007). *Tephrosia purpurea*, one of the most widely used species in the genus *Tephrosia*, is used as laxative, antivenom, medicine against gastric disorders and ulcer, a tonic, antidiarrheal and also in leprosy (Sharma *et al.*, 2003). The Table 2.2 below summarizes the traditional uses of some *Tephrosia* species.

Tephrosia species	Plant part	Ethnomedical use(s)	Reference
T. aequilata	Roots	Used to treat venereal diseases when chewed	Kokwaro, 2009; Tarus <i>et al.</i> , 2002
		in combination with salt	
T.apollinea	Aerial part	Used to treat cough, headache, nasal and bronchitis congestion, wounds and bone fractures	Ammar <i>et al.</i> , 2013
T. elata	Roots	Chewed as to treat stomach pain, fever and body weakness	Muiva <i>et al.</i> , 2009
T.calophylla	Roots	Used for treatment of diabetes and the leaf extracts used for treating ulcers.	Parine <i>et al.</i> , 2015
T.holstii	Roots	Used to cure Stomach pain and weakness.	Beentje et al., 1994

Table 2.2: Some traditional uses of selected Tephrosia species

T.linearis	Leaves	Used to treat babies' cough	Kokwaro, 2009
T.interupta	Roots	Used to treat cough	Kokwaro, 2009
T.noctiflora	Roots	Used to treat cough	Kokwaro, 2009
T.pauncijuga	Roots and leaves	Used to treat wounds	Kokwaro, 2009
T. purpurea	Roots, stems and leaves	Used to cure gastroduodenal disorders, haemoroids, anaemia, stomach pains, and skin diseases	Kokwaro, 2009
T.pentaphylla	Roots	Used to cure chest and throat pain	Kokwaro, 2009
T.pumila	Roots	Used to cure chest pain and common cold	Kokwaro, 2009
T.obovata	Seeds	Used to catch fish	Chen et al., 1978
T.uniflora		Poisonous bites remedy	Abreu & Luis, 1996
T.vilosa	Roots	Used to treat Liver malfunctions and respiratory problems	Kokwaro, 2009
T. vogelii	Leaves	Used to treat scabies and eradication of ticks and fleas in cattle and poultry respectively.	Kokwaro, 2009

2.8 Biological Activities of the Genus Tephrosia

A number of Tephrosia species have been investigated for activities against different biological conditions (Table 2.3). The seedpods of T. elata on testing were found to posses some antiplasmodial activities (Muiva et al., 2009). Different parts of T. deflexa, T. linearis and T. purpurea showed antibacterial activities (Hussain et al., 2012; Kare et al., 2006; Ratsimamanga-Urverg et al., 1994). The roots of T. vogelii and T. aequilata were examined and showed antimicrobial activity (Tarus et al., 2002; Wanga et al., 2006). Other crucial biological activities that include: antioxidant, antimicrobial, antibacterial, antileishmanial, anti-inflamatory, anticancer, antidiabetic and Hepatoprotective were able to be detected from the roots of mostly used species of Tephrosia, which is Tephrosia purpurea. (Choudhary, 2007; Gupta et al., 2008; Hussain et al., 2012; Pavana et al., 2007; Shah et al., 2011; Sharma et al., 2003); The roots and leaves of Tephrosia. Vogelii was found to be antimicrobial against a number of negative and positive gram bacteria.

Tephrosia Species	Plant Part	Biological activity	Reference
T. aequilata	Roots	Antimicrobial	Tarus et al., 2002
		Parasitic	
T. calophylla	Roots	Hepatoprotective	Adinarayana et al.,
		Antihyperlipidemic	2009; Mohan, 2011
T. deflexa	Seeds	Antibacterial	Kare <i>et al.</i> , 2006
T. elata	Seedpods	Antiplasmodial	Muiva et al., 2009
T. hidebrandtii	Roots	Antifeedant	Lwande et al.,1986
T. linearis	Roots	Antibacterial	Ratsimamanga-Urverg et
			al., 1994
T. pumila	Roots	Antiprotozoal	Ganapaty et al., 2008
T. purpureaa	Roots	Antioxidant	Choudhary, 2007; Gupta
		Antimicrobial	et al.,2008; Hussain et
		Antibacterial	al., 2012; Pavana et al .,
		Antileishmanial	2007; Shah et al .,2011;
		Anti-inflamatory	Sharma et al., 2003
		Anticancer	
		Antidiabetic	
		Hepatoprotective	
T. sinapou	Roots	Anti-inflamatory	Martinez et al., 2012
T.spinosa	Aerial parts	Anti-inflamatory	Chakradhar et al., 2005
T. toxicaria	Roots	Chemopreventive	Jang et al., 2003
T. villosa		Hyperglycemc	Balakrishnan et al., 2007
T. vogelii	Roots and leaves	Antimicrobial	Wanga et al., 2006

Table 2.3: Some *Tephrosia* species and their biological activities

2.9 Biosynthesis of Flavonoids

Two metabolic pathways are basically involved in the biosynthesis of flavanoids, the phenylpropanoids and shikimate pathways. At the first step, through phenylpropanoids pathway part of the basic skeleton of flavonoid is formed; here the aromatic amino acid phenylalanine is converted into 4-coumaroyl-CoA as shown in (scheme 2.1). Then, a tetraketide linked to the 4- coumaroyl-CoA intermediate is formed through incorporation of three malonyl CoA units (Dewick, 2002; Winkel-Shirley, 2001). Hence, the synthesis of narigenin chalcone is enabled by the enzyme chalcone synthase (CHS) from p-hydroxycoumaroyl CoA with three molecules of malonyl CoA to form an intermediate of tetraketide that cyclized into hydroxylated aromatic ring system to form a scaffold of a chalcone. (Dewick, 2002).

Different subclasses of flavonoids are then formed from a chalcone skeleton. The enzyme chalcone isomerase (CHI) converts narigenin chalcone to naringenin, the same enzyme also converts isoliquiritigenin chalcone to liquiritigenin. Another enzyme, Aurone synthase (AUS), converts narigenin chalcone to Aureusidin. The other enzyme involved in this pathway is Isoflavone synthase (IFS) that converts flavones to isoflavones. Narigenin is converted to the corresponding flavanonol by F3H (flavanone-3-hydroxylase), followed by conversion of the favanonol to flavonol by FS (flavonoid synthase). The introduction of alkyl group at position 3 and 5 is facilitated by F3'5'H (flavonoid-3'.5-'hydroxylase). Scheme 2.1 shows how the different subclasses of flavanoids are biosynthesized (Dewick, 2002; Winkel-Shirley, 2001).

Scheme 2.1: Biosynthetic pathways of flavonoids (Dewick, 2002; Winkel-Shirley, 2001)

2.10 Phytochemistry of the Genus Tephrosia

The literature has shown that the Genus Tephrosia produced a vast number of phytochemcials. Most of them are flavonoids isolated from various *Tephrosia* species. The compounds so far reported from this genus belonging to different subclasses of flavonoids are reviewed in the following sections.

2.10.1 Flavonoids

Flavonoid is the term used to describe the broad spectrum of natural products that have a C6-C3-C6 carbon skeleton. They made up one of the largest groups of naturally occurring phenols (Butler, 2004) which are found in the advanced algae and terrestrial plants (Schijlen et al., 2004). Flavonoids are the major metabolites produced by the genus Tephrosia. These flavonoids are divided depending on the arrangement of the basic C6-C3-C6 skeletal structure (Chen, et al, 2014). Each of the C-6 at the periphery represents an aromatic ring linked by a three carbon unit that forms a mid heterocycle ring containing atleast one oxygen atom. The aromatic rings are labeled as C at the middle but oxygenated, B at the periphery, mostly unsubstituted and A some time oxygenated or prenylated. This group of compounds categorically fall under three subclasses depending on the location of the aromatic ring to the benzopyrano moiety, these classes are: Flavonoids (2-phenyl benzopyrans) latter subdivided into flavanone, flavones, flavanonol and flavonol. Isoflavonoids (3-benzopyrans) and neoflavonoids (4benzopyrans) having a chalcone as a precursor. Therefore all the classes of flavonoids are structurally and biogenetically similar. The biogenesis from chalcone can also produced rotenoids and pterocarpans as summarized in the following sections.

2.10.1.1 Flavonols of the Genus Tephrosia

One of the flavonols, 6-hydroxykaempferol 4'-methyl ether (20) isolated from *T*. *candida* contains a glycosyl and rhamnosyl substituent at C-2 and C-5. The other flavonols are all aglycones. Interestingly, 7-ethoxy-3,3',4'-trihydroxyflavone (23)
isolated from *T. procumbens*, contains the unusual ethoxy group at C-7. The Table 2.4 below shows some flavonols isolated from the genus *Tephrosia*.

Flavonol	Plant source	Reference
6-Hydroxykaempferol-4'-methyl	T. candida (WP)	Sarin, et al., 1976
ether (20)		
Candidol (21)	T. candida (SD)	Dutt & Chibber, 1983
Candidrone (22)	T. candida (SD)	Parmar et al.,1987, Horie
		<i>et al.</i> ,1994
7-Ethoxy-3,3',4'-trihydroxyflavone	T.procumbens (RT)	Venkataratnam et al., 1987
(23)		
6-Hydroxykaempferol-6-methyl	T.vogeli (LF)	Belmain et al .,2012
ether3-O– α –Rhamnopyranosyl(1		
→6)-β-galactopyranoside-7-O-α-		
rhamnopyranoside (24)		
6-Hydroxykaempferol-6-methyl	T. vogeli (LF)	Belmain et al., 2012
ether3-O– α –Rhamnopyranosyl(1		
$\rightarrow 2)[\alpha$ -rhamnopyranosyl(1 $\rightarrow 6$)]- β -		
galactopyranoside (25)		
Compound (26)	T. vogeli (LF)	Belmain et al., 2012
6-Hydroxykaempferol6-methyl	T. vogeli (LF)	Belmain et al., 2012
ether3-O-a-rhamnopyranosyl		
$(1\rightarrow 2)[(3-O-E-feruloyl)-\alpha-$		
rhamnopyranosyl($1 \rightarrow 6$)]- β -		
galactopyranosides (27)		

Table 2.4: Flavonol of the Genus Tephrosia

	R^1	R^2	R^3	R^4	R^5	R^6	R^7
20	Н	ORha	ОН	OH	Orha	OMe	Н
21	Н	OMe	OMe	OMe	ОН	ОН	ОН
22	OMe	θH	OMe	OH	OMe	ОН	OH
23	Н	OEt	Н	Н	OH	ОН	ОН

- 24 R¹= O-(α-Rha), R²= O-(α-Rha-(1-2)-[O-(α-Rha-(1-6)]-β-Gal 25 R¹=O-(α-Rha), R²=O-(α-Rha-(1-6)-β-Gal
- **26** R¹=OH, R²=O-(α -Rha-(1-2)-[O-(α -Rha-(1-6)]- β -Gal-7-O-
- R¹=OH, R²=O-(α-Rha-(1-2)-[(3-O-E-Feruloyl)-α-Rha-(1-6)]-β-Gal 27

2.10.1.2 Flavanonols of the Genus Tephrosia

Very few flavanonols have been isolated from the genus *Tephrosia*, these include lupinifolinol (**28**) and lupinifolinol triacetate (**29**) from the stem of *T.Lupinifolia* (Smalberger*et al.*, 1974).

The Table 2.5 below shows the list of some flavanonols isolated from Genus Tephrosia.

Table 2.5: Flavanonols of the Genus Tephrosia

Flavanonol	Plant source	Reference
Lupinifolinol (28)	T. lupinifolia (ST)	Smalberger et al., 1974
Lupinifolinol triacetate (29)	T. lupinifolia (ST)	Smalberger et al., 1974

Key: ST-Stem

2.10.1.3 Flavones of the Genus Tephrosia

Flavones are 2,3-dehydroderivative of flavanones, with 2,3-olefinic bond (Agrawal, 2013). A number of flavones have been isolated from *Tephrosia* species, and some of these are listed in (Table 2.6).

Table 2.6: Flavones of the Genus Tephrosia

Flavone	Plant source	Reference
(E)-5-Hydroxytephrostachin (30)	<i>T. purpurea</i> (ST)	Atilaw et al., 2017
Purleptone (31)	<i>T. purpurea</i> (ST)	Atilaw et al., 2017
(E)-5-Hydroxyan	T. purpurea (ST)	Atilaw et al., 2017
Hydrotephrostachin (32)		
Tephpurlepflavone (33)	T. purpurea (ST)	Atilaw et al., 2017
Terpurinflavone (34)	T. purpurea (ST)	Juma <i>et al.</i> , 2011
Lanceolatin A (35)	T. purpurea (ST)	Juma <i>et al.</i> , 2011
Semiglabrin (36)	<i>T. purpurea</i> (ST)	Juma <i>et al.</i> , 2011
Lanceolatin B (37)	T. purpurea (ST)	Juma <i>et al.</i> , 2011

Key: ST- stem

2.10.1.4 Flavanones of the Genus Tephrosia

The parent skeleton of flavanones posses 2-phenylchromanone units. Most of the naturally occurring flavanones of this genus have unsubstituted ring B (Agrawal, 2013). The Table 2.7 below shows the list of some flavanones isolated from the genus *Tephrosia*.

Table 2.7: Flavanones of the Genus Tephrosia

Flavanone	Plant source	Reference
Tephrorin B (38)	<i>T. purpurea</i> (AP)	Chang <i>et al.</i> , 2000
Fulvinervin A (39)	T. fulvinevis (SD)	Rao <i>et al.</i> ,1985
Maximaflavone A (40)	T. maxima (RT)	Rao <i>et al.</i> , 1994
Isolonchocarpin (41)	<i>T.purpurea</i> (RT)	Waterman & Khalid, 1980
Spinoflavanone A (42)	T. spinosa (RT)	Rao & Prasad, 1992
Teproleocarpin B (43)	T.leiorcarpa (RT)	Go et al., 1991
Dehydroisoderricin (44)	<i>T. purpurea</i> (RT)	Rao & Raju, 1984
Karn DT mosta SD coods AD	Astrialments	

Key:RT-roots, SD-seeds, AP- Aerialparts

2.10.1.5 Isoflavones of the Genus Tephrosia

Isoflavonoids are a diverse class of flavonoids found to have a C-15 unit. This unit is generated from a flavones molecule which is known to originate from phenylpropanoid precursors and melonyl CoA (Phillips & Kapulnik, 1995). Most of them have oxygenation at C-4' which as required on the basis of their biogenesis. Examples include pumilaisoflavone A (**45**) and pumilaisoflavone D (**46**) isolated from *T. pumila* (Yenesew *et al.*,1989). Table 2.8 shows the list of some isoflavones isolated from the genus *Tephrosia*.

