PROFILING OF BACTERIA IN BACTERIAL VAGINOSIS INFECTION AMONG PRETERM BIRTHS IN KISUMU COUNTY

A DISSERTATION SUBMITTED IN PART FULFILLMENT FOR THE AWARD OF THE DEGREE OF MASTERS OF SCIENCE IN MEDICAL MICROBIOLOGY AT THE UNIVERSITY OF NAIROBI.

October 2019

By

Jelioth Muthoni
Masters Student
Department of Medical Microbiology
University Of Nairobi
Email: jeliothmuthoni@gmail.com
This dissertation has been submitted with my approval as a supervisor.

Prof. Julius Oyugi MSC, PhD
Professor
Department of Medical Microbiology
University of Nairobi
P.O Box 19676-00202 Nairobi, Kenya

Ms. Susan Odera BSc, Msc
Department of Medical Microbiology
University of Nairobi
P.O Box 19676-00202 Nairobi, Kenya

Prof. Walter Jaoko MB,ChB, MtropMed, PhD
Professor
Department of Medical Microbiology
University of Nairobi
P.O Box 19676-00202 Nairobi, Kenya
DECLARATION
I hereby declare this dissertation is my original work under the guidance of the supervisors listed above and has not been presented before any institution for the purpose of research and knowledge acquisition.
I comprehensively understand what plagiarism is and the University of Nairobi policy on this matter. The work submitted herein has undergone a plagiarism check.
In this document, all references made to previous works have been duly recognized and acknowledged as required.

SIGNATURE:______________________________DATE:_____________________

Jelioth Muthoni (BSc Microbiology and Biotechnology)
Masters of Science in Medical Microbiology student
H56/81187/2015
University of Nairobi
DEDICATIONS

I dedicate this work to all preterm babies, the unborn, my loving mum Florence Gichohi, all mothers and mothers to be. To God be all the Glory
ACKNOWLEDGEMENT
To God be all the glory for the gift of health (spiritually, mentally and emotionally) and provision throughout the study period and my mum and family for their endless support. I acknowledge my supervisors Prof. Oyugi, Prof. Jaoko and Madam Odera for their patience and great support. The Department of Medical Microbiology, University of Nairobi for giving me a platform to specialize and be more competent in the field of Medical Microbiology. University of Nairobi Institute for Tropical and Infectious Diseases, specifically Wendy, Nyakio, Irungu, Peter, Dr. Kimani, Mr. Stephen (SWOOP clinic Majengo) and Mr. Ngochi (KEMRI) who comprehensively equipped me in the field of bacterial vaginosis. Kenya Medical Research Institute (KEMRI) in collaboration with University of Nairobi financially supported the project. Kisumu County hospital in particular, laboratory and maternity department who tirelessly and joyfully supported me during data collection. I acknowledge each and every study participant who participated in the study; they are the backbone of the study. Through the samples collected from them we were in a position to draw conclusions in relation to the studies objectives.
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>Bacterial Vaginosis</td>
</tr>
<tr>
<td>ERC</td>
<td>Ethics Research Committee</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>IL-β</td>
<td>Interleukin beta</td>
</tr>
<tr>
<td>IL-4</td>
<td>Interleukin 4</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IL-7</td>
<td>Interleukin 7</td>
</tr>
<tr>
<td>INF-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>JOOTRH</td>
<td>Jaramogi Oginga Odinga Teaching Referral Hospital</td>
</tr>
<tr>
<td>KCH</td>
<td>Kisumu County Hospital</td>
</tr>
<tr>
<td>KNH</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>LMP</td>
<td>Last Menstruation Period</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matrix Metalloproteinase</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>PGs</td>
<td>Prostaglandins</td>
</tr>
<tr>
<td>PID</td>
<td>Pelvic inflammatory disease</td>
</tr>
<tr>
<td>PIN</td>
<td>Participants Identification Number</td>
</tr>
<tr>
<td>PPROM</td>
<td>Pre-term Premature Rupture of Membranes</td>
</tr>
<tr>
<td>PTB</td>
<td>Pre-term Birth</td>
</tr>
<tr>
<td>TNα</td>
<td>Tumor Necrotic alpha</td>
</tr>
<tr>
<td>Ultra-S</td>
<td>Ultra sound</td>
</tr>
<tr>
<td>UoN</td>
<td>University of Nairobi</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF DEFINITIONS

Preterm births - births below 37th week of gestation
Term births - births from 37th week of gestation and above.
Cervicitis - inflammation of the cervix
Endometritis - inflammation of the endometrium
Singleton pregnancy - a pregnancy with one fetus
Multiple gestation - a pregnancy with more than one fetus
Neonatal - newborn child
Sepsis - blood infection
Chorioamnionitis - inflammation of amnio and chorio (outer membrane)
Periventricular leukomalacia – a form of white-matter brain injury
TABLE OF CONTENTS
SUPERVISORS.. II
DECLARATION.. III
DEDICATIONS .. IV
ACKNOWLEDGEMENT ... V
ACRONYMS .. VI
LIST OF DEFINITIONS ... VII
TABLE OF CONTENTS ... VIII
ABSTRACT .. XII

1.0 INTRODUCTION ... 1
2.0 LITERATURE REVIEW ... 5
2.1 EPIDEMIOLOGY ... 5
2.2 ETIOLOGY OF PRE-TERM BIRTHS .. 5
 2.2.1 Bacterial vaginosis ... 6
 2.2.2 Diagnosis of Bacteria vaginosis ... 12
2.3 PATHOGENESIS OF PRE-TERM BIRTH .. 15
2.4 TREATMENTS OF BV TO PREVENT PTB ... 16
2.5 PROBLEM STATEMENT .. 16
 2.5.1 Justification ... 17
2.6 RESEARCH QUESTIONS ... 17
2.7 HYPOTHESIS AND OBJECTIVES .. 18
 2.7.1 Hypothesis .. 18
 2.7.2 Broad Objective ... 18
 2.7.3 Specific Objectives .. 18

3.0 METHODOLOGY ... 19
3.1 STUDY DESIGN .. 19
3.2 STUDY SITE .. 19
3.3 STUDY POPULATION .. 19
 3.3.1 Inclusion criteria .. 20
3.3.2 Exclusion criteria ... 20
3.4: SAMPLE SIZE CALCULATION ... 21
3.5 SAMPLING PROCEDURE OF STUDY PARTICIPANTS .. 21
 3.5.1 Recruiting and consenting procedures .. 22
3.6 DATA COLLECTION PROCEDURES .. 22
 3.6.1 Pretesting of interview tools ... 22
 3.6.2 Administering qualitative interviews ... 22
 3.6.3 Laboratory analysis .. 22
 3.6.3.1 Sample collection .. 22
 3.6.3.2 Diagnosis .. 23
3.7 QUALITY ASSURANCE PROCEDURES .. 25
3.8 QUALITY CONTROL .. 25
3.9 ETHICAL CONSIDERATION .. 26
3.10 DATA MANAGEMENT .. 27
 3.10.1 Data analysis .. 27

4.0 RESULTS .. 28
4.1 LAST MESTRUAL PERIOD AND ULTRASOUND AS DETERMINANTS OF PRETERM 28
4.2 DEMOGRAPHIC CHARACTERISTICS OF THE STUDY PARTICIPANTS 29
4.3 ASSOCIATION BETWEEN BV AND PRETERM BIRTH ... 32
 4.3.1 Profiling bacteria associated with bacterial vaginosis among preterm births 32
 4.3.2 Performance characteristic of Amsel against Nugent .. 39
4.4 PROPORTIONS OF PRETERM DELIVERIES AMONG BACTERIAL VAGINOSIS INFECTIONS 40
4.5 ASSOCIATION BETWEEN SYPHILIS, HIV AND PTB ... 40
4.6 RISK FACTORS TO BACTERIAL VAGINOSIS ... 41
4.7 MATERNAL AND OBSTETRIC RISK FACTORS FOR PTB ... 44

5.0 DISCUSSION ... 49
5.1 STUDY STRENGTHS ... 52
5.2 STUDY CONCLUSION ... 52
5.3 STUDY LIMITATION .. 52
5.4 RECOMMENDATION ... 53
5.5 STUDY RESULTS DISSEMINATION PLAN .. 53

6.0 REFERENCE: .. 54

7.0 APPENDIXES .. 71
 (A) INFORMED CONSENT EXPLANATION DOCUMENT ... 71
 (B) CONSENT FORMS .. 73
 (C) QUESTIONNAIRE .. 80
 (D) LABORATORY FORM .. 106
 (E) DUMMY TABLES .. 107
 (F) MATERIALS .. 110
LIST OF FIGURES

TABLE 1: NUGENT SCORING .. 13
TABLE 2: INCLUSION CRITERIA OF BOTH TERM AND PRETERM COHORTS ... 20
TABLE 3: EXCLUSION CRITERIA OF BOTH TERM AND PRETERM COHORTS ... 20
TABLE 4: PRETERM BIRTHS BY LMP AND ULTRA-S .. 28
TABLE 5: COMPARISON BETWEEN LMP AND ULTRA-SOUND FOR DETERMINATION OF PRETERM BIRTHS ... 28
TABLE 6: DIFFERENT SOCIAL DEMOGRAPHIC CHARACTERISTICS OF MOTHERS ... 30
TABLE 7: COMPARISON BETWEEN BACTERIAL VAGINOSIS AND GESTATION AT BIRTH ... 32
TABLE 8: PERFORMANCE CHARACTERISTIC OF AMSEL AGAINST NUGENT ... 39
TABLE 9: PREVALENCE OF SYPHILIS AND HIV AMONG LMP AND ULTRA-S STUDY PARTICIPANTS 41
TABLE 10: DIFFERENT RISK FACTORS TO BACTERIAL VAGINOSIS ... 41
TABLE 11: DIFFERENT Maternal AND OBSTETRIC FACTORS PREDISPOSING MOTHERS TO PRETERM BIRTHS ... 45
TABLE 12: COMPARISON OF BODY MASS INDEX BETWEEN TERM AND PRETERM UNDER LMP 48
TABLE 13: COMPARISON OF BODY MASS INDEX BETWEEN TERM AND PRETERM UNDER ULTRA-S 48
TABLE 14: DISTRIBUTION OF PARTICIPANT AGE (YEARS) .. 107
TABLE 15: SOCIO-DEMOGRAPHIC CHARACTERISTICS OF PATIENTS .. 107
TABLE 16: OBSTETRIC CHARACTERISTIC OF PARTICIPANTS .. 108
TABLE 17: BACTERIAL VAGINOSIS INFECTION .. 108
TABLE 18: SOCIO DEMOGRAPHIC FACTORS AND BV STATUS .. 109
LIST OF FIGURES

FIGURE 1: STEPS FOR COLLECTION OF HIGH VAGINAL SWAB .. 23
FIGURE 2: BACTERIA IDENTIFIED AND MORPHOLOGY OF NORMAL EPITHELUM AND A CLUE CELL 33
FIGURE 3: PROFILING DIFFERENT OF BACTERIA ASSOCIATED WITH BACTERIAL VAGINOSIS WITH
REGARD TO NORMAL DELIVERY, GESTATION AT BIRTH (LMP)-IN NEGATIVE,
INTERMEDIATE AND POSITIVE DIAGNOSIS OF BV ... 34
FIGURE 4: PROFILING DIFFERENT BACTERIA ASSOCIATED WITH BACTERIAL VAGINOSIS WITH
REGARD TO INTERMEDIATE DIAGNOSIS, GESTATION AT BIRTH (LMP) 35
FIGURE 5: PROFILING DIFFERENT BACTERIA ASSOCIATED WITH BACTERIAL VAGINOSIS WITH
REGARD TO POSITIVE DIAGNOSIS, GESTATION AT BIRTH (LMP) ... 36
FIGURE 6: PROFILING DIFFERENT BACTERIA ASSOCIATED WITH BACTERIAL VAGINOSIS WITH
REGARD TO NORMAL DELIVERY, GESTATION AT BIRTH (ULTRA-S)-IN NEGATIVE,
INTERMEDIATE AND POSITIVE DIAGNOSIS OF BV .. 37
FIGURE 7: PROFILING DIFFERENT BACTERIA ASSOCIATED WITH BACTERIAL VAGINOSIS WITH
REGARD TO INTERMEDIATE DIAGNOSIS, GESTATION AT BIRTH (ULTRA-S) 38
FIGURE 8: PROFILING DIFFERENT BACTERIA ASSOCIATED WITH BACTERIAL VAGINOSIS WITH
REGARD TO POSITIVE DIAGNOSIS, GESTATION AT BIRTH (ULTRA-S) 39
FIGURE 4: PROPORTION OF PRETERM BIRTHS AMONG BV .. 40
ABSTRACT

Background: Preterm birth (PTB) is defined as a live birth (singleton or multiple) before 37 weeks of completed gestation. PTB is the topmost cause of morbidity and death of preterm babies internationally and the second foremost cause of death for children below five years globally. In spite the determinations to avoid PTB in most nations the incidence of PTB has been on the rise. Common causes of PTB include multiple fetal, infections, genetic influence and chronic diseases such diabetes and hypertension. Among the infectious agents, bacteria attribute to the largest number of microorganisms associated with preterm births. The most prevalent lower genital infection that causes pre-term births is bacterial vaginosis and several researches have shown a positive association between the two. This study therefore highlights the profile of bacteria associated with BV related with pre-term birth in Kisumu County.

Broad Objective: To profile bacteria associated with bacterial vaginosis related to preterm deliveries in Kisumu County Hospital.

Methodology: This was a comparative study conducted in Kisumu County. The study population included expectant women recruited at Kisumu County hospital. A vaginal specimen was collected from the study participants. The specimen was run through Amsel and Nugent score laboratory diagnostic test to determine the BV status of the study participants. In addition identification of different bacteria was done under Nugent scoring. A pre-tested questionnaire was used to collect risk factors. Analysis was done using SPSS version 20.

Results: Of the 228 pregnant women were enrolled in the study, 181 study participants had complete data thus could be categorized if they delivered at term or preterm. Last menstruation Period (LMP) and ultra-sound (Ultra-s) were used to determine gestational age. Of the 181 who had LMP results, 64 had ultra-S. BV prevalence based on LMP was found to be 12% (22/181). *Gardenerella vaginalis/Bacteroides* were dominant among bacterial vaginosis (BV) positive with a frequency of 50% in both term and preterm under LMP. However under ultra-S a frequency of 46% and 55% was recorded among term and preterm respectively. Risk factors that were significant under ultra-S were age 31-40 (p=0.002), use of nylon panty material (p=0.045), history of PTB (p=0.049), condom use in the last sexual act (p=0.022), parity 3+0 (p=0.013), parity 4+0 (p=0.003, gravidae 1 and 2 (p=0.034 and 0.001) respectively. Under LMP hormonal and non-hormonal contraceptive (p=0.046) and parity (p=0.031) were significant.

Conclusion: The dominant bacteria were *G.vaginalis/Bacteroides* in both term and preterm deliveries, under BV positives and the frequencies were slightly higher among PTB in ultra-S.

Key words: Bacterial vaginosis and preterm birth
1.0 INTRODUCTION
PTB is defined as all births (singleton or multiple) before 37th weeks of completed gestation (Quinn \textit{et al.}, 2016) or less than 259 days from the time when the woman had her first day of her last menstruation and after 28 weeks gestation (Blencowe \textit{et al.}, 2013; Quinn \textit{et al.}, 2016). Common causes of PTB are multi-fetal (e.g. twin, triplets) infections, genetic factors and chronic diseases such diabetes and hypertension (Blencowe \textit{et al.}, 2013)

PTB can be stratified into mild preterm (32-36 weeks), very preterm (28-31 weeks) and extremely preterm (<28 weeks) (Moutquin, 2003). This is based to gestational age. PTB can also be categorized into spontaneous (idiopathic) or provider-initiated pre-term birth (Turienzo et. al, 2016). Spontaneous preterm birth (SPB) is the untimely rupture of membranes or start of labour before 37 completed gestation weeks (Bala et al., 2017). Provider initiated preterm birth as a result of stimulation of labour or noncompulsory caesarian birth before 37 completed weeks of gestation. This is for both maternal (high risk pregnancies) and fetal indications (Bala et al, 2017). Provider-initiated pre-term births are subdivided into medically indicated (iatrogenic) that attributes 25% and preterm premature rupture of membranes (PPROM) which attributes 25% (Goldenberg \textit{et al.}, 2009). Spontaneous preterm births attributes two thirds of all preterm births (Lydon \textit{et al.}, 2018). This study focused on spontaneous preterm births.

Spontaneous preterm birth is caused by a number of factors, leading to the uterus to change from inactive state to active or latent phase of labour and PTB. The predisposing factors to spontaneous preterm birth differ by gestation age (Blencowe \textit{et al.}, 2013), different populations (Bala et al., 2017), communities and environs. However, 50% of the causes of PTB are not known (Blencowe \textit{et al.}, 2013; Hernández-Díaz \textit{et al.}, 2014)

Maternal history of preterm birth has been strongly associated with PTB. Maternal history of PTB is determined by relation with genetic, non-genetic and environmental risk factors (Blencowe \textit{et al.}, 2013). In addition, maternal age (either under 17 or over 40), are prone to preterm deliveries (WHO, 2012). This is as a result of increase in the maternal age, there is increased incidences of cardiovascular diseases, over weight, uterine leiomyoma, multiparity, increased risk of hypertensive disorders of pregnancy, gestational diabetes, caesarean delivery and maternal
mortality. In addition, heightened risk of chromosomal defects in the fetus (Bala et. al, 2017). Increased risk of spontaneous PTB has ben associated with low body mass index and a short duration of less than 18 months between conception and preceding pregnancy. (Goldenberg et al., 2009).

Multiple pregnancies (twins, triplets, etc.) is another documented risk factor that carries nearly 10 fold increase risk of preterm birth in relation to singleton births (Blencowe et al., 2013)

A number of life style factors that contribute to spontaneous preterm birth include pressure, standing for long hours, too much physical work (Blencowe et al., 2013), caffeine intake, taking spicy food and skipping meals (Hernández-Díaz et al., 2014). Peridontal diseases, too much alcohol consumption and smoking have attributed to increase risk of PTB (Barros et al., 2010). In addition, late start of prenatal care or no prenatal care predisposes one to preterm delivery (Dijk et al., 2010)

Preterm birth is more likely to occur when a mother is expecting a male child, among the PTB 55% were found to be male (Barros et al., 2010) and when compared with girls of the same gestation, the male were at a greater likelihood of dying (Barros et al., 2010). The role of ethnicity has been extensively discussed; nevertheless indication that supporte a discrepancy in normal gestational period with ethnic cluster has been conveyed in numerous population-based studies. The variations are associated to socioeconomic and way of life factors (Blencowe et al., 2013). For instance, African babies incline to be born earlier than Caucasian babies. Nevertheless, for a particular gestational age, African babies tend to have less respiratory distress, fewer neonatal deaths compared to Caucasian babies. Babies with genetic deformities are eliminated from studies recording preterm rates yet high chances the babies are born preterm (Blencowe et al., 2013)

Clinical conditions that predispose mothers to preterm birth can be separated into maternal and fetal. However, some more important direct causes recognized include severe pre-eclampsia, uterine rupture, cholestasis, hormonal disruption fetal distress, fetal growth restriction with abnormal tests and placental abruption (Agrawala and Hirscha, 2012; Blencowe et al., 2013)

Placenta abruption may present with absence or presence of vaginal bleeding. Vaginal bleeding in more than one trimester indicate higher risks of preterm birth (Ekmekci and Gencdal, 2018)
maternal conditions (e.g. renal disease, hypertension, obesity, and diabetes) rise the threat of maternal malaise (e.g., pre-eclampsia) and medically-indicated preterm birth. The global widespread of obesity and diabetes is, hence possibly to develop a progressively more significant contributor to universal preterm birth. In addition women with moderate to severe anemia, early in gravidity are at a greater exposure to preterm births (Zhang et al., 2009). Assisted fertility treatment is predisposing factor to PTB since both maternal and fetal risk factors have identified after the treatment (Blencowe et al., 2013).

Infection contribute a vital role in preterm birth, mostly attributing to extreme preterm (Moutquin, 2003). HIV, malaria, urinary tract infections, bacterial vaginosisis, and syphilis have been found to be linked with predisposition to preterm birth (Barros et al., 2010). Moreover, other disorders have more recently been reported to be related with infection, e.g., “cervical incompetency” [cervix thins out (effaces) or opens (dilates) without contraction] leading to swelling with secondary premature cervical shortening (less than twenty five milliners) and ascending infection within the uterus (Blencowe et al., 2013).

Moreover, pregnancies with oligohydramnios are at higher exposure to PTB (Bala et al., 2017).

Bacterial vaginosisis (BV) has been consistently linked to PTB (Bahram et al., 2009). A study done in 2012 at Kenyatta National Hospital documented the prevalence of BV to be 26% among mothers with new born (Martha, 2012) while a research done in western Kenya documented a BV prevalence of 18% among adolescent schoolgirls. BV topped the list of infections seconded by Candida albicans at 9%, Chlamydia trachomatis and Trichomonas vaginalis, both at 3% and Neisseria gonorrhea at 1% (Kerubo et al., 2016). Another study done the same year, same region among 18 years and above documented the prevalence of BV to be 39% (Okuku et al., 2015).

BV is defined as the imbalance of the vaginal microbiome, characterized by a shift from dominant Lactobacillus to a polymicrobial flora (Aldunate et al., 2015; Onderdonk et al., 2016). A balanced microbiome constitutes a ratio of anaerobe to aerobe to be 2:1 and 5:1. In a normal vaginal ecosystem estradiol stimulates glycogen from the vaginal epithelium. The glycogen undergoes hydrolysis into glucose. The glucose is then broken down into lactic acid by lactobacilli, generating hydrogen peroxide (H_2O_2). H_2O_2 is a bacteriacin and an antibacterial (Ranjit et al., 2018).
(Lactobacillus accounts for 95% of the normal flora). However, when BV is present, the quality and quantity of H_2O_2 producing lactobacilli decreases, vaginal pH increases to more than 4.5. This is followed by a modification in the ratio of anaerobe to aerobe (100:1 and 1000:1) (Guaschino et al., 2006; Wein, 2011; Bitew et al., 2017). Metabolic by-products of the anaerobic bacteria, which include amines increase the vagina pH resulting to exfoliation of epithelial cells in the vaginal (clue cells) (Tebes et al., 2003). H_2O_2 produced by lactobacilli may have a critical role in preventing fetal membrane degradation, prostaglandin release and ascending infection (Donders et al., 2000; Kelly et al., 2003). BV is linked to severe hostile upshots, such as pre-term births, neonatal mortality, infection on the upper part of the genital tract, pelvic inflammatory disease (PID), inflammation on the endometrium, low birth weight, increase in the frequency of abnormal Papanicolaou (Pap) smears, cervicitis, salpingitis, post-operative infections, oophoritis with or without tubo-ovarian abscess, obstetric complications, such as premature rapture of membranes, and increase in the acquisition of sexually spread diseases (e.g. Herpes simplex virus-2 and human papillomavirus, Neisseria gonorrhoea and Chlamydia trachomatis) (Hebb et al., 2004; Koumans et al., 2007; Rodrigo, 2013; Baljinder Kaur, 2015). Vaginal cuff cellulitis can also occur if invasive gynecological procedures or surgeries are performed when a patient has BV (Easmon et al., 1992). In addition BV has been shown to have a wide array of medical, psychological and social consequences on patients (Hebb et al., 2004).

Therefore, in this study we identified the most common bacteria among those that cause BV and the risk factors associated with BV linked PTB.
2.0 LITERATURE REVIEW

2.1 Epidemiology
Pre-term birth is the principal cause of perinatal mortality and morbidity globally (WHO, 2012). In spite of inputs to avoid PTB in several nations, the projected figures of PTBs have intensified. In 1990, 2.0 million incidences of PTB were reported. 2.2 million PTB incidences were reported in 2010 (Howson et al., 2013) with BV being steadily associated with pre-term delivery. Among the reproductive age, BV is the most prevalent vaginal infection (Bahram et al, 2009). BV prevalence ranges from 8-75% dependent on the geographical, race and medical characteristics of the study population (Bitew et al., 2017). Interestingly, variations on BV prevalence have been captured within similar population groups (Bitew et al., 2017). Despite BV prevalence being elevated in parts of Africa and lowest Europe, some regions in Africa have very low BV prevalence while in Europe have very high rates (Nejad and Shafaie, 2008). However, population approximates for BV is blurred since 50-75% of the infections are asymptomatic, hence many women with BV do not pursue clinical care and thus many are not included in the clinical population estimates (Hoffmann et al., 2014).

2.2 Etiology of Pre-term births
Despite of several factors related with PTB, infections are the leading causes of PTB. Microbes comprising bacteria, parasites, viruses and fungal have been associated as the causal agents for spontaneous PTB (Agrawala and Hirscha, 2012). The infection can either be intrauterine or extrauterine. Intaruetrauterine infections initiated by bacteria, are echoed to be the main cause of infection linked to preterm labor (Agrawala and Hirscha, 2012). A study done by Golden et al (2000) indicated bacterial infection, in the amniotic fluid accounts to 80% of women who delivered < 30 gestation weeks. This was compared to 30% less than or equal to 37 gestational week (Friese, 2003). Researches that have used standard microbiological procedures propose that chorioamnionitis with bacteria contributes up to 45% of spontaneous PTB (Zhou et al., 2010). However, putting in place molecular techniques, bacteria detection level raises up to 60% of preterm delivering women (Mendz et al., 2013; Romero et al., 2016).

BV is the utmost prevalent lower genital infection that causes pre-term births, neonatal mortality and low birth weight (Okuku et al., 2015). BV is linked with a double increase probability of PTB with the greatest risk when BV is present 16 weeks earlier of gestation (Hebb et al., 2004; Margolis
Among pregnant women, BV is linked with the occurrence of fibronectin, which relates with a 16-fold rise in clinical chorioamnionitis, 6 fold rise in neonatal sepsis, 1.8 and 1.9-fold increase in acquisition of *Neisseria gonorrhea* and *Chlamydia trachomatis* respectively (Bautista *et al.*, 2016) and also associated with intra-amniotic infection. Chorio-amnionitis is associated with neonatal sepsis in both term and preterm infants (Kaur, 2015). Women with BV at 23-26 weeks of their gestation have an association with intra-amniotic fluid infection at term (Easmon *et al.*, 1992) and a 6 times increased threat of neonatal death, when a woman has BV between 14-24 weeks (Kaur, 2015). Neonates born to mothers with BV suffer long term neurological consequences such as hyperactivity, academic difficulties in school, severe handicaps such as cerebral palsy, periventricular leukomalacia, low Apgar score, damage in the dopaminenergetic and brain injury due the toxins produced by *G. vaginalis* crossing the placenta (Kaur, 2015).

2.2.1 Bacterial vaginosis

Bacterial vaginosis (BV) is vaginal discharge, common among childbearing women, caused by non-specific bacteria. BV occurs as a result of the reduction of the normal flora (lactobacillus), resulting in an alkaline pH and rise in BV causing bacteria, mostly anaerobic gram-negative rods (Holst *et al.*, 1994) Major bacteria detected are *Gardenerella vaginalis* (*G. vaginalis*), *Streptococcus viridans* (*S. viridans*), *Atopobium vaginae* (*A. vaginae*), *Porphyromonas asaccharolytica* (*P. asaccharolytica*), *Prevotella* species and anaerobic including *Bacteroides*, *Fusobacteria*, *Peptostreptococcus*, *Mobiluncus* species, *Veillonella* and *Eubacteria* (Money, 2005).

Gardenerella vaginalis was formerly called *Corynebacterium vaginale* (due to its variable gram stain reaction) or *Haemophilus vaginalis* (due to its requirement for haemin and NAD) (Margolis and Fredricks, 2014) *Gardenerella vaginalis* is of the family bifidobacteriaceae, genus Gardenerella and species *G. vaginalis* (Esbroeck *et al.*, 1996) *G. vaginalis* is nonspore-forming, gram-variable staining facultative anaerobe, nonmotile-forming, coccobacilli and survives at pH of 5-11 (Esbroeck *et al.*, 1996) However, under an electron microscope appears as gram-positive, although the peptidoglycan layer can be thinner than many gram positive organisms, resulting in negative gram staining (Harwich *et al.*, 2010). *G. vaginalis* are found in the urinary tract,
endometrium, fetal membranes and newborn infants as a result of maternal infections, neonatal infections and suppurative lesions. *G.vaginalis* can also be transmitted sexually (Catlin, 1992). *G. vaginalis* attaches well to urogenital squamous epithelial cells due to the exopolysaccharide layer and pili. *G. vaginalis* forms biofilms that are resistant to H_2O_2 and antibiotic treatment. The biofilm provides a platform for other pathogenic bacteria to cling to (Bagnall and Rizzolo, 2017) *G. vaginalis* also stimulate inflammatory processes thus displace indigenous lactobacilli from its habitat (Catlin, 1992). *G. vaginalis* secretes 60-kDa and vaginolysin, a potential virulence factor that, lyses neutrophils, only human erythrocytes (dependent on the presence of CD59, a complementary regulatory molecule) and endothelial cells (Jarosik et al., 1998). *G. vaginalis* alters the microbial environment as a result of erythrocyte lysis freeing iron metabolites. These toxins induce interleukin-8 production from human epithelial cells (Margolis and Fredricks, 2014). *G. vaginalis* has been associated with cervical cancer, vertebral osteomyelitis, infertility, retinal vasculitis and acute hip arthritis (Yeoman et al., 2010; Jayaprakash et al., 2012). Other virulent factors include sialidase, prolidase, phospholipase C and protease (Moncla and Pryke, 2009; Margolis and Fredricks, 2014). Phospholipase C degrades placental tissues by breaking down phospholipids to arachidonic acid. This results in production of prostaglandin triggering the onset of premature labor. Protease breaks down tissue proteins, resulting in the release of amine that support the growth of *G. vaginalis* and other bacteria in the vagina (Dennise F, Mandell, 2015). Nevertheless, little is well-known regarding how *G. vaginalis* cause diseases (Moncla and Pryke, 2009). Sialidase plays a role in impairing the turgidity and elasticity of the fetal membrane leading to PTB (Briselden et al., 1992).

Streptococcus viridans is of the family streptococcaceae, genus streptococcus and species *S. viridans*. *S.viridans* mostly gives an alpha or gamma hemolytic in blood agar and rarely beta hemolysis. *S.viridan* is resistant to optochin test. Other characteristics include, non-motile, aerobic to facultative anaerobe, non-capsulated and no solubility in bile (Hardie and Whiley, 1997) *S. viridians* are commensals of low virulence with binding to platelets, binding to fibrin, exopolysaccharide production and binding to fibronectin identified as virulence factors (Tunkel and Sepkowitz, 2002). *S viridans* commonly causes of native valve endocarditis and late onset prosthetic valve endocarditis, severe pyogenic infections, bacteremia in neutropenic patients, neonatal sepsis and septicemia/shock syndrome also known as “α strep shock syndrome” (Dhotre
et al., 2016). *S. viridans* has been isolated from amniotic fluid among women with clinical amniotitis (Rabe et al., 1988; Mazor et al., 1994). To date there has been no documentation on how *S. viridans* causes PTB.

Atopobium vaginae are of the kingdom bacteria, phylum actinobacteria, class actinobacteria, order coriobacteriales, family coriobacteriaceae, genus atopobium and species *A. vaginae* are a gram-positive, facultative anaerobes, rod shaped or coccobacilli. *A. vaginae* give grey-white colonies after forty-eight hours culture in anaerobic conditions. *A. vaginae* are gram-positive, short chains, in pairs or singly (Rodriguez Jovita et al., 1999; De Backer et al., 2007) *A. vaginae* give positive reaction in acid phosphates, arginine dihydrolase, arginine arylamidase, histidine arylamidase, leucine arylamidase, proline arylamidase, glycine arylamidase and serine arylamidase. Negative reactions are recorded in alanine arylamidase, B-Galactosidase, pyroglutamic acid arylamidase and thyroxine arylamidase (Polatti, 2012). *A. vaginae* has been shown to cause tuboovarian abscess after transvaginal oocyte recover, salpingitis and endometritis (Mazor et al., 1994). Just like *G. vaginalis*, *A. vaginae* forms biofilms that are resistant to H$_2$O$_2$ and antibiotic treatment thus supporting the growth of other anaerobic bacteria (Ferris et al., 2007). *A. vaginae* is suggested to be pathogenic that can lead to maternal bacteremia and fetal death (Mazor et al., 1994).

Porphyromonas asaccharolytica is of the kingdom bacteria, phylum bacteroidetes, class bacteroidetes, order bacteroidales, family porphyromonadaceae, and genus porphyromonas and species *P. asaccharolytica* (Ng et al., 1994). *P. asaccharolytica* is gram-negative, obligate anaerobe, non-spore forming, non-motile rods or coccobacilli and catalase negative (Ng et al., 1994). Proteinase is produced by *P. asaccharolytica*, which enables hydrolyzation of gelatin, casein, coagulated protein, plasma protein, azacol and collagen. Protease by-products weaken the collagen structure in the gestational sac thus leading to premature rapture of membranes (Friese, 2003).

Prevotella species are of the family prevotellaceae and genus prevotella. *Prevotella* spp. form circular, convex, 1-2 mm and shiny gray colonies. On Gram stain, they form short gram-negative rods which may adopt coccobacilli shape (Margolis and Fredricks, 2014). *Prevotella* spp. are gram negative, bile sensitive, catalase negative, however variations have been reported (Dorn et al., 1998) *Prevotella* spp. is in a position to form biofilm that resist host defense mechanism, resulting
to chronic infection (Yamanaka et al., 2009) *Prevotella spp.* produces collagenase as a virulence factor. Collagenase facilitates raptures of the membranes leading to PTB (Doust and Mobarez, 2004). *Prevotella spp.* provide vital nutrients to G.vaginalis and Peptostreptococcus spp., their association with BV could be through expedition of growth of other causative species (Margolis and Fredricks, 2014). *Prevotella spp.* are also known to cause genital infections, bacteremia, wound infection, bite infections, abscesses and periodontitis (Zhang et al., 2015).

Bacteroides species are in the family bacteroidaceae and genus bacteroideis. *Bacteroides* are gram positive, obligate anaerobes, bacilli, non-endospores and some are motile while others are non-motile (Moore et al., 2016). Neuraminidase (sialidase) is a virulence factor produced by bacteroides. The enzyme changes neuraminic acid-containing glycoprotein of human plasma (Briselden et al., 1992). Other virulence factors produced by bacteroides are hyluronidase, DNase, phospholipase A2 and heparinase. *Bacteroides* are known to degrade complement factors of Immunoglobulin G and M. Capsule is an important virulence factor of *Bacteroides fragilis*. Other virulence factors used in the adherence of *Bacteroides* are pili (fimbriae) and lectinlike adhesins. In addition *Bacteroides* produce butyrate and succinate, which give a cytotoxic effect. Sialidase alter the immune signals and damage host mucosal epithelial barrier thus permitting bacteria to access the uterus as well as impairing fetal membrane’s strength and elasticity resulting to PTB (Briselden et al., 1992). Phospholipase A 2 induces prostaglandin synthesis resulting to PTB (Briselden et al., 1992).