Table 2.8: Isoflavones of the Genus Tephrosia

Isoflavone	Plant source	Reference
PumilaisoflavoneA(45)	T. pumila (WP)	Yenesew et al., 1989
PumilaisoflavoneD (46)	T. pumila (WP)	Yenesew et al., 1989
PumilaisoflavoneB(47)	T. pumila (WP)	Dagne <i>et al.</i> , 1988
Dimethoxyisoflavone (48)	<i>T. purpurea</i> (AP)	Shawl <i>et al.</i> ,1984
4-Demethyltoxicarol	T. polyphylla (RT)	Dagne et al., 1992
isoflavone (49)		
2,4,5,5-Tetramethoxy-2,2-	T. polyphylla (RT)	Dagne et al., 1992
dimethylpyrano-[6,5 ["] -		
h]isoflavone		
(50).		
Calopogoniumisoflavone B	T. elata (RT)	Lwande et al .,1985
(51)		
Maximaisoflavone J (52)	T. maxima (RT)	Murthy & Rao, 1985
Maximaflavone B (53)	T. maxima (RT)	Murthy & Rao, 1985

Key: RT- roots, AP- aerial parts, WP- whole plant

2.10.1.6 Rotenoids of the Genus Tephrosia

In *Tephrosia* species, some rotenoids are oxygenated at C-6. Examples of dehydrorotenoids such as dehydrodeguelin (54) isolated from *T. candida* (Crombie *et al.*,1998) and 6-*O*-acetyldihydrostemonal (56) isolated from *T. pentaphylla* (Dagne *et al.*,1989) showed the said observation. The Table .2.9 shows a list of some rotenoids isolated from the genus *Tephrosia*.

Rotenoids	Plant source	Reference
Dehydrodeguelin (54)	T. candida (RT)	Crombie et al., 1998
Dehydrorotenone (55)	T. candida (RT)	Crombie et al., 1998
6- <i>O</i> -Acetyldihydrostemonal (5 6)	T. pentaphylla (RT)	Dagne et al., 1989
9-Dimethyldihydrostemonal (57)	T. pentaphylla (RT)	Dagne et al., 1989
6-Hydroxyrotenone (58)	T. pentaphylla (RT)	Dagne et al., 1989
Villosol (59)	T. villosa (PD)	Prashant & Krupadanam,
		1993
Villinol (60)	T. villosa (PD)	Prashant & Krupadanam,
		1993
Villosone (61)	T. villosa (PD)	Prashant & Krupadanam,
		1993

Table	2.9:	Rotenoids	of the	genus	Tephros	ia
1 4010	<i></i>	1000010100	or the	Senas	repricos	v c v

Key: RT- roots, PD- pods

R¹ R² 59 H OH 60 OMe OH

2.10.1.7 Pterocarpanoids of the Genus Tephrosia

Pteracarpanoids are known as the second largest group of naturally occurring isoflavonoids; they have a number of medicinal values including antifungal, antiviral and antimalarial activities (Maurich *et al.*, 2006). Depending on the level of oxidation in the B/C ring junction , they can be categorised into four sub-groups: 6a-hyrdoxypterocarpans, pterocarpanes, pterocarpanes and coumestans (Maurich *et al.*, 2006). Some of the pterocarpanoids isolated from various *Tephrosia* species are listed in Table 2.10.

Table 2.10: Pterocarpanoids of the Genus Tephrosia

Pterocarpanoid	Plant source	Reference
3,4:8,9-Di-methylene-	T. aequilata (RT)	Atilaw et al., 2017
dioxypterocarpene (62)		
Tephcalostan (63)	T.calophylla (WP)	Kishore et al., 2003
Emoroidocarpan (64)	T.emoroides (RT)	Machocho et al., 1995
Hildecarpidin (65)	T.hildebrandtii (RT)	Lwande et al., 1987
2-O-Methyllucernol (66)	T,hamiltonii (RT)	Rajani & Sarma, 1988
Acanthocarpan (67)	T.bidwilli (LV)	Ingham & Markham, 1980
Tephrocarpin (68)	T.bidwilli (LV)	Ingham & Markham, 1980

Key: RT- roots, WP- whole plant, LV-Leaves

2.10.1.8 Chalconoids of the Genus Tephrosia

Chalcones and chalcanes are open chain flavonoids with two aromatic rings bound by α , β -unsaturated carbonyl group. They are among the main constituent of *Tephrosia* species. Most of them have modified prenyl group in ring A. Aequichalcone A (**69**) and

aequichalcone B (**70**) isolated from roots of *Tephrosia aequilata* (Atilaw *et al.*, 2017) have modified prenyl ring at C-5['].

The Table 2.11 shows the list of some chalcones from the genus *Tephrosia*.

Chalconoid	Plant source	Reference
Aequichalcone A (69)	Tephrosia aequilata (RT)	Atilaw et al., 2017
Aequichalcone B (70)	Tephrosia aequilata (RT)	Atilaw et al., 2017
Aequichalcone C (71)	Tephrosia aequilata (RT)	Atilawet al., 2017
Obovatachalcone (72)	Tephrosia obovata (AP)	Chen et al., 1978
Obovatin (73)	Tephrosia obovata (AP)	Chen et al., 1978
Tunicatachalcone (74)	<i>Tephrosia tunicate</i> (RT)	Andrei et al., 2000
Obovatachalcone (75)	<i>Tephrosia tunicate</i> (RT)	Andrei et al., 2000
Epoxy-obovatachalcone (76)	Tephrosia carrollii (AP)	Gómez-Gariba et al.,2001
Oaxacacin (77)	Tephrosia carrollii (AP)	Gómez-Gariba et al.,2001
(+)-Tephrosone (78)	Tephrosia purpurea	Chang <i>et al.</i> , 2000
	(WP)	

Table 2.11: Chalconoids of the Genus Tephrosia

Key: RT- roots, AP- aerial parts, WP- whole plant

2.11 Biological Activities of Compounds from the Genus Tephrosia

In the search for alternative drugs that are cheaper and accessible, many species from the genus *Tephrosia* have been investigated. The compounds isolated from genus *Tephrosia* were found to be active as antilarval, antiplasmodial, antimicrobial, estrogenic antitumor, antileshmanial and antifeedant. These compounds were found among different sub classes of flavonoids such as flavanones, flavanonols, flavones, flavonols, chalcones, pterocarpans and rotenoids. Some of the compounds with known activities (Table 2.12) include; (*E*)-5-hydroxyteprostachin (**30**) isolated from *T.purpurea*, which showed good antiplasmodial activity against D6 strain, of *Plasmodium falciparum* (IC₅₀=1.7 μ M) (Atilaw *et al.*, 2017); tepurlepflavone (**33**) isolated from *T. purpurea*, showed a good antiplasmodial activity against chloroquine sensitive strains of *P*.

falciparum (IC₅₀=14.8 μ M) (Atilaw *et al.*, 2017); 6 α -hydroxy- α -toxicarol (**81**) isolated from *T. villosa*, showed antiplasmodial activity against D6 strain of *P. falciparum* (IC₅₀=7.97 μ M) (Muiva-Mutisya *et al.*, 2014)

Compounds from this genus also showed other biological activities (Table. 2.12), for example 2',6'-dimethoxy-4',5'-(2",2"-dimethyl)-pyranochalcone (**82**), a compound isolated from *T. pulcherrima* was found to have antimicrobial activity (MIC=5.90 μ M) (Ganapaty *et al.*,2008). Amorpholone (**83**), isolated from stems and leaves of *T. candida*, was tested for larvacidal activity against the larvae of *Spodoptera litura* and was found to be active (LD₅₀=3.1 μ M) (Kole *et al.*, 1992). Two compounds isolated from *T. pupurea*, (+)-tephrorine A (**82**) and (+)-tephrosone (**78**) were found to have cancer chemopreventive effects with CI of 4.0 μ M and 4.1 μ M, respectively (Chang *et al.*, 2000).

Compound	Biological	Tephrosia	Reference
	activity	species	
(<i>E</i>)-5-	Antiplasmodial	T.purpurea	Atilaw et al., 2017
Hydroxyteprostachin			
(79)			
Tepurlepflavone (80)	Antiplasmodial	T.purpurea	Atilaw et al., 2017
6α-Hydroxy-α-toxicarol	Antiplasmodial	T.villosa	Muiva-Mutisya et al.,
(81)			2014
2',6'-Dimethoxy-4',5'-	Antimicrobial	T.pulcherrima	Ganapaty et al., 2008
(2",2"-dimethyl)-			
pyranochalcone (82)			
Amorpholone(iii) (83)	Insecticidal	T. candida	Kole et al., 1992
(+)-TephrorineA (84)	Chemopreventive	T.pupurea	Chang <i>et al.</i> , 2000
(+)-Tephrosone (85)	Chemopreventive	T.pupurea	Chang <i>et al.</i> , 2000

Table 2.12: Biological	activities of so	ne compounds	from Te	phrosia s	pecies
Tuolo 2.12. Biologica		ne compounds	11011110	pin obier o	peeres

CHAPTER 3: MATERIALS AND METHODS

3.1 General Experimental Procedures

Several experiments were handled with different analytical instruments. Centrifugal chromatography was done on chromatotron Model 7924T; NMR data was obtained from 500 MHz Bruker Advance III HD; UV spectra from Specord S600; CD data was obtain from Jasco J-715 spectropolarimeter and other data were obtained as shown in the (Table 3.1).

The specifications and details of analytical instruments used are in the Table 3.1 below.

Experiment name	Instrument used		
TLC	Merck pre-coated silica gel 60 F254 plates		
Column Chromatography	Silica gel 60 (70-230 mesh)		
Gel filtration	Sephadex LH-20		
Centrifugal TLC	Chromatotron Model 7924T		
NMR spectra	500 MHz Bruker Advance III HD		
	Spectrometers and 400 MHz MR400-DD2		
UV spectra	Specord S600 (Analytic Jena AG)		
	Spectrometer		
X-ray Single Crystal Structures	Bruker D8		
ECD	Jasco J-715 spectropolarimeter		
LCMS	1200 HPLC / 6490LC MS/ G1159A.		
HRMS	Micromass GC-TOFmicro mass		
	spectrometer		

Table 3.1: Instrumentation involved

3.2 Plant Materials

Tephrosia rhodesica was collected in Kwale, coastal region of Kenya and *Tephrosia polyphylla* was collected in Kakamega County in July, 2017. The plants were identified with the help of a taxonomist, Mr. Patrick C. Mutiso of School of Biological Sciences, the University of Nairobi where vouchers specimens (MUP 001/July/2017 for roots of *T. rhodesica*; MUP 002/July/2017 for seedpods of *T. rhodesica* and MUP 003/July/2017 for stems of *T. polyphylla*) were deposited. Roots, seedpods and stems were air-dried at room temperature and ground to fine powder.

3.3 Extraction and Isolations of Compounds

3.3.1 Extraction and Isolations of compounds from the roots of T. rhodesica

The air dried and ground roots (1.7 Kg) of T. rhodesica were extracted with CH_2Cl_2/CH_3OH (1:1) (4×1.5 L) by cold percolation at room temperature. The extract was concentrated *in vacuo* using a rotary evaporator to yield 113 g of dark brown paste. A portion of the extract (100 g) was subjected to column chromatography over silica gel (700 g) eluting with hexane containing increasing amounts of EtOAc. The eluent with 2% EtOAc in hexane was crystallized from methanol to yield white crystals of 7methylglabranin (90, 50 mg). The eluent with 4% EtOAc (8g) in hexane was further subjected to column chramotography on silica gel (80 g), eluting with hexane containing increasing amounts of CH₂Cl₂. The eluent at 30% CH₂Cl₂ gave white crystals of rhodimer (88, 20 mg) after crystallization from methanol. The fractions eluted with 6% EtOAc in hexane from the second column were combined (3.3 g) separated by column chromatography over silica gel (85 g) eluting with CH₂Cl₂ containing increasing amounts of EtOAc, The fractions at 30% CH₂Cl₂, were combined and further purified on a chromatotron using solvent system Hexane: CH₂Cl₂; EtOAc (5:1:0.5) to yield rhodbenzofuran (86, 28mg). The fractions eluted with 15 % EtOAc were combined and subjected to column chromatography on Sephadex LH-20 (CH₂Cl₂/CH₃OH (1:1) to give brown amorphous solid of flemichapparin (92, 20 mg) and 2-hydroxy-6methoxybenzoic acid (**89**, 23 mg). The less polar samples were combined and crystallized in methanol; Candidone (**91**, 40 mg) was also isolated from this column.

3.3.2 Extraction and Isolations of Compounds from the Seedpods of T. rhodesica

The air dried seedpods (550 g) of *T. rhodesica* was ground and extracted with CH_2Cl_2/CH_3OH (1:1) (4×1.5 L) by percolation at room temperature. The extract was concentrated *in vacuo* on a rotary evaporator to yield 28.7 g of a dark green solid. A portion of extract 1.7 g was kept for bioassay and other portion of the extract 26.0 g was subjected to column chromatography over silica gel (190 g) eluting with hexane containing increasing amount of EtOAc. The eluent with 6% EtOAc in hexane gave rhoflavononol (**87**, 50 mg) after column chromatography on Sephadex LH-20 (CH_2Cl_2/CH_3OH (1:1) and eluent at 10% were combined and purified by preparative TLC to obtained Teprowatsin (**93**, 18mg).

3.3.3 Extraction and Isolations of Compounds from the Stem of T. polyphylla

The air-dried stem (205 g) of *T. polyphylla* was ground and extracted with CH_2Cl_2/CH_3OH (1:1) (4×1.0 L) by cold percolation at room temperature. The extract was concentrated *in vacuo* on a rotary evaporator to yield 21 g of a dark green paste. A portion of the extract (20 g) was subjected to column chromatography over silica gel (200 g) eluting with petroleum ether containing increasing amounts of EtOAc. The eluent with 8-10% EtOAc in petroleum ether were combined and crystallized from methanol to yield white crystals of 4[']-demethyltoxicarol isoflavone (**49**, 45 mg). The eluent with 30% EtOAc in petroleum ether gave 2['],4['],5,5[']-tetramethoxy-2^{''},2^{''}-dimethylpyrano-[6['],5^{''}-h]isoflavone (**50**, 15mg).