Fusobacteria species are of the family fusobacteriaceae and genus fusobacterium (Bolstad et al., 1996) *Fusobacterium spp.* Are gram negative, spindle shaped or may have parallel sides, 5-10 μm long, tapered ends, often seen in pairs (end to end), indole positive and fluoresce under ultraviolet light (Bennett and Eley, 1993; Avila-campos et al., 2006; Margolis and Fredricks, 2014). *F. nucleatum* show hemolytic activity in human and sheep erythrocytes. Fusobacteria species has adhesion which enable them to coaggregate with the widest range to other genera tested so far, however, it does not coaggregate with other fusobacteria (Avila-campos et al., 2006). High levels of phospholipase A2 produced by *Fusobacteria*, induce synthesis of prostaglandin resulting to PTB (Briselden et al., 1992), early onset of neonatal sepsis (Han, 2013) and colorectal cancer (Mcguire et al., 2014)
Peptostreptococcus species are of the family clostridiaceae and genus peptostreptococcus (Murdoch, 1998) Peptostreptococcus are gram-positive cocci, non-spore forming, obligate anaerobes and found singly, in pairs or in chains (Riggio and Lennon, 2002) Gas liquid chromatography is used in the identification of Peptostreptococcus spp. In addition peptone and amino acid is metabolized to isobutyric, butyric, acetic, caproic and isocaproic acid. Peptostreptococcus spp. is commonly associated with necrotizing soft tissue infections and commonly associated with polymicrobial infection. Peptostreptococcus are the second most commonly associated anaerobe in clinical infection after Bacteroides spp. (Riggio and Lennon, 2002). However, there is no record of how Peptostreptococcus causes PTB (Krepel et al., 2018).

Eubacteria species is of the family Eubacteriacea and genus Eubacterium (Hill, Ayers and Kohan, 1987). Eubacterium are either gram negative or gram positive and some are non-motile while others are motile (Hill et al., 1987). Some strains of Eubacteria are known to produce DNase and phosphatase (Margaret et al, 1990). Phosphatase initiates prostaglandin production which stimulate to contractions leading to PTB (Friese, 2003).

Mobiluncus species are of the family actinomycetaceae and genus mobiluncus. Mobiluncus are gram-negative and curved in shape (Vetere et al., 1987). Mobiluncus species are indole, catalase, hydrogen peroxide negative and metabolize succinate enzyme thus raising the vaginal pH to alkaline levels and preventing chemotaxis of cells that are immunocompetent (Mirmonef et al., 2012; Spiegel, 2012). This leads to proliferation of infectious organisms leading to formation of an NF-κB coordinated inflammatory state thus recruiting pro-inflammatory cytokines (IL-β, IL-4, IL-6, IL-7, TNF-α and INF-γ) and chemokine (IL-8 and RANTES), exciting the production of matrix metalloproteins (MMPs) and arachidonic acid metabolites such as prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETE) (Witkin et al., 2013). MMPs destroy and digest the cervical extracellular matrix and fetal membranes, while the arachidonic acid metabolites moderate myometrial contractility leading to cervical maturation leading to PTB (Witkin et al., 2013).

Veillonella species are of the family Vellonellacease genus veillonella. Veillonella are strictly anaerobic, gram negative cocci which form part of the normal flora of the oral, genitourinary, respiratory and intestinal tracts of humans’ and animals (Roverey et al., 2005; Marriott et al., 2007)
Veillonella are gram-positive cocci, oxidase positive, catalase negative, indole negative, urease negative and nitrate reduction positive (Brook and Brook, 1996) Veillonella are also known to be associated with endocarditis, periodontitis, dental carriers and osteomyelitis (Mashima et al., 2016). Lipopolysaccharide is the main virulent factor for Veillonella species and are known to form biofilms that are resistant to H_2O_2 thus enabling the growth of other anaerobic bacteria (Roverey et al., 2009).

2.2.1.1 BV and HIV
A study done in Uganda found BV increases the risk of HIV infection by more than 2-fold. A study done in Malawi among women attending antenatal clinic conferred a 3 fold increased risk of HIV infection (Myer et al., 2018). Particularly, high concentration $G.vaginalis$ and $M.hominis$ has been associated with increased HIV shedding (Koumans et al., 2007; Margolis and Fredricks, 2014). Microbes such as Bacteroides, Prevotella, Gardenerella have been shown to attract CD4 cells to the mucosa, thus increasing HIV acquisition (Africa et al., 2014). A number of hypotheses suggest how BV increases HIV acquisition. One, a healthy vaginal makes healthy lactobacillus that produces hydrogen peroxide. Hydrogen peroxide can inactivate HIV. When there is a shift from a lactobacillus dominated vaginal flora, the absence of the H_2O_2 makes it possible for the HIV to stay alive longer in the vagina, thus increase the rate of transmission. Secondly, BV has shown to stimulate cells containing the virus thus increasing HIV replication. Thirdly, BV disrupts the skin cells at the surface of the vagina. This makes it easy for the virus to reach a deep layer of cells that are susceptible infection. Fourthly, BV increases intravaginal levels of interleukin-10, which increases susceptibility of macrophages to HIV. In addition studies have shown that a stable protein produced by $G.vaginalis$ increases production of HIV by HIV infected cells by as much as 77-fold (Schmid et al., 1995; Mirmonsef et al., 2013). Interestingly, women with BV have three time likelihood of transmitting HIV to their male sexual partners compared to women with a normal vaginal microbiome (Schmid et al., 1995). In addition, observational data and physiology of the vaginal epithelium suggest those post-menopausal women are at higher risk of HIV acquisition. However, studies focusing on post-menopausal women with atrophic vaginitis have not yet been done (Myer et al., 2018). Moreover, BV increases the risk of acquiring Neisseria gonorrhea by 1.7, Chlamydia trachomatis by 3.4, Herpes simplex virus -2 by 2.1 and Trichomononal genital infection by 1.8 (Margolis and Fredricks, 2014).
2.2 2 Diagnosis of bacterial vaginosis

Diagnosis of BV is based on clinical and laboratory diagnosis. Clinical diagnosis is based on the nature of vaginal discharge.

2.2.2.1 Amsel’s criteria

Diagnosis of BV is based on the presence of the three of the following four findings; increased vaginal pH > 4.5, presence of white adherent discharge that contains numerous exfoliated epithelial cells with bacteria (Gram-variable polymorphic rods) attached to their surface (clue cells) that has a characteristic fishy odor, more so when 10% of potassium hydroxide is added (whiff test) and a characteristic thin, gray or white homogeneous discharge (Rao et al., 2016). However, BV can be asymptomatic in about 50% and this is why Nugent’s scoring system is preferred in scientific community (Carr et al., 1998).

2.2.2.2 Nugent scoring

Nugent, whom it was named after, first described Nugent scoring in 1991 (Nugent et al., 1991) Nugent score is the gold standard for diagnosis BV, which is based on bacteria counting in Gram stained slides of vaginal secretions (Chawla et al., 2013). In Nugent score criteria, the vaginal (Lateral swab or posterior fonicle of the vagina) swab is smeared on a clear glass slide, air dried, heat fixed then Gram stained (Rao et al., 2016). The bacteria morphology is observed under an oil immersion objective (×100) using the following scheme:

1+, < 1 per field
2+, 1-4 per field
3+, 5-30 per field
4+, >30 per field

Large gram positive rod are considered to be lactobacillus morphotypes, small gram negative to gram variable are considered to be G.vaginalis and Bacteroides spp. morphotypes while curved gram negative curved are considered to be Mobiluncus spp. morphotypes (Rao et al., 2016).
Table 1: Nugent scoring

<table>
<thead>
<tr>
<th>Lactobacillus</th>
<th>Score</th>
<th>G. vaginalis, Bacteroides Score</th>
<th>Curved gram variable bacilli Score</th>
<th>Score</th>
<th>Nugent score</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 or more</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-30</td>
<td>1</td>
<td>Less than 1</td>
<td>Less than 1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1-4</td>
<td>2</td>
<td>1-4</td>
<td>1-4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Less than 1</td>
<td>3</td>
<td>5-30</td>
<td>5-30</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>30 or more</td>
<td>30 or more</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

The Nugent scores are interpreted as follows:
A score of 0-3 – Normal (B.V negative)
A score of 4-6 – Intermediate
A score of 7-10 – B.V positive (Mohanty et al., 2010)

2.2.2.3 Cytology-Papanicolaou smear
A wet mount is done and examined under a microscope for the presence of clue cells. An epithelial cell is termed as a clue cell, when more than 20% of the epithelial cells have stripped appearance due to adherent coco bacilli and whose edges are obscured or fuzzy (Vandana et al., 2018).

2.2.2.4 Culture
Vaginal cultures have excellent sensitivity for BV diagnosis. However, cultures are not recommended because the predictive value for G. vaginalis is less than 50%. Thus vaginal gram stains are more useful than culture since BV is a polymicrobial infection (Nenadi and Pavlovi, 2015).
2.2.2.5 Rapid test kit
The BV Blue kit is a rapid test kit used to diagnose bacterial vaginosis. The kit detects vaginal fluid sialidase activity, which is produced by causative agents of bacterial vaginosis such as *G. vaginalis, Bacteroides, Prevotella and Mobiluncus*. The BV Blue kit detects bacterial vaginal fluid sialidase at levels of ≥7.8 (Gad et al., 2014). Affirm VP III is rapid test used for the detection of Candida species, *G. vaginalis* and *Trichomonas vaginalis* from a vaginal swab (Brown et al., 2004).

2.2.2.6 Molecular assay
In the diagnosis of BV molecular assays are used, although not commonly since they are expensive. However molecular assays are the most effective. Specifically, quantitative molecular tool using a specific real-time polymerase chain (Bretelle et al., 2018).

2.2.2.7 Sensitivity and specificity
Nugent scoring being the gold standard for BV, Amsel has recorded a sensitivity of 0.91 and specificity of 0.91, positive predictive value of 0.86, negative predictive value of 0.94 and accuracy of 0.91 diagnosis (Mohammadzadeh et al., 2014). Vaginal pH recoded a sensitivity of 100% and specificity of 58.9%, while whiff test recoded a sensitivity of 100% and a specificity of 97.3% (Mohammadzadeh et al., 2014). While another study Amsel recorded positive predictive values 80%, negative predictive value 94%, sensitivity 78% and specificity 95.6%, Nugent scoring as the gold standard (Bhat et al., 2011). A similar study was done and Amsel recorded a sensitivity, specificity, positive predictive value, negative predictive of 100%, 91.20% 84.12% and 100 % respectively (Bhat et al, 2011). In comparison with Nugent scoring, Amsel criteria recorded a specificity of 78.72%, sensitivity of 92.35%, negative predictive value of 93.54% and positive predictive value of 75.51% (Rao et al., 2016). A study was done with Amsel criteria as the gold standard for BV and Nugent scoring recoded a sensitivity of 65% and specificity of 97.3%, positive predictive value of 80.8%, negative predictive value of 94.2% and an accuracy of 92.7% (Mohammadzadeh et al., 2014).

Pap smear and vaginal culture were compared to Nugent scoring as gold standard. Pap smear had a sensitivity and specificity of 43.1 and 93.6%. Vaginal culture had a sensitivity and specificity 77.8 and 97.7%. Positive and negative predictive values for Pap smear were 73.8 and 93.3%
respectively. Vaginal culture had a positive and negative predictive value of 78.8 and 91.8% respectively (Aktepe et al., 2004). BV Blue kit was compared to Amsel criteria and Nugent scoring. In comparison to Nugent scoring and Amsel criteria, BV Blue kit recorded a sensitivity and specificity of 91.7, 97.8, 91.7 and 97.8% respectively. While the positive and the negative predictive value for BV Blue kit versus Nugent scoring and Amsel criteria were 50.0, 100, 100 and 88.2%, respectively (Myziuk et al., 2003). PCR has recorded a sensitivity of 99% and specificity of 89% for diagnosis of BV, in comparison to Amsel criteria. In comparison to Nugent scoring, a sensitivity of 95.9 and 93.7% was recorded (Fredricks et al., 2007).

2.2.2.8 Advantages and Disadvantages of Amsel and Nugent scoring

Amsel criteria is reliable, cheap, fast, simple and easy, while Nugent scoring is complex and require expertise (Mohammadzadeh et al., 2014). Moreover, Nugent scoring can identify a few bacteria species and the exact number of Lactobacillus can be influenced by the variability of the methods. Depending on how you spread the sample on the slide the homogeneity and thickness of the sample on the slide may vary. Thus it is important to adhere to the basic standards of quality control (Mohammadzadeh et al., 2014) However PCR has been credited to be more sensitive compared to Amsel criteria and Nugent scoring (Fredricks et al., 2007; Mohammadzadeh et al., 2014).

2.3 Pathogenesis of pre-term birth

Studies have been done in both animal models and humans as to how the bacteria cause PTB (Salminen et al., 2008; Mendz et al., 2013). These studies have suggested that bacteria is likely to be having a more direct role in the pathogenesis of PTB by secreting enzymes such as collagens (Tebes et al., 2003) that degrade fetal membranes, or by inducing the synthesis and release of uterotonins such as prostaglandins(Koucký et al., 2009), able to stimulate uterine contractions or their presence can lead to the production of pro-inflammatory cytokines such as phospholipase A2 thus causing preterm labor (Agrawal and Hirsch, 2012; Madianos et al., 2013; Rimawi, 2013)

Bacteria and diverse microbes are recognized by pattern recognition receptors such Toll-like receptors that activate innate immune system, prompting a proinflammatory cascade orchestrated by several elements such, the transcription factor NF-Kb (Agrawala and Hirscha, 2012) This cascade result in amplification of effector molecules such as cytokines (e.g. In tumor necrosis
factor-α, Interleukin-1) (Agravala and Hirscha, 2012), prostaglandins, proteases, chemokine’s such Interleukin-8 and other enzymes, to produce a coordinated response featuring placental detachment, infiltration of inflammatory cells into gestational tissues, cervical ripening and weakening of the fetal membranes leading to PTB (Agravala and Hirscha, 2012).

In addition, metabolic by-products of the anaerobic bacteria, which include amines increase the vagina pH resulting to exfoliation of the vaginal epithelial cells (clue cells) (Tebes et al., 2003). H₂O₂ produced by lactobacilli may have a critical role in preventing fetal membrane degradation, prostaglandin release and ascending infection. Alternative mechanism that has been proposed consist of the incidence rates and the bacterial loads of these bacteria are more among women with preterm low birth weight delivery (Monga and Blanco, 1995; Goldenberg et al., 2002; Kataoka et al., 2006).

However many questions in relation to the pathogenesis of BV remain unanswered. In relation to how Lactobacillus reduce in number (Donders et al., 2000).

2.4 Treatments of BV to prevent PTB
Metronidazole and clindamycin are the first-line treatment for BV. However recurrent rate are high, approximated to 50% at 3 months (Ferris et al., 2007; Bagnall and Rizzolo, 2017). A. vaginae are resistant to metronidazole but susceptible to clindamycin. Unfortunately, clindamycin destroys lactobacilli (Ferris et al., 2007). However, recurrence is common in 30 % at 3 months and later recurrence in 50 % at 6 months (Margolis and Fredricks, 2014).

2.5 Problem statement
Pre-term birth is the sole largest cause of perinatal mortality and morbidity in the world, (Agravala and Hirscha, 2012; WHO, 2012) with a prevalence rate of 5-18% in 184 countries (Wagura et al., 2018). Kenya is ranked position 48 among the top 50 countries with the highest proportion of PTB globally and position 13 with the highest deaths which result from pre-term birth complications (Blencowe et al., 2012; Gebreslasie, 2016)
Microorganisms comprising bacteria, parasites, viruses and fungal have been associated as the causative agents for spontaneous PTB. Bacteria constitute the prime number of microorganisms linked with PTB (Zhou et al., 2010) with molecular techniques detecting bacteria in 60% of women delivering preterm (Mendz et al., 2013; Romero et al., 2016). BV which has been the most prevalent lower genital infection is postulated to be one of the causes PTB and neonatal mortality (Guaschino et al., 2006; Bahram et al., 2009). However little has been done to profile the bacteria associated with BV leading to PTB. Yet the numbers of PTB are on the rise.

2.5.1 Justification
A number of studies have been done in Africa investigating an association between BV and PTB with varied findings. A study done in Nigeria, 2010 (Aderoba et al., 2016), found an association between BV and PTB unlike a study done in Tanzania (Shayo et al., 2012). Through the study, we will be in a position to identify the most prevalent bacteria that causes BV after profiling the identified bacteria species, which may be associated with PTB. If that is the case as per our prediction, then this may offer an opportunity to formulate a policy or policies regarding management of BV in pregnancies for the purposes of controlling BV and reducing PTB. However, should we find that a particular bacteria or bacterium associated with pregnant women in Kisumu, there may be need to repeat a similar study in different parts of Kenya to confirm if what is found in Kisumu is similar to what we have in other parts of Kenya. Moreover the study will recommend on whether it is important to screen women coming for antenatal clinic for BV, since BV is asymptomatic in 50-75% of the infections, thus resulting in the reduction of PTBs (Hoffmann et al., 2014). In addition the study will form a foundation for further studies to be done, in the optimization of BV treatment based on specific bacteria associated with PTB.

2.6 Research questions
1. What is prevalence of Bacterial vaginosis among pregnant women in Kisumu County?
2. Which bacterium among Bacterial vaginosis species is strongly associated with pre-term birth in Kisumu County?
3. What are the risks factors associated with BV infections and linked to pre-term births?
2.7 Null hypothesis and objectives

2.7.1 Null hypothesis

There is no association between bacterial vaginosis and pre-term births.

2.7.2 Broad Objective

To profile bacteria associated with bacterial vaginosis related to preterm deliveries in Kisumu County Hospital.

2.7.3 Specific Objectives

1. To determine the prevalence of BV among pregnant women in Kisumu County
2. To characterize bacteria species in bacteria vaginosis infection associated with preterm births in Kisumu County
3. To determine the risk factors associated with bacteria vaginosis and preterm births
3.0 METHODOLOGY

3.1 STUDY DESIGN
This was a comparative cross sectional analytical study conducted for one year. Comparative studies allow comparison of proportions in exposed group and in the unexposed group. In this study, the exposed group were pregnant women diagnosed with BV, while unexposed were BV negative pregnant women.

To examine the association between a supposed risk factor and a health outcome, analytical cross-sectional studies may be used. The risk factor and the health outcome are measured simultaneously. This makes it difficult to know whether the disease or the exposure came first, thus the study design limits to draw valid conclusions about an association or predicted causality. Causality should be confirmed by more rigorous studied (Antay-bedregal and Camargo-revello, 2015).

3.2 STUDY SITE
Kisumu County is one of the new established counties. This county borders Siaya County to the west, Vihiga County to the north, Nandi County to the north east, Kericho County to the east, Nyamira County to the south and Homa Bay County to the south west. The county lies within longitudes 33° 20’ East and 35° 20’ East and latitudes 0° 20’ South and 0° 50’ South of the equator. Kisumu is situated 1174 meters above sea level.

The study enrolled participants who were in maternity ward at Kisumu County Hospital (KCH) and Jaramogi Oginga Odinga Teaching and Referral Hospital in Kisumu County. However the data collection took place only at KCH and not the two sites because the sample size was attained within a shorter duration than expected. KCH was established in the year 1900 during the building of Kenya-Uganda Railway. The obstetrics and gynecology department in the hospital offers patient care in major and minor obstetric and gynecological surgeries as well as specialized gynecology clinic, antenatal clinic (ANC), Family planning and cervical cancer screening.

3.3 STUDY POPULATION
The study involved two cohorts. One cohort, comprise of women delivering before 37th week of gestation while the other group, women delivering from 37th week of gestation and above
(comparative group). The second cohort involved pregnant women visiting or admitted at KCH. Kisumu County hospital receives deliveries from all over Kisumu. Therefore giving a general representation of the whole Kisumu County. The total number of deliveries KCH receives per month is between 200-250 per month and 10-20 pre-term births.

3.3.1 Inclusion criteria

Table 2: Inclusion criteria of both term and preterm cohorts

<table>
<thead>
<tr>
<th>Pre-term deliveries</th>
<th>Term deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singleton pregnancy</td>
<td>Singleton pregnancy</td>
</tr>
<tr>
<td>Women delivering before 37th week of gestation</td>
<td>Women delivering at 37th week of gestation and above</td>
</tr>
<tr>
<td>Women who willingly consented to participate in the study</td>
<td>Women who willingly consented to participate in the study</td>
</tr>
<tr>
<td>18 years and above</td>
<td>18 years and above</td>
</tr>
<tr>
<td>Residence of Kisumu county</td>
<td>Residence of Kisumu county</td>
</tr>
</tbody>
</table>

3.3.2 Exclusion criteria

Table 3: Exclusion criteria of both term and preterm cohorts

<table>
<thead>
<tr>
<th>Pre-term deliveries</th>
<th>Term deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assisted surgery</td>
<td>Use of antibiotics during the previous two weeks</td>
</tr>
<tr>
<td>Use of antibiotics in the past two weeks</td>
<td>Obstetric emergencies e.g. antepartum hemorrhage, preeclampsia, eclampsia</td>
</tr>
<tr>
<td>Obstetric emergencies e.g. antepartum hemorrhage, preeclampsia, eclampsia</td>
<td></td>
</tr>
</tbody>
</table>
3.4: SAMPLE SIZE CALCULATION
The study majored in the comparison of two proportions. The study design allows comparison of two proportions. Thus the used sample size formula is the most appropriate because it permits getting the minimum sample size in a comparative study of two proportions.

\[
n_1 \geq \frac{1 + r (Z_\alpha + Z_\beta)^2 \cdot \bar{P}(1 - \bar{P})}{r (P_1 - P_2)^2}
\]

\(n_1\) = minimum sample size for cases (women with pre-term births)
\(Z_\beta\) = critical value corresponding to 70\% power (\(\beta=0.30; Z_\beta=0.53\))
\(Z_{\alpha/2}\) = critical value corresponding to 0.05 \(\alpha\)-level of significance (\(Z_{\alpha/2}=1.96\))
\(p_1\) = Proportion exposed among control group- women with full term births (\(p_1=0.39\) based on the prevalence of bacterial vaginosis (BV) among women in Western Kenya (Okuku et al., 2015)
\(r\) = ratio of controls to cases (women with full term births to women with preterm births. Due to the few number of preterm births per month in the facility a ratio of 4 full term birth women to 1 preterm birth was used to maintain the power (\(r=4\))
\(p_2\) = Proportion exposed among the cases (proportion of women with bacterial vaginosis among those that had full term births)
\(p_1- p_2\) = Expected difference in the prevalence (\(p_1-p_2=0.20\))
\(\bar{p}\) = pooled prevalence = \((P_1 + P_2) / 2\) (\(\bar{p}=0.49\))

Using the formula and defined parameters, minimum sample size for women with preterm births is 59 and women with full-term births 117

\[59+117=176\]

3.5 SAMPLING PROCEDURE OF STUDY PARTICIPANTS
Preterm deliveries are not predictable. This poses a limitation in recruitment of participants for the study within the limited study period. Consecutive sampling was therefore used to select participants until the required sample size was achieved. Participants, who met the inclusion criteria and willingly gave consent, were included in the study.
3.5.1 Recruiting and consenting procedures
Before the study nurse consented the participants who had met the inclusion criteria, she explained to the identified participant about the study procedures, expected results, risks and benefits. After which the study nurse had a one on one questionneiring session with the participant.

3.6 DATA COLLECTION PROCEDURES
3.6.1 Pretesting of interview tools
The questionnaires that was used to gather information in this study was pretested in Kisumu County Hospital. The pretesting was done by the principal investigator and the study nurse. This was done after ethical approval and before study kick off. A total of 10 different participants were subjected to the face-to-face interviews to test the questionnaire to determine whether the questions are understandable and are being answered correctly. Changes were be made accordingly to any question that required clarity.

3.6.2 Administering qualitative interviews
A questionnaire was used to collect socio-demographic information and medical history of the study participants. The socio-demographic information included age, family history, education level, marital status and socio-economic status. Medical history included previous pre-term deliveries, period between pregnancies, infertility treatment and sexually transmitted diseases. The questionnaire was first validated before use after which the participants filled the form. The form was then be taken back for tabulation and analysis

3.6.3 Laboratory analysis
3.6.3.1 Sample collection
A trained clinician collected the samples. Figure 1 show how the swab sample was collected. Three vaginal swabs were collected from each of the consenting participants. One was reserved for further studies while the two were used in Amsel criteria and Nugent scoring. Prior to swab collection, the study nurse ensured his/her hands are properly clean and the participants’ bladder is empty. The participant lay in a dorsal position, knees flexed; hips abducted and head on pillow. The study nurse examined the vaginal for any vaginal discharge and the nature of the discharge, abnormal skin condition, lesions and evident of female genital mutilation. Warm a sterilized
speculum at 37°C. Clean away any cervical mucus if necessary. The speculum was inserted in the vaginal. Dalcon vaginal swab were inserted about 1-2 cm and a posterior or lateral vaginal wall swab was taken in a rotating motion. The stick was inserted back in the tube and corked tightly. This was repeated with the other Dalcon vaginal swab. Labeling of the dalcon vaginal swabs was done before examination, with the participant’s name, number, time and date of collection. The two tubes were transported to the laboratory in Gas pak anaerobic chamber.

![Diagrams of swab collection steps]

Figure 1: Steps for collection of high vaginal swab

3.6.3.2 Diagnosis

Clinical and laboratory diagnosis are used in the diagnosis of BV. However, clinical diagnosis has more to do with laboratory. In this study we dealt with both clinical and laboratory diagnosis. Amsel criteria and Nugent scoring were used in the diagnosis of BV. Nugent scoring is the gold standard. This study used Amsel and Nugent scoring.

3.6.3.2.1 Clinical diagnosis (Amsel criteria)

The clinical diagnosis of BV was based on the Amsel criteria, which is defined by three of the following criteria.

Clinical diagnosis of BV is based on the presence of the three of the following four findings:

- Homogeneous vaginal discharge, which appears to adhere to the wall of the vaginal in a thin film and can vary from white to grey.
• Increased vaginal pH > 4.5.
Litmus paper was used to determine the pH of the discharge. The colour change was compared with a pH standard colour chart.

• Presence of an amine odor (fishy smell) – positive whiff test.
A swab was placed in small size test tubes. In the test tube a few drops of 10% potassium hydroxide were added. Flapping was done on the opening of the test tube to capture the presence of the amine odor. This was for the positive whiff test. In the case of negative whiff test, amine odor was absent.

• Presence of clue cell.
A smear was prepared on a slide using the third swab. Normal saline was added on the slide and a cover slip placed on the smear and examined at a magnification power ×40. Clue cells were identified for positive samples of BV. The clue cells are identified as vaginal epithelial cells with heavy coating of bacteria, in that the peripheral boarders are obscured (Rao et al., 2016).

3.6.3.2.2 Laboratory diagnosis (Nugent score criteria)
In Nugent score criteria, the vaginal swab were smeared onto a clear and clean glass slide and air-dried before Gram staining. The bacteria morphology was observed under an oil immersion objective (×100)

Large gram positive rod are considered to be lactobacillus morphotypes, small gram negative to gram variable are considered to be *G. vaginalis* and *Bacteroides spp.* morphotypes while curved Gram variable rods are considered to be *Mobiluncus spp.* Morphotypes (Rao et al., 2016)

1+, < 1 per field
2+, 1-4 per field
3+, 5-30 per field
4+, >30 per field
Table 4: Nugent scoring

Determination of the Nugent score through laboratory examination of vaginal smears

Nugent score = The total sum of the scores for every bacteria morphotype is listed below

(Note the quantity of organisms seen/100 × objective)

<table>
<thead>
<tr>
<th>Lactobacillus</th>
<th>Score</th>
<th>G. vaginalis, Bacteroides</th>
<th>Score</th>
<th>Curved gram variable bacilli</th>
<th>Score</th>
<th>Nugent score</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 or more</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-30</td>
<td>1</td>
<td>Less than 1</td>
<td>1</td>
<td>Less than 1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1-4</td>
<td>2</td>
<td>1-4</td>
<td>2</td>
<td>1-4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Less than 1</td>
<td>3</td>
<td>5-30</td>
<td>3</td>
<td>5-30</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>30 or more</td>
<td>4</td>
<td>30 or more</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

The Nugent scores are interpreted as follows:
A score of 0-3 – Normal (B.V negative)
A score of 4-6 – Intermediate
A score of 7-10 – B.V positive(Mohanty et al., 2010)

3.7 QUALITY ASSURANCE PROCEDURES

Standard operating procedures were developed and used in all procedures that involved sample collection, sample transportation and analysis. Equipment operation was done according to manufacturer’s instructions. Reading of slides was re-confirmed by the supervising microbiologist before results are signed out to the participant’s records.

3.8 QUALITY CONTROL

Professionals (study nurse and principal investigator) who are well trained in the field did the study. In addition the principal investigator was thoroughly trained from sample collection to
sample storage for three consecutive months on BV at University of Nairobi Tropical and Infectious Diseases Institute. After which a quality control was done at Kenya Medical Research Institute with a staff who has worked on BV for the last 30 years. The Patient identification number was to label the specimen and identify the consent forms and questionnaires, rather than participant’s name. The study nurse and principal investigator wore proper protective equipment’s e.g. gloves, lab coat, when handling a participant or a specimen. Before running any sample the bench was sanitized.

3.9 ETHICAL CONSIDERATION

The protocol and informed consent form was reviewed and approved by the Kenyatta National Hospital-University of Nairobi Ethics and Research Committee (KNH-UoN ERC) prior to any protocol-related procedures (e.g., recruitment efforts) being conducted. The principal investigator informed the KNH-UON ERC the progress of the study on a regular basis per the ERC requirements, but at a minimum once a year. Written informed consent was obtained from the potential study participants prior to any protocol-specified procedures being conducted. To maintain confidentiality, initials and coded numbers were used to identify the participants’ laboratory specimens, source documents, and study reports. All study records were maintained in a secured location. Participant information was not obtained or released without written permission from the participant/participant’s legally authorized representative except as necessary for monitoring of the study. Permission to carry out this study was also obtained from the hospital’s administrator and the county health department.

Participation in this study was completely voluntary and the participants could withdraw even after accepting to participate (Appendix A and B). The interviewee was also be informed that apart from having a direct benefit to an individual participant (by knowing their BV status -Thus providing proper management) and receiving BV treatment, this study will go a long way in helping both BV testing policy during pregnancy but also designing ways to prevent and manage BV to avoid preterm births.
3.10 DATA MANAGEMENT

Laboratory results were entered in a data collection form (Appendix D) and the documented socio demographic data from the corresponding questionnaire were entered into Microsoft Excel 2013 and stored in a password protected computer. All the collection forms and questionnaires filled were kept in a lockable filing cabinet located in a restricted-access room. The slides were stored in slide mailers in a lockable cabinet with restricted access.

Data was cleaned, coded and analyzed using SPSS. Data cleaning was done to identify extreme and missing records in the data set. For extreme values, counterchecking was done with the questionnaires/data collection forms, and replacement done in case of data entry errors. For missing values, the information was recovered from the questionnaires/data collection forms. If the information is not available the pattern of missingness was be assessed as whether completely missing at random or not. Unless the data is missing data is completely missing at random, pairwise deletion was adopted in the analysis. Evaluation for completeness and accuracy was done daily. Data was backed up daily.

3.10.1 Data analysis

Univariate analysis was done to summarize the data/variables. For continuous/discrete variables, histograms were plotted to show the distribution; measures of central tendency (means/medians/mode) and dispersion (SD/ IQR) were reported depending on the distribution. For categorical data such as marital status of the woman, BV test results, bacteria isolated etc. bar/pie charts were plotted to show the distribution; frequencies and proportions were reported.

In bivariate analysis, a test of associations (Pearson chi-square/ test) was used to check for association between the socio-demographic characteristics, clinical history of women with preterm births and the BV status in relation to the gestation at birth. Pearson chi-square statistics and corresponding p-values were reported. The study was conducted at 0.05 α-level of significance.
4.0 RESULTS
A total of 228 pregnant women were enrolled in the study through systematic random sampling. Out of the 228, only 209 were followed up to delivery stage, while 19 had incomplete results.

4.1 Last Menstruation Period and Ultra Sound as determinants of preterm
The participants were categorized as preterm or term based on Last Menstruation Period (LMP) and Ultra-sound (Ultra-S). This is as illustrated in table 4. Last Menstruation Period (LMP) captured 209 pregnant women. Out of the 209 pregnant women under LMP, 76 (36.4%) went for Ultra sound (Ultra-S).

Table 4: Preterm births by LMP and Ultra-S

<table>
<thead>
<tr>
<th>Deliveries</th>
<th>Term n (%)</th>
<th>Preterm n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal delivery</td>
<td>Cs delivery</td>
</tr>
<tr>
<td>LMP</td>
<td>120 (57.4%)</td>
<td>19 (9.1%)</td>
</tr>
<tr>
<td>Ultra-S</td>
<td>35 (46.1%)</td>
<td>5 (5.3%)</td>
</tr>
</tbody>
</table>

Ultra-S being very accurate, it was used as the gold standard. Only those who had a normal delivery were included in the analysis the rest were excluded. A comparison was done between LMP and Ultra-S. The comparison was done to bring the participants who had a discrepancy and those who were at par in the two modes of classification. The comparison is presented in table 5. A total of 64 study participants qualified for the comparison. The 64 comprised of women who had both LMP and Ultra-S data and they delivered normally. Of the sixty-four, 34 (97.1%) and 28 (96.6%) had term and preterm deliveries respectively. These were captured both in LMP and Ultra-S. A slight discrepancy was evident between the two modes of classification. Of the 64 study participants, 1 (2.9%) classified as preterm under LMP, was reclassified as term under Ultra-S. In addition, 1 (3.4%) classified as term under LMP was reclassified as preterm under Ultra-S.