3.4 Structure Modification

3.4.1 Oxime Derivative of Candidone (91)

To a 20 mg portion of Candidone (**91**) was added 6.0 mg of hydroxylamine hydrochloride and 7.0 mg of anhydrous sodium acetate in 1.0 ml of methanol as a solvent and heated at 60 0 C for six hours. The sample mixture crystallized in acetonitrile to form white crystals of candidone-oxime (**94**, 19.60mg).

3.5 Plasmodium falciparum Growth Inhibition Assay

The preceding method of asexual *P. falciparum* imaging assay was used to determine parasite growth inhibition in accordance with the procedure described by Duffy and Avery (Duffy & Avery, 2012). In this method, 2-3% parasite (D6) and 0.3% hematocrit was incubated in total assay volume of 50 μ L in presence of the tested compound for 72 hrs at 37 °C and 5% CO₂, in a poly-D-lysine-coated cell carrier imaging plates. Plates were stained with DAPI (6,4'-diamidino-2-phenylindole) after incubation in presence of saponin and Triton X-100 and incubated for a further 5hrs at room temperature in the dark before obtaining digital images. The digital images obtained were then analyzed using the PerkinElmer Acapella spot detection software, where spots that fulfilled the function were counted. The percentage inhibitions of parasite replication were then calculated using DMSO and artemisinin control data.

3.6 Properties of isolated and modified compounds

7-methylglabranin (90)

White crystals. UV (MeOH) λ_{max} : 290 and 341 nm. CD (MeCN) λ nm ($\Delta\epsilon$; M⁻¹cm⁻¹): (-13.63)₂₈₃; (-3.62)₂₄₀; (20.49)₂₂₂;(1.30)₂₅₀;(4.25)₃₀₉, ¹H and ¹³C NMR (Table 4.2). HR-ESI-MS ([M+H]⁺m/z 339.4, calcd for C₂₁H₂₂O₄ 339.1551.

Candidone (91)

Yellow amorphous solid. UV (MeOH) λ_{max} : 286 and 322 nm. . CD (MeCN) λ nm ($\Delta \epsilon$; $M^{-1}cm^{-1}$) (-15.16)₂₅₀; (116.60.58)₃₃₈. ¹H and ¹³C NMR (Table 4.3). LC-ESI-MS ([M+H]⁺m/z 353.3, C₂₂H₂₄O₄.

Rhodbenzofuran (86)

Yellow amorphous solid. UV (MeOH) λ_{max} :260, 310 and 365 nm. ¹H and ¹³C NMR (Table 4.1). HR-ESI-MS ([M+H]⁺*m*/*z* 351.1596,calcdfor C₂₂H₂₂O₄351.1600.

Rhodimer (88)

White crystals. UV (MeOH) λ_{max} :235, 282 and 340 nm.CD (MeCN) λ nm ($\Delta\epsilon$; M⁻¹cm⁻¹) (-0.42)₂₈₂; (3.89)₂₁₉. ¹H and ¹³C NMR (Table 4.4). LC-ESI-MS ([M+H]⁺m/z 661.1, C₄₂H₄₄O₇.

2-Hydroxy-6-methoxybenzoic acid (89)

Brown amorphous solid.¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 6.85 (1H,d, *J*=8.0 Hz, H-3);7.48 (1H,dd, *J*=8.0, 2.0 Hz, H-4),7.57 (1H,d, *J*=2.0 Hz, H-5), 6.99 (1H,s, 2-OH),8.16 (1H,s,1'-OH), 3.90 (3H,s,6-OMe);¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 127.2 (C-1),128.1 (C-2),114.3 (C-3),123.8(C-4),112.4 (C-5),147.2 (C-6),151.0 (C-1'),61.4 (6-OMe).

Flemichapparin (92)

Brown amorphous solid. UV (MeOH) λ_{max} :286 and 322 nm. ¹H and ¹³C NMR (Table 4.6). LC-ESI-MS ([M+H]⁺m/z 297.3, C₁₇H₁₂O₅.

Rhodflavononol (87)

Yellow oily substance. UV (MeOH) λ_{max} :216 and 280 nm. CD (MeCN) λ nm ($\Delta \epsilon$; M⁻¹ cm⁻¹) (-5.30)₂₂₂; (-1.05)₂₂₂; (1.58)₂₁₉, ¹H and ¹³C NMR (Table 4.8). HR-ESI-MS ([M+H]⁺m/z 369.1702,calcd for C₂₂H₂₄O₅ 369.1700).

Tephrowatsin (93)

Brown amorphous solid. UV (MeOH) λ_{max} : 235 and 282 nm. CD (MeCN) λ nm ($\Delta \epsilon$; M⁻¹ cm⁻¹) (-9.86)₂₂₄; (-1.73)₂₈₀; (2.56)₂₄₉, ¹H and ¹³C NMR (Table 4.7). LC-ESI-MS ([M+H]⁺m/z 337.2, C₂₂H₂₄O₃.

4⁻Demethyltoxicarol isoflavone (49)

White crystals. UV (MeOH) λ_{max} :216 and 280 nm. ¹H and ¹³C NMR (Table 4.9). hr-ESI-MS ([M+H]⁺*m*/*z* 397.0000,calcd for C₂₂H₂₀O₇397.1200.

2',4',5,5'-Tetramethoxy-2",2"-dimethylpyrano-[6',5"-h]isoflavone (**50**) Yellow amorphous solid. UV (MeOH) λ_{max} :230 and 285 nm. ¹H and ¹³C NMR (Table 4.10). LC-ESI-MS ([M+H]⁺m/z 425.0000,calcd for C₂₄H₂₄O₇425.1600.

Candidone-oxime (94)

White crystals. UV (MeOH) λ_{max} :237 and 280 nm. CD (MeCN) λ nm ($\Delta\epsilon$; M⁻¹cm⁻¹) (-1.76)₂₆₇; (-1.16)₂₃₄; (6.13)₂₁₀ ;(1.24)₂₅₀.¹H and ¹³C NMR (Table 4.11). LC-ESI-MS ([M+H]⁺m/z 368.3, C₂₂H₂₅NO₄.

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1: Characterization of Isolated Compounds

4.1.1: Compounds from roots of *Tephrosia rhodesica*

Phytochemical investigation of the roots of *Tephrosia rhodesica* resulted in the isolation of six compounds of which one is new. The characterization of these compounds is discussed in the following sections.

4.1.1.1: Rhodbenzofuran (86)

Compound **86** was isolated as a yellow amorphous solid whose molecular formula was deduced as $C_{22}H_{22}O_4$ based on HR-ESI-MS ([M+H]⁺ m/z 351.1596) and NMR analyses (Table 4.1).The UV spectrum (λ_{max} 260, 310 and 365 nm) along with the ¹³C NMR signals at δ_C 158.6 (C-2) and δ_C 117.6 (C-3) were indicative of a 2-arylbenzofuran skeleton (Fukai *et al.*, 1996; Iinuma *et al.*, 1994). The presence of a formyl group at C-3 was evident from HMBC correlation of the formyl proton at δ_H 10.60 (H-1^{"")} with δ_C 158.6 (C-2) and δ_C 117.6 (C-3).

The presence of two methoxy and a prenyl groups was evident from the NMR spectra (Table 4.1). The placement of two methoxy ($\delta_H 3.89$, $\delta_C 55.9$ and $\delta_H 3.85$, $\delta_C 57.0$) groups were established by HMBC correlations (Table.4.1) of these groups with C-4 ($\delta_C 152.7$) and C-6 ($\delta_C 156.4$), respectively, on ring A. In support of this, both methoxy groups

showed NOE correlation with H-5 ($\delta_{\rm H}$ 6.50). Finally the prenyl group was placed at C-7 from the HMBC correlations of CH₂-1["]($\delta_{\rm H}$ 3.56) to C-6 ($\delta_{\rm C}$ 156.4),C-7 ($\delta_{\rm C}$ 106.8), C-7a ($\delta_{\rm C}$ 154.1), C-2["] ($\delta_{\rm C}$ 122.3) and C-3["] ($\delta_{\rm C}$ 132.0). The singlet at ($\delta_{\rm H}$ 6.50) in ring A was assigned to H-5 due to its HMBC correlations (Table.4.1) to C-3a ($\delta_{\rm C}$ 110.4), C-4 ($\delta_{\rm C}$ 152.7), C-6 ($\delta_{\rm C}$ 156.4) and C-7 ($\delta_{\rm C}$ 106.8). The NMR spectral data showed that, $\delta_{\rm C}$ 130.7 (C-1); $\delta_{\rm C}$ 128.5 (C-2/6), $\delta_{\rm H}$ 8.20 (H-2/6); $\delta_{\rm C}$ 128.9 (C-3/5), $\delta_{\rm H}$ 7.50 (H-3/5); $\delta_{\rm C}$ 129.6 (C-4), $\delta_{\rm H}$ 7.48 (H-4) and further showed ring B is unsubstituted. The attachment was further supported by HMBC correlations (Table.4.1) of H-2/6 ($\delta_{\rm H}$ 8.20) to C-2 ($\delta_{\rm C}$ 158.6), C-1[']($\delta_{\rm C}$ 130.7) and C-3[']/5['] ($\delta_{\rm C}$ 128.9). Based on the above spectroscopic data, this new compound was characterized as 4,6-dimethoxy-7-(3-methylbut-2-en-1-yl)-2-phenyl-1-benzofuran-3-carbaldehyde and given the trivial name rhodbenzofuran.

Position	δ _C	$\delta_{\mathrm{H},} m, (J \text{ in Hz})$	HMBC
2	158.6		
3	117.6		
3a	110.4		
4	152.7		
5	92.4	6.50 s	C-3, C-4, C-4a, C-6, C-7
6	156.4		
7	106.8		
7a	154.1		
1	130.7		
2/6	128.5	8.20 m	C-1, C-2, C-3, C-5,
3/5	128.9	7.50 m	C-2, C-6
4	129.6	7.48 m	C-3, C-5
1"	22.4	3.56	C-2 ["] , C-3", C-6, C-7, C-7a
2"	122.3	5.32	C-1", C-3", C-4", C-5"
3"	132.0		
4"	18.0	1.85 s	C-2 ["] ,C-3 ["] ,C-5 ["]
5	25.9	1.69 s	C-2",C-3",C-4"
4-OMe	55.9	3.89 s	C-4
6-OMe	57.0	3.85 s	C-6
1	187.8	10.60 s	C-2, C-3

Table 4.1: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (86), CDCl₃

4.1.1.2: 7-Methylglabranin (90)

Compound 90 was isolated as white crystals and had characteristic UV absorption maxima at (290 and 341 nm) of flavanones. The formula C₂₁H₂₂O₄ was established from the molecular ion peak $([M+H]^+ m/z 339.4 \text{ in the LC-ESI-MS})$ and NMR spectra (Table 4.2). In addition, the NMR data (Table.4.2) showed the presence of oxygenated methine signal for H-2 ($\delta_{\rm H}$ 5.41, 1H, dd, J=12.7, 3.2 Hz; $\delta_{\rm C}$ 78.8,), the methylene signals for H- $3ax (\delta_H 3.05, \delta_C 43.6, 1H, dd, J=17.1, 12.7 Hz)$ and H-3eq ($\delta_H 2.85, \delta_C 43.6, 1H, dd$, J=17.1, 3.2 Hz) with AMX system, typical of ring C of flavanones. This was also supported by the HMBC correlations (Table.4.2) of H-3eq to C-2 ($\delta_{\rm C}$ 78.8), C-4 ($\delta_{\rm C}$ 196.4) and C-1 ($\delta_{\rm C}$ 139.1). That ring B is unsubstituted was apparent from the ¹H [$\delta_{\rm H}$ 7.42 for H-2/6'; δ_H 7.45 for H-3'/5' and δ_H 7.39 for H-4] and ¹³C [δ_C 139.1 for C-1'; δ_C 128.9 for C-2/6; δ_C 126.1 for C-3/5 and δ_C 128.7 for C-4] NMR spectra. The nature of ring B was supported by HMBC correlations (Table.4.2) of H-2/6 ($\delta_{\rm H}$ 7.42) to C-2 ($\delta_{\rm C}$ 78.8), C-1'($\delta_{\rm C}$ 139.1) and C-3'/5' ($\delta_{\rm C}$ 126.1). The proposed flavanone skeletal structure was also evident in COSY experiment. In the COSY experiment, the oxygenated methine proton at δ_H 5.41 (H-2) showed cross peaks with methylene protons at δ_H 3.05 (H-3ax) and $\delta_{\rm H}$ 2.85 (H-3eq) confirming the flavanone ring C structure.

In ring A, the presence of signals for methylene group ($\delta_{\rm C}$ 21.8, $\delta_{\rm H}$ 3.24, 2H, d, *J*=7.3 Hz for CH₂-1["]), a prenyl group was established by ($\delta_{\rm H}$ 5.15, 1H, and $\delta_{\rm C}$ 122.6) for CH-2^{")} and two methyls ($\delta_{\rm H}$ 1.66, $\delta_{\rm C}$ 17.8 for Me-4["]; and $\delta_{\rm H}$ 1.63, $\delta_{\rm C}$ 25.9, for Me-5["]). The location of this prenyl at C-8 on ring A was supported by HMBC correlations (Table.4.2) of H-1["] to C-8 ($\delta_{\rm C}$ 109.2),C-8a ($\delta_{\rm C}$ 158.9), C-7 ($\delta_{\rm C}$ 165.9),C-2["] ($\delta_{\rm C}$ 122.6) and C-3["] ($\delta_{\rm C}$ 132.5).