Table 5: Comparison between LMP and Ultra-sound for determination of preterm births

<table>
<thead>
<tr>
<th>Gestation</th>
<th>Ultra-S n (%)</th>
<th>Gestation LMP n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term svd</td>
<td>Preterm svd</td>
</tr>
<tr>
<td>Term svd</td>
<td>34 (97.1%)</td>
<td>1 (3.4%)</td>
</tr>
<tr>
<td>Preterm svd</td>
<td>1 (2.9%)</td>
<td>28 (96.6%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>35 (100.0%)</td>
<td>29 (100.0%)</td>
</tr>
</tbody>
</table>
4.2 Demographic characteristics of the study participants

Different social demographic characteristics of mothers that are risk factors to preterm births were outlined as illustrated in table 6. A chi-square was run on each variable, in both LMP and Ultra-S mode of gestation classification. Majority of the study participants were aged 21-25 years in both LMP and Ultra-S. In the different categories of marital status, marital status steady partner living together were the majority under LMP, while married monogamous were the majority under Ultra-S. In the different categories of marital status, housewives were the majority. Both age and housewife were captured to have a statistical difference (p-value 0.016 and 0.005 respectively), under Ultra-S. However the rest of the risk factors there was no statistical significance.
Table 6: Different social demographic characteristics of mothers

<table>
<thead>
<tr>
<th>Variables</th>
<th>DEMOGRAPHICS</th>
<th>LMP Term</th>
<th>LMP Preterm</th>
<th>OR (95% CI of OR)</th>
<th>Ultra-S Term</th>
<th>Ultra-S Preterm</th>
<th>OR (95% CI of OR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td></td>
<td></td>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-25</td>
<td></td>
<td>0.053</td>
<td></td>
<td>0.906 (0.392-2.097)</td>
<td>0.339</td>
<td>1.886</td>
<td>(0.510-6.978)</td>
</tr>
<tr>
<td>26-30</td>
<td></td>
<td>0.292</td>
<td></td>
<td>0.583 (0.213-1.598)</td>
<td>0.339</td>
<td>1.886</td>
<td>(0.369-6.946)</td>
</tr>
<tr>
<td>31-40</td>
<td></td>
<td>0.592</td>
<td></td>
<td>1.346 (0.454-3.994)</td>
<td>0.002</td>
<td>0.294</td>
<td>(0.141-0.614)</td>
</tr>
<tr>
<td>18-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady partner living together</td>
<td>43 (35.8%)</td>
<td>23 (37.7%)</td>
<td>0.882</td>
<td>0.936 (0.392-2.237)</td>
<td>0.098</td>
<td>3.750</td>
<td>(0.754-18.641)</td>
</tr>
<tr>
<td>Steady partner not living together</td>
<td>9 (7.5%)</td>
<td>3 (4.9%)</td>
<td>0.475</td>
<td>0.583 (0.132-2.580)</td>
<td>0.770</td>
<td>3.0</td>
<td>(0.098-23.069)</td>
</tr>
<tr>
<td>Married monogamous</td>
<td>42 (35.0%)</td>
<td>21 (34.4%)</td>
<td>0.767</td>
<td>0.875 (0.362-2.113)</td>
<td>0.147</td>
<td>1.0</td>
<td>(0.659-13.662)</td>
</tr>
<tr>
<td>Married polygamous</td>
<td>4 (3.3%)</td>
<td>1 (1.6%)</td>
<td>0.472</td>
<td>0.438 (0.044-4.378)</td>
<td>1.000</td>
<td>1.0</td>
<td>(0.073-13.664)</td>
</tr>
<tr>
<td>Other (Widowed/Divorced)</td>
<td>1 (0.8%)</td>
<td>1 (1.6%)</td>
<td>0.698</td>
<td>1.75 (0.1-30.592)</td>
<td>0.118</td>
<td>0.250</td>
<td>(0.094-0.666)</td>
</tr>
<tr>
<td>Single (Never married)</td>
<td>21 (17.5%)</td>
<td>12 (19.7%)</td>
<td>Ref</td>
<td>9 (25.7%)</td>
<td>0.002</td>
<td>7.0</td>
<td>(1.65-29.697)</td>
</tr>
<tr>
<td>iii. Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housewife</td>
<td>50 (41.7%)</td>
<td>31 (50.8%)</td>
<td>0.172</td>
<td>1.798 (0.771-4.194)</td>
<td>12 (34.5%)</td>
<td>18 (62.1%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Small-scale business (fishing)</td>
<td>25 (20.8%)</td>
<td>14 (23.0%)</td>
<td>0.326</td>
<td>1.624 (0.614-4.292)</td>
<td>0.055</td>
<td>4.667</td>
<td>(0.916-23.785)</td>
</tr>
<tr>
<td>Farmer</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>-</td>
<td>-</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>-</td>
</tr>
<tr>
<td>Civil servant</td>
<td>7 (5.8%)</td>
<td>0 (0.0%)</td>
<td>0.130</td>
<td>0.744 (0.618-0.894)</td>
<td>0.645</td>
<td>0.824</td>
<td>(0.661-1.026)</td>
</tr>
<tr>
<td>Casual labourer</td>
<td>7 (5.8%)</td>
<td>4 (6.6%)</td>
<td>0.484</td>
<td>1.657 (0.399-6.878)</td>
<td>0.288</td>
<td>4.667</td>
<td>(0.223-97.497)</td>
</tr>
<tr>
<td>Students</td>
<td>2 (1.7%)</td>
<td>2 (1.7%)</td>
<td>0.301</td>
<td>2.9 (0.360-23.390)</td>
<td>0.000</td>
<td>1.000</td>
<td>(0.2-5.004)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>29 (24.2%)</td>
<td>10 (16.4%)</td>
<td>Ref</td>
<td>14 (40.0%)</td>
<td>3 (10.3%)</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>iv. Main source of income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>34 (28.3%)</td>
<td>19 (31.1%)</td>
<td>0.838</td>
<td>1.118 (0.385-3.248)</td>
<td>1.000</td>
<td>1.000</td>
<td>(0.2-5.004)</td>
</tr>
<tr>
<td>Husband</td>
<td>52 (43.3%)</td>
<td>29 (47.5%)</td>
<td>0.833</td>
<td>1.118</td>
<td>13 (37.1%)</td>
<td>14 (48.3%)</td>
<td>0.700</td>
</tr>
<tr>
<td>v.</td>
<td>Education</td>
<td>Remittance</td>
<td>Relatives</td>
<td>Self service</td>
<td>P<0.05=significant; OR = odds ratio; CI = Confidence interval; ref = reference category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (1.7%)</td>
<td>0 (0.0%)</td>
<td>0.328</td>
<td>(0.404-3.077)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (2.9%)</td>
<td>0 (0.0%)</td>
<td>0.389</td>
<td>(0.296-6.131)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 (15.0%)</td>
<td>6 (9.8%)</td>
<td>0.538</td>
<td>(0.493-0.902)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 (17.1%)</td>
<td>3 (10.3%)</td>
<td>0.629</td>
<td>(0.310-0.997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 (11.7%)</td>
<td>7 (11.5%)</td>
<td>Ref</td>
<td>(0.183-2.434)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 (40.0%)</td>
<td>15 (51.6%)</td>
<td>Ref</td>
<td>(0.093-4.222)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 (41.7%)</td>
<td>27 (44.3%)</td>
<td>0.708</td>
<td>(0.45-1.719)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 (48.6%)</td>
<td>11 (37.9%)</td>
<td>0.346</td>
<td>(0.211-1.728)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 (21.7%)</td>
<td>7 (11.5%)</td>
<td>0.089</td>
<td>(0.168-1.149)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (11.4%)</td>
<td>3 (10.3%)</td>
<td>0.674</td>
<td>(0.132-3.699)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>44 (36.7%)</td>
<td>27 (44.3%)</td>
<td>Ref</td>
<td>(0.45-1.719)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Association between BV and preterm birth

A total of 228 study participants were diagnosed for bacterial vaginosis under Amsel criteria and Nugent scoring (gold standard). Two modes of gestational classification were used i.e. LMP and Ultra-S. This is as illustrated in table 7. However only 181 study participants had complete data, thus could be categorized if the delivered term or preterm. Majority of the study participants turned negative in both Amsel and Nugent.

Table 7: Comparison between bacterial vaginosis and gestation at birth

<table>
<thead>
<tr>
<th>BV Amsel</th>
<th>BIRTH OUTCOME</th>
<th>LMP</th>
<th>Ultra-S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term (%)</td>
<td>Preterm (%)</td>
<td>p-value (CI)</td>
</tr>
<tr>
<td>Negative</td>
<td>109 (90.8%)</td>
<td>50 (82.8%)</td>
<td>0.084 (0.09-0.07)</td>
</tr>
<tr>
<td>Positive</td>
<td>11 (9.2%)</td>
<td>11 (18%)</td>
<td>5 (14.3%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120(100%)</td>
<td>61(100%)</td>
<td>35(100%)</td>
</tr>
<tr>
<td>BV Nugent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>39 (32.5%)</td>
<td>24 (39.4%)</td>
<td>0.080 (0.07-0.08)</td>
</tr>
<tr>
<td>Negative</td>
<td>70 (58.3%)</td>
<td>26 (42.6%)</td>
<td>21 (60.0%)</td>
</tr>
<tr>
<td>Positive</td>
<td>11 (9.2%)</td>
<td>11 (18.0%)</td>
<td>5 (14.3%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120(100%)</td>
<td>61(100%)</td>
<td>35(100%)</td>
</tr>
</tbody>
</table>

CI: Confidence interval

4.3.1 Profiling bacteria associated with bacterial vaginosis among preterm births

Different bacteria were profiled in relation to whether study participants delivered term or preterm, as illustrated in figure 2. This was general irrespective of one being negative or intermediate or positive for BV. Under LMP, the highest bacterium among term deliveries was *Lactobacilli* 56% seconded by *G.vaginalis/Bacteroides* 23%. These corresponded to preterm deliveries. This is as illustrated in figure 3 and figure 6.

Diverse bacteria were profiled in relation to whether study participants delivered term or preterm and if they were positive or intermediate for BV. Under LMP-BV positive, the highest bacteria among term and preterm deliveries were *G.vaginalis/Bacteroides*, both taking 50%. This is as illustrated in figure 5. Under Ultra-S-BV positive, *G.vaginalis/Bacteroides* had the highest percentage in both term and preterm deliveries. However, slightly higher among preterm deliveries.
55%, compared to term deliveries 46%. This is as illustrated in figure 8. Profiling of bacteria under intermediate diagnosis of BV is as illustrated in figure 4 and 7.

Figure 2: Bacteria identified and morphology of normal epithelium and a clue cell
Figure 3: Profiling different bacteria associated with bacterial vaginosis with regard to normal delivery, gestation at birth (LMP)-in negative, intermediate and positive diagnosis of BV.
Figure 4: Profiling different bacteria associated with bacterial vaginosis with regard to intermediate diagnosis, gestation at birth (LMP)
Figure 5: Profiling different bacteria associated with bacterial vaginosis with regard to positive diagnosis, gestation at birth (LMP)
Figure 6: Profiling different bacteria associated with bacterial vaginosis with regard to normal delivery, gestation at birth (Ultra-S)- in negative, intermediate and positive diagnosis of BV.
Figure 7: Profiling different bacteria associated with bacterial vaginosis with regard to intermediate diagnosis, gestation at birth (Ultra-S)
Figure 8: Profiling different bacteria associated with bacterial vaginosis with regard to positive diagnosis, gestation at birth (Ultra-S)

4.3.2 Performance characteristic of Amsel against Nugent

Amsel recorded a sensitivity and specificity of 58.6% and 98.3% respectively, as illustrated in table 8.

Table 8: Performance characteristic of Amsel against Nugent

<table>
<thead>
<tr>
<th>BV Nugent criteria</th>
<th>BV Amsel criteria</th>
<th>Negative</th>
<th>Positive</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Diagnosis</td>
<td>119 (60.7%)</td>
<td>2 (6.2%)</td>
<td>121</td>
<td>0.000</td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td>12 (6.1%)</td>
<td>17 (53.1%)</td>
<td>29 (12.7%)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td>65 (33.2%)</td>
<td>13 (40.6%)</td>
<td>78 (34.2%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>196 (100%)</td>
<td>32 (100%)</td>
<td>228 (100%)</td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity
(119/121)*100=98.3%

Specificity
(17/29)*100= 58.6%

4.4 Proportions of preterm deliveries among bacterial vaginosis infections

The classification of delivering term or preterm was based on Ultra-S. A comparison was done in relation to infections and outcome of delivery. Figure 2 highlights the results.

Amsel and Nugent scoring were used in the diagnosis of BV. Using Nugent scoring, 11 participants had positive result. Of the 11 who turned positive, 5 (45.5%) delivered term while 6 (54.5%) delivered preterm. A total of 21 turned intermediate under Nugent scoring, of the 21 intermediates, 9 (42.9%) delivered term while 12 (57.1%) delivered preterm.

Figure 2: Proportion of preterm births among BV

4.5 Association between syphilis, HIV and PTB

Besides BV, two diseases namely syphilis and HIV were analysed in association of PTB. A total of 181 study participants were analysed for the two infections. In the two infections, majority turned negative, 186 (97.8%) and 147 (87.0%) on syphilis and HIV respectively under LMP.

However, there was no statistical difference in the two infections and missing data was excluded (pearsons chi-square test: p= 0.417 on syphilis and p=0.598 on HIV). The distribution of these infections is shown in Table 11.
Table 9: Prevalence of Syphilis and HIV among LMP and Ultra-S study participants

<table>
<thead>
<tr>
<th>Results</th>
<th>LMP</th>
<th>Ultra-S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syphilis</td>
<td>HIV at Maternity</td>
</tr>
<tr>
<td>Negative</td>
<td>86 (97.9%)</td>
<td>147 (87.0%)</td>
</tr>
<tr>
<td>Positive</td>
<td>4 (2.1%)</td>
<td>22 (13.0%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>190 (100%)</td>
<td>169 (100%)</td>
</tr>
</tbody>
</table>

4.6. Risk factors to bacterial vaginosis

Factors affecting preterm birth associated with bacterial vaginosis outlined as illustrated in table 12. The factors included; circumcision status of sex partner (p=0.566), vaginal irritation (0.155), lower abdominal pain (p=0.795), infected by any sexually transmitted disease (STI) currently or in the past (p=0.694), what you use for bathing (p=0.887), what you use for scrubbing your body (p=0.572), were found not have statistical difference. However a statistical difference of p=0.045 was captured on use of nylon panty material.
Table 10: Different risk factors to bacterial vaginosis

<table>
<thead>
<tr>
<th>Variables</th>
<th>BIRTH OUTCOME</th>
<th>LMP</th>
<th>Ultra-S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term svd</td>
<td>Preterm svd</td>
<td>OR (95% CI of OR)</td>
</tr>
<tr>
<td>i Circumcision status of the male partner</td>
<td>Circumcised</td>
<td>83 (69.2%) 39 (63.9%)</td>
<td>0.566 (0.412-1.515)</td>
</tr>
<tr>
<td></td>
<td>Non circumcised</td>
<td>37 (30.0%) 22 (36.1%)</td>
<td>Ref (22.9%)</td>
</tr>
<tr>
<td>ii Vaginal irritation</td>
<td>Yes</td>
<td>42 (35.0%) 28 (45.9%)</td>
<td>0.155 (0.841-2.953)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>78 (65.0%) 33 (54.1%)</td>
<td>Ref</td>
</tr>
<tr>
<td>iii Lower abdominal pain</td>
<td>Yes</td>
<td>81 (67.5%) 40 (65.6%)</td>
<td>0.795 (0.478-1.760)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>39 (32.5%) 21 (34.4%)</td>
<td>Ref</td>
</tr>
<tr>
<td>iv Infected with any sexually transmitted disease</td>
<td>Yes</td>
<td>12 (5.7%) 5 (13.8%)</td>
<td>0.694 (0.270-2.395)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>108 (94.3%) 56 (86.2%)</td>
<td>Ref</td>
</tr>
<tr>
<td>v Type of STI infected with</td>
<td>Gonorrhoea</td>
<td>4 (3.3%) 3 (4.9%)</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>HIV</td>
<td>3 (2.5%) 0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td></td>
<td>HIV and Syphilis</td>
<td>1 (0.8%) 0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td></td>
<td>Syphilis</td>
<td>4 (3.3%) 2 (3.3%)</td>
<td>1 (2.9%)</td>
</tr>
<tr>
<td>vi Presence of fishy smell from the vaginal</td>
<td>Yes</td>
<td>25 (20.8%) 17 (27.9%)</td>
<td>0.289 (0.720-2.993)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>95 (79.2%) 44 (72.1%)</td>
<td>Ref</td>
</tr>
<tr>
<td>vii Use when bathing</td>
<td>Soap and water</td>
<td>117 (97.5%) 59 (96.7%)</td>
<td>0.995 (0.090-11.351)</td>
</tr>
<tr>
<td></td>
<td>Water and other detergents(liquid soap, body deodorants)</td>
<td>1 (0.8%) 1 (1.6%)</td>
<td>2.000 (0.051-78.250)</td>
</tr>
<tr>
<td></td>
<td>Water only</td>
<td>2 (1.7%) 1 (1.6%)</td>
<td>Ref</td>
</tr>
</tbody>
</table>
viii Use for scrubbing your body

<table>
<thead>
<tr>
<th>Material</th>
<th>Outcome</th>
<th>Yes (n, %)</th>
<th>No (n, %)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner pant</td>
<td></td>
<td>27 (22.5%)</td>
<td>12 (19.7%)</td>
<td>0.871</td>
<td>1.079 (0.429-2.713)</td>
</tr>
<tr>
<td>Sponge</td>
<td></td>
<td>59 (49.2%)</td>
<td>35 (57.4%)</td>
<td>0.339</td>
<td>1.441 (0.681-3.049)</td>
</tr>
<tr>
<td>A piece of cloth</td>
<td>Ref</td>
<td>34 (28.3%)</td>
<td>14 (23.0%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ix Material of panties

<table>
<thead>
<tr>
<th>Material</th>
<th>Outcome</th>
<th>Yes (n, %)</th>
<th>No (n, %)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td></td>
<td>11 (9.2%)</td>
<td>4 (6.6%)</td>
<td>0.614</td>
<td>0.735 (0.222-2.435)</td>
</tr>
<tr>
<td>Both cotton and nylon</td>
<td></td>
<td>16 (13.3%)</td>
<td>11 (18.0%)</td>
<td>0.444</td>
<td>1.390 (0.597-3.236)</td>
</tr>
<tr>
<td>Cotton</td>
<td>Ref</td>
<td>93 (77.5%)</td>
<td>46 (75.4%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x Washing genitals

<table>
<thead>
<tr>
<th>Washing</th>
<th>Outcome</th>
<th>Yes (n, %)</th>
<th>No (n, %)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>67 (55.8%)</td>
<td>38 (62.3%)</td>
<td>0.405</td>
<td>1.307 (0.696-2.456)</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>53 (44.2%)</td>
<td>23 (37.7%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xii What you use to wash vaginal

<table>
<thead>
<tr>
<th>Item</th>
<th>Outcome</th>
<th>Yes (n, %)</th>
<th>No (n, %)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap and water</td>
<td></td>
<td>73 (60.8%)</td>
<td>37 (60.7%)</td>
<td>0.982</td>
<td>0.993 (0.528-1.866)</td>
</tr>
<tr>
<td>Other detergents</td>
<td></td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water only</td>
<td>Ref</td>
<td>47 (39.2%)</td>
<td>24 (39.3%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xiii Washing vaginal immediately after sex

<table>
<thead>
<tr>
<th>Item</th>
<th>Outcome</th>
<th>Yes (n, %)</th>
<th>No (n, %)</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>72 (60.0%)</td>
<td>39 (63.9%)</td>
<td>0.607</td>
<td>1.182 (0.625-2.236)</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>48 (40.0%)</td>
<td>22 (36.1%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.05=significant; OR = odds ratio; CI = Confidence interval; ref = reference category
4.7 Maternal and obstetrics risk factors for PTB

Different maternal and obstetric factors predisposing mothers to preterm births were outlined as illustrated in table 13. Out of the variables, history of preterm birth ($p=0.049$), condom use in the last sexual act ($p=0.022$), parity 3+0 ($p=0.013$), parity 4+0 ($p=0.003$), gravidae 1 ($p=0.034$) and gravidae 2 ($p=0.001$) under ultra-sound were captured to have a statistical difference. Under LMP hormonal and non-hormonal type of contraceptive ($p=0.046$) and parity 4+0 ($p=0.031$) were captured to have a statistical difference. However, the rest of the risk factors there was no statistical difference.
Table 11: Different maternal and obstetric factors predisposing mothers to preterm births

<p>	Variables				BIRTH OUTCOME		Ultra-S
i. Age of sex debut				LMP		Ultra-S	
	Less than 18 years						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	57 (47.5%)	30 (49.2%)	0.831	1.070	19 (54.3%)	15 (51.7%)	0.838
	(0.577-1.982)						(0.337-2.419)
	More than 18 years						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	63 (52.5%)	31 (50.8%)	Ref	Ref	16 (45.7%)	14 (48.3%)	Ref
ii No. of sex partners in the last six months							
	1						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	110	56 (91.8%)	0.284	3.055	31 (88.6%)	28 (96.6%)	0.065
	(0.359-25.996)						(1.493-2.426)
	More than 1						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	4 (3.3%)	4 (6.6%)	0.143	6.000	0 (0.0%)	1 (3.4%)	Ref
	(0.478-75.344)						
	None						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	12 (10.0%)	9 (14.8%)	0.608	1.544	3 (8.6%)	8 (27.6%)	Ref
	(0.611-3.901)						(0.872-15.556)
	No						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	105	51 (83.6%)	Ref	Ref	29 (82.9%)	21 (72.4%)	Ref
	(87.5%)						
	N/A (primigravida)						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	3 (2.5%)	1 (1.6%)	Ref	Ref	3 (8.6%)	0 (0.0%)	Ref
	(1.6%)						
iv Period between last pregnancy							
	Less than 1 year						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	21 (17.5%)	12 (19.7%)	0.919	1.126	4 (11.4%)	5 (17.2%)	0.108
	(0.494-2.565)						(0.261-4.848)
	N/A (primigravida)						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	34 (28.3%)	16 (26.2%)	-	-	13 (37.1%)	4 (13.8%)	-
	(1.6%)						
	More than 1						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	65 (54.2%)	33 (54.1%)	Ref	Ref	18 (51.4%)	20 (69.0%)	Ref
	v Emotional stress						
	Yes						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	59 (49.2%)	32 (52.5%)	0.675	1.141	16 (45.7%)	17 (58.6%)	0.304
	(0.616-2.114)						(0.623-4.546)
	No						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	61 (50.8%)	29 (47.5%)	Ref	Ref	19 (54.3%)	12 (41.4%)	Ref
	(1.6%)						
vi Contraceptive use							
	Yes						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	78 (65.0%)	33 (54.1%)	0.155	0.635	20 (57.1%)	19 (65.5%)	0.494
	(0.339-1.189)						(0.515-3.940)
	No						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	42 (35.0%)	28 (45.9%)	Ref	Ref	15 (42.9%)	10 (34.5%)	Ref
	vii Type of contraceptive						
	Hormonal						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	54 (71.1%)	25 (75.8%)	0.059	1.463	18 (90.0%)	14 (73.7%)	0.383
	(1.259-1.700)						(1.310-2.413)
	Hormonal and Non-hormonal						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	14 (18.4%)	8 (24.2%)	0.046	1.571	1 (5.0%)	5 (26.3%)	0.088
	(1.146-2.155)						(1.003-35.908)
	Non-hormonal						
	Term svd	Preterm svd	p-value	OR (95% CI of OR)	Term svd	Preterm svd	p-value
	8 (10.5%)	0 (0.0%)	Ref	Ref	1 (5.0%)	0 (0.0%)	Ref
<table>
<thead>
<tr>
<th>viii Infertility treatment</th>
<th>Yes</th>
<th>5 (4.2%)</th>
<th>3 (4.9%)</th>
<th>0.816 (0.275-5.152)</th>
<th>1 (2.9%)</th>
<th>0 (0.0%)</th>
<th>0.359 (0.430-0.678)</th>
<th>0.816 (0.275-5.152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>115 (95.8%)</td>
<td>58 (95.1%)</td>
<td>Ref</td>
<td>34 (97.1%)</td>
<td>29 (100%)</td>
<td>Ref</td>
<td>0.816 (0.275-5.152)</td>
<td></td>
</tr>
<tr>
<td>ix Condom use in the last sexual act?</td>
<td>Yes</td>
<td>22 (18.3%)</td>
<td>18 (29.5%)</td>
<td>0.087 (0.909-3.826)</td>
<td>3 (8.6%)</td>
<td>9 (31.0%)</td>
<td>4.8 (1.159-19.879)</td>
<td>0.022 (0.430-0.678)</td>
</tr>
<tr>
<td>No</td>
<td>98 (81.7%)</td>
<td>43 (70.5%)</td>
<td>Ref</td>
<td>32 (91.4%)</td>
<td>20 (69.0%)</td>
<td>Ref</td>
<td>0.022 (0.430-0.678)</td>
<td></td>
</tr>
<tr>
<td>x Parity</td>
<td>0+1</td>
<td>4 (3.3%)</td>
<td>2 (3.3%)</td>
<td>0.947 (0.156-5.673)</td>
<td>1 (2.9%)</td>
<td>1 (3.4%)</td>
<td>3.000 (0.15-59.890)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>0+3</td>
<td>0 (0.0%)</td>
<td>1 (1.6%)</td>
<td>0.347 (0.236-0.509)</td>
<td>0 (0.0%)</td>
<td>1 (3.4%)</td>
<td>0.25 (0.107-0.584)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>1+0</td>
<td>39 (32.5%)</td>
<td>18 (29.5%)</td>
<td>0.734 (0.386-1.955)</td>
<td>15 (42.9%)</td>
<td>10 (34.5%)</td>
<td>2.000 (0.5-7.997)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>1+1</td>
<td>5 (4.2%)</td>
<td>0 (0.0%)</td>
<td>0.112 (0.533-0.801)</td>
<td>1 (2.9%)</td>
<td>0 (0.0%)</td>
<td>0.567 (0.565-0.995)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>2+0</td>
<td>28 (23.3%)</td>
<td>12 (19.7%)</td>
<td>0.638 (0.329-1.977)</td>
<td>5 (14.3%)</td>
<td>5 (17.2%)</td>
<td>3.000 (0.560-16.071)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>2+1</td>
<td>1 (0.8%)</td>
<td>1 (1.6%)</td>
<td>0.657 (0.111-32.010)</td>
<td>0 (0.0%)</td>
<td>1 (3.4%)</td>
<td>0.25 (0.107-0.584)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>3+0</td>
<td>7 (5.8%)</td>
<td>2 (3.3%)</td>
<td>0.464 (0.100-2.880)</td>
<td>1 (2.9%)</td>
<td>5 (17.2%)</td>
<td>15.00 (1.325-169.870)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>3+1</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
<td>0.468 (0.533-0.801)</td>
<td>0 (0.0%)</td>
<td>1 (3.4%)</td>
<td>0.25 (0.107-0.584)</td>
<td>0.087 (0.909-3.826)</td>
</tr>
<tr>
<td></td>
<td>4+0</td>
<td>2 (1.7%)</td>
<td>6 (9.8%)</td>
<td>0.034 (1.026-31.066)</td>
<td>0 (0.0%)</td>
<td>5 (17.2%)</td>
<td>0.25 (0.107-0.584)</td>
<td>0.034 (1.026-31.066)</td>
</tr>
<tr>
<td></td>
<td>5+0</td>
<td>0 (0.0%)</td>
<td>1 (1.6%)</td>
<td>0.178 (0.236-0.509)</td>
<td>0 (0.0%)</td>
<td>1 (3.4%)</td>
<td>0.25 (0.107-0.584)</td>
<td>0.034 (1.026-31.066)</td>
</tr>
<tr>
<td></td>
<td>5+1</td>
<td>0 (0.0%)</td>
<td>1 (1.6%)</td>
<td>0.178 (0.236-0.509)</td>
<td>0 (0.0%)</td>
<td>1 (3.4%)</td>
<td>0.25 (0.107-0.584)</td>
<td>0.034 (1.026-31.066)</td>
</tr>
<tr>
<td></td>
<td>6+0</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>-</td>
<td>0 (0.0%)</td>
<td>2 (6.9%)</td>
<td>-</td>
<td>0.034 (1.026-31.066)</td>
</tr>
<tr>
<td></td>
<td>0+0</td>
<td>32 (26.7%)</td>
<td>17 (27.9%)</td>
<td>Ref</td>
<td>12 (34.3%)</td>
<td>4 (13.8%)</td>
<td>Ref</td>
<td>0.034 (1.026-31.066)</td>
</tr>
<tr>
<td>xi Gravidae</td>
<td>1</td>
<td>35 (29.2%)</td>
<td>19 (31.1%)</td>
<td>0.463 (1.268-1.878)</td>
<td>15 (42.9%)</td>
<td>6 (20.7%)</td>
<td>1.4 (1.068-1.835)</td>
<td>0.034 (1.026-31.066)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>41 (34.2%)</td>
<td>18 (29.5%)</td>
<td>0.509 (1.215-1.704)</td>
<td>6 (17.1%)</td>
<td>9 (31.0%)</td>
<td>2.5 (1.345-4.646)</td>
<td>0.001 (1.003-35.908)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>31 (25.8%)</td>
<td>13 (21.3%)</td>
<td>0.519 (1.172-1.719)</td>
<td>1 (2.9%)</td>
<td>5 (17.2%)</td>
<td>6.000 (1.003-35.908)</td>
<td>0.001 (1.003-35.908)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8 (6.7%)</td>
<td>3 (4.9%)</td>
<td>0.546 (1.375)</td>
<td>0 (0.0%)</td>
<td>2 (6.9%)</td>
<td>-</td>
<td>0.001 (1.003-35.908)</td>
</tr>
<tr>
<td></td>
<td>5 (2.5%)</td>
<td>6 (9.8%)</td>
<td>0.197</td>
<td>3.000</td>
<td>(0.0%)</td>
<td>5 (17.2%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 (2.5%)</td>
<td>6 (9.8%)</td>
<td>0.197</td>
<td>3.000</td>
<td>(0.0%)</td>
<td>5 (17.2%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 (0.0%)</td>
<td>2 (3.3%)</td>
<td>0.083</td>
<td>-</td>
<td>0 (0.0%)</td>
<td>2 (6.9%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>-</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1 (0.8%)</td>
<td>0 (0.0%)</td>
<td>Ref</td>
<td>13 (37.1%)</td>
<td>0 (0.0%)</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.05=significant; OR = odds ratio; CI = Confidence interval; ref = reference category
4.6.2.1 Relationship between body mass index of expectant mothers and preterm births

Weight and height measurements were obtained from the records and used to compute body mass index (BMI). BMI was used to determine if one was underweight or obese as these are known risk factors for preterm deliveries.

Body mass index was compared between term and preterm deliveries with the use of independent t-test for LMP and Ultra-S. The results are shown in table 14 and 15. A total of 181 normal deliveries were determined by LMP. Of the 181, a total 64 did an Ultra-S. Under LMP, the mean body mass index for term and preterm were 26.2 and 25.8 respectively, which can be classified as overweight. However there were no statistical differences noted between the two groups (t-test; p=0.853).

Under Ultra-S, the mean body mass index for term and preterm were 26.4 and 26.5 respectively, which can be classified as under overweight. However these means were not statistically different (t-test; p=0.961).

Table 12: Comparison of body mass index between term and preterm under LMP

<table>
<thead>
<tr>
<th>Gestation classification</th>
<th>N</th>
<th>Mean</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>120</td>
<td>26.205</td>
<td>0.853</td>
</tr>
<tr>
<td>Preterm</td>
<td>61</td>
<td>25.815</td>
<td></td>
</tr>
</tbody>
</table>

Table 13: Comparison of body mass index between term and preterm under Ultra-S

<table>
<thead>
<tr>
<th>Gestation classification</th>
<th>N</th>
<th>Mean</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term sva</td>
<td>35</td>
<td>26.416</td>
<td>0.961</td>
</tr>
<tr>
<td>Preterm</td>
<td>29</td>
<td>26.491</td>
<td></td>
</tr>
</tbody>
</table>
5.0 DISCUSSION

PTB is the leading cause of prenatal mortality and morbidity globally. In spite of efforts to prevent PTB in most nations, the incidences of PTB have been on the rise. Infections are the leading causes of PTB. Among the infectious agents, bacteria constitute the largest number of microorganisms associated with PTB. The most prevalent lower genital infection that causes PTB is bacterial vaginosis (BV). In this study, BV prevalence was found to be 9.2% and 18% among the term and preterm deliveries respectively, under LMP. Under Ultra-S, BV prevalence was 14.3% and 20.6% under term and preterm deliveries. The most common bacterium was found to be lactobacilli in both term and preterm deliveries. However among BV positive and intermediate, G. vaginalis/Bacteroides were dominant in both LMP and ultra-s. A number of risk factors were looked into such as age (31-40), history of preterm births, and use of nylon panty material under ultra-S and hormonal and non-hormonal use of contraceptives under LMP were found to have a statistical significance.

Among the social demographic factors, age was reported to be associated with PTB, in particular age between 31-40. This was similar in other studies despite of differences in geographical location, such as Europe, Canada and Nigeria (Saurel-cubizolles et al., 2004; WHO, 2012; Butali et al., 2016; Cnattingius, Vixner and Norman, 2016; Michael et al., 2017; Fuchs et al., 2018). However in other studies there was no association (Aderoba, Olok and Olagbuji, 2017; Goisis et al., 2017). The disparity could be as a result to difference in the social economic status. Interestingly, there was variation per study even within the same country on the minimum gestation age of a preterm birth. For some it was 22 weeks while others it was 28 weeks (Butali et al., 2016; Aderoba, Olok and Olagbuji, 2017). In addition housewife under occupation was reported to be associated with PTB; however no association has been reported from other studies.

The prevalence of BV in this study was 12%. A study done in Ethiopia among pregnant women and the same age group of 18-40 had a slightly higher prevalence of 19.4%. The study compared the prevalence of BV between symptomatic and asymptomatic, which was 31.6% and 15.9% respectively. In addition a higher percentage of pregnant women were asymptomatic for BV (Ababa et al., 2014). Moreover some studies had a higher prevalence of 37% among HIV-1 pregnant women in Kenya, 48.6% among normal women in Ethiopia (Bitew et al., 2017) and 29.2% among normal women aged between 14-49 years in USA (Quillan et al., 2007). A similarity
in the two studies done in Ethiopia and USA is that BV prevalence is lower among young girls compared to older women. In this study, BV prevalence was higher among preterm deliveries similar to a study done in Nigeria (Aderoba, Olokor and Olagbuji, 2017).

BV has been consistently associated with PTB. However in this study there was no statistically significant association as documented in quite a number of studies (Shayo et al., 2012; Freitas et al., 2018; Mcelrath et al., 2018). Unlike recent studies, a number of past studies have proclaimed an association between BV and PTB (Obert et al., 2000; Hebb et al., 2004; Bahram et al., 2009; Margolis and Fredricks, 2014; Aderoba et al., 2017). This provides a limelight for more research to be done on what has changed to lead to no association. Interestingly a study done in India and Sweden, reported a significance of BV and PTB in early pregnancy period of 16-20 weeks and no significance in late pregnancy period of 28-32 weeks (Jacobsson et al., 200; Gupta et al., 2016). The difference in the findings could be as a result of difference in the geographic location, race and clinical characteristics. In addition the prevalence of BV also varies within the same study population groups (Bitew et al., 2017).

Different bacteria associated to BV were profiled in association to PTB. Bacteria profiled included Lactobacilli, G. vaginalis/Bacteroides, Mobiluncus and Fusobacteria. However, there was no statistical difference between term and preterm deliveries. The most dominant bacteria were lactobacillus, more so among the term deliveries. However, among those who were positive and intermediate for BV, G. vaginalis/Bacteroides was the commonest among term and preterm deliveries under gestation by both LMP and Ultra-S. The same findings were evident in Tanzania, despite of the lack of categorization of the common bacteria between term and preterm deliveries (Shayo et al., 2012). A study done in USA reported Mobiluncus bacteria associated to BV, to have a significance of about 2-fold increased risk to PTB, despite absence of statistical significance (Foxman et al., 2014).