Additional substituents in ring A were the hydrogen bonded hyroxy ($\delta_{\rm H}$ 12.2) and methoxy ($\delta_{\rm H}$ 3.86, $\delta_{\rm C}$ 56.1) groups located on C-5 and C-7 respectively. The locations of these substituents were supported by HMBC correlations (Table.4.2), of 5-OH to C-5 and a prenyl group at C-8. In the ¹H NMR spectrum, one aromatic proton signal was observed at $\delta_{\rm H}$ 6.10 ($\delta_{\rm C}$ 92.6, 1H, s, H-6) only with the oxygenation of aromatic ring A at C-5 ($\delta_{\rm C}$ 162.8) and C-7 ($\delta_{\rm C}$ 165.9). The nature of ring A was confirmed by HMBC correlations (Table.4.2) of H-6 to C-5 ($\delta_{\rm C}$ 162.8), C-7 ($\delta_{\rm C}$ 165.9), C-4a ($\delta_{\rm C}$ 103.1) and C-8 ($\delta_{\rm C}$ 109.2). The absolute configuration of C-2 was determined to be (2S) from X-ray single crystal structure (Figure 4.1) and positive Cotton effect at 339, and a negative Cotton effect at 283 nm (Figure 4.2) in the CD spectrum (Slade *et al.*, 2005). Through forgoing discussion and comparing with literature, compound **90** was identified as (2S)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-4H-chromen-4one, with a trivial name, 7-methylglabranin, which was previously isolated from *Tephrosia vilosa* (Jayaraman *et al.*, 1980).

Figure 4.1: X-ray single crystal structure of compound 90

(Wave length) nm

Figure 4.2: ECD spectrum of compound (90)

Position	$\delta_{\rm C}$	$\delta_{\mathrm{H},} m$, (J in Hz)	HMBC
2	78.8	5.41, <i>dd</i> (12.7, 3.2)	C-4, C-1
3	43.6	3.05, <i>dd</i> (17.1, 12.7)	C-4
		2.85, <i>dd</i> (17.1, 3.2)	C-2, C-4, C-1
4	196.4		
4a	103.1		
5	162.8		
6	92.6	6.10 <i>s</i>	C-4a, C-5, C-7, C-8
7	165.9		
8	109.2		
8a	158.9		
1	139.1		
2/6	128.9	7.42 <i>m</i>	C-1
3/5	126.1	7.45 m	C-4
4	128.7	7.39 m	C-3/5
1	21.8	3.24 <i>d</i> ,(7.3)	C-2 ["] , C-3", C-7, C-8, C-
			8a
2"	122.6	5.15	C-4 ["] , C-5 ["]
3"	131.5		
4	17.8	1.66 s	C-2 ["] , C-3 ["] , C-5 ["]
5"	25.9	1.63 s	C-2 ["] , C-3 ["] , C-4 ["]
5-OH		12.2 <i>s</i>	C-5, C-6, C-4a
7-OMe	56.1	3.86 s	C-7

Table 4.2:¹H (500 MHz) and 13 C (125 MHz) NMR data for compound (90), CDCl₃

4.1.1.3: Candidone (**91**)

Compound **91** was isolated as a yellow amorphous solid and showed characteristics UV (λ_{max} 286 and 322 nm) and NMR [(δ_{H} 5.40, dd, *J*=12.8, 3.1 Hz for H-2; δ_{C} 78.6,), (δ_{H} 2.98, dd, *J*=16.6, 12.8 Hz) for H-3_{ax} and (δ_{H} 2.84, dd, *J*=16.6, 3.1 Hz; H-3_{eq}; δ_{C} 45.8)]; δ_{C} 190.0 for C-4 spectra of a flavanone. That this compound is a flavanone derivative was also supported by the HMBC correlations of H-3_{eq} to C-2 (δ_{C} 78.6), C-4 (δ_{C} 190.0) and C-1['] (δ_{C} 139.3). In the HH-COSY experiment, the oxygenated methine at δ_{H} 5.40 (H-2) showed correlations with methylene protons at δ_{H} 2.98 (H-3_{ax}) and δ_{H} 2.84 (H-3_{eq}), again typical of ring C protons of flavanones. The molecular formula C₂₂H₂₄O₄ was proposed from the LC-ESI-MS spectrum which showed a protonated molecular ion peak ([M+H]⁺ at *m*/*z* 353.3, and NMR spectral data (Table 4.3). As in compound **91**, NMR spectral data (Table 4.3) support unsubstituted ring B.

In ring A, the presence of a prenyl group at C-8 [H-1["] ($\delta_{H}3.29$, $\delta_{C}21.9$, 2H, dd, J=7.4,3.6 Hz) and two methyl groups (δ_{H} 1.65, δ_{C} 17.7, CH₃-4["]) and (δ_{H} 1.63, δ_{C} 25.8, 3H,s)] and two methoxy groups at C-5 (δ_{H} 3.90, δ_{C} 55.7) and C-7 (δ_{H} 3.93, δ_{C} 55.7) was apparent from the NMR spectral data (Tabe 4.3). The location of this prenyl at C-8 was established from HMBC correlations (Table 4.3) of H-1["] to C-8 (δ_{C} 110.3), C-8a (δ_{C} 161.1), C-7 (δ_{C} 163.3), C-2["] (δ_{C} 122.5) and C-3["] (δ_{C} 131.5). The location of the methoxy group at C-5 (δ_{C} 160.7) and C-7 (δ_{C} 163.3) was established from HMBC spectrum (Table 4.3). The absolute configuration of C-2 was determine to be (2S) from positive

Cotton effect at 338 in the ECD spectrum (Figure 4.3.) (Slade *et al.*, 2005). Based on these spectroscopic data and comparing with the literature, compound **91** was identified as (2S)-2,3-dihydro-5,7-dimethoxy-8-(3-methylbut-2-enyl)-2-phenylchromen-4-one, with a trivial name as candidone which was previously isolated from *Tephrosia candida* (Roy *et al.*, 1986).

Figure 4.3: ECD spectrum of compound (91)

Position	$\delta_{\rm C}$	$\delta_{\mathrm{H},} m, (J \text{ in Hz})$	HMBC
2	78.6	5.40, <i>dd</i> (12.8, 3.1)	C-1 'C-4
3	45.8	2.98, <i>dd</i> (16.6, 12.8)	C-4
		2.84, <i>dd</i> (16.6, 3.1)	C-1, C-2, C-4
4	190.0		
4a	106.1		
5	160.7		
6	88.7	6.13 <i>s</i>	C-4a, C-5, C-7, C-8
7	163.3		
8	110.3		
8a	161.1		
1	139.3		
2/6	128.6	7.40 m	C-1
3/5	125.9	7.46 m	C-4
4	128.3	7.35 m	C-3/5
1	21.9	3.29 <i>bt</i>	C-2 ["] , C-3 ["] , C-7, C-8,
			C-8a
2"	122.5	5.16 <i>bt</i>	C-4 ["] ,C-5 ["]
3"	131.5		
4	17.7	1.65 s	C-2 ["] , C-3 ["] , C-5 ["]
5	25.8	1.63 s	C-2 ["] , C-3 ["] , C-4 ["]
5-OMe	56.1	3.90 s	C-5
7-OMe	55.7	3.93 s	C-7

Table 4.3: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (91), CDCl₃
4.1.1.4: Rhodimer (88)

Compound **88** was isolated as white crystals and showed a characteristics UV absorption maxima at (235, 282 and 340 nm) of flavanones It was also apparent from the MS and NMR data that this compound is a dimeric flavonoid. In one half of the molecule, the ¹H and ¹³C NMR spectra showed signals for oxygenated methine ($\delta_{\rm H}$ 5.43, 1H, dd, *J*=13.2, 3.0 Hz for H-2; $\delta_{\rm C}$ 79.0), methylene ($\delta_{\rm H}$ 3.07, 1H, dd, *J*=17.0, 13.2 Hz for H-3_{ax} and $\delta_{\rm H}$ 2.84, 1H, dd, *J*=17.0, 3.0 Hz for H-3_{eq}; $\delta_{\rm C}$ 44.1,) of a flavanone skeletone. Another half of the molecule is attached at C-4^{""}, showing that compound **88** is a flavanone-flavan dimmer.

The NMR data (Table 4.4) showed two sets of unsubstituted aromatic rings δ_{C} 141.8 (C-1'); δ_{C} 129.1 (C-2'/6'), δ_{H} 7.48 (H-2'/6'); δ_{C} 126.4 (C-3'/5'), δ_{H} 7.37 (H-3'/5'); δ_{C} 128.9 (C-4'), δ_{H} 7.34 (H-4') and δ_{C} 139.5 (C-1'''); δ_{C} 126.5 (C-2'''/6'''), δ_{H} 7.39 (H-2'''/6'''); δ_{C} 128.7 (C-3'''/5'''), δ_{H} 7.44 (H-3'''/5'''); δ_{C} 128.0 (C-4'''), δ_{H} 7.29 (H-4'''), two sets of prenyl groups δ_{C} 22.4 (C-1''), δ_{H} 3.20 (H-1''); δ_{C} 123.0 (C-2''), δ_{H} 5.15 (H-2''); δ_{C} 131.3 (C-3''); δ_{C} 18.2 (C-4''), δ_{H} 1.66 (H-4''); δ_{C} 26.3 (C-5''), δ_{H} 1.58 (H-5'') and δ_{C} 26.2 (C-1'''), δ_{H} 3.36 (H-1'''); δ_{C} 27.3 (C-5'''), δ_{H} 1.65 (H-5'''). The important HMBC correlations observed were H-3ax and H-

3eq to C-2 (δ_C 79.0); C-3 (δ_C 196.7) and C-1['] (δ_C 141.8), H-3ax^{'''} and H-3eq^{'''} to δ_C 75.8 (C-2^{''''}) and δ_C 110.2 (C-4a^{''''}).

The relative configuration $(2^{"}S^*, 4^{"}R^*)$ was established from the X-ray structure (Figure 4.4) of compound **88**. Comparing these spectroscopic data with the available literature, compound **88** was found to be a rhodimer isolated from roots of *Tephrosia rhodesica*.

Figure 4.4: X-ray single crystal structure of compound (88)

Posi	$\delta_{\rm C}$	$\delta_{\rm H,} m$, (J in	HMBC	Position	$\delta_{\rm C}$	$\delta_{\rm H,}$ <i>m</i> , (J in	HMBC
tion		Hz)				Hz)	
2	79.0	5.43, <i>dd</i>	C-4, C-1,	2"	75.8	5.24, <i>dd</i> (11.4,	C-3 ^{""}
		(13.2, 2.9)	C-2'/6			2.1)	
3	44.1	2.84, <i>dd</i>	C-2, C-4,C-	3	22.4	2.18, <i>dt</i>	C-4 ^{""} , C-6
		(17.0, 2.9)	1			(14.0,11.4,5.8	
		3.07, <i>dd</i>	C-4			0),2.32, <i>dt</i>	C-4""
		(17.0,13.2)				(14.0,3.1,2.2)	
4	196.7			4"	37.4	4.66, <i>dd</i>	C-5,C-7,C-4a,
						(5.8,2.1)	C-8 ^{""} a, C-2 ^{""}
4a	100.8			4a [‴]	110.2		
5	159.7			5'''	157.9		
6	103.2			6	88.8	6.17 <i>s</i>	C-5 ^{""} ,C-7 ^{""} ,C-
							8 ^{'''} ,
							C-4 ^{""} , C-4 ^{""} a
7	159.1			7‴	163.2		
8	108.5			8'''	111.3		
8a	158.0			8 ^{'''} a	154.7		
1	141.1			1	139.5		
2/6	129.1	7.47 m	C-2, C-3/5	2 ^{""} /6 ^{"""}	126.5	7.39 m	C-2 ^m , C-3 ^m /5 ^m
3/5	126.4	7.37 m	C-2/6	3 /5	128.7	7.44 <i>m</i>	C-2 ^m /6 ^m
4	128.9	7.34 <i>m</i>	C-3/5	4	128.0	7.29 m	C-3 ^m /5 ^m
4	18.2	1.66 s	C-2 ["] ,C-3 ["] ,	4	22.2	1.69 <i>s</i>	C-2 ^m ,C-3 ^m ,
			C-5"				C-5 ^{""""}
5	26.3	1.58 s	C-2 ["] ,C-3 ["] ,	5	27.3	1.65 s	C-2 ^m ,C-3 ^m ,
			C-4"				C-4""
5-		12.64 <i>s</i>	C-5	5 [°] -OMe	56.3	3.74 <i>s</i>	C-5 ^{""}
OH							
7-		6.81 <i>s</i>	C-6	7 ^{^m} -OMe	56.2	3.87 s	C-7 ^m
OH							

Table 4.4: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (88), CDCl₃

4.1.1.5: 4-Hydroxy-3-methoxybenzoic acid (89)

Compound **89** was isolated as brown amorphous solid, with molecular formula $C_8H_8O_4$ which was assigned based on LC-ESI-MS spectrum ([M+H]⁺ m/z 169.1) together with ¹H and ¹³C data (Table 4.5). The ¹H NMR spectral data showed a 1,3,4-trisubstituted benzene ring with signals appearing at (δ_H 7.57, d, 2.0 Hz for H-2, δ_H 6.85, d, *J*=8.0 Hz, for H-5), (δ_H 7.48, dd, *J*=8.0, 2.0 Hz, for H-6).These substituents being carboxylic acid at C-1 (δ_C 168.3), methoxy at C-3 (δ_H 3.90, δ_C 54.9) and and hydroxy at C-4 (δ_C 150.9). The methoxy group was placed at C-3 from the HMBC correlation of the methoxy proton (δ_H 3.90) to C-3 (δ_C 147.1). The substitution pattern was supported by HMBC spectrum (Table 4.5). Thus this compound was characterized as 4-hydroxy-3-methoxybenzoic (**89**). (Pouchert and Behnke, 1993).