In this study, bacterial vaginosis was not associated with risk factors such as: circumcision status of the male partner, vaginal irritation, fishy smell from the vaginal, lower abdominal pain, history of STI, washing of vaginal immediately after sex, items used when bathing and washing vaginal. This was an interesting finding since the mentioned factors predispose one to BV yet little has been done in comparison to term and preterm deliveries. Some studies have reported an association with the use of cloth for intravaginal cleansing in 1 to >28 times a week. (Clelland et al., 2008)
and fishy smell from the vaginal (Schwebke and Desmond, 2005). The differences could be attributed to geographical and study population differences. Some studies used pregnant women while others used non-pregnant women female sex workers. However, a statistical difference was captured in use of nylon panties as risk factor to bacterial vaginosis. This was equivalent to other studies (Yu et al., 2011; Bardin et al., 2013).

In our study we found some maternal and obstetrics risk factors that were associated to PTB. These included history of PTB, condom use, parity, gravidae, hormonal and non-hormonal type of contraceptive. Many studies have reported an association of PTB and history of PTB (Saurel-cubizolles et al., 2004; Hamad et al., 2005; Zhang et al., 2012; Phillips et al., 2017). However, a prospective study done in Sweden recorded no association on PTB and history of PTB (Larsson et al., 2007) Association of condom use in the last sexual act and PTB has not been reported from other studies. However, a study done in USA reported consistent use of condom, increased recurrence of BV (Jane R. Schwebke, 2009) while other studies have reported reduction BV (Mart et al., 2004; Horne et al., 2009). Association of gravidae and PTB was reported in this study. However, other studies have reported no association (Horne et al., 2009; Koss et al., 2015). Parity was captured to have a statistical significance in this study just like other studies (Fredricks, 2011; Wagura et al., 2018) Hormonal and non-hormonal use of contraceptive has been associated with PTB like a study done by WHO (Mohamed et. al., 2012)

Besides BV, the study was in a position to capture data on HIV and candidiasis. However, there was no statistical difference in both. HIV prevalence was 13% and 11% under LMP and Ultra-S respectively. This is slightly high compared to the HIV prevalence of 6.1% among women who had at least one live birth in the last 5 years in different counties in Kenya, (Sirengo et al., 2016). Difference in the prevalence could be as a result of dissimilarity in the study populations.

One participant was captured to be positive for candidiasis. The participant delivered term, however she was excluded from the study since she delivered through caesarean.
5.1 STUDY STRENGTHS
The main strength of this study is the vigor with which it arrived at the diagnosis of BV. This is unlike a number of studies. Two main diagnosis were used, Amsel and Nugent (gold standard). Moreover, profiling of the different bacteria associated to PTB was highlighted and a comparison was made between the term and PTB cohorts. Hence, very few studies have profiled bacteria associated with BV in relation to PTB.

In addition, the study extensively highlighted risk factors that predispose women to BV and PTB. This has not been done in any of the studies. Most studies focus on risk factors to BV or PTB separately but not both. Thus through this study more light has been shed.

5.2 STUDY CONCLUSION
The study was in a position to profile different bacterial associated with bacterial vaginosis in relation to term and preterm deliveries. Lactobacillus was dominant in the two cohorts. However, study participants diagnosed for BV positive or intermediate *G. vaginalis*/Bacteroides was the most dominant.
Moreover, *G. vaginalis*/Bacteroides were slightly higher among the preterms compared to terms.

BV prevalence was found to be 12% among women about to deliver. Despite the low prevalence, high percentages (55%) who were diagnosed positive of BV delivered preterm.

Ages, house wife under occupation, history of PTB, nylon panty material, parity, gravidae, hormonal and non-hormonal use of contraceptive, condom use in the last sexual act were found to be significantly associated with preterm deliveries. Vaginal irritation, fishy smell from the vaginal, lower abdominal pain, history of STI, washing of vaginal immediately after sex, items used when bathing and washing vaginal were found not to be significantly associated to PTB.

5.3 STUDY LIMITATION
The study had the limitation of not drawing causality as a result of the study design. In addition microscopy is limited to identifying a wider array of bacteria associated with BV.
5.4 RECOMMENDATION

The study recommends a replication of the study in a longitudinal study that allows drawing causal relationships. In addition use of loop-mediated isothermal amplification (LAMP) or Multiplex Polymerase Chain Reaction (PCR) that helps in the identification of different species of bacteria and their quantity, since BV is an imbalance of the aerobes and anaerobes.

More research needs to be done since a discrepancy is arising on association of BV and PTB. Recent studies are reporting no association while past studies reported BV to be associated with PTB. More needs to be done on what has caused the shift.

Further research is needed in condom use and association to PTB. Some studies have reported consistent use of condom increases recurrence of BV while other studies are reporting reduction of BV.

5.5 STUDY RESULTS DISSEMINATION PLAN

The results of this study will be disseminated through print publication in peer review journal and as well as in conferences and seminars.
6.0 REFERENCE:

Kataoka, S. et al. (2006) ‘Association between Preterm Birth and Vaginal Colonization by
Mycoplasmas in Early Pregnancy Association between Preterm Birth and Vaginal Colonization
by Mycoplasmas in Early Pregnancy’, *Journal of Clinical Microbiology*, 44(1), pp. 51–55. doi:
10.1128/JCM.44.1.51.

bacteriocin-like inhibitor produced by Enterococcus faecium: Potential significance for bacterial
vaginosis’, *Infectious Diseases in Obstetrics and Gynecology*, 11(3), pp. 147–156. doi:
10.1080/10647440300025513.

Kerubo, E. et al. (2016) ‘Prevalence of reproductive tract infections and the predictive value of
girls’ symptom-based reporting: findings from a cross-sectional survey in rural western Kenya’,

Women Randomized to Lopinavir/ritonavir- or Efavirenz-based Antiretroviral Therapy’, *J Acquir

2004; associations with symptoms, sexual behaviors, and reproductive health’, *Sexually

Peptostreptococcus magnus and Its Relationship to Site of Infection’, *Oxford journals*, 163(5),

Larsson, P. et al. (2007) ‘BMC Women ’ s Health Predisposing factors for bacterial vaginosis ,
treatment efficacy and pregnancy outcome among term deliveries ; results from a preterm

of global health*, 8(1), p. 11.

10.21276/sjams.2016.4.6.32.

7.0 APPENDIXES

(A) INFORMED CONSENT EXPLANATION DOCUMENT

Title of study: Profiling of bacteria species in bacteria vaginosis associated with preterm births in Kisumu County

Principal investigator: Jelioth Muthoni, MSc. Student, University of Nairobi/KNH (tel. 0792487066)

Introduction

I would like to talk to you about the study being conducted by Jelioth Muthoni, a medical microbiology student at the University of Nairobi/Kenyatta National Hospital. The purpose of this consent is giving you information, which will help you, make up your mind on whether to participate in the study or not. Feel free to ask any question concerning the study, any benefits, and risk to ensure that this consent form is clear. This will help you make a concrete decision on whether to participate in the study or not. Once you decide to participate you will be given a copy of this consent to keep it in your records.

Purpose of the study

This study is about having a better understanding on the risk factors and the bacteria that are associated with pre-births. I hereby kindly request for your permission to use your vaginal specimens for my research, which will be used to identify the bacteria, using most reliable diagnostic method and the questioners will identify the risk factors. High standards of confidentiality of your test will be ensured.

Study procedure

A study nurse in Jaramogi Oginga Odinga teaching referral hospital will consent the participants who meet the inclusion criteria. Then carry a one on one questionneiring session with the participant. After which the study nurse will take a vaginal swab. The vaginal sample will be run in Amsel and Nugent score criteria by the principal investigator.

Role of Participant

Obtaining a small vaginal swab from the participants who obtain the consent.
Type of specimen
Three vaginal swabs will be obtained on each participant who obtains the consent.

Possible storage of specimen
One of the swabs collected will be stored for further analysis.

Expected time in the study
The study is expected to run for one year. However, it will be one time contact with the study participant.

Benefits
The benefits of participating in this research include:
The diagnosis will be used in the identification of Bacterial vaginosis; the tests are of high sensitivity and specificity. Participants’ positive for BV will be referred to Obstetric and Gynecological for treatment. In addition the results will be used to guide on the measures to be put in place in the prevention of pre-term deliveries. The participants will incur no cost.

Risks and discomforts
The risks in this research are minimal. A slight discomfort in the collection of the vaginal swab.

Confidentiality
Records relating to you or your patients participation in the study will remain confidential. A signed copy of the consent form will be given to you.

Data dissemination
The data acquired will be presented to the School of Medicine, Department of Medical Microbiology, Jaramogi Oginga Odinga teaching referral hospital and University of Nairobi Tropical and Infectious Diseases. Moreover, it will be published in peer reviews, presented in journal clubs and seminars.
Voluntary participation
Your participation in this study is voluntary. Once you decline from participating, no services will be denied that are normally available to you.

Contact information
If you have questions now or in future regarding your rights or about this study, you may contact:

- Jelioth Muthoni, MSc student at the University of Nairobi on +254792487066
- Chairperson, KNHUONERC.-Prof. Anastasia Guantai

P.O BOX 20723-00200 Nairobi. Tel#: 726300-9, Fax 725272/

- KNH-UoN ERC Secretary- Prof. Mark L. Chindia

Contact telephone numbers 2726300 ext. 44102 email, uonknh_erc@uonbi.ac.ke

- Dr. Julius Oyugi Supervisor Tel +254713898564
- Prof. Walter Jaoko Supervisor Tel +254727555254

(B) CONSENT FORMS
Consent from the patient
The above details about the study and the basis of participation have been explained to me and I agree to give permission for use of my vaginal sample in the proposed study. I understand that at liberty to choose whether my specimen should be used in the study or not. I give my consent for my vaginal specimen to be used in the diagnosis of bacterial vaginosis and the association with pre-term deliveries.

Patient’s signature/Thumb mark: --
P I’s signature: --
Date: --

Ridhaa ya kukubali kuwa muhusika katika Kiswahili
Title of study: Wasifu aina ya bakteria katika bakteria utoko kuhushwa na kuzaliwa njiti katika Kisumu County
Mpelelezi mkuu: Jelioth Muthoni, MSc.student, Chuo Kikuu cha Nairobi / KNH (Number ya rununu 0792487066)

Utafiti kuanzishwa

Madhumuni ya utafiti
Utafiti huu ni kukuku kuelewa mzuri juu ya mambo ya hatari na bakteria ambayo ni kuhusishwa na kabla ya kuzaliwa. I hapa kwa huruma ombi kwa ruhusa ya kutumia sampuli yako ya uke kwa ajili ya utafiti wangu, ambao utatumika kwa kutambua bakteria, kwa kutumia mbinu zinazoaminika kwa uchunguzi na kuuliza maswali yatakayo tambua hatari. Viwango vya hali ya juu vya usiri vitatumika kwa matoko yako.

Utaratibu kifani

Wajibu wa Mshiriki
Kupata kidogo ya uke usufi na dodoso kujazwa kutoka washiriki ambao watapeana idhini. Aina ya sampuli
Usufi uke tatu zitapatikana kwenye kila mshirika ambaye amepeana idhini.

Uwezekano uhifadhi wa sampuli
Moja ya swabs zilizokusanyawa itakuwa kuhifadhiwa kwa ajili ya uchambuzi zaidi.

Inatarajiwa wakati katika utafiti
Utafiti unatarajiwa kuendesha kwa mwaka mmoja

Faida
Faida ya kushiriki katika utafiti huu ni:
Utambuzi zitatumika katika utambuzi wa bakteria utoko, vipimo ni ya unyeti wa juu na maalum. Washiriki watakao kuwa na bacteria utoko wata tumwa kwa Obsteric na Gynecologia kwa matibabu. Aidha matokeo itumika kuongoza hatua za kuwekwa katika nafasi kwa kuzuia uzazi kabla ya muda. Washiriki hawatalipaucedote.

Hatari na usumbufu
Hatari katika utafiti huu ndogo. Usumbufu kidogo kwa usufi wa usufi uke.

Usiri
Recordi kuhusiana na wewe au mgojwa wako katika kushiriki kwa utafiti utabaki kuwa siri. Anayehusika kwa utafiti atapewa nakala aliyo saini ya fomu ya idhini.

Usambazaji wa data
Data alipewa yatawasilishwa kwa Shule ya Tiba, Idara ya Medical Microbiology, Jaramogi Oginga Odinga kufundisha hospitali ya rufaa na Chuo Kikuu cha Nairobi Tropical na Magonjwa ya Kuambukiza. Aidha, itachapishwa katika peer mapitio majarida na kuwasilisha katika vilabu jarida na semina.

Ushiriki wa hiari
Kushiriki kwako katika utafiti huu ni ya hiari. Wale watakaoshuka kutokea kwa kushiriki, hakuna huduma unayopokea kwa kawaida utanyimwa. Utapokea huduma kwa kawaida. Maelezo ya mawasiliano Kama una maswali sasa au katika siku zijazo kuwasili haki zako au utafiti huu, unaweza kuwasiliana na:
Jelioth Muthoni, MSc Mwanafunzi katika chuo Kikuu cha Nairobi on +254792487066

Mwenyekiti, KNHUONERC. Prof. Anastasia Guantai

P.O BOX 20723-00200 Nairobi. Namba ya simu#: 726300-9, Faksi 725272/

KNH-UoN ERC Katibu Mawasiliano- Prof. Mark L. Chindia

Nambari za simu 2726300 ext. 44102 email, uonknh_erc@uonbi.ac.ke

Dr. Julius Oyugi Supervisor Tel +254713898564

Prof. Walter Jaoko Supervisor Tel +254727555254

NYONGEZA FOMU YA KUKUBALI

Ridhaa kutoka kwa mgonjwa

Maelezo ya hapo juu kuhusu utafiti na msingi wa ushiriki zimeelezwa kwangu na mimi kukubali kutoa ruhusa kwa ajili ya matumizi ya sampuli yangu uke katika utafiti mapendekezo. Naelewa kwamba uhuru wa kuchagua kama sampuli yangu itumike katika utafiti au la. Natoa kibali yangu kwa sampuli yangu uke kutumika katika utambuzi wa vimelea utoko na kushirikiana na kujifungua kabla ya muda.

Sahihi/kidole gumba cha mgonjwa: ----------------------------------
Sahihi ya mlinzi wa mgonjwa: ----------------------------------
Tarehe: ----------------------------------
KITABU MAR RUSA MICHIWO BANG WINJO TIENDE NONRO

Wich mar nonro: Kawo ratiro mar aina mag bacteria makelo tuo e duong mar mine mamiyo ginyuolo nyithindo ka pok kinde mar nyuol ochopo e County mar Kisumu

Janonro Maduong: Jelioth Muthoni, japuonjre mar Masters e mbalarieny mar Nairobi, hospital mar Kenyatta (namba mar sima 0792487066)

Chakruok

Momioyo mar Nonro
Nonro ni en kuom bedo gi winjo maber kuom bacteria gi gik ma kelo nyuol ka pok kinde mar dweche ochiko ochopo. Kuom mano akwayi gi luoro mondo iyie mondo wati gi specimen ma wabiro golo e duong mari e nonro ni ma biro ti godo fwenyo bacteria ka itiyo gi yore makare mag nonro kendo jononro biro fwenyo bende gik ma kelo bacteria gi. Ling ling mamalo ibi tigo sama ipimi.

Chenromarnonro
E nonro ni, ibiro ti gi pamba e duong mari ka igolo godo specimen mar nonro. Nurse ma nitiere e hosiptal mar Jaramogi Oginga Odinga teaching and referral biro timo chenro ni bang ja nonro maduong ka oseyudo rusa kuom jatuo. Bang mano gima ochoki ibi keti e Amsel gi Nugent score criteria
Tich mar jatuo

Yudo sample ka oa e duong mar ngama ochiwo rusa

Aina mar gir nonro

Pamba adek ma oywe godo duong mar ngato ka ngato ma ochiwo rusa

Kama ibiro kan e gige nonro

Achiel kuom pamba adek ibi kan ne nonro mabuora

Kinde ma nonro biro kawo

Nonro owinjore mondo otimre kuom higa achiel. Kata kamano obiro bedo mana mar neno jatuo dichiel kende

Ber

Ber mar riwruok gi nonro ni en ni
Nonro ni biro konyo e fwenyruok mar tuo mar bacterial vaginosis. Yore mag fwenyo tuo ni gin yore ma nigi teko mar fwenyo tuo e yo ma yet. Jokma ibiro yudi gi tuo ni ibiro nwang ne gi daktari ma thiedho tuoche mag mine mondo gi yud thieth. Kuom mago, duoko ibiro ti godo loso yore gi chenro mag konyo mine kik nyuol ka kinde mar dweche ochiko pok ochopo. Onge pesa ma ibiro dwar kuom jotuo

Chandruok kod winjo marach

Chandruok ma luore gi nonro ni tin. Winjo marach matin biro mana bedo sama ikawo specimen e duong.

Ling ling

Ndiko ma luore kodu kata jatuo ni e nonro ni biro dong ma ling ling. Ibiro miyi copy mokete sei mar barua mar rusa
Kaka ibiro ti gi duoko
Duoko ma oyudi ibiro nyisi e School of Medicine, department mar Microbiology, Jaramogi Oginga Odinga teaching and referral hospital kod University of Nairobi Tropical and infectious diseases. Moloyo duoko go ibiro keti e mbui kod kitepe mag sayans misomo e mbui.

Bedo e nonro kuom hero
Bedoni e nonro ni en kuom hero mari. Po mono ni iweyo bedo e nonro ni onge huduma mora mora ma ibi tuoni mane nyiche imiyi.

Contact information

Laini mar tudruok
Ka intiere gi penjo sani kata e ndalo mabiro kaluore gi haki mari e nonro ni, inyalo tudori gi jok ma ondik piny kae:

Jelioth Muthoni, japuonjre mar masters e University of Nairobi e +254792487066

Jakom KNHUONERC.- Prof. Anastasia Guantai

P.O BOX 20723-00200 Nairobi. Tel#: 726300-9, Fax 725272/

KNH-UoN ERC Secretary - Prof. Mark L. Chindia

Contact telephone numbers 2726300 ext. 44102 email, uonknh_erc@uonbi.ac.ke

Dr. Julius Oyugi Supervisor Tel +254713898564
Prof. Walter Jaoko Supervisor Tel +254727555254

(B) Form mar Rusa
Rusa ka oa kuom jatuo
Weche duto ma luore gi nonro ni ose ler na kendo ayie mondo oti gi samples ka ae duong mara e nonro ni. Angeyo ni an gi thuolo mar yie kata dagi mondo oti gi specimen ma oa e duong mara e timo nonro ni. Achiwo rusa mara mondo oti gi specimen ma wuok e duong na e fwenyruok mar bacterial vaginosis gi gik ma kelo nyuol ma pok ochopo dweche ochiko.

Sei mar jatuo -----------------------------
Sei mar janonro maduong -------------------
Tarik -----------------------------
(C) QUESTIONNAIRE

PROJECT TITLE: Profiling of bacteria species in bacteria vaginosis associated with preterm births in Kisumu County

1. DATE:

2. PATIENTS NAME: ..

3. PARTICIPANTS IDENTIFICATION NUMBER (PID):

4. WARD NO.................................

5. WEIGHT FROM CHARTS:

6. HEIGHT FROM CHARTS:

Part one: demography

8. Age
 <20
 21-25
 26-30
 31-40
 >41

9. Marital status
 Single (Never married)
 Steady partner living together
 Steady partner not living together
Married monogamous □ Married polygamous □

Any other □

If others, please specify……………………………..

10. What is your occupation?
Housewife □
Small scale business (fishing) □
Farmer □
Civil servant □
Casual laborer □
Unemployed □

11. What is the main source of income in your house?
Self service □
Fishing □
Business □
Husband □
Remittance □
Others □
11a. If others, please specify……………………………………

12. What is your highest education level?

Never attended ☐

Primary ☐

Secondary ☐

Tertiary ☐

13. What is your place of residence?

Urban ☐

Rural ☐

14. Age of sexual debut (first time you had sex)

Less than 18 years ☐

More than 18 years ☐

15a. How many sexual partners do you have or had in the past 6 months ?

None ☐

1 ☐

More than 1 ☐

15b. If more than 1, for how long……………………………………
16. What is the circumcision status of your sex partner(s)?
Circumcised

Not circumcised

Circumcised and Non-circumcised

17. Do you have a history of pre-term delivery? (the participant)
Yes

No

If yes, how many?..............................

18. What was the period between your last pregnancy?
Less than 1 year

More than 1 year

19. Do you experience emotional stress?
Good

Poor

20. Have you ever used a contraceptive either currently or in the past?
Yes

No

If yes,
21. Which one did you use?

Pills

Intrauterine Contraceptive Device (A Pack of six)

Norplant

Other

If other, please specify……………………………..

22. Have you been under any infertility treatment?

Yes

No

23. Did you use condom during the last sexual act?

Yes

No

24a. Do you experience vaginal irritation?

Yes

No

b. If yes, when and how often? ………………………..
25. Do you experience lower abdominal pain?
Yes ☐
No ☐

26a. Have you ever been infected with any sexually transmitted disease
Yes ☐
No ☐

b. If yes, How many times………..

27b. Which one were you infected with …………………………..

28. Do you have any vaginal discharge?
Yes ☐
No ☐

If yes, please specify the nature……………………

29a. Do you sometimes get or smell unpleasant odor that has a fishy smell from your vaginal?
Yes ☐
No ☐

b. If yes, when was the last time you experience? ………………………

30. How many times do you bathe in a week? (……………………)

31. What do you use when bathing?
Water only ☐
Soap and water ☐
32. What do you use for scrubbing your body?

- Hands
- A piece of cloth
- Your inner pant
- Sponge
- Any other means (specify)

33. How much water do you use when bathing?

- About ¼ basin
- About ½ basin
- About ¾ basin
- A full basin
- More than a full basin

34. How much time (in minutes) do you use when bathing?

35. How many pairs of panty do you own?

36. Which material are your panties?

- Cotton
- Nylon
- Other (specify)

Water and other (specific detergent)

86
37a. How many times in a week do you change your pants? (……………………)

B. How many times in a week do you wash your pants? (……………………)

38a. Do you ever wash your genitals (“private parts”) apart from when you are bathing?
Yes
No

b. If yes, how many time in a week (………………………..)

39. What do you use to wash your vagina?
Water only
Soap and water
Other detergents (specify)………………

40a. Have you ever washed your vaginal immediately after sex?
Yes
No

b. If yes, how often do you wash your vagina after sex?
Always
More than half of the time
Half of the time
Less than half of the time
Never

87
MASWALI
Kichwa cha utafiti: wasifu aina ya bakteria katika bakteria utoko kuhusishwa na kuzaliwa njiti katika kisumu county
1. TAREHE………………………
2. JINA LA WAGONJWA: …………………
3. WAKAZI WA IDENTIFICATION NAMBARI: ………………………
4. WARD NO…………………………
5. UZITO KUTOKA KWA CHARTS: ………………………
6. UREFU KUTOKA KWA CHARTS: ………………………

Sehemu ya kwanza: demography

8. Umri
<20 □
21-25 □
26-30 □
31-40 □
>41 □

9. Hali ndoa
Hajawahi kuolewa □
Mshirika wa kudumu anaishi pamoja □
Mshirika wa kudumu hamuishi pamoja □
Mke aliyeolewa Wanandoa waliOLEWA

Nyingine yoyote

Ikiwa wengine, tafadhali taja

10. Nini ufunzo wako?

Mke wa nyumbani

Biashara ndogo (uvuvi)

Mkulima

Mtumishi wa umma

Kazi ya kawaida

Hunakazi

11. Mapato yako mengi yatoka wapi?
Huduma ya kujitegemea
11a. Ikiwa wengine, tafadhali taja ……………………………

12. Umesoma hadi kiwango kipi?
Sikusoma

Shule ya msingi

Secondari

Msituni

13. Makazi yako ni yapı?
Mjini

Kijijini

90
14. Ulikuwa na miaka mingapi ulipo jihusisha kwa ngono mara ya kwanza?
Chini ya miaka 18
Zaidi ya miaka 18

15a. Umekuwa na wachumba wangapi, miezi sita iliyopota?
Hakuna
Mmoja
Zaidi ya mmoja

15b. Kama zaidi ya mmoja, kwa mda wa kiasi gani…………………..

16. Hali ya tohara ya mchumaba ama wachumba wako ni ipi?
Tohara
Hajatahiriwa
Wengine wametahiriwa wengine hawajatahiriwa

17. Je, una historia ya utoaji mimba kabla ya muda? (mshiriki)
Ndio
La
Kama ndio, mara ngapi?

18. Umekaa kwa mda upi baada ya mimba yako ya mwisho?
Chini ya mwaka mmoja
Zaidi ya mwaka mmoja

19. Je, wewe ni unasumbuka kimawazo?
La ☐
Ndio ☐

20. Je, umejihusisha na mbinu yeyote ya upangaji uza, kwa sasa ama hapo awali?
Ndio ☐
La ☐
Kama ndio,

21. Ulitumia ipi?
Pills ☐
Kifaa hiki cha uzazi wa mpango (pakiti ya sita) ☐
Kupandikiza ☐
Zingine ☐
Kama zingine, tafadhari taja...........................

22. Je, umekuwa chini ya utasa matibabu?
Ndio ☐
La ☐
23. Je, unatumia kondomu unapofanya ngono?
Ndio ☐
La ☐

24a Je, unawashwa sehemu ya siri?
Ndio ☐
La ☐

b. Kama ndio, unawashwa lini na mara ngapi?

25. Je, unakuwa na maumivu ya tumbo, upande wa chini?
Ndio ☐
La ☐

26a. Je, ushawahi ugua ugwanjwa wowote wa ngono?
Ndio ☐
La ☐

b. Kama ndio, mara ngapi..........
27b. Ni ungojwa upi uliuguwa? ...

28. Je una usaha ukeni?
Ndio ☐
La ☐
Kama ndiyo, tafadhali taja asili …………………..

29a. Je, wakati mwingine wapata au kuwa na harufu mbaya harufu ya fishy kutoka ukeni yako?
Ndio □

La □

bKama ndio, ni lini ulikuwa na tukio hili mara ya mwisho?…………………………

30. Je, waoga mara ngapi kwa wiki? (…………………………)

31. Je, watumia nini kuga?
Maji tupu □

Maji na sabuni □

Maji na vifaa vingine (tafadhal taja ni zipi) (…………………………)

32. Je, watumia nini kusugua mwili?
Mikono □

Kitambaa □

Suruali □

Sifongo □

Kitu kingine (taja ni kipi)…………………………

33. Je, watumia maji kiasi gani unapooga?
Robo basini □

Nusu basini □

Robo tatu basini □
Basini nzima

Zaidi ya basini nzima

34. Je, watumia dakika ngapi unapo oga? (…………………..)

35. Je, unasuruali ngapi? (…………………………)

36. Je, ngozi ya suaruali zako ni ipi?
Cottoni

Nyloni

Ngozi nyingine (taja)…………………………

37a. Je, wabadirisha suruali mara ngapi kwa wiki? (………………..)

B. Je, waosha suruali mara ngapi kwa wiki? (………………….)

38a. Je, unaosha sehemu ya uke, wakati mwingine ila unapooga?
Ndio

La

b. Kama ndio mara ngapi kwa wiki (…………………………)

39 je, unaosha sehemu ya uke na nini?

Maji tupu

Sabuni na maji

Other detergents (specify)…………………..

Vitu zingine(tafadhari taja ni zipi)…………………………

40a. Ushawahi osha sehemu ya uke, mara tu ulipofanya ngono?
Ndio

La
b. Kama ndio, unaosha sehemu ya siri mara ngapi baada ya ngono?

Wakati wote

Zaidi ya mara nusu ya wakati

Nusu ya wakati

Chini ya nusu ya wakati

Keto kendo ngiyo kit gi matelo tuo kendo nyuol ka pod ndalo

1. Taki………………………

2. Nying manguon:………………………………………………

3. Nying no.:

4. Wuoed no…………………………

5. Pek mar otas:…………………………

6. Bor mar otas:

Part one: demography

8. Iga

<20

21-25

26-30

31-40

>41
9. Weche mag kendruok
Migogo

Jomo okendore to gidak

Okinde to okodak kanyakla

Jathako achiel

Jadoho

Waya

Ka nthe machielo………………………………

10. Tichi?
Chi oot

Jalupo

Japur

Ondike gi sirikal

Jatij lwedo

Jao orak

11. Ere kaka tiji konyi e odi?
Tija

Lupo
Oala

Chuora

Yuto matin matin

Joma moko

11a. Ka ntho machielo ……………………………..

12. Sombi ochopu kanye?

Ok nadhi

Primar

Sekondar

Jakom

13. Idak kure?

Taon

Dala

14. Ondiychieng mokuongo manikuongo riworie gi osiepni

Pin mar igni apar ga aboro

Igni mokalo apao ga aboro
15a. Jo era adi maise bedo go ei dueche auchi el mokalo?
Onge
Achiel
Mokal achiel

15b. To ka en mokalo achiel,

16. Kuom ndalo mage?
Odhi nyange
Odhi nyange
Odhi nyange, Odhi nyange

17. Bende isebedo kod konyruolk ka ndaloni pod
Kamano
Ok kamano

To kaenkano, adi?.............................

18. Nyaka nene kyulo nyaka koro sani en ndalo maromo nadi?
Matin ne iga achiel
Mangeny ne iga achiel

19. Tobe isebeno gi paro moro amora?
Maber
Ohier

100
20. To bende isetioga gi yedhe mag kungo nyuol eiodiochienge mokalo?
Kamano

Ol kamano

To ka en kamano,.........................

21. En kuom mage itiogo?
Yedhe

Ma otwe diuchiel
Yath ma ikeo e lwedo

Machielo

Ka nthe machielo..............................

22. To beisebedo gi konyuoruk moroamora kaka thagruule kuom nyuol?
Kamano

Ok kamano

23. To beneitio gi rabuoyunga eseche mag riuruok?
Kamano

Ok Kamano
24a. Isebedo gi guonyruok eduongni?
Kamano []
Ok kamano []
b. To kaen kamano osetimi kuom ndalo adi?

25. To beisebedo gi ichkach mar piny ich?
Kamano []
Ok kamano []

26a. To bende isebedo gi tuoche mag era?
Kamano []
Ok kamano []
b. Tu ku en kamano, kuom kinde mage................
27b. En tuo mane

28. To be isebedo gi tuo mora mora ka oluore gi?
Kamano []
Ok kamano []
To ka en kamano,kuom odiochieng..............................

29a. To bende isebedo gi tik marach e duongni?
Kamano []
Ok kamano

b. To kaen kamano, odiochieng mogik en karango?..............................

30. Iluokori didi kuom ngalo abich? (..........................)

31. Ango ma itiyo go ka iluokori?
 Pi lilo

 Sabun gi pi

Gimaitigo,ainya (..............................)

32. Itiyo gi ango kuom rudho dendi?
 Luendo

 Nanga

 Suruachi ma ixe

 Lau ma yom
 Machiel mopogore gi mago..........................

33. Itio gi pi maromo nade kailuokori?

 Ario

 Achiel gi nus

 Adek gi nus

 Ka opong

 Mokalo besen ka opong
34. Itieko seche adi kuom luokruok? (………………..)
35. In gi sirueche adi ma ingo? (……………………..)
36. To gi chal nade?
 Koton
 Jualal
 Ka nthe machielo…………………………….
37a. Iloko lepi mag ixe didi e ndalo abich? (………………..)
 B. To i luoko gi didi e ndalo abich? (……………………)
38a. To beisebebedo ka iluoko duongni ma opogore gi luok?
 Kamano
 Ok kamano
 b. To ka en kamano didi e ndalo abich (………………………..)
39. Ango ma itio go kuom luok duongni?
 Pi lilo
 Sabun gi pi
 Mamoko………………
40a. To be iseluokoga duongni mapixo bang riuruok?
 Kamano
 Ok kamano
 b. To ka en kamano, didi mailuoko duongni bang riuruok?
 Osebedo
<table>
<thead>
<tr>
<th>French Phrase</th>
<th>Checkbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangeny ne seche achiel</td>
<td></td>
</tr>
<tr>
<td>Seche ma ok oromo achiel</td>
<td></td>
</tr>
<tr>
<td>Matin ne seche achiel</td>
<td></td>
</tr>
<tr>
<td>Nyaka chieng</td>
<td></td>
</tr>
</tbody>
</table>
(D) LABORATORY FORM

<table>
<thead>
<tr>
<th>Patients ID:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of sample collection:</td>
<td>Date of analysis:</td>
<td></td>
</tr>
<tr>
<td>Read by</td>
<td>Reviewed by</td>
<td></td>
</tr>
</tbody>
</table>

1. **Amsel criteria**

<table>
<thead>
<tr>
<th>Nature of discharge</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whiff test (positive, negative)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Clue cells | | |
| Conclusion: | BV positive | BV negative |

2. **Nugent scoring criteria**

<table>
<thead>
<tr>
<th>Epithelial cells at 100X all others at 1000X</th>
<th>Morphotype</th>
<th>Point</th>
<th>Morphotype</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+ Lacto</td>
<td>0</td>
<td>1+ G.vag</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3+ Lacto</td>
<td>1</td>
<td>2+ G.vag</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2+ Lacto</td>
<td>2</td>
<td>3+ G.vag</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1+ Lacto</td>
<td>3</td>
<td>4+ G.vag</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0 + Lacto</td>
<td>4</td>
<td>1-2 mobl.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gram stain reactions</th>
<th>First reading</th>
<th>Second reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial cells</td>
<td>/10×</td>
<td>/10×</td>
</tr>
<tr>
<td>White Blood cells</td>
<td>/10×</td>
<td>/10×</td>
</tr>
<tr>
<td>Red blood cells</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Pleomorphic Gram positive Rods</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Gram positive cocci</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Gram negative cocci</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Gram negative rods</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Prevotella spp.</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Fusobacteria spp.</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Coliforms</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Diptheroids</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Other non-specified bacteria</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Yeast cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichomonas vaginalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (general)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific indicators</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus (intermediate, Large species)</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>G.vaginalis/Bacteroides</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>Mobiluncus spp.</td>
<td>/100×</td>
<td>/100×</td>
</tr>
<tr>
<td>BV score (0 to 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clue cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV diagnosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific objective 1

Table 14: Distribution of participant age (years)

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean/Median</th>
<th>SD/IQR</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Socio-demographic characteristics of patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Frequency</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marital status</td>
<td>Single</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divorced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td>H/wife</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small business</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not indicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education level</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>College/University</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16: Obstetric characteristic of participants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Frequency</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of UTI</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestation week at labor</td>
<td><32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific objective 2

Table 17: Bacterial vaginosis infection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Frequency</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV status</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria isolated</td>
<td>Lactobacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gardenerella & Bacteroides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobiluncus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fusobacteria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific objective 3

Table 18: Socio demographic factors and BV status

<table>
<thead>
<tr>
<th>Variable</th>
<th>BV positive</th>
<th>BV negative</th>
<th>Chi-square</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced/separated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College/University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(F) MATERIALS
Gloves

pH tester (Merck pH, range 4.0 to 7.0)

Glass slide and cover slips

Sterile Dacron swabs

10% Potassium hydroxide

A dropper

Gram stain reagents

Oil

70% alcohol – sterilizer

Disposable towels

4 Slide boxes

Normal saline