Table 4.5: ¹H (400 MHz) and ¹³C (100 MHz) NMR data for compound (89), CDCl₃

Position	$\delta_{\rm C}$	$\delta_{\mathrm{H},} m$, (J in Hz)	HMBC
1	128.1		
2	112.3	7.57, <i>d</i> (2.0)	C-1', C-3, C-4, C-6
3	147.1		
4	150.9		
5	114.3	6.84, <i>d</i> (8.0)	C-3, C-4, C-6,
6	123.7	7.50, <i>dd</i> (8.0, 2.0)	C-1', C-2, C-4
1	168.3		
2-OH		6.99 <i>s</i>	
1-OH		8.16 <i>s</i>	
6-OMe	54.9	3.90 <i>s</i>	C-6

4.1.1.6: Flemichapparin-B (92)

Compound **92** was isolated as brown amorphous solid and showed UV absorption maxima at 286 and 322 nm. The molecular formula $C_{17}H_{12}O_5$ was proposed from the $[M+H]^+$ peak at m/z 297.3 from the LC-ESI-MS and NMR spectra (Table 4.6). The ¹H (δ_H 5.51, 2H, s, H₂-6) and ¹³C (δ_C 66.1 for C-6, 107.6 for C-6a and 150.9 for C-11a) NMR spectra indicated a pterocarpene skeleton. In support of this, the HMBC spectrum showed correlations of H-2 to C-6a (δ_C 107.6), C-6b (δ_C 119.6), C-4a (δ_C 155.5) and C-11a (δ_C 150.9). The presence of methylenedioxy group (δ_H 5.99, 2H, s, δ_C 102.2) and methoxy group (3-OMe, δ_H 3.79, δ_C 56.0) were evident from the NMR spectra (Table 4.6).

The ¹H NMR and HH-COSY spectra revealed the presence of three aromatic protons with an AXY spin system, assigned to H-1 (δ_{H} 3.5, 1H, d, *J*=8.4 Hz), H-2 (δ_{H} 6.53, 1H, dd, *J*=2.4, 8.4 Hz) and H-4 (δ_{H} 6.49, 1H, d, *J*=2.4),with the corresponding carbon signals appearing at δ_{C} 121.3 (C-1), δ_{C} 107.1 (C-2) and δ_{C} 102.9 (C-4), respectively of ring A which is oxygenated at C-3, as expected biogenetically. In the HMBC spectrum, H-1 showed correlation with C-11a (δ_{C} 150.9), C-4a (δ_{C} 155.5) and C-3 (δ_{C} 161.5), H-2 to C-11b (δ_{C} 110.6) and C-4 (δ_{C} 146.3), H-4 to C-11b (δ_{C} 146.3) and 3-OMe to C-3 (δ_{C} 161.5). In ring D, the presence of two para-oriented aromatic protons at δ_{H} 7.03 for H-7 (δ_{C} 94.4) and δ_{H} 6.67 for H-10 (δ_{C} 97.8) is consistent with the placement of the methylenedioxy group between C-8 and C-9. The substitution pattern in ring D was confirmed by HMBC experiments where H-7 showed correlation with C-8 (δ_{C} 145.4), C-9 (δ_{C} 146.3) and C-10a (δ_{C} 148.2). Putting all these together and comparing the data with literature, this

compound was identified as 6a,11a-dehydropterocarpan given a trivial name flemichapparin-B (**92**) previously isolated from *Flemingia chappar* (Adityachaudhury& Gupta, 1973). However, this is the first report from *Tephrosia* species.

Position	$\delta_{\rm C}$	$\delta_{\mathrm{H},} m, (J \text{ in Hz})$	HMBC
1	121.3	7.35 ,d (8.4)	C-3,C-4a,C-11a
2	107.1	6.53 , <i>dd</i> (2.42, 8.4)	C-4,C-11b
3	161.5		
4	102.9	6.49, <i>d</i> (2.4)	C-11b
4a	155.5		
6	66.1	5.51 s	C-4a,C-6a,C-6b,C-11a
6a	107.6		
6b	119.6		
7	94.4	7.03 s	C-8,C-9,C-10a
8	145.4		
9	146.3		
10	97.8	6.67 <i>s</i>	C-6a
10a	148.2		
11a	150.9		
11b	110.3		
OCH ₂ O	102.2	5.99 s	C-8,C-9
ОМе	56.0	3.79 s	C-3

Table 4.6: ¹H (500 MHz) and ¹³C (125 MHz) NMR data for compound (**92**), CDCl₃

4.1.2: Compounds from seedpods of Tephrosia rhodesica

From the seedpods of *Tephrosia rhodesica* two compounds were isolated, of which one is new. The characterization of these compounds is discussed below.

4.1.2.1: Tephrowatsin B (93)

Compound **93** was obtained as brown amorphous solid. The LC-ESI-MS ($[M+H]^+$ peak at m/z 337.2), UV (λ_{max} 235 and 282 nm), ¹H NMR [which showed the presence of oxygenated methine protons at $\delta_{\rm H}$ 5.84 (1H, dd, *J*=3.7, 1.8 Hz, for H-2) and two mutually coupled olefinic protons $\delta_{\rm H}$ 5.66 (1H, dd, *J*=9.9, 3.7 Hz, for H-3) and $\delta_{\rm H}$ 6.83 (1H, dd, *J*=9.9, 1.8 Hz for H-4)] and the ¹³C NMR spectral data [$\delta_{\rm C}$ 77.0 (for C-2), $\delta_{\rm C}$ 120.1 (for C-3) and $\delta_{\rm C}$ 119.1(for C-4)] suggested that the compound is a flav-2-ene derivative with molecular formula C₂₂H₂₄O₃. The presence of unsubstituted ring B [$\delta_{\rm C}$ 141.2 (C-1); $\delta_{\rm C}$ 127.1 (C-2/6), $\delta_{\rm H}$ 7.43 (H-2/6); $\delta_{\rm C}$ 128.5 (C-3/5), $\delta_{\rm H}$ 7.33 (H-3/5); $\delta_{\rm C}$ 128.1 (C-4), $\delta_{\rm H}$ 7.20 (H-4)], a prenyl [$\delta_{\rm H}$ 3.21($\delta_{\rm C}$ 21.8, for CH₂-1"), $\delta_{\rm H}$ 5.06 ($\delta_{\rm C}$ 123.3 (for CH-2")] and two methoxy groups [$\delta_{\rm H}$ 3.81 ($\delta_{\rm C}$ 55.9) and $\delta_{\rm H}$ 3.82 ($\delta_{\rm C}$ 55.8, 3H, s)] was also evident from the NMR spectra (Table 4.7).

In ring A, only one aromatic proton signal was observed at $\delta_{\rm H}$ 6.05 ($\delta_{\rm C}$ 88.7), a ring which otherwise is substituted with two methoxy groups (at C-5 and C-7, from biogenetic grounds), a prenyl (either be placed at C-6 or C-8). The location of prenyl at C-8 was established by HMBC correlations (Table 4.7) of H-1["] to C-8 ($\delta_{\rm C}$ 110.6), C-8a ($\delta_{\rm C}$ 152.1), C-7 ($\delta_{\rm C}$ 158.6), C-2["] ($\delta_{\rm C}$ 123.3) and C-3["] ($\delta_{\rm C}$ 130.8). The 5-OMe and 7-OMe

location on ring A was supported by HMBC correlations (Table 4.7) for these groups to C-5 ($\delta_{\rm C}$ 154.1) and C-7 ($\delta_{\rm C}$ 158.6) respectively. The other observed key HMBC correlations (Table 4.7) include H-6 to C-5 ($\delta_{\rm C}$ 154.1), C-7 ($\delta_{\rm C}$ 158.6), C-4a ($\delta_{\rm C}$ 104.8) and C-8 ($\delta_{\rm C}$ 110.6), H-2 to C-3 ($\delta_{\rm C}$ 120.1), C-4 ($\delta_{\rm C}$ 119.1) and C-1 ($\delta_{\rm C}$ 141.1), H-3 to C-4a ($\delta_{\rm C}$ 104.8), H-4 to C-2 ($\delta_{\rm C}$ 77.0) and C-8a ($\delta_{\rm C}$ 152.1). The absolute configuration at C-2 was determine to be (2S) from positive Cotton effect at 250 and the negative Cotton effect at 224 and 280 nm) (Slade *et al.*, 2005) in the ECD spectrum (Figure 4.5). Hence from the spectral data and comparing with literature, compound **93** was identified as (2*S*)-5,7-dimethoxy-8-(3-methylbut-2-enyl)-2-phenyl-2H-chromene, trivial name tephrowatsin B, previously reported from *Tephrosia watsoniana* (Gomez *et al.*, 1985), however, this is the first report from *Tephrosia rhodesica*.

Figure 4.5: ECD spectrum of compound (93)

Position	δ _C	$\delta_{\mathrm{H},} m$, (J in Hz)	НМВС
2	77.0	5.84, <i>dd</i> (1.8, 3.7)	C-3,C-4, C-1
3	120.1	5.66 , <i>dd</i> (3.7, 9.9)	C-4a
4	119.1	6.83 , <i>dd</i> (1.8, 9.9)	C-2, C-8a
4a	104.8		
5	154.1		
6	88.7	6.05 s	C-5, C-7, C-8 ,C-4a
7	158.6		
8	110.6		
8a	152.1		
1	141.2		
2/6	127.1	7.43 m	
3/5	128.5	7.33 m	C-4
4	128.1	7.29 m	C-3/5
1	21.8	3.21	C-2 ["] ,C-3 ["] ,C-7,C-8,C-8a
2"	123.3	5.06	
3"	130.8		
4	17.8	1.63 s	C-2 ["] ,C-3 ["] ,C-5 ["]
5	25.9	1.57 s	C-2 ["] ,C-3 ["] ,C-4 ["]
5-OMe	55.9	3.81 s	C-5
7-OMe	55.8	3.82 s	C-7

Table 4.7: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (93), CDCl₃

4.1.2.2: Rhodflavononol (87)

Compound **87** was isolated as a yellow oily substance. HRMS showed a $[M+H]^+$ peak at m/z 369.1702, which along with NMR data (Table 4.8) was consistent with the molecular formula $C_{22}H_{24}O_5$. The UV (λ_{max} 216 and 280 nm),¹H NMR which showed an AX spin system [δ_H 5.24, 1H, d, *J*=12.5 Hz (for H-2) and at δ_H 4.55, 1H, d, *J*=12.5 Hz (for H-3)] and ¹³C NMR which showed signals at [δ_C 87.9 (C-2), δ_C 72.8 (C-3) and δ_C 170.9 (C-4)] spectral data suggested that compound **87** is a flavononol derivative.

In the HMBC spectrum (Table 4.8), correlations of H-2 to C-3 ($\delta_{\rm C}$ 72.8), C-4 ($\delta_{\rm C}$ 170.9) and C-1['] ($\delta_{\rm C}$ 141.1) supported the flavononol skeleton. The NMR spectral data (Table 4.8) showed that ring B in compound **87** is unsubstituted as in compound **93**. The presence of prenyl group (Table 4.8) and two methoxy groups [($\delta_{\rm H}$ 3.83, $\delta_{\rm C}$ 55.5 for 5-OMe) and ($\delta_{\rm H}$ 3.86, $\delta_{\rm C}$ 55.9 for 7-OMe] in ring A was also evident from NMR spectral data (Table 4.8). The only aromatic proton in this ring was observed at $\delta_{\rm H}$ 6.13 ($\delta_{\rm C}$ 88.2). As in compound **93**, the two methoxy groups were fixed at C-5 and C-7 based on HMBC correlations (Table 4.8) of 5-OMe and 7-OMe to C-5($\delta_{\rm C}$ 153.6) and C-7($\delta_{\rm C}$ 158.2) respectively (Table 4.8). The location of prenyl group at C-8 was established from HMBC correlations of H-1["] to C-8 ($\delta_{\rm C}$ 119.8), C-2["] ($\delta_{\rm C}$ 123.3) and C-3["] ($\delta_{\rm C}$ 130.3). The large coupling constant (J_{2,3} = 12.5 Hz) showed that H-2 and H-3 are trans-oriented together with the negative Cotton effect at 290 nm in the ECD spectrum (Figure 4.6) (Slade *et al.*, 2005). The absolute configuration at C-2 and C-3 was determined to be (2*S*, 3S). This new compound was characterized as (2*S*, 3*S*)-3-hydroxy-5,7-dimethoxy-8-

(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-4H-chromen-4-one, and given the trivial name rhodflavononol (**87**).

Figure 4.6: ECD spectrum of compound (87)

Position	δ _C	$\delta_{\mathrm{H},} m$, (J in Hz)	НМВС
2	87.9	5.24, <i>d</i> (12.5)	C-3,C-1
3	72.8	4.55, <i>d</i> (12.5)	
4	170.9		
4a	118.8		
5	153.6		
6	88.2	6.13 <i>s</i>	C-5,C-7, C-8, C-4a
7	158.2		
8	119.8		
8a	158.2		
1	141.8		
2/6	127.4	7.47 <i>m</i>	
3/5	128.1	7.38 m	
4	125.9	7.31 <i>m</i>	
1	21.6	3.48	
2	123.3	5.18	
3	130.3		
4"	17.6	1.63 s	C-2 ["] ,C-3 ["] ,C-5 ["]
5	25.6	1.60 s	C-2 ["] ,C-3 ["] ,C-4 ["]
3-ОН		4.12 <i>s</i>	
5-OMe	55.5	3.83 s	C-5
7-OMe	55.9	3.86 s	C-7

Table 4.8: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (87), CDCl₃

4.1.3. Compounds from the stem of *Tephrosia polyphylla*

Two compounds were isolated from the stems of *Tephrosia polyphylla*. The characterization of these compounds has been discussed below.

4.1.3.1.4 - Demethyltoxicarolisoflavone (49)

Compound **49** was isolated as white crystals. The molecular formula $C_{22}H_{20}O_7$ was determined from the HRMS ([M+H]⁺ m/z 397.1306) together with ¹H and ¹³C NMR data (Table 4.9).The UV (λ_{max} 216 and 280 nm), ¹H NMR (δ_H 7.91, for H-2) and ¹³C NMR (δ_C 154.6 for C-2, 120.1 for C-3 and 180.8 for C-4) is consistent that compound **49** is an isoflavone derivative.

In support of this isoflavone skeletal structure, the HMBC spectrum (Table 4.9) showed correlations of H-2 to C-3 (δ_C 120.1), C-4 (δ_C 180.8) and C-8a (δ_C 152.1). In ring A, the ¹H and ¹³C NMR spectra further showed the presence of an intramolecularly bonded hydroxy group at δ_H 12.96 and 2,2-dimethylchromene ring (Table 4.9); The only aromatic proton in ring A appeared at δ_H 6.29 (δ_C 99.7). The placement of these substituents was established based on HMBC correlations (Table 4.9). Thus HMBC correlations of H-3["] to C-2["] (δ_C 77.8), H-4["] to C-7 (δ_C 159.2) and C-8a (δ_C 152.1) and 2["]-Me₂ to C-2["] (δ_C 77.8) is consistent with the placement at C-7/C-8. In support of this, H-6 showed HMBC correlations to C-5 (δ_C 161.9), C-7 (δ_C 159.2), C-4a (δ_C 105.9) and C-8 (δ_C 101.1).

In ring B, the ¹H NMR spectrum revealed a *para*-oriented aromatic protons signals for H-2['] ($\delta_{\rm H}$ 6.67, $\delta_{\rm C}$ 100.1) and H-5['] ($\delta_{\rm H}$ 6.88, $\delta_{\rm C}$ 109.6), with substituents at C-3['](OMe,

 $\delta_{\rm H}3.87$, $\delta_{\rm C}$ 56.1, 3H, s), C-6(6-OMe, $\delta_{\rm H}$ 3.74, $\delta_{\rm C}$ 56.4, 3H, s)] and C-4['] (OH, $\delta_{\rm H}$ 5.78) groups. The substitution pattern in this ring was confirmed by HMBC spectrum (Table 4.9), H-5['] to C-3 ($\delta_{\rm C}$ 120.1), C-3['] ($\delta_{\rm C}$ 140.1), C-4['] ($\delta_{\rm C}$ 147.6) and C-6['] ($\delta_{\rm C}$ 152.0), H-2 to C-3['] ($\delta_{\rm C}$ 140.1) and C-6['] ($\delta_{\rm C}$ 152.0). One methoxy group was placed at C-5['] from the HMBC correlation of the methoxy proton ($\delta_{\rm H}$ 3.74) to C-5['] ($\delta_{\rm C}$ 109.6). The identity of this compound was confirmed by comparison of the spectroscopic data with literature (Dagne *et al.*, 1992), and single crystal X-ray analysis (Figure 4.7).

Figure 4.7: X-ray single crystal structure of compound (49)

Position	δ _C	$\delta_{\mathrm{H},} m$, (J in Hz)	HMBC
2	154.6	7.91 <i>s</i>	C-3, C-4, C-8a
3	120.1		
4	180.8		
4a	105.9		
5	161.9		
6	99.7	6.29 <i>s</i>	C-5, C-7, C-8, C-4a
7	159.2		
8	101.1		
8a	152.1		
1	114.1		
2	100.1	6.67 <i>s</i>	C-3, C-4
3	140.1		
4	146.7		
5	109.6	6.88 s	C-3', C-4', C-6
6	152.0		
2"	77.8		
3"	127.1	6.69 , <i>d</i> (10.0 Hz)	C-7, C-8a, C-2"
4	114.5	5.58 ,d (10.0 Hz)	C-2"
2 ["] -Me ₂	28.0	1.47 s	
5-ОН		12.96 s	
4-OH		5.78 s	
3-OMe	56.1	3.87 <i>s</i>	C-3
6-OMe	56.4	3.74 <i>s</i>	C-6

Table 4.9: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (49), CDCl₃

4.1.3.2:5-Methyltoxicarolisoflavone (50)

Compound **50** was isolated as a yellow amorphous solid. The molecular formula $C_{24}H_{24}O_7$ was determined from the LC-ESI-MS ($[M+H]^+$ peak at m/z 409.20) together with ¹H and ¹³ C NMR data (Table 4.10), the UV (λ_{max} 230 and 285 nm), ¹H NMR (δ_H 7.81, H-2) and ¹³C NMR (δ_C 150.4 for C-2, δ_C 123.1 for C-3 and δ_C 171.3 for C-4) showed that compound **50** is an isoflavone derivative.

In support of this isoflavone skeletone H-2 showed HMBC correlation (Table 4.10) to C-3 (δ_C 123.1), C-4 (δ_C 171.3) and C-8a (δ_C 148.9). The ¹H and ¹³C NMR spectra revealed the presence of a 2,2-dimethylchromene ring and four methoxy substituents (Table 4.10). As in compound **49**, the ¹H NMR spectrum showed a single aromatic proton at δ_H 6.31 for H-6 (δ_C 99.9) with C-5 substituted with methoxy (δ_H 3.91, δ_C 53.4) and C-7/C-8 with 2,2-dimethylchromene group in ring A. The placement of these substituents was based on HMBC correlations (Table 4.10). In comparison to compound **49**, the chemical shift value of C-4 (δ_C 171.3) in compound **50** is shielded which showed that it is not involved in intramolecular hydrogen bonding and supports that C-5 is substituted with methoxy group.

In ring B, the ¹H NMR spectral data revealed the para-oriented aromatic protons H-3['] (δ_{H} 6.95, C-3['] δ_{C} 115.3) and H-6['] (δ_{H} 6.62, C-6['] δ_{C} 102.8) signal typical of ring B substituted with four substituents. The other groups attached to ring B were three methoxy groups, 2[']-OMe (δ_{H} 3.71, δ_{C} 60.6), 4[']-OMe (δ_{H} 3.90, δ_{C} 55.9) and 5[']-OMe (δ_{H} 3.84, δ_{C} 56.5) with HMBC correlations (Table 4.10) to C-2['] (δ_{C} 152.4), C-4['] (δ_{C} 149.0)['] C-

5' ($\delta_{\rm C}$ 141.6) and C-5 ($\delta_{\rm C}$ 161.6) respectively. Thus compound **50** was identified as 5methyltoxicarol isoflavone, previously isolated from *Tephrosia polyphylla* (Dagne *et al*, 1992).

Position	$\delta_{\rm C}$	$\delta_{\rm H,} m$, (J in Hz)	HMBC
2	150.4	7.81 <i>s</i>	C-3, C-4, C-8a,
3	123.1		
4	171.3		
4a	109.0		
5	161.6		
6	96.7	6.31 <i>s</i>	C-5, C-7, C-8, C-4a
7	155.7		
8	102.6		
8a	148.9		
1	118.0		
2	152.4		
3	115.0		
4	149.0		
5	141.6		
6	102.8		
2	73.9	5.57, <i>d</i> (10.0)	C-2"
3"	127.4	6.73, <i>d</i> (10.0)	C-7, C-8a, C-2 ["]
4	114.5		
2 ["] -Me ₂	28.3	1.48 s	
5-OMe	53.4	3.91 <i>s</i>	C-5
2-OMe	60.6	3.71 <i>s</i>	C-2
4-OMe	55.9	3.90 s	C-4
5-OMe	56.5	3.84 s	C-5

Table 4.10: 1 H (500 MHz) and 13 C (125 MHz) NMR data for compound (**50**), CDCl₃

4.2 Characterization of Structurally Modified Compounds

4.2.1 Oxime derivative

Compound **91** (Candidone) was treated with hydroxylamine hydrochloride and unhydrous sodium acetate in presence of methanol as a solvent to give candidone-oxime (**94**).

4.2.1.1: Candidone–oxime (94)

Compound **94**, a derivative of compound **91**, was obtained as white crystals with UV absorption maxima at 237 and 280 nm. The molecular weight was determined to be 367 with molecular formula $C_{22}H_{25}NO_4$ from the molecular ion peak ($[M+H]^+$ m/z 368.3) in the HR-ESI-MS spectrum. In addition, The NMR data (Table 4.11), ¹H and ¹³C NMR spectra, the oxygenated methine signal at H-2 (δ_H 5.40, δ_C 78.6, 1H, dd, J=12.8, 3.1 Hz), the methylene proton signals at H-3ax (δ_H 2.98, δ_C 45.8, 1H, dd, J=16.6, 12.8 Hz) and H-3eq (δ_H 2.84, δ_C 45.8, 1H, dd, J=16.6, 3.1 Hz) is indicative of the AMX system typical of flavanone ring C. This was also supported by the HMBC correlations (Table 4.11) of H-3eq to C-2 (δ_C 78.6); C-4 (δ_C 190.0) and C-1['] (δ_C 139.3) which in turn support the presence of unsubstituted ring B. In the COSY experiment, the oxygenated methine proton at δ_H 5.40 (H-2) showed across peaks with methylene protons at δ_H 2.98 (H-3ax) and δ_H 2.84 (H-3eq) confirming the flavanone ring C structure.

The derivatization of oxime was supported by the conversion of C=O in deshileded C-4 (δ_{C} 190) in compound **91** to shielded C-4 (δ_{C} 149.8), C=NOH in compound **94**. The shielding was also observed in compound **94** at C-3 (δ_{C} 31.1) and H-2 (δ_{H} 5.17) compared to deshielding in compound **91** at C-3 (δ_{C} 45.8) and H-2 (δ_{H} 5.40)

Putting all these spectroscopic data together, the new compound **94** was characterized as (2S) -(4E)-4-(hydroxyimino)-5,7-dimethoxy-8-(3-methylbut-2-en-1-yl)-2-phenyl-3,4-dihydro-2H-chromene. It was given a trivial name candidone-oxime.

Position	$\delta_{\rm C}$	$\delta_{\rm H,} m$, (J in Hz)	HMBC
2	76.8	5.17, <i>dd</i> (12.5, 3.2)	C-4, C-1
3	31.1	3.72, <i>dd</i> (16.0, 12.5)	C-4
		2.80, <i>dd</i> (16.0, 3.2)	C-2, C-4, C-1
4	149.8		
4a	111.3		
5	156.6		
6	89.3	6.20 <i>s</i>	C-5, C-7, C-8, C-4a,
7	159.9		
8	100.7		
8a	157.9		
1	140.2		
2/6	128.7	7.42 m	C-1
3/5	126.2	7.50 <i>m</i>	C-4
4	128.3	7.37 m	C-3/5
1	22.1	3.29	C-7,C-8,C-8a, C-2 ["] ,C-3 ["]
2"	123.0	5.06	C-4",C-5"
3"	131.1		
4	18.9	1.64 <i>s</i>	C-2 ["] ,C-3 ["] ,C-5 ["]
5	25.3	1.61 s	C-2",C-3",C-4"
5-OMe	55.9	3.88 s	C-5
7-OMe	55.8	3.94 s	C-7
4-NOH		3.80 s	

Table 4.11:¹H (500 MHz) and 13 C (125 MHz) NMR data for compound (94), CDCl₃

4.3 Biological Actvity

4.3.1: In-vitro Antiplasmodial Activity

The crude CH₂Cl₂/CH₃OH (1:1) extract of *T. rhodesica* roots, seedpods and stems of *T. Polyphylla* together with the isolated compounds were tested for antiplasmodial activities against the chloroquine-resistant clone (W2) and chloroquine-sensitive clones (3D7 and D6) strains of *Plasmodium falciparum*. The crude extract of the seedpods of *T. rhodesica* was the most active with IC₅₀ value of 0.8 mg (against the W2) and IC₅₀ value of 1.9 mg against D6 strains of *Plasmodium falciparum* (Table 4.12). Among the pure compounds tested, the dimeric flavonoid rhodimer (**88**) and candidone (**91**) showed good activity with IC₅₀ values below 3 μ M against the W2 strain of *Plasmodium falciparum*.

Crude extracts	IC ₅₀ (mg)			
	W2	3D7	D6	
T.rhodesica (Roots extract)	4.9	10.8	2.2	
T.rhodesica (Seedpods extract)	0.8	4.5	1.9	
Pure compunds	IC ₅₀ (μM)			
Rhodimer (88)	2.3±0.2			
4-Hydroxy-3-methoxybenzoic	9.5	20.8		
acid (89)				
Candidone (91)	1.2±0.1	3.5±0.4	18.6	
Candidone-oxime (94)			13.1	
Rhodbenzofuran (86)			17.0	
Flemichapparin (92)	27.3±3.8		16.3	
Chloroquine	0.05900	0.0075	0.0070	
Mefloquinine	0.00058	0.0220	0.0006	

Table 4.12: In-vitro antiplasmodial activities of the named compounds.

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Phytochemical investigation of the roots of *Tephrosia rhodesica* led to the isolation and characterization of six compounds including a new compound, rhodbenzofuran (**86**). The seedpods of *Tephrosia rhodesica* gave two compounds, of which one is new, rhodflavononol (**87**). From the stem of *Tephrosia polyphylla* two known compounds were isolated. In antiplasmodial assay against chloroquine-resistant (W2) and Chloroquine-sensitive (3D7 and D6) clones. The extract of the seedpods of *Tephrosia rhodesica* was the most active. Among the isolated compounds, candidone (**91**) was the most active against chloroquine resistant clone (W2) and chloroquine sensitive clone (3D7). The rest of the compounds showed moderate activities against chloroquine sensitive clone (D6).

An oxime derivative, candidone-oxime (94), was prepared from candidone (91), it was found to be active against chloroquine-resistance clone (D6) than Candidone (91). Thus, the introduction of oxime (NOH) from carbonyl (C=O) position has improved the activity of the flavonoid.

5.2.1 Recommendations

The following recommendations are made based on the gaps in this study:

- I. The dervitization should be done on other compounds to form more oximes.
- II. Candidone -oxime should be tested against chloquine resistance (W2) strain of *P*. *falciparum*

5.2.2 Suggestion for further studies

The following suggestions are made based on the results of this study:

- I. Further investigation of stem and leaves of *T. rhodesica*, seedpods and leaves of *T. polyphylla* to isolate more active compounds is necessary.
- II. The cytotoxicity of the crude extracts and of the isolated compounds should be done.
- III. The *in vivo* antiplasmodial activity tests should be carried out on extracts and isolated compounds to established their potency and efficacy.
- IV. Structure-Activity relationship of compounds isolated is necessary.

REFERENCES

- Abreu, P. M., & Luis, M. H. (1996). Constituents of *Tephrosia uniflora*. *Natural Product Letters*, *9*, 81–86.
- Adinarayana, K., Jayaveera, K. N., Madhu, K. B., & Mallikarjuna, R. P. (2009). Growth inhibition and induction of apoptosis in estrogen receptor positive and negative human breast carcinoma cells by *Tephrosia calophylla* roots. *J Pharm Chem*, 3, 35–41.
- Adityachaudhury, N., & Gupta, P. K. (1973). A new pterocarpan and coumestan in the roots of *Flemingia chappar*. *Phytochemistry*, *12*, 425–428.
- Agrawal, P. K. (2013). Carbon-13 NMR of flavonoids (Vol. 39). Elsevier.
- Ammar, M. I., Nenaah, G. E., & Mohamed, A. H. H. (2013). Antifungal activity of prenylated flavonoids isolated from *Tephrosia apollinea* L. against four phytopathogenic fungi. *Crop Protection*, **49**, 21–25.
- Andrei, C. C., Ferreira, D. T., Faccione, M., De Moraes, L. A. B., De Carvalho, M. G.,
 & Braz-Filho, R. (2000). C-prenylflavonoids from roots of *Tephrosia tunicata*. *Phytochemistry*, 55, 799–804.
- Atilaw, Y., Duffy, S., Heydenreich, M., Muiva-Mutisya, L., Avery, V., Erdélyi, M., & Yenesew, A. (2017). Three Chalconoids and a Pterocarpene from the Roots of *Tephrosia aequilata. Molecules*, 22, 318.
- Atilaw, Y., Muiva-Mutisya, L., Ndakala, A., Akala, H., Yeda, R., Wu, Y., Yenesew, A. (2017). Four Prenyl flavone Derivatives with Antiplasmodial Activities from the Stem of *Tephrosia purpurea* subsp. *leptostachya*. *Molecules*, 22, 1514.
- Balakrishnan, B. R., Sangameswaran, B., Sufiyan, A., & Bhaskar, V. H. (2007). Antihyperglycemic activity of roots of *Tephrosia villosa* Pers. *Plant Archives*, 7, 729–731.
- Beentje, H. J., Adamson, J., & Bhanderi, D. (2nd Ed.). Kenya trees, shrubs and lianas. 1994. *National Museums of Kenya, Nairobi Google Scholar*.

- Belmain, S. R., Amoah, B. A., Nyirenda, S. P., Kamanula, J. F., & Stevenson, P. C. (2012). Highly variable insect control efficacy of *Tephrosia vogelii* chemotypes. *Journal of Agricultural and Food Chemistry*, 60, 10055–10063.
- Bodeker, G., & Ong, C.-K. (2005). *WHO global atlas of traditional, complementary and alternative medicine* (Vol. 1). World Health Organization.
- Bojang, K. A., Milligan, P. J., Pinder, M., Vigneron, L., Alloueche, A., Kester, K. E., Gothard, P. (2001). Efficacy of RTS, S/AS02 malaria vaccine against *Plasmodium falciparum* infection in semi-immune adult men in The Gambia: a randomised trial. *The Lancet*, **358**, 1927–1934.
- Butler, M. S. (2004). The role of natural product chemistry in drug discovery. *Journal of Natural Products*, **67**, 2141–2153.
- Chakradhar, V., Babu, Y. H., Ganapaty, S., Prasad, Y. R., & Rao, N. K. (2005). Antiinflammatory activity of a flavonol glycoside from *Tephrosia spinosa*. *Natural Product Sciences*, 11, 63–66.
- Chang, L C, Chávez, D., Song, L. L., Farnsworth, N. R., Pezzuto, J. M., & Kinghorn, a D. (2000). Absolute configuration of novel bioactive flavonoids from *Tephrosia purpurea*. Organic Letters, 2, 515–518.
- Chang, L. C., Gerha, C., Song, L., Farnsworth, N. R., Pezzuto, J. M., & Kinghorn, A. D. (1997). Activity-guided isolation of constituents of *Tephrosia purpurea* with the potential to induce the phase II enzyme, quinone reductase. *Journal of Natural Products*, **60**, 869-873
- Chen, Y., Yan, T., Gao, C., Cao, W., & Huang, R. (2014). Natural Products from the Genus *Tephrosia*. *Molecules*, **19**, 1432–1458.
- Chen, Y.L., Wang, Y.S., Lin, Y.L., Munakata, K., & Ohta, K. (1978). Obovatin, Obovatin Methyl Ether and Obovatachalcone, New Piscicidal Flavonoids from *Tephrosia obovata*. Agricultural and Biological Chemistry, 42, 2431–2432.
- Choudhary, G. P. (2007). In vitro antioxidant studies of the ethanolic extract of *Tephrosia purpurea* L. *Ancient Science of Life*, **27**, 26.

- Crombie, H. J., Chengappa, S., Hellyer, A., & Reid, J. G. (1998). A xyloglucan oligosaccharide-active, trans glycosylating-D-glucosidase from the cotyledons of nasturtium *Tropaeolum majus* L seedlings–purification, properties and characterization of a cDNA clone. *The Plant Journal*, 15, 27–38.
- Cunningham, A. B., Shanley, P., & Laird, S. (2008). Health, habitats and medicinal plant use. *Human Health and Forests: A Global Overview of Issues, Practice and Policy*, 374p.
- Dagne, E., Dinku, B., Gray, A. I., & Waterman, P. G. (1988). Pumilaisoflavones A and B from the seed pods of *Tephrosia pumila*. *Phytochemistry*, **27**, 1503–1505.
- Dagne, E., Mammo, W., & Sterner, O. (1992). Flavonoids of *Tephrosia polyphylla*. *Phytochemistry*, **31**, 3662–3663.
- Dagne, E., Yenesew, A., & Waterman, P. G. (1989). Flavonoids and isoflavonoids from Tephrosia fulvinervis and Tephrosia pentaphylla. Phytochemistry, 28, 3207– 3210.
- Dewick, P. M. (2002). *Medicinal natural products: a biosynthetic approach*. John Wiley & Sons.
- Duffy, S., & Avery, V. M. (2012). Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. *The American Journal of Tropical Medicine and Hygiene*, **86**, 84–92.
- Dundorp, A. M., & Nosten, F. (2009). Artemisinin resistance in *Plasmodium falciparum*. *New Eng J Med*, *361*, 455–467.
- Dutt, S. K., & Chibber, S. S. (1983). Candidol, a flavonol from *Tephrosia candida*. *Phytochemistry*, **22**, 325–326.
- Dzenda, T., Ayo, J. A., Adelaiye, A. B., & Adaudi, A. O. (2007). Ethno-medical and veterinary uses of *Tephrosia vogelii* hook. F: A review. *Nigerian Veterinary Journal*, 28, 24–39.
- Farooq, U., & Mahajan, R. C. (2004). Drug resistance in malaria. Journal of Vector Borne Diseases, 41, 45.

- Flannery, E. L., Chatterjee, A. K., & Winzeler, E. A. (2013). Antimalarial drug discovery—approaches and progress towards new medicines. *Nature Reviews Microbiology*, 11, 849.
- Fong, I. W. (2013). Challenges in the Control and Eradication of Malaria. *Challenges in infectious diseases* (pp. 203–231). Springer.
- Fukai, T., Sheng, C.-B., Horikoshi, T., & Nomura, T. (1996). Isoprenylated flavonoids from underground parts of *Glycyrrhiza glabra*. *Phytochemistry*, 43, 1119–1124.
- Gakuya, D. W., Itonga, S. M., Mbaria, J. M., Muthee, J. K., & Musau, J. K. (2013). Ethnobotanical survey of biopesticides and other medicinal plants traditionally used in Meru central district of Kenya. *Journal of Ethnopharmacology*, 145, 547–553.
- Gamble, C. L., Ekwaru, J. P., & ter Kuile, F. O. (2006). Insecticide-treated nets for preventing malaria in pregnancy. *Cochrane Database of Systematic Reviews*, 2, 1465–1858
- Ganapaty, S., Pannakal, S. T., Srilakshmi, G. V. K., Lakshmi, P., Waterman, P. G., & Brun, R. (2008). Pumilanol, an antiprotozoal isoflavanol from *Tephrosia pumila*. *Phytochemistry Letters*, **1**, 175–178.
- Ganapaty, S., Srilakshmi, G. V., Pannakal, S. T., & Laatsch, H. (2008). A pyranochalcone and prenylflavanones from *Tephrosia pulcherrima* (Baker) drumm. *Natural Product Communications*, 3, 49–52.
- Gomez, F., Quijano, L., Calderón, J. S., Rodriquez, C., & Rios, T. (1985). Prenylflavans from *Tephrosia watsoniana*. *Phytochemistry*, **24**, 1057–1059.
- Gómez-Garibay, F., Arciniega, M. D. L. O., Céspedes, C. L., Taboada, J., & Calderón, J.
 S. (2001). Chromene Chalcones from *Tephrosia carrollii* and the Revised Structure of Oxacacin. *Zeitschrift Für Naturforschung C*, 56, 11–12.
- Gupta, M., Mazumder, U. K., Gomathi, P., & Selvan, V. T. (2008). Antimicrobial activity of methanol extracts of *Plumeria acuminata* leaves and *Tephrosia purpurea* (Linn.) Pers. roots. *Nat Radiance*, 7, 102–105

- Horie, T., Kawamura, Y., Kobayashi, T., & Yamashita, K. (1994). Revised structure of a natural flavone from *Tephrosia candida*. *Phytochemistry*, **37**, 1189–1191.
- Hussain, T., Siddiqui, H. H., Fareed, S., Vijayakumar, M., & Rao, C. V. (2012).
 Chemopreventive evaluation of *Tephrosia purpurea* against
 N-nitrosodiethylamine-induced hepatocarcinogenesis in Wistar rats. *Journal of Pharmacy and Pharmacology*, 64, 1195–1205.
- Iinuma, M., Okawa, Y., Tanaka, T., Kobayashi, Y., & Miyauchi, K. (1994). Phenolic compounds in *Erythrina bidwillii* and their activity against oral microbial organisms. *Heterocycles*, 2, 687–692.
- Ingham, J. L., & Markham, K. R. (1980). Tephrocarpin, a pterocarpan phytoalexin from *Tephrosia bidwilli* and a structure proposal for acanthocarpan. *Phytochemistry*, 21, 2969–2972.
- Jang, D. S., Park, E. J., Kang, Y.-H., Hawthorne, M. E., Vigo, J. S., Graham, J. G., Kinghorn, A. D. (2003). Potential cancer chemopreventive flavonoids from the stems of *Tephrosia toxicaria*. *Journal of Natural Products*, 66, 1166–1170.
- Jayaraman, I., Ghanim, A., & Khan, H. A. (1980). A new prenylated flavanone [7-methylglabranin] from *Tephrosia villosa*. *Phytochemistry*, **19**, 1267–1268.
- Juma, W. P., Akala, H. M., Eyase, F. L., Muiva, L. M., Heydenreich, M., Okalebo, F. A., Yenesew, A. (2011). Terpurin flavone: An antiplasmodial flavone from the stem of *Tephrosia Purpurea*. *Phytochemistry Letters*, *4*, 176–178.
- Kare, M., Kone, M. E. K., Boulanger, A., Niassy, B., Lenouen, D., Muckensturm, B., & Nongonierma, A. (2006). Isolation, identification and antibacterial tests of chalcones and rotenoids of *Tephrosia deflexa* Baker. J. Soc. Ouest-Afr. Chim, 11, 41–45.
- Kigen, G. K., Ronoh, H. K., Kipkore, W. K., & Rotich, J. K. (2013). Current trends of traditional herbal medicine practice in Kenya: a review. African Journal of Pharmacology and Therapeutics, 2, 32–37

- Kishore, P. H., Reddy, M. V. B., Gunasekar, D., Murthy, M. M., Caux, C., & Bodo, B. (2003). A new coursestan from *Tephrosia calophylla*. *Chemical and Pharmaceutical Bulletin*, *51*, 194–196.
- Kokwaro, J. O. (2009). Medicinal Plants of East Africa. 3rd ed (Kenya Literature Bureau), 185–187.
- Kole, R. K., Satpathi, C., Chowdhury, A., Ghosh, M. R., & Adityachaudhury, N. (1992).
 Isolation of amorpholone, a potent rotenoid insecticide from *Tephrosia candida*.
 Journal of Agricultural and Food Chemistry, 40, 1208–1210.
- Lu, F., Culleton, R., Zhang, M., Ramaprasad, A., Von Seidlein, L., Zhou, H., Wang, W. (2017). Emergence of indigenous artemisinin-resistant *Plasmodium falciparum* in Africa. *New England Journal of Medicine*, *376*, 991–993.
- Lwande, W., Bentley, M. D., & Hassanali, A. (1986). The structure of hildecarpin, an insect antifeedant 6a-hydroxypterocarpan from the roots of *Tephrosia hildebrandtii* Vatke. *International Journal of Tropical Insect Science*, **7**, 501–503.
- Lwande, W., Bentley, M. D., Macfoy, C., Lugemwa, F. N., Hassanali, A., & Nyandat, E. (1987). A new pterocarpan from the roots of *Tephrosia hildebrandtii*. *Phytochemistry*, 26, 2425–2426.
- Lwande, W., Greene, C. S., & Bentley, M. D. (1985). Flavonoids from the roots of *Tephrosia elata. Journal of Natural Products*, **48**, 1004–1005.
- Machocho, A. K., Lwande, W., Jondikoa, J. I., Moreka, L. V. C., & Hassanali, A. (1995). Three new flavonoids from the root of *Tephrosia emoroides* and their antifeedant activity against the larvae of the spotted stalk borer Chilo partellus Swinhoe. *International Journal of Pharmacognosy*, 33, 222–227.
- Martinez, R. M., Zarpelon, A. C., Zimermann, V. V., Georgetti, S. R., Baracat, M. M., Fonseca, M. J., Verri Jr, W. A. (2012). *Tephrosia sinapou* extract reduces inflammatory leukocyte recruitment in mice: effect on oxidative stress, nitric

oxide and cytokine production. *Revista Brasileira de Farmacognosia*, **22**, 587–597.

- Maurich, T., Iorio, M., Chimenti, D., & Turchi, G. (2006). Erybraedin C and bitucarpin
 A, two structurally related pterocarpans purified from *Bituminaria bituminosa*, induced apoptosis in human colon adenocarcinoma cell lines MMR-and p53-proficient and-deficient in a dose, time, and structure-dependent fashion. *Chemico-Biological Interactions*, 159, 104–116.
- Mohan, C. U. (2011). Antihyperlipidemic effect of *Tephrosia calophylla* against acute and chronic hyperlipidemia in wistar albino rats. RGUHS.
- Muiva, L. M., Yenesew, A., Derese, S., Heydenreich, M., Peter, M. G., Akala, H. M., Keriko, J. M. (2009). Antiplasmodial β-hydroxydihydrochalcone from seedpods of *Tephrosia elata*. *Phytochemistry Letters*, **2**, 99–102.
- Muiva-Mutisya, L., Macharia, B., Heydenreich, M., Koch, A., Akala, H. M., Derese, S., Yenesew, A. (2014). 6α-Hydroxy-α-toxicarol and (+)-tephrodin with antiplasmodial activities from *Tephrosia species*. *Phytochemistry Letters*, **10**, 179–183.
- Murthy, M. S. R., & Rao, E. V. (1985). Maxima isoflavone J: A new O-prenylated isoflavone from *Tephrosia maxima*. *Journal of Natural Products*, **48**, 967–968.
- Mutabingwa, T. K. (2005). Artemisinin-based combination therapies (ACTs): Best hope for malaria treatment but inaccessible to the needy! *Acta Tropica*, *95*, 305–315.
- Parine, N. R., Lakshmi, P., Kumar, D., Shaik, J. P., Alanazi, M., & Pathan, A. A. K. (2015). Development and characterisation of nine polymorphic microsatellite markers for *Tephrosia calophylla* Bedd.(Fabaceae). *Saudi Journal of Biological Sciences*, 22, 164–167.
- Parmar, V. S., Jain, R., Simonsen, O., & Boll, P. M. (1987). Isolation of candirone: A novel pentaoxygenation pattern in a naturally occurring 2-phenyl-4h-1benzopyran-4-one from. *Tetrahedron*, 43, 4241–4247.

- Pavana, P., Manoharan, S., Renju, G. L., & Sethupathy, S. (2007). Antihyperglycemic and antihyperlipidemic effects of *Tephrosia purpurea* leaf extract in streptozotocin induced diabetic rats. *Journal of Environmental Biology*, 28, 833.
- Phillips, D. A., & Kapulnik, Y. (1995). Plant isoflavonoids, pathogens and symbionts. *Trends in Microbiology*, 3, 58–64.
- Polhill, R. M. (1981). Raven PH (ed.). 1981 Advances in legume systematics: parts 1 &
 2. *Kew, Royal Botanic Gardens*, 2, 1–7.
- Pouchert, C. J., & Behnke, J. (1993). The Aldrich library of ¹³C and ¹H FT NMR spectra. Aldrich Chemical Comp.1115.
- Prashant, A& Krupadanam, G. D. (1993). Dehydro-6-hydroxyrotenoid and lupenone from *Tephrosia villosa*. *Phytochemistry*, **32**, 484–486.
- Rajani, P& Sarma, N. (1988). A coursestone from the roots of *Tephrosia hamiltonii*. *Phytochemistry*, 27, 648–649.
- Rao, E. V& Prasad, Y. R. (1992). Prenylated flavonoids from *Tephrosia spinosa*. *Phytochemistry*, 32, 183–185.
- Rao, E. Ventakata., Rajendra Prasad, Y., & Sree Rama Murthy, M. (1994). prenylated flavanone from *Tephrosia maxima*. *Phytochemistry*, 37, 111–112.
- Rao, E. V., Venkataratnam, G., & Vilain, C. (1985). Flavonoids from *Tephrosia fulvinervis*. *Phytochemistry*, 24, 2427–2430.
- Rao, E. Ventakata, & Raju, N. R. (1984). Two flavonoids from *Tephrosia purpurea*. *Phytochemistry*, 23, 2339–2342.
- Ratsimamanga-Urverg, S., Rasoanaivo, P., Rabemanantsoa, C., Ratsimamanga, A. R., & Frappier, F. (1994). Antibacterial activity of flavonoids isolated from *Mundulea monantha* and *Tephrosia linearis*. *Fitoterapia*, **65**, 551–553.
- Roy, M., Mitra, S. R., Bhattacharyya, A., & Adityachaudhury, N. (1986). Candidone, a flavanone from *Tephrosia candida*. *Phytochemistry*, 25, 961–962.

- Rungsung, W., Ratha, K. K., Dutta, S., Dixit, A. K., & Hazra, J. (2015). Secondary metabolites of plants in drugs discovery. World Journal of Pharmaceutical Research, 4, 604–613.
- Samanta, A., Das, G., & Das, S. K. (2011). Roles of flavonoids in plants. *Carbon*, **6**, 12-35
- Sarin, J. P. S., Singh, S., Garg, H. S., Khanna, N. M., & Dhar, M. M. (1976). A flavonol glycoside with anticancer activity from *Tephrosia candida*. *Phytochemistry*, 15, 232–234.
- Schijlen, E. G., De Vos, C. R., Van Tunen, A. J., & Bovy, A. G. (2004). Modification of flavonoid biosynthesis in crop plants. *Phytochemistry*, 65, 2631–2648.
- Shah, R., Parmar, S., Bhatt, P., & Chanda, S. (2011). Evaluation of hepatoprotective activity of ethyl acetate fraction of *Tephrosia purpurea*. *Pharmacologyonline*, 3, 188–194.
- Sharma, P., Rastogi, S., Bhatnagar, S., Srivastava, J. K., Dube, A., Guru, P. Y., Dhawan,
 B. N. (2003). Antileishmanial action of *Tephrosia purpurea* linn, extract and its fractions against experimental visceral leishmaniasis. *Drug Development Research*, 60, 285–293.
- Shawl, A. S., Zaman, A., & Kalla, A. K. (1984). Isoflavones of Iris spuria. Phytochemistry, 23, 2405–2406.
- Sikolia, S., Beck, E., Kinyamario, J. I., Onyango, J. C., Ouma, G., Agnew, A. D., Farguhar, G. (1994). Distribution of the C3 and C4 species of the Centrospermeae along an altitudinal gradient in Western Kenya. *International Journal of Botany*, 4, 1239–1244.
- Slade, D., Ferreira, D., & Marais, J. P. (2005). Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. *Phytochemistry*, 66, 2177–2215.
- Smalberger, T. M., Vleggaar, R., & Weber, J. C. (1974). Flavonoids from *Tephrosia lupinifolia*. *Tetrahedron*, 30, 3927–3931.

- Stauffer, W., & Fischer, P. R. (2003). Diagnosis and treatment of malaria in children. *Clinical Infectious Diseases*, 37, 1340–1348.
- Tarus, P. K., Machocho, A. K., Lang'at-Thoruwa, C. C., & Chhabra, S. C. (2002). Flavonoids from *Tephrosia aequilata*. *Phytochemistry*, **60**, 375–379.
- Tavares, M., da Silva, M. R. M., de Siqueira, L. B. de O., Rodrigues, R. A. S., Bodjolled'Almeira, L., dos Santos, E. P., & Ricci-Júnior, E. (2018). Trends in insect repellent formulations: A review. *International Journal of Pharmaceutics*, 539, 190–209.
- Trampuz, A., Jereb, M., Muzlovic, I., & Prabhu, R. M. (2003). Clinical review: Severe malaria. *Critical Care*, 7, 315.
- Veberic, R., Jurhar, J., Mikulic-Petkovsek, M., Stampar, F., & Schmitzer, V. (2010). Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit *Diospyros kaki* L. *Food Chemistry*, **119**, 477–483.
- Venkata R. E., Rajendra P. Y., & Sree M. M. (1994). prenylated flavanone from Tephrosia maxima. Phytochemistry, 37, 111–112.
- Venkataratnam, G., Rao, E. V., & Vilain, C. (1987). Flavonoids of *Tephrosia* procumbens—revised structure for praecansone A and conformation of praecansone B. J. Chem. Soc., Perkin Trans. 1, 2723–2727.
- Wanga, B. N., Akenga, T., Imbuga, M., Gitonga, L., Olubayo, F., & Namungu, P. (2006). Antimicrobial acitivity of extracts from *Tephrosia vogelii* Hook F. *Journal of Agriculture, Science and Technology*, 8, 1–14.
- Waterman, P. G., & Khalid, S. A. (1980). The major flavonoids of the seed of *Tephrosia apollinea*. *Phytochemistry*, 19, 909–915.
- Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. *Dalton Transactions*, *39*, 8113–8127.
- W. H.O (2015). World malaria report 2015.
- W. H.O (2017). World malaria report 2017

W. H.O (2018). World malaria report 2018

- Willcox, M. L., Graz, B., Falquet, J., Diakite, C., Giani, S., & Diallo, D. (2011). A "reverse pharmacology" approach for developing an anti-malarial phytomedicine. *Malaria Journal*, 10, 58.
- Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. *Plant Physiology*, **126**, 485–493.
- Yenesew, A., Dagne, E., & Waterman, P. G. (1989). Flavonoids from the seed pods of *Tephrosiapumila*. *Phytochemistry*, 28, 1291–1292.
- Yenesew, A., Irungu, M., Desres, S., Midiwo, JO., Heydenreich, M., Peter, MG., Akala, H., Layla, P., & Waters, NC. (1989). Flavonoids and isoflavonoids with antiplasmodial activities from root bark of *Erthrina abyssinica*. *Planta Med*, 69, 658–661.
- Zhi, W., & Pedley, L. (2010). Tephrosia Pers. Flora of China, 10, 190-193.

APPENDICES

APPENDIX 1B: ¹³C NMR Spectrum of Rhodbenzofuran (86) (125 MHz; CDCl₃)

APPENDIX 1G: Predicted 1H NMR Spectrum of Rhodbenzofuran (86)

APPENDIX 1H: Predicted ¹³C NMR Spectrum of Rhodbenzofuran (86)

APPENDIX 2B: ¹³C NMR Spectrum of 7-methylglabranin (90) (125 MHz; CDCl₃)

APPENDIX 2F: LCMS Spectrum of 7-methylglabranin (90)

APPENDIX 2G: Predicted ¹H NMR Spectrum of 7-methylglabranin (90)

APPENDIX 3A: ¹H NMR Spectrum of Candidone (91) (500MHz; CDCl₃)

APPENDIX 3B: ¹³C NMR Spectrum of Candidone (91) (125 MHz; CDCl₃)

APPENDIX 3D: HSQC Spectrum of Candidone (91) (500 MHz; CDCl₃)

APPENDIX 3F: LCMS Spectrum of Candidone (91)

APPENDIX 3G: Predicted¹H NMR Spectrum of Candidone (91)

APPENDIX 3H: Predicted¹³ C NMR Spectrum of Candidone (91)

APPENDIX 4A: ¹H NMR Spectrum of rhodimer (88) (500 MHz; CDCl₃)

APPENDIX 4F: LCMS Spectrum of rhodimer (88)

APPENDIX 4G: Predicted ¹H NMR Spectrum of rhodimer (88)

APPENDIX 4H: Predicted ¹³ C NMR Spectrum of rhodimer (88)

APPENDIX 5A: ¹H NMR Spectrum of compound (**89**) (400 MHz; CDCl₃)

APPENDIX 5B: ¹³C NMR Spectrum of compound (89) (100 MHz; CDCl₃)

APPENDIX 5F: LCMS Spectrum of compound (89)

APPENDIX 6B: ¹³C NMR Spectrum of flemichapparin (92) (500 MHz; CDCl₃)

APPENDIX 6F: LCMS Spectrum of flemichapparin (92)

APPENDIX 6G: Predicted¹H NMR Spectrum of flemichapparin (92)

APPENDIX 7B: ¹³C NMR Spectrum of Tephrowatsin B (93) (500 MHz; CDCl₃)

APPENDIX 7F: LCMS Spectrum of Tephrowatsin B (93)

APPENDIX 7H: Predicted¹³ C NMR Spectrum of Tephrowatsin B (93)

APPENDIX 8B: ¹³C NMR Spectrum of Rhodflavononol (87) (500 MHz; CDCl₃)

APPENDIX 8E: HMBC Spectrum of Rhodflavononol (87) (500 MHz; CDCl₃)

APPENDIX 8F: HRMS Spectrum of Rhodflavononol (87)

APPENDIX 8H: Predicted¹³ C NMR Spectrum of Rhodflavononol (87)

APPENDIX 9A: ¹H NMR Spectrum of compound (**49**) (500 MHz; CDCl₃)

APPENDIX 9D: HSQC Spectrum of compound (49) (500 MHz; CDCl₃)

APPENDIX 9F: HRMS Spectrum of compound (49)

APPENDIX 9G: Predicted¹H NMR Spectrum of compound (49)

APPENDIX 9H: Predicted¹³ C NMR Spectrum of compound (49)

APPENDIX 10A: ¹H NMR Spectrum of compound (**50**) (500 MHz; CDCl₃)

APPENDIX 10F: LCMS Spectrum of compound (50)

APPENDIX 11B: ¹³C NMR Spectrum of candidone-oxime (94) (125 MHz; CDCl₃)

APPENDIX 11E: HMBC Spectrum of candidone-oxime (94) (500MHz; CDCl₃)

APPENDIX 11F: HRMS Spectrum of candidone-oxime (94)

APPENDIX 11H: Predicted ¹³C NMR Spectrum of candidone-oxime (94)

APPENDIX 12: CIF Report of Compound (90)

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 14/07/2018; check.def file version of 05/06/2018

Prob = 50 Temp = 150 02 69 01 C1 C14 C5 (70316) C21 03 C7 ı C17 PLATON-Jul 20 11:26:17 2018 CЗ C9 C10 C11 Ζ -115 P 21 21 21 R = 0.04RES= 0 –169 X

Datablock I - ellipsoid plot

APPENDIX 13: Originality Report of This Thesis.

ID: 1222108187 Word Count: 12029 Submitted: 1	Similarity Index	Similarity by Source Internet Sources: 99 Publications: 22 Student Papers: 60
PHYTOCHEMICAL INVESTIGATION OF TEPHROSIA RHODESICA AND TEPHROSIA POLYPHYLLA FOR ANTIPLASMODIAL PRINCIPLES By Paul Mach		
1% match (Internet from 23-Mar-2015)		
http://www.cmd.gov.hk/html/b5/service/hkcmms/vol3/Vol3_pdf_chinese/D_Monogram	<u> </u>	
1% match (Internet from 27-Jun-2015)		
http://projects.nri.org/adappt/docs/PhytochemistryTephrosia.pdf		
1% match (Internet from 28-Dec-2015)		
http://www.mdpi.com/1420-3049/19/2/1432/pdf		
1% match (Internet from 18-Nov-2013)		
http://soccer.55555.to/saposon/jefunited/index_e.htm		
1% match (Internet from 06-Aug-2013)		
http://www.chem.tamu.edu/rgroup/wooley/chem466/130131%20Giles%20Marco%20	Polymer%20Chem%20Guest%20Lec	ture%20Notes%20for%20Stu
1% match (Internet from 16-Sep-2017)